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ABSTRACT
The current commercial production protocols for Atlantic cod depend on enriched
rotifers and Artemia during first-feeding, but development and growth remain
inferior to fish fed natural zooplankton. Two experiments were conducted in order
to identify the underlying factors for this phenomenon. In the first experiment
(Exp-1), groups of cod larvae were fed either (a) natural zooplankton, mainly
copepods, increasing the size of prey as the larvae grew or (b) enriched rotifers
followed by Artemia (the intensive group). In the second experiment (Exp-2),
two groups of larvae were fed as in Exp-1, while a third group was fed copepod
nauplii (approximately the size of rotifers) throughout the larval stage. In both
experiments, growth was not significantly different between the groups during the
first three weeks after hatching, but from the last part of the rotifer feeding period
and onwards, the growth of the larvae fed copepods was higher than that of the
intensive group. In Exp-2, the growth was similar between the two copepod groups
during the expeimental period, indicating that nutrient composition, not prey size
caused the better growth on copepods. Analyses of the prey showed that total fatty
acid composition and the ratio of phospholipids to total lipids was slightly different
in the prey organisms, and that protein, taurine, astaxanthin and zinc were lower on
a dry weight basis in rotifers than in copepods. Other measured nutrients as DHA,
all analysed vitamins, manganese, copper and selenium were similar or higher in the
rotifers. When compared to the present knowledge on nutrient requirements, protein
and taurine appeared to be the most likely limiting nutrients for growth in cod larvae
fed rotifers and Artemia. Larvae fed rotifers/Artemia had a higher whole body lipid
content than larvae fed copepods at the end of the experiment (stage 5) after the fish
had been fed the same formulated diet for approximately 2 weeks.
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INTRODUCTION
In aquaculture, the production of Atlantic cod (Gadus morhua) juveniles is based on

indoor intensive systems with start-feeding tanks supplied with temperature-controlled

seawater and in which the larvae are fed enriched rotifers (Brachionus spp.) at the onset

of exogenous feeding. This may be followed by a period of feeding with enriched brine

shrimp (Artemia salinas) before the larvae are weaned onto formulated feed. However, the

quality of the cod juveniles achieved with this production method is variable and often

suboptimal. The proportion of deformed fish is often higher than when the larvae are fed

natural zooplankton that consists mainly of copepods (Fjelldal et al., 2009; Imsland et al.,

2006). Moreover, the rate of growth of larvae fed rotifers/Artemia is lower than that of

larvae fed copepods (Busch et al., 2010; Busch et al., 2011; Evjemo, Reitan & Olsen, 2003;

Hamre et al., 2013; Imsland et al., 2006; Koedijk et al., 2010; Liu & Xu, 2009). Analyses of

stomach content from wild caught cod larvae show that an assemblage of various species

and stages of copepods are the most important food items for cod larvae in their natural

habitat (Wiborg, 1948; Last, 1978).

It has been hypothesised that the consistent and inferior growth rates and juvenile

quality of cod fed rotifers/Artemia are due to suboptimal nutrition, indicated by numerous

differences in the nutrient content of rotifers and copepods (Hamre et al., 2008a; Hamre

et al., 2013; Imsland et al., 2006; Srivastava et al., 2006; van der Meeren et al., 2008;

Oie et al., 2015, unpublished data). The dry-weight concentration of protein is much

higher in copepods than in rotifers, and such levels cannot easily be obtained by enrich-

ment of the rotifers (Hamre et al., 2013; Srivastava et al., 2006). Levels of essential n-3 fatty

acids and phospholipids are often lower in rotifers than in copepods (van der Meeren et al.,

2008). However, this can be improved by using high levels of n-3 fatty acids in the culture

medium and by culturing lean rotifers which contain low levels of triacylglycerol and thus

have a higher ratio of phospholipids (PL) to total lipids (TL) (Hamre et al., 2013). It is well

known that raising the ratio of PL to TL in larval feeds enhances growth (Cahu, Zambonino

Infante & Barbosa, 2003). Commercial rotifer diets usually contain sufficient levels of vita-

mins to meet the requirements of marine fish larvae, with the possible exception of vitamin

D and K, on which there are few studies (Hamre et al., 2013). However, it is possible that

microminerals are present in suboptimal concentrations (Hamre et al., 2008a), probably

underlying part of the reduced survival of larvae (Hamre et al., 2008b). To rectify these

problems, new enrichment protocols have been developed for some of the potentially

deficient nutrients (Nordgreen, Penglase & Hamre, 2013; Penglase et al., 2010; Srivastava et

al., 2012; Srivastava, Stoss & Hamre, 2011), which enable comparable levels in rotifers as

those observed in copepods to be reached. Macrominerals and most of the B-vitamins are

present in rotifers and Artemia at levels comparable to those observed in copepods (Hamre

et al., 2013) and therefore seem to be sufficient, on the basis of our current knowledge.

It should be noted that the rotifers’ and Artemia’s own metabolisms prevent the levels of

some nutrients from being customised or raised by enrichment procedures.

In addition to nutrient composition, the size and energy content of rotifers and Artemia

may also limit fish growth. Marine fish larvae select prey of increasing size as they grow
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if different prey sizes are available (Hunter, 1980; Kuhlman, Quantz & Witt, 1981; Last,

1978; Olsen et al., 2000; Stepien, 1976; van der Meeren, 1991). Two groups of cod larvae

that were fed small or large copepods were similar in size until 25 days post hatch (dph),

but thereafter growth was faster in the larvae fed large copepods (Busch et al., 2011).

Furthermore, feeding cod larvae large rotifers instead of small ones, with similar prey

biomass per tank, resulted in significantly larger larval size after just a few days of feeding

(G Øie, SINTEF Fisheries and Aquaculture, pers. comm., 2014). It is therefore possible that

the methods most often employed in feeding copepods to cod, e.g., increasing prey size as

the larvae grow, supplies more energy to the larvae than when they are fed small rotifers

and Artemia, and that different prey size is the reason for the observed differences in

growth rates. Another possible explanation for these variations in growth are differences in

feed intake caused by sensory stimuli, due to species-specific prey movements or release of

chemically mediated attractants (van der Meeren, 1991; Yacoob, Browman & Jensen, 2004).

The purpose of the present study was to identify the underlying mechanisms that lead

to differences in the growth and development between cod larvae fed rotifers/Artemia

and those fed copepods. We used state-of-the-art cultivation and enrichment methods

for rotifers and Artemia, while copepods were harvested from a local semi-controlled

seawater pond system (Naas, van der Meeren & Aksnes, 1991; van der Meeren et al.,

2014). We conducted two experiments. In the first experiment (Exp-1), two groups of

cod larvae in triplicate tanks were fed rotifers/Artemia or copepods. Here we present data

that cover larval growth and survival and the nutritional status of the prey types and the

developing cod larvae. Additional results describing the ontogeny of cod larvae, data for

transcriptomics, microRNA-sequencing and metabolomics, and a wide range of biological

processes in the larvae will be reported elsewhere.

The second trial (Exp-2) was designed to distinguish between prey size and prey

nutrient composition as the cause of the enhanced growth of cod larvae fed copepods.

Two groups of larvae were subjected to the same feeding regimes as in Exp-1, i.e., one with

increasing copepod size (from nauplii to copepodids) as the larvae grew, and another with

rotifers from the onset of first-feeding followed by Artemia. Additionally, a third group of

larvae were fed small prey size (copepod nauplii) throughout the whole experiment. We

hypothesised that similar growth rates in larvae fed small and increasing sized copepods

respectively, indicate that nutritional differences between rotifers/Artemia and copepods is

the main reason for differences in larval growth.

MATERIAL AND METHODS
Fish material and experimental design
This study was carried out within the Norwegian animal welfare act guidelines, in

accordance with the Animal Welfare Act of 20th December 1974, amended 19th June, 2009,

at a facility with permission to conduct experiments on fish (code 93) provided by the

Norwegian Animal Research Authority (FDU, www.fdu.no). The first trial was assumed

to be a nutrition trial not expected to harm the animals, no specific permit was required

under the guidelines. The second experiment was approved by FDU, FOOTS ID 5448.
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Fertilized eggs for Exp-1 were obtained from Atlantic cod broodstock of coastal origin,

western Norway, which were held at the Institute of Marine Research (IMR), Austevoll

Research Station. The naturally spawning fish, 45 females and 25 males, were kept in a tank

of seawater (yearly means; temperature: 7.9±0.3 ◦C, salinity: 34.7±0.2 g L−1). The eggs

were collected overnight March 15, 2012, using an egg collector as described by van der

Meeren & Lønøy (1998). Mean egg diameter was 1.29 mm, and fertilization rate was 79%.

Eggs for Exp-2 were obtained from siblings of the broodstock used in Exp-1, kept at

sea in net pens at the IMR facility in Parisvannet, Øygarden. Eggs were stripped on April

4, 2013 from three females (1.2 L in total), and fertilized with mixed milt from 10 males.

Sea temperature at time of stripping was 4.0 ◦C. The fertilized eggs were immediately

transported for about three hours by car to IMR-Austevoll in a 15 l closed plastic bag with

an air space, held in a polystyrene box. On arrival at Austevoll, the temperature had risen

to 4.7 ◦C. The eggs were disinfected using 400 mg L−1 glutaraldehyde for 8 min according

to Harboe, Huse & Øie (1994). Mean egg diameter was 1.30 mm, and fertilization rate

was 86%.

Water for the Austevoll station is pumped from a depth of 168 m, sand-filtered,

temperature-adjusted and aerated before it enters the tanks. The eggs were held in 70 L

black polyethylene incubators with conical bases; 1 L of eggs per tank in Exp-1, and 0.20

L in Exp-2. The tanks had gentle aeration (van der Meeren & Lønøy, 1998), water supplied

at 0.5 L min−1, 5.8–6.1 ◦C, and with continuous light. Dead eggs were removed daily and

measured volumetrically. In Exp-1, 50% hatching (day 0) was reached on 8th of April

while in Exp-2, 50% hatching on the 18th of April. In both experiments, cod larvae were

transferred to start-feeding tanks on 4 dph.

In Exp-1, 50,000 cod larvae were stocked in each of the six black PEH 500 L start-feeding

tanks with gentle aeration, in order to prevent feed organisms and larvae from clogging

the sieves. Larvae in three of the tanks (randomized) were fed copepods, while in the other

three tanks they were first-fed enriched rotifers followed by enriched Artemia. Water flow

was increased with age, from 1 L min−1 initially to 6 L· min−1 at weaning, and further to

10 L min−1 at experiment termination, giving a water exchange rate of 32 tank volumes

day−1 (van der Meeren et al., 2011). The temperature was gradually increased from 8 ◦C

at transfer to 11.6 ◦C at 11 dph (Fig. 1), where it was kept for the rest of the experiment.

Salinity was constant at 34.7 ± 0.2 g L−1. The tanks were equipped with air skimmers to

remove any biofilm on the water surface. An automated cleaning arm (van der Meeren et

al., 1998), rinsed the bottom of the tanks as needed from 12 dph. To modify the visual

feeding environment and enhance feeding (Naas, Næss & Harboe, 1992; van der Meeren,

Mangor-Jensen & Pickova, 2007), 10 ml algal paste (Marine microalgae concentrate,

Nannochloropsis sp., Instant Algae®, Nanno 3600; Reed Mariculture, Campbell, California,

USA) was added to each tank 15 min prior to each meal until 36 dph (Fig. 2). A 16L:8D

photoperiod was employed, with 30 min simulated twilight at each dusk and dawn. The

light source consisted of two 20 W tungsten halogen light bulbs (12 V) over each tank that

provided 300–500 µW/cm2 at the water surface (IL 1400A photometer; International Light

Inc., Boston, Massachusetts, USA).
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Figure 1 Physical conditions of experiments. Figure 1. Water temperature, relative water exchange rate
given as tank volume day−1, and oxygen saturation during the experimental period (4–90 dph) for the
copepod and the rotifer/ Artemia groups in both experiments (Exp-1 and Exp-2).

In Exp-2, 1900 cod larvae were distributed randomly to each of 12 green PEH 50 L

startfeeding tanks at 4 dph. Three feeding regimes were employed: larvae in four tanks

received enriched rotifers followed by enriched Artemia, another four tanks received

copepod nauplii and copepodids with prey whose size increased with larval age, and the

last four tanks were given copepod nauplii without increases in prey size through the larval

period (Fig. 3).

The tank design and setup employed in Exp-2 were miniatures of the tanks in Exp-1, but

without cleaning arm and surface skimming. Cleaning was done manually by siphoning

the bottom when necessary. Water quality was similar to Exp-1, except that the water

was not temperature-adjusted. The temperature therefore ranged between 7.1 and 8.6 ◦C

(Fig. 1). The water flow was kept stable at 0.42 L min−1 during the experiment. Oxygen

saturation was not measured as the daily water-exchange rate was high relative to tank size

(Fig. 1). Illumination was provided by broad-spectrum fluorescent light tubes (Philips

965 TL-D 90 De Luxe Pro; Philips, Amsterdam, Netherlands) providing 200–300 µW/cm2

at the water surface. Algal paste (3.3 mL tank−1, Nannochloropsis sp.; Reed Mariculture,

Campbell, California, USA) was added 15 min prior to every feeding from 4 to 33 dph

(Fig. 3).
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Figure 2 Feeding regime in Exp-1. Feeding regimes, sampling (black triangles), and use of “green water”
(where an algal paste is added to the water) in Exp-1; (A) larvae fed rotifers and Artemia, (B) copepod
feeding regime. Copepod size fractions are given between the vertical dotted lines. Particle diameter is
given for formulated feed: AgloNorse (AN) and Gemma Diamond (GD).

Larval feed and feeding regimes
In Exp-1, the cod larvae were fed three times a day (09:45, 15:15 and 19:00). The rotifer

cultures were seven-day-old batch cultures, kept in 2 m3 conical tanks at 24 ◦C at densities

ranging between 850 and 2600 rotifers mL−1, and fed four times h−1. The diet consisted

of dry baker’s yeast (0.11–0.18 g million rotifers−1) and Rotifer Diet ® (0.3–1.5 g million

rotifers−1; Reed Mariculture Inc., Calfornia, USA). The rotifers were enriched before they

were fed to the larvae. The enrichment protocol was performed daily by moving the desired

number of rotifers into an enrichment tank at densities in the range of 1000–2000 rotifers

ml−1. The culture was given 0.6 mg Sel-Plex® (Alltech, Vejle, Denmark) and 0.2 g Larviva

Mulitigain (Biomar, Trondheim, Norway) per million rotifers over a 20 min period each

hour from 12:00 to 08:00 the following day. After enrichment the culture was rinsed in

clean 24 ◦C seawater, then cooled to the same temperature as the start-feeding tanks, and

finally stored under moderate aeration and continued cooling until given to the cod larvae.

From 32 to 35 dph the rotifers were gradually replaced with enriched Artemia, which
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Figure 3 Feeding regime in Exp-2. Feeding regimes, sampling (black triangles), and use of green water
in Exp-2; (A) feeding regime with rotifers and Artemia, (B) copepod feeding regime with increasing prey
size, and (C) copepod feeding regime with small prey size. Copepod size fractions are given between the
vertical dotted lines.

were fed until 63 dph. The Artemia were hatched from SepArt cysts (INVE Aquaculture,

Dendermonde, Belgium), and enriched at densities of maximum 500 Artemia mL−1 using

0.2 g Larviva multigain L−1 tank volume, given four times from 20:00 to 08:00. After

enrichment, the Artemia were rinsed in clean seawater, cooled, and stored like the rotifers.

From 58 to 63 dph, Artemia were fed to the cod larvae only once a day at 15:15. Weaning to

the formulated diet AgloNorse ® 400–600 µm (Tromsø Fiskeindustri AS, Tromsø, Norway)

started by hand feeding on 55 dph, and continued using feeding automats from 57 dph

(Fig. 2A).

Copepods were collected from “Svartatjern,” a nearby 25 000 m3 sea-water pond system

(Naas, van der Meeren & Aksnes, 1991). Pond operation, hydrographical and biological

monitoring, and copepod filtration system and harvest procedures are described in detail

by van der Meeren et al. (2014). A UNIK-900 wheel filter (Unik Filtersystem AS, Os,

Norway) was used to fraction, concentrate and harvest the copepods. The filter fractions

used in Exp-1 (Fig. 2B) were 80–150 µm (4–11 dph), 80–180 µm (11–18 dph), 80–212 µm

(18–23 dph), 80–250 µm (23–36 dph), and 80–350 µm (37–44 dph). The collected

copepods were concentrated under aeration by a 80 µm plankton net and transported
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in a 10 L bucket with lid and aeration for 7 min by boat to the larval rearing facility. On

arrival, the concentrated mixture of copepods was diluted to 30–60 L with 7–8 ◦C seawater

and stored under the same conditions as the enriched and cooled rotifers and Artemia.

Viability was checked under a 40× magnification binocular microscope. Copepods were

harvested from the pond one to three times a day, depending on larval needs and plankton

availability in the pond. The quantities of copepods added to the larval tanks are shown in

Fig. 2B. The larvae were weaned to a formulated diet from 37 dph as described above. At

70 dph, AgloNorse was switched to Gemma Diamond® 1.0 (Skretting, Stavanger, Norway).

In Exp-2, larvae in four tanks were fed rotifers and Artemia, which were produced as

in Exp-1. Rotifers were used from 4 to 34 dph, while Artemia were used from 34 to 47

dph (Fig. 3A). The copepods were also obtained as described in Exp-1. The four tanks

with larvae fed copepods which increased in size with larval age were given the 80–150 µm

fraction from 4 to 15 dph, 80–180 µm from 16 to 27 dph, 80–212 µm on 28 to 34 dph, and

212–250 µm from 35 dph and onwards (Fig. 3B). Finally, larvae in the four tanks given

small sized prey only were fed copepod nauplii collected from the 80–150 µm fraction from

4 to 15 dph and 80–180 µm for the rest of the experiment (Fig. 3C). Exp-2 was terminated

on 47 dph. To measure copepod size, samples were fixed in 1:50 Lugol’s solution. Samples

taken in the morning and afternoon on four days were photographed with two images per

sample (Leica MS5 with an Olympus DP70), and the total length of all nauplii and the

prosome length of all copepodids on the images were measured using ImageJ (v2013-2,

National Institute of Health, Bethesda, Maryland, USA).

Larval sampling and staging
Due to the unequal growth of the larvae in the different dietary groups, the dates of

sampling in Exp-1 were adjusted according to larval size rather than age. Before the trial,

a system of stages was developed, which was based on the sequence of mineralisation of

craniofacial bones and is correlated with certain ranges of standard lengths (Dr. Ø Sæle,

NIFES, pers. comm., 2012). Here we report data from larval stages 0–5 and juveniles.

Sampling at stages 0, 1, and 2 corresponds to 4, 11 and 22 dph for both groups since the

growth rate was similar in the early stages. For stages 3, 4, 5 and juveniles the time for

sampling corresponds to 28, 36, 52 and 73 dph in the copepod groups and 30, 53, 70 and

84 dph in the rotifer groups (Table 1). Additional samples for growth measurements were

collected in between these ages. The samples were collected two hours after the first meal

of the day in order to standardise gut filling conditions. The reason for sampling larvae

with a full gut was that parallel samples were taken for studies of digestive physiology,

the results of which are reported elsewhere. The time of feeding prior to sampling was

adjusted to keep a fixed standardized time between feeding and sampling for all tanks.

Larvae used for length and dry weight analysis were individually sedated, photographed,

killed with an overdose of MS 222, rinsed in filtered distilled water, laid in pre-weighed

aluminium beakers, and freeze-dried. The beakers with larvae were weighed, and larval

weight determined by subtraction. Larval standard length, from the tip of the snout to the

end of the notochord, was measured on the photographs. At the two last samplings for
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Table 1 Overview of the sampling in Exp-1. Overview of larval stages at sampling in Exp-1, correspond-
ing larval age and standard length (SL, mean ±SD) and approximate number of larvae sampled per
tank (No). Superscript letters indicate significant differences between treatments in SL (t-test, p < 0.05).
Larvae were fed either copepods or rotifers in stages 0–3 and Artemia in stages 3–4 (Rotifers). Both groups
were weaned after the sampling at stage 4. Stages were described by Ø Sæle et al. (2012, unpublished data)
and correlated with those given by Hunt von Herbing et al. (1996).

Stage Age (dph) SL (mm) No

Rotifers Copepods Rotifers Copepods Rotifers Copepods

0 4 4 4.5 ± 0.2 4.5 ± 0.2 3,350 5,300

1 11 11 5.2 ± 0.4 5.1 ± 0.3 3,850 3,400

2 22 22 6.9 ± 0.6 7.0 ± 0.7 2,180 1,800

3 31 29 8.5 ± 0.7 10.1 ± 0.9 1,550 2,800

4 54 37 14.8 ± 2.6 12.9 ± 1.4 1,435 1,300

5 71 53 26.5 ± 3.2a 23.7 ± 3.1b 1,360 1,300

Juvenile 85 74 48.8 ± 6.6 48.9 ± 5.8 1,350 1,200

each of the groups, larval length and wet weight were measured. Larvae used for analysis

of nutrient composition were sampled at stages 3 (at the end of the rotifer period) and

5 (both groups were weaned after sampling at stage 4). Pooled larvae (one sample per

tank) were killed by an overdose of MS 222 and sieved through a plankton filter which was

subsequently patted dry from underneath with a paper towel. Samples were distributed

to tubes for the different nutrient analyses, immediately frozen on dry ice, and then

transported to National Institute of Nutrition and Seafood Research (NIFES) and stored at

−80 ◦C until analyses.

Exp-2 was basically a growth and survival study, and larval samples were taken for

weight and length only, using the protocol described above. The larvae were not staged and

the samples were taken at the same ages for all groups.

Sampling of live prey for chemical analyses
In Exp-1, three samples of enriched rotifers and two samples of enriched Artemia were

taken for analysis of nutritional composition. The samples were taken from the cooling

tanks, washed in fresh water, sieved and patted dry from underneath the sieve with a paper

towel, frozen and stored at −80 ◦C until analysed. The samples were filtered on a 60 µm

plankton net, patted dry with a paper towel, frozen immediately at −80 ◦C and stored until

analysis.

In Exp-2, rotifers were sampled on 13 and 27 dph, Artemia just after the experiment

ended, and small and large copepods just before first-feeding and at 6 and 21 dph.

Biochemical analysis
The nutrient composition of fish and diets was measured by ISO-certified routine methods

at NIFES. Table 2 presents an overview over the biochemical methods with analysis

principles and references. Protein is given as N × 6.25 for cod larvae, N × 4.46 for rotifers

and N × 5.30 for Artemia and copepods, respectively (Hamre et al., 2013).
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Table 2 Analytical methods employed. Analytical methods for the different nutrients.

Analyte Principle Reference

Dry matter Gravimetric after freeze drying Hamre & Mangor-Jensen, 2006

Protein N × 6.25 Leco N Analyzer Hamre & Mangor-Jensen, 2006

Taurine Total amino acids Espe et al., 2006

Fatty acids Transmethylation extraction and GC/FID Lie & Lambertsen, 1991

Lipid classes HPTLC Jordal, Lie & Torstensen, 2007

Vitamin C HPLC Mæland & Waagbø, 1998

Vitamin A HPLC Moren, Næss & Hamre, 2002

Vitamin D HPLC CEN , 1999

Vitamin E HPLC Hamre, Kolås & Sandnes, 2010

Sum vitamin K3 HPLC CEN , 2003

Carotenoids HPLC Ørnsrud et al., 2004

Microminerals ICP-MS Julshamn et al., 2004

Iodine ICPMS Julshamn, Dahl & Eckhoff, 2001

Data analysis and statistical analysis
Specific growth rate (SGR) and daily length increment (DLI) were calculated according to

Ricker (1979):

SGR (% day−1) = 100(eg
− 1), where g = (lnW2 − lnW1)(t2 − t1)

−1

DLI (mm day−1) = (L2 − L1)(t2 − t1)
−1

W2 and W1 are dry weights, while L2 and L1 are lengths at times t2 and t1, respectively.

Differences in survival between the two treatments in Exp-1 were compared using

Mann–Whitney U test, while the three treatments in Exp-2 were compared using

Kruskal–Wallis ANOVA. Size (length, weight) was compared using nested two-way

ANOVA (treatment, time) with tanks nested under treatment, followed by a Tukey HSD

test if significant if p < 0.05. Growth rates (SGR and DLI) were compared for separate

stages. In Exp-1 compared by means of Student’s t-test, and in Exp-2 by a one-way ANOVA

and if significant (p < 0.05) followed by Tukey HSD.

The data on the nutrient composition of the feeds were first checked for homogeneous

variances using Levene’s test and log transformed if significant, using the Statistica software

package (ver. 12, StatSoft Inc. Tulsa, Oklahoma, USA). They were then analysed by ANOVA

and Tukey HSD test for unequal sample sizes. Nutrient composition of larvae in Exp-1 on

stages 3 and 5 were analysed by t-tests.

RESULTS
Survival
In Exp-1, between 4223 and 6210 larvae were collected from each of the tanks at the end

of the trial. Estimates of survival, calculated as the proportion of the larvae counted out of

the tanks at termination, divided by the number of larvae added to the tanks at start (after

sampling at 4 dph, N = 50 000) corrected for samplings (N = 10 000), ranged between

11 and 16%. Mean (± SD) survivals were 14 ± 2% and 12 ± 1% in the copepod and the
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Table 3 Larval growth rates. Daily length increment (DLI, mm day−1) and specific growth rate (SGR,
weight %day−1) of cod larvae fed rotifers and Artemia (Rotifers) or copepods during the start-feeding
period. Superscripts indicate significant differences in tank means during the periods (Exp-1 t-test; Exp-2
one way ANOVA and Tukey HSD, p < 0.05). (A) Exp-1, n = 3, calculations based on stages; (B) Exp-2,
n = 4, calculations based on age. Data are given as mean ± SD.

(A) Stages DLI SGR

(Age as dph, rot/cop) Rotifers Copepod Rotifers Copepod

0–2 (4–22/4–22) 0.13 ± 0.03 0.14 ± 0.02 11.9 ± 1.0 11.9 ± 1.6

2–4 (22–36/22–53) 0.25 ± 0.05a 0.42 ± 0.06b 8.6 ± 0.4a 15.5 ± 2.5b

4–5 (36–52/53–70) 0.73 ± 0.04 0.67 ± 0.01 11.6 ± 0.8 12.9 ± 0.7

5-Juvenile (52–73/70–84) 1.58 ± 0.29 1.25 ± 0.05 12.0 ± 1.9 11.4 ± 0.4

(B) Period DLI SGR

(dph) Rotifers Small cop. Large cop. Rotifers Small cop. Large cop.

4–20 0.08 ± 0.02a 0.10 ± 0.01a 0.08 ± 0.01a 4.74 ± 0.69a 5.46 ± 0.57a 4.75 ± 0.43a

20–34 0.16 ± 0.05a 0.21 ± 0.02a,b 0.26 ± 0.02b 8.93 ± 2.15a 12.0 ± 0.6b 13.8 ± 1.0b

34–47 0.11 ± 0.02a 0.35 ± 0.04b 0.35 ± 0.04b 4.44 ± 1.08a 10.4 ± 1.1b 10.4 ± 1.8b

rotifer/Artemia fed groups, respectively, and were not significantly different between the

treatments (Mann–Whitney U-test, p = 0.190).

Estimated survival at the end of Exp-2, calculated as above, ranged from 10 to 47%.

Mean survival was lower in the group fed rotifers/Artemia (13%, range 10–20%) than in

the small copepod (39%, range 35–47%) and large copepod (37%, range 31–43%) groups

(Kruskal–Wallis ANOVA, p < 0.001). The large and small copepod groups did not differ

(Mann–Whitney U-test, p = 0.837).

Growth
In Exp-1 the larvae were 4.13 ± 0.12 mm (N = 25) at hatching, and 4.46 ± 0.18 mm

(N = 24) at 4 dph (Stage 0). The growth in weight and length, DLI and SGR of larvae in

Exp-1 were not significantly different between the groups at stages 0–2, from 4 to 22 dph

(Figs. 5A, 5C and Table 3A). The copepod group displayed significantly improved DLI and

SGR compared to the intensive group between stages 2 and 4 (t-test, p < 0.01), while there

were no significant differences from stages 4 to 5 or 5 to juvenile in length increment or

growth rate (Figs. 5A, 5C and Table 3A)

In Exp-2, the larval dry weight at 4 dph was 0.083 ± 0.024 mg and length

4.51 ± 0.21 mm (Figs. 5B and 5D). Mean length and weight did not differ between

the treatments until 20 dph (nested ANOVA, p > 0.935). Thereafter, both copepod

groups were significantly longer and heavier than the intensive group (nested ANOVA,

p < 0.005). No significant differences in length were observed between larvae of the two

copepod treatments (nested ANOVA, p > 0.398) except at 40 dph, when the group fed

large copepods was significantly longer than the group fed small copepods (p < 0.001).

Similarly, there were no significant difference in dry weights between the two copepod
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Figure 4 Copepod size fractions. Mean prosome (copepodids) or total length (nauplii), quartiles (box)
and range (lines) of nauplii (open) and copepodids (grey) in the different filter fractions used as feed in
the experiments. No nauplii were present in the 180–250 µm or 212–250 µm fractions.

groups except at days 40 and 47, where the larvae fed the large copepods had higher dry

weights than those fed the small copepods (p < 0.015, Figs. 5B and 5D).

The DLI and SGR in Exp-2 were not significantly different between the treatments from

4 to 20 dph (Table 3B). Thereafter (days 20–34 dph and days 34–47 dph), growth was

slower in the intensive group, particularly during the last period, when the SGR of the

intensive group fell to only half of the previous period (from 8.9 to 4.4% day−1) (Table 3B).

There were no significant differences in DLI or SGR between the two copepod groups

(Mann–Whitney U-test, p > 0.15).

Prey size and nutrient composition of live feed organisms and cod
larvae
The nauplii had overall lengths of 60 to 225 µm, while the copepodids had prosome lengths

of 225 to 660 µm with little overlap (Fig. 4). Rotifers typically have a lorica length of

100–200 µm and Artemia instar I about 4–600 µm.

The nutrients present at lower levels in rotifers than in copepods in Exp-1 were protein

(p < 0.001), taurin (p < 0.001), astaxanthin (p < 0.001), iodine (p < 0.05) and zinc

(p < 0.001) (Table 4). There were also differences in fatty acid composition, in that the

rotifers’ ARA fraction (p < 0.0001) was higher than in copepods and EPA was lower

(p < 0.01). Furthermore, copepods had a higher ratio of phospholipids (PL) to total lipid

(TL) than rotifers (p = 0.01). DHA, the lipid level measured as total fatty acids, all the

vitamins analysed, as well as manganese, copper and selenium were higher or similar

in rotifers than in copepods. The Artemia had a lower protein content than copepods

(p < 0.001), similar to that in rotifers, and were characterized by taurine levels between
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Table 4 Nutrient levels in live food. Leves of selected nutrient in the live feed used for cod larvae in
(A) Exp-1 (mean ± SD, n = 2 for Artemia, n = 3 for rotifers and copepods) and (B) Exp-2 (n = 1 for
Artemia , n = 2 for rotifers, n = 3 for small and large copepods; n.d., not detected). Superscripts indicate
significant differences (ANOVA and Tukey’s post hoc test, p < 0.05).

A Rotifers Artemia Zooplankton

Dry matter (DM, g/100 g) 12 ± 1a 19 ± 2b 20 ± 2b

Protein (g/100 g DM) 37 ± 4a 39 ± 0a 60 ± 2b

Taurine (µmol/g DM) 0.8 ± 0.3a 29 ± 1b 50 ± 6c

Vitamins (mg/kg DM)

A1 1.9 ± 0.1b 0.8 ± 0.3a n.d.

A2 n.d. n.d. n.d.

C 553 ± 137b 617 ± 10b 94 ± 54a

D3 0.7 ± 0.4 0.3 ± 0.0 n.d.

E (α-tokoferol.) 333 ± 45b 280 ± 5b 105 ± 2a

K 0.58 ± 0.24ab 1.59 ± 0.52b 0.21 ± 0.11a

Carotenoids (mg/kg DM)

Canthaxanthin 32 ± 4b 86 ± 28c 10 ± 1a

Astaxanthin 11.1 ± 1.0a n.d. 141 ± 15b

Minerals (mg/kg DM)

Iodine 2.6 ± 0.8a 3.9 ± 0.9a 35 ± 13b

Manganese 6.9 ± 0.6 3.4 ± 0.7 6.5 ± 2.9

Copper 10.6 ± 0.6b 9.5 ± 0.7ab 8.4 ± 1.0a

Zinc 41 ± 6a 120 ± 14b 517 ± 75c

Selenium 2.1 ± 0.1b 1.4 ± 0.1a 1.9 ± 0.3ab

Lipids

20:4n-6 ARA (% TFA) 1.9 ± 0.1c 2.4 ± 0.0b 0.6 ± 0.1a

20:5n-3 EPA (% TFA) 4.4 ± 0.2a 4.1 ± 0.3a 10.8 ± 1.9b

22:6n-3 DHA (% TFA) 32 ± 3a 19 ± 3b 22 ± 4ab

EPA/ARA 2.3 1.7 18.0

Sum fatty acids (mg/g DM) 98 ± 18 116 ± 15 95 ± 39

Sum PL (% TL) 22 ± 2a 25 ± 0ab 29 ± 2b

B Rotifers Artemia Small
copepods

Large
copepods

Dry matter (DM, g/100 g) 12 ± 2 5.11 13 ± 2 14 ± 1

Protein (g/100 g DM) 38 ± 3a 55 58 ± 3b 67 ± 3b

Taurine (µmol/g DM) 0.7 ± 0.0a 40 59 ± 0b 63 ± 4b

Vitamins (mg/kg DM)

Thiamine 17.5 ± 4.7b n.d. 5.0 ± 1.3a 4.7 ± 1.6a

C 112 ± 104 142 144 ± 17 72 ± 39

A1 n.d. n.d. n.d. n.d.

A2 n.d. n.d. n.d. n.d.

D3 0.20 ± 0.02 0.39 n.d. n.d.

E (α-tokoferol.) 671 ± 159b 802 58 ± 23a 84 ± 24a

(continued on next page)
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Table 4 (continued)

B Rotifers Artemia Small
copepods

Large
copepods

Minerals (mg/kg DM)

Iodine 1.1 ± 0.2a 2.2 45 ± 9c 19 ± 5b

Manganese 7.5 ± 0.6 3.5 93 ± 45 17 ± 4

Copper 15 ± 3 14.5 28 ± 24 17 ± 4

Zinc 52 ± 7a 157 413 ± 60ab 714 ± 160b

Selenium 0.41 ± 0.19a 2.7 2.9 ± 0.5b 4.1 ± 0.3b

Lipids

20:4n-6 ARA (% TFA) 2.0 ± 0.1b 2.9 0.7 ± 0.1a 0.6 ± 0.3a

20:5n-3 EPA (% TFA) 5.0 ± 0.0a 5.1 17 ± 3b 19.7 ± 0.4b

22:6n-3 DHA (% TFA) 33 ± 1 9.1 35 ± 3 36 ± 2

EPA/ARA 2.5 1.8 24.3 32.8

Fatty acids (mg/g DM) 197 ± 16b 169 40 ± 2a 47 ± 2a

Sum PL (% TL) 24 ± 2a 30 51 ± 7b 55 ± 5b

those in rotifers and copepods (different to both, p < 0.01), high levels of cantaxanthin,

no astaxanthin, and higher average levels of vitamin C, E and K (p < 0.01) compared to

copepods. Iodine (p = 0.02) and zinc (p < 0.001) levels were lower in Artemia than in

copepods. The fatty acid composition was characterized by similar DHA levels, but a much

higher EPA:ARA ratio in copepods compared to Artemia. The level of total fatty acids and

the ratio of PL to total lipids were similar to that in copepods.

The levels of selected nutrients in cod larvae fed rotifers/Artemia or copepods in Exp-1

were analysed at stages 3 and 5. Dry matter (DM) and protein did not differ between larvae

fed the two diets (Table 6). At stage 3, taurin was almost 20 times as high in larvae fed cope-

pods as in those fed rotifers/Artemia (40 and 2.1 µmol g−1 DM, respectively, p < 0.001).

This difference became smaller, but was still present at stage 5 (46 and 39 µmol g−1 DM,

respectively, p < 0.05). Vitamin levels were either similar in the two groups, or higher in

larvae fed rotifers/Artemia than in those fed copepods. The same relationship applied to

the minerals manganese, copper, zinc and selenium. Iodine was lower in larvae fed rotifers

than in copepods at stage 3 (p < 0.05), but not at stage 5, where the groups had similar

levels of iodine. The fatty acid composition at stage 3 partially mirrored the fatty acid

composition of the feed, with a much higher EPA:ARA ratio in larvae fed copepods than in

those fed rotifers (8.4 and 1.1, respectively, p < 0.01). Larvae fed rotifers had a higher DHA

level than larvae fed copepods (37 and 31% of total fatty acids, respectively, p < 0.001).

Although there were still statistical differences, the fatty acid composition appeared similar

between the larval groups at stage 5. The lipid level measured as total fatty acids was

similar in the two groups at stage 3, but higher in whole body of larvae fed rotifers/Artemia

than in those fed zooplankton at stage 5 (p < 0.05). This was followed by a lower ratio of

phospholipids to total lipid in cod larvae fed rotifers/Artemia in stage 5 (p < 0.01).

The differences in nutrient composition of the live feed in Exp-2 resembled those

observed in Exp-1, where rotifers contained significant lower concentration of protein

Karlsen et al. (2015), PeerJ, DOI 10.7717/peerj.902 14/27

https://peerj.com
http://dx.doi.org/10.7717/peerj.902


Figure 5 Growth in length and dry weight in both experiments. Growth in length (mm) and dry weight
(mg) in Exp-1 (A and C) and Exp-2 (B and D) of cod larvae fed either rotifers and Artemia or copepods. In
Exp-1, larvae were fed copepods of increasing size. Stages (St. 0–5 and Juveniles, see text for explanation)
are indicated. In Exp-2, one group was fed copepod nauplii and another group copepods of increasing
size. Note logarithmic scale in C and D.

(p < 0.001), taurine (p < 0.001), iodine (p < 0.05) and zinc (p < 0.001) than copepods

(Table 4B). The small copepod fraction is dominated by nauplii, the large copepod by

juvenile and adult copepods (Table 5). In this experiment, the selenium level in rotifers was

also lower than in copepods (p < 0.001), but above the requirement in fish of 0.3 mg kg−1

DM (NRC, 2011). There were also differences in fatty acid composition, where ARA was

again higher and EPA lower in rotifers (p < 0.01). DHA was similar between the feeds.
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Table 5 Proportion of zooplankton included in the analysis of live food in Exp-2.

Dph/sampling
date

Fraction
(µm)

Copepod
nauplii (%)

Juvenile +

adult copepods (%)
Mussel
larvae (%)

Polychaete
larvae (%)

Mean DW/ind
(µg)

Small 5/13.04 80–150 98 2 0 0 10

6/26.04 80–150 87 10 3 0 7

21/9.05 80–150 53 5 34 8 9

Large 5/13.04 150–180 64 36 0 0 7

6/26.04 180–250 0 100 0 0 30

21/9.05 180–250 0 100 0 0 17

Table 6 Nutrient levels in cod larvae. Exp-1: Levels of selected nutrients in cod larvae sampled at Stages
3 and 5. The group “Rotifers” were larvae first fed with rotifers and then after sampling at stage 3 the
larvae were fed Artemia. Larvae in both groups were weaned to dry feed after sampling at stage 4. Mean
± SD, n = 3 tanks, superscripts in rows within each developmental stage indicate significant differences
(t-test p < 0.05.).

Larval stage 3 5

Group Rotifers Copepod Rotifers Copepod

Age (dph) /Length (mm) 30/8.5 28/10.1 71/26.5 52/23.8

Feed at sampling Rotifers Copepods Dry feed Dry feed

Dry matter (DM, g/100 g) 32 ± 3 29 ± 3 26 ± 1 24 ± 1

Protein (g/100 g DM) 70 ± 1 71 ± 1 67 ± 2 67 ± 2

Taurine (µmol/g DM) 2.1 ± 0.4a 40 ± 5b 39 ± 1A 46 ± 4B

Vitamins (mg/kg DM)

A1 6.2 ± 0.8 5.2 ± 0.8 6.7 ± 0.8 7.3 ± 1.4

A2 0.6 ± 0.2 0.8 ± 0.1 1.9 ± 0.1B 1.3 ± 0.1A

C 368 ± 52 395 ± 54 202 ± 10 192 ± 9

D3 0.14 ± 0.00 0.05 ± 0.03 0.09 ± 0.02 0.07 ± 0.03

E (α-tokoferol.) 95 ± 19b 54 ± 9a 103 ± 5B 44 ± 9A

K 0.13 ± 0.07 0.04 ± 0.01 0.18 ± 0.02B 0.11 ± 0.03A

Minerals (mg/kg DM)

Iodine 0.8 ± 0.1a 2.0 ± 0.6b 1.7 ± 0.3 2.7 ± 1.0

Manganese 3.9 ± 0.3b 2.1 ± 0.1a 5.7 ± 0.8 5.0 ± 0.3

Copper 8.4 ± 0.5b 2.9 ± 0.2a 3.0 ± 0.2 3.2 ± 0.3

Zinc 117 ± 6 120 ± 0 89 ± 4 85 ± 0

Selenium 3.3 ± 0b 1.1 ± 0.0a 1.6 ± 0.1B 1.1 ± 0.0A

Lipids

20:4n-6 ARA (% TFA) 4.6 ± 0.1b 1.2 ± 0.0a 1.3 ± 0.0B 0.9 ± 0.1A

20:5n-3 EPA (% TFA) 4.3 ± 0.1a 10.1 ± 0.1b 8.8 ± 0.1 9.0 ± 0.5

22:6n-3 DHA (% TFA) 37 ± 0b 31 ± 0a 20 ± 0A 22 ± 1B

EPA/ARA 0.9 8.4 6.8 10.0

Sum FA (mg/g DM) 55 ± 7 65 ± 9 116 ± 5B 95 ± 8A

Sum PL (% of TL) 51 ± 1 51 ± 1 37 ± 1A 42 ± 1B
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Copepods had a higher ratio of phospholipids to total lipids than rotifers (p < 0.01),

corresponding to a lower total lipid level (p < 0.001). Vitamin A was not detected in any

of the feed organisms, while vitamin D was absent in copepods. Vitamin E (p < 0.01) and

thiamine (p < 0.05) were higher in rotifers than in copepods, while vitamin C, Mn, and Cu

levels in the two feeds were similar. Only one replicate sample of the Artemia used in Exp-2

was analysed, so statistical treatment was not possible. However, the Artemia seemed to

have more protein and taurine than in Exp-1, but still less than the copepods. The Artemia

was also low in thiamine, vitamin A was not detected, while the content of other vitamins

was similar to that in the rotifers. The analyses in Exp-2 indicate that iodine, manganese,

and zinc levels were lower in Artemia than in copepods. The fatty acid composition was

characterized by lower DHA and EPA levels in Artemia, but higher ARA levels. Lipid level

and ratio of phospholipids to total lipid was similar to that in rotifers, namely with more

lipid and a lower proportion of phospholipids to total lipid than copepods (Table 4B). With

the exception of a higher Se content and a lower iodine content in large copepods, there

were no significant differences in nutrient composition between small and large copepods,

but the variation in some of the nutrients was wide (Table 4B).

DISCUSSION
This study shows that cod larvae fed copepods grow faster than larvae fed rotifers, and

thus supports earlier studies (Busch et al., 2010; Busch et al., 2011; Koedijk et al., 2010).

This differences in growth occurred in spite of recent improvements in rotifer nutritional

quality, especially with respect to lipid and mineral enrichments (Hamre et al., 2013).

It should be noted that during the first three weeks of feeding in Exp-1, there was no

difference in growth between the groups, and that the greatest difference in growth rates

occurred between 22 and 36 dph, i.e., when the intensive group was still being fed only

rotifers. Also during the Artemia feeding period, the copepod group grew slightly better,

but after weaning of the intensive group onto a formulated feed at 57 dph, the two groups

grew at similar rates.

We suggest at least three possible reasons for the differences in growth rate: (1) Different

availability of prey due to distribution or their behaviour in prey–predator interactions;

(2) Different energy supply per ingested feed particle due to the small size of the rotifers

compared to the increasing sizes of copepods given to larvae after 20 dph; (3) Differences in

the nutritional values of the feeds.

There is a profound change in behaviour when rotifers are transferred into cold water,

as they typically become immobile (and thus less attractive to visual predators, such as cod

larvae) and gradually sink to the bottom (Fielder, Purser & Battaglene, 2000). In order to

prevent sinking, our standard procedure is to acclimate rotifers to the same temperature as

the larval rearing tanks prior to feeding, and to aerate the centre of the larval rearing tanks

in order to keep the rotifers in suspension. Visual observations of the rearing tanks and of

ingested feed in the intestinal tracts of the larvae verified that the distribution of the rotifers

was constant over time and led to efficient feed intake by the larvae. High and immediate

feed intake of rotifers has also previously been demonstrated for naive cod larvae at onset
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of exogenous feeding in a similar startfeeding system (van der Meeren, Mangor-Jensen &

Pickova, 2007). It can therefore be concluded that the rotifers were highly available for the

cod larvae.

With regards to the second hypothesis, the analysis shows that the energy content of

copepods scaled with their size. The general pattern seems to be that when fish larvae are

offered prey of different sizes, they choose the largest prey their mouth size can handle

(Busch et al., 2009; Hunter, 1980; Olsen et al., 2000; van der Meeren, 1991), and this is also

energetically the most advantageous. However, when the food is abundant, as it is under

intensive farming conditions, sufficient energy may still be acquired from smaller prey

consumed in larger numbers. An additional factor is that not only do larger prey items

contain more energy per individual, but their surface to volume ratio also decreases, and

large copepods thus contain relatively less indigestible chitinous exoskeleton. Therefore,

since the rotifers have a fixed size that compares to the smaller copepod nauplii, the

increase in prey size may also affect the nutritional composition if the cod larvae are given

the opportunity to prey on larger copeopds. These questions were addressed in Exp-2. We

found that the growth of larvae that were offered increasing size fractions of copepods or

small copepod stages throughout the experiment had nearly identical growth rates. Larval

dry weight was significantly, but only slightly larger at the end of the experiment for those

fed the largest zooplankton. Both copepod groups grew far better than the intensive groups

in both experiments.

In a similar setup that lasted only until 25 dph, Busch et al. (2011) observed a growth

pattern similar to the present finding, with no significant differences between larvae fed

small or large zooplankton and far better growth in both zooplankton fed groups than the

cod larvae fed rotifers. This difference was only present at the end of the experiment. In

their study the average length of the rotifers was 0.21 mm, small zooplankton 0.20 mm

and large zooplankton 0.41 mm. This is slightly different from the zooplankton used in

the present study in which the average total length of nauplii used was 0.15 mm, while the

prosome length of the copepodids was 0.38 mm for the 80–180 µm filter fraction and about

0.5 mm for larger filter fractions. However, the range of prey sizes was large and also over-

lapped in both experiments. The observed growth patterns found by Busch et al. (2011)

and in both of our experiments, supports the hypothesis that prey size in the range covered

by our experiments and under intensive larval rearing conditions with high prey density,

has only minor effects on larval growth. Therefore, the major cause of the differences in

growth and development was most likely the differences in nutritional composition be-

tween zooplankton and rotifers/Artemia. In both experiments, the major growth difference

started to appear during the later part of the period when the larvae were fed rotifers, but

the difference remained during the period the larvae were fed Artemia. A similar growth

pattern with equal growth until approximately 20 dph and thereafter higher growth rate in

cod larvae fed copepods than in those fed rotifers, was also found by Koedijk et al. (2010).

The third hypothesis states that there are nutritional differences in the feed that underlie

the differences in growth. We found major differences in the biochemical composition

of rotifers and zooplankton in both experiments. In Exp-1, protein, taurine, carotenoids,
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iodine, and zinc were lower in rotifers than in copepods. The protein concentration in ro-

tifers was similar to previous results at approximately 40 g 100 g−1 DM (Hamre et al., 2013;

Srivastava et al., 2006), which represent only 2/3 of the concentration in copepods, and

which is probably at or below the minimum requirement of cod juveniles (Åsnes, 2006).

The nutrient composition of larvae was analysed at stage 3 when the rotifer/Artemia group

was still fed rotifers, and at stage 5, where both groups had been weaned onto the formu-

lated diet. Since the protein concentration in feeding animals is usually quite constant and

only in extreme cases affected by diet, low dietary protein will usually result in reduced

growth. This was confirmed by our study, since the dietary protein concentrations differed

while protein concentrations in the larvae were similar. Thus, the lower rate of growth in

the rotifer group at stage 3 may be explained by lower dietary protein. The protein concen-

tration in Artemia used in Exp-1 was also low compared to that in copepods. The reason

that the growth difference occurred first after 20 dph may be that the growth of muscle is

relatively slow and characterized by recruitment of cells from 4 to 20 dph. Division of cells

already present in muscle, along with growth of individual muscle fibres seem to speed

up after 20 dph, resulting in faster muscle growth (Galloway, Kjørsvik & Kryvi, 1999) and

perhaps resulting in a higher protein requirement, as suggested by Hamre et al. (2014).

Previous studies have already found high concentrations of taurine in copepods and

very low concentrations in rotifers (Hamre et al., 2013; van der Meeren et al., 2008). Rock

sole (Lepidopsetta polyxystra) larvae fed taurine-enriched rotifers (Hawkyard, Laurel &

Langdon, 2014) had a whole-body concentration of taurine that was similar to the taurine

concentration of copepod-fed larvae in the present study. In their experiment, larvae

doubled their weight compared to control fish that were fed rotifers without taurine

enrichment during a seven-week experiment. Several other studies have also shown that

taurine may improve growth and development of marine fish larvae (Conceicão et al., 1997;

Kim et al., 2014; Pinto et al., 2010; Pinto et al., 2013a; Pinto et al., 2013b; Pinto et al., 2012;

Takeuchi et al., 2000; Takeuchi et al., 2001). Taurine is important for osmoregulation and

bile salt production. Deficiencies may also result in lipid accumulation, mitochondrial

damage and resulting oxidative stress, neurological anomalies and heart failure (Espe et

al., 2008; Espe, Ruohonen & El-Mowafi, 2012; Jong, Azuma & Schaffer, 2012; Militante &

Lombardini, 2004), suggesting that taurine deficiency may cause reduced growth in cod

larvae that are fed rotifers.

Astaxanthin in copepods and cantaxanthin in Artemia may act as antioxidants (Stahl

& Sies, 1999) or as pro-vitamin A compounds (Rønnestad et al., 1998; Moren, Næss &

Hamre, 2002). In Exp-1, the vitamin A requirement of intensively reared cod larvae

(Moren, Opstad & Hamre, 2004) was most probably covered by retinol in the rotifers,

since the larval vitamin A level was similar to that in the copepod-fed group. Carotenoids

were not analysed in the larvae of the present study, but visual examination showed that

copepod-fed larvae displayed more colour than rotifer-fed larvae, as was also observed

by Oie et al. (2015, unpublished data) and Busch et al. (2011). However, based on the

well-known antioxidant effects of carotenoids (Stahl & Sies, 1999), it is unlikely that these

differences would result in the large divergences of larval growth observed by us.
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The concentration of iodine was considerably lower in the rotifers than in the copepods.

However, the optimal level of iodine in rotifers has been estimated at 3.5 mg kg−1 DM

(Penglase et al., 2013), which is within the range of variation of the levels in the rotifers

analysed in the present experiment. It is therefore unlikely that iodine deficiency caused the

reduced growth in rotifer-fed larvae.

Zinc is a necessary co-factor in the catalytic activity of more than 300 proteins involved

in growth, reproduction, development and vision (Bury, Walker & Glover, 2003). In our

study, the level of zinc in copepods was more than ten times as high as in rotifers. Despite

this, the larval concentrations at stage 3 were similar for the two feeding regimes at ap-

proximately 120 mg kg−1, in line with the recognised tight regulation of zinc levels in fish,

both at cellular and organism level (Bury, Walker & Glover, 2003). Penglase et al. (2013) fed

cod larvae rotifers enriched with zinc to 87 mg kg−1 vs. 47 mg kg−1 in the control rotifers,

without producing any detectable differences in growth. Combined with the present results

and the zinc requirements of fish (15–37 mg kg−1, NRC, 2011), this indicates that rotifers

in the present experiment had sufficient levels of zinc to promote growth in the larvae.

The fatty acid and lipid composition of rotifers and zooplankton displayed certain

differences in both experiments. In Exp-1, ARA and DHA made up a lower, and EPA a

higher, fraction of total fatty acids in rotifers than in copepods, and the proportion of

phospholipids (PL) to total lipids was slightly lower in the rotifers. However, the differences

in PL and fatty acid composition were probably not sufficient to explain the large difference

in growth.

The concentrations of selenium, manganese, and copper, which previously have been

shown to be lower in rotifers than in copepods (Hamre et al., 2008a), were at similar levels

in the present experiment. All the other nutrients measured were present at higher or

similar levels in the rotifers and copepods, and according to current knowledge, within

the safe window of larval requirements. Apart from thiamine and the macrominerals, B

vitamins were not analysed, since they have already been shown to be sufficient in rotifers,

based on comparisons with copepods (Hamre et al., 2008a).

There were some important differences in the nutrient composition of live prey between

Exp-1 and Exp-2. Iodine and selenium concentrations in rotifers were lower in Exp-2,

but did not fall below the requirement given for fish (NRC, 2011). Furthermore, vitamin

A was below the detection limit of the analytical method in all prey organisms in Exp-2.

Artemia and copepods contain sufficient amounts of carotenoids to cover the vitamin A

requirement of the larvae (Moren, Næss & Hamre, 2002), but in larvae fed rotifers in Exp-2,

vitamin A may have been deficient. The lipid level in rotifers was higher than in copepods

in Exp-2, and the proportion of PL to total lipid was therefore higher in the copepods.

Finally, the concentration of protein in Artemia was higher in Exp-2 than Exp-1. The

rearing temperature was also different between the experiments. Given all these differences

in nutritional and physical conditions, the growth patterns were strikingly comparable

between the experiments in this study, and to that observed by Busch et al. (2011). The

growth in larvae fed rotifers may have been further reduced in Exp-2 due to a low vitamin

A level, but the similarity in nutrient composition between small and large copepods, along
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with similar growth rates in the larvae fed on these, strongly suggests that prey size was of

minor importance for the difference in growth observed in Exp-1.

In conclusion, differences in nutritional composition of prey are the most plausible

explanation for the major divergences in growth and development of cod larvae fed natural

zooplankton versus larvae fed enriched rotifers and Artemia. Low levels of protein and/or

taurine in rotifers and Artemia are most likely the cause of poor growth in larvae fed

rotifers. Since taurine is a water-soluble compound, large amounts are needed for rotifer

enrichment, unless it is incorporated directly into particles that can be filtered out of

the water (Hawkyard, Laurel & Langdon, 2014; Nordgreen, Hamre & Langdon, 2007). If

poor growth is related to the low protein concentration in the rotifers, it might be more

difficult to correct, since rotifers cannot easily be enriched with protein due to their own

metabolism (Hamre et al., 2013). Possible suboptimal levels of zinc and carotenoids, ratio

of PL/TL, and composition of fatty acids may also have contributed to slow growth in the

cod larvae fed rotifers. However, these nutrients can be manipulated to a certain extent in

rotifers (Hamre et al., 2013; Nordgreen, Penglase & Hamre, 2013; Olsen et al., 2014). The

larval requirements for all nutrients in cod cannot easily be met by means of traditional

protocols for enriching rotifers and Artemia. This require development of new protocols

and adoption of new approaches to live feed enrichment during cultivation of early life

stagesin cod and other marine fish.
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