Biochimica et Biophysica Acta 1850 (2015) 911-922

Contents lists available at ScienceDirect

Biochimica et Biophysica Acta

journal homepage: www.elsevier.com/locate/bbagen

Review

Comparing the intrinsic dynamics of multiple protein structures using
elastic network models™

@ CrossMark

Edvin Fuglebakk, Sandhya P. Tiwari, Nathalie Reuter *

Department of Molecular Biology, University of Bergen, Pb. 7803, N-5020 Bergen, Norway
Computational Biology Unit, Department of Informatics, University of Bergen, Pb. 7803, N-5020 Bergen, Norway

ARTICLE INFO ABSTRACT
Article history: Background: Elastic network models (ENMs) are based on the simple idea that a protein can be described as a set
Received 30 June 2014 of particles connected by springs, which can then be used to describe its intrinsic flexibility using, for example,

Received in revised form 15 September 2014
Accepted 16 September 2014
Available online 28 September 2014

normal mode analysis. Since the introduction of the first ENM by Monique Tirion in 1996, several variants
using coarser protein models have been proposed and their reliability for the description of protein intrinsic
dynamics has been widely demonstrated. Lately an increasing number of studies have focused on the meaning
of slow dynamics for protein function and its potential conservation through evolution. This leads naturally to
comparisons of the intrinsic dynamics of multiple protein structures with varying levels of similarity.

Scope of review: We describe computational strategies for calculating and comparing intrinsic dynamics of
multiple proteins using elastic network models, as well as a selection of examples from the recent literature.
Major conclusions: The increasing interest for comparing dynamics across protein structures with various levels of
similarity, has led to the establishment and validation of reliable computational strategies using ENMs. Comparing
dynamics has been shown to be a viable way for gaining greater understanding for the mechanisms employed by
proteins for their function. Choices of ENM parameters, structure alignment or similarity measures will likely
influence the interpretation of the comparative analysis of protein motion.

General significance: Understanding the relation between protein function and dynamics is relevant to the funda-
mental understanding of protein structure-dynamics-function relationship. This article is part of a Special Issue
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entitled Recent developments of molecular dynamics.
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1. Introduction

Folded proteins are remarkably dense with heterogeneously
distributed densities [1], which reflect the uneven distribution of inter-
atomic forces within. Their response to thermal forces is expected to
proceed by preferably deforming the least compact regions, while keep-
ing the most compact ones rigid. Atoms tightly coupled on short time-
scales are expected to remain tightly coupled on longer time-scales,
especially between unfolding events. This suggests that estimates of
the atomic density distribution within a folded protein can capture its
collective degrees of freedom. It also motivates the extrapolation from
the analysis of intrinsic properties of the structure to collective motions
occurring on, for example, the millisecond time-scale. Estimates of the
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atomic density distribution can also replace information about the
exact chemistry involved in stabilising the fold, similar to how the elastic
response of macroscopic materials can be calculated without atomic
detail. While implicit in some of the early work on elastic network
models, the relationship between the local packing density and the
flexibility of proteins was explicitly treated by Halle [2].

Likewise, elastic network models (ENMs) are based on the simple
idea that a protein can be described as a set of particles connected by
springs. These can then be used to describe the protein's intrinsic flexi-
bility using normal mode analysis (NMA). Monique Tirion pioneered
the field in 1996, when she showed that a single-parameter potential
could reproduce the slow dynamics obtained with a more complicated
potential [3]. This simplification makes the potential insensitive to the
details of the equilibrium structure, which has minimal energy by con-
struction. Models from experimental structure determination can thus
be used directly, without the costly energy minimisation associated
with the use of chemical force fields. Tirion's model has later been
further simplified, in particular by increasing its coarseness, as seen in
ENMs of interacting residues rather than atoms [4,5]. ENMs provide a
simple and interpretable description of the protein's collective motion,
which can be conveniently coarse-grained and are computationally
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inexpensive. For these reasons, they rapidly have replaced molecular
mechanics force fields that had been used for NMA of proteins earlier
[6-10].

The robustness of NMA with ENMs for the description of slow collec-
tive motions in proteins can seem surprising, given its simple construc-
tion. The motivation outlined above for using ENMs involved some
brave assumptions, and it was not necessarily clear beforehand that
these assumptions were valid. In particular, the harmonic approxima-
tion used for investigating dynamics of large conformational changes
and the absence of frictions such as those caused by the solvent. Yet,
early studies comparing NMA and experimental structural data, or
molecular dynamics simulations, did validate the use of NMA with
coarse-grained models. Validation against detailed molecular mechan-
ics force fields on large protein datasets has shown that even coarser
models than the one suggested by Tirion still reproduce the slow
dynamics obtained from molecular simulations (e.g. [11-14]). Further-
more, several studies have shown that in many cases, a few low-energy
normal modes account for most of the structure difference between two
conformational states [15-18]. Conformational changes can be described
by just a few low-energy normal modes intimately linked to the struc-
ture, indicating that proteins systematically make use of these low-
energy modes to achieve their function. The importance of these
modes for protein function has naturally led to the question of the
evolutionary conservation of their slow dynamics, analogous to the
conservation between structure and sequence. Fig. 1 illustrates the
relationship between the similarities in structural shape and intrinsic
domain motion described by the low energy normal modes from the
ENMs of two distantly related P-type ATPases.

Examples of comparative dynamics analysis include studying a set of
proteins that represent various functional states of a given enzyme upon
ligand-binding [19,20], evaluating the conservation of dynamics within
a homologous protein family [21-27], or within a set of proteins that
possess the same fold despite low sequence identity [28,29]. In a recent
article, Cristian Micheletti comprehensively reviewed the use of dynam-
ics as an aid for sequence and structure alignments of proteins [30]. It
has been shown, when comparing structures of homologous proteins

Fig. 1. Normal mode vectors from elastic network models of two distantly related proteins.
The SR Calcium ATPase 1 (PDB ID: TWPG [126], green) and the Copper-transporting PIB-
type ATPase (PDB ID: 3RFU [127], cyan) have similar low frequency modes as illustrated
here by the third lowest energy modes of each protein (red arrows). These vectors show
the flexibility of the four domains of the proteins with respect to each other. This is an
example where two structures with similar shapes yield comparable normal mode
vectors from ENMs. The normal mode vector fields for these structures were computed
using WEBnma [110] and the images were rendered in VMD [128].

and their intrinsic dynamics, that protein structures evolve along low-
energy modes [14,31,32]. Furthermore, a number of studies have
shown that low-energy modes are robust to sequence variations [14,
29,33-37]. The use of ENMs for comparative protein dynamics has the
potential to teach us more about a wide range of topics. To name a
few, these can include the effects of ligand or allosteric effector binding
in an active or allosteric site, changes in oligomeric state, changes in
sequence or structure through evolution, and the level of similarity in
dynamics between functionally similar enzymes.

Together with the question of the evolutionary conservation of
internal dynamics has come the need to reliably compare computed
dynamics for a set of protein structures. Due to the scarcity of experi-
mental data describing protein dynamics, molecular modelling at
large is an attractive alternative that has earlier demonstrated its predic-
tive power through numerous applications. ENMs are a model of choice
for such studies, even if computing power has admittedly become more
affordable than it was at the advent of ENMs and molecular dynamics
simulations on microsecond time-scales are becoming increasingly
accessible to the research community. The tractability and simplicity
of ENMs are unparalleled by molecular mechanics force fields and
ENMs defined with transferrable parameters can be easily applied to
large numbers of protein structures in automated ways. Beyond the
choice of the ENM and its parameterisation, comparing internal dynam-
ics of several protein structures comes with a set of methodological
choices, which are not obvious, but can significantly affect the outcome
of the comparative dynamics analysis. After an introduction to the
formalism of ENMs and their parameterisation, we focus on aspects
that are directly relevant for comparative analysis of multiple protein
structures, such as the similarity measures used to compare computed
dynamics, the influence of the alignment methods and ways to include
the influence of regions in the structures that are not similar in sequence
or conserved into the comparison. Next, using selected examples, we
describe how comparing protein intrinsic dynamics can be successfully
used to understand conformational changes upon ligand binding, func-
tional oligomerisation states and the overall role of intrinsic dynamics
in protein function. Finally we list some of the most commonly used
software and libraries for ENM calculations.

2. Elastic network models
2.1. Formalism

Since Tirion's contribution [3], further simplifications of the ENMs
have been made. Tirion's model was an elastic network with a node
for each atom and springs with uniform force-constants between all
pairs of nodes closer than a distance-based cut-off. Upon realising that
a good density estimate can be made even without atomic detail and
that backbone motion can be largely decoupled from side-chain move-
ment, Hinsen et al. [4] introduced a model with non-uniform distance
dependent force-constants, connecting only Ca atoms. Atilgan et al.
[5] also applied Tirion's uniform force constant model at the Ca granu-
larity. This model is particularly convenient to visualise, and is illustrated
in Fig. 2. Another popular density-based model has been the early
Gaussian network model (GNM) [38]. While it obtains density esti-
mates in a way that is similar to Atilgan et al., this model does not em-
ploy a Hookean potential. The interpretation of GNMs is therefore
different from the ENMs.

Since the initial ENMs, many variants have been proposed. More
detailed descriptions of the local backbone configurations have been
investigated, such as parameters dependent on the secondary structure
of the backbone [39,40], the reintroduction of chemical bond informa-
tion or other kinds of residue specific interaction terms [41-43] as
well as the modelling of side-chain locations [44]. On the other hand,
simplifications to fewer coordinates have been proposed, both in terms
of simpler coordinate systems [45,46] and less granular representations
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0.8 nm

1.5 nm

Fig. 2. Elastic network models with different cut-offs. Illustrates the effect on uniform force constants for elastic network models. The models are constructed for the triple functional
domain protein (PDB ID: 1NTY [129]). Centre: The cartoon representation has Ca atoms highlighted as cyan spheres. Left: A model that connects all residues with Cae atoms within
0.8 nm of each other. Right: A model that connects all residues with Coc atoms within 1.5 nm of each other. For clarity, connections between buried residues are not shown if they are

more than 0.8 nm apart.

of proteins [47]. Despite all this variety, ENMs can be understood in
terms of a single unifying formalism, the details of which are as follows.

The ENMs model the protein as a network of Hookean springs that
connect all residues, which are typically represented by nodes located
at the centre of their Cox atom. Interactions between atoms are described
by the pair potential for a given configuration of a protein:

vite) =5 (|-~ v

where r; is the position of a residue i, in the configuration of the protein
r, the superscript 0 denotes the equilibrium conformation and k;; is the
force constant for the spring connecting residues i and j. Here, k;; is typ-
ically determined by a scalar function of distance between connected
nodes. Apart from the choice of granularity of the model, the function
for determining k;; is the most important difference between different
ENMs. The potential energy of the entire network is the sum of this
pair potential over all pairs:

V) = 30 3 Vo) @)

where N is the number of nodes in the network. Expanding this potential
as a Taylor series around r° reveals the following form of the potential
for a configuration obtained by infinitesimal displacement from its
equilibrium configuration:

V() = % (r—rO)TH(r—ro) 3)

with H as the matrix of partial second order derivatives of the potential.
With respect to Cartesian coordinates, this is a 3N x 3N matrix. The
elements of H can be specified in terms of 3 x 3 submatrices corre-
sponding to each pair of nodes:
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Since H is a symmetric matrix, the potential energy of a configura-
tion r can be written in terms of its eigendecomposition:

v =3 N, ((r—r°>Tvm>2 5)

where v,,, represents the normalised eigenvectors and \,, the corre-
sponding eigenvalues of H. These eigenvectors form an orthogonal basis
for the configurational space of the protein, so that they each provide
energetically independent contributions to the potential energy of r.
These independent modes of deformation are referred to as the normal
modes of the network, and they describe motion intrinsic to the protein
structure. Because of the coarseness of the model, eigenvalues and
hence energies are not interpreted exactly, but the separation between
eigenvalues are informative of the relative energetic cost of different
structural deformations. Since rigid-body rotations and translations
of the network are not restrained, the six modes corresponding to
rigid-body motion in Cartesian coordinates will have zero energy. The
modes describing rigid body displacements are referred to as trivial
modes.

Since normal mode analysis has a long tradition in chemistry for
analysing small vibrational molecules, the above formalism is often
presented as an eigendecomposition of the mass-weighted Hessian. In
that case, the elastic network is considered as a coupled harmonic
oscillator and the eigenvalues are the squared frequencies of vibration
along the corresponding modes. While the vibrational normal modes
are a perfectly valid decomposition of motion, it is worth stressing
that solvated proteins cannot in general be expected to be vibrational
along their lower energy modes [48] and thus, this requires cautious
interpretation of the oscillator model.

For equally normalised displacements, the quadratic dependence of
energy on the spatial extent of deformations causes large local deforma-
tions to be more energetically expensive than collective motions that
involve only small changes to each spring. Therefore low-energy modes
are expected to be collective. By a similar reasoning, collective motions
can be expected to have larger amplitudes, as local deformations are
constrained by the stronger local interactions. In fact, for a harmonic
potential, the displacements along low-energy normal modes are exactly
the deviations along high-variance principal components. The Boltzmann
distribution for the potential given in Eq. (3) is a multivariate Gaussian
distribution with a covariance matrix proportional to the inverse of H.
Because of the zero energy associated with rigid movement of the protein,
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this inverse is not defined, but the Moore-Penrose pseudo-inverse C, can
for many applications be regarded as a covariance matrix of internal
deformations:

c=y Ly v (©)

m=7 N\, m=m

where the sum runs over the nontrivial modes. This implies that the
eigenvectors v,, can be regarded as the principal components of this
covariance matrix C, with variance 1/\;,,. The covariance along each of
the Cartesian coordinates of a pair of nodes i and j is proportional to Cy,
which denotes a 3 x 3 matrix. The trace of the submatrices C;; is propor-
tional to the mean squared thermal fluctuation of node i:

{

where the angle brackets denote the mean and tr denotes the trace, or
diagonal sum of the matrix. Here v,,; is a vector of size 3 containing the
elements of v;,, that describe the motion of atom i. To obtain a scalar quan-
tification of the correlation of two nodes, a correlation matrix is common-
ly calculated, following Ichiye and Karplus [49]:

P, = & (8)

(tr(cayer(cy) ) ‘

Here, the numerator is proportional to the expected inner product of
displacements, which depends on both the magnitudes and the angles
between node displacements, whenever i # j.

As mentioned above, the inner product in Eq. (5) quantifies the
contribution of a mode to a small displacement from the energetic min-
imum. As a means to identify a few normal modes that approximate the
displacement well, the squared overlap and related measures are com-
monly calculated [15,50]. The squared overlap O, of a normalised dis-
placement vector d and a normal mode v,, is the squared inner product:

ri_rsz2> e tr(Cy) = Z ;i7)\1*mvz1.ivm,i (7)

0,,(d) = (clTvm)2 9
with
> o On(@) =1 (10)

since the normal modes are orthonormal. Such approaches are often
applied even when the displacements analysed are not strictly infinites-
imal. They have been important in validating the ENMs, by comparing
with experimentally observed displacements. Large overlaps with low-
energy modes indicate that the model favours a displacement, even if
the energy cannot be determined accurately.

2.2. Parameterisation: force constants and cut-offs

Apart from the choice of granularity and coordinate system used
to represent the protein as an elastic network, the different ENMs
proposed over the years mainly differ in how the force constants
are determined (the function determining k;; in Eq. (1)). While this
function is commonly chosen to be a function of interatomic distance
in the equilibrium conformation, model developers have not reached
a consensus on which mathematical formalism is more appropriate,
or which benchmarking standards should be used. The simplest ap-
proach, following Tirion's initial model, uses uniform force constants
for atoms or nodes that are within a given cut-off distance from each
other. Springs longer than this cut-off are then assigned a force constant
of zero, which is equivalent to omitting the spring from the model.
Other formalisms connect all nodes and set the force constants propor-
tional to a function decaying with distance. Fig. 3 illustrates the two

power decay

uniform

force constant (k;)

T T T T 1
0.0 0.5 1.0 1.5 2.0

C, - C, distance (nm)

Fig. 3. Distance dependence of force constants. [llustrates two common schemes for deter-
mining force constants based on interatomic distance. Black line: force constants propor-
tional to smoothly decaying function of interatomic distance (here an inverse power of 6).
Grey line: uniform force constants for atoms closer than a cut-off distance (here 0.8 nm).

approaches. Since energies of individual modes are typically only
interpreted after normalisation, the exact values of the force constants
are not important, only the contrast between them. While different
choices of mathematical formalisms can be brought to close agreement
through careful parameterisation [51], it is important to choose appropri-
ate benchmarks to parameterise against. Fig. 2 illustrates the difference
between common parameterisations of a uniform force constant model.
The parameterisation of ENMs was initially motivated by compari-
son to detailed chemical potentials [3,4] analysis of MD-trajectories
[52] and radial distribution analysis of the coordination between resi-
dues in the protein core [2,5]. Taking advantage of the vast amount of
structural data available, it has also become custom to parameterise
model predictions against crystallographic B-factors and ensemble
variation in NMR models. This practice does not come without assump-
tions, however, as neither of these are direct observations of thermal
motion, and in the case of B-factors, the experimental conditions do
not reflect the solvent environment for which its application might be
intended. In recent years attempts have been made to carefully quantify
how these assumptions affect the parameterisation [53-56]. Notably, a
wide range of cut-off values (from 8 to 15 A) has been used in cut-off
based models to represent the interatomic interactions. Interestingly,
the directions (eigenvectors) of intrinsic motion are well captured
even when each node is connected to equally many neighbours with
springs of uniform strength [33,57]. The intrinsic motion of structures
represented by discretisation of low-resolution density maps has also
proven to yield useful information about structural flexibility [58,59].
These results emphasize that the global shape of the protein largely de-
termines the principal directions of motion. This might explain the ap-
parent robustness of the ENMs to the choice of cut-off, as even very
long cut-offs can discriminate protein surface from protein interior. In
order to also predict the energetic separation between normal modes,
a narrower range of parameters are found to be appropriate [53,56].
The lack of uniformity in ENM parameterisation is partly a consequence
of differing opinions on benchmarking procedures. The studies men-
tioned above have shown that the performance of different ENMs de-
pend on the benchmark chosen, and thus, researchers should carefully
consider which benchmark they trust for their application, and choose
or define their model accordingly. ENMs can also be modelled to reflect
a crystalline environment [60], and parameterisations obtained for such
models can potentially help in parameterising single protein ENMs by
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comparing with B-factors. Even so, exact interpretation should be made
cautiously, as B-factors are heavily influenced by non-thermal contribu-
tions [54,55].

3. Validation

Early studies comparing coarse-grained NMA and experimental
structural data, or molecular dynamics simulations were used to vali-
date the elastic network approach. Validation against detailed molecular
mechanics force fields performed on large protein datasets has shown
that ENMs reproduce the slow dynamics obtained from molecular
simulations well (see references [11-14,39,40,44,56,61]).

Furthermore, several studies have focused on validation against
experimental data; they evaluated the number of low-energy modes
necessary to describe the structural difference between two distinct x-
ray structures (for example, the open and closed-forms) of the same
protein using the overlap between the calculated set of modes and the
structure difference vector as a quality measure. Using measures like
Eq. (9), these studies show that in many cases a few low-energy normal
modes account for most of the structure differences [15-18]. Hinsen
et al. [16] compared the characterisation of domains from an ENM
with those obtained from internal distance differences in experimentally
determined conformations of citrate synthase, HIV-1 reverse transcrip-
tase and aspartate transcarbamylase. Sanejouand and coworkers
systematically analysed the agreement between low-energy normal
modes and small data sets of experimentally determined structures in
different conformational states [17,62]. Krebs et al. showed that more
than half of a set of 3800 protein motions could be described by only
two of the lowest energy normal modes [18]. Using the large number
of structures determined for some proteins, the structural variation
can be decomposed into principal components and compared with
normal modes, as demonstrated by, for example, Yang et al. [14]. In all
of these studies the conformational changes of the proteins were found
to be well described by the lower energy normal modes intimately
linked to the protein's structure.

In addition ENMs have been used as a tool for characterisation in
many case studies of proteins and macromolecular complexes. In
many such studies, the normal mode analysis is validated by comparing
with conformational change, or by testing the insights obtained by
independent means [36,63-65]. Comparison of predictions from ENMs
with molecular dynamics simulations has also been used to validate
and benchmark models [12,39,40,44,56,61].

4. Comparing intrinsic dynamics: getting quantitative

Comparisons of principal modes of motion have been performed
successfully by manual inspection and expert judgement of ENM pre-
dictions. In recent years efforts have been made to assess the similarity
of motion quantitatively. In addition to the different similarity measures
proposed, many general methodological concerns and pitfalls have
been identified.

4.1. Similarity measures

ENMs can predict atomic fluctuations through Eq. (7), and these can
be compared to fluctuations obtained from other structures or models
by an appropriate association measure, such as the squared inner product,
SIP:

N 2
(8 ab) ( a'b >2 (11)
N 2 N 2\ \all IIb
(2, @) (2, 67)  \Jallibi
where a and b are vectors of size N with elements quantifying the atomic

fluctuation of each atom in the model. Correlation measures have also
been commonly applied to compare such fluctuation vectors. Since

SIP(a,b) =

exact energies are not reliably predicted by ENMs, any quantity that
factors in the eigenvalues, such as the atomic fluctuations, have to be
compared in a normalised fashion.

As mentioned above, motions calculated from ENMs are only valid
for small displacements from the equilibrium, and the inference to
large deformations involves the assumption that the interatomic cou-
plings are relevant for longer timescales. The atomic fluctuations only
reflect these couplings indirectly. Even if the atomic fluctuations have
been the most common way to compare intrinsic motion quantitatively,
it is therefore preferable to compare the normal modes or the
covariance matrices of the ENMs. In recent work, we contrast compari-
son of fluctuations with those of normal modes and covariance matrices
[56,66].

For comparing sets of normal modes, the root mean squared inner
product (RMSIP) of the lowest modes has been a common choice:

RMSIP(V, W) — (% yomeyws (VLWI)2>§ (12)

where V and W are sets of normal modes or principal components, and
the sum runs over the nontrivial modes with the lowest energy or the
highest variance. The constant n defines, somewhat arbitrarily, a sub-
space of protein motion that is considered accessible by low-energy
motion. The RMSIP quantifies how similar the directions of these low-
energy subspaces are for two protein models. Since the modes are
orthonormal, the RMSIP would be exactly 1 if the summation was
extended to the entire set of modes. Typically, this measure has been
applied with n = 10, following Amadei et al. [67]. As the RMSIP does
not represent the energetic separation between modes in the sets,
measures that incorporate eigenvalues as well have been proposed.
Hess [68] defined an overlap function, OV:

1

w( (A-8)"))

OVAB) =1~ tr(A) + tr(B)

(13)

where A and B are covariance matrices. A'/? is the matrix that decom-
poses into the same orthonormal eigenvectors but with eigenvalues
that are the square root of those in A.

Here the normalisation is realised by the sum of matrix traces in the
denominator. The trace of a covariance matrix is equal to the total vari-
ation in the system. We also used trace normalising covariance matrices
[66] and applied our similarity measure to normalised matrices C:

C-—__ C (14)

Applying the OV to these normalised matrices reveals the similarity
with the RMSIP:

OV(RB) = 1= (13200, 37 st (vhow) ) -

where A is decomposed into eigenvectors v,, and eigenvalues ,, B into
eigenvectors w; and p and the sums run over the nontrivial modes. A
similar measure was also proposed by Carnevale et al. [69].

Considering the problem of comparing the intrinsic deformations in
proteins as a matter of comparing their Boltzmann distribution, the field
of multivariate statistics provides many measures of distance or sim-
ilarity. Of those, the Bhattacharyya coefficient and the closely related
Bhattacharyya distance have been adapted for comparing internal
deformations of ENMs [56,66]. The Bhattacharyya coefficient, BC is
defined as:

BC(pq.Py) = J Pa(r)'py(r)'dr (16)
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where p, and py denote probability density functions (PDFs) for a
multivariate random variable. For comparing internal deformations of
proteins, the distributions can be taken to be mean-centred, and for
ENMs, the PDFs will be Gaussian with the covariance matrix specified
in Eq. (6). For mean-centred Gaussian distributions with trace normal-
ised covariance matrices, BC has the closed form:

1 1
7 7

BC(py, pp) =

Al
1 (17)

1/ ~\ |1
5(A+B)
where A is the covariance matrix of p, and B is the covariance matrix of
Pw, and vertical bars denote the matrix determinant. However, the mea-
sure is only defined for positive-definite covariance matrices, and an
approximation to A and B has to be made due to the presence of the
trivial modes. This has been solved by projecting the matrices to a
lower dimensional subspace chosen from the eigendecomposition of
the mean matrix in the denominator [66].

The information used by the different measures is illustrated in
Fig. 4. These simple bivariate distributions can be taken to represent
deformations of a molecule represented by two coordinates. The SIP
ignores any directionality of motion, and simply adds up the total vari-
ance of each variable. The RMSIP considers the agreement in direction
for all pairs of eigenvectors that rank amongst the n highest principal
components (corresponding to lower energy normal modes). For this
simplified example only an RMSIP with n = 1 can be considered,
which amounts to only comparing the principal component with the
maximal variation of each distribution. Note that the comparisons

A

=N
N
/\)_\
N

T 1 sip
1
BC k
]

with the other principal components of either distribution are repre-
sented with dotted lines in Fig. 4. The OV compares all pairs of eigenvec-
tors, but factors in the variance along each direction. This is illustrated
by vectors with lengths proportional to the standard deviation along
the principal directions, and can be contrasted with the normalised
vectors considered by the RMSIP. The BC quantifies the similarity of
the PDFs, which is here illustrated by the overlapping region of the
two elliptical distributions.

4.2. Structural alignment

When the intrinsic motions of non-identical structures are com-
pared, it is necessary to first obtain a description of the parts of the
different structures that are to be compared with each other. For exam-
ple, a structural alignment can describe the amino acid residues that are
in structural correspondence to each other, between two or more struc-
tures. Comparing distant homologues provides a challenge in defining
which parts of the proteins to compare. This is commonly solved by
structural alignment, which is a challenging problem, particularly for
the simultaneous alignment of sets of proteins [70-73].

When considering an alignment for comparing multiple structures,
sequence identity and volumetric differences tend to pose a big chal-
lenge for finding equivalent atomic coordinates between them. The
optimum solution between two structures, let alone many, tends to
scale with sequence length and variability. Moreover, there is also the
question of the most reasonable way of assessing a resulting solution,
even though root mean squared deviation (RMSD) is generally accepted
as the standard across different tools within the field. Due to the dynamic

B

- RMSIP

2

]
;2 ‘.\2.1 45 ov

Fig. 4. Graphical interpretation of the different similarity measures. The figure illustrates what information is utilised by different measures of similarity. Top: two bivariate distributions
representative of simplified molecular deformation with principal components drawn as red and blue vectors respectively. The principal components are displayed with length propor-
tional to the standard deviation along the principal directions. The illustrations of different measures for comparing this molecular deformation is depicted by the abbreviation for the
measures as defined in the text. (SIP): comparison of magnitudes only. (RMSIP): comparison of direction of only the n most principal component(s), all vectors are normalised to
equal length. (OV): comparison of direction and magnitude. (BC): comparison of distribution overlap.
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nature of structures, many alignment solutions involve a component of
flexibility to achieve a better fit between structures. Yet these solutions
are mostly available for pair-wise alignments; A thorough discussion
about defining comparable regions of a protein and on some strategies
for aligning pairs of proteins using models of their intrinsic flexibility is
described in a review of Micheletti [30].

Most multiple structural alignment methods involve computing all
pair-wise alignments between a set of structures, before producing a
consensus between all of them [72]. The differences between multiple
structure alignment programs involve the choice of geometric reference
points (such as secondary structure or Coe atoms), algorithm for aligning
them in a pairwise fashion or identifying a consensus core alignment to
optimise iteratively, and the scoring method used to assess the solution.
Problems unique to multiple structure alignments involve the length of
consensus alignment between multiple structures, and pairwise RMSDs
within the set [74]. We find that in order to compare structures effec-
tively, it is essential to have a robust alignment that is able to take into
account natural and yet unique variations within a set of proteins.

A B

Height

Height

917

Previously, we have found that the results of comparative analysis are
sensitive to the quality of the alignment [66], especially if the set con-
tains structures that are related at the SCOP family and superfamily
levels [75].

To illustrate this, we constructed multiple structural alignments for a
large set of proteins with triosephosphate isomerase-like domains
(SCOP c.1, TIM alpha/beta barrel dataset used in Fuglebakk et al. [66])
using two popular programs, STAMP [73] and MUSTANG [76]. The set
consists of structures from two different superfamilies, which subdivide
into two families each. The triosephosphate isomerase possesses a fold
that is tricky to align, as it is completely symmetrical in its enclosed
barrel-like configuration that consists of 8 beta strands and 8 alpha he-
lices. As such, it is a challenge for even the most sophisticated algo-
rithms to align, especially when the sequence identity is low, due to
the abundance and diversity of this fold [77]. Visual inspection of the su-
perimpositions provided by STAMP shows that it is heavily biased to-
wards the N-terminus, where the alignment is optimised, losing
symmetry in the points of common reference towards the C-terminus

Clustering of TIM structures using STAMP alignment

Clustering of TIM structures using MUSTANG alignment

Fig. 5. Influence of the alignment methods of 53 structures with the TIM-barrel fold on similarity measures. (A): STAMP and (C): MUSTANG alignments of 53 structures with the TIM-barrel
fold. The light grey lines show the superimposition of the structures, while the dark grey cartoon of the secondary structure shows one of them as a representative. The red spheres high-

light the points on the structure that are conserved throughout the alignment with a bias

towards the N-terminus. K-means clustering (with k = 4) of the Bhattacharya score analysis

comparing the covariances using the (B): STAMP and (D): MUSTANG alignments. The SCOP identifiers on the plots are coloured signify structures that are from the same SCOP family,
and are grouped such that red and black are from one SCOP superfamily, and blue and green are from the other. We see a heterogenous clustering of the structures across superfamilies
and families with STAMP while we see good groupings with respect to the family level, but a less distinct separation at the superfamily level with respect to the green group.
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(Fig. 5A and C). On the other hand, the MUSTANG alignment is able to
provide a superimposition that is less sparse, with regard to these points
in common, distributed all over the structures (Fig. 5B and D).

STAMP [73] relies on an algorithm that assesses pairwise alignments
within a set of proteins and extends it in a progressive manner with the
aid of hierarchical clustering. In this process, there is a chance that an
error made in introducing a gap is propagated to the final output.
MUSTANG [76] employs a similar algorithm that differs in the way that
it refines the alignment once the pairwise alignments are completed
by introducing an intermediate step where the residue position equiv-
alences are assessed globally (in the context of the other proteins in
the set).

The effect of the difference in quality between these alignments
propagates when we try to cluster these structures to their family
and superfamily levels based on their intrinsic dynamics, using the
Bhattacharya coefficient score (Eq. (17)) [66]. The difference is striking:
we see some separation between the structures at the family and super-
family levels which is not totally identical to the SCOP annotation, but
performs better than the mixed clustering that we see resulting from
STAMP. Since we find a large overlap between structural similarity
and dynamics in most cases, we find that using an appropriate tool to
align multiple structures is important in having reliable results when
comparing their intrinsic dynamics.

4.3. Comparing only the conserved regions

Once the issue of determining the corresponding parts of each
protein within a set is resolved, we can proceed to define a subset or a
core between all of these proteins that can be compared dynamically.
In such a procedure, each protein can be partitioned into a subset of
core atoms A, and a subset of excluded peripheral atoms B. While only
A has a corresponding part in all the structures compared, B is still
linked to the dynamics of A and should be retained in the calculation
of motion to preserve its influence. This needs to be observed when
measures are normalised. In the case of comparing normal modes or co-
variance matrices, lower dimensional matrices describing the motion of
only A needs to be obtained. Many deformations of the proteins can be
consistent with A acting as a rigid body, while B deforms internally.
Since B is defined to not be comparable between structures, it is desir-
able to express the internal deformations of A in a way that is consistent
with how it deforms in the context provided by B. Mathematically, the
problem is manifested by the fact that the parts of the eigenvectors cor-
responding to only A are not generally orthogonal. One common way to
deal with this problem is to define a potential for A, which is restrained
by the presence of B [52,69]. Assuming that B deforms along the direc-
tion of minimal energy, such a restrained potential can be obtained by
differentiating Eq. (3) with respect to deformations of B. Substituting
these minimal energy deformations of B back into Eq. (3) gives the
Hessian of the constrained potential:

H" = H,,—H,,H,; H}, (18)

where the Hessian of the full potential is partitioned so that Hy, reflects
interactions in A, Hg, reflects interactions between A and B, and Hp,
reflects interactions internal to B. This method was originally intro-
duced for ENMs, but now has also been extended to all-atom and hybrid
quantum mechanics/molecular mechanics potentials, for its recognised
potential as an analysis method [78].

When normal modes or covariance matrices are expressed in
rotational variant coordinate systems, like the formalism in Cartesian
coordinates described above, it is necessary to ensure that they are
expressed in identical or similar rotations. When comparing models of
identical proteins, this can be solved exactly. In cases where different
proteins are compared, an approximation to a common rotation is
typically obtained by rotating to minimise the sum of squared distances
between aligned residues. For comparing proteins with very different

equilibrium structures, the validity of such an approximation to a com-
mon reference frame might in principle become a concern. Possible
solutions include considering internal coordinates [45] or comparing
rotationally invariant properties of the normal modes, like the correla-
tion matrix in Eq. (8).

5. Strategies and applications of comparative analysis

Comparing multiple structures is a natural extension to the study of
intrinsic dynamics. In the case of ENMs, where it is computationally
efficient and inexpensive, it has been seen as a logical choice for analysis
of large sets of structures in many ways. The mode vectors produced
from ENMs are informative on their own, and provide a good qualitative
description of a protein's inherent flexibility. Luo and Bruice did one
example of such a qualitative analysis, where they conducted a visual
inspection of the normal mode vectors on six structures along the
dihydrofolate reductase reaction mechanism [79]. With this analysis,
they focussed on regions (such as the M20 loop and subdomain rota-
tions) that were seen to undergo conformational changes during catal-
ysis, and found that they were consistent with the principal motions
from the low-energy modes, and were able to further validate these
findings against NMR, kinetic and molecular dynamics studies found
in literature.

In general, we find that such analyses benefit from quantification of
dynamical properties, and here, we outline a selected list of examples
where ENMs have been used to compare the dynamics of multiple
structures, whether from the same sequence or not, related by homolo-
gy or fold. Some of the early examples discussed have been used to
validate the ENM as a viable model for intrinsic dynamics analysis, yet
the strategies employed are applicable to most comparative applica-
tions. In most of the examples, atomic fluctuation profiles (Eq. (7))
were compared with crystallographic B-factors, using measures like
that in Eq. (11). The use of the overlap analysis (such as the squared
overlap, Eq. (9)) was also very common. In addition, we find that com-
paring covariance/correlation matrices, using similarity measures (such
as the RMSIP, Eq. (12)) and perturbation response methods [80] are also
useful techniques when comparing dynamics.

5.1. Comparing multiple structures of the same protein sequence: confor-
mational changes

The squared overlap between modes and the structural difference
from one conformation to another has been introduced as a way to un-
derstand the transformation between two states of an enzyme (Eq. (9)).
This analysis allows for the identification of modes that contribute to the
conformational change seen [15,17,65]. Traditional dynamics studies
that compare two extreme states, e.g. fully open ligand-free conforma-
tions vs. fully closed ligand-bound conformations, lead to interpretation
that the modes with high overlap with the difference between con-
formations are the ones important for conformational change. These
modes tend to be interpreted as the transition path between active
and inactive states. In general, mapping conformation transition paths
is a much more complex affair that requires more detailed and rigorous
calculations than the overlap analysis to estimate [81-83].

Even so, the method has been useful in understanding the changes in
flexibility between states. Extending pair-wise comparisons can come
in the form of performing serialised overlaps between multiple pairs
of structures of different conformational intermediates, or a large-
scale survey of conformational transitions. An example of a large-scale
survey of transitions is the work from Stein and colleagues who per-
formed serial overlap analyses of unbound to bound conformational
changes (multiple pairs in some cases, where more than one ligand-
bound conformation was available for an enzyme) from a total of over
12,000 structures [84]. This was one of the analyses used to assess the
cost of conformational change upon ligand binding, and whether they
fit the lock-key, induced-fit or conformational selection binding models.
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ENM s can be used to produce covariance matrices (Eq. (6)) that can
be compared between them to understand the difference in dynamics
for different states. The work of Seckler et al. [19] is one such example,
where the authors use ENMs in addition to structural comparison; the
authors retrieved 52 structures of HIV-1 reverse transcriptase, and com-
pared them to reference structures using a measure of dynamics sim-
ilarity called the covariance complement (a form of the OV measure,
Eq. (13)). The structures differed in state such that some were ligand-
free while others had DNA, RNA, adenosine triphosphate (ATP) and
various inhibitors bound. Further they found linear variation of RMSD
with the covariance complement to be a signature of functional state,
and showed that the ratio between the two measures can be used to clus-
ter these 52 structures into three main levels. These levels corresponded
to their level of activity based on the ligand-types. This is an example
where dynamics is used to distinguish between the effects of ligands.

Allosteric effects of ligands and their ability to cause changes
in flexibility have often been explored using ENMs [85-87]. While
the allosteric effect is often thought of as a large conformational change
in a structure, Rodgers et al. explored the hypothesis that the low-
frequency normal modes are able to propagate allosteric signals without
causing a large conformational change in a family of transcription
factors called CRP/FNR [20]. They constructed ENMs for structures of
the Catabolite Activator Protein (CAP) from Escherichia coli representing
unliganded, single and double-liganded forms and introduced muta-
tions outside the substrate-binding pocket by varying the spring
constants of all springs attached to a single residue. This was a strategy
for probing changes to the free energy of substrate binding. They found
that the regions that experienced the greatest change in cooperativity
were not necessarily adjacent to the substrate-binding site. They used
their method to predict residues involved in allosteric signalling in
CAP and validated their findings on a homologue GIXR, through a com-
bination of ENM, MD and experimental results.

The large increase in the number of X-ray structures has led to the
opportunity of analysing preferred conformations with multivariate
statistical analyses such as principal component analysis (PCA). PCA
has the advantage of reducing the dimensionality of large-scale data
into basis vectors (or principal components), ordered based on how
much of the structural variance they describe. The technique has been
used for characterising principal directions of fluctuation in Molecular
Dynamics trajectories, as first introduced by Garcia [88]. However,
information about the conformational landscape of proteins can also
be obtained by comparing structures obtained under varying experi-
mental condition, or under small variations in sequence. Datasets of
related structures can then be decomposed through PCA or similar tech-
niques [31,32]. The principal components in this case describe the direc-
tion of the structural variance in the dataset (due to experimental
conditions or evolutionary relationships rather than the thermal forces
in ENM or MD calculations). One strategy employing PCA involves
calculating principal components for a large collection of structures for
a given protein, and comparing the resulting principal components to
modes obtained from ENM calculations on representative structures.
Yang and colleagues have shown that normal modes can directly be
compared with principal components extracted from a large set of
structures from HIV-1 protease, providing a direct comparison of calcu-
lated values to experimental data [14]. Both Bakan and Bahar [89] and
Katebi et al. [90] applied this strategy to different enzymes; structures
of HIV-1 reverse transcriptase, p38 MAP kinase and cyclin-dependent
kinase 2, with and without inhibitors, were analysed by Bakan and
Bahar and all available structures of triosephosphate isomerase (TIM)
by Katebi et al. They were able to relate the variation in the structural
space to intrinsic dynamics and further to function.

5.2. Comparing dynamics between different oligomeric/multimeric states

The variations in the dynamics of monomers often translate to
changes in global structure, whether they are perturbed by mutations

or ligands. As a recommendation, when comparing oligomeric structures,
one should be careful of the effect of calculating the modes of proteins in
different oligomeric states before drawing conclusion on the dynamics of
the system or making a one-to-one comparison. Eigenvectors calculated
on entire structures with different oligomeric states are not necessarily
comparable, due to the pronounced effect of complexation of the sub-
units on the construction of its ENM. As a result, the lowest modes are
different from one oligomeric state to the other, where subunit-subunit
motions make up the lowest energy modes in multimeric assemblies.
Since monomers usually possess differences in conformation based on
their oligomeric state, comparing monomers extracted from different
states provides sufficient basis for observing changes in their dynamics
[25]. Zen et al. [91] compared the flexibility of interfacial residues
in obligate and non-obligate dimers. They found that the mobility of
amino acids experiences non-uniform changes depending on the type
of interface, size and obligate nature of the complex. They were able to
gain this insight with the use of root mean squared fluctuations (similar
to Eq. (7)) of the bound and in silico free forms of the monomers, where
the bound form was modelled with Eq. (18) when comparing the states.

Another notable example of working with multiple subunits is in
the study of Alzheimer's AR (1-40) amyloid fibrils, where Xu and col-
leagues constructed models of these protein assemblies based on two
forms of naturally occurring symmetries and varying lengths of the fi-
brils [92]. They were able to characterise the effects of the fibril size
on the overall flexibility of these large structures, and changes to the
low-energy motions. Similarly, Polles et al. explored the flexibility in dif-
ferent assemblies of a heterogeneous set of virus capsids based on
fluctuations-based analyses and domain decomposition [93]. Other
studies dedicated to the comparison of dynamics to changes in oligo-
meric state have been reported for monomeric, dimeric and tetrameric
states of GPCRs [94], dimeric and hexameric (trimer-of-dimer) states of
the serine receptor Tsr [95], and monomeric and dimeric states of the
p53 protein [96].

5.3. Comparing dynamics between more distantly related proteins

Structure comparison has been long established as a means to un-
derstanding the evolution of proteins, as has the conservation between
sequence and structure since the work of Lesk and Chothia [97]. In many
cases, even from visual inspection, a structure is not just seen to encode
dynamic information, but also a historical time-point in the evolution
of the family to which it belongs. Some sequence mutations, insertions
and deletions can be accommodated by the plastic deformations of a
common architectural core and retain the precise geometry of the active
site, even if peripheral regions or accessory domains vary [71]. Hence it
has been of great interest in linking observable structural and sequence
evolution in the conservation of dynamics, especially in a family of
proteins.

The observation that low-energy normal modes so frequently ap-
pear in functional motion [18,33] has motivated investigations into
their evolutionary conservation across protein families. The globins
have served as a good example of a well conserved yet diverged group
of proteins and has been a subject of quantitative comparisons by
Maguid and colleagues [24]. They developed a method to quantify sim-
ilarities between the collective modes using a singular value decompo-
sition approach to find representative vectors to describe the dynamics
of an aligned core of structures. This work laid the foundation for
exploring the evolutionary conservation of dynamics in the lowest
energy modes, which they further developed and validated across
larger standard datasets from the family to superfamily levels [98,99].
While this work clearly confirms that low-energy normal modes are
conserved between structurally conserved proteins, it is interesting to
note that this conservation can be explained as the structural response
to random perturbations, rather than necessarily selective pressure on
certain kinds of motion [35,100,101].
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In 2006, Carnevale et al. [69,102] introduced the idea of performing
pair-wise alignments and comparing dynamics for the regions con-
served by giving each pair an overall score such as RMSIP (Eq. (11)),
which they used on pairs of proteases with very low structural similarity
and sequence identity. Partial pair-wise alignments between the prote-
ases allowed them to conclude that often the dynamical conservation
far exceeded the structural conservation.

Others have explored the idea that the effect of sequence changes
throughout the evolution of a protein structure would be along its
principal modes. Leo-Macias et al. [31,32] performed large-scale defor-
mation analysis on the multiple alignments of the cores of 35 protein
families and compared them against their evolutionary deformations
gained from PCAs of the corresponding structures via the RMSIP score.
They were able to relate regions with the greater evolutionary variability
with regions that experience larger thermal fluctuations. This work was
further validated with comparisons against MD simulations [27] and fur-
ther reinforced by work done on the Ras GTPase superfamily [26].

In a more recent study combining allostery and evolutionary conser-
vation, Kolan et al. report the role of the lowest energy modes on the
mechanical motions and conformational changes of six members of
the GPCR family [21]. When comparing between the ligand-bound
and ligand-free states, they found that the slowest modes are well
suited to describe components of the activation mechanism. They com-
pared the overlap of their slowest modes by calculating the normalised
mean squared displacements of the aligned Ca atoms as a correlation
score and showed that all the GPCR members except rhodopsin agree
well, and concluded that rhodopsin was not representative of all
GPCRs in its motions. They concluded that the ENM calculations were
able to capture the long-range mechanism of GPCR activation, where
binding in the extracellular domain can cause a conformational change
in the cytoplasmic domain.

Another example of linking the conservation of certain structural/
sequence motifs to function is displayed by the work of Lukman and
Grant [23]. They surveyed maltose transporters and characterised a
network of residues that have an influence on the overall dynamics of
the proteins in different conformational states. This work is an example
of analysis inspired by the developments in the perturbation-response
analysis by Zheng et al. [80], who had earlier studied the conservation
of dynamics in distantly-related motor proteins by comparing the
conformational changes experienced by myosin, F1-FO ATPase and
kinesin [28]. In this case, the authors concluded that while the large con-
formational change seen in myosin and F1-FO ATPase was consistent
with motions that can be described as a power-stroke type movement,
while the kinesin followed a Brownian ratchet-type mechanism. The
perturbation-response method has gained greater traction as seen in
the efforts to develop a useful metric [103,104] to describe a single
residue’s response to an applied force in a given position, as a predictive
tool.

Studies like this have also prompted initiatives to categorise protein
structures dynamically [105]. Further databases storing results from
normal mode analysis using ENMs on large number of structures have
been built, such as ProMode Elastic [46] or MolmovDB (Database of
Macromolecular Movement) [106]. These show the interest of the
community and the potential of ENMs for the characterisation of
intrinsic dynamics in a way that can complement existing structural
classifications systems. In addition, there have been efforts in using
dynamic information as a means of aligning different proteins, and
their developments have provided insight into comparing dynamics in
general [69,107-109].

5.4. Comparing dynamics of proteins with different folds

In the paradigm where the conservation of dynamics is due to struc-
tural similarity and not vice versa, the comparison of dynamics based on
shape and fold, independent of sequence similarity or conservation, has
also been a topic of great interest [34,110]. Since proper folding of the

protein is a requirement for function in many cases, it is natural to
seek to understand how the fold affects function, and their principal
modes of motion is an important ingredient in understanding functional
properties of the fold.

In a systematic survey of functional dynamics in enzymes with low
structural similarity, Zen et al. [109] identified structural correspon-
dences between proteins with loose analogies in secondary and tertiary
structure. In several of these structurally diverse enzymes they identify
similarities in protein dynamics that can be linked to the protein
function. The work was made possible through the development of
a scheme for dynamical alignment, which was later applied to the
study of a range of studies and compared with results from other such
approaches [30,111].

Hollup et al. showed that computer-generated models based on
ideal structures, stripped of influences of sequence conservation and
evolutionary links, could be used reliably in the analysis of dynamics
[29]. They showed that the spatial arrangement of secondary structures
in a protein is an important component of the low-energy modes, while
the loops connecting these elements play a minor role. Another study
characterised the motions of two proteins with cylindrical symmetry,
the beta-barrel Dronpa and the toroidal DNA-clamp, as ideal structures
and compared them both qualitatively to find similarities in their global
motions [112].

6. Computational tools and frameworks

The simplicity of the ENMs makes them relatively easy to implement
if routines for the necessary linear algebra are provided. This makes it
easy to integrate ENMs with other kinds of structural analysis. Most
model developers also make implementations available online or upon
request. In addition the interested user can choose from a range of
tools and frameworks available for computing and analysing ENMs.
The Molecular Modelling Toolkit [113] and ProDy [114] are libraries
for the programming language Python that support normal mode
decomposition, analysis and visualisation of ENMs. For the statistical
computing software R, ENMs are integrated into packages for analysing
molecular dynamics data like LOOS [115] and Bio3D [116]. AAPT [117]
is a collection of scripts for ENM and principal component analysis
that allows the application of a range of ENMs without requiring famil-
iarity with programming. A range of web servers are also available such
as WEBnma [110], EINemo [118], ANM webserver [119], KOSMOS [120],
NMSim [121], and NOMAD-Ref[122]. These provide a variety of analysis
on ENM normal modes, typically making the analysis accessible for
an audience less experienced with computational analysis. Another
initiative that aims to take ENMs to a wider audience is the software
Maven, provided as a standalone application for analysis and visualisation
of ENMs [123].

Of the web servers, WEBnma is the only one currently supporting
comparative analysis with the use of structural alignment information
along with the submitted structures. It also provides an easy access to
the Bhattacharyya coefficient score. ProDy allows for the comparison of
sequence evolution data (with the implementation of a co-evolutionary
analysis tool Evol) and intrinsic dynamic information from ENMs [124].
The latest releases of Bio3D provide an implementation that provides
the framework for “automated ensemble analysis methods”, which
includes multiple sequence alignments and a selection of similarity
measures and correlations analysis. Amongst the algorithms proposed
for dynamics-based alignment of proteins, the approach of Zen et al.
[111] has also been made available as a web-server [125].

7. Conclusion/perspectives

The use of ENMs for comparative analysis of protein dynamics has
lead to greater understanding of the conservation of dynamics across
structures with different conformations and within a protein family.
Moreover, there have been more and more evidence that comparing
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dynamics is a viable way for gaining greater understanding of the mech-
anisms employed by proteins for their function. Efforts have been made
lately to evaluate the effect of the choice of similarity measures, the
ENM parameter and the structural alignments. The results of these
studies, summarised in this manuscript will be useful for users getting
started on comparing the dynamics of proteins in a wide variety of
settings. We believe that it is important that users are aware of the
potential impact of choices in the different steps of their computational
strategies when performing comparative analysis of protein dynamics,
and advocate for detailed reporting of the latter in scientific publications.
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