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Chapter 1

Brief introduction and
problem definition

DNA molecules can be subdivided into genes, a subunit containing all the
information necessary to produce a protein. The complete collection of
genes and intergenic DNA (DNA between the genes) in a cell is known as
the cellular genome. In eukaryotic organism coding sequences (exons) in
a gene is often interrupted by non-coding sequences (introns). After the
transcription of a gene introns are removed from the primary transcript and
exons are assembled into a sequence, known as mature mRNA. The process
of removing such introns is called splicing. However, the splicing process can
be performed in several ways, concatenating/removing different substrings,
resulting in several similar, but different, mature mRNA sequences. As
these sequences are similar, integrating them into a graph (a splice graph)
provides a compact way of viewing them while simultaneously highlighting
the differences as bifurcations in the graph.

Given such a splice graph we want to determine the gene from which
the mRNA sequences making up the graph comes from. This can be done
by aligning the sequences in the graph with a genomic sequence. However,
we do not expect a perfect match. Firstly, the spliced sequences do not
contain introns and will only be similar to substrings of the genomic string.
Secondly, the process of extracting the mature mRNA from a cell is an error
prone and cumbersome process. One approach is to identify small parts of
a sequence, known as EST (Expressed Sequence Tag) sequences, one at a
time before assembling to reconstruct a full sequence. The reconstructed
mRNA sequence may then also contain errors, which are preserved when
the sequence is inserted into the splice graph.

The problem is then to correctly align a splice graph onto a genomic
sequence while at the same time keeping both time and space complexity at
a minimum.

The problem to be solved is briefly described in the first chapter. The
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Brief introduction and problem definition

second chapter focuses on the biological fundamentals, with particular em-
phasis on EST sequences. The following two chapters describes existing
tools, algorithms and data structure which can be used to align sequences
and graphs. In the next chapter the new algorithm is presented, with im-
plementation details described in the succeeding chapter. The algorithm
is then tested both for accuracy and speed in the following chapter before
possible extensions are discussed. Finally, the last chapter sums up the test
results along with some concluding remarks.
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Chapter 2

Biological background

The following introduction barely scratches at the surface of the rich field
of microbiology, and is only intended as background information for pre-
senting the problem to be solved in this thesis. For a more comprehensive
introduction, read an introductional textbook to the field[19].

2.1 DNA

DNA molecules carry the genetic information necessary for the organization
and functioning of all living cells and control the inheritance of charac-
teristics. At the molecular level DNA consists of a sequence of repeating
substructures (a polymer) called nucleosides. Nucleotides are phosphate
esters of nucleosides, a purine or a pyrimidine base linked glucosidically
to ribose or deoxyribose. In DNA four different bases are used: adenine
(A), cytosine (C), guanine (G) or thymine (T). These are linked together by
3’,5’-phosphodiester bridges. The four bases form an alphabet of four letters
from which information can be coded using a sequence of nucleotides. In the
Watson-Crick double-helix model two complementary strands are wound to-
gether in a right-handed helix and held together by hydrogen bonds between
complementary base pairs. The complementary base pairs are A bonded
with T and C with G. An effect of this selective pairing is that one strand of
DNA can be reconstructed using the other, helping to preserve the correct
information. This is also exactly what is done in the replication process.
The two strands part and from each strand a complimentary strand can be
synthesized resulting in two identical DNA molecules.

2.2 The central dogma of molecular biology

Figure 2.1 outlines the general information flow within the cell, where read-
ing a DNA strand as a recipe ultimately leads to the assembly of proteins.

15



Biological background

DNA-RBeplication

Transcription

reverse Transcription

EMNAi-BReplication
CRNA

Translation
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Figure 2.1: The central dogma of molecular biology, extended to include
RNA replication and reverse transcription

There are three main processes in the central dogma. The first is replica-
tion, the copying of a parental DNA molecule to form an identical daughter
DNA molecule. The second is transcription, where parts of the information
of a DNA molecule is copied onto a RNA molecule. The third is transla-
tion where the information encoded in a RNA molecule is translated into a
particular sequence of amino acids, a protein. The central dogma has later
been extended to include RNA replication and reverse transcription.

The fundamentals of information flow within a cell is suggested by the
central dogma. Nonetheless there are some additional details, relevant to
this thesis, that warrant a closer inspection.

2.3 Gene expression

DNA molecules can be subdivided into genes, a subunit containing all the
information necessary to produce a protein. The complete collection of
genes and intergenic DNA (DNA between the genes) in a cell is known as
the cellular genome. Most of the genome contains stretches of DNA that do
not code for genes, so-called junk DNA which may have regulatory or other
functions. Many genes can be further subdivided into coding sequences of
base pairs (exons) and non-coding sequences of base pairs (introns). Genes
usually have a number of relatively long introns interspersed with a limited
number of shorter exons. It is important to note that even if all cells (with a
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2.4 Alternative splicing

few exceptions) contain the whole genom of the organism only a small part
is expressed(transcribed to mRNA) at any given time.

In eukaryotic organisms, such as humans, the DNA molecule is located
within a nuclear envelope at the center of the cell. To use the information
encoded in the double helix it is necessary to transport it out of the envelope
to the parts of the cell able to produce proteins. This is done by creating
a RNA copy of the DNA in a process called transcription. The strands
intertwined in the double helix temporarily disconnects at the required area
and the nucleotides of one strand are copied to synthesize a RNA molecule.
This RNA molecule will leave the nuclear envelope and proceed through
the cytoplasm to a ribosome. At the ribosome the mRNA molecule will be
translated into a sequence of amino acids in a process appropriately known
as translation. Such a sequence is known as a protein (polypeptide).

The process of transcription will create a complementary RNA copy,
known as a primary transcript. In a post processing step introns are removed
from the primary transcript in a process called splicing. Splicing involves
cutting the RNA at certain places (splice sites), removing the introns, then
reassembling the exons to a continuous sequence. The edited molecule is
referred to as a mature mRNA molecule. The amount of DNA devoted
to introns varies greatly from species to species and from gene to gene.
The trend is that higher organisms, such as humans, have more, and longer,
introns than other organisms. As an example, in most mammalian cells, only
about 1% of the DNA sequence is copied into a functional RNA (mRNA).
The remaining 99% includes both introns and junk DNA.

2.4 Alternative splicing

Although some eukaryotic mRNA transcripts produce a single mature mRNA,
which in turn leads to the production of a single protein (or more precise,
a single polypeptide), some produce more using alternative splicing. As
the name implies, alternative splicing performs the post processing step dif-
ferently to produce alternative forms of mature mRNA. Different mature
mRNA can be produced by selecting novel acceptor/donor sites, resulting
in alternative ends for introns and implicitly different exons. This includes
taking the acceptor site of one intron and attach it to the donor site of
another, thereby possibly removing several introns and exons. Other fea-
tures resulting in alternative splice variants are when an intron is retained in
the mature mRNA or if the transcription process itself has alternative start
and stop positions (producing alternative 3’ and/or 5’ ends). Finally, pri-
mary transcripts from different genes can be spliced to each other in a form
of splicing known as trans-splicing (the regular form of splicing is known
as cis-splicing). The RNA may also be changed after splicing in a process
called RNA editing. RNA editing modifies single nucleotides or inserts short
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Biological background
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Figure 2.2: The figure demonstrates how one DNA molecule produce two
different mRNA molecules due to alternative splicing.

sequences and is though to be highly regulated.

Alternative splicing is an important mechanism for modulating gene
function. It effectively expands the 'vocabulary’ of the gene allowing it to
make various kinds of mRNA depending on the current needs. Alternative
splicing has been implicated in many processes, including sex determination,
apoptosis and acoustic tuning of the ear[15]. The number of human genes
estimated to be alternatively spliced is a rapidly increasing number as sci-
entist discover new variants. Estimates have been made claiming that up to
60% [15] of human genes are alternatively spliced. After the ’discovery’ that
the human genome contains only ~ 32000 genes instead of the =~ 100000
estimated earlier, much attention has been paid to alternative splicing to
explain the discrepancies of the estimates.

2.5 Detecting alternative splicing

To differentiate between different splice variants the expressed sequences
must be analyzed. The process of recovering the expressed sequences is
not a trivial problem in itself. In practice a whole expressed sequence is
not available as a single entity, rather it is reconstructed from small parts,
known as EST (Expressed Sequence Tags) sequences, where each EST ide-
ally represents a small part of the sequence. Sequencing EST sequences is
relatively cheap, libraries of them are growing rapidly. EST sequences are
clustered into sets corresponding to a single gene.

EST sequences are error prone. Many types of errors are introduced in

18



2.5 Detecting alternative splicing

the sequencing process, a point that will be illustrated in the description of
the EST sequencing pipeline [12]. Errors can occur in the laboratory while
sequencing or can be natural occurring. Some features are not errors per
se, but makes it harder to classify and cluster the EST sequences. One such
feature is the presence of pseudogenes. Pseudogenes are genes that have been
copied, and conserved as separate gene, during the evolutionary history of
the genome. Most pseudogenes never get transcribed, but a minority are.
Separating expressed sequences from pseudogenes from expressed sequences
from the original gene is difficult.

2.5.1 The EST sequencing process

1.

Reverse transcriptase reads RNA and, using it as a template,
constructs a complementary DNA molecule.

. Polymerase chain reaction (PCR) is used to amplify the cDNAs. The

enzyme catalyzing the amplification is DNA polymerase. It needs a
short starting sequence, known as a primer, to start the amplification
process. Sequences that resemble each others reverse complements
can anneal and function as primers for the polymerase. The resulting
clone contains parts of both sequences and is known as a chimera.

. The ¢cDNA is inserted into a small circular DNA molecule known as a

plasmid.

. The plasmid is inserted into vector organisms, usually a bacterium,

When the bacterium replicates, the plasmid is also replicated.
Descendants of a single bacterium can be isolated and thus provide
multiple copies of a single plasmid.

. A primer is selected, usually from the plasmid sequence in the

vicinity of the inserted DNA, as a starting point for DNA polymerase
to generate nucleotide sequences of random lengths. Random
termination is achieved by inserting a small amount of dideoxyNTP.
When the polymerase uses dideoxyN'TP instead of an ordinary base
(A,C,G or T) the transcription terminates.

. To separate the molecules they are diffused through a

Polyacrylamide gel. The speed of diffusion varies with sequence
length, and this allows the molecules to be separated.

The gel is scanned and the labeled molecules identified. The
terminating ddNTP (from step 5) sequences are labeled differently.
The output is a chromatogram containing curves representing the
intensities of the labels. Each curve represents a single nucleotide.
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Biological background

To produce the full sequence of a clone the primers have to be designed
in such a way that a new primer starts immediately after the last sequenced
region. This process is more cumbersome than regular EST sequencing, but
has been used to good effect[12].

2.5.2 Base calling

After the EST sequences are read they have to be analyzed. The first step
is to interpret the chromatogram produced, a process known as base calling.
The quality of the chromatogram is low both at the start and end (500 — 800
bases) which poses problems. Discerning the nucleotides from background
noise can be a problem, and single nucleotide errors occur. Another source
of error is known as ’stuttering’, stretches of repeated nucleotides may cause
the polymerase to slip back and reprocess a small part of the sequence. The
result, if it happens in step 5, is small insertions and/or quality degradation.
If the cDNA forms a secondary structure it will affect the speed through the
Polyacrylamide gel and the resulting sequence may be distorted. After the
sequences are generated, they are usually annotated with information such
as clone-ID, read end (5’ or 3’) or sequence type (full length or EST).

To minimize errors, several quality control processes are done. The most
unreliable parts, such as the start of the sequence, can be cut or masked from
the sequence. Contamination from chimeric or vector sequences are also
masked out by comparing directly with the vector sequence or to genomes
of common vector organisms. In addition to errors introduced in the se-
quencing process, natural occurring features are also a source of problems.
These often produce short repeated sequences that should be masked out.
Also among these features is alternative splicing with features such as alter-
native exon composition and retained introns.

2.5.3 Clustering

Having cleaned up the sequences the next step is clustering them, ideally
sequences from the same gene should end up in the same cluster. To de-
cide which sequences are to be clustered, one can compare the sequences to
the genomic sequences and cluster them based on the genomic position they
map to L. This is computational expensive, since genomic sequences are very
long, and the genomic sequence might not be available, instead sequences
are often compared against each other. A common problem in clustering
EST sequences is that genes from the same families, and homologous genes,
often have similar sequences. Trying to separate them might erroneously
put EST sequences from the same gene into different clusters. The number
of sequences in each cluster will vary, and so will the gene positions they are

! Another approach is to cluster EST sequences according to originating primary tran-
script
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2.5 Detecting alternative splicing

mapped to. Parts of the gene with few or no sequences are said to be low
coverage regions. In these cases the clustering process might not be able
to merge clusters representing sections of a gene. Parts of the genome may
belong to more than one gene (known as sense-antisense transcription), typ-
ically on opposite strands, and might make it difficult to separate sequences
from such parts into the right clusters.

The final step is using the sequences of a cluster in an attempt to re-
construct the original mRNA sequence, or at least as close to the original
sequence as possible. An alternative approach is to construct a graph from
the sequences to elucidate different splice variants. The common way to
assemble the sequences is by finding a Hamiltonian path through an overlap
graph, a graph where each sequence is a node and there exists a directed
edge between two nodes if the sequences overlap. That is, if a prefix of some
sequence So matches some suffix of a sequence S there will be an edge from
S1 to Sy. Errors in the EST sequences will affect the overlap graph, pruning
it will usually produce better results. Algorithms for constructing a splice
graph will be described in a later chapter.

2.5.4 Finding alternative splice variants

Finding alternative splice variants seems deceptively easy in theory; by
comparing expressed sequences (mRNA or ¢cDNA) from a given gene in-
sertions/deletions that indicate alternative exon usage can be identified. In
practice the issue is more complicated. There are two basic approaches with
respect to which sequences to compare. One can compare the transcripts
with each other, identifying divergent exon patterns. A second approach
is to try to map transcripts directly onto a genomic sequence, where in-
sertions/deletions are indicative of alternative splicing. Neither is without
flaws. Comparing EST sequences with each other suffer from the errors asso-
ciated with them, for instance might EST sequences from different genes be
compared because they have erroneously been put in the same cluster due to,
for instance, the sequences being derived from paralogous genes. Comparing
directly to the genome will remove many such problems but also introduce
new ones. Firstly, comparing a sequence against the whole genome is com-
putationally expensive. Secondly, by mapping a short (possible erroneous)
sequence to a larger sequence will result in many false negatives indicating
alternative splicing[15][1]. A third option is to combine both methods in a
hybrid approachl[1].

Reconstructed mRNA sequences, also known as EST contigs, are not
only useful in comparing alternative splice variants. For organisms where
the gene structure is not yet determined expressed sequences can be mapped
onto the genome to locate genes. The drawback with this approach is that
genes tend to be very unevenly expressed to the extent that some are only
expressed in some tissue or states. Even if the expressed sequences are put
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Biological background

in normalized libraries, determining genes solely based on EST sequences is
hard[12].
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Chapter 3

String alignments

When trying to determine the relation between two strings, a natural com-
parison criterium is how similar the strings are. We may not expect them
to be equal, so methods for exact string matching are not useful. This
chapter describes how to do inexact matching, where some measure of simi-
larity /dissimilarity is computed to describe the relation of the strings. How-
ever, if one is to discuss strings it is necessary to first define exactly what a
string is in this context, using the following definitions from Gusfield[6].

3.1 Definitions

Definition 3.1 A string S is an ordered list of characters written contigu-
ously from left to right. For any string S,S[i...J| is the contiguous sub-
string of S that starts at position ¢ and ends at position j of S. In particular
S[1...4] is the prefiz of string S that ends at position i, and S[i...|S|] is
the suffiz of string S that begins at position i, where |S| denotes the number
of characters in string S.

Definition 3.2 S[i...j] is the empty string if i > j.

Definition 3.3 A proper prefix, suffiz, or substring of S is, respectively,
a prefix, suffix or substring that is not the entire string S, nor the empty
string.

Definition 3.4 For any string S, S[i] denotes the i’th character of S.

3.2 Alignments and edit distance

Frequently one wishes to measure the difference between two strings, for
example in comparing biological sequences. There are several ways to for-
malize the notion of string difference. One such way is known as edit dis-
tance. Given two strings S; and Sz, the edit distance is the minimum of
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String alignments

edit operations necessary to transform one string to the other. The allowed
operations are (1) replace one symbol with another, (2) delete k consecutive
symbols and (3) insert k consecutive symbols. A sequence of such operations
transforming S; to Sy (or vice versa) is known as an edit transcript. The
edit transcripts with the fewest operations are known as optimal transcripts.
Note that if symbol S1[i] is equal to symbol Ss[i] no operation is necessary,
hence it does not influence the edit transcript in any way.

Definition 3.5 The edit distance between two strings is defined as the min-
imum number of edit operations, insertions, deletions and substitutions,
needed to transform the first string into the second. For emphasis note that
matches are not counted[6].

An alternate way of representing this problem is by maximizing the
score of the alignment of the two strings rather than minimizing the edit
operations required. An alignment of two strings is a scheme of writing
one string on top of another to illustrate the relationship between strings,
or parts of them. Given two strings S; and S3, an alignment is obtained
by inserting dashes into S; and S5 so that the characters of the resulting
strings can be put in one-to-one correspondence to each other. As long as
the order of symbols within the strings are preserved any symbol in S; can
be aligned to any symbol in So. Though in general only the alignment(s)
achieving the highest score are interesting. Finding the optimal alignment
where each string in its entirety is involved is known as a global alignment.

Definition 3.6 A (global) alignment of two strings S and Ss is obtained
by first inserting chosen spaces (or dashes), either into or at the ends of
S1 and So and the placing the two resulting strings one above the other so
that every character in either string is opposite a unique character or unique
space in the other string [6].

Aligning two equal symbols will typically yield a positive score, while
aligning unequal symbols or inserting dashes yield a negative score. By
summing these values along an alignment a total score is obtained. There
can be, and usually are, more than one alignment having the maximal score.
Which, if any, are the most useful is dependent upon the specific problem
for which the alignment representation is used. Tuning the values of the
scores will produce different optimal alignments.

Definition 3.7 Let X be the alphabet used for strings S1 and Ss, and let X'
be ¥ with added character ’_" denoting a space. Then for any two characters
z, y in X', score(r,y) denotes the value obtained by aligning character x
against character y [6].
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3.2 Alignments and edit distance

Definition 3.8 For a given alignment A of S1 and So, let S| and Sh denote
the string after the chosen insertion of spaces, and let L denote the (equal)
length of the two strings S| and S} in A. The value of the alignment A is

defined as Zé:l score(S,[1155[4]) [6].

An alignment usually uses a similarity measure, a higher score indicates
a higher degree of similarity between the sequences, whereas edit distance
uses a distance measure. The more edit operations required to transform
one sequence to the other, the higher the dissimilarity. Given a function
to compute the score; a distance function will define negative values for
mismatches or spaces and then aim at minimizing this distance. A sim-
ilarity function will give high values to matches and low values to spaces
and then maximize the resulting score. It is, however, perfectly possible
to formulate an alignment representation using a distance measure. In the
similarity framework one can easily distinguish among the different possible
mismatches and also among different kinds of matches. For this purpose a
scoring matrix can be defined where different symbols aligned yield differ-
ent scores depending on the value of the symbols in question. For instance,
when comparing strings of amino acids aligning two Tryphtophanes may be
more important than aligning two Alanines. Assigning the aligning of two
Thryphtophanes a higher score makes it more likely to be included in the
optimal alignment.

Definition 3.9 Given a pairwise scoring matriz over the alphabet %, the
similarity of two strings S1 and Sy is defined as the value of the alignment
A of S1 and Sy that mazimizes total alignment value. This is also known as
the optimal alignment of S1 and So [6].

EX__ON
INTRON

Figure 3.1: Using a score of 1 for a match, —1 for a mismatch, and —2 as
a penalty for each space in the alignment of ’intron’ and ’exon’ will (among
others) produce the alignment displayed. The score for this alignment is:
-1-1-2-24+14+1=-4

From a modeling viewpoint alignment and edit transcript differ. Edit
transcripts models specific events, such as mutations, while an alignment
only model the relationship between strings. Edit transcripts specify the
process of transforming one string to another whereas an alignment only
describe the end product. As such the alignment description is more neutral
and it is what will be used throughout the remaining part of this text.
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String alignments

3.3 Sequence alignment

As mentioned in the previous chapter biological sequences, such as DNA,
RNA or proteins, can be looked upon as a string of characters from a lim-
ited alphabet. Each character is an abstraction from a biological term,
nucleotides or amino acids, that are arranged linearly in fixed position in
larger molecules. Using this symbolic notation to represent a sequence it is
clearly evident that a (biological) sequence equals a (as defined previously)
string. Thus DNA sequences can be considered strings of characters from
the alphabet T,G,C and A. Such strings can be aligned to determine the
similarity of the DNA sequences using a similarity score.

Having determined that two sequences can be aligned, the question is
now why an alignment would be useful and what information an alignment,
in particular spaces, provides. The obvious reason for aligning biological
sequences is to see how similar/different they are from each other, how
these similarities are explained varies depending on what type of sequences
that is analyzed.

When aligning two protein sequences the operations of aligning charac-
ters, inserting characters or deleting characters can be viewed as ’evolution-
ary’ operators. As such, two different characters aligned (a mismatch) can
be viewed as a mutation in one of the sequences changing one character
to another. Similarly, insertion and deletions can be treated as mutational
events. Assumed that the mutation rate is a constant, the total similarity of
the protein sequences is a measurement of the time since the two sequences
diverged from a common ancestor.

When comparing expressed sequences to DNA the differences between
the strings are explained in another way. Apart from sequencing errors,
the spaces in the alignment can be explained from the fact that introns are
spliced out from the expressed sequences. This will result in large regions
of spaces broken off by regions of characters (exons). When aligning an
expressed sequence to the DNA sequence it is derived from, the expressed
sequence should match regions(exons) in the DNA very well.

An alignment will be sensitive to the scoring scheme used, particulary
in how continuous regions of spaces, known as gaps, are treated. Gaps will
be discussed more thoroughly later.

Various approaches, besides alignments, have been applied to problems
such as gene recognition. However, methods such as using statistical codon
usage[21] have only had limited success[4]. For determining exon struc-
ture, algorithms combining alignments with combinatorics[4][14] or heuris-
tic tools[11], such as BLAST, do exist. They may save computational time
while still doing correct predictions.

As biological sequences are treated as strings, the terms string and se-
quence will be used interchangeably thorough the remainder of the text.
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3.4 Algorithm for finding optimal alignment(s)

A brute force algorithm for finding the optimal alignment is simply to cre-
ate all possible alignments and determine, in a case-by case fashion, which
alignment has the highest score. Unfortunately, there will be an exponen-
tial amount of possible alignments giving the algorithm a time complexity
of O(2").

Luckily, an optimal alignment of two sequences can be found without
explicitly enumerating all possible alignments. The approach builds on the
classic algorithm by Needleman & Wunsch. It uses dynamic programming
to find optimal alignments for a given scoring scheme. The main idea is
that results found early in the computation can be reused in later calcu-
lations, thereby reducing the time complexity to O(nm). The algorithm
computes and stores the value of each cell in a dynamic programming table
using recurrences, whose values are dependent on earlier calculations or ex-
plicitly formulated base cases. The original algorithm did not impose any
restrictions on the penalty assigned to a gap of a certain length. A gap is,
informally, one or more consecutive spaces. For reasons of computational
speed this was later rectified to assigning a cost function linear in the number
of deleted (inserted) residues.

3.4.1 The recurrence

Definition 3.10 V(i,j) is defined as the value of the optimal alignment of
prefizes Si[l1...4] and Ss[1... j][6].

Given a sequence Si[1...7] and a sequence Sy[1...j], the algorithm de-
fines an (i+1)-(j+1) matrix. Each cell (7, j) in the grid determines a position
both in the first and second sequence. As the algorithm progresses the score
V' (i,7) will be stored in the corresponding cell (4, 7). The speedup over the
brute force method is achieved by not completely recalculating V (i, j) for
each cell but rather let the value of V' (i, j) depend on previously calculated
entries stored in the matrix. The key is to formulate a set of recurrences
computing V (7, j) using the recursive relation V (7, j) has with V(i—1, j—1),
V(i,j—1) and V(i,5 —1). These entries correspond to having calculated the
optimal alignment of the prefixes Si[1...i—1] and Sp[1...j—1], Sy[1...i—1]
and S2[1...7] and finally Si[1...4] and S3[1...j5 — 1]. Why is only these
cases considered? Consider an optimal alignment of some prefix Si[1...1]
and some prefix Sa[1...j]. The last character in the alignment must either
be a character of S[i] aligned with Sa[j], a character Si[i] aligned with a
gap in Sy or a gap in Sp aligned with S3[j]. It follows that the alignment,
before adding the last character, must be the optimal alignment of that pre-
fix: V(i—1,7—1), V(i —1,j7) and V(4,7 — 1) respectively. To compute the
optimal alignment of prefixes Si[1...7] and Sz[1... 7] there now exist three
possibilities.
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Definition 3.11 The optimal alignment of S1[1...4] and S2[l...j] is
produced from one of the following cases.

V(i-1,j-1) + Si[i] aligned with Sai]

V(i,j-1) + inserting a space after S1[i]

V(i-1,j) + inserting a space after Sa[j]

All which will produce an alignment of the prefix Si[1...4] and Sa[1... j].
Being the score of the optimal alignment, V (4,j) simply equals the score
of the best case. Definition 3.11 can then be reformulated into a simple
recurrence.

Recurrence 3.1

V(ii-1,75) +gapcost
V(i,j) < max< V(i,5—1) +gapcost
V(i—-1,7—1) +score(i,j)

where gapcost is the penalty of inserting a gap, and score(i, j) is a func-
tion calculating the score of aligning S1[i] and Safj].

match ifS1[i] = Salj]

score(t, 7) < max . .
(4,9) { mismatch otherwise

As in any other recursion, base cases must be defined.

V(0,i) =1i-gap
V(0,5) =j - gap

This is clearly correct as the score of aligning the prefix Si[1...14] with
a gap of length ¢ starting before S must be proportional with the length of
the gap (given linear gap penalty). The same principle applies when aligning
Sa[1...7] with a gap of length j.

Note that the base cases are calculated and inserted into the first row
and the first column of the matrix. This extra column and row is why the
matrix has a size of (i + 1) - (j + 1) rather than just the expected i - j, this
allows for inserting spaces before the start of the sequences.

3.4.2 The steps of the algorithm

Having established the recurrence, the different steps of the base algorithm
can be explained.

1. Initialization.
2. Matrix fill (scoring).

3. Traceback (alignment).
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The two first steps have already been discussed. Initialization is simply
declaring the matrix and filling in the values of the base cases. Matrix fill is
simply applying recurrence 3.1 to the remaining cells in the matrix. Having
filled the matrix, the score of the optimal (global) alignment of Si[1...1]
and So[l...7]is V((i +1),(5 + 1)).

Finding the optimal score is sufficient for some application but usually
it is the optimal alignment itself that is interesting. The last step locates
the alignment(s) corresponding to the optimal score. By also storing point-
ers for each cell(,j) as the table is computed one can easily follow a path
through the matrix corresponding to an optimal alignment. Traceback takes
the current cell and looks to the neighboring cells that could be direct pre-
decessors. If the value V (3, ) equals V(i — 1,7 — 1) 4 score(i,j) a pointer
to cell (4 — 1,5 — 1) is stored, similarly pointers to cell (: — 1,7) and cell
(1,7 — 1) can be stored. It is possible for a given cell, excluding the base
cases, to have all three pointers. During the initialization pointers are set
for the base cases, for V(i,0) a pointer is set to V(i — 1,0) for all ¢ > 0, for
V(0,j) a pointer is set to V(0,5 — 1) for all j > 0.

To find an optimal (global) alignment one follows the traceback pointers
from the bottom right corner to the upper left corner. As one starts tracing
the path at the end of the alignment one builds up the alignment backwards
starting with the last character in the alighment and ending with the first
one.

An also perfectly valid solution is to compute the traceback in a separate
step after the matrix fill step. Given a scoring scheme and the value of the
optimal alignment V'(i,7), the cell which precedes (7,7) in the alignment
can be calculated using the same approach as for setting pointers. The
complete alignment can then be determined by applying the same principle
recursively until the upper left corner is reached. Calculating in this manner
has the advantage of not using additional memory to store the pointers. It is
also fully compatible with more advanced variants of dynamic programming
procedures to compute optimal alignments.

3.4.3 The complete algorithm step by step

Finding the optimal alignment of Si[1...4] and S3[1... 7] where S; equals
"CGTACT’ and S3 equals 'CACCCG’. The scoring scheme is 1 for a match,
—1 for a mismatch and ((—1) - n) for a gap of length n. The three steps are
illustrated in the following figures.

1. Initialization Fig. 3.2.
2. Matrix fill (scoring) Fig. 3.3 and Fig. 3.4.

3. Traceback (alignment) Fig. 3.5.

29



String alignments

Qoo 0O| >»| 0O

Figure 3.2: The first step, initializing the base cases of the matrix

|lo|lo|lo| >»| 0O

Figure 3.3: The second step, Calculating V(i,j) for all cells i,j. V(1,1) is
shown in red. The value of V(1,1) is the maximum of : V(0,1) +gap penalty,
V(1,0) + gap penalty and V(0,0) + the score of aligning character 'C’ with
character C’. (shown in red,yellow, blue and green (respectively))

The time complexity of the algorithm is proportional with the product
of the length of the strings.

Theorem 3.1 Given string S1of length m and Sy of length n, the optimal
alignment of S1 and Sy can be found using O(nm) time.
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|lo|lo;,o0|>»| 0O

Figure 3.4: The second step (continued), filling the matrix. The completely
filled matrix. The optimal (global) alignment is in the bottom right corner
(shown in red)
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Figure 3.5: The last step, finding the alignment(s) corresponding to the
optimal score. A complete table of pointers represented as arrows pointing
to another cell. A cell on the optimal path having more than one pointer
indicates that there are more than one solution

Proof: Consider the three steps of the algorithm. When initializing
the table n + m cells are filled corresponding to inserting gaps of length
1...mn and 1...m. Given a linear gap penalty one does a constant amount
of work in each cell, which equals a total time of O(n + m) for the first
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step. When filling the 7 - m matrix one also does a constant amount of work
per cell. In any given cell only the value of 3 other cells are considered, a
constant number. Filling the matrix thus only takes 3 - (nm) time, keeping
the asymptotical running time O(nm). Finally, the worst case running time
of the traceback step is tracing the longest alignment possible, as this will
necessitate visiting the most cells. The longest alignment possible, given
that it is not possible to align gaps to gaps, is an alignment where the
aligned sequences do not overlap at all, see figure 3.6. In such an alignment
every character in S; and Ss is aligned with a gap. The total number of
cells visited are then m + n, a running time of O(n + m) since one still only
perform a constant number of operations in each cell.

__INTRON

Figure 3.6: The longest alignment possible when aligning INTRON and
EXON

The O(mn) of the fill matrix step dominates the O(n + m) running time
of the two other steps giving the whole algorithm a total running time of
O(mn).

Any algorithm that uses dynamic programming to calculate sequence
alignment will always have at least O(nm) worst case running time, as all
cells must be calculated. Removing a cell from the calculation will result
that any alignment 'passing through’ this cell will not be considered. Even
if some cells seems hardly ever useful (such as the bottom left one) there is
no way to beforehand exclude it, with absolute surety, from the calculation
without possibly excluding the best alignment from being computed in the
algorithm.

Theorem 3.2 Given string Siof length mand So of length n, the optimal
alignment of S1 and S2 can be found using O(nm) space.

Proof: The relative high memory requirements of the algorithm is due
to having to store the complete matrix with the V (i, j) values for all 4, j.
Since the amount of space stored in each cell is a constant, a number and
possibly up to three pointers, the total amount of space used is O(nm).

Note

This algorithm computes a global alignment of two strings. The variants of
this algorithm being presented in this chapter will use the same recurrence,
base cases, and way of penalizing spaces as this algorithm unless otherwise
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specified. The algorithm presented in this section will be referred to as the
"base algorithm’.

3.5 Gap penalties

Having briefly explained linear gap penalty in the previous section more
advanced, possibly more biologically correct, gap penalties can be examined.
To do so one has to have a more precise definition of a gap.

Definition 3.12 A gap is any mazimal, consecutive run of spaces in a sin-
gle string S of a given alignment. A gap may begin before the start of S, in
which case it is bordered on the right by the first character of S, or it may
begin after the end of S, in which case it is bordered on the left by the last
character of S.

A gap penalty is simply the cost of inserting a single such gap. Usually
the penalty of a gap is independent from the cost of any other gaps in the
alignment, referred to as local gaps. By including a term that reflects the
gaps in the alignment the overall distribution of spaces can be influenced,
implicitly influencing the overall shape of the alignment.

The most general gap penalty is scoring a gap with an arbitrary gap
cost. The main drawback of using an arbitrary gap cost is the added time
complexity. This makes other schemes, where the gap cost is dependant on
the length of the gap, a more viable option.

3.5.1 Affine gap penalties

In the examples so far a linear gap penalty has been used; if the penalty for
inserting a single space into a string is z and the length of the gap is n, the
gap penalty is the linear function z - n. However, other functions for gap
cost is possible. How a gap penalty is chosen depends on how the differences
between the aligned string are explained. From a biological standpoint dele-
tions/insertions can in some instances be modeled as mutations. A single
mutation might give rise to multiple deletions/insertions as opposed to just
one. A mutational event might even give rise to a variable size gap, where
gap length can be relatively random within a set of constraints. With a
linear gap penalty a mutation resulting in a gap of length two would be
penalized the same amount as two gaps of length one from two separate
mutations. Such a gap penalty would have to comply with the following
condition for gaps of length r and s.

gapcost(r + s) < gapcost(r) + gapcost(s)

A gap penalty fulfilling this condition is known as a concave gap penalty.
Note that linear gap penalty is a concave gap penalty. To get lower cost for
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longer gaps one can use an affine gap penalty. The simplest affine model is
to have, in addition to a cost for each space in the gap, a separate cost for
starting the gap.

gapcost = gapopen + (gapextend - gaplength)

Alignments using an affine gap penalty tend to have fewer, longer gaps
than those who use linear gap penalty. More advanced affine gap function
can include terms where the cost of extending a gap explicitly decreases as
the length increases, for instance by having the penalty for inserting space
number n equal to (gapextend - logn)[17].

3.5.2 Free end gaps

Another variant is to have free end gaps in a global alignment. Given an
alignment of string S; and string So. An end gap is a gap inserted before the
first character of S1 or So, or a gap inserted after the last character of Sy or
So. The reason for having no cost for these gaps are apparent when aligning
a short sequence, such as a mature mRNA sequence, with a longer one, such
as a long DNA sequence. The reason for aligning the two sequences is that
they are expected to be similar in some way, the smaller sequence matches
some region of the larger. Having no cost for end gaps makes it more likely
that this is achieved instead of having the smaller string broken up into
pieces matching smaller regions along the larger string. Having no cost for
end gaps does not affect the general gap cost in any way, it can be linear,
affine or whatever seems appropriate for the application. Since this variant
is somewhat in-between global - and local alignment it is often referred to
as semi-global alignment.

Having described different gap schemes, we now turn to how the recur-
rence of the base algorithm must be changed, in each case, to incorporate
these schemes.

3.6 Variants of the base algorithm

Several modifications to the base algorithm can be made, and are done in
practice, to ’tune’ the alignment to suite our current needs.

3.6.1 Local Alignment

In many cases sequences might not be very similar in their entirety but
have regions which are highly similar. This problem might surface when
comparing DNA strings to each other or comparing different proteins. The
problem of finding such regions are formally defined in definition 3.13.

34



3.6 Variants of the base algorithm

Definition 3.13 (Local alignment problem) Given two strings S1 and
So, find substrings A and B of S1 and So, respectively, whose similarity
(optimal global alignment value) is mazimum over all pairs of substrings
from Sy and So. A and B may be empty strings/[6].

These regions might be correctly aligned to each other using the base
algorithm but, as the goal of that algorithm is to maximize the global align-
ment score, it is no certainty. The positive score of the similar substrings
might drown in the penalty of the dissimilar substrings.

Given the strings S; and Sy of length n and m, respectively, there
are O(n?m?) possible pairs of substrings. Putting all pairs into the base
algorithm and finding the highest scoring alighment would then consume
(n?m?) - (nm) time = O(n®m3). However, the problem can be solved much
faster, in O(mn), time by inserting another term in the recurrence of the
base algorithm. This time bound was obtained by using an algorithm by
Smith & Waterman. The new algorithm is almost identical to the base al-
gorithm except that a new term, zero, is inserted into the recurrence. Since
the worst score possible, if the substrings are allowed to have length zero, is
zero, any contribution from negative prefixes can be removed by not allowing
negative cell values in the matrix. Negative values are replaced with zero,
hence the new zero term in recurrence 3.2. Note that this is the recurrence
when the gap penalty is linear.

Recurrence 3.2

V(i—1,7) +gapcost
. Vii,7—1) +gapcost
V(7)< max 670 51y scorel, )
0

The base cases are also changed, before they would be negative to rep-
resent insertion of gaps, now they will be zero. This is due to the fact that
any gap inserted into the beginning of either sequence is a potential prefix
to a substring, one with a negative value. Viewing free end gaps in similar
manner makes it clear that a prefix starting before the start of S; or S is
a negative number, the values in the corresponding cells are therefore set to
Zero.

As for the base algorithm, the scoring scheme will influence which lo-
cal alignment is optimal. Scoring a match as one, and mismatches/gaps as
zero, the optimal local alignment is the longest common subsequence. If mis-
matches/gaps are given a large negative score, and each match still a score
of one, the optimal local alignment will equal the longest substring. Usu-
ally the interesting cases are somewhat in between these and an appropriate
scoring scheme must be defined.
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3.6.2 Free end gaps

Modifying any scoring scheme to accommodate free end gaps is a relatively
simple procedure. Firstly, as no gaps preceding the first character in either
sequence should be penalized, the base cases in the recurrence should all be
initialized to zero.

Secondly, as no gap succeeding the last character of either sequences
should be penalized we cannot content ourselves to look for the optimal
alignment score in cell (n,m). The cell (z,y) containing the optimal align-
ment score will be the highest scoring cell in the last column/row, since any
gap from cell (z,y) to cell (m,n) would not be penalized. These modifica-
tions will work with the other gap schemes mentioned here.

3.6.3 Arbitrary gap penalties

We continue with the gap scheme that seems most demanding, implement-
ing arbitrary gap weights. As per the base algorithm we compare prefixes
S1[1...4) and So[l...7]. Any alignment of such prefixes falls into one of the
three following categories.

1. Character Si[é] is aligned to a character strictly to the left of Sa[j],
the alignment ends with a gap in Sj.

2. Character S1[i] is aligned to a character strictly to the right of S3[j],
the alignment ends with a gap in Ss.

3. Character S1[7] is aligned opposite to S3[j], this include both the case
that S1[i] equals Sa[j] and the case where they are different.

Definition 3.14 Define E(i,j) as the mazimum value of any alignment of
type 1; define F(i,j) as the mazimum value of any alignment of type 2;
define G(i,7) as the mazimum value of any type of alignment of type 3; and
finally define V (i,7) as the mazimum value of the three terms E(i,j), F(i,7)
and G(1i,7).

A set of recurrences establishing V (7, 7), and which takes into account
the three cases above, can now be formulated.

Recurrence 3.3 o
E(i, j)

V(i,j) + max] F(i,7)

G(i, J)
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G(i,7) =V (i—1,5 — 1) + score(S1]i], S2[])

E(i,j) = maxo<k<;j—1(V (i, k) — gapcost(j — k))

F(i,j) = maxg<i<; 1(V (l,5) — gapcost(i —1))

The base cases are, assuming that end gaps are not treated differently. V (i,0) =
—gapcost(7)

V(0,7) = —gapcost(j)

E(i,0) = —gapcost(i)

F(0,5) = —gapcost(j)

If end gaps are free the base cases are.

V(i,0) =0

Theorem 3.3 Assuming that |S1| = n and |S2| = m, the recurrences can
be evaluated in O(nm? + mn?)[6].

Proof: As usual we have a (n + 1) - (m + 1) matrix where we fill in one
V(i,7) value at the time. We need to examine one cell to evaluate G(i, 3), j
cells of row 7 to evaluate E(i,7), and 7 cells of column j to evaluate F(i, j).
Therefore, for any fixed row, W = O(m?) cells are examined to evaluate
all E values in that row, and for any fixed column, % = O(n?) cells are
examined to to evaluate all the F' values of that column, Since we have n
rows and m columns the total running time is O(nm? + mn?)'[6].

3.6.4 Affine gap penalties

When using affine gap penalties instead of arbitrary gap weights we keep
the terms F, F' and G but modify the recurrences slightly.

Recurrence 3.4 o
E(i, j)
V(i,j)  max ¢ F(i, )
G (i, j)
Glij) = V(i —1,j — 1) + score(S1[i], $21j])
E(i,7) = max(E(i,j — 1),V (i,j — 1) — gapopen) — gapextend)
F(i,j) =max(F(i — 1,7),V (i — 1,§) — gapopen) — gapextend

The base cases are, assuming that end gaps are not treated differently.

(2,0) = —gapopen — (gapextend - i)
(0,5) = —gapopen — (gapextend - j)
(1,0) = —gapopen — (gapextend - i)
(0,5) = —gapopen — (gapextend - j)

!Note that this proof from Gusfield[6] uses columns instead of rows, and vice versa,
compared to the rest of the algorithms in this thesis

%
v
E
F
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If end gaps are free the base cases are.

V(i,0) =0
V(0,5) =0

The changes from arbitrary gap weights are in how we treat the E(3, j)
and F(i,7) terms. Except for the opening cost, the cost of a gap of length
n+1 equals the one for a gap of length n+ gapextend. This is in contrast in
arbitrary gap penalties were there is no predictable relationship between a
cost of a gap of length n and a gap of length n + 1. The implications of this
is that, for each cell, no more than one previous value of £ an F and the
cost of opening a gap to compute E(i,j) and F(i,j) have to be examined.
This is a constant number of comparisons unlike the number of comparisons
for an arbitrary gap which were proportional to column/row length.

Theorem 3.4 The optimal alignment with affine gap weights can be com-
puted in O(nm) time, the same as for optimal alignment without a gap term
(base algorithm).

Proof: We can compute V (3,5), G(3,7), E(i,7) and F(i,7) in constant
time. As we have an (n + 1) - (m + 1) matrix this translates into a O(nm)
running time.

Refining the recurrence

The G term in the recurrences, both for arbitrary and affine gap penalties,
is unnecessary. The G term only depends on previously calculated values of
V, not G. The V term can then be computed on the basis of the E,F and a
previously computed V' term. Removing G does not effect execution speed,
but avoids storing the values of G in a table saving space. Recurrence 3.5 is
equivalent to recurrence 3.4.

Recurrence 3.5
E(i, j)
V(i,j) « max ¢ F(i,5)
V(i—1,57 — 1) + score(Si]i], S2[4]))

E(i,j) = max(E(i,j — 1),V (i, — 1) — gapopen) — gapextend)
F(i,j) =max(F(i —1,7),V (i — 1,4) — gapopen) — gapextend

3.7 Further extension to incorporate introns

As explained earlier, introns are parts of the sequence removed from the pre
mRNA in a post transcriptional process. When aligning a DNA sequence to
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a mature mRNA, derived from the DNA sequence, one would expect that
long substrings in the DNA would be aligned with gaps. However, there are
compelling reasons to treat introns differently from ordinary gaps.

Introns can be very long, particulary in higher eukaryotes, so an affine
gap penalty with a very low cost, even nothing, to extend a gap should
be used. Otherwise we risk spurious alignment between parts of an intron
and parts of the mRNA as several small gaps might be preferred instead
of a large, true, one. There is no biological reason that an ordinary (non
intron) gap should be scored in the exactly same way, another reason to treat
introns differently. Secondly introns have certain biological signals, known
as splice sites, to mark their end and beginning. In the vast majority ( 99%)
of cases an intron starts with a ’GT’ and ends with a ’AG’. This needs to
be reflected in the recurrences. Thirdly since introns are spliced out of the
pre mRNA to form a mature mRNA sequence, introns would be expected to
appear only in the sequences which has them, the DNA sequences, whereas
ordinary gaps can appear in both sequences.

3.7.1 Incorporating an intron term into the recurrence

These concerns are taken into consideration in the algorithm designed by
Mott and used in his program EST _genome[16]. The algorithm is a variant
of the Smith-Waterman (local alignment) algorithm described earlier. The
interesting addition is an explicit, separate cost for scoring introns. Let B(%)
be the score of the best local alignment, found so far, ending in position 4
in the spliced sequence and C(i) be the genome coordinate to which B(%)
refers. If an intron starts with 'GT’ and ends with ’AG’ this is referred to
as a acceptor-donor pair. Recurrence 3.1 is then replaced with the following
recursions.

Recurrence 3.6

V(i—1,7) +gapcost

Vii,j—1) +gapcost
V(i,j) < max{ V(i—1,j—1) +score(i,j)

B

0

Given a spliced sequence S and a genomic sequence G the score(i, j)
function and the B term is defined as follows.

B(i) — splicecost  ifC(i),j are a donor-acceptor pair

B } . ;
< max{ B(i) —introncost otherwise

(B(i), C(3)) « max{ EZ&:?’%{Q)) i1V (5) > B
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score(i, J) < max{ maich if Sl = Glj]
’ mismatch otherwise

The first equation is identical to the one for local alignment except for
the new term B used to identify introns. The second equation differenti-
ates the cost of inserting an intron depending on whether it has a proper
acceptor /donor pair. Even if the best local alignment ending in ¢ does not
match the splice consensus perfectly, if the difference introncost — splicecost
exceeds the extra cost incurred to make it so, the alignment will respect the
correct boundaries. The third equation simply updates B(i) and C(i) if a
higher scoring local alignment ending in ¢ in the spliced sequence is found.

The alignment can still be computed in O(nm) time as only a con-
stant more operations are done per cell in the dynamic programming ma-
trix. As default parameters Mott[16] suggest setting splicecost = 20 and
introncost = 40. The value can of course be changed but one problem re-
mains, exons shorter then splicecost may be skipped. Introns on both sides
of the exon will then be combined into one large intron. On the other hand,
intron penalties should always be higher than the longest expected random
match, typically 10 — 15 base pairs.

3.8 Memory saving techniques

When computing large alignments limiting memory use is often a more press-
ing issue than limiting the spent computing the alignment. Any algorithm
storing a n - m matrix will use n - m space. For instance a 5000 - 5000 matrix
will use 5000 - 5000 - 4 bytes space, assuming that each cell entry is a 4 byte
integer, which equals roughly 100 MB. There are ways to reduce space con-
sumption, though it will involve recomputing values and thus be more time
consuming.

3.8.1 Computing the optimal alignment score in linear space

Looking at recurrence 3.1, a given value V (4, j) is only dependent on V (i —
1,7 = 1), V(4,5 — 1) and V(i — 1,5). For the purpose of finding V (i, 5)
the rest of the matrix need not be known. By only storing columns j and
j — 1, we have access to all the values needed to compute V (7, j) for any 4
in column j. After computing the whole column, the entries of column j is
simply written over the values in column j—1 and column j+1 is calculated
based on these values, see fig.3.7. This alternating scheme is repeated until
the last column is reached and the optimal score is found. By not storing
more than two columns at once the space complexity is kept linear O(m).
This approach is equally well suited to using two rows instead of columns,
adjusting the space complexity to O(min(m,n)) by choosing the one using
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the least space, columns or rows. Using even less space can be achieved
by using just one column/row and a single value. However, when making
another column/row superfluous the space consumption still remains linear,
there is no asymptotic improvement in computational complexity.

a) b)
C |G G | T
-1 -2 -2 -3
C 1| -0 C ol -1
A 0 A -1 -1
C -1 C 2] -1
C -2 C -3 -2
C -3 C -2 -3
G -4 G -3 -3

Figure 3.7: Figure a) shows the calculation of a value V (i, j) keeping only
the current and previous column in memory. Figure b) shows that the
previous ’current’ column is now the ’previous’ column (note the characters
horizontally along the matrix) and a new column has been calculated based
on these values. The numbers in the example is the same as in Fig. 3.4.

Having computed the score of the best alignment there remains the prob-
lem of finding an actual alignment achieving this score. No pointers have
been stored, nor is it possible to reconstruct the path through the matrix
solely based on the last two columns/rows. Therefore the algorithm de-
scribed above is only useful if just the score of the best alignment is needed,
not the alignment itself.

3.8.2 Finding the alignment in linear space using Hirschberg’s
algorithm

To obtain the alignment, in addition to the score, an algorithm designed by
Hirschberg can be used. It was originally designed to cope with a different
problem, the longest common subsequence, but has been adapted to solving
the problem of aligning two sequences[18]. The main idea is to use a divide &
conquer approach, recursively dividing the matrix in two, and calculate small
parts of the alignment one at the time. This process results in recomputation
of cells, equaling more time spent calculating the alignment, however it can
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be shown that in the worst case the time spent is only 2 - ¢ - mn[6], for some
constant ¢, and the asymptotic time complexity remains at O(mn).

Definition 3.15 For any string S let S, denote the reversed string[6].

Definition 3.16 Given strings S1 and Sz, define V,.(i, ) as the similarity of
the strings consisting of the first i characters of S;1, and the string consisting
of the first j characters of S;2 [6].

Calculating the score V;.(n,m) can be done with the same space- and
time complexity as calculating V' (n,m).

Given sequences S and Se with length m and n, respectively. The m-n
dynamic programming matrix is divided in two, also dividing Sy in two,
creating two m - § submatrices, (5) - m and (n — §) - m. The alignment
of the upper half of the original matrix is computed using the ’ordinary’
strings while the alignment of the lower half is computed using the reversed
strings. Note that the two submatrices overlap in row 5. The values in
row 7 are stored for alignments of both submatrices as well as traceback
pointers. Row 5 will then contain the values of an optimal alignment from
(0,0) to (5,k), for 0 < k& < m. Correspondingly, the optimal alignment,
computed using the reversed strings, from (n,m) to (5,k), for 0 < k < m,
is also stored. Since only two rows are stored the space complexity is kept
linear. To find the optimal alignment V (n,m) we now need to find the two
alignments V(%,k) and V,(§, m — k) for some position k& on row %, that

2
maximizes the optimal alignment score for the whole matrix.

Definition 3.17 Let k* be the position k that mazimizes [V (§,k)+V, (5, m—

k) [6].
From definition 3.17 it follows that V(n,m) equals;

Recurrence 3.7 V(n,m) = max[V (%, k") + V,(5,m — k*)]

Since row 7 is stored for both the lower and upper submatrix finding
k* is simply a matter of iterating over the row to find the cell (3, k) which
maximizes [V (§,k) 4+ V,(5,m — k)]. Having found k* we now compute a
small part of the alignment. Traceback pointers stored for cell (%,k), one

for each matrix, allows us to store a subpath L% of the optimal path L.

Definition 3.18 Let L% be the subpath of L that starts with the last node
of L in row § — 1 and ends with the first node of L in row § +1 [6].

Locating position k* takes O(nm) time since computing the submatri-

ces takes, at the most, O(nm) time and finding £* in row 7 takes time

proportional to the length of the row, O(m), a total time consumption of
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O(nm). Having done this we now have two new submatrices A and B where

the dimensions of A are (% — 1) - k; where &, is the position in Sy corre-

sponding to the last node of L in row (§ — 1). The dimensions of B are

(n — (5 4+ 1) - (m — kz) where ky is the position in Sy corresponding to the

first node of L in row (§ + 1).

(0,0 m
A
o (n/2)-1
n/2
(n/2)+1
n B
(n,m)

Figure 3.8: The figure shows how a matrix is divided at row & and the value
k* is calculated. The subpath from row (5 — 1) to (5 + 1) can then be
found. The matrix is now divided into two submatrices, A and B, to which

the Hirscberg algorithm is recursively applied.

Large pieces of the original matrix, everything but A and B, have been
eliminated from the consideration of which cells lie on the optimal path.
The algorithm recursively subdivides the A and B matrices into smaller
matrices, using the same technique, until a continuous optimal path L has
been found. It is immediately obvious that further subdividing matrices A
and B leads to values in both A and B being recomputed.

The alignment computed this way is a global alignment, a local a align-
ment can be found if we can find the maximal scoring substring Alpha and
Beta in linear space. The endpoint of the substring can easily be found, as
it corresponds to the highest scoring cell in the matrix. To find the start
point, either one must use reversed dynamic programming or implement a
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special pointer scheme. Once found the two substrings define a submatrix
the Hirschberg algorithm can be applied to.

For a more thorough examination of the algorithm, including proofs, see
[18] or [6].

3.8.3 Finding the alignment in linear space using FastLSA

A second algorithm that reduces the memory requirements for computing
the dynamic programming matrix is FastLSA[2].

In the same spirit as the Hirschberg algorithm, FastLSA divides the
dynamic programming matrix into parts, where each part is calculated sep-
arately as needed. The FastLSA algorithm does not deal with reversed
strings, each submatrix is calculated in the usual way. If a single subma-
trix is to be calculated autonomously the base cases of the recurrences, in
addition to the substrings defining the matrix, needs to be known. To fa-
cilitate this the algorithm calculates and stores the needed rows/colums of
the base cases in grid cache lines. To fill these cache lines with values the
algorithm first have to compute most of the cells in the matrix, everything
but the bottom right submatrix, using the linear space method using two
columns/rows.

The number of submatrices the main matrix is subdivided into is a tun-
able parameter. The matrix can be divided both horizontally and vertically,
as opposed to the Hirschberg algorithm which only divide vertically or hor-
izontally. The matrix may also be divided into more than two parts. The
number of submatrices the main matrix is subdivided into might affect per-
formance both time wise, the number of recomputations needed, and space
wise, the number of rows/columns that needs to be cached. Dividing one
sequence, along the row of the matrix, into k& parts and the other, along the
column of the matrix, into ¢ parts one gets k - ¢ submatrices. This necessi-
tates storing k — 1 columns and ¢ — 1 rows of length m and n, respectively,
in addition to the base cases for the main matrix.

We examine the recursive division of a matrix in the algorithm step by
step.

1. Allocate a base case buffer. Initially a maximum amount of memory
to be spent on a dynamic programming matrix is set. This amount
might reflect the total memory available or some other constraint.

2. A dynamic programming matriz, or submatriz, is given and base
cases filled in

e If the whole matrix is able to fit in the base case buffer the
matrix is calculated as per the base algorithm and the
alignment produced. Either the entire optimal alignment is
found or a new submatrix is selected for computation.
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(a) Lavout of the input caches at the (b) Base case: full matnx algorthm i () General case: grid of caches (for k
start of FastLEA () used to find an optimal path =4} allocated but not filled ver
B

(d) General case: grid of caches filled  (e) General caze: after recursion on (f) General case: extend path to top
before recursion on bottom-right bottom-right block, with partial ‘boundary via successive recursion on
block solution path sub-problems

1 HG

T
IOy

=7 Sub-problem

1 (for recursion) Solution path

Enown score values l:l Unknown score values

Figure 3.9: This excellent figure[2] demonstrates different cases of the
fastLSA algorithm.

e If the matrix does not fit in the base case buffer it is subdivided
into a (tunable) number of smaller submatrices and step 3
executed.

3. Allocating the cache. Grid caches are allocated corresponding to the
number of submatrices.

4. Filling the cache. The matrix is calculated to fill the row/column
cache lines for the submatrices. Starting with the bottom right
matrix step 2 is executed once again.

As step 2 & 4 indicates the algorithm is a recursive, divide & conquer
algorithm and as such analogous to the Hirschberg algorithm. If the buffer
is small enough or the matrix very large, multiple levels of recursion might
be necessary.

However the steps described above does not describe how to find the op-
timal alignment once we have divided the matrix into multiple submatrices.
Having recomputed a given submatrix we can calculate a subpath of the
optimal alignment. If the alignment produced does not extend all the way
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to the upper left corner of the original matrix (assuming global alignment)
we have to compute a subalignment of at least one more submatrix. To
extend the alignment further we have to recompute the necessary parts of a
submatrix adjacent to the endpoint of the subalignment. This translates to
that if the subalignment ends at cell (0, X), X > 0, in the submatrix we re-
compute the submatrix to the left of the current one down to, and inclusive,
row X in the case of a horizontal gap or down to row X — 1 given a diagonal
move. Similarly an alignment ending in (X,0), X > 0, will necessitate a
recomputation of the matrix above. If the alignment ends in (0,0) either
the one to the left, the one above or the diagonal one is chosen as the next
submatrix. Which of those matrices to recompute can be determined if we,
in addition to values, store traceback pointers for the cached cells. Recalcu-
lating matrices in this way can conceptually be viewed as being analogous to
backtracking from a single cell in the matrix. Once a correct move, say a di-
agonal move, has been found other moves (horizontal or vertical) will never
be considered later in the backtracking. Correspondingly, some submatrices
will never have to be recomputed in the FastLSA algorithm. Given that
we wish to compute a global alignment, the first submatrix to recompute
during the traceback step is the one that contains the cell with the optimal
alignment score, the last is the submatrix containing cell(0, 0).

Lemma 3.1 Given a dynamic programming matriz defined by two sequences
S1 and Sy of length m and n, respectively. Let S(m,n,k) be the mazimum
number of dynamic programming cells that need to be stored in order to align
the sequences using k — 1 cached columns and k — 1 cached rows of length
m and n, respectively. Let the size of the reserved buffer be BUF. Then
S(m,n,k) < k-(m+n)+ BUF/[2]

As can be seen from lemma 3.1 the space required increases only linearly
with increasing matrix size. Still, the space requirement is higher than for
the Hirschberg algorithm but the time required for recomputation is lower.
As the lemma 3.2 shows the upper time bound decreases as k increases.

Lemma 3.2 Given a dynamic programming matriz defined by two sequences
S1 and Sy of length m and n, respectively. Let T'(m,n, k) be the number of
dynamic programming cells that need to be calculated in order to align the
sequences using k — 1 cached columns and k — 1 cached rows of length m
and n, respectively. The total execution time of FastLSA is proportional to
T(m,n,k). In the worst case T(m,n,k) =m-n - %[2]

—

Example 3.1 For k=4, T(m,n,k)=m-n-$3 =m-n-

Wit

In practice, FastLSA has the advantage that it can be tailored to use a
given amount of memory allowing small matrices to stay in the processor
cache and larger matrices to stay within main memory. This translates into
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faster execution as retrieving information from the cache is faster than from
main memory which in turn is faster than retrieving from a harddrive (vir-
tual memory). For instance, it is about one million times slower retrieving
a value from a harddrive than from main memory.
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Chapter 4

Graphs

4.1 Splice graphs

The traditional approach to analyze different splice variants is to compare
them directly in a case by case fashion. However, with the amount of genes
found being alternatively spliced this approach becomes cumbersome and
inflexible. Some genes produce as many as thousands of different transcripts,
making a list of all transcripts difficult to build and analyze. Moreover, such
a list does not show the relationship between different transcripts and does
not show the overall structure of all transcripts. A better way to represent
this information conveniently, is collecting all splice variants and inserting
them into a single data structure, a splice graph[7][13]. Definition 4.1 sums
up the properties of a splice graph quite neatly.

Definition 4.1 Let S1,...,S, be the set of all RNA transcripts for a given
gene of interest. FEach transcript S; corresponds to a set of genomic positions
Vi with V; # Vj for i # j. Define the set of all transcribed positions V =
Ui, Vi as the union of all sets V;. The splicing graph G is the directed
graph on the set of transcribed positions V' that contains an edge (v,w) if
and only if v and w are consecutive positions in one of the transcripts S;.
Every transcript S; can be viewed as a path in the splice graph G and the
whole graph G is the union of n such paths [7].

It is common to fuse nodes with indegree = outdegree = 1 to make the
graph more compact and readable. Each node will then, ideally, represent
an exon. The splice graph can be constructed based solely on expressed
sequences, genomic sequences are not necessary, which can be considered
an advantage. This advantage stems from the fact that even as genomic
sequencing advances rapidly a large number of EST data can still not be
mapped onto genomic sequences|7]. In addition there are several organisms
which have available EST data but no genome sequencing project. The
disadvantage of a the splice graph is that, currently, most applications/tools
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work on consensus sequences rather than graphs. However, as a transcript
can be viewed as a path in the graph, it should be possible to extract the
necessary information.

4.1.1 Assembling a splice graph

Assembling consensus sequences from EST clusters is commonly done using
an overlap graph (as described in the EST clustering process). Assembling
the sequences into a graph, rather than a consensus sequence, is usually
done by constructing the graph as a k — mer graph [7][13]. The key is to
break the data down into parts of a fixed length (length k). Each node is
represented by a (k — 1) — tuple and each edge by a k — tuple. Sequence
variation and alternative splicing is represented as bifurcations in the graph.
Any errors in the EST sequences used to construct the graph will cause a
serious 'blurring’ effect, adding erroneous edges to the graph hiding the real
exon structure. To build a directed acyclic graph (DAG), we must assume
that every k — tuple is unambiguously defined in the consensus sequences,
if the k — tuple is repeated the graph will contain a cycle. In order to
weed out erroneous edges, good error correction algorithms are vital. The
specifics may vary, but in general information such as splice sites, the weight
of the edges (the set of sequences supporting it) or alignment information
for overlapping sequences is used to remove the errors that might occur.

GATCGGCGACGTGGACCTGGCTTTCGGATGG

ATTTAC GTAGCTGA TTAACGCT

CGCGCATCAGCTCG

Figure 4.1: An example of a simple splice graph, visualized using graphviz[5].

4.2 Partial Order Graphs

4.2.1 Motivation

A partial order graph is a way of representing a multiple sequence align-
ment. A multiple sequence alignment is, as the name implies, aligning sev-
eral sequences to each other. As each sequence must be aligned to all other
sequences, the time complexity quickly rises to levels where even super-
computers struggle. Aligning two sequences S; and Sy of length m and
n, respectively, gives a running time of O(mn) as proved in the previous
chapter. Aligning three sequences S1, S2 and S3 of length m, n and [ has a
time complexity of O(mnl), cubic complexity. Instead of a (2D)matrix we

50



4.2 Partial Order Graphs

then have a cube with (m - n - [) entries to fill inn. To generalize, the time
complexity of aligning m sequences of length n is O(n™).

Given the high complexity of aligning many sequences one usually at-
tempts a less computationally intensive, but perhaps less accurate, approach.
These heuristic approaches are usually based on some form of progressive
alignment. The essence of progressive alignment is to construct the final
alignment based on a series of pairwise alignments. Each pairwise alignment
is combined with another pairwise alignment until the last two are combined
into the final alignment. Having N sequences result in % alignments, these
alignments are combined into % alignments and so on. A crucial decision is
which alignments to combine in each step, usually the most similar sequences
are aligned first. When comparing proteins this translates into comparing
the sequences that diverged last, a phylogenetic tree is therefore often used
to guide the alignment. However, progressive alignment is a greedy method
and might end up in a local minimum, either because the sequences are
aligned out of order or because alignment errors happening early in the
process get locked in. Another problem is choosing the alignment parame-
ters, such as gap weights, for the alignments. In practice, pairwise dynamic
programming is not applied to align alignments directly. The alignments
are reduces to a single sequence each, a one dimensional profile. This in-
evitably leads to loss of information[10] as the sequences participating in the
alignment are 'averaged’ out. However, as we, in all the mentioned dynamic
programming variants, align sequences to each other not alignments this has
been a necessary procedure. By only doing multiple pairwise alignments the
asymptotic time complexity is kept quadratic.

The partial order graph[10] is designed to prevent information loss, or
degeneracy, and be alignable using pairwise dynamic programming. A par-
tial order graph is also designed to preserve two pieces of information crucial
to a (multiple) alignment: what sequence positions are aligned to each other,
and the ordering of these positions within the sequences themselves.

4.2.2 Building the partial order alignment(POA)

A partial order graph is, in addition to being a graph, effectively a multiple
alignment representation, and is therefore also referred to as a partial order
alignment (POA). Starting with a single sequence Si, it is converted to a
linear graph with each character in S; stored on a separate node. A node
storing a character S;[i] has an edges from the node storing Si[i — 1] and
an edge to the node storing Si[i + 1] as long as 0 < 7 < n, where n is the
length of S;. The node storing S1[0] has only an edge to S1[1] and similarly
the node storing Si[n] has only an edge from Si[n — 1], given that S;[n] #
S1[0]. A POA consisting of just one sequence is referred to as a trivial POA.
From this scheme it is easily inferred that a partial order graph is a direct
acyclic graph.
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Building a multiple alignment entails adding sequences to the graph,
one by one. The process of adding a new sequence S has several steps, first
the new sequence is converted to a trivial POA format. In the next step
the trivial POA is aligned with a graph G, which may also just be a single
sequence in trivial POA format. After the alignment is done, nodes in the
new trivial POA is fused to the graph according to node position. Given
two nodes, V and W, that were aligned to each other in the alignment step
and hence are to be placed in the same position in the graph. If information
about which sequences each node originated from is interesting (say, if one
wants to reconstruct a particular sequence from the graph at some later
point), the information from both V' and W are stored in a list on the fused
node. The fusing of nodes is done by the following rules, redundant edges
are removed afterwards.

1. If V and W store the same character they are fused into a single
node.

2. If V and W are aligned, but store different characters, and node V is
aligned to a node X in G whose character is equal to V' then G and
V are fused.

3. If V and W are aligned to, but store different characters, and V is
not as yet aligned to any node in Gwhose character equals W, then
V and W are recorded as being aligned (mismatching) to each other.

4. Unaligned letters are not altered.

A trivial POA obeys a true, one dimensional, ordering of the characters.
That is, for two nodes V and W, i < j XOR j < i. The ¢ < j relation
translates into ’there is a directed path from 7 to j°. A general POA only
obeys such a linear ordering within (linear) regions, where each node has
at the most one inedge and outedge. A general POA may contain nodes ¢
and j such that NOT ¢ < 5 AND NOT j < 4, there exist no path between
1 and j. This is illustrated in figure 4.2 displaying both a trivial and a non-
trivial partial order graph. A non-trivial POA may contain bifurcations to
indicate gaps or mismatched characters. The graph is not guaranteed to
obey a linear ordering, rather it is said to obey a partial ordering, hence the
name partial order graph.

4.2.3 Aligning a POA to a sequence

Adding a new sequence to the graph, building the POA, involves aligning
the graph to a sequence. Building a graph from N sequences, involves
making N — 1 alignments. The alignments we have examined sofar have
been alignments of two sequences, rather than a graph and a sequence, and
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Figure 4.2: Figure a) shows a trivial POA where i < j XOR j < i. Figure
b) shows a general (non-trivial) POA where i < j AND NOT j < 1.

a new algorithm have to be designed to accommodate the change from a
sequence to a graph.

Rather than creating a completely new algorithm, ordinary pairwise se-
quence alignment can be extended in a natural way to incorporate a graph
along the horizontal axis of the dynamic programming matrix. Given a
graph G and a sequence S. Aligning some position in G containing only a
single node V' to some character ¢ in S can be done in the usual way. In fact,
any linear region in the graph can be computed in the same way. A linear
region is just a sequence of nodes corresponding to one substring, S’. A sub-
matrix can be constructed aligning S’ to S. As such the whole graph can be
subdivided into connected linear regions. The partial order structure is thus
transferred to the (2D) matrix by forming additional dynamic programming
matrices corresponding to bifurcations in the graph. These matrices are
connected to each other exactly as the branches in the POA are connected.
Now we must extend the base algorithm at the bifurcations, as the cells cor-
responding to these nodes will have an (analogous to a multiple alignment at
that node) extended set of possible moves. In the base algorithm ,a value for
a given cell (4, j) could be derived from the values of (maximum) three other
cells, the three moves possible was a diagonal(i—1, j —1),a horizontal(i—1, )
and a vertical(i, j —1). These moves are valid for a matrix stored at a node,
except for the junctions were multiple matrices ’fuse’. Here we must ex-
tend the moves to include moving to each matrix in the junction. In the
simplest case, where two matrices meet at a junction (figure 4.3, the moves
are extended to include two horizontal moves (one from each matrix), two
diagonal moves(one from each matrix) and a single vertical move (on the
current matrix).

In a linear region of a POA a node W has (at most) one predecessor
node, a node with a directed edge to W. If a node is in a bifurcation of the
graph it may have more, one from each matrix fusing at the junction.

Definition 4.2 Given a node V, let p be the set of predecessor nodes of V.
Let w be a node in p. Finally, let P denote the number of predecessor nodes
n p.

From this we can establish a recurrence[10] for computing an alignment.
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Note that recurrence 4.1 describes a global alignment, but it is equally fea-
sible to define a recurrence for local alignment or other variants of dynamic
programming.

Recurrence 4.1

V(w,j) +gapcost ¥V w € p
V(i,j) « max{ V(i,j—1) +gapcost
V(w,j—1) +score(i,j) Y we p

(mj-1)

P1 (m.j)

(i) C

(nj-1)

P2 @)

Figure 4.3: Computing a cell stored in a matrix on a node (C) (in a splice
graph) with multiple predecessors (P, and P»)

4.2.4 Computational complexity

As the algorithm only differs from the base algorithm in the case of multiple
predecessor nodes, the source of any increase in time complexity must be
the cases where P > 1. Each predecessor node adds two more possible
moves to the total number of moves, one horizontal and one diagonal move.
The total number of moves that have to be calculated in recurrence 4.1,
given P predecessor nodes, is then 2 - P + 1. Aligning a sequence S, of
length m, to a partial order graph G, with n nodes, where the average
number of predecessor nodes per node in G is P, the total time complexity
is O(mn-(P+1)). The time complexity increases only linearly with P. The
space complexity of the algorithm is identical to the base algorithm, O(mn),
using the same reasoning.
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The O(mn) time complexity is not asymptotically higher than ’regu-
lar’ dynamic programming, tests have also shown it to perform well in
practice[8]. However, partial order alignment suffer from one weakness also
associated with progressive alignment, the order of the sequences added to
the graph influences the final outcome. As with progressive alignment this
can be corrected by adding the sequences in the 'right’ order, provided there
is one. For instance, when aligning proteins one can use a guide tree[9].

4.3 'Treating a splice graph as a POA

Both splice graphs and partial order alignments are graph representations.
However, a splice graph is not completely identical to a POA. A splice graph
represents a set of sequences whereas a POA represent an alignment of
sequences. In a POA, if two aligned characters mismatch, they are recorded
as being aligned but unequal. A splice graph can, in principle, also be
build from a multiple alignment, if two characters mismatch they are simply
assumed to be in different exons.

Even if a POA and a splice graph does not represent the exact same
thing, the procedure for aligning a POA to sequence can be applied to splice
graphs. Analogous to a POA, a splice graph contains linear stretches of
nodes (often fused to a single supernode) interrupted by bifurcations. Thus
recurrence 4.1 can be applied to a splice graph equally well, using the same
reasoning as for a POA.
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Chapter 5

Aligning a splice graph to a
genomic sequence

5.1 The goal of the algorithm

Given a splice graph, which incorporates information about different splice
variants, we wish to map the graph to a genomic sequence. Mapping a
graph as opposed to a single sequence takes into account a much richer set
of overlapping sequences and increases the accuracy of the mapping (needs
testing). Mapping the graph rather than one consensus sequence at the time
will save significant computation time as each consensus sequence usually
have regions (exons) in common with other consensus sequences.

Definition 5.1 Given a splice graph G and a genomic sequence S. Let S’
be a path from some vertex V, with no inedges, traversing the graph to some
node V', with no outedges, in G. The optimal alignment of S and G is the
alignment of S and some path S’, which achieves the highest score.

The alignment produced is the alignment of the optimal path through
the graph and the genomic sequences. An alignment of the whole graph
and a sequence would be a multiple alignment, which is time consuming to
construct. Another reason, besides computational speed, to not make an
alignment of the whole graph, is that the splice graph might not be free of
errors. Consensus sequences from paralogous genes or pseudo genes might
be assembled into the same splice graph. The result is that some sequences
will match regions in one gene while other sequences will match regions in
a different gene. In this case, trying to map a whole splice graph to a single
gene makes no sense.

5.1.1 Decomposing the graph

A basic approach to aligning a graph to a sequence is to enumerate all
paths through the graph, with each path corresponding to a sequence, and
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then pairwise align each such sequence to the genomic sequence to find the
highest scoring alignment. However, this makes the graph structure itself
redundant. It would be easier to use at set of consensus sequences rather
than go to the trouble of building the graph before extracting the sequences
again. It also means that, since the consensus sequences in all likelihood
share several exons, the alignment between these exons and the genomic
sequences will be computed several times. A significant speedup can be
achieved by aligning the graph structure directly to the genome, making it
a much better idea.

5.1.2 Basic approach to the algorithm

The basic components of the algorithm is relatively easily explained but
have some interesting implications. Given that only parts of the genome are
expected to align well with the nodes of the graph local alignment is an op-
tion. However, we want to match a whole graph, not find the highest scoring
stretch of nodes with indedges = outedges = 1. The highest scoring of such
a stretch of nodes would in most cases just be the largest exon, the stretch
with the longest substring stored on it. Rather than trying to combine sev-
eral (non-overlapping) local alignments to produce a full path through the
graph, I have chosen to use global alignment. The obvious problem is then
to have the alignment match the exon/intron patterns assumed to exist in
the genome. To resolve this problem the alignment is strongly encouraged
to match long gaps in one sequence (expressed sequence), having correct
donor/acceptor pairs, with introns in the other (genomic) sequence. In or-
der to make this happen the scoring scheme needs to make such alignments
cost effective.

Scoring scheme

The scoring scheme uses a single value both for matching nucleotides and
mismatching nucleotides. This is common when comparing genomic se-
quences as opposed to comparisons of proteins where scoring matrices are
the norm. EST sequences are susceptible to insertions/deletetions as well
as single nucleotides being misinterpreted. The logical choice then seem to
be to opt for an affine gap penalty. The downside to this is using a constant
amount more time and space, space usually being the scarcest commodity
of the two. As we shall later see this disadvantage can be offset by the
need to only keep the matrix of single node in memory at any time. An
alignment of a graph of spliced sequences, containing no introns in the ideal
case, to a genomic sequence containing introns would be expected to con-
tain long gaps in the graph sequence opposite the introns in the genomic
sequence. Making the gap penalty low enough to map the exons correctly,
with valid acceptor/donor pairs, while at simultaneously having gaps that
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are not presumed to be introns getting too cheap, are strong arguments for
treating introns as a separate case from ’ordinary’ gaps. The intron/splice
terms used by Mott[16] adequately satisfies these constraints. The last point
taken into consideration is that when aligning a long genomic sequence to
the graph we expect the graph to map only to a subsequence of the genome
(a gene), making end gaps free will hinder sporadic matches to the genomic
string outside the expected range. As such, free end gaps should only be en-
abled for the splice graph, not the genomic sequence. Note that the different
terms may effect each other, a high penalty for opening a gap may result in
introns without valid acceptor/donor sites, if introncost — splicecost is too
low. Setting the right values in a scoring scheme may be as important as
the algorithm itself.

5.1.3 Combining existing algorithms

Having outlined the basic requirements of a new algorithm, the next step is
to use the existing algorithms at our disposal to create an algorithm capable
of aligning a splice graph to a genomic sequence. Comparing a node to a
sequence equals comparing two strings, the one stored at the node and the
genomic sequence. At node level we can then apply the following algorithms.

e Pairwise sequence alignment using dynamic programming

— Global alignment
— Affine gap penalties
— Free end gaps

e Special type of gap representing introns (Mott[16])
e Memory reduction techniques

— Calculating optimal score using linear space

— Finding the optimal alignment using either FastLSA or the algo-
rithm by Hirschberg

However, we have more than simple collection of nodes, the nodes are
locked within a larger structure, a graph. Within the graph the nodes are
connected through edges, and the matrices stored on each node are similarly
connected to each other.

e Generic graph algorithms such as depth first search and topological
sort

e Partial order alignment, to calculate the base cases of a given node
dependant on predecessor nodes
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e (Calculating optimal score using linear space and store the last column
of each node.

Finally, some of these must be slightly adapted to be suitable. For in-
stance, one must be able to trace the alignment over several nodes, including
affine gaps, and be able identify introns correctly. The trick is to combine
the algorithms in a good manner and provide the little extra it takes to make
everything work. For instance, at the graph level we can first sort the graph
using topological sort. When we subsequently compute the nodes according
to the order specified by the topological sort it is guaranteed that no node V
is processed before all predecessor nodes of V' have been computed. Then we
can compute each node using linear space and store the last column. When
using POA the base cases of any given node V can then be computed based
on the last column stored on the predecessor nodes of V. Subsequently, each
node in the graph can be calculated autonomously.

5.2 The Algorithm

Given a splice graph G and a genomic sequence S as input. Every node
in G with indegree=0 gets an inedge from an artificially created startnode.
Likewise every node in G with outdegree=0 gets an outedge to an artificially
created endnode. Having these additional nodes makes it easy to both start
and end the algorithm at an appropriate time and place. The startnode
contains the first column of the base cases, making it unnecessary to store
them on every first node in a potential path through the graph. The endnode
contains no information but, as will be demonstrated, is simply a termination
criteria. A more precise description, given a splice graph G. An artificial
node V is inserted at the start of the graph having outedges to all nodes
in G which previously had no inedges. Similarly an artificial node W is
inserted at the end of the graph having inedges from all nodes in G which
previously had no outedges. V is known as a startnode whereas W is known
as a endnode.

5.2.1 Aligning a splice graph with a sequence

As part of the problem definition we want to align a sequence with a graph.
The contents of an alignment have been described earlier in some detail,
both for sequences and POA. When aligning a graph with a sequence we
use ideas from Partial Order Graphs extending the alignment problem to
accommodate splice graphs as previously described. Conceptually the splice
graph can be viewed as graph with each node storing a dynamic program-
ming matrix.
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Fusing nodes into supernodes

For simplicity, continuous stretches of nodes with indegree=outdegree=1
are fused into a single supernode, as in figure 5.1. A supernode will ideally
correspond to an exon barring sequencing errors.

Definition 5.2 A stretch of continuous nodes with indegree = outdegree =
1 can be fused into one node storing all the necessary information.

Fusing nodes are done by the following rules, given a current node V'
and a current supernode S.

e if V' has indegree=outdegree=1 it is fused with the current supernode
S. Move to next node W following outedge from V.

e if V' has outdegree>1 it is fused with the current supernode S. S is
then closed. Following each edge from V new supernodes are started.

e if V indegree>1 S is closed. V is added to a new supernode T'.

e if V has indegree>1 and outdegree>1 S is closed. V is added to a
new supernode 7' which closes afterwards. Following each edge from
V new supernodes are started.

a)

OGG%GO

b) CA

ATG AC GA

Figure 5.1: Figure a) shows a simple splice graph. Figure b) shows
an equivalent representation of the splice graph where the nodes with
indegree=outdegree=1 have been fused, where possible, into supernodes
(shown as rectangles) without losing information.
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Computing a node

Having fused all nodes according to definition 5.2, we will from now on use
the term node to denote such fused nodes. The two dimensions of a matrix
is determined by the substring (exon) stored at the node (1%* dimension)
and the length of the genomic sequence along the other axis (2"¢ dimen-
sion). Using the intron term from Mott means that introns will span a
number of cells within a given column, as intron only occur in the genomic
sequence. Therefore introns will never span different nodes, and can be
calculated independently of the rest of the graph. Furthermore, each node
can be computed individually and, except for the base cases on each node,
completely autonomously. The base cases are determined from predecessor
nodes or, if there is no predecessor, calculated as per standard for aligning
two sequences. The only node in the splice graph without predecessors is
the startnode. However, the nodes must be calculated in a certain order to
get the base cases right. For a given node V with a set of predecessor nodes
@, all members of Q must be calculated before V. The cells in the first col-
umn of the matrix stored on V is calculated as in recurrence 4.1 where the
values of the predecessor nodes equal the values stored in the last column
in the matrix on that node. The values of the last column of a predecessor
node and the first column of the current node is the interface through which
the nodes interact when doing the alignment. An obvious way to guarantee
that each node is calculated in the right order is by doing a topological sort
of the graph. The startnode, having no inedges, will be the first node in
the sorted sequence of nodes while the endnode, having no outedges, will
be the last node. Starting with the startnode, and following the topologi-
cal ordering of the graph, the dynamic programming matrices on the nodes
are calculated one by one until the endnode is reached. Assuming a global
alignment, the cell containing the score of the optimal alignment will be the
bottom right cell on one of the nodes connected to the endnode. If there is
more than one node connected to the end node the optimal value is found
and the traceback start at the cell on that node. When having end gaps
free for the splice graph we must find the optimal score as the highest value
in the last column of a node. Note that if end gaps also were free in the
genomic sequence, we would have to search the last row of all nodes as well.

The recurrences

The recurrences of the algorithm combine, in a natural way, the recurrence
for the base algorithm (recurrence 3.1) extended with affine gaps(recurrence
3.4), free end gaps, parts of the intron/splice terms(recurrence 3.6)by Mott[16]
and POA (recurrence 4.1), the last when calculating the first column of a new
node. Since introns are only found in the genomic string the effect of the
intron/splice terms will be confined to a one node and as such will never
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add to the set of predecessor nodes for cells in the first column.

Recurrence 5.1 The general case.
V(i,7) < max

G(Zaj) = V(Z - laj - 1) + SCOT@(Sl[’i],SQ[j])
E(i,j) = max(E(i,j — 1),V (4,5 — 1) — gapopen) — gapextend)
F(i,j) =max(F(i — 1,75),V (i — 1,7) — gapopen) — gapextend)

When computing the first column of a node, fusing recurrence 4.1 with
the general case, the G and F terms must be computet for all predecessor
nodes.

G(i,5) = V(p,j — 1) + score(Si[p], Saj])¥p
E(i,j) = max(E(i,j — 1),V (4,5 — 1) — gapopen) — gapextend)

F(i,j) = max(F(p, j),V(p,j) — gapopen) — gapextend)Vp

The B,C and score(i, j) terms are unchanged from recurrence 3.6. Given

a spliced sequence S and a genomic sequence G the score(i, j) function and
the B term is defined as follows.

(1) — splicecost ifC(i),j are a donor-acceptor pair

B < max B
B(i) — introncost otherwise

(30), 06 max{ (G0 0D > PO

match ifS[i] = G[j]

score(t, ) < max . .
(6, 4) { mismatch otherwise

Having end gaps free in the splice graph will make some of the base cases

5.2.2 The traceback

Having filled all the matrices on all nodes and found the highest scoring
cell we now traverse, as per the base algorithm, the traceback pointers in
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the usual way. Note that the traceback will only trace the path through
supernodes which lie on the optimal path. Given a sequence S of length n
and a graph G of length m. By the length of the graph we mean the sum
of the length of substrings stored on the nodes of G. The time needed to
find the path is O(m + n), theorem 3.1 (and corresponding proof) can be
applied in this case also.

5.2.3 Space complexity

At the start of the algorithm space is reserved for all matrices on all nodes.
The consequence of using affine gap penalties is that we have to use three
matrices (V,E and F) for each node to calculate the alignment score. Yet
another matrix is necessary to store the traceback pointers. Total space
consumption is thus 4(m - (n + 1)) for each node, where m is the length of
the string stored at the node and n is the length of the genomic string. Since
the space requirement for the whole splice graph equals the sum of the nodes
including the startnode, this can be reformulated as 4((m+1)-(n+1)), where
m equals the length of the string mapped over all nodes and m equals the
length of the genomic string. As mentioned earlier the space consumption
of the base algorithm is the product of the length of the two strings in
addition to an extra/row column for the base cases, a total of (n+1)-(m+1)
cells,where n is the length of one string and m is the length of the other.
Adding a table for traceback pointers and affine gap penalties to the base
algorithm brings the total up to 4(m - (n + 1)). The amount of space used
is ostensible the same, but note that length parameter n describes graph in
one case and a sequence int the other case. As a graph usually will contain
multiple sequences n will, in practice, be large for the graph.

5.2.4 Time complexity

Even if there are more terms to be calculated then in the base algorithm,
it is still a constant number. Given a sequence S of length n and a graph
G of length m. As aligning a splice graph with a sequence entail aligning
the whole graph to a sequence, the complexity remains at O(mn) (theorem
3.1), albeit with a (constant)higher number of operations per cell compared
to the base algorithm. How much higher depends on the average number
of predecessor nodes in the graph P. Note that P denotes the number of
predecessors in a graph before the nodes are fused into supernodes.

5.3 Reducing memory consumption

The naive algorithm calculates the alignment properly but uses a prohibitive
amount of resources doing so. The time complexity cannot be reduced,
except by a constant amount, based on the need to examine all cell in the
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dynamic programming matrices. By not examining all cells, even the most
unlikely to be part of the optimal alignment, we might not discover the
optimal alignment. If only an approximate optimal alignment is needed a
heuristic algorithm is preferable(faster) but it would be hard to develop an
accurate one, in terms of finding correct exon/intron boundaries. Even if the
time complexity cannot be reduced we can reduce the memory consumption.

Storing Traceback pointers use memory, there can be up to four (includ-
ing intron) pointers for a given cell. It is also unnecessary to store pointer
for nodes which the optimal alignment does not pass through, as these will
never be needed. However, there is no way to exclude such nodes before
backtracking is commenced. A way of reducing the memory requirements
is then to not store traceback pointers, instead the traceback is calculated
from the values in the matrix when needed. However, we do store special
intron pointers. We store an intron pointer each time the B term is the
largest term in recurrence 5.1, that is when an intron is (ideally)found in
the genomic sequence. As each intron is large we can possibly avoid examin-
ing an excessive number of cells during the traceback computation and since
the number of introns in practice are low, compared to sequence length, not
much space is used.

5.3.1 Optimal alignment score using linear space

As shown earlier, finding the score of the optimal alignment can be done
using linear space. However, we want the alignment as well as the score. By
combining this approach with a traceback scheme that can solve smaller bits
independently, one by one. First we traverse the topologically sorted graph
using linear space dynamic programming storing the last column on each
row. By storing the last column base cases for the dynamic programming on
a given node can be inferred using recurrence 5.1. A more intuitive approach
would have to store the base cases, first column/row, directly, but that would
necessitate having to store traceback pointers. This is because we would not
know which nodes the values for the base case came from without pointers.
We do not need to store the first row as the values there can be calculated
from the value in the cell in which the first column/row overlap. Note that, in
addition to being more aesthetically pleasing, using supernodes is a condition
for reducing the memory requirements, otherwise the matrices on each node
would contain only one column(stored) and the memory requirements would
be unchanged. Having found the optimal alignment score in cell(s, j) on a
node V we recalculate the necessary part of the matrix. Since the optimal
score was in cell (7, j) the dimensions of that dynamic programming matrix
is i - j. If the alignment exits node V in cell (z,y) then is we must consider
all predecessor nodes and find which which move(s) lead to the value in
cell(z,y). Having found the correct node we recompute parts of the matrix
on that node, then add another piece to the global alignment. We do this
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until the startnode is reached. For a graph G with ¢ (super)nodes aligned
with a sequence S of length n, where the dimensions of the matrix on the
largest node are m - n containing k introns, the memory usage is 3- ((i-n) +
(m-n))+ k. The memory requirement are highly dependant on the size and
shape of the graph. For instance, if the EST used to build the graph have
sequencing errors that have not been removed we get many nodes storing
only one character. Each such node will store the last(only) column and
memory usage will increase rapidly. Another point is that if we have a very
large node we must somehow manage fit the whole matrix of this node in
memory. Recalculating parts of matrices consumes more time than the base
algorithm, in the worst case all nodes lie on the optimal path and all cells
of every matrix must be recomputed. This equals having to calculate the
matrix twice, doubling the worst case time, 2 - ¢ - mn for some constant ¢
moves per cell, while the asymptotic worst time remains at O(mn).

5.3.2 Using Hirschberg’s algorithm

Applying Hirschberg’s algorithm to the problem of aligning a splice graph to
a sequence could further reduce memory consumption. There are, concep-
tually, two ways we could apply the recursive divide&conquer scheme to the
graph. We could view the graph as a single entity to be calculated, dividing
the graph into two sets of nodes, by recursively removing a single edge from
the graph. Alternatively we could apply Hirschberg’s algorithm to a single
node, having calculated base cases using linear space as described. How-
ever, either of these cases are difficult to implement in practice. Dividing
the graph into two (equal size) sets of nodes is impossible for certain graph
topologies. It is always possible to divide the graph in two by having a single
node in one part and the rest of the graph in the other. This is reminiscent
of applying Hirschberg’s algorithm to a single node, since each recursive call
would single out a specific node. In this way we do not have to store the last
column of each node instead we recompute all the values in each iteration,
given n nodes the first node is computed only once while the last i computed
n times. As this is too time consuming, applying Hirschberg’s algorithm on
a node level basis seems a more feasible approach. A single node contains
one dynamic programming matrix and in principle should be analogous to
the single matrix we get when aligning two sequences. Hirscberg’s algorithm
computes the path from the bottom right of the matrix to the upper left
of the matrix, or some defined submatrix (when computing local alignment
for instance). The problem with computing a single node in a graph is that
we do not know in which cells the subalignment for the matrix stored at
the node starts/ends. If we first compute the optimal alignment score using
linear space we have one coordinate, in which cell the alignment ends, but
not the other. Without knowing both these coordinates, which implicitly
defines the dimensions of the submatrix to be computed, we cannot apply
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Hirschberg’s algorithm. Since Hirschberg’s algorithm is unusable under our
circumstances, we turn to fastLSA to reduce the memory requirements.

5.3.3 Using the fastLSA algorithm

When using FastLSA to compute a the matrix on a node we do not have to
know in which cell the alignment ends beforehand when backtracking. The
alignment on a given node might end in any submatrix bordering the (left)
edge of the matrix. As such the algorithm can be applied to the problem of
aligning a splice graph to a genomic sequence.

By calculating the alignment score using linear space, and storing the last
column on each node, we are already doing something like the FastLSA sub-
division of the matrix. Conceptually we are only dividing one axis (with the
genomic string along the other axis) and caching values at each bifurcation
in the graph. However, we have no control over the size of the submatrices
we divide into, it is determined by the graph structure. As FastLSA recur-
sively subdivides the matrix, we can divide each node into submatrices if
necessary. This second level of division can divide one axis, or both, and
can be controlled by parameters, such as available memory. Since we are
using affine gap penalties as well as the B and C' terms we need to cache
these values in addition to the score V (3, j).

Intron pointers make even more sense when we use FastLSA, if we have
to check each cell to find the start of the intron we might have to recompute
subtmatrices along the way that do not yield any result. By using intron
pointers we can possible skip whole submatrices that otherwise would have
to be calculated and eliminated in the traceback calculation.

5.4 Summing up

The designed algorithm integrates ideas from a variety of algorithm and
fuses them into an algorithm capable of globally align a splice graph to a
sequence using limited memory. Given a sequence S and a splice graph
G with lengths m and n, respectively. The length of a graph is here the
combined length of the substrings on every node in the graph. The time
complexity of the algorithm is O(mn) since all cells must be examined at
least once and only a constant number of operations are done on each cell.

The worst case memory bound is a combination of two things; (1) stor-
ing a column for each node and (2) storing a matrix/submatrix during the
traceback. Let g be the number of fused nodes in the splice graph. If every
(fused) node store only a single character ¢ = n and the space complexity of
(1) is O(gn) = O(mn), equalling the base algorithm. However, having such a
graph in practice is highly unlikely. The sequences making up the graph can
not have a any identical character at any given position. Since the alphabet
only contains four letters (A,C,G & T) any position covered by at least five
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Oy

Figure 5.2: Given that there is an intron between the cells (z,y) and (4, j). If
we do not have an intron pointer we would have had to calculate submatrix
B but using intron pointers mean that we only have to recompute (parts of)
matrix C' where the bottom right corner is cell (z,y).

sequences would guarantee that at lest two letters would be fused. As such,
even completely random sequences should still cause a fair number of node
fuses. As for (2) the space complexity is identical to the FastLSA algorithm.
Given a node in G storing the largest sequence S; and the genomic sequence
Sa, of length m and n, respectively. Let S(m,n, k) be the maximum number
of dynamic programming cells that need to be stored in order to align the
sequences S1 and Ss using k — 1 cached columns and k& — 1 cached rows of
length m and n, respectively. Then S(m,n,k) < k-(m + n)+ BUF. The
total space complexity is then O(gn) + S(m,n, k).

Lee et.al[10] have also made a variant of POA adapted to aligning ex-
pressed sequences. This SPLICE POA program analyzes a multiple sequence
alignment consisting of expressed sequences aligned to genomic to identify
splices and exons. However, I have found no article describing how the
algorithm used, nor how exons/introns are identified.

Pseudo Code

This section contain fragments of a program implementing the algorithm.
The different methods show how the computation of a single node is done,
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and how a graph level procedure decides the order in which the nodes are
computed. The first method calculates the dynamic programming matrix
for a given node and stores the last column. The second is a method checking
if an intron (may) exist at given indexes. The third piece of pseudo code
shows a function calculating nodes (using the first method) in a certain order.
This is simple example of how to do dynamic programming for a graph. The
following code only outlines the calculations (no optimizations) and use a few
auxiliary functions not given source code for.

1: void compute_Node(int segnr){
Calculate alignment of a given node(segnr) to a sequence. Note that
the base cases of the start node is filled in a separate step(in the align()
method). functions.}
2:
Require: segnr >0
3: node current < graph.getnodefromlist(segnr)
4: list pred_list {set of predecessor nodes of the current node}
5: predecessor node curr_pred
6: string spliceg {string stored at node}
7: string genome {genomic string}
8: for i = 0 to splice_length do
9: for j =0 to genome_length do
10: if i=0 AND j =0 then

11: if curr_pred = start_node then

12: V(0,0) < —startgap — extendgap

13: E(0,0) < —startgap — extendgap

14: else

15: V(0,0) < pred_list.get_Max_V (i, j)-Last_Column(j)—extendgap
16: E(0,0) < predist.get_Maz_V (i, j)_Last_Column(j)—extendgap
17: end if

18: else if j =0 then

19: V(i,0) < V(i — 1,0) — extendgap

20: E(i,0) < E(i — 1,0) — extendgap

21: else if 1 = 0 then

22: E(0,7) < max(E(0,7 — 1),V (0,5 — 1) — startgap) — extendgap

23: F(0,j) < max(pred_list.get_Max_F(i,j)-Last_Column(j),

pred_list.get_Max_V (i, j)-Last_Column(j—1)—startgap)—extendgap
24: b < bcost(Ci], ,0,y, B)

25: V(0,7) < max(maxo<cyrr pred<pred.list.size(curr_pred.get_V (i, j)-Last_Column(j—
1) + score(splice[0], genome[j — 1])), E, F, b)

26: if V(0,7) > B[0] then

27: C0] <3

28: B[0] <= V(3,5)

29: end if
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30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:

© *

10:
11:
12:
13:

14:
15:
16:
17:
18:
19:
20:

. void align() {

else
E(i,j) < max(E(i,j — 1),V (i, — 1) — startgap) — extendgap
F(i,j) €« max(F(i —1,5),V(i — 1,j) — startgap) — extendgap;
b < bcost(Ci], 4,1,y, B)
V(i,7) < max(V (i—1, j—1)+score(splice[i], genome[j—1)), E, F, b)
if V(0,5) > B[0] then
Cl0] <5
B[0] <V (3,5)
end if
end if
end for
if j = genome_length then
for ¢ = 0 TO spliced length do
current.Store_value(q, j)
end for
end if
end for

int beost(int ¢, int j, int z, bool Splice_direction, int *B) {
Checking for introns.}

string genomic {genomic string}
if 7 >1 AND i > 1 AND i < genomiclength — 1 then
if Splice_direction = Forward_Splicing then
if genomic[i]| =' G' AND genomic[i + 1] =' T' AND genomic[j —
2] =" A" AND genomic[j — 1] =' G' then
return(B[z] — splicecost)
else
return(B[z] — introncost)
end if
end if
else if Splice_direction = Reverse_Splicing then
if genomic[i] = C'" AND genomic[i+ 1] =" T' AND genomic[j —2] =’
A" AND genomic[j — 1] =' C' then
return(B[z] — splicecost)
else
return(B[z] — introncost)
end if
end if
returnMIN_INTEGER
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%

10:
11:
12:

Doing a topological sort then calculating all nodes in order, code actually
doing the top oplogical sort not shown.}

graph theGraph
list topsort {list containing indexes to nodes in the graph}
if theGraph.size > (0 then
topsort < theGraph.do_Topological _Sort
setup(topsort[0],freeendgaps) {initializing base cases for the start node,
possibly using free end gaps}
for ¢+ = 0 TO list.size do
compute_Node(int segnr) {compute a node}
end for
end if
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Chapter 6

Implementing the algorithm

6.1 Programming language

The programming language chosen for this project is C++. The C program-
ming language, originally developed for unix, is a procedural all purpose
language and is compiled rather than interpreted. Being compiled it is fast
and confers the advantage that an executable can distributed to people with-
out access to a compiler. Except for a few details, C++ is a superset of C
with additional features including support for object oriented programming.
Object oriented programming provides features such as encapsulation, poly-
merization, data hiding and inheritance allowing for easy reusage of code and
more readable and secure programs. C+-+ provides this while being only
negligible slower, overall, than C. As opposed to languages such as Java,
C++ allows the user to control how memory is allocated/deallocated. This
have been very useful when allocating/deallocating space for dynamic pro-
gramming matrices to minimize the memory spent, and to avoid spending
time running a garbage collector in the background. There are several com-
mercially available compilers for C++4-, as well as free compilers such as the
GNU GCCJ[3] compiler, available for a multitude of platforms. Combining
speed, user level memory management, a free compiler and object oriented
design, C++ had all the necessary features for creating this program.

6.2 Class overview

Figure 6.1 shows the different classes in the program. A brief description of
the function of each class follows.

e runMe contains the main() method which controls the flow of the
program.

e parser parses input; config file, splice graph and sequence.

73



Implementing the algorithm

o EST genomePOALinSpace contains all the necessary algorithms
for computing alignment score and traceback.

o segmentlistLinSpace represents the internal graph structure used in
the program, where all nodes are fused into supernodes where possible.

e segmentLinSpace represents a single node in the internal graph.

e splicegraph represent a splicegraph where each node stores a single
character

e vertex represents a node in the splicegraph.

e gridnet represents a dynamic programming matrix divided into pieces(submatrices).
e grid represents a submatrix in the gridnet.

e synthgen generates semi-random sequences for testing.

In addition to the aforementioned classes, there are three ’structs’ (C-
style), used as placeholders for data.

e introntracker represents the start/stop indexes of an intron in a ma-
trix.

e path contains postions and subalignment during backtracking.

e config contains the config data read from file.

6.3 Program flow

6.3.1 Parameters

To impose constraints on the alignment, or on how the program is to com-
pute them, there is a number of user defined parameters that can be set.
An important feature is to be able to tune the scoring scheme to suite the
current needs. Note that entries marked ’int’ are all positive integers while

"’bool’ denotes a boolean variable. All these variables are read from a config
file.

e int match, the cost of aligning two identical letters.
e int mismatch, the cost of aligning two different letters.
e int openGap, the cost to open a gap, independent of gap length

e int extendGap, the cost to extend a gap ,a penalty proportional to
the number of spaces in the gap.
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Synthgen

struct: config

N

struct: path runMe
& \
struct: intronpointer EST_GenomePOALinSpace parser
gridnet segmentlistLinSpace splicegraph
grid SegmentLinSpace vertex

Figure 6.1: Figure showing the different classes in the program

e int splice, the cost for inserting an intron, with correct splice sites
GT/AG (or CT/AC if the splice direction is reversed

e int intron, the cost for inserting an intron, without proper splice sites.

e bool useFreeEndGaps, gaps before/after the start/end of the splice
graph is not penalized.

There are also a number of parameters related to memory management

and input.

e int bufferSize, the maximum size (in bytes) of memory the programm
can allocate for dynamic programming tables.

e int divideCol, the number of pieces the sequence along the vertical
axis is divided into (creates submatrices).

e int divideRow, the number of pieces the sequence along the horizontal
axis is divided into (creates submatrices).

e bool useAutoSplit, the algorithm will divide a gridnet (automati-
cally) in such a way that all grids are guaranteed to fit into the allo-
cated memory buffer

e bool onlyForwardSplice, forces the program to just check the for-
ward splice direction instead of both (saves time).
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e bool onlyReversedSplice, forces the program to just check the re-
verse splice direction instead of both (saves time).

e bool onlyForwardGraph, forces the program to just check the for-
ward graph direction instead of both (saves time)

e bool onlyReversedGraph, force the program to just check the re-
versed graph direction instead of both (saves time).

Reversing the graph translates into reversing the edges of the DAG and
traversing it from opposite direction. The default behavior of the program
is to check both directions of the graph using forward splice direction. The
highest scoring graph direction is the realigned using reversed splice direc-
tion. By setting a parameter such as ’onlyForwardSplice=true, considera-
tion of reversed splice sites are not made. If both onlyForwardSplice=true
as well as onlyReversedSplice=true the program will print an error message
as these options are mutually exclusive.

Finally it is possible to have the program output (to screen) information
about what is currently being computed, indirectly displaying the progress
of the alignment procedure as it traverses the graph.

e bool writeProgress

6.3.2 Input/output

The program makes no attempt to build a splice graph from a set of EST
sequences, this is a outside the scope of this thesis. Instead the graph
is built from the consensus sequences, the input is a (multiple) alignment
of the sequences to be used. If no alignment is available it can be built
iteratively, reminiscent to building a POA, by aligning one sequence at the
time to the graph.

The program offers numerous outputs both to file and screen. The three
files the program outputs each have slightly different purposes. The .aln
file outputs the alignment in a human readable way, displaying the pairwise
aligned characters (60 characters per line) and also the total number of
characters displayed up to, and included, that line at the end of each line.
The .nat file also contains alignment information, but one that is used as
input to the program. The .dot file describes the splice graph in the DOT
language. The DOT language is a way to describe directed graphs and is
compatible with the Graphviz[5] tool. See figure 4.1 for an example on how
Graphviz displays graphs.

6.3.3 Typical program flow

This section briefly describes how a typical run of the program might look
like from the perspective of the classes involved.
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Input and setup

The main() method in class runMe reads the genomic sequence and the set
of sequences corresponding to a splice graph from a file. The data is sent to
an instance of the parser class. The parser object parses the data and creates
data structures (splice graph and genomic sequence), if necessary. The splice
graph is then passed as an argument to an instance of segmentListLinspace
which converts the splice graph to the internal representation used by the
program. The most notable features of this representation is that all nodes
that can be, are fused into larger nodes (segments) and that artificial startn-
odes/stopnodes are inserted. Each segment also stores a substring and the
dimension of the dynamic programming matrix that will be made when
aligning this node to a sequence. Memory is also allocated to store the last
column of the would be matrix. Subsequently the main() method creates an
instance of a EST_genomePOALinSpace object with parameters read from
the config file and the data structures to be aligned, notably the genomic
sequences and the segment graph.

Execution

The process of aligning a sequence to a splice graph has several distinct
steps. To calculate the alignment score the segments are first sorted, topo-
logically, in a sequence. Traversing the sequence of segments, each segment is
computed using linear space and the last column on each segment is stored.
For a given segment, the information needed to construct the matrix is
transferred to the the EST _genomePOALinSpace object before the compu-
tation is done. Having calculated all segments, the segments connected to
the endnode are examined to locate the cell with the optimal score. Once
found, a special struct, known as Path, is created to represent the alignment
at the current stage in the traceback. In addition to alignment this struct
stores an index to a segment in the graph being/about to be processed, as
well as the bottom right coordinate of the matrix on that segment. This is
not all, information about which submatrix(grid) one is currently computing
and whether the last part of the optimal alignment computed ended in the
middle of a horizontal/vertical gap is also stored in the Path struct.

To compute the alignment, parts of the matrix must be recomputed, from
the upper left corner to the coordinate supplied by Path. If this matrix is
small enough to fit in the allocated buffer it can be done in the ordinary way
using a full two dimensional dynamic programming matrix. Note that the
program still creates an instance of a gridnet to compute the matrix, though
no values are cached or recalculated. Having calculated the matrix we can
trace the subalignment from the bottom right corner to some cell(4, j) in
the first column. From which segment, and the coordinate in that segment,
the cell preceding cell(s,j) in the global alignment is stored in Path and
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the subalignment computed is concatenated to the total so far. Then, using
information from the Path struct, the current matrix is deleted and a new
segment is computed in the same fashion. If an aligment ends in mid-gap the
gap must be completed when starting the backtracking on the new segment
before all backtracking moves are viable again.

If the part of a dynamic programming matrix, which are necessary to
recompute, is too large to fit in the allocated buffer, we need to subdivide
the matrix into smaller submatrices. In the implementation, the set of all
sumatrices from a given matrix form a gridnet where each submatrix is
known as a grid. The gridnet is recomputed to fill in rows/columns that
are stored as base cases for each grid. Note that having & grids, only k£ — 1
have to be recomputed, as recomputing the bottom right one would not
lead to any base cases being computed. Each submatrix is then, if it can
be fitted in the buffer, recomputed as necessary using the same approach as
for a whole matrix. Starting at the grid in the bottom right corner of the
gridnet we trace the alignment through a number of grids before reaching
a grid in the leftmost column of the gridnet. Moving between gridnets can
be viewed as moving between different segments, and correspondingly the
current position is duly recorded by the Path struct. When we can trace the
alignment to another segment we are done computing the current one. This
translates to having reached a grid in the leftmost column of the gridnet in
which the traceback traverses beyond the first column.

When we reach the segment corresponding to the startnode and reach
cell(0,0) the alignment have been reconstructed. Since we have free end
gaps we must extend the alignment with gaps at both ends so that the final
alignments spans the entire length between cell (0,0) in the start node and
the bottom right corner of the node containing the cell with the optimal
alignment score.

Output

After the alignment is computed, control is again passed back to the main()
method. It decides what to output, in terms of file formats, and then passes
the request back to the instance of EST_genomePOALinSpace. The instance
of EST_genomePOALinSpace then proceeds to write output to file.

6.3.4 Special considerations for the implementation of the
algorithm

This section covers some implementation specific issues and how they have
been handled.
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Figure 6.2: Backtracking through a node subdivided into submatrices a,
b, ¢ and d using the FastLSA algorithm, with predecessor nodes P1 and
P2. Cell(7,j) must consider five possible moves to determine which cell is
next on the optimal path. The possible moves are two diagonal moves, two
horizontal moves and a vertical move.

Data structures

Some of the classes describing the main data structures used, segmentLinSpace
or gridnet for instance, do not contain all the actual data (in these cases ma-
trices) only the information necessary to reconstruct the data. If the data
was stored on objects of these classes it would have to be accessed through
function, at least if we want data encapsulation. In the process of calling
such a function there is some overhead in the actual function call as op-
posed to accessing the data as a local/class variable. Usually this is of little
consequence, but if such functions are called for each cell in the matrix,
often millions of times in practice, the overhead is significant and therefore
should be avoided if possible. For instance if we are to compute the dy-
namic programming matrix of a node the dimensions and the string stored
at the node would be extracted from a node object and the actual matrix
would be constructed in the class (EST_genomePOALinSpace) which does
the calculating. This is feasible because we do not need the matrix after we
have computed a subalignment through it. Persistent data, such as the last
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column of the matrix on each node, is stored on a node object as the base
values are needed in constructing a matrix at some later point.

Intron pointers

When storing intron pointers we would like to not store more than necessary
while still maintain fast lookup. Declaring a whole matrix using a two di-
mensional array would provide fast lookup, but would contain mostly blank
cells and thus be a waste of memory (we might as well store all traceback
pointers in the array). The solution chosen for this program is using a two
dimensional vector, a vector is a dynamic array that can grow/shrink as
needed. The first dimension is the length of the string stored at the node,
and never changes. Each cell in the array can be viewed as a ’bucket’ where
intron pointers are put as they are discovered. The second dimension is in-
creased as the number of introns increases. As the number of introns rarely
gets very high, we expect many of the buckets to be empty. When we need to
find a value in the vector during backtrace, we supply the coordinates (3, )
to the cell and find the right bucket using the first coordinate. However, all
values in the bucket have to be examined in the worst case. This happens
if we do not find a pointer corresponding to the second coordinate. Even if
this rarely causes the execution speed to noticeably decline, an additional
refinement can be made. Since the values in the vector are inserted in the
order they are found when filling the table they will be automatically sorted
on the second coordinate, and thus we can use a binary search to lower the
worst time of a search from O(n) to O(logn) where n is the number of intron
pointers stored in a bucket.

Dividing a matrix into submatrices using FastLSA

FastLSA will recursively subdivide a dynamic programming matrix into
parts that are small enough to fit in the buffer. In the program a ma-
trix stored on a node will not be subdivided more than once, conceptually
halting the division after the second level. Each submatrix created must be
small enough to fit into the allocated buffer. Since no traceback pointers
are stored, which submatrix to backtrack through next must be calculated
rather then checked via a pointer. To facilitate this calculation the grid
caches are logically not the base cases of a given submatrix, but rather the
last column/row of the bordering matrices. This is analogous to the storing
of the last column of a node as opposed to storing the first, in the last case
we would have to store pointers in addition to the values to be able to do
traceback. Another problem surfacing when applying FastLSA to a graph, a
sequence of nodes, is that the division parameters will either have to be set
separately for each node or a single set of parameters will have to be applied
to all nodes. Setting parameters, manually, for each node for a large graph
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is infeasible, and using the same parameters for every node does not take
into account the varying sizes of nodes. The solution is letting the program
decide in how many pieces a matrix should be divided into. The decision is
based on the size of the allocated buffer, since each node is only subdivided
once it is vital that all submatrices are small enough to fit into memory.
In an effort to keep the shape of the submatrices as quadratic as possible,
the largest sequence is divided first if the matrix need to be split up. This
principle is applied recursively until all submatrices fit into the buffer. Note
that the program also makes it possible for a user to specify the division
parameters his/herself overriding the automatic division described here.

Number of optimal alignments found

There can be, and usually is, more than one alignment having the opti-
mal score. These alignments can be very similar, the only difference might
be, for instance, the position of a specific gap. The number of such align-
ments grows exponentially with the amount of mismatches/gaps that can
be 'moved around’ in the alignment. Computing all of these alignments
that are not significantly different wastes a lot of time. The only inter-
esting alignments would be those that are significantly different from each
other. However, defining ’significally different’ is hard and incorporating it
into the traceback procedure even harder. When aligning a splice graph
with a genomic sequence we try to force the alignment to comply with the
intron/splice boundaries. Since introns play such a major part in the align-
ment, if we have multiple alignments sharing the same exon/intron assembly
we can assume that any differences between them are not significant. There-
fore, only a single optimal alignment needs to be calculated.

Computing the recurrences

Since the vast majority of total time spent running the program is used in
computing the recurrences, these should be as efficient as possible. Firstly,
the amount of function calls made inside the recurrence(s) should me mini-
mized. Functions, such as the score(i,j) and finding the maximum from a set
of values, should be reduce to their components and inserted directly into
the recursion. More code will be generated but, since the functions replaced
are small, not excessively so. Another way to limit the number of compar-
isons in the recurrences, implemented in this program, is to compute the
special cases in separate loops. Instead of having a single loop iterating over
all cells in a matrix, we have separate loops for the different base cases as
these are computed somewhat differently (multiple predecessor nodes etc.).
Had we only one loop, each cell would have to be checked to determine if it
were a base case of some type resulting in many unnecessary comparisons.
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The traceback

Using an affine gap penalty combined with the graph structure makes the
traceback step a bit more cumbersome. To avoid spending memory resources
on storing pointers I have instead chosen to calculate the traceback. Given
the scoring scheme and the value optimal alignment V (7, j) one can calculate,
using the same approach as for setting pointers, the cell which precedes (i, 7)
in the alignment. However, some additional cells may be checked. Firstly,
one must check for an intron pointer indicating an intron ending in the
current cell. Also, since an affine gap penalty is used, more cells must be
checked in addition to V(3,5 — 1), V(i —1,7) and V(i — 1,5 — 1) to find the
predecessor cell of (i,7). Cells E(i,j — 1) and F (i — 1, ) must be checked
to see whether a gap spanning more than one cell ended in (4, 7). If this is
the case we cannot directly move to E(i,j — 1) or F(i — 1,7) and repeat
the general checking procedure. Having moved to E(i,j — 1) or F(i — 1, )
the traceback is in the ’middle’ of a gap. This results in, if we had for
instance moved to E(i,j — 1), that any diagonal or horizontal moves cannot
be considered before the cell where the gap was opened is reached. In this
case successive vertical moves will be made as long as E(i,z) = E(i,z—1) —
extendgap, for 0 < z < j, until E(i,z) = V (i,z — 1) — startgap — extendgap.
Then the traceback can be continued as normal from cell (i,z). Long gaps
can span different nodes (horizontally) or different gridnets (horizontally and
vertically). When the traceback of a node/grid ends with an unclosed gap
this is noted in the Path struct. When the traceback of the next node/grid is
started the start of the gap is located before ordinary traceback commences.
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Chapter 7

Testing

To test the performance, both memory usage and time spent, of the program
a number of synthetic sequence was generated and aligned. For checking the
accuracy of the algorithm a test using real data was made.

7.1 Test using synthetic data

For the purpose of testing speed and memory usage of the program, synthetic
data was generated. By doing multiple test with such data covering all
features of the program, reliable average time will be obtained. The test
sets generated is not intended to simulate real data, but merely to cover all
the features (introns, graph structure etc.) that the program supports, in
such a way that all cases are examined.

7.1.1 Generating the data set

Synthetic data was generated by using the following fairly rudimentary
model. An genomic string of length n was constructed by adding n nu-
cleotides (A, T,C or G) to the string, where each nucleotide was randomly
drawn from an uniform distribution. In order to generate a splice graph,
a spliced string was generated first. This string, representing the spliced
mRNA, is simply the first % of the genomic sequence concatenated with the
last % of the genomic sequence. Aligning the spliced string with the genomic
should result in an intron, splitting the spliced sequence into two parts. To
further promote this, acceptor/donor pairs were inserted into the genomic
sequence at the appropriate positions. Subsequently the splice string was
modified slightly by taking into account the following parameters applied to
every position X in the sequence.

e MutateX, a % probability of mutating the nucleotide at this position
to a different (random) nucleotide.
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e InsertX, a % probability of inserting a (random) nucleotide at this
position.

e DeleteX, a % probability of deleting the nucleotide at this position.

This will generate a string similar to the genomic string, but with vari-
ability controlled by the previous parameters. The spliced sequence can now
be divided an mapped onto the nodes of a splice graph. Determining the
graph structure

7.1.2 The test

In this case a 1000 character string was generated as the genome string. The
spliced string was made by making a copy of the genome, with a 1% prob-
ability of a character mutating, a 1% probability of deleting between 1 — 25
characters (randomly generated number), and 1% probability of inserting
between 1 — 25 characters (randomly generated number). The spliced string
was parsed into a splice graph. The splice graph started out with a single
node containing the whole string before being divided. At every 1000 char-
acter a new edge was inserted to (current position + 250) making the graph
(mainly) consisting of a node of 750 characters followed by an (optional)
path through a node of 250 characters before a new node of 750 characters.
Subsequent tests with a 2500, 5000, 7500, 10000, 12500, 15000 and 17500
character long genome string were also done. Each test was performed 50
times and the average time spent was recorded. All test were made with
forward splicing, forward graph direction and without free end gaps enabled.
Table 7.1.2 shows the time used in calculating the alignment, the average
length of the spliced string (as well as the minimum/maximum length of the
spliced string in the 50 iterations) and the length of the genome string.

Test Notes

The rand() function was used to generate semi-random numbers. The seed,
srand(), was simply the current time (in milliseconds since 01.01.70). All
test were done on an AMD Athlon XP 2000 with 512 MB of RAM running
Windows XP. The clock() function from the standard C++ library was
used to measure the time spent. All times given in the tests exclude the
time being used for string generation.

The largest node (in any test run) contained 1001 characters, the largest
genome size was 17500 characters, each entry in the matrix used 4 bytes
(integer) and 3 tables (E,F,V) were needed for each matrix. The maximum
amount of memory spent, on a dynamic programming matrix, in the test was

then W ~ 200 MB. As the buffer size was ~ 350 MB (350 000

000 bytes) no matrix were ever subdivided. To see how subdividing matrices
would affect performance the buffer was reduced to =~ 35 MB, one tenth of
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Test using synthetic data
Time(sec) | Spliced(avr) | Spliced(min) | Spliced(max) | Genome

0.148 379 329 454 1000
1.05532 1001 868 1137 2500
3.19138 2009 1855 2218 5000
6.1817 2989 2757 3217 7500
10.9303 4030 3698 4118 10000
16.1953 4999 4774 5274 12500
23.3844 5988 5519 6297 15000
32.2715 6990 6311 7380 17500

Table 7.1: A table showing the time (in seconds) used to compute problems
of different size. The allocated buffer was set to ~ 350 MB

the previous buffer size, and the same test setup was used to generate the
graph/sequences. The results are displayed in table 7.1.2.

Test using synthetic data
Time(sec) | Spliced(avr) | Spliced(min) | Spliced(max) | Genome
0.15962 400 338 453 1000
1.01888 1012 875 1139 2500
3.13748 1998 1759 2127 5000
6.12864 2983 2712 3252 7500
10.8959 3994 3753 4354 10000
16.2832 5006 4721 5263 12500
23.3511 6002 5698 6295 15000
31.9303 6995 6603 7592 17500

Table 7.2: A table showing the time (in seconds) used to compute problems
of different size. The allocated buffer was set to ~ 35 MB

Memory versus Speed

When comparing table 7.1.2 and table 7.1.2 they seem remarkably similar.
There are some minor differences, probably due to the randomly generated
sequences. The subdivision of matrices do not seem to make an impact
on the running time, if anything the algorithm uses less time. This the
opposite of the expected result, when we subdivide matrices more cells have
to be computed resulting in more time spent. However, how the program
satisfies the memory requirement set by the user must be taken into account.
When the program requests a chunk of memory, the operating system (OS)
acts as a memory broker allocating memory to all programs running. When
allocating the large chunk of memory (= 350 MB) the OS decided that, even
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if enough main memory was available, that 350 MB would be requisitioned
from pool of slower, virtual memory. This seems to be enough to cancel out
the advantage, in terms of the number of values having to be computed, of
not having to subdivide any matrices.

Test using 350 ME buffer

Time In seconds
=k
o

1000 3000 5000 7500 10000 12500 15000 17500
Genome length

Figure 7.1: Comparing the time used (y-axis) versus the length of the
genome (x-axis) In all cases the problem was small enough to be solved
in allocated buffer (main memory) without subdividing the dynamic pro-
gramming matrixes.

A very rudimentary approximation of the computational complexity, one
which ignores backtracking, is the product of the strings involves as they
determine the size of the dynamic programming matrix. Result are given in
figure 7.3 for each of the six tests, with a genome size of 1000,3000,5000,7500,
10000, 12500, 15000 and 17500 respectively. Note that the value used for
spliced length is the average length in each test run, from the test using
~ 350 MB buffer. The shape of the two graphs (fig. 7.3 and fig. 7.2) are
similar, indicating that the time spent computing the matrix is by far the
most time consuming part of the algorithm.

7.2 Test using real data

In contrast to the synthetic benchmark, this test concentrates on accu-
racy, not speed. Using real sequences the goal is to check whether a splice
graph can be mapped correctly to a genomic sequence, including valid ac-
ceptor/donor pairs.
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Test using 35 MB buffer

S I
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Figure 7.2: Comparing the time used (y-axis) versus the length of the
genome (x-axis) the allocated buffer was small enough so that some ma-

trices had to be subdivided.

Approximate problem size

Total size of matrices
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Figure 7.3: The time spent computing a matrix of size (genome length)x

(spliced length)

87



Testing

7.2.1 The test

The genomic sequence used is chromosome number 17 from the human
genome. Two consensus sequences from SpliceNest[20] (Hs449264.1 and
Hs449264.2) were extracted. As a basic test of accuracy each of the consen-
sus sequences (as trivial graphs) were aligned to the genomic sequence. Both
directions of the graph and both forward/reversed splicing were used. The
goal was to find the correct intron/exon boundaries compared to SpliceNest.
The sequences extracted were relatively small, permitting repeated testing
to be done quickly. According to SpliceNest, Hs449264.1 contained an al-
ternative exon. Figure 7.4 shows the consensus sequences aligned with the
genome.

Hs449264

Unique match

<oor  [EGZEgE
Contig #zegqz m T mmp——
goodshad 373130000 37313500 37314000 37314500 37315000
| Hs449764.1 1 + ,_..%—‘- R——
© Heddized.z 1+ pm . )
373130008 | I7ALIT00 37314000 37314500 37315000
[ B N T L S S S B
GENSCAN prediction * —

MZEF prediction *

Figure 7.4: A screenshot showing Hs449264 from SpliceNest. The two con-
sensus sequences aligned to the genome (chrl7). Darker rectangles repre-
sents exons. The exon in the greyed out column is an alternative exon.

The tests were done using free end gaps, both graph directions as well as
both forward and reversed splicing. The scoring scheme used was matchcost =
1, mismatchcost = 1, opengap = 2, extendgap = 1, introncost = 40 and
splicecost = 20. Both sequences matched the intron/exon boundaries in
SpliceNest. Two exons were found in each case, with gaps at both ends (cor-
responds with figure 7.4). Introns are indicated with *>’ (forward splicing)
and <’ (reverse splicing). Note that introns are truncated in the alignments
below, the (total) length of the intron is displayed as a number instead.

Hs449264.1

Alignment score:319
Alignment length:2331
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AAATACCTAAGAACTACTTAGTGACCTCCCTCCCTCGAGACCTGGGAGGAGGCTGGGATC

TGTTAGTTCAGGTATAAGACTGATACATAG

TCTCCTAGGATGGGGGCTAGAAGTGGGAGCTGTTAGTTCAGGTATAAGACTGATACATAG

ACTGTTTTCCTGGCCCAGGCCCATCTGTCACCAACTGACTTTGTATGTGGCTCAGGAGAC
ACTGTTTTCCTGGCCCAGGCCCATCTGTCACCAACTGACTTTGTATGTGGCTCAGGAGAC

CTCTAGGCAAGGGAACGAGGTTCCTAAGAACCCTGACTCAGGTGAGGTTCTGGCCTCTCT
CTCTAGGCAAGGGAACGAGGTTCCTAAGAACCCTGACTCAGGTGAGGTTCTGGCCTCTCT

<< <<<<LL<L<LLL<LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL LKLk
CTCCAGAACATAGGAAATTCAGGTGTAGCTGCATGAAACCTCTCCCTAGAAGAGGAATGG

..... 1470........<<<<<<<<<L<L<<LCTCCAGCCTGGCTGACAGAGCGAGTCTGTC
................. TGCCCCACTGCAC_TCCAGCCTGGGTGACAGAGCGAGTCTGTC

TCAAACGTCTCAAAAACAAACAAACAAACAAAAAACCTCTTTGAAGGGGATTAAGGGGAT
TCAAACGTCTCAAAAACAAACAAACAAACAAAAAACCTCTTTGAAGGGGATTAAGGGGAT

GTGTCCCAATTAACTAGCAAACACCTGTGAATGCCAGCTTTGTGTCAAGGGGAGAGGGAT
GTGTCCCAATTAACTAGCAAACACCTGTGAATGCCAGCTTTGTGTCAAGGGGAGAGGGAT

TTGTATAGCTAAAAGATATTTATTGCTTAGGAAAAACATGACTGACCTCAATGCATCCTC
TTGTATAGCTAAAAGATATTTATTGCTTAGGAAAAACATGACTGA_ATAAATGCATCCTC

ATTAAATAAAAAATGCTCCAGTTTCTGTTGTCAGGGAGTTTATTAGAGGGAAAGGTAAGG
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CCCCCACTTTTCTCCACCTGCCCCTGGCATGATACAAGGCAGAAGGGCAGGT 2332

Hs449264 .2

Alignment score:287
Alignment length:2331

CAAAGTGCTGGGATTACAGGAGTGAGCCACTGCACCCGGCTCATACAATGTTTAAGCCAG

ACAGAAGAAACTCAGGCCCA

AAGTCACCTTAAAGACCACTTAGTCCCACTCCCTCTTTTTACAGAAGAAACTCAGGCCCA

AGAAGGACAGTGACCAGTCTGAGGTCACAACCCAAAGCTGGCAGGGCTGGGGTGAAAAGC
AGAAGGACAGTGACCAGTCTGAGGTCACAACCCAAAGCTGGCAGGGCTGGGGTGAAAAGC

TAGGCTCCTGTGACKKLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLKL
TAGGCTCCTGTGACCTCCTTCTGTGGCCATCCCACCTGCCTCATTCCATTTCTGGGGATA

...... 1816. ... .<<<<<LLLLLLLLLLCTCCAGCCTGGCTGACGGAGCGAGTCTGTC
............... ATTGCCCCACTGCAC_TCCAGCCTGGGTGACAGAGCGAGTCTGTC

TCAAACGTCTCAAAAACAAACAAACAAACAAAAAACCTCTTTGAAGGGGATTAAGGGGAT
TCAAACGTCTCAAAAACAAACAAACAAACAAAAAACCTCTTTGAAGGGGATTAAGGGGAT

GTGTCCCAATTAACTAGCAAACACCTGTGAATGCCAGCTTTGTGTCAAGGGGAGAGGGAT
GTGTCCCAATTAACTAGCAAACACCTGTGAATGCCAGCTTTGTGTCAAGGGGAGAGGGAT

TTGTATAGCTAAAAGATATTTATTGCTTAGGAAAAACATGACTGAATAAATGCATCCTCA
TTGTATAGCTAAAAGATATTTATTGCTTAGGAAAAACATGACTGAATAAATGCATCCTCA

CCCCACTTTTCTCCACCTGCCCCTGGCATGATACAAGGCAGAAGGGCAGGT 2331

60

120
120

180
180

240
240

2040
2040

2100
2100

2160
2160

2220
2220

2280
2280

Even if the sequences aligned are relatively small and uncomplicated (no
tiny exons for instance), the accuracy of the alignment process appears to
be high. As such, the algorithm satisfies the constraints put upon it; to
find the optimal alignment of a graph (trivial graphs in these cases) and a

genomic sequence.
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Chapter 8

Future Extensions

8.1 Parallelism to speed up the aligning process

Having more than one processor performing the alignment calculation could
result in significant time speed up, if done right. By ’right’, we mean firstly
that the problem should be of such a nature that several parts of the prob-
lem can be calculated independently and simultaneously. Secondly, that
the speed up factor is approximately linear with respect to the number of
processors used.

Speedup of a single matrix, derived from a single node, can be done by
the means described by the authors of the FastLSA algorithm. Parts of the
matrix can be computed in parallel. The trick is making the problems sub-
mitted to each processor of similar size (granularity), such that no processor
is idle for long periods of time.

The graph structure itself can promote another level of parallelism. The
first pass of the algorithm through the graph will calculate all nodes, storing
the last column, to find the best alignment score and the node containing the
cell which has this score. Before calculating a certain node we must compute
all nodes having an outedge to this node, this is done by calculating each
node in the order of which they appear in a topological sort of the graph. If
we calculate a certain node(A), and suppose that this node has two outedges
to two other nodes (B and C), we can then calculate the two other nodes
(B and C) simultaneously provided they have no other indexes from nodes
not calculated yet.

Heuristic approaches are also a possibility. During backtracking, while
calculating the path through a certain node we can ’guess’ which node will
be the next to be visited. Rudimentary heuristics could choose for instance;
the node with the best(highest) value in the last column, the node with the
best average score in the last column, the node which has the most entries
which the first column of the currently computed note gets its score from or
the node which lies on the longest/shortest path (depends on how similar we
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Future Extensions

expect the strings to be) from the start node depending on the number of
nodes or length of string. However, using heuristics might lead to computing
nodes that will not be used, and the depth of the matrix (length of genome
string) computed for the chosen node might be larger than required.

An obvious side effect of having several nodes computed at the same
time will be added space consumption as several nodes will be in memory
simultaneously.

8.2 Aligning two splice graphs

A natural extension to aligning a graph with a sequence is aligning two
graphs. Two similar splice graphs could be an indication of paralogous
genes, given that the graphs are derived from different genes. Comparing
two splice graphs allows us to compare sets of expressed sequences from
different genes without knowing the genomic sequence.

For instance, we can compare a splice graph derived a gene in the human
genome with a splice graph derived from a gene in the mice genome If the
alignment score is high, the genes may be ortologous. The algorithm may
(as the current one do) only align the best paths through the graphs or the
whole graph structures may be involved. A combination is also possible, the
alignment score obtained from aligning the best paths through the graphs
can be used to indicate possibly high similarity. If the similarity is high
enough then the (whole) graphs may be aligned.

Aligning two graphs is no trivial matter. In the current algorithm one
dimension (genomic sequence) of the dynamic programming matrix is always
of constant size, whereas a new algorithm would have graphs defining both
dimensions. Extending the dynamic programming procedure to incorporate
two graphs would be the main challenge of a new algorithm. As the graphs
both represent expressed sequences the intron terms should be removed from
the recurrence
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Chapter 9

Concluding Remarks

An algorithm has been designed to solve the problem of aligning a splice
graph to a genomic sequence. The algorithm incorporates many features
found in other algorithms to solve the problems posed by the variability
of the biological sequences and the graph structure. An alignment of two
sequences, or a graph and a sequence, is a way to do inexact matching using a
similarity score. Finding an optimal similarity score is only possible within
the context of a scoring scheme. The scoring scheme shapes the optimal
alignment by influencing the optimal score, having a good scoring scheme is
equally important to having a good algorithm.

As the throughput tests show, the time spent computing the alignment
is approximately ¢ - n - m for some constant ¢, where n is the sum of the
lengths of the strings on each node in the graph and m is the length of the
genome. In fact, it has been shown the asymptotical time complexity is no
higher than for standard pairwise alignment, O(nm). Memory is a scarce
commodity when using dynamic programming to align sequences. Therefore
the algorithm applies memory conserving techniques to limit memory use,
allowing large alignments to be done using the program. The user can tune
the memory requirements of the algorithm to suit the resources at his/her
disposal while experiencing only a negligible loss in performance.

The test using real sequences show that the algorithm can detect in-
tron/exon boundaries successfully. However, more testing needs to be done
to test how accurate the algorithm is. An possible error source is erroneous
graphs, build from EST sequences containing errors, which may result in
the optimal score being found. The parameters of the algorithm may also
be a source of errors. Depending on how the parameters are set, the scor-
ing scheme may produce unpredictable results. In particular, exons shorter
than the splice term (default value 20) may be skipped entirely.

Finally, there are many possible extensions of the algorithm. Reduced
computational time (parallelism) and more advanced forms of alignment
(aligning two graphs) are possibilities.
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Concluding Remarks
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