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Abstract:

Passive acoustic monitoring is increasingly used to study the distribution and migra-
tion of marine mammals. Marine mammal vocalizations are transient sounds, but the
combined sound energy of a population continuously repeating a vocalization, adds up
to a quasi-continuous chorus. Marine mammal choruses can be identified as peaks in
ocean ambient noise spectra. In the North Atlantic, the fin whale chorus is commonly
observed as peak at 20 Hz. This thesis proposes a method to estimate the distribution
of vocalizing fin whales based on a set of fin whale chorus recordings. This is an ex-
tremely under-determined inverse problem. The method is based on Bayesian inverse
theory and uses simulated annealing to estimate the most likely distribution of sound
sources (vocalizing whales) on a geodesic grid. This includes calculating a transmission
loss matrix connecting all grid nodes and recorders, using an arbitrary sound propagation
model. Two models were successfully implemented: geometrical spreading and the ray
trace model BELLHOP. The inversion method was tested under different scenarios. The
results indicated that an imprecise transmission loss matrix is tolerated by the inversion
method. The accuracy of the method depended mainly on the number and distribution of
recorders. For the Norwegian sea, simulations showed that fin whale chorus inversion is
possible using as few as 12 recorders between Iceland and Svalbard. An inversion based
on data from published fin whale chorus observations indicated realistic winter distribu-
tion patterns. Existing methods to study marine mammal distribution are often confined
to the summer months and a limited area. Future application of the proposed method
admits automatic year-round monitoring of marine mammal distribution on a basin-wide
scale.
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1. Introduction

1. Introduction

Recording and analyzing underwater sound is termed passive acoustic monitoring (PAM)
in the scientific literature (Au and Hastings, 2008). The term passive distinguishes the
method from active acoustic monitoring, where sound signals are emitted actively (exam-
ples are sonars or current measurement devices). Passive acoustic monitoring requires
an array of sound receivers (hydrophones) that are either moored to the sea floor, towed
behind a vessel or drifting freely. This thesis describes a new approach to analyze under-
water sound recordings, based on inverse theory.

Underwater sound recordings contain signals from many different sources, ranging
from breaking waves to marine mammals. The recorded sound signals can be divided
into transient signals and a continuous acoustic background signal, the ambient noise.
In the ocean, most ambient noise stems from motion at the sea surface, such as wave
breaking and oscillating bubble clouds (Carey and Evans, 2011). Increasingly though, hu-
man generated sound from marine traffic and seismic surveys dominates ambient noise
between 25 and 200 Hz (Andrew et al., 2011, Frisk, 2012). Vocalizing marine mammals
are also a source of ambient noise. The combined sound of a population repeating the
same vocalization many times, adds up to a constant marine mammal chorus, that can be
identified as distinct peak in ambient noise spectra. These underwater choruses can be
seen as oceanic analogue to the dawn chorus of birds and insects on land. The analysis
of marine mammal choruses revealed extensive spatial as well as inter- and intra-annual
variation (Burtenshaw et al., 2004, Nieukirk et al., 2012, Menze, 2012).

The majority of PAM studies focus on the analysis of transient sounds from individual
animals (Au and Hastings, 2008, Van Parijs et al., 2009, Mellinger et al., 2007). This
thesis presents a different approach: Instead of determining the position of individual
animals based on their transient vocalizations, the proposed method estimates the distri-
bution of all vocalizing animals based on the chorus they produce. This is a highly under-
determined inverse problem: the number of possible whale locations is much higher than
the number of available recorders. In addition, the source levels and call rates vary be-
tween animals and seasons. To include these uncertainties into the distribution estimates,
a numerical technique based on Bayesian inverse theory will be presented.

The method is developed for the chorus of North Atlantic fin whales (Balaenoptera
physalus, Figure 1), but can be applied to other marine mammal choruses as well. Fin
whales are a highly migratory species, and little is known about their migration patterns
and winter distribution (Víkingsson et al., 2013). Marine mammal distribution is tradi-
tionally studied visually, using observers on ships and aircrafts (Marques, 2009, Thomas
et al., 2006). These surveys require considerable ship-time and personnel and are dif-
ficult to perform year-round (especially in darkness or sea ice). The inversion method
described in this thesis can estimate the distribution of vocalizing fin whales year-round
and on a basin scale. Thereby, the proposed method could close knowledge gaps in fin
whale migration other methods cannot answer.
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1. Introduction

Figure 1: Fin whale surfacing near Svalbard in June 2012

The objectives of this thesis are summarized in the following research questions:

• Can we estimate the distribution of vocalizing animals from a set of chorus (their
combined vocalizations) recordings?

• What are the capabilities and limitations of this method?

• How could it be implemented?

2



2. Marine mammals

2. Marine mammals

The new method can be applied to all marine mammal species that produce a chorus.
Thus this section first introduces marine mammal distribution and acoustics in general
and then focuses on fin whales. The term marine mammals includes cetaceans (toothed
and baleen whales), seals, manatees and even polar bears (Perrin et al., 2009). Of these,
only some baleen whale and seal species produce a marine mammal chorus. A chorus
is only produced once a vocalization is repeated often enough, by enough animals and
at a low enough frequency (due the reduced absorption of low frequency sound waves in
seawater). A marine mammal chorus is a quasi-continuous signal, rendering it impossi-
ble to distinguish the vocalizations of individual animals. Table 1 summarizes the marine
mammal species of which choruses have been observed and lists the respective refer-
ences.

Table 1: Observed marine mammal choruses

Species
Frequency

range
Region References

Fin whales
(Balaenoptera

physalus)
18 - 30 Hz North Atlantic

Simon et al. (2010),
Nieukirk et al. (2012),
Klinck and Nieukirk

(2012)

Fin whales
(Balaenoptera

physalus)

18 - 30 Hz
and 85 -
105 Hz

Southern Ocean

Širović et al. (2004),
Gedamke et al. (2007),
Menze (2012), Dziak

et al. (2015)

Blue whales
(Balaenoptera

musculus)
15 - 25 Hz North Pacific

Curtis et al. (1999),
Burtenshaw et al.

(2004)

Blue whales
(Balaenoptera

musculus)

18 - 30 Hz
and 26 - 27

Hz
Southern Ocean

Širović et al. (2004),
Gedamke et al. (2007),
Gavrilov et al. (2012),
Menze (2012), Dziak

et al. (2015)

Pygmy blue whales
(Balaenoptera

musculus brevicauda)
65 - 75 Hz Southern Ocean Gedamke et al. (2007)

Antarctic minke whales
(Balaenoptera
bonaerensis)

100 - 300
Hz

Southern Ocean Menze (2012)

Leopard seals
(Hydrurga leptonyx)

320 - 350
Hz

Southern Ocean Menze (2012)
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2. Marine mammals

In the ocean it is mainly baleen whales that produce a chorus. They are known for their
extreme body sizes and belong to the top predators of most marine ecosystems (Perrin
et al., 2009). Baleen whales have been exploited extensively in the last centuries, leaving
several species close to extinction (Cressey, 2015). To ensure sustainable management
of marine mammal populations it is necessary to know each species population structure.
Because baleen whales are highly mobile, it has been difficult to distinguish between
different stocks (Delarue et al., 2009, Castellote et al., 2004). Knowledge of migration
patterns and the variability of baleen whale distribution can improve their management.

2.1. Distribution and migration

Baleen whales (Mysticeti) are known for their large scale migrations, that are commonly
described as annual movement between high latitude feeding and low latitude breeding
grounds (Perrin et al., 2009). The reasons for these large scale migrations are subject to
speculation. Possible reasons range from the physiological effects of water temperature
on calves to sea ice avoidance, inherited behavior or the avoidance of predation from
killer whales (Corkeron and Connor, 1999)

The exact distribution and migration patterns depend on each species’ ecological niche.
Baleen whales are most commonly observed in mid and high latitude waters, where they
feed on aggregations of zooplankton or small fish. Baleen whale feeding is only efficient
when the prey density is high enough (Goldbogen et al., 2011, 2007). In high latitude
ecosystems, the spring or summer bloom of phytoplankton is followed by a respective in-
crease in zooplankton biomass (Mann and Lazier, 2013). Utilizing these seasonal peaks
in prey availability is likely one of the major drivers of baleen whale migration and dis-
tribution. Their physiology allows them store large amount of energy as blubber, which
also serves as insulation. This feature allows them to migrate over thousands of kilo-
meters and renders the allocation of dense prey aggregations in their vast habitat a key
element of their life history. For several baleen whales species it has been documented,
that oceanic fronts or shelf slopes affect their distribution (Mauritzen et al., 2004, Ingram
et al., 2007, Joiris et al., 2014). This is likely due to the increased productivity associated
with frontal structures or upwelling along shelf or sea ice edges (Falk-Petersen et al.,
2015).

Most studies on marine mammal distribution and behavior are based on visual surveys,
either from the coast or using shipboard and aerial observers. Distance sampling using
line transects provides statistically sound means to determine animal abundance in a pre-
defined area (Marques, 2009). However, these methods have a low temporal resolution
since surveys are performed over a period of weeks or months. Due to the amount of
ship-time and personnel required to observe the entire North Atlantic, these surveys are
usually held every few years and provide little information on the migration patterns and
intra-annual variation in marine mammal distribution.

With the rise of satellite technologies, tagging studies are increasingly used to inves-
tigate migration routes. A recent study about right whales by Mate et al. (2015) docu-
mented the longest migration routes measured for any mammal so far (22511 km from
Sakhalin Island to the Mexican coast). Tagging studies have proven useful to determine
the behavior and migration patters of individual animals. They provide accurate informa-
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2. Marine mammals

tion on an animals movement, but have the disadvantage of high cost, short sampling
period (in the order of months) and very limited sample size. To study the migration
of an entire population, it seem more feasible to combine visual and acoustic methods.
The next section will introduce how passive acoustic monitoring is used to study marine
mammals.

2.2. Bioacoustics

Marine mammals utilize sound for foraging, orientation and communication. While toothed
whales evolved high frequency vocalizations such as clicks and whistles, most baleen
whales emit pulsed sounds between 10 to 1000 Hz (Au and Hastings, 2008). Seals have
been observed to emit a wide variety of sounds often described as grunts and moans
between roughly 100 and 10000 Hz (Van Opzeeland, 2010). Toothed whales utilize spe-
cialized airs sacs and lips to produce clicks and whistles, whereas the sound production
mechanisms of baleen whales remains largely unknown (Au and Hastings, 2008).

Due to the low frequency of baleen whale vocalizations, their communication range is
very large (hundreds of kilometers) compared to toothed whales. Whether baleen whales
utilize these long transmission paths is seldom know. Due to their low frequency, it is un-
likely that baleen whale use their vocalizations for echolocation. Humpback whales are
known for their extensive acoustic repertoire, that are mainly thought of as male breeding
display but may also serve other functions (Herman et al., 2013). Blue whales exhibit
a far less diverse repertoire, that consists of breeding and feeding calls (Oleson and
Calambokidis, 2007). Blue and fin whales usually emit their calls in pulse trains, repeat-
ing a single call type over hours (Sirović et al., 2007). Fin whale vocalizations will be
discussed in the following section. Payne and Webb (1971) discuss the possibility that
the monotonous calls of blue and fin whales act as long distance ranging signals, to
lure possible mates to prey aggregations. Compared to the complex communication or
echolocation found in other species, blue and fin whales likely use sound simply to find
and attract mating partners in their vast habitat.

Baleen whale vocalizations are commonly recorded using moored or towed hydrophones.
Moored autonomous recorders are increasingly used to record the underwater sound-
scape and marine mammal vocalizations over periods of years (Rettig et al., 2013). After
recovering the moorings, the recordings are manually or automatically scanned for vocal-
izations (Towsey et al., 2013). From the detected vocalizations one can determine when
calling animals are present in the detection range of the recorder. However, one cannot
determine when the animals are absent, since they could simply not vocalize and still
remain in the area.

When the recorder array consists of at least 3 hydrophones, that record the same vocal-
ization simultaneously, the location of the animal can be determined from differences in
the arrival time of the vocalization. This method is commonly termed triangulation (Clark,
1995, Au and Hastings, 2008). Other methods of localizing vocalizing whales utilize the
effects of multipath propagation (Valtierra et al., 2013, Newhall et al., 2012, McDonald
and Fox, 1999). Next to the use of hydrophones, whales have also been tracked using
ocean bottom seismometers (Wilcock, 2012). However to determine marine mammal
distribution it is necessary to know the approximate position of thousands of animals. To
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2. Marine mammals

track that many individuals on an ocean basin scale requires an unrealistically large num-
ber of recorders.

To connect the detection of vocalizations with animal density or distribution estimates,
other approaches exist. These have to deal with the large uncertainties connected with
animal behavior. For example, recording an increasing number of vocalizations does not
automatically imply an increased abundance of whales, but could be caused by an in-
creasing call rate or increasing detection probability (Helble et al., 2013b). Some of the
most important variables to connect acoustic detection with animal abundance are the
source pressure level (SL) of the animals, their call rate (CR) and the probability to detect
the calls (Marques et al., 2013). Helble et al. (2013a) showed that ignoring the detection
probability in passive acoustic surveys can introduce significant biases. The two most
promising methods connecting acoustic detection and animal abundance, are distance
sampling and mark-recapture methods (Marques et al., 2011, 2013, Küsel et al., 2011,
Martin et al., 2013, Ward et al., 2012). However, they rely on recording individual whale
calls. To determine the distribution of an entire population on an ocean basin-scale, this
again requires an unrealistically large number of recorders. In this thesis, I present a
different approach to estimate marine mammal distribution: Not by analyzing individual
vocalizations but the chorus generated by all calling whales.

Depending on the local ambient noise levels from physical and anthropogenic sources,
the marine mammal chorus can then be seen as a peak in recorded ambient noise spec-
tra. Ambient noise spectra are calculated from spectral averages of sound recordings. To
show how a spectrum changes over time, it is commonly visualized as a spectrogram. In
a spectrogram, the time and frequency are represented by the x and y axis and the power
spectral density by the color of each pixel. Figure 2 shows a 3 year long ambient noise
spectrogram from the Southern Ocean containing 3 whale choruses (Menze, 2012). The
horizontal line at 27 Hz is the blue whale chorus, the annually reoccurring line at 98 Hz
the fin whale chorus and the annually reoccurring broad peak between 100 and 300 Hz is
the Antarctic minke whale chorus. The spectrogram shows considerable intra- and inter-
annual variation in the strength of the marine mammal choruses. This is connected to
changes in the distribution and behavior of the vocalizing whales. How to use data from
ambient noise spectra to estimate the distribution of calling whales will be presented in
the methods section.

6



2. Marine mammals

Figure 2: Spectrogram of ambient noise recordings at 66◦S, 0◦E in the Southern Ocean.
X axis represents time, y axis frequency and color the power spectral density
(PSD in dB re 1 µPa2 Hz−1). Sawtooth like pattern in the background repre-
sents noise variation caused by annual change in sea ice cover. Vertical spikes
are caused by storm events and horizontal line represent the different marine
mammal choruses as described in table 1. From Menze (2012).

2.3. Fin whales

Fin whales (Balaenoptera physalus) can be found from high to low latitudes, but are most
common in cold and temperate waters. The global fin whale population can be divided
into a Southern and Northern hemisphere stock, that rarely mix (Perrin et al., 2009).
During industrial whaling both populations were brought close to extinction. A recent
study by Rocha, Jr. et al. (2015) reports that about 874 068 fin whales were killed dur-
ing industrialized whaling between 1909-1999. The Northern hemisphere stock can be
separated into the North Atlantic and North Pacific stock. The management of whale
stocks is an international political effort. Since the habitat of most whale species rarely
falls into the jurisdiction of a single nation, international committees were formed. The in-
ternational whaling commission (IWC) manages whales stocks on a global level. Several
nations surrounding the North Atlantic, founded a separate commission to manage the
marine mammal stocks in their jurisdiction: The North Atlantic Marine Mammal Commis-
sion (NAMMCO). The IWC’s current estimate for the North Atlantic fin whale population
is 26 500 animals (IWC, 2015). The NAMMCO gives a similar number: Between 18,186
and 30,214 whales (Víkingsson et al., 2013). The IWC and NAMMCO divide the North
Atlantic fin whale population into 5 stocks: West Greenland, East Greenland – Iceland,
North Norway, West Norway and Faroe Islands and British Isles, Spain and Portugal
(NAMMCO, 2015, Donovan, 1991). Figure 3 shows the boundaries of the putative stock
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2. Marine mammals

areas. The population structure adopted by the IWC and NAMMCO, is based on visual
surveys and catch data from whaling operations (Donovan, 1991). Given these sparse
data, the stocks are only a rough approximation of the true population structure. A good
example for this, is the fin whale population in the Mediterranean sea. They are thought to
be separate from the North Atlantic stocks (Notarbartolo-di Sciara et al., 2003). However,
an acoustic survey by Castellote et al. (2004), found that fin whales from the Icelandic
stock seem to migrate through the Strait of Gibraltar into the Mediterranean. A genetic
study on the other hand, roughly confirms the separate stocks as adopted by the IWC
and NAMMCO (Bérubé et al., 1998).

Figure 3: Map showing the borders of the putative stock areas as used by the IWC and
NAMMCO. From Donovan (1991).

Since 1988, the NAMMCO conducts visual surveys of the fin whale distribution be-
tween Greenland and Europe (Víkingsson et al., 2013). These surveys found that fin
whale sightings where clustered along the coast of Greenland, the Iceland-Faroe ridge
as well as on the West coast of Svalbard (Figure 4). The surveys were performed using
several research vessels in June and July of each survey year, and indicate relatively sta-
ble summer distribution patterns throughout the years. Víkingsson et al. (2013) estimated
an increase in North Atlantic fin whale abundance from 17 482 animals in 1988 to 29 891
animals in 2001. In the Norwegian sea only, Øien (2004) estimated and abundance of
5,034 fin whales.

Other visual surveys on fin whale summer distribution report fin whales along the Span-
ish coast and in the Bay of Biscay (Hammond et al., 2009), whereas comparatively few
fin whales were sighted along the mid Atlantic ridge (Waring et al., 2008). All of the de-
scribed surveys were performed in the summer months. Very little literature exists on
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2. Marine mammals

sightings of fin whales during the three other seasons. A land based survey by Silva et al.
(2014) on the Azores, sighted fin whales mainly in spring and summer, but also in late
autumn and winter. Fin whales that were tagged in spring off the Azores showed migra-
tory behavior towards East Greenland and Iceland Silva et al. (2013).

Figure 4: Sightings of fin whales during the NASS ship surveys (1987 to 2001). Gray
lines show the survey tracks and the circles fin whale sightings (symbol size is
proportional to group size from 1 to 4+). From Víkingsson et al. (2013)

The mating season of fin whales is between December and February (Perrin et al.,
2009). Their winter distribution, presumably at their breeding grounds, remains largely
unknown. Assuming a simple north-south migration between feeding and breeding grounds
might oversimplify fin whale migration. It has been hypothesized that some populations
do not migrate, or that one populations’ feeding ground is another populations’ breeding
ground (Mizroch et al., 2009). Daylight and weather conditions render visual surveys
difficult during winter, creating a lack of data on the distribution of fin whales during the
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2. Marine mammals

mating season. The calling activity of fin whales, which is mainly observed in winter
(Watkins et al., 1987, Simon et al., 2010, Nieukirk et al., 2012), can help to fill this knowl-
edge gap.

Fin whales emit pulsed vocalizations that have been recorded since the 1960s. Early
underwater acoustic research was mainly led by the US navy, which was highly interested
in this suspicious signal (Nichols, 2005). Watkins et al. (1987) could eventually show that
fin whales and not Russian submarines were the sources of these remarkably regular
sounds. Pioneering work on underwater ambient noise led by Wenz (1962) had already
correctly identified whales as sources of ambient noise at certain frequencies.

Fin whale vocalizations are down-sweeps from 23 to 18 Hz, sometimes accompanied
by a higher frequency down sweep (around 100 Hz) that varies between populations.
However, most energy is contained in the 20 Hz pulse. Figure 5 shows an example fin
whale pulse train and the fin whale chorus. The average fin whale source level has been
estimated as 189 dB re 1 µPa (Weirathmueller et al., 2013, Watkins et al., 1987, Sirović
et al., 2007). The higher frequency component of the call can only be observed under low
noise conditions, since it contains much less energy. Simon et al. (2010) have observed it
around 130 Hz in West of Greenland. In the Southern Ocean it has been observed at 89
Hz west of the Antarctic peninsula (Sirović et al., 2007) and at 98 Hz east of the Antarctic
peninsula (Menze, 2012).

Figure 5: Spectrogram of fin whale pulse train recored in Fram Strait: x axis represents
time, y axis frequency and color the power spectral density. Fin whale calls
visible as down-sweeps from 23 to 18 Hz. Fin whale chorus visible as red band
at 20 Hz.

A study by Croll et al. (2002) in the Gulf of California found that only male fin whales vo-
calize. This supports the hypothesis that fin whale calls serve to attract mating partners,
as proposed by Payne and Webb (1971). They furthermore observed a 1:1 sex ratio and
that the whales foraged on dense patches of krill. Thus their conclusion was that male fin
whales likely vocalize to attract females to favorable feeding locations (dense aggregation
of prey).

The depth at which fin whales vocalize has been described as around 50 m by Watkins
et al. (1987). The depth of the vocalizing animal influences the shape of the acoustic near
field, due to interference with surface reflected sound waves. Weirathmueller et al. (2013)
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2. Marine mammals

modeled this effect for fin whale calls and found a variability of ±6 dB with depth in the
near field. For the basin-scale distances (>100 km) between source and receiver consid-
ered in this thesis, near field interference due to source depth variation seems negligible.

The vocalizations are emitted in regular pulse trains, each lasting between hours and
days (Watkins et al., 1987). The pulses are commonly emitted with a constant inter pulse
interval (IPI). But it has also been observed that the pulse trains alternate between a
shorter and a longer IPI (Watkins et al., 1987). In the North Pacific Watkins et al. (1987)
found IPIs ranging between 7-26 s with a mean of 12.48 s. Further studies showed
that the IPI varies between populations, similar to the high frequency pulse component.
Delarue et al. (2009) found that the IPI recorded in the Gulf of Maine and Gulf of St.
Lawrence differs significantly and supports the notion of distinct populations. However,
defining distinct populations based on their IPI remains difficult. Morano et al. (2012)
found that the IPI of fin whales along the American coast changes seasonally: from 9.6
s in September–January to 15.1 s in March–May. A similar seasonal modulation of IPI
exists in the North Pacific (Oleson et al., 2014).

Fin whale pulse trains have been frequently recorded in the North Atlantic, North Pacific
and Southern Ocean (Nieukirk et al., 2012, Watkins et al., 2000, Širović et al., 2004). The
fin whale chorus (the combined pulse trains of all vocalizing animals) has been recorded
and described in the North Atlantic and Southern Ocean. Figure 6 shows a map of all
published fin whale chorus observations.

Figure 6: Map showing fin whale chorus observations in the Northern (red) and Southern
(blue) hemisphere.

The recorder array used by Nieukirk et al. (2012) monitored the North Atlantic fin whale
chorus with a high spatial resolution. The authors described the fin whales chorus with
a measure termed fin index. The exact method will be discussed in section 5.1. Fig-
ure 7 displays the fin index time series recorded by Nieukirk et al. (2012) using moored
recorders along the mid Atlantic ridge. They found that the fin index is strongest north
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of 32◦N and increased during the late summer and fall months throughout the North At-
lantic. Peak levels were reached in December and January and within the likely mating
period. Simon et al. (2010) found that in the Davis strait (West of Greenland), the fin index
peaked in November and December. The fin index in Davis strait was partly following a
diel rhythm, being stronger during the dark hours and weaker during daylight hours. This
indicates a link between calling activity and feeding. A similar diel marine mammal chorus
rhythm can be found in Antarctic minke whales and is synchronous to the diel vertical mi-
gration of krill (Menze, 2012). The fin index observed by Klinck and Nieukirk (2012) East
of Greenland and in the Fram strait peaked in December and January. The northernmost
fin whale chorus observation has been made by Hope (2013) at 84◦N, deep in the Arctic
sea ice in September 2012.

Figure 7: Fin index observations in the mid North Atlantic by Nieukirk et al. (2012)
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3. Underwater sound propagation

3. Underwater sound propagation

3.1. Acoustic waves

Sound energy in a fluid propagates in the form of pressure waves. These can be de-
scribed with the acoustic wave equation (Equation 1, Lurton (2002)).

∇2p− 1

c2
∂2p

∂t2
= 0 (1)

Here p represent the acoustic pressure, c the sound speed, x, y, z the spatial dimen-
sions and t time. Solutions of varying complexity exist for equation 1. Two simple so-
lutions are plane waves and spherical waves, which also form the basis of the trans-
mission loss models described in section 3.3. When assuming sinusoidal waves in one
dimensional space with constant sound speed, plane waves (Eq. 2) are a solution to the
acoustic wave equation.

p(x, t) = p0e
(iω(t−x

c
)) (2)

Here ω represents the circular frequency. This equation describes that surfaces of con-
stant phase are planes normal to the x direction.

If we on the other hand assume a point source in a homogeneous infinite three dimen-
sional medium, spherical waves are a solution to equation 1.

p(r, t) =
p0
r
e(iω(t−

r
c
)) (3)

These waves propagate simultaneously in all three dimensions. The surfaces of con-
stant phase (wave front) take the form of spheres around the point source. The variable
r represents the radius of this sphere. At ranges far away from the point source, the
curvature of the wave front can be neglected. This allows us to approximately describe
spherical waves using the plane wave equation.

The recording of underwater sound involves the use of hydrophones, that act as sound
receivers. The sound pressure (emitted by a sound source) that arrives at a receiver is
described by the sonar equation:

RL(xr, yr, zr, t, f) = SL(xs, ys, zs, t, f)− TL(xs, ys, zs, xr, yr, zr, t, f, τ)
−NL(xr, yr, zr, t, f, τ)

(4)

In this equation, RL stands for received sound pressure level, SL for the source sound
pressure level, TL for the transmission loss and NL for the noise level at the receiver.
The variables xs, ys, zs stand for the source position, those with index r for receiver posi-
tion, t represents time, f frequency and τ varying environmental conditions (for example
the sound speed profile). A wave propagating though the ocean is subject to attenua-
tion, in the context of sound sources and receivers this is termed transmission loss. It is
caused by absorption, scattering, refraction and reflection of the acoustic wave.

In sea water, absorption is an effect of the viscosity of water, chemical reactions and
heat loss (Lurton, 2002). To calculate the absorption loss depending on frequency, tem-
perature, salinity and depth the empirical model of Francois and Garrison (1982) is widely
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3. Underwater sound propagation

used. It describes how the viscosity of sea water, magnesium sulfate and boric acid ions
absorb the energy of an acoustic wave. For the low frequencies considered in this thesis,
the relaxation of boric acid ions and viscosity are the main causes for absorption. Figure 8
shows the absorption coefficients for sea water over frequency. In general, the absorp-
tion coefficient increases with increasing frequency. In this thesis the Francois-Garrison
model is part of all transmission loss estimates.

Figure 8: Absorption coefficients for sea water over frequency: for three temperatures
values (0,10 and 20 ◦C), a salinity of 35 PSU and a pH of 8. From Francois and
Garrison (1982)

In addition to absorption, sound energy is attenuated by reflection and refraction. Re-
flection occurs at the sea surface and the sea floor, but can also occur within the water
column due to convex sound speed profiles.

The sound speed c in the ocean is not a constant, but a function of temperature, salinity
and pressure. As with absorption, empirical models have been derived from measure-
ments, leading to a standardized UNESCO reference model. In general sound speed
increases mostly with temperature and pressure (Lurton, 2002). Salinity has a minor but
not negligible effect. In contrast to a medium with uniform sound speed, acoustic wave
fronts in the ocean will thus not have the idealized spherical or plane shape. A sound
wave is refracted when passing regions of variable sound speed. If the sound speed gra-
dient is large enough this can even lead to the total internal reflection of a sound wave.
This process leads to the formation of so called sound channels, that are located at the
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depth of sound speed minima (Lurton, 2002). A wave entering such a channel will al-
ways be reflected back into it. This leads to reduced interaction with the sea floor and
sea surface, and thus allows sound waves to propagate over large ranges and with lit-
tle attenuation. In low and mid latitude oceans with warm surface layers a deep sound
channel exists. It is often called the SOFAR (sound fixing and ranging) channel. In high
latitude oceans, especially in ice covered regions, the sound speed minimum is located
at or near the sea surface. This leads to a surface channel, where the wave fronts are
repeatedly reflected towards the sea surface. Figure 9 illustrates the path of waves being
trapped in a surface channel.

Figure 9: Propagation paths (rays) of plane waves given a sound speed profile with the
sound speed minimum at the surface. The sound speed profile is depicted to
the right. From Urick (1983).

When the wave front hits the sea surface it is reflected according to Snells law (Lurton,
2002). However, a part of the sound energy is also scattered and absorbed by the rough
sea surface or sea ice. How much the wave amplitude is reduced after each reflection
varies with frequency and can be described with a reflection coefficient. Similarly to the
absorption coefficient, higher frequencies are attenuated more than lower ones. Thus
wave reflection at the sea surface or underside of sea ice, acts as a low pass filter (Dia-
chok, 1980). The magnitude of the transmission loss due to surface reflection changes
with sea state and sea ice conditions. Reflection also occurs at the sea floor. However
the reflection coefficient varies greatly with the material and structure of the sea floor.
Sediment that overlies the base rock can have similar sound speeds to water (Lurton,
2002). Depending on the structure of the sea floor, very complex wave propagation paths
will occur. Implementing these correctly is one of the many challenges in underwater
sound propagation modeling.
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3.2. Geometrical spreading transmission loss

One of the simplest ways to calculate transmission loss is geometrical spreading. The
attenuation due to sound speed variation as well as sea floor and surface reflection are
neglected. It is assumed that initially, the sound wave propagates spherically according
to equation 3. The intensity of the wave is defined as power P passing through a unit
area. Since energy is conserved, the intensity I of the wave will decrease with increasing
radius of the sphere:

P = 4πr2Ir
P1 m = Pr
Ir
I1m

= 4πr2

4πr21m

(5)

If the absorption coefficient α is added and the intensity ratio is converted to the decibel
scale, the equation for spherical transmission loss becomes:

TL(r) = 20 log(
r

r1m
) + αr (6)

This equation roughly holds until the sound wave hits the sea floor and sea surface.
From then on it can no longer propagate spherically but is trapped and forced to propa-
gate in cylindrical form. The radius to where the wave propagates spherically is described
by the radius rcritical. To calculate the transmission loss for ranges larger than rcritical,
one needs to assume cylindrical spreading. This results in the following equation where
r can be a range larger than rcritical (Lurton, 2002):

TL(r) = 20 log(
rcritical
r1m

) + 10 log(
r

rcritical
) + αr (7)

This simple description of the initial spherical and then cylindrical spreading of an
acoustic wave in the ocean is a basic but still useful transmission loss estimate.

3.3. Ray trace sound propagation modeling

To include the effects of bathymetry and variable sound speeds on transmission loss,
more sophisticated sound propagation models are required. A commonly used class of
models for this purpose, are ray trace models (Lurton, 2002, Hovem, 2013). The key
assumptions of raytracing is, that the wave front can be approximated as a fan of rays
emerging from the source (Porter and Liu, 1994). Figure 9 shows an example of multiple
ray paths. Each of these rays represents the path of a plane wave (Eq. 2). The path each
ray takes is defined by Snells law of refraction and the sound speed gradient. If a ray hits
the sea floor or sea surface, it is reflected according to Snells law and a specific reflection
coefficient. The resulting sound pressure field can then be calculated by combining the
sound pressure from each ray. Next to estimating the transmission loss, this method can
also be used to calculate the impulse response for any given location (Porter and Liu,
1994).

Most available raytracing models are range dependent: They can calculate the sound
pressure field depending on depth and radius from the sound source. Fully 3 dimen-
sional raytracing models are theoretically possible, but not common due to their heavy
computational requirements (Lurton, 2002). Instead it is common to rotate the 2-D slices
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created by a range depended model, over 360◦ around the sources. This approach is
often termed 2xN dimensional modeling. Unfortunately this methods does not implement
ray reflections in the horizontal axis and is thus likely inaccurate around shelf slopes and
sea mounts (Sturm et al., 2008). The rays interaction with the sea floor can be modeled
with varying complexity, depending on the sea floor’s layering and properties. Often it
is simply assumed as acousto-elastic half space with constant sound and shear wave
speed.

Next to raytracing, other types of underwater sound propagation models exist. A large
family of models is based on solving the wave equation using normal modes. These
models can be used to simulate spreading of sound around islands and sea mounts, but
rarely include range depend sound speed (Heaney et al., 2013, Ballard, 2012). The most
recent approaches include parabolic equation and fast field models, that have the advan-
tage of being very accurate, but the disadvantage of heavy computational requirements
(Lurton, 2002). For the purpose of estimating the transmission loss between vocalizing
fin whales and a set of recorders, ray trace models are considered sufficient enough (Mc-
Donald and Fox, 1999).
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4. Inverse theory

4.1. Bayesian inversion

Inverse theory describes how to estimate a set of unknown parameters from indirect
measurements (Tarantola, 2006). It is almost always impossible, to obtain a perfect set of
measurements describing all parameters of a system. We will, for example, never be able
to record or sight all whales in the ocean. To estimate the whale distribution, an inverse
theory which interprets the few recordings or sightings available is needed. The first
step towards solving an inverse problem is, to know how the unknown parameters and
observed data are connected. This part is termed the forward operator or forward model
(Tarantola, 2004). The forward operator g describes which data vector d is produced by
a parameter vector m:

d = g(m) (8)

The forward operator g could for example stand for an acoustic propagation model,
m for a set of sound sources and d for sound pressure recordings. For many physical
problems it is not possible to find the inverse of g directly (Snieder and Trampert, 1999).
This can be caused by the mathematical formulation of the forward problem or a lack
of data d. In the case of marine mammal choruses we deal with sound pressure from
many dispersed sources, so that many source combinations can produce similar sound
pressure observations.

A special case occurs if the forward problem is linear, then g(m) is a function of the
type d = Gm (Tarantola, 2004). This simplifies the estimation of the correct solution to
the inverse problem. However, even if the forward problem can be expressed as a set
of linear equations, most inverse problems are ill-posed and ill-determined (Snieder and
Trampert, 1999). This means that there is not enough data points d as well as contradict-
ing data, to determine a unique solution m. Linear algebra determines that for a set of
linear equations there are either infinitely many, one or no solutions at all. Similar dilem-
mas can be found in nonlinear inverse theory.

Most progress in solving extremely under-determined inverse problems has been made
in the field of geophysics (Snieder and Trampert, 1999). In this thesis I will follow the
Bayesian approach described by Tarantola (2004). It embraces the fact, that the ob-
served data and forward model are uncertain and can be described using probability
distributions. Calculating with probability distributions has the advantage, that Bayesian
reasoning can be applied (Tarantola, 2004, Allmaras et al., 2013). This means that we
can work with a priori (independent of observation, before reasoning) and a posteriori
information (information acquired by observation, after reasoning).

The a priori information feeds into how the forward model is designed and describes
the a priori probability distribution over the parameter space. The solution of the inverse
problem is to find the posterior probability of the parameters m given the data d. To sim-
plify the notation, I follow Tarantola (2004) and define ρ(m) as prior probability distribution
over the parameter space and σ(m) as posterior probability distribution over the param-
eter space. Figure 10 shows a general scheme of an inverse problem including Bayesian
reasoning. The steps to solve it include defining the a priori distribution ρ(m), defining a
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suitable forward model to calculate dsimulated from m, appraising how well the simulated
data dsimulated fit to the observed data dobserved and estimating the likely forward model
parameters m given the observed data (the posterior distribution σ(m)).

Figure 10: General formulation of an inverse problem including Bayesian reasoning.
Adapted from Snieder and Trampert (1999).

Every combination of forward model parameters m produces corresponding data as
given by d = g(m). If we assume our forward model to be perfect, data and model
will be connected by a line in the data and parameter space, as shown in figure 11.
Since knowing the perfect forward model is unrealistic, a better approach is to describe
the output of the forward model with Gaussian uncertainties (with the standard deviation
s). The forward model and data are then connected by the joint probability distribution
θ(d|m), that describes the probability of the data d for a given set of parameters m. It is
shown in the right panel of figure 11.

Figure 11: Comparison between a perfect forward model d = g(m) (left panel) and a
forward model that produces the probability distribution θ(d|m) with the stan-
dard deviation s (right panel). X axis shows model parameter value, y axis
data value. From Tarantola (2004).
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The observations are given as probability distribution in data space: ρ(d). Normally
the observed data has a very narrow probability distribution, so that it is often assumed
perfect. Together the prior information in parameter and data space form the joint prior
probability distribution ρ(d,m). Figure 12 illustrates ρ(d,m) as 2-D Gaussian distribution
in the left panel. In this graphical example, model and data space have one dimension
each. The marginal prior probability distribution in data and parameter space (ρ(d) and
ρ(m)) are shown as one dimensional Gaussian to the left and below the panel.

Figure 12: General representation of a Bayesian solution of an inverse problem: x axis
show model parameter value, y axis data value. The left panel displays the
joint prior probability distribution ρ(d,m), the middle panel displays θ(d,m)
(the probability the forward model assigns to the data d for a given parame-
ter m), and the right panel displays the joint posterior probability distribution
σ(d,m). From Tarantola (2004).

The joint posterior probability distribution σ(d,m) in data and parameter space can be
calculated by combining the prior information ρ(d,m) with the information we have about
the forward model θ(d|m). It is the conjunction of ρ(d,m) and θ(d|m), which can be
seen in the right panel of figure 12 (Tarantola, 2004). The solution of the inverse problem,
the posterior probability distribution over the parameter space σ(m), is then a marginal
probability distribution. It is shown below the right panel of figure 12 and can be calculated
using the following equation (Tarantola, 2004):

σ(m) = kρ(m)

∫
D

ρ(d)θ(d|m)

µ(d)
dd (9)

Where D represents the data space, k a normalization constant and µ(d) the homoge-
neous probability density over the parameter space. If the parameter space is linear, the
term

∫
D
ρ(d)θ(d|m)

µ(d) dd can be replaced by the likelihood function L(m) (Tarantola, 2004).
It describes how well the parameters m fit to the data d, so that equation 9 becomes:

σ(m) = kρ(m)L(m) (10)

Here k is again a normalization constant. The likelihood function L(m) is commonly ex-
pressed as exponential of the negative misfit function S(m) (Mosegaard and Sambridge,
2002):

L(m) = ke−S(m) (11)
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The uncertainty of the forward model (the standard deviation s) needs to be considered
when determining the misfit between observed and simulated data. The misfit is a mea-
sure of distance between the observed and simulated data points, also referred to as a
norm in the literature (Tarantola, 2004). The general equation for the misfit S(m) is:

S(m) =
1

p

ndata∑
i

|gi(m)− di|p

spi
(12)

Where p is the order of the norm and s the standard deviation of the forward model.
It is common to use l2 norm (p = 2) which is the sum of squared errors (SSE) between
true and simulated data (Tarantola, 2004). This has the advantage of being robust to the
influence of outliers. However, it has the disadvantage of being sensitive to the location
of the data points in data space, a property termed stability. The l in the description of
a norm stands for "least". Other measures of distance between data points change the
order of the norm (between l0 to l∞). In this thesis the misfit is determined using the l2
norm:

S(m) =
1

2

ndata∑
i=1

(gi(m)− di)2

s2
(13)

To find the most likely parameters (for example the most likely distribution of vocalizing
whales) that explain the observed data d, one needs to find the maximum of the posterior
distribution σ(m), which equals finding the maximum of the likelihood function (Eq. 11):

max(σ(m)) = max(e−S(m)) (14)

This approach is termed the maximum likelihood method (Allmaras et al., 2013). For
well determined linear systems, analytical solutions to this problem exist. However for
under-determined inverse problems (as most real world problems are), finding the maxi-
mum of σ(m) is not a trivial task. Numerical techniques that sample the likelihood func-
tions are needed. The next section presents an example problem with two forward model
parameters to illustrate the misfit and likelihood functions.
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4.2. Example problem with 2 parameters

This sections presents the misfit and likelihood functions for a simplified sound source
and receiver problem. The example problem consists of 2 sound sources at fixed loca-
tions and a varying number of recorders. The emitted and received sound signals are
assumed constant, so that time can be neglect. To simplify the problem, latitude, lon-
gitude and depth of the sources and receiver are ignored and range is the only spatial
dimension. The locations of the sound sources are at 50 and 80 km range and their
source levels are 50 and 70 dB re 1 µPa respectively. Two recorder scenarios are used:
One where 10 recorders are distributed evenly over the range, and another where 100
recorders are also distributed evenly over the range. The received level the recorders
measure is calculated using the sonar equation (Eq. 4) and the cylindrical spreading
transmission loss equation (Eq. 7). Figure 13 shows the locations as well as source and
received levels for the two sources and recorder scenarios.

Figure 13: Example of parameter estimation problem including two fixed sources and
cylindrical transmission loss over range. Blue dots represent the true source
level for each source, lines with dots the received levels for a recorder at that
location.

This example can now be reformulated as an inverse problem. The observed data d
is given by the received levels of the recorders and the unknown parameters m are the
source levels of the 2 sources. This means the likelihood and misfit functions will have 2
dimensions and are easy to visualize. The forward model is given by the sonar equation
(Eq. 4), that calculates the received level for each recorder, and the cylindrical spreading
transmission loss equation (Eq. 7). This inverse problem is well-determined: There are
more data points d (recorders) than parameters m (source level).

The misfit and likelihood values for each parameter combination between 0 and 100
dB re 1 µPa (source level combination) are calculated using equation 13 and 11. The
forward model standard deviation is assumed as 5 dB. Figure 14 shows the misfit and
likelihood functions for both the 10 and 100 recorder scenario.
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Figure 14: Misfit and likelihood functions for the example problem: x and y axes show
the SL of each source, Z axis and color the value of the misfit and likelihood
function. Plots a and c show the likelihood and misfit for the 10 recorder sce-
nario, plots b and d for the 100 recorder scenario. The white and black dots
represent the minimum and maximum of the misfit and likelihood function. It
is located at the true values of the parameters (true source levels).

The misfit functions show little optically discernible difference between the 10 and 100
recorder scenario. The likelihood functions however, show a more pronounced peak at
the true source level values when 100 instead of 10 recorders are used. For both the
10 and 100 recorder scenario, the maximum of the likelihood function can be correctly
identified. Using 10 instead of 100 recorders, adds regions of quasi-constant likelihood
to the likelihood function. For this example problem, having a smaller number of obser-
vations d reduces the gradients of the likelihood functions. This will render it difficult to
find the maximum of the likelihood functions with gradient based methods. The effect of
forward model uncertainty on the likelihood function is shown in figure 15. It can be seen
that the peak of the likelihood function becomes broader with increasing forward model
uncertainty. However, the maximum of the likelihood function stays identifiable up to 20
db forward model standard deviation.

Since the example problem had only two parameters, we could easily calculate the
misfit and likelihood values for each parameter combination (1002 combinations). This
will become impossible for inverse problems with many parameters. Unfortunately most
real world inverse problems include hundreds of parameters. Instead of calculating the
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likelihood of all parameter combinations one can resort to finding the maximum of the like-
lihood function using numerical techniques. The next section describes these techniques.

Figure 15: Comparison of likelihood function using 100 recorders, the l2 norm and differ-
ent forward model uncertainties: x and y axes show SL of each recorder, z
axis and color the value of the likelihood function. Black points mark the true
parameters and maximum of likelihood function.

4.3. Monte Carlo Markov chains

A useful method of finding the maximum of the posterior distribution σ(m), when the pa-
rameter space has many dimensions, are Monte Carlo Markov chains (Metropolis et al.,
1953). The term Monte Carlo stands for the technique of describing a probability distribu-
tion with a set of discrete samples (Mosegaard and Sambridge, 2002), whereas Markov
chains describe a process where a transition from one state to another can be defined
with a probability (Tarantola, 2004). In the context of Bayesian inversion, this means that
a set of forward model parameter samples are drawn from the prior probability distribution
ρ(m). Each of these samples is a parameter vector m (a solution of the inverse problem).
The samples are moved iteratively across parameter space to find the parameter values
with maximum likelihood. For each iteration, the parameters are randomly altered. The
change is accepted if it increases the likelihood of the solution, otherwise it is neglected
and a new random change is produced. The consequent movement of the Monte Carlo
Markov chain (MCMC) through parameter space, is commonly termed a random walk
(Mosegaard and Sambridge, 2002). When the likelihood function has only one maximum
(similar to the 2 parameter example), the MCMC will find it after a sufficient number of
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iterations. Figure 16 displays an example random walk across the parameter space of
the two parameter example problem.

Figure 16: Monte Carlo Markov chain performing a random walk through the parameter
space of the example problem from section 4.2: x and y axis represent the
two parameter space dimensions, z axis and color the value of the likelihood
function. Black dots show the location of the Monte Carlo Markov chain at
each iteration and arrows indicate the direction of its movement.

With the Monte Carlo Markov chain method it is possible to find the maximum of a
function with hundreds of dimensions. However, many functions have more than one
maximum. One can then distinguish between the global maximum and other local max-
ima (Mosegaard and Sambridge, 2002). To find the maximum likelihood point, we need to
identify the global maximum of the likelihood function. The key to finding the global max-
imum is to determine which moves of the MCMC are accepted and which are rejected.
This is not a trivial task: If one only accepts increases in likelihood (better solutions) and
neglects all moves that lead to a likelihood decrease (worse solutions), the MCMC will
get "stuck" at a local maximum.

A commonly used acceptance rule is given by the Metropolis-Hastings algorithm: it
always allows increases in likelihood, and randomly accepts moves that decrease the
likelihood (Metropolis et al., 1953). This results in a constant movement of the MCMC
through parameter space and prohibits the MCMC from getting stuck at local maxima.
After a sufficient number of iterations the MCMC will converge towards the global maxi-
mum. However, when an inverse problem is extremely under-determined, the likelihood
function can have large regions of almost equal likelihood as well as many local maxima.
This renders it difficult to find global maximum using the Metropolis-Hastings algorithm
(Mosegaard and Vestergaard, 1991). For these inverse problems, an algorithm termed
"simulated annealing" describes a useful acceptance rule.

The term annealing stems from metallurgy and describes the gradual cooling of a
metal, which results in metals with small grain size and high ductility (Kirkpatrick et al.,
1982). In the context of Monte Carlo Markov chains, simulated annealing is a modifi-
cation of the Metropolis-Hastings algorithm (Kirkpatrick et al., 1982). In this case, the
temperature is used to determine the acceptance of moves that decrease the likelihood.
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Similar to metallurgic annealing, the temperature is reduced exponentially over the itera-
tions (time). In the beginning of the algorithm’s run-time, the MCMC will move randomly
through parameter space. However, over the iterations the acceptance rule is altered,
and will eventually only accept moves that increase the likelihood. Analogous to the cool-
ing of metal, the variable controlling the acceptance rule is termed the temperature. It
has been shown by Granville et al. (1994) that this algorithm will converge to the global
maximum within a finite amount of time. For the extremely under-determined inverse
problems found in geophysics, parameter estimation with simulated annealing is widely
used (Mosegaard and Vestergaard, 1991).
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5. Methods

This section will initially describe how to measure the fin whale chorus received level,
and then explain the inversion method used to estimate fin whale distribution from these
measurements.

5.1. Measuring chorus received level

5.1.1. Processing of spectral averages

The major part of a recorded underwater sound signal is noise (Lurton, 2002, Carey and
Evans, 2011). This means, that the ambient noise spectrum can be calculated as power
spectral density (PSD) of a recording (Duennebier et al., 2012). The power spectral den-
sity describes how the power of a signal is distributed over frequency. Basically, it can
be expressed as the squared Fourier transformation of a time series, divided by the time
series length (Smith, 2003). Multiple methods exists to calculate the PSD, but Welch’s
method (Welch, 1967) is the most used (Smith, 2003). It divides a time series into a sub-
set of overlapping sections (Hamming windows) and then averages their squared Fourier
transformations. All power spectra presented in this thesis have been calculated with this
method.

In the literature, the strength of the fin whale chorus is often described with a measure
termed the fin index (Nieukirk et al., 2012, Klinck and Nieukirk, 2012, Simon et al., 2010).
Nieukirk et al. (2012) defines the fin index as the sum of the normalized PSD between
fmin = 19.0 Hz and fmax = 22.0 Hz:

Fin index(t) =

fmax∑
fmin

PSD(t, f)− PSDmedian(t) (15)

Here PSDmedian describes the median PSD between 0 and 55 Hz (Nieukirk et al.,
2012). The sound pressure described by the fin index contains energy both from the
fin whale chorus and other noise sources. This renders it unsuitable for an inversion.
Instead, a different method is proposed to calculate the received level of the fin whale
chorus. It is based on Parsevals relation (Eq. 16, Smith (2003)). This relation states that
the energy of a signal in the time domain (x(t)) equals its energy in the frequency domain
(X(t)). ∫ ∞

−∞
|x(t)|2dt =

∫ ∞
−∞
|X(f)|2df (16)

Every underwater sound recording will contain energy from biotic, abiotic and an-
thropogenic sources. In the time domain we cannot differentiate between these noise
sources. However, in the frequency domain we can utilize the fact that marine mammal
choruses are usually confined to a narrow frequency band. From Parcevals relation, we
can derive the recorded sound pressure for a given frequency band as:

precorded =

√∫ fmax

fmin

FFTrecorded(f)df (17)
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Here FFT stands for the Fourier transformation of the sound pressure signal. For the
discrete values of the PSD, the integral can be written as sum over the desired frequency
band:

precorded =

√√√√fmax−fmin∑
i=fmin

PSDrecorded(f) (18)

To now calculate the chorus sound pressure, we need to subtract the abiotic sound
pressure from the recorded sound pressure. It can be interpolated from the PSD of
frequency bands slightly below and above the chorus frequency band. In this thesis it was
interpolated with an 8th degree polynomial from the recorded spectrum (excluding the fin
whale chorus band between 15 and 25 Hz). Figure 17 shows an example ambient noise
spectrum with distinct fin whale chorus peak. The interpolated abiotic PSD is displayed
in red.

Figure 17: Spectrogram and ambient noise spectrum of a recording taken on the
3.10.2008 in Fram strait. Fin whale chorus is visible as a red band at 20
Hz in the spectrogram (upper panel). In the ambient noise spectrum, the fin
whale chorus is visible as a peak at 20 Hz (lower panel). Here the black
line represents the recorded spectrum and the red line the interpolated abiotic
spectrum.
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After determining the abiotic sound pressure, the chorus sound pressure and respec-
tive chorus received level can be calculated as follows:

pchorus = precorded − pabiotic (19)

RLchorus = 20 log10(pchorus) (20)

How much the chorus differs from the abiotic noise is defined by the chorus signal-to-
noise ratio (SNR):

SNRchorus = 20 log10(precorded)− 20 log10(pabiotic) (21)

The chorus signal-to-noise ratio gives similar values to the fin index introduced by
Nieukirk et al. (2012). Both describe the intensity of the fin whale chorus relative to the
abiotic noise. As an example, the next section presents the fin whale chorus recorded by
a hydrophone array in Fram strait.

5.1.2. Example recordings from the DAMOCLES array

The DAMOCLES acoustic array was moored in Fram strait (Figure 18) between 2008
and 2009 (Sagen et al., 2010b, Mikhalevsky et al., 2015). DAMOCLES stands for: Devel-
oping Arctic Modeling and Observing Capabilities for Long-term Environmental Studies.
The array consisted of a sound source that emitted 90 s sweeps between 200 and 300
Hz and a set of 8 hydrophones in a vertical string. The recording unit, the Simple Tomog-
raphy Acoustic Receiver system (STAR), sampled with 1000 Hz. The recordings were
kindly provided by the Nansen Environmental and Remote Sensing Center. The original
purpose of the acoustic array was to monitor the mean ocean temperature of Fram strait
(Sagen et al., 2008). In this thesis however, the recordings are used to calculate the fin
whale chorus received levels.

Figure 18: Map showing the location of the DAMCLOES hydrophone array as a red dot.

The STAR unit recorded 100 s snippets every 3 h. However, due to technical problems
many recordings were either missing, too short or contained electronic noise. These
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recordings were sorted out on the basis of their low pass filtered amplitude (electronic
noise had unrealistically high amplitude). In the remaining recordings, visual analysis
revealed sparse occurrence of fin whale calls, but reoccurring presence of the fin whale
chorus. The ambient noise PSD was calculated from the first 10 s of each recording
using Welch’s method (Welch, 1967) with a 1 s window length. This results in a frequency
resolution of 1 Hz. The consequently obtained ambient noise spectrogram can be seen
in figure 19. The fin whale chorus can be seen as a horizontal band at 20 Hz between
August and April. In June and July increased noise levels from seismic surveys dominate
the spectrum between 10 and 100 Hz. This agrees with the analysis of recordings from
Fram strait by Moore et al. (2011) and Klinck and Nieukirk (2012).

Figure 19: Longterm spectrogram of ambient noise recorded by the DAMOCLES tomog-
raphy array, PSD of 10 s snippets using Welch’s method with 1 s window
length, 50 % overlap. Fin whale chorus visible at 20 Hz.

The fin whale index, chorus received level and signal to noise ratio were calculated
from the ambient noise spectra as described in the previous section. The results are dis-
played in figure 20 and indicate that the fin whale chorus is detectable from September to
February in the Fram strait. Peak chorus received levels are reached in November. The
few fin whale chorus received level observations larger than 100 dB re 1 µPa after De-
cember 2008 are likely caused by individual vocalizing whales near the recorder. The fin
index shows different patterns than the chorus received level. Upon closer examination,
it becomes evident that some patterns in the fin index correspond to an increase in signal
to noise ratio. Whilst other patterns correspond to an increase in chorus received level.
This demonstrates that the method used to describe a marine mammal chorus, signifi-
cantly influences the results and interpretation of a study. Variation in signal to noise ratio
might explain why the fin index varies strongly between 2 close recorders in the study of
Simon et al. (2010).

For the inversion of marine mammal chorus observations, it is necessary to calculate
the chorus received level and not the fin index. The fin index obtained from the DAMO-
CLES array differs from observations by Klinck and Nieukirk (2012). They observed fin
index values between 0 and 3. This could either be caused by inter-annual variations, or
differences in the way the fin index was calculated.
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Figure 20: Time series of fin whale chorus recorded by the DAMOCLES array.

31



5. Methods

5.2. Overview of inversion method

The aim of the inversion method is to find the most likely distribution of vocalizing fin
whales, for a given set of chorus received level observations. Therefore we need to
describe the unknown whale distribution with a set of parameters m. The data d is a vec-
tor describing the received levels of the fin whale chorus recorded at different locations:
RLobserved. It could for example be (in dB re 1 µPa):

d = RLobserved = [93.45, 95.34, 91.45, ... 94.28] (22)

The inversion method can be divided into two processes: The forward model g(m)
and the parameter estimation algorithm. Combined they form the inversion algorithm.
The flowchart in figure 21 shows the basic structure of the inversion algorithm. All input
variables (received level data, a priori information and auxiliary variables) are displayed
in yellow. The modules describing the forward model are displayed in blue, whereas the
parameter estimation modules are shown in gray and white. The inversion algorithm uses
Monte Carlo Markov chains and simulated annealing (introduced in section 4.3) to find
the maximum of the posterior distribution (max(σ(m))). The output of the inversion al-
gorithm is a set of parameters, that are solutions to the inverse problem. The most likely
parameters (corresponding to the maximum of the posterior distribution) can be averaged
from these solutions. A detailed discussion of the different modules will be given in the
following sections.

All code developed for this thesis was written in Matlab 2014b. The source code can be
found in the Appendix. Several functions are also available as binaries for Windows and
Linux. Due to the high computational effort of the acoustic propagation model and inver-
sions, most computations were run on a Unix cluster owned by the University of Bergen.
However all software is also able to run on the 2 cores of a normal consumer computer.
Future implementation of the inversion algorithm in C++ or Fortran will likely reduce the
computational costs.

32



5. Methods

Figure 21: Flow chart showing the basic functionality of the inversion algorithm. Yellow
boxes represent input variables, green boxes inversion results, blue boxes the
forward model and the gray box the parameter estimation algorithm
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5.3. The forward model

The forward model calculates the received level (data d) for a given fin whale distribution
(parameters m):

g(m) = RLsimulated (23)

From the sonar equation (Eq. 4) we know that the received sound pressure level is
influenced by a large number of factors. Firstly, the source level and source location have
a large influence on the received levels. Secondly, the transmission loss is not only in-
fluenced by the source and receiver locations, but also a large number of environmental
variables. The most important are the sound speed field, sea floor shape and properties,
sea surface roughness, sea ice and bubble clouds. Additionally the RL varies with time.
One can hardly include all of these parameters correctly into an efficient forward model.
Instead several assumptions are necessary.

The first assumptions concerns time. As will be shown in the following section, we can
assume a steady state situation in which the source level and received level are constant
over the recorded period. The quasi-continuous nature of the fin whale chorus arises due
to the many sources involved, the multi-path propagation that spreads impulsive signals
over time, and the monotonous nature of fin whale pulse trains. For simplification, the
following sections address vocalizing whales as sound sources.

The second necessary assumption is to discretize the parameter space in which the
algorithm searches for likely parameters. It is also termed the search space in literature
(Tarantola, 2004). For simplification, the depth of a vocalizing whale is neglected. This
is deemed appropriate since the source depth mainly affects transmission loss in the
acoustic near field (Weirathmueller et al., 2013). The possible fin whale locations are
furthermore reduced to nodes on a geodesic grid (discussed in section 5.3.2) and the
possible source levels limited by a minimum and maximum value. Then a TL matrix
connecting all possible source and recorder locations is calculated using an arbitrary
propagation model.

5.3.1. Substitution of sound sources

In the forward model, we assume a steady state and substitute the impulsively vocalizing
whales with continuous sources. Due to multi-path propagation, the initially impulsive
signal emitted by a vocalizing fin whale will become a quasi-continuous signal several
hundred kilometers away from the source. This process was modeled with the raytracing
model BELLHOP for an example scenario involving a fin whale north of Iceland (Porter
and Bucker, 1987, Porter and Liu, 1994). Figure 22 shows the source location and the
section along which the sound propagation was modeled. The bathymetry was extracted
from the ETOPO world topography dataset, and the sound speed from the annual mean
world ocean atlas climatology dataset (Amante and Eakins, 2009, Dushaw et al., 2013).
The source depth was 25 m and the impulse response was calculated for 50 receivers at
100 m depth along the section. The bathymetry and sound speed along the section as
well as source and receiver locations are displayed in figure 23.
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Figure 22: Map of section for which impulse response was modeled, the red star repre-
sents the sound source.

Figure 23: Bathymetry and sound speed of section for which impulse response was mod-
eled. Bathymetry extracted from ETOPO-1 dataset, Sound speed from world
ocean atlas mean climatology dataset. Red star represents the location of the
sound source and the white circles the receiver locations.

The ray trace underwater sound propagation model BELLHOP (Porter and Liu, 1994)
calculates the range depended sound-field using the approach described in section 3.3.
It can calculate the impulse response and transmission loss over range and depth. One of
its advantages is the possibility to include range dependent bathymetry and sound speed
profiles. Ray trace models such as BELLHOP are deemed most accurate above a few
hundred Hz (Porter and Bucker, 1987). However, at frequencies lower than 100 Hz they
still indicate reliable results for impulsive signals such as fin whale calls (Hovem, 2013,
Hovem and Korakas, 2014).
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BELLHOP calculates the impulse response for up to 500 arrivals and thus gives a
good estimate of the true impulse response. However, due to this limitation, the modeled
impulse response does not resolve the long tail of low amplitude echoes very well. Fig-
ure 24 shows the arrival time and transmission loss of each eigenray (arrival) over the
range. It can be seen that the impulse response spreads out over more than 12 s already
100 km away from the sound source. As the signal passes a set of sea mounts at a
range of 400 km, many eigenrays are filtered out. At more distant ranges, most eigenrays
have a very low amplitude, with two strong eigenrays visible at ranges larger than 800 km.

Figure 24: Plot of impulse response over range and time. Each dot represents the arrival
of an eigenray, the x axis represents range and absolute arrival time and the
y axis the relative arrival time. The relative arrival time was calculated by
subtracting the time of the first arrival at each receiver, from the respective
absolute arrival time. Note that the model was limited to 500 arrivals at every
receiver due to numerical reasons. In reality the impulse response will have a
longer tail of low amplitude arrivals.

If we convolute the impulse responses with a fin whale pulse train that has 12 s inter
pulse intervals, we obtain a good estimate of how the pulse trains energy spreads out
over time (Figure 25). The initial fin whale call is 1 s long, but due to many echoes,
it will be about 10 s long once it has propagated 50 km away from the source. Over
100 kilometers away from the source, the sound pressure of one fin whale call arrives
over a period of 15 s or more, overlapping with the other calls in the pulse train. The
pulse train thus becomes a quasi-continuous signal. Between 400 and 1000 kilometers
the pulse-like nature of the signal becomes apparent again, likely caused by blocking of
eigenrays from the seamounts at a range of 400 km. Considering all vocalizing fin whales,
it becomes evident that the combined fin whale pulse trains will form a continuous signal:
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The fin whale chorus. We could demonstrate that fin whale pulse trains become a quasi-
continuous signal at several hundred km away from the whale. Furthermore it has been
observed that pulse trains commonly last between 1 and 32 hours (Watkins et al., 1987).
To simplify the forward model, we can thus substitute the impulsively vocalizing whales
with a set of continuous sources at the same frequency.

Figure 25: Convolution of fin whale pulse train (5 pulses and 12 s intervals) with modeled
impulse response. X axis represents range and absolute arrival time and the y
axis the relative arrival time (the time of first arrival at each receiver subtracted
from the absolute arrival time) Color represents the received level.

5.3.2. Geodesic source grid

The two previous sections demonstrated that we can neglect the dimensions of time and
depth in the forward model. This means that the forward model parameters m only need
to describe the distribution of vocalizing whales over latitude and longitude. The whales
are replaced with a set of sound sources. We assume that these sound sources emit
continuous signals at the frequency of 20 Hz. The sound sources can not be allowed to
take arbitrary positions, since this would require an extreme computational effort. Instead
the possible locations of the sound sources are reduced to nodes on a grid. This grid is
termed the simulated source grid.

Using a rectangular latitude-longitude grid will result in uneven distribution of grid nodes
across ocean basin scales. Even distribution of grid nodes across these scales can be
achieved using a geodesic grid. Teanby (2006) described an algorithm to develop such
grids based on approximating the shape of a sphere using an icosahedron. It is available
as Matlab code and was implemented into the forward model. Figure 26 shows the loca-
tion of the grid nodes for 3 resolution steps in the North Atlantic.
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Figure 26: Position of simulated source grid nodes for 3 resolution steps are displayed as
blue dots. Geodesic grid nodes span a regular icosahedron around the earth
based on Teanby (2006).

After discretizing the search space, there are many ways to formulate the forward prob-
lem. A first approach was to place one source on each grid node and allow each to take
one of 10 preset sound pressure levels. However, the parameter estimation algorithm
could not find the maximum likelihood parameters. There were too many degrees of free-
dom in the system to find the global maximum of the likelihood function within realizable
computation time. It was necessary to find a way to reduce the degrees of freedom and
render suboptimal solutions less attractive for the parameter estimation algorithm.

After experimenting with different formulations of the forward model and different pa-
rameter estimation algorithms, an efficient formulation of the inverse problem was found.
Instead of searching directly for the sound pressure value of each grid node, a fixed num-
ber of simulated sources is moved across the grid nodes. This has the effect of reducing
the number of possible combinations to nnsimulated sourcesnodes (in the benchmark scenario it is
195195). The number of simulated sources is the same as the number of grid nodes, to
allow all source location combinations. These range from one simulated source at each
node to all simulated sources being at one node.

nsimulated sources = nnodes (24)

The parameter vector m is then a vector containing the node index describing where
each simulated source is located. If there is one simulated source on each node, the
parameter vector will have the following values:

m = [1, 2, 3, ... nnodes] (25)

This can be interpreted as: "Source one is located at node one, source two located
at node node two,..." until "source nsimulated sources is located at node nnodes". To further
reduce the degrees of freedom, the total sound pressure of all simulated sources is fixed
to the value ptotal. Each simulated source is then assigned the same sound pressure,
based on equation 26.

psource =
ptotal

nsimulated sources
(26)
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Since the true ptotal is usually unknown, we assume it is somewhere between a mini-
mum and maximum value pmin and pmax. The minimum and maximum total pressure are
part of the a priori probability distribution ρ(m). Appropriate values for pmin and pmax can
be obtained from published values on fin whale acoustics.

The source level of each node is determined by the number of simulated sources posi-
tioned at it:

nsources on node(inode) =
∑

(inode ∈m) (27)

Here inode describes the index of each node. The source pressure and source level of
each node are determined by the following equations:

p(inode) = nsources on node(inode) psource (28)

SL(inode) = 20 log10(p(inode)) (29)

The source pressure at each grid node describes, where on the grid sound energy is
emitted and how much. It is an approximation of the distribution of vocalizing fin whales.
In regions where the grid nodes have non-zero sound pressure values, vocalizing fin
whales must be present. In regions where the grid nodes have zeros as sound pressure
values, no vocalizing fin whales are present. Nodes with high source pressure indicate in-
creased fin whale calling activity, compared to nodes with low source pressure. However,
increased calling activity does not automatically imply an increased whale abundance.
Increased calling activity could either be caused by an increasing number of vocalizing
whales or an increase in the whales source levels and call rates.

Compared to the simulated sources (that are confined to take positions on a geodesic
grid) the recorders can take any position within the ocean. According to the sonar equa-
tion (Eq. 4), the simulated received levels depend on the transmission loss between the
grid node and recorder locations. For a given set of recorders, equation 30 determines
the simulated received levels:

RLsimulated(irecoder) =

nnodes∑
inode=1

SL(inode)− TL(inode, irecoder) (30)

This is a simplified version of the sonar equation, RL stands for received level, SL for
source level and TL for transmission loss. The indices inode and irecoder describe the
respective elements of the source grid and recorder array. The transmission loss can
be determined using an arbitrary sound propagation model, as long as the TL can be
given as a matrix connecting each node and recorder. Two ways of calculating the TL
matrix were tested in this thesis: Geometrical spreading and ray trace modeling using
BELLHOP. They will be described in the next section.
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5.3.3. Transmission loss matrix

The transmission loss between each node and all recorders can be expressed as a ma-
trix. Equation 31 gives an example TL matrix:

TL =


recorder1 recorder2 recorder3 ... recordernrecorders

node1 −65.364 −66.289 −70.345 ... −120.321
node2 −87.343 −78.342 −85.743 ... −97.954
... ... ... ... ... ...
nodennodes −34.454 −50.432 −63.552 ... −98.112

 (31)

In this thesis the TL matrix was calculated in two ways. In general, one could use any
acoustic propagation model for this. For the sake of simplicity and reduced computational
effort, the cylindrical spreading model from equation 7 and the raytracing model BELL-
HOP (Porter and Bucker, 1987) were used. The TL matrix was estimated for signals at
20 Hz.

The cylindrical transmission loss matrix was calculated using equation 7 with a rcritical
of 4000 m. The critical range was set to 4000 m since this represents the average ocean
depth. The absorption coefficient α was calculated using the empirical equations from
Francois and Garrison (1982) (Figure 8).

The raytracing transmission loss matrix was calculated using the two dimensional,
range dependent sound propagation model BELLHOP (it is described in section 5.3.1).
It calculates the TL for 2D "slices" (range and depth). The bathymetry for each slice was
obtained from the ETOPO-1 topography and bathymetry dataset (Amante and Eakins,
2009). The sound speed over range and depth for each slice was interpolated from the
world ocean atlas mean annual climatology dataset (Dushaw et al., 2013). The sea floor
was simply assumed as elasto-acoustic half-space with a pressure wave sound speed
of 1800ms−1 and an attenuation of 0.1dBλ−1 and a density of 2.0 g cm−3. BELLHOP
includes the source and recorder depths into its TL estimates. Each sound source was
assumed to be at 50 m depth and all recorders assumed to be at 100 m depth.

The 2 methods of estimating transmission loss were compared along the section be-
tween Iceland and Svalbard (Section 5.3.1). Figure 27 shows the estimated TL over
range. It shows that geometrical spreading overestimates the TL in the first 500 km com-
pared to BELLHOP, and agrees with the latter for ranges larger than 500 km from the
source. However this will vary with the bottom topography and sound speed field be-
tween source and receiver. In general, geometrical spreading and raytracing provide a
roughly similar logarithmic TL curve.

To estimate the 3-D sound field, the 2-D sound fields "slices" BELLHOP creates, can
be rotated around the source. This approach is also termed 2xN dimensional model-
ing. In this thesis, the transmission loss was estimated for 72 slices along 5◦ intervals
around the source (covering the entire 360◦ around the source). From the 72 BELLHOP
slices, a latitude-longitude grid containing the transmission loss at 100 m depth for each
location was interpolated. The transmission loss at each recorder location was obtained
from the latitude-longitude grid. To obtain a complete TL matrix connecting all nodes and
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recorders, this methods was applied to every node in the simulated source grid. Figure 28
displays an example of the TL slices calculated by BELLHOP, the interpolated latitude-
longitude grid and TL at the recorder locations.

Figure 27: Comparison of transmission loss estimates at 100 m depth for the example
transect from section 5.3.1.

Figure 28: Example of 2xN dimensional raytracing for calculating the transmission loss
(TL) matrix. Left plot shows TL of slices calculated with BELLHOP. Upper right
plot shows a map of interpolated latitude-longitude grid and the lower right plot
the TL at the recorder locations.
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5.4. Parameter estimation using simulated annealing

The previous section established a forward model g(m), that determines how the param-
eters m (describing the distribution of vocalizing fin whales) generate the chorus received
level data d. This section describes the parameter estimation algorithm used to deter-
mine the most likely parameters m given the data d.

The parameter vector describes the position of simulated sources on a grid covering
the ocean (in latitude and longitude). Depending on the resolution of the grid, there are
hundreds of parameters to estimate. A benchmark scenario presented further in the text
uses 195 grid nodes. This means there are 195 parameters, resulting in 195195 possible
combinations. It is thus impossible to calculate the likelihood of all possible combina-
tions. Instead Monte Carlo Markov chains (Section 4.3) are used to find the maximum
of the likelihood function in parameter space. In the case of the benchmark scenario,
the parameter space has 195 dimensions, one for each entry of the parameter vector
m. Compared to the large number of parameters, the number of RL observations is very
small (below 50). This means that the inverse problem is extremely under-determined
and the likelihood function will have many local maxima. The many local maxima and di-
mensions render it difficult to find the global maximum for the Monte Carlo Markov chains.

The first challenge is to define how the Monte Carlo Markov chains move though pa-
rameter space. This is displayed in figure 29. Initially one simulated source is located
on each grid node. Then, for each iteration, a simulated source is chosen randomly and
moved to a random new grid node. If a move is accepted or rejected, is determined by an
acceptance rule that will be discussed later in this section. After the decision, a new ran-
dom move is generated. In this fashion the MCMC moves through the parameter space
until a it has carried out a fixed number of iterations.

Figure 29: Movement of simulated sources across the grid nodes.
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The development of a suitable acceptance rule proved to be the most challenging part
of this thesis. After unsuccessful trials with the Metropolis-Hastings algorithm (Metropolis
et al., 1953) and Ant Colony optimization (Dorigo et al., 2006), a suitable acceptance rule
was found using simulated annealing (Kirkpatrick et al., 1982). A move is always accepted
if it increases the likelihood L(m) of the parameters m. The likelihood was calculated
after equation 11, using the l2 misfit between the observed and simulated RL (given
by equation 13). However, to prevent the MCMC from getting stuck at local maxima,
sometimes moves that decrease the likelihood ("wrong moves") need to be accepted.
The likelihood to accept a wrong move is determined with the exponential probability
distribution P (λ, x):

P (λ, x) =
1

λ
e−

x
λ (32)

Here λ is termed the temperature and x describes a range of values from 0 to ∞. A
wrong move is accepted when a random number x, drawn from P (λ, x) is larger than
1. The mean x drawn from P (λ, x) equals λ. For each iteration a new random number
is drawn from P (λ, x). Furthermore, for each iteration the temperature λ is reduced
following an exponential function. This will render it less and less likely to accept wrong
moves for each iteration. The function used to "cool" the temperature λ is defined as
follows:

λ = (1− iiteration
niterations

)ε (33)

Here ε is defined as the cooling exponent, iiteration the number of the iteration and
niterations the total number of iterations. The cooling exponent determines how fast the
temperature λ drops over the iterations. To visualize this concept, figure 30 shows λ
and P (λ, x) over 10000 iterations, with a cooling exponent ε of 5. Given a sufficient
amount of iterations, the simulated annealing algorithm will converge towards the global
maximum of the likelihood function (Granville et al., 1994). To illustrate this process,
figure 31 shows snapshots of how the source pressure grid is changing during simulated
annealing (using 10000 iterations). Initially, the source pressure is distributed evenly. But
as simulated sources are moved across the grid nodes, the simulated source pressure
grid increasingly resembles the true source pressure grid.

Figure 30: Simulated annealing example plot. Left panel shows how the temperature λ
is reduced exponentially over 10000 iterations using a cooling exponent of
5. Right panel shows the resulting probability distribution P (λ, x) for each
iteration.
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Figure 31: Schematic view of source pressure grid change during simulated annealing.
Color surface represents source pressure in µPa. Lower right plot shows true
source pressure grid in µPa. The inversion algorithm ran with 10000 iterations,
ε = 5 and 195 simulated sources.

After the last iteration, the simulated parameters are a useful estimate of the "true"
parameters. However, the most likely parameters are estimated even better, when more
than one MCMC is used to estimate it. This increases the likelihood of finding the maxi-
mum of the likelihood function and filters out small artifacts (as in figure 31). The param-
eters the Monte Carlo Markov chains take after simulated annealing, are solutions of the
inverse problem. The number of solutions (number of MCMCs) used by the inversion al-
gorithm is determined by the variable nsolutions. Each solution represents a sample of the
posterior distribution σ(m). How the maximum likelihood parameters can be estimated
from the solutions will be discussed in the next section.

In addition to finding the most likely locations the simulated sources have on the source
grid, the parameter estimation algorithm needs to find the most likely total source pres-
sure ptotal. It is located somewhere between a known minimum pmin and maximum value
pmax. To find it, the solutions are assigned different total source pressure values, that are
evenly distributed between pmin and pmax. The more solutions are generated, the better
the source pressure grid and ptotal can be estimated. Since each MCMC moves through
parameter space independently, the solutions will have different likelihoods. Figure 32
shows how the misfit and likelihood of the different Monte Carlo Markov chains changes
over the iterations. Before the inversion algorithm starts, on the left side of figure 32, the
misfit for each solution is high and the likelihood low. But after simulated annealing, on
the right side of 32, the solutions show a smaller misfit and increased likelihood. It can
also be seen, how the simulated annealing allows decreases in likelihood in the first 2000
iterations.
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Figure 32: Misfit and likelihood over iterations, each line represents a Monte Carlo Markov
chain moving through parameter space. Y axis on both plots has a logarithmic
scale. The legend shows the color and value of the solutions with pmin and
pmax as well as the solution with the highest likelihood pbest.

The complete parameter estimation algorithm that produces a set of solutions (sam-
ples of σ(m)) can be expressed as follows:

for niterations do
λ = (1− iiteration

niterations
)ε

for n
solutions

do
Move random source to random node→mnew

Calculate RLnew and determine likelihood L(m)new
if L(m)new ≥ L(m)old then

mold = mnew

L(m)old = L(m)new
else

P (λ, x) = 1
λe
− x
λ

if random number from P (λ, x) > 1 then
mold = mnew

L(m)old = L(m)new
else

mold = mold

L(m)old = L(m)old
end

end
end

end
Algorithm 1: Parameter estimation algorithm based on simulated annealing
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The output of the parameter estimation algorithm is a matrix of parameters m: the
solutions s. They are samples of the posterior distribution σ(m) and are represented as
a matrix of likely source pressure values for each source grid node:

s =


pnode 1 pnode 1 pnode 3 ... pnode nnodes

m1 0 3456.5 2745.3 ... 7453.4
m2 567.3 1322.5 0 ... 0
... ... ... ... ... ...
mnsolutions 477.4 0.7 230.6 ... 546.7

 (34)

Each solution has its own likelihood value (from 0 to 1). For example:

L(s) =


L(m)

m1 0.63
m2 0.94
... ...
mnsolutions 0.82

 (35)

The prior ρ(m)) and posterior distribution σ(m) of the source pressure at one grid
node are visualized in figure 33. The a priori distribution (before the inversion, left panel)
at each grid node is given as a uniform distribution from the minimum to the maximum
source pressure. It is determined by the minimum and maximum total source pressure
( pmin and pmax) using equation 28. The a priori Monte Carlo samples, which form the
starting points of the Monte Carlo Markov chains, are displayed as red dots. The solutions
the MCMCs provide after the inversion, are samples of the a posteriori distribution. It is
displayed in the right panel as a green line, and the solutions s (the a posteriori Monte
Carlo samples) are displayed as red dots. How to use the solutions s to estimate the
maximum of the posterior distribution, and thereby the most likely source pressure grid,
will be discussed in the next section.

5.5. Interpretation of inversion results

Due to computational constraints, the inversion algorithm cannot calculate the exact
shape of the posterior distribution σ(m). Instead, we obtain a set of samples describ-
ing the maximum of σ(m): the solutions matrix s. From this matrix, the median source
pressure at each grid node can be calculated as follows:

median(σ(m)) ≈ median(s) (36)

This measure is termed the median source pressure grid (median of σ(m)). It is a
robust measure of the likely source pressure at a each grid node. However it does not
incorporate the likelihood value L(s) assigned to each solution. In order to find the source
pressure grid with maximum likelihood max(σ(m)), the median of solutions with a likeli-
hood larger than a certain threshold percentile is used:

max(σ(m)) ≈ median( s(L(s) > L(s)percentile threshold) ) (37)

This approximation method is used due to the limited number of solutions s. We can-
not be sure where the true maximum is located and cannot assume a Gaussian shape to
successfully represent the posterior distribution at each grid node. Therefore, taking the
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median of solutions with a likelihood better than a certain threshold was found to be the
best estimate of the maximum likelihood source grid. The threshold percentile can be var-
ied and depends on how large the variation in the posterior distribution is and how many
solutions were generated. In general, taking the median of solutions with a likelihood
greater than the 75th percentile (of the likelihood), has proven to be a valid approximation
of the maximum likelihood source grid (the maximum of the posterior distribution).

Figure 33: Schematic view of a priori and a posteriori distribution at each simulated
source grid node (blue dots). Yellow and Green lines represent ρ(m) and
σ(m), red dots the Monte Carlo samples that sample them.

To determine how certain the source pressure at a grid node could be determined, the
inter quartile range source pressure (IQR) is subtracted from the median source pressure
at each node. The IQR is defined as the range between the 25th and 75th percentile value
of the source pressure. If the median source pressure is greater then the IQR, the source
pressure estimate at that node is deemed certain. This leads to the practical measure of
the ratio of certain grid nodes:

rcertain =

∑
median(s) ≥ IQR(s)

nnodes
(38)

The most practical way to visualize and interpret the result of an inversion, is to display
the source grids that correspond to the median and maximum of the posterior distribu-
tion as contour maps. To show which source grid nodes can be trusted (that have a
narrow posterior probability distribution), the grid nodes with low uncertainty (with a me-
dian source pressure larger than the IQR) are plotted over the source grid as red dots.
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This corresponds to equation 38 which estimates the ratio of certain grid nodes. For the
median source grid the contours are interpolated using all grid nodes. The contours of
the maximum likelihood source grid are interpolated only from nodes with low uncertainty.

An example result is displayed in figure 34. It can be seen that the true source distri-
bution is represented well by the maximum likelihood source grid (lower right panel). The
upper right map shows the median source grid. The areas defined by gray-scale contours
contain sound sources. Darker areas indicate higher source levels. When a gray area
contains red dots (representing grid nodes with low uncertainty), it is considered certain.
However, if a gray area does not contain red dots, its source pressure is questionable.
For example, the gray areas east and west of the true source distribution, contain no dots.
This indicates these are uncertain estimates compared to the gray area corresponding
to the true source distribution. Combining the gray contour areas (source pressure grid)
and red dots (grid nodes with low uncertainty) is a useful way to interpret the inversion
results.

Figure 34: Example to demonstrate the inversion in and output. Plot a shows the input
data, the black dots represent the true sources, the colored dots the recorders
and their respective RL and the white circles the simulated source grid nodes.
Plot b shows the median source grid and plot c the maximum likelihood source.
The red dots in plot b and c represent the grid nodes with low uncertainty
(median larger than the IQR).
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6. Results

6.1. Benchmark scenario: Gaussian source distribution

To test the capabilities of the inversion algorithm and determine the sensitivity to the
different input variables, a benchmark scenario was developed. It consists of 500 sound
sources (fin whales) that are distributed as a 2D Gaussian centered at 66◦N and 5◦E. Fig-
ure 35 shows the location of the sources and the respective whale density. The source
level of each whale was randomly assigned using a Gaussian distribution with a mean of
180 dB re 1 µPa and 10 dB standard deviation. All simulated whales were assumed to
have a call rate of 2.5 calls per minute (calling 50% of the time). This results in a total
source pressure of 1.9 107 µPa.

Figure 35: Source data for benchmark scenario: True distribution of sources and source
level (upper left plot), respective whale density (upper right plot) and respective
true source pressure grid using 195 simulated sources (lower plot).

The studied area (the simulated source grid) was restricted to a rectangle between
65◦N and 80◦N, and 30◦W and 30◦E. The simulated source pressure grid that corre-
sponds to the benchmark scenario is shown in the lower panel of figure 35. It is the
"true" source pressure grid. Since we assumed constant call rate and spatially indepen-
dent normally distributed source levels, the whale density and source grid have an almost
identical shape. In reality however, call rate and source level are not independent of lo-
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cation and are likely not Gaussian. Thus the source grid does not necessarily represent
the whale density, but rather whale calling activity.

The "observed" received level was determined using the sonar equation (Eq. 4) and
two different TL models: Geometrical spreading and raytracing with BELLHOP. The re-
spective received levels for 195 receivers (on a geodesic grid) are displayed as contour
lines in figure 36. The left panel shows the RL when using geometrical transmission
loss and the right panel the RL when using BELLHOP and 2xN dimensional raytracing.
The environmental conditions for both TL models were the same as described in section
5.3.3. For both TL scenarios the "observed" received levels varied between 54 and 59
dB re 1 µPa.

Figure 36: Benchmark scenario received levels using geometrical spreading (left plot)
and raytracing (right plot). True received level interpolated from an array of
195 recorders in a geodesic grid at 100 m depth

6.1.1. Sensitivity of inversion algorithm

This section describes the sensitivity of the inversion algorithm (Figure 21) to changes in
the input variables. The "observed" received levels are given by the sonar equation (Eq.
4) and geometrical spreading transmission loss (Figure 36). Three performance metrics
were used to determine how well the inversion algorithm estimated the source grid under
changing input variables. The first two describe the fit between true and inversed source
grid: The correlation coefficient r2 between the inversed and "true" source grid and the
misfit (measured as the negative sum of squared errors (-SSE) between the "true" and
inversed sound grid in dB re 1 µPa). The third useful measure of performance, is the ratio
of certain source grid nodes rcertain (Equation 38). It describes difference between the
solutions.

To calculate the response of the performance metrics to changes in the input variables,
inversions of the "observed" RL were calculated varying one input variable each and
keeping the others fixed to a standard. The standard input variables are presented in
table 2.
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Table 2: Standard input variables used for the sensitivity analysis
niterations 10000
nsolutions 10
ε 5
pmin 1 107 µPa
pmax 3 107 µPa
Simulated source grid Geodesic grid with 195 nodes
Recorder location Geodesic array with 12 recorders
TL matrix Geometrical spreading
s 1 dB

The first input variable to be tested was the number of recorders. For this 3 sce-
narios were used: 3, 12 and 47 recorders arranged as geodesic array (similar to the
simulated source grid in figure 26). The results are shown in figure 37. The inversion
algorithm showed increasing accuracy with increasing recorder number: The correlation
and fit between the "true" and inversed model increased almost linearly with the number
of recorders, as did the ratio of certain grid nodes.

In addition to the number of recorders, the number of nodes in the simulated source
grid affects the accuracy of the inversion. Figure 37 shows that, for the median source
grid, the correlation coefficient r2 decreased with increasing source grid resolution. For
the maximum likelihood source grid, r2 increased with increasing source grid resolution.
The misfit and ratio of certain grid nodes decreased with an increasing number of source
grid nodes.

Figure 37: Sensitivity of inversion algorithm to the number of recorders (on the left) and
the number of source grid nodes (on the right).
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The number of generated solutions determines how well the a posteriori probability
distribution σ(m) is sampled. Varying this parameter resulted in little change of correla-
tion and misfit between the "true" and inversed grid (Figure 38). The certain grid nodes
ratio increased with increasing number of solutions. This is a promising result which
demonstrates, that as few as 10 solutions are sufficient to sample σ(m) successfully. To
increase the number of certain grid nodes however, the number of solutions is best when
greater than 20. However, the optimal number of solutions will depend on the range be-
tween the minimum and maximum total source pressure.

The number of iterations used to find the maximum of the likelihood function, showed
surprisingly little influence on the results of the inversion (Figure 38). The misfit and
correlation between true and inversed source grid decreased slightly with an increasing
number of iterations, whereas the certain grid nodes ratio increased.

Figure 38: Sensitivity of the inversion algorithm to the number of iterations (on the left)
and the number of solutions (on the right).

The total pressure range between pmin and pmax, is a priori information used for the
inversion. For the benchmark scenario the true total pressure is 1.9 107 µPa. For the
sensitivity analysis, the pressure range was increased from 0 to 4 times the true total
pressure (Figure 39). The correlation between "true" and inversed source grid increased
until the pressure range equaled the "true" pressure, and decreased after the pressure
range was about 3 times larger than the "true" pressure. The misfit between "true" and
inversed grid however, showed little response to changes in the a priori pressure range.
In contrast, the certain grid nodes ratio decreased with increasing pressure range, until
the pressure range was double the "true" pressure.
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The cooling exponent ε was increased from 2 to 8. This showed little effect on the
inversion results (Figure 39). Both correlation and misfit between inversed and "true"
source grid showed no clear trend with increasing ε. The same applies to the ratio of
certain grid nodes.

Figure 39: Sensitivity of inversion algorithm to the range of a priori pressure psum (on the
left) and the cooling exponent (on the right). The true source total pressure is
1.9 107 µPa.

Figure 40: Sensitivity of inversion algorithm to the forward model standard deviation s.
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An critical input variable is the forward model uncertainty s. Since the forward model
and TL matrix will always contain errors, it is necessary to know how much uncertainty
the inversion method can tolerate. The results for varying the forward model standard de-
viation between 1 and 10 dB are presented in figure 40. Correlation and misfit between
true and inverse source grid, as well as the certain grid nodes ratio showed no trend with
increasing forward model standard deviation.

6.1.2. Raytracing vs. geometrical spreading TL matrix

To quantify the effect an imprecise transmission loss model has on the inversion results,
the "observed" RL of the benchmark scenario was calculated using 2xN dimensional ray-
tracing (right plot of figure 36). The TL Matrix used for the inversion on the other hand,
was calculated using geometrical spreading. The mean absolute difference between the
raytracing and geometrical spreading TL matrix was 6.8 dB. The mean absolute differ-
ence between the resulting received levels was 0.48 dB (with RL estimates being higher
when using geometrical spreading instead of raytracing).

The performance metrics (describing the accuracy of the inversion, see previous sec-
tion) were calculated for 10 inversions with forward model standard deviation ranging from
1 to 10 dB (Figure 41). This sensitivity analysis showed that the correlation, misfit and
ratio of certain grid nodes varied little with increasing forward model standard deviation.
These results were remarkably similar to the sensitivity analysis in figure 40, where the
same TL matrix was used to calculate the "observed" RL and the inversion. However, the
ratio of certain grid nodes was around 0.2 lower when using non-identical TL matrices.
The correlation remained stable (r2 ≈ 0.3) with increasing forward model uncertainty,
when using both identical and non-identical TL matrices.

Figure 41: Sensitivity of inversion algorithm to the forward model uncertainty. Observed
RL was calculated using a raytracing TL matrix whereas the forward model
used a geometrical spreading TL matrix.

54



6. Results

Overall, these results show that inversions with an imprecise TL matrix can still produce
reliable source pressure grid estimates. This is promising, since every transmission loss
model contains errors (due to the assumptions necessary to create them). As this section
showed, using an imprecise TL model such as geometrical spreading can still produce
reliable inversion results.

6.1.3. Drifting recorders

If the recorders are not stationary, their changing location can influence the results of the
inversion. This will be especially relevant when recorders are mounted on drifting plat-
forms such as oceanographic floats. To simulate this effect, the random dispersal of 12
recorders in the North Atlantic was modeled. The initial recorders positions were given
as a geodesic array, covering the studied area from 65◦N to 80◦N and 30◦W to 25◦E uni-
formly. They are displayed as black stars in figure 42. For the sake of simplicity, random
drift was then modeled assuming a constant drift speed of 0.25 m s−1 and constant drift
in one direction for 10 days. The direction of drift was assigned randomly for 20 steps.
The resulting float trajectories (200 days, distance of 4320 km) show a stepwise transfor-
mation from uniform to random recorder distribution. They are displayed as colored dots
in figure 42. In reality, float trajectories are influenced by currents and eddies. However,
to investigate the effect of recorder dispersion on the accuracy of the inversion algorithm,
the assumption of random float trajectories is deemed sufficient.

Figure 42: Map showing simulated float tracks. Black stars represent initial locations on
geodesic grid, and the colored dots represent the float locations at each ran-
dom drift step.

The sensitivity of the inversion algorithm to drifting recorders was determined using the
Gaussian benchmark scenario. Geometrical spreading was used to calculate both the
"true" RL and forward model TL matrix. Figure 43 shows the sensitivity of the inversion
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to the random drift. The correlation between true and inversed source grid remained sta-
ble, and partially increased up until the 80th day of drift. The same applied to the misfit
between "true" and inversed source grid. The ratio of certain grid nodes increased until
the 60th day of drift and remained stable afterwards.

Figure 43: Effect of recorder dispersal on inversion accuracy. From top to bottom the
panels display: Correlation between inversed and "true" source grid, Misfit
between inversed and "true" source grid, ration of certain grid nodes, the RL
distribution (Median as black dots, IQR as a black bar, extreme values as
line) and the RL Shannon entropy. X axis represents the drifting time of the
simulated floats.
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When comparing these trends with the distribution of received levels at each step, it
became clear that the inversion success was strongly influenced by the distribution of
received levels. The information contained in the received level distribution (PRL) can be
described by the Shannon entropy (Shannon, 1948):

H(PRL) = −
∑

PRL log2(PRL) (39)

It is a measure of information content (Borda, 2011), which reaches its maximum when
all elements of a distribution have the same likelihood of occurring (uniform probability
distribution). The Shannon entropy of the received level distribution is displayed in the
lowest plot of figure 43. It increased until 80 days of simulated float drift, and then de-
creased abruptly to lower levels. This pattern agrees well with the correlation and misfit
between the "true" and inversed source grid.

These results suggest that, as long as the RL distribution contains enough Shannon
entropy ("is uniform enough"), the inversion method tolerates random recorder move-
ment. The best inversion was achieved after 30 days of simulated drift, and is displayed
in figure 44. An example of an unsuccessful inversion (after 90 days) can be found in
the same figure. Although the correlation between the true and inversed source grid was
zero, the median source grid of the unsuccessful inversion still indicated sound pressure
near the true source locations.

Figure 44: Inversed source pressure grid using drifting recorders. Plots a and b show a
successful inversion 30 days after float release, plots c and d an unsuccessful
inversion 90 days after float release.
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The simulated float drift also revealed an artifact in the misfit calculation. When the
recorder and source grid node locations overlap, the misfit values will be much higher for
the first quarter iterations, compared to locations that do not overlap. Roughly after the
first quarter of iterations, the misfit jumps over several orders of magnitude to lower val-
ues. The misfit difference between overlapping and non-overlapping recorder and source
grid node locations, is displayed in figure 45. It can be explained by the fact that, in the
beginning of the iterations there is one simulated source on each node. Thus the simu-
lated RL at this node equals its SL plus the RL from all other sources. This renders the
RL at the node locations much higher and creates a larger misfit between simulated and
observed RL.

Figure 45: Misfit jump artifact resulting from overlap between source grid nodes and
recorder locations. Left panel shows performance of inversion algorithm for
initial float positions (Recorder in geodesic grid, 100 % overlap), right side for
floats after 50 days of simulated drift (no overlap).

6.2. Recorder array coverage

6.2.1. Confidence regions

To determine the performance of an array of recorders, it was tested how reliably a source
at each grid node could be found by the inversion algorithm. For each grid node, a true
source grid and received level observations were generated, assuming a source level of
200 dB re 1 µPa at the selected node and no sources at all other nodes. Following this,
the inversed source grid was estimated from the respective received level observations.
To quantify how reliably a source at each node was found, the correlation between the
respective "true" and inversed median source pressure grid was calculated. The exact
values of the correlation coefficients were of minor interest, since they will vary with all
inversion input variables. Therefore, the correlation coefficients were normalized (divid-
ing each value by the maximum correlation coefficient). Regions with high correlation
coefficients indicate the confidence region. In these areas the inversion algorithm can
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find sound sources with high certainty. Extending the simulated source grid outside of
the confidence regions will produce less certain results.

The confidence region for a geodesic array with 12 recorders between Iceland and
Svalbard, is displayed in figure 46. It was calculated using 5000 iterations, 5 solutions,
a cooling exponent of 4, pmin of 5 109 µPa, pmax of 1.5 1010 µPa and a forward model
standard deviation of 6 dB. In the area between Iceland and Svalbard the correlation
coefficients between the "true" and inversed source grid are sufficiently high. However,
south of Iceland too few recorders are present for a successful inversion and the correla-
tion coefficients drop to zero.

Figure 46: Map showing confidence region of geodesic recorder array. Contours show
normalized correlation coefficients between the "true" and inversed source grid
for a source at each of the grid nodes. Black circles show recorders location.

6.2.2. Sources outside the confidence region

The confidence region describes the area where the inversion algorithm can find sound
sources with high certainty. If all sound sources are within this confidence regions, the in-
version algorithm will be able to find their distribution and source pressure. However, what
will happen when there are sound sources outside of the area covered by the recorder
array? This has been simulated for the 12 recorder array between Iceland and Svalbard.
The true sources were located in a Gaussian distribution south of Greenland (Figure 47).
The inversion algorithm was run with 2 simulated source grids: One covering the entire
North Atlantic and another covering only the confidence region. The results are displayed
in figure 48.

For the source grid extending further than the confidence region, over the entire North
Atlantic, no successful inversion was achieved. However, the inversion results for the
source grid covering only the confidence region, confirmed that there are no sources
present between Iceland and Greenland. This corresponds to the "true" source distribu-
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tion where all sources were located south of Greenland. The median source pressure grid
showed some nodes where sound was emitted, yet these had a high uncertainty (they
are not marked with a red dot). The maximum likelihood source pressure grid indicated
sound sources in the corner of the grid that faced the direction of the true sources.

Figure 47: Map of scenario with a Gaussian source distribution outside of the receiver
arrays confidence area. Black dots represent sources, colored dots recorders
and RL.

Figure 48: Inversion results for a simulated source grid limited to the confidence region
of the recorder array (plots a and b), and a source grid extending further than
the confidence region (plots c and d).
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6.3. Inversion of published fin index measurements

The inversion method was applied to a composite dataset, generated from fin index mea-
surements by Nieukirk et al. (2012) and Klinck and Nieukirk (2012). Since the fin index
is approximately a SNR measurement, the chorus received level was approximated by
adding a noise floor of 90 dB to all fin index measurements. This means we assume
a constant noise level throughout the North Atlantic. Unfortunately the recordings from
Nieukirk et al. (2012) and Klinck and Nieukirk (2012) do not fully overlap in time. Con-
sequently, a composite dataset was generated using average fin index values from the
1st of January for each recorder. Since there is considerable inter-annual variation in fin
index measurements and real ambient noise levels are not constant throughout the North
Atlantic, this dataset is only a very rough approximation of the actual fin whale chorus
RL. However it is deemed useful to test the inversion method. The composite dataset
and simulated source grid are displayed in figure 49.

Figure 49: Map showing recorder locations and received level as colored dots. Empty
circles represent the simulated source grid nodes. Recorder RL and locations
taken from Nieukirk et al. (2012) and Klinck and Nieukirk (2012).

The search space (the simulated source grid), is confined to the deep water and shelf
seas of the North Atlantic, excluding narrow estuaries. The recorder array does not cover
the search space uniformly. Analysis of the confidence area of the recorder array (Fig-
ure 50), showed that the recorder array is far from perfect for an optimal inversion. It does
not cover the simulated source grid evenly, thus sources on grid nodes east and west of
the narrow recorder array are harder to find for the inversion algorithm. Even within the
recorder array, optimal coverage is only achieved where the recorders are close enough
to each other (at roughly 40◦N). However, as the result will show, the inversed source
grid still indicates realistic patterns of fin whale vocal activity. This is likely due to the fact
that the received levels were spread from 92 - 100 dB re 1 µPa, which means that the RL
distribution had a high Shannon entropy.
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Figure 50: Map showing confidence region of recorder array used by Nieukirk et al. (2012)
and Klinck and Nieukirk (2012). Contours show normalized correlation coeffi-
cients between the "true" and inversed source grid for a source at each of the
grid nodes. Black circles show recorders location.

The inversion was calculated using a geometrical spreading transmission loss matrix,
5000 iterations, 50 solutions, a cooling exponent of 4 and a forward model uncertainty of
6 dB. The minimum and maximum total source pressure were based on published data.
The average fin whale source pressure p was assumed as 2.8184 109 µPa, the average
pulse length tpulse as 1 s and the average inter pulse interval tIPI as 12 s (Weirathmueller
et al., 2013, Watkins et al., 1987, Morano et al., 2012). The minimum total source pres-
sure is emitted if only one whale calls:

pmin ≈ 1 p
tpulse

tpulse + tIPI
≈ 2.168 108 µPa (40)

The maximum total source pressure will be achieved if the maximum estimated number
of males call simultaneously. The maximum estimate of fin whales in the North Atlantic
by the IWC is 40 000 (IWC, 2015). If we assume a 1:1 sex ratio and that only males call,
the maximum total source pressure can be assumed as follows:

pmax ≈ 20000 p
tpulse

tpulse + tIPI
≈ 4.336 1012 µPa (41)

How the parameter estimation algorithm manipulated the misfit and likelihood of the
Monte Carlo Markov chains, is displayed in figure 51. Due to the large range of possible
total source pressure values, the spread in misfit and likelihood between the solutions is
large. The solution with the highest likelihood has a total source pressure of 4 1010 µPa.
The parameter estimation could reduce the sum of squared errors between simulated
and true RL as low as 10 dB.
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Figure 51: Misfit and likelihood over iterations, each line represents one model m. Y axis
on both plots in logarithmic scale. The legend shows the total source pressure
for the most likely solution and the solutions with pmin and pmax.

The source pressure grids corresponding to the median and maximum of the posterior
distribution are displayed in figure 52. The median source grid shows an area of intense
fin whale calling activity along the Caribbean and American coastlines. However, there
are no grid nodes with low uncertainty (red dots) in the corresponding gray area, render-
ing this estimate questionable. The remainder of the North Atlantic contains no sources
in the median source grid. However, the maximum likelihood source grid indicates that
sound pressure is emitted in Davis strait, along the Norwegian coast and near the Strait of
Gibraltar. The difference between the median and the maximum likelihood source pres-
sure grid, can be explained by the large range of total source pressure values. Many of
the solutions will have unrealistic total source pressure values and therefore bias the me-
dian source grid. Here it becomes clear, that it is important to consider both the median
and maximum likelihood source pressure grid.

Figure 52: Inversed source pressure grids based on a composite dataset from published
fin index measurements. Left plot shows median source pressure grid, right
plot the maximum likelihood source pressure grid.
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7. Discussion

7.1. Evaluation of inversion method

The inversion method produced promising results both in the benchmark tests and appli-
cation to real observations. One of the most significant results was, that it is not necessary
to have precise knowledge of the TL matrix. Using a geometrical spreading TL matrix for
the inversion was sufficiently accurate, even when the true TL matrix was unknown or
obtained from a raytracing model (Section 6.1.2). Furthermore, as few as 12 recorders
between Iceland and Svalbard, were sufficient to determine the distribution of fin whale
calling activity in the Norwegian and Greenland sea (Sections 6.1.1 and 6.2). Another
encouraging result was, that accurate knowledge of the a priori total source pressure is
not required. Successful inversion was achieved even when the range between the max-
imum and minimum total source pressure was spanning several orders of magnitudes
(Section 6.1.1 and 6.3). The proposed method is able to estimate the distribution of call-
ing fin whales using a small set of recorders, a simple geometrical spreading TL matrix
and limited knowledge about the total source pressure. The next sections will discuss the
capabilities and limitations of the inversion method in detail.

7.1.1. Recorder array

The sensitivity analysis has shown that increasing the number of recorders almost linearly
increases the correlation between true and inversed source grid (Figure 37). This is espe-
cially the case when the recorders are arranged as a geodesic grid, covering the studied
area uniformly. In general, increasing the amount of a priori information by increasing the
number of recorders will result in more accurate estimates. However, as the simulation
with drifting recorders demonstrated, the inversion accuracy also depends on the location
of the recorders. The simulation of drifting recorders showed, that best inversion result
(with a given number of recorders) is achieved when the received level distribution has
maximum Shannon entropy (Figure 43). To achieve a successful inversion, the variation
of the recorded RL needs to be large enough. The exact soundfield, the vocalizing fin
whales create, is not known. Therefore uniformly aligning as many recorders as possi-
ble over the studied area, is a secure strategy for successful inversion. The simulation
of drifting recorders also demonstrated, that the inversion methods works best when the
recorders have fixed locations. This increases the chance of recording enough variation
within the received levels (increasing the Shannon entropy).

The confidence area of the recorder array between Iceland and Svalbard indicates, that
it is possible to monitor fin whale distribution in the Norwegian and Greenland sea using
only 12 recorders (Figure 46). Limiting the simulated source grid to that area will give
the best results, and also tolerate sources outside of the simulated source grid. However,
the inversion of published fin index measurements showed that meaningful inversion re-
sults can also be achieved when the simulated source grid spans areas larger than the
confidence area. This is likely due to the large gradient present in the published fin index
measurements (high Shannon entropy). If there is only a small gradient in the received
levels (low Shannon entropy), inversions outside the confidence regions will be unsuc-
cessful. This can be seen in the 12 recorder example in section 6.2.2. The posterior
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distribution can only be successfully determined when the prior distribution and observa-
tions contain enough information (that can be quantified as Shannon entropy). This is in
agreement with a discussion on Bayesian inversion by Allmaras et al. (2013).

7.1.2. Forward model and parameter estimation algorithm

The sensitivity of the forward model and parameter estimation algorithm to the different
input variables is presented in section 6.1.1. A crucial input variable is the resolution and
location of the simulated source grid. It contains a priori information: the area where we
expect to find vocalizing fin whales. This usually excludes land and shallow or narrow
estuaries. The best resolution of the simulated source grid depends on the number of
recorders and iterations used. As figure 37 showed, for 12 uniformly located recorders,
increasing the simulated source grid resolution higher than 195 nodes, will slightly de-
crease the fit of the median source grid. In contrast the the fit of the maximum likelihood
source grid increased slightly. This is likely caused by an increased resolution, which
allows more accurate source pressure grids. On the other hand, a higher grid resolu-
tion increases the degrees of freedom, which can introduce larger uncertainties into the
source grid estimates. This is likely the reason behind the decreased fit of the median
source grid observed with increasing grid resolution. Generally, an increase in source
grid resolution must be accompanied by an increase in the number of iterations, since
there are more parameters (grid nodes) to be estimated.

Against expectations, increasing the number of iterations did not increase the corre-
lation between the "true" and inversed source grid (Figure 38). This shows that already
as few as 1000 iterations are enough to produce successful inversion results. However,
the ratio of certain grid nodes benefited from increasing the number of iterations. For the
benchmark scenario, using 5000 iterations provided sufficient results. Generally, increas-
ing number of iterations will raise the likelihood to find the "true" source grid. In practice,
one needs to find a balance between a high enough number of iterations and increased
computational costs.

The correlation between "true" and inversed source grid was insensitive to the num-
ber of solutions used for the inversion. As figure 38 showed, around 10 solutions are
sufficient for the benchmark scenario inversion. However, the ratio of certain grid nodes
increases with increasing number of solutions. The more solutions generated, the better
the posterior distribution σ(m) is sampled. Which in turn will render it more likely to es-
timate the true maximum likelihood source pressure grid. When increasing the number
of solutions, one needs to consider the corresponding increase in computation time. In-
creasing the cooling exponent has little effect on the outcome of the inversion (Figure 39).
The parameter estimation algorithm performs well within the tested range of ε from 2 to 8.

An important a priori information and input variable, is the range between the mini-
mum and maximum total pressure. The best inversion results were achieved when the
range was 1 to 3 times the true total pressure (Figure 39). This is supported by the fact,
that the ratio of certain grid nodes decreases with increasing a priori pressure range.
However, these results strongly depend on the number of solutions used. When more
solutions are generated, larger total source pressure ranges can be supported. The so-
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lutions are assigned total source pressure values between pmin and pmax. If the pressure
range becomes too large and there are too few solutions, none of the solutions will have
a total source pressure near the true total source pressure. With increasing range, the
median source grid will become a less useful interpretation of the inversion results, since
it does not incorporate the likelihood values assigned to each solution (Eq. 36). On the
other hand, the maximum likelihood source grid (Eq. 37) can tolerate large total source
pressure ranges, as long as the number of solutions and iterations are high enough.
This has been the case for the inversion of published fin index measurements. The to-
tal source pressure range spanned several orders of magnitude, and the median source
grid contained little useful information compared to the maximum likelihood source grid
(Figure 52).

A very promising result is the tolerance of the inversion algorithm to forward model
uncertainty (Figure 40). Neither the correlation and misfit between true and inversed
source grid, nor the ratio of certain grid nodes decrease with increasing forward model
standard deviation (from 1 to 10 dB). This implies that errors in the forward model, due
to the discretization of the search space and an imprecise transmission loss matrix, are
tolerated. The true transmission loss is affected by a large range of factors ranging from
seafloor properties, salinity and temperature variations to sea surface roughness. Since
one cannot model all of these processes perfectly, it is crucial that the inversion method
can tolerate errors in the forward model. The next section will discuss the effect of differ-
ent TL matrices on the inversion.

Optimal inversion is achieved using as many recorders as possible, distributed as uni-
formly as possible. Using a cooling exponent of 4 will give successful results. With 12
recorders and 195 simulated source grid nodes, successful inversion will be achieved
using at least 10 solutions and 5000 iterations. It could be shown that for the fin whale
chorus (at 20 Hz), the use of a geometrical spreading TL matrix produces successful
inversions when the true TL is unknown. This is likely due to the many sources and re-
ceivers involved in the inversion. The ensemble average of the TL is more important than
the exact TL between each source and receiver. The most important input variables are
the received level observations: when the RL data set is too small or does not sample
the major gradients of the soundfield, no successful inversion will be achieved.

7.1.3. Transmission loss matrix

The sensitivity analysis in section 6.1.1 demonstrated that the standard deviation of the
forward model (including the transmission loss matrix) can be as high as 10 dB (Fig-
ure 40). To test whether a simple approximation of the transmission loss is sufficient,
the inversion algorithm used a geometrical spreading TL matrix, while the "observed" RL
was calculated using the raytracing model BELLHOP. The results (Figure 41) showed
that successful inversion can be achieved using a geometrical spreading TL matrix, even
though it is only a rough approximation of the true TL matrix.

This reduces the computational costs of the inversion method. Most underwater sound
propagation models require long computation times, and need to be run on a computer-
cluster if many sources and receivers are involved. However, it might be necessary to use
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advanced propagation models to calculate the TL matrix when the studied area is small
and involves complex bathymetry, many islands and/or fjords (Heaney et al., 2013). A
useful approach could be, to calculate the TL matrix using an adiabatic mode propagation
model. It can include the effect sea-mounts and islands have on the TL more accurately
than 2 D raytracing models like BELLHOP (Heaney et al., 2012, Ballard, 2012). For North
Atlantic fin whale chorus inversion, the results indicate that using a geometrical spreading
TL matrix is sufficient. However, this is only applicably to the fin whale chorus inversion at
20 Hz. For higher frequency marine mammal choruses, such as the Minke whale chorus,
it might be necessary to use more advanced transmission loss models.

7.1.4. Limitations

The major limitations of the inversion method is its dependency on sufficient chorus RL
observations and that it can only provide information about the presence (and calling ac-
tivity) of fin whales, but not information about their absence. The source pressure grids
indicate where (and how much) fin whale calling activity occurs and where not. It is not
yet possible to convert fin whale calling activity to fin whale density, since each whale
vocalizes with a slightly different source level and call rate. Large scale tagging studies
might be able to gather enough data to derive a mean source level and call rate, but these
will likely differ significantly between the sub-populations, seasons and individual whale
behavior (Goldbogen et al., 2014).

The increasing noise from shipping and seismic survey could render marine mammal
chorus observations difficult. The fin whale chorus needs to be discernible as a distinct
peak in the power spectra density of a recording. Otherwise it is not possible to determine
the chorus received level. Along the major shipping lines between Europe and America
and close to the coast, masking due to anthropogenic noise could prohibit successful ma-
rine mammal chorus observations (Gervaise et al., 2012, Van Der Schaar et al., 2014).
However, Nieukirk et al. (2012) and Klinck and Nieukirk (2012) could successfully observe
the fin whale chorus in the mid and north Atlantic. It is thus very likely that a recorder
array between Iceland and Svalbard, as described in the benchmark scenario in section
6.2.2, will be able to record the fin whale chorus.

Another question regarding the chorus received level is, how one best averages the
spectrum used to estimate them. Especially if a recorder is close to vocalizing fin whales.
Then it is necessary to include the energy of the impulsive calls into the power spectral
density. The length of the recording from which the PSD is estimated, should be long
enough to include the fin whale pulse train. The recording period should be longer than
the inter pulse interval of vocalizing whale (±12 s). Theoretically, the recording period
should be long enough, to allow signals from all possible source locations to arrive at the
recorder. In the North Atlantic it would take a signal around 15 minutes to propagate from
Iceland to Svalbard (see section 5.3.1). It would thus be theoretically optimal to calculate
the PSD from a 15 minute long recording. However, fin whale vocalizations are emitted as
hour long, regular pulse trains. This enables recording periods shorter than 15 min. For
example, using a 1 minute recording period is sufficient to estimate the received sound
energy of all vocalizing whales.
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7.2. Inversion of published fin index measurements

The inversed source pressure grids based on published fin index measurements are
shown in figure 52. They indicate the likely distribution of vocalizing fin whales in Jan-
uary. The source grids indicates that fin whale calling activity mainly happens along shelf
areas. The median source pressures grid suggests, that most calling activity occurs along
the American coastline and near the Antilles. However, this estimate is considered very
uncertain since there are no grid nodes with low uncertainty in the area. The prediction
that fin whale calling occurs near the Antilles, agrees with acoustic detections from Clark
(1995) and Watkins et al. (1987). They studied fin whale vocalizations using large scale
military hydrophone arrays, and found that vocalizing fin whales moved from the Labrador
Sea past Bermuda towards the Antilles. The median source grid also agrees with the fact
that fin whale calling activity is reported to peak between September and January in the
Gulf of Maine and St. Lawrence (Morano et al., 2012).

The maximum likelihood source grid does not cover the areas west of 60 degrees due
to the large uncertainty of the grid nodes. It indicates that calling activity occurs in the
Davis strait, along the Norwegian coast and off the Strait of Gibraltar. This agrees with
the concept of distinct populations in the North Atlantic (Donovan, 1991, Bérubé et al.,
1998). The presence of fin whale calling in the Norwegian sea, agrees with Clark (1995),
who localized calling fin whales with a naval surveillance hydrophone array. Figure 53
shows the locations of calling fin whales. They agree surprisingly well with the inversion
results. The prediction that fin whale calling activity is present in January in the Davis
strait, is confirmed by Simon et al. (2010). Whereby the prediction that calling fin whales
are located near the Strait of Gibraltar in winter, agrees with observations by Castellote
et al. (2004). They found that in winter, some fin whales from the North Atlantic stock
migrate through the strait of Gibraltar, into the Mediterranean.

Figure 53: Locations of calling fin whales in winter 1993, from Clark (1995)

Although these inversion results were based on many assumptions (regarding the con-
version from fin index to chorus received level), the patterns they indicate matched pre-
vious observations surprisingly well. It could be demonstrated that chorus inversion is
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possible with a realizable number of recorders, and limited knowledge about the total
source pressure. Applying the inversion method to a basin-scale recorder array, could
outline the distribution and migration of vocalizing fin whales on an unprecedented scale.

7.3. Application of inversion method

This section discusses how the proposed method could be realized using different recorder
technologies. The recorder array should be able to measure ambient noise spectra over
long periods of time, synchronously and autonomously at multiple locations.

The simulation of randomly drifting recorders showed that using a drifting recorder ar-
ray will have the drawback of limited operation time. After a certain period of time, likely
a few months, the recorder are too dispersed for successful inversion. However, drifting
recorders which are used for a few months only, could provide useful recordings. One of
the main advantages of drifting recorders would be the reduction in cost and near real
time data availability over satellites. Matsumoto et al. (2013) integrated hydrophone and
recorder hardware into oceanographic floats and successfully managed to record marine
mammal vocalizations and ambient noise spectra. Using drifting recorders has the ad-
ditional advantage of reducing noise from mooring rope strumming. On the other hand,
depending on the depth of the drifting recorder, the reception of a marine mammal chorus
could be negatively affected by sea surface generated noise.

Other interesting data sources for marine mammal chorus inversion could be gliders
(Rogers et al., 2004, Van Uffelen et al., 2013, Sagen et al., 2010b). They have the ad-
vantage of being able to navigate and send their data in near real-time (over satellites). A
disadvantage is their high cost and operational effort. Future international projects involv-
ing interdisciplinary use of gliders, could provide valuable datasets for marine mammal
chorus inversion.

A common way of recording underwater sound is to use moored recorders (Mellinger
et al., 2007, Sagen et al., 2010a). These provide the advantage of long operating times
and a fixed sensor location. Given the current progress in underwater recorder tech-
nology, it is likely that autonomous recording units will become sufficiently affordable to
deploy large hydrophone arrays (Van Opzeeland et al., 2014, Dushaw et al., 2009). How-
ever, using moored recorders has the disadvantage of requiring ship time and technical
personnel to deploy and recover them. Given the dimension of a recorder array necessary
for basin-wide marine mammal chorus inversion, such a project would need to involve
multiple vessels or expeditions. Multiple basin-wide mooring arrays already deployed in
the world’s oceans, mainly measuring temperature, salinity and currents (Sagen et al.,
2010b). To create a basin-scale recorder array for fin whale chorus inversion, a useful
strategy would be to add autonomous recording units to existing mooring arrays or other
observation structures.

Another way to monitor ocean ambient noise and marine mammal choruses, could be
to design a hybrid between a mooring and a float, which sends its recorded ambient noise
spectra via satellite at the end of its lifetime. Compared to the expensive and sensitive
instruments used to monitor salinity, temperature and currents in the ocean, hydrophones
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are rather robust and affordable. A possible device to deliver data for marine mammal
chorus inversion, could be similar to a lander or an ocean bottom seismometer. The
system should be easy to deploy, consisting of a bottom weight, a release mechanism
and a recording and data transmission unit. Once activated and deployed, it should run
autonomously and record ambient noise spectra in regular intervals. After a preset time,
the recording unit should release and rise to the surface to transmit its data. If only ambi-
ent noise spectra are sent, a one year dataset would be approximately 10 Mb (assuming
500 samples per spectrum and 4 spectra per day). This is well within the transmission
capabilities of modern satellite networks (such as IRIDIUM). Although only usable once,
such a system could prove environmentally friendly and cost efficient, since no ship time
is required to recover it.

To record the marine mammal chorus in ice covered areas, which could be useful to
investigate minke whale distribution (Risch et al., 2014, Menze, 2012), ice tethered plat-
forms can be equipped with hydrophones (Sagen et al., 2010a). However, when mea-
surements are made in ice covered areas, it might be necessary to include the effects of
sea ice on transmission loss (Alexander et al., 2013).

In addition to estimating the distribution of vocalizing whales, the inversion method
could be used to estimate the distribution of any type of sound sources generating a
chorus-like signal. In marine ecosystems, not only marine mammals generate a chorus,
but also snapping shrimp (Au, 1998, Versluis et al., 2000) and fish (Locascio and Mann,
2008, 2005). In fish, chorusing behavior has been associated to spawning (Au and Hast-
ings, 2008). Monitoring the distribution of chorusing fish, could help identify spawning
locations or migration patterns. Another application of the inversion method could be to
monitor the distribution of anthropogenic noise sources, such as shipping or seismic sur-
veys (Erbe et al., 2014).

The current implementation of the inversion algorithm in the Matlab computational envi-
ronment allows easy manipulation of the code and visualization of the results. However, it
is computationally slow compared to a direct implementation in C++ or Fortran. Rewriting
the inversion algorithm in C++ could decrease the computational cost and dependency
on third party software.
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8. Conclusion

This thesis demonstrated that it is possible to estimate the distribution of vocalizing fin
whales from a set of ambient noise spectra. Despite the extreme under-determinedness
of this inverse problem, the parameter estimation algorithm correctly estimated the sound
source distribution of different benchmark scenarios. The benchmark scenarios showed
that the accuracy of the inversion method depends strongly on the number and distri-
bution of recorders, and less on prior knowledge of fin whale calling behavior. The most
promising results were that the inversion method tolerates high forward model uncertainty
and an imperfect transmission loss matrix (that can be approximated using geometrical
spreading). The inversion of data based on published fin whale chorus observations in-
dicated realistic distribution patterns.

The main weakness of the inversion method is, that it can only give information on the
distribution of vocalizing fin whales. Non-vocalizing whales will not be detected. It cannot
replace visual surveys in determining animal abundance. Instead, the inversion method
provides a new approach to monitor the distribution and migration of fin whales, compli-
menting existing visual and acoustic methods.
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B. Abbreviations

IPI Inter pulse interval

IWC International whaling commission

MCMC Monte Carlo Markov chain

NAMMCO North Atlantic Marine Mammal commission

PSD Power spectral density

RL Received level

RMS Root mean square

SL Source level

SNR Signal to noise ratio

SSE Sum of squared errors

TL Transmission loss
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Listing 1: Simulated annealing parameter estimation function
function sa_parameter_estimation(n_iterations,n_solutions,t_exponent,p_min,

p_max,sim_source_location,recorder_location,true_rl_file,TL_db,sigma_db,
target_file)

% SIMULATED ANNEALING PARAMETER ESTIMATION FUNCETION
% by Sebastian Menze, 2015
% used to invert fin whale chorus received level observations
% to most likely source grid pattern
%
% inputs:
% number of iterations, number of solutions, cooling exponent,
% minimum total pressure, maxiumim total pressure, pathto soiulated source
% grid file, path to recorder location file, path to received level file,
% transmission loss matrix, forward model standard deviation, name of
% outpit fie
%
% outputs:
% solutions matrix in uPa [columns: number of solution , rows: number of

source grid nodes]
% solutions matrix in dB re 1 uPa [columns: number of solution , rows: number

of source grid nodes]
% vector from 1 : number of iterations
% misfit matrix [columns: number of solutions, rows: number of iterations]
% likelihood matrix [columns: number of solutions, rows: number of iterations

]

% read source grid node locations
[sim_source_id,sim_source_lat,sim_source_lon] = import_loc_file(

sim_source_location) ;
n_sim_whale=sim_source_id(end);
n_source_locations=sim_source_id(end);
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% read recorder positions
% recorder_location='recorder_location_files/recorders_geodesic_47.loc';
[recorders_id,recorders_lat,recorders_lon] = import_loc_file(recorder_location)

;

% read true rl
% true_rl_file='true_source_files/tl_cylindrical_ts_gauss_r47.rl';
[true_rl_id,true_rl_p,true_rl_db] = import_true_rl(true_rl_file) ;

% place one simulated source on each node and generate homogenous a priori
source

% grids between the minimum and maximum total pressure
sim_whale_location_old_all=repmat(sim_source_id',n_solutions,1) ;
if p_min<0

p_min=0;
end
p_sim_whale=linspace(p_min,p_max,n_solutions);
p_sim_whale=p_sim_whale/n_sim_whale;

%%% use simulated annealing
t_start=1;

for i_iteration=1:n_iterations

tic
% update temperature
temp= t_start*(1-(i_iteration)./n_iterations).^t_exponent;
mu=temp;

sim_whale_location_old_all_new=[];
p_sim_whale_par=[];

p_sim_whale_par_all=[];

parfor i_solution=1:n_solutions

%%% move random sim_whale to random new loation
ix_selected_sim_whale=randi(n_sim_whale);
new_location=randi(n_source_locations);

sim_whale_location_old=sim_whale_location_old_all(i_solution,1:n_sim_whale);

% clear sim_whale_location_new
sim_whale_location_new=sim_whale_location_old;
sim_whale_location_new(ix_selected_sim_whale)=new_location;

%%% calculate new pressure
p_sim_whale_par=p_sim_whale(i_solution);
[pressure_new]=parfor_pressure_helper(n_source_locations,sim_whale_location_new

,p_sim_whale_par)
[pressure_old]=parfor_pressure_helper(n_source_locations,sim_whale_location_old

,p_sim_whale_par)

% new misfit and likelihood
[p_received,db_received]=received_pressure(pressure_new,TL_db) ;
sse_new = 0.5 * sum( ((db_received' - true_rl_db).^2) ./ (sigma_db^2) );

likelihood_new= exp( - sse_new ) ;
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% old misfit and likelihood
[p_received,db_received]=received_pressure(pressure_old,TL_db)
sse_old = 0.5 * sum( ((db_received' - true_rl_db).^2) ./ (sigma_db^2) );

likelihood_old= exp( - sse_old ) ;

if likelihood_new==0
if sse_new <= sse_old

% move sim_whale
sim_whale_location_old(ix_selected_sim_whale)=new_location;

else
if random('exp',mu)>1
sim_whale_location_old(ix_selected_sim_whale)=new_location;
end

end
else

if likelihood_old <= likelihood_new
% move sim_whale

sim_whale_location_old(ix_selected_sim_whale)=new_location;
else

if random('exp',mu)>1
sim_whale_location_old(ix_selected_sim_whale)=new_location;
end

end
end

% update simulates source locations and likelihood values due to
% parfor constraints
performance_sse(i_iteration,i_solution)=sse_old;
performance_likelihood(i_iteration,i_solution)=likelihood_old;
sim_whale_location_old_all_new= [sim_whale_location_old_all_new;

sim_whale_location_old ];
p_sim_whale_par_all=[p_sim_whale_par_all,p_sim_whale_par];

end

p_sim_whale=p_sim_whale_par_all;
sim_whale_location_old_all=sim_whale_location_old_all_new;
performance_iteration(i_iteration)=i_iteration;

disp(['done: ',num2str(i_iteration/n_iterations*100),'% and mean L(m): ',
num2str((mean(performance_likelihood(i_iteration,:)))),' mean S(m): ',
num2str((mean(performance_sse(i_iteration,:)))),' dB'])

toc

end

% calculate source grid based on the source locations obtained from
% simulated annealing

for i_solution=1:n_solutions
for i_hexagonal_source=1:n_source_locations
solutions_p(i_solution,i_hexagonal_source)=sum(sim_whale_location_old_all(

i_solution,:)==i_hexagonal_source)*p_sim_whale(i_solution) ;
end
end

solutions_db=20.*log10((solutions_p));
solutions_db(solutions_db<0)=0;
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% save results as mat file
save(target_file,'solutions_p','solutions_db','performance_iteration','

performance_likelihood','performance_sse','p_sim_whale')

end

Listing 2: Function to calculate the source pressure of a grid node
function [pressure]=parfor_pressure_helper(n_source_locations,

sim_whale_location,p_sim_whale)
%
% function to calculate the pressure at each grid node based on how many

siumatled
% source reside on it
%
% by Sebastian Menze, 2015
%
for i_hexagonal_source=1:n_source_locations
pressure(i_hexagonal_source)=sum(sim_whale_location==i_hexagonal_source)*

p_sim_whale ;
end
end

Listing 3: Function to calculate received level from a source pressure vector and a TL
matrix

function [p_received,db_received]=received_pressure(p_vector,TL_matrix)

% function to calculate the received pressure at a set of recorders
% by Sebastian Menze, 2015
%
% inputs: source pressure vector and the transmission loss matrix connecting
% sources and receivers
%
% outpus: received pressure in uPa dB and received level in dB re 1 uPa

for i_receiver=1:size(TL_matrix,2)

for i_source=1:size(TL_matrix,1)

single_source_RL= 20*log10(p_vector(i_source)) + TL_matrix(i_source,
i_receiver) ;

if single_source_RL < 0
received_db(i_source)=0 ;

else
received_db(i_source)=single_source_RL ;

end
clear single_source_RL

end

p_received(i_receiver)=sum(10.^(received_db/20));
db_received(i_receiver)= 20*log10(p_received(i_receiver));

clear received_db
end

91



Matlab code

end

Listing 4: Location file import function
function [ID,latitude,longitude,depth] = import_loc_file(filename, startRow

, endRow)
%IMPORTFILE Import numeric data from a text file as column vectors.
% [ID,LATITUDE,LONGITUDE,DEPTH] = IMPORTFILE(FILENAME) Reads data from
% text file FILENAME for the default selection.
%
% [ID,LATITUDE,LONGITUDE,DEPTH] = IMPORTFILE(FILENAME, STARTROW, ENDROW)
% Reads data from rows STARTROW through ENDROW of text file FILENAME.
%
% Example:
% [ID,latitude,longitude,depth] =
% importfile('recorders_geodesic_3.loc',2, 4);
%
% See also TEXTSCAN.

% Auto-generated by MATLAB on 2015/02/17 16:35:39

%% Initialize variables.
delimiter = ' ';
if nargin<=2

startRow = 2;
endRow = inf;

end

%% Format string for each line of text:
% column1: double (%f)
% column2: double (%f)
% column3: double (%f)
% column4: double (%f)
% For more information, see the TEXTSCAN documentation.
formatSpec = '%f%f%f%f%[^\n\r]';

%% Open the text file.
fileID = fopen(filename,'r');

%% Read columns of data according to format string.
% This call is based on the structure of the file used to generate this
% code. If an error occurs for a different file, try regenerating the code
% from the Import Tool.
dataArray = textscan(fileID, formatSpec, endRow(1)-startRow(1)+1, 'Delimiter',

delimiter, 'MultipleDelimsAsOne', true, 'HeaderLines', startRow(1)-1, '
ReturnOnError', false);

for block=2:length(startRow)
frewind(fileID);
dataArrayBlock = textscan(fileID, formatSpec, endRow(block)-startRow(block)

+1, 'Delimiter', delimiter, 'MultipleDelimsAsOne', true, 'HeaderLines',
startRow(block)-1, 'ReturnOnError', false);

for col=1:length(dataArray)
dataArray{col} = [dataArray{col};dataArrayBlock{col}];

end
end
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%% Close the text file.
fclose(fileID);

%% Post processing for unimportable data.
% No unimportable data rules were applied during the import, so no post
% processing code is included. To generate code which works for
% unimportable data, select unimportable cells in a file and regenerate the
% script.

%% Allocate imported array to column variable names
ID = dataArray{:, 1};
latitude = dataArray{:, 2};
longitude = dataArray{:, 3};
depth = dataArray{:, 4};

Listing 5: Received level file import function
function [true_rl_id,true_rl_p,true_rl_db] = import_true_rl(filename, startRow

, endRow)
%IMPORTFILE Import numeric data from a text file as column vectors.
% [ID,RL_P,RL_DB] = IMPORTFILE(FILENAME) Reads data from text file
% FILENAME for the default selection.
%
% [ID,RL_P,RL_DB] = IMPORTFILE(FILENAME, STARTROW, ENDROW) Reads data
% from rows STARTROW through ENDROW of text file FILENAME.
%
% Example:
% [ID,RL_p,RL_db] = importfile('true.rl',2, 35);
%
% See also TEXTSCAN.

% Auto-generated by MATLAB on 2015/02/15 13:23:36

%% Initialize variables.
delimiter = ' ';
if nargin<=2

startRow = 2;
endRow = inf;

end

%% Format string for each line of text:
% column1: double (%f)
% column2: double (%f)
% column3: double (%f)
% For more information, see the TEXTSCAN documentation.
formatSpec = '%f%f%f%[^\n\r]';

%% Open the text file.
fileID = fopen(filename,'r');

%% Read columns of data according to format string.
% This call is based on the structure of the file used to generate this
% code. If an error occurs for a different file, try regenerating the code
% from the Import Tool.
dataArray = textscan(fileID, formatSpec, endRow(1)-startRow(1)+1, 'Delimiter',

delimiter, 'MultipleDelimsAsOne', true, 'HeaderLines', startRow(1)-1, '
ReturnOnError', false);
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for block=2:length(startRow)
frewind(fileID);
dataArrayBlock = textscan(fileID, formatSpec, endRow(block)-startRow(block)

+1, 'Delimiter', delimiter, 'MultipleDelimsAsOne', true, 'HeaderLines',
startRow(block)-1, 'ReturnOnError', false);

for col=1:length(dataArray)
dataArray{col} = [dataArray{col};dataArrayBlock{col}];

end
end

%% Close the text file.
fclose(fileID);

%% Post processing for unimportable data.
% No unimportable data rules were applied during the import, so no post
% processing code is included. To generate code which works for
% unimportable data, select unimportable cells in a file and regenerate the
% script.

%% Allocate imported array to column variable names
true_rl_id = dataArray{:, 1};
true_rl_p = dataArray{:, 2};
true_rl_db = dataArray{:, 3};

Listing 6: Function to plot the results of an inversion: Misfit and likelihood over the itera-
tions and maps of the likely source pressure grids

function plot_posterior_source_grid(image_id,inv_file,sim_source_file,latlim,
lonlim,imagefolder,percentile_better,n_contour)

% function to plot the results of an inversion
% by Sebastian Menze, 2015
%
% inputs:
% ID to add to the filename under wich the images as stored, path to
% inversion file, path to simulated source grid file, minimum and
% maximum latitude to show in map, minimum and maximum longitude to show
% in map, folder to store images in, likelihood percentile threshold for

averaging
% the maximum of the posterior distribution, number of contourlines

% output:
% plots the misfit and likelihood for each generated solution over each
% interations to show hoe well the parameter estimation algorithm has

performed

if exist(imagefolder)==0
mkdir(imagefolder)

end

%% read in locactions

delimiter = ' ';
startRow = 2;
endRow = inf;
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formatSpec = '%f%f%f%f%[^\n\r]';
fileID = fopen(sim_source_file,'r');
dataArray = textscan(fileID, formatSpec, endRow(1)-startRow(1)+1, 'Delimiter',

delimiter, 'MultipleDelimsAsOne', true, 'HeaderLines', startRow(1)-1, '
ReturnOnError', false);

for block=2:length(startRow)
frewind(fileID);
dataArrayBlock = textscan(fileID, formatSpec, endRow(block)-startRow(block)

+1, 'Delimiter', delimiter, 'MultipleDelimsAsOne', true, 'HeaderLines',
startRow(block)-1, 'ReturnOnError', false);

for col=1:length(dataArray)
dataArray{col} = [dataArray{col};dataArrayBlock{col}];

end
end
fclose(fileID);

sim_sources.id = dataArray{:, 1};
sim_sources.lat = dataArray{:, 2};
sim_sources.lon = dataArray{:, 3};
sim_sources.depth = dataArray{:, 4};

%% read in inversion results
load(inv_file)

%% make plot that shows misfit and likelihood of solutions over time

%latlim=[65 80];
%lonlim=[-30 25];

[l_best,ix_best]=max(performance_likelihood(end,:));

f1=figure(1)
clf
% set(gcf,'color','w','position',[ 243 175 560 420])
set(gcf,'color','w')

subplot(211)
hold on
set(gca,'yscale','log')
for i_solution=1:size(performance_likelihood,2)
plot( performance_iteration, performance_likelihood(:,i_solution) ,'-k')

end
p1=plot( performance_iteration, performance_likelihood(:,1) ,'-r')
p2=plot( performance_iteration, performance_likelihood(:,ix_best) ,'-g')

p3= plot( performance_iteration, performance_likelihood(:,end) ,'-b')
ylabel('L(m)')
xlabel('Iterations')
title('Likelihood')

grid on
box on
legend([p1,p2,p3],['p min: ' num2str(p_sim_whale(1),'%10.0e')],['p best: '

num2str(p_sim_whale(ix_best),'%10.0e')], ['p max: ' num2str(p_sim_whale
(end),'%10.0e')] ,'location','southeast')

subplot(212)
hold on
set(gca,'yscale','log')
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for i_solution=1:size(performance_sse,2)
%plot( performance_iteration,performance_sse(:,i_solution),'-k')
plot( performance_iteration, performance_sse(:,i_solution) ,'-k')

end
plot( performance_iteration, performance_sse(:,1) ,'-r')

p2=plot( performance_iteration, performance_sse(:,ix_best) ,'-g')
plot( performance_iteration, performance_sse(:,end) ,'-b')

ylabel('SSE in dB re 1 \mu Pa')
xlabel('Iterations')
title('Misfit')
grid on
box on

drawnow

set(f1,'PaperPositionMode','auto')
print(f1,'-dpng',[imagefolder,'/performance_',image_id,'.png'],'-r300')

%% show median and maxium of source pressure grid posterior distribution

sl_median=median(solutions_p);
sl_iqr=iqr(solutions_p);

ix_certain_all=sl_median>=sl_iqr;
sum(ix_certain_all)

recgrid_lat_vec=linspace(latlim(1),latlim(2),500);
recgrid_lon_vec=linspace(lonlim(1),lonlim(2),500);
[recgrid_lat,recgrid_lon] = meshgrid(recgrid_lat_vec,recgrid_lon_vec);

%%%

F = scatteredInterpolant(sim_sources.lat, sim_sources.lon,sl_median','natural',
'none') ;

recgrid_median_p=F(recgrid_lat,recgrid_lon);
clear F

F = scatteredInterpolant(sim_sources.lat, sim_sources.lon,sl_iqr','natural','
none') ;

recgrid_iqr_p=F(recgrid_lat,recgrid_lon);
clear F

f2=figure(2)
clf
% set(gcf,'color','w','position',[692 49 667 636])
set(gcf,'color','w')

subplot(121)
hold on
worldmap(latlim,lonlim)
% setm(gca,'MLabelLocation',10)
setm(gca,'MLabelLocation',20)

contourfm(recgrid_lat,recgrid_lon,recgrid_median_p,n_contour, 'LineStyle', '
none');

cb=contourcbar
ylabel(cb,'Pressure in \mu Pa')
colormap('gray')
colormap(flipud(colormap))
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geoshow('landareas.shp', 'FaceColor', 'w', ...
'EdgeColor', 'black');

title({'Source pressure:','Median of \sigma(m)'})
reddots= plotm(sim_sources.lat(ix_certain_all),sim_sources.lon(ix_certain_all)

,'.r')
legend(reddots,sprintf( '%s\n%s', 'Grid nodes with', 'low uncertainty' ),'

location','best')

%%%%%%%%%%%%%
%likelihood boxplot
%boxplotaxes = axes('Position', [0.1784 0.7547 0.0435 0.1840]);
%boxplot(performance_likelihood(end,:),'plotstyle','compact','colors','k','

labels',' ')
%set(boxplotaxes,'ylim',[0 1])
%title(boxplotaxes,'\sigma(m)')
%grid on
%get(legend,'position')
%%%%%%%%%%%%%

perc_75=prctile( performance_likelihood(end,:) ,percentile_better );
ix_best= performance_likelihood(end,:) > perc_75;

sl_best_median_p=median(solutions_p(ix_best,:));
sl_best_iqr_p=iqr(solutions_p(ix_best,:));

ix_certain_best=sl_median>=sl_iqr;

%%%
F = scatteredInterpolant(sim_sources.lat(ix_certain_best), sim_sources.lon(

ix_certain_best),sl_best_median_p(ix_certain_best)','natural','none') ;
recgrid_best_certain=F(recgrid_lat,recgrid_lon);
clear F

% subplot(212)
subplot(122)

hold on
worldmap(latlim,lonlim)
contourfm(recgrid_lat,recgrid_lon,recgrid_best_certain,n_contour, 'LineStyle',

'none');

cb=contourcbar
ylabel(cb,'Pressure in \mu Pa')
colormap('gray')
colormap(flipud(colormap))
geoshow('landareas.shp', 'FaceColor', 'w', ...

'EdgeColor', 'black');
title({'Source pressure:','Approximated maximum of \sigma(m)'})
plotm(sim_sources.lat(ix_certain_best),sim_sources.lon(ix_certain_best),'.r')

% setm(gca,'MLabelLocation',10)
setm(gca,'MLabelLocation',20)

set(f2,'PaperPositionMode','auto')
print(f2,'-dpng',[imagefolder,'/source_pressure_grid_',image_id,'.png'],'-

r300')
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end

Listing 7: Function to generate a geodesic grid in the North Atlantic
function [sim_sources]=geodetic_grid_north_atlantic(resolution,latlim,lonlim)

% generate geodetic grid of source locations and cut of sources at land and
% above lat and lon limits
% by Sebastian Menze

% example
% [sim_sources]=generate_geodetic_grid_location(60000,[65 80],[-30 30])

[sim_sources.lat,sim_sources.lon] = GridSphere(resolution) ;

% delete grid points ouside study area
ix_inside=sim_sources.lat>latlim(1) & sim_sources.lat<latlim(2) & sim_sources.

lon>lonlim(1) & sim_sources.lon<lonlim(2) ;
sim_sources.lat(~ix_inside)=[];
sim_sources.lon(~ix_inside)=[];

% delete grid points on land
[coast]=load('coast');
[Z, R] = vec2mtx(coast.lat, coast.long, ...

5, [-90 90], [-90 270], 'filled');

val = ltln2val(Z, R, sim_sources.lat,sim_sources.lon);
isOcean = val == 2;

sim_sources.lat(~isOcean)=[];
sim_sources.lon(~isOcean)=[];

% delete estuaries
north_atlantic=[,...
72.81607371, -31.9921875;...
83.44032649, -31.6406250;...
80.23850054, 21.09375000;...
78.63000556, 49.21875000;...
70.25945200, 51.32812500;...
68.52823492, 37.61718750;...
69.03714171, 22.50000000;...
61.10078883, 9.140625000;...
58.81374171, 1.757812500;...
57.70414723, -7.03125000;...
51.83577752, -10.8984375;...
48.45835188, -3.51562500;...
43.58039085, 1.054687500;...
38.54816542, -7.73437499;...
32.54681317, -7.73437499;...
23.24134610, -5.62500000;...
7.362466865, 18.28125000;...
-20.6327842, 25.66406250;...
-20.6327842, -52.3828125;...
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9.102096738, -68.2031250;...
18.97902595, -73.8281250;...
31.95216223, -82.6171875;...
45.82879925, -68.5546875;...
45.08903556, -60.1171875;...
48.22467264, -58.3593749;...
47.75409797, -54.1406250;...
52.26815737, -56.2500000;...
58.63121664, -66.0937500;...
62.10388252, -66.0937500;...
65.65827451, -64.3359375;...
66.51326044, -52.7343750;...
71.07405646, -34.8046874];
in = inpolygon(sim_sources.lat,sim_sources.lon,north_atlantic(:,1),

north_atlantic(:,2)) ;
sim_sources.lat(~in)=[];
sim_sources.lon(~in)=[];

%
% figure(1)
% clf
% set(gcf,'color','w')
% hold on
% worldmap('world')
% [coast]=load('coast');
% plotm(coast.lat,coast.long,'-k')
% plotm(sim_sources.lat,sim_sources.lon,'ok')

sim_sources.id=1:numel(sim_sources.lat);
sim_sources.id=sim_sources.id';

end

Listing 8: Function to calculate the transmission loss matrix using cyclindrical spreading
function tl_matrix_cylindrical_spreading(sim_source_location,recorder_location,

target_filename,f_khz,waterdepth)

% function to calculate TL matrix using the cylindrical spreading law
% by Sebastian Menze, 2015
%
% input:
% path to simulated source grid file, path to recorder location
% file, file name under wich TL matrix will be stored, frequency in kHz,
% range until spherical spreading is assumed (average water depth)
%
% output:
% TL matrix in dB re 1 upa as .mat file
%
% example:
% tl_cylindrical_spreading('sim_source_location_files/sim_sources_geodesic_195.

loc','recorder_location_files/recorders_geodesic_47.loc','ss195_r47.mat
',0.2,100)

% waterdepth=4000
% f=0.2;
absorption_factor = sound_abs(2,35,10,f_khz,7.5);
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% absorption_factor=10^-3
% db_uncertainty=2

% read source positions
% sim_source_location='sim_sources.loc';
[sim_source_id,sim_source_lat,sim_source_lon] = import_loc_file(

sim_source_location) ;

% read recorder positions
% recorder_location='recorders.loc';
[recorders_id,recorders_lat,recorders_lon] = import_loc_file(recorder_location)

;

for i_source=1:numel(sim_source_lat)

for i_receiver=1:numel(recorders_lat)

distance_in_km(i_source,i_receiver)=deg2km(distance(sim_source_lat(i_source),
sim_source_lon(i_source),recorders_lat(i_receiver),recorders_lon(i_receiver
))) ;

if distance_in_km(i_source,i_receiver) > 0

if distance_in_km(i_source,i_receiver)*1000 < waterdepth

% spherical loss until water depth
TL_spreading=20*log10( distance_in_km(i_source,i_receiver) *1000 ) ;
tl_db(i_source,i_receiver)= absorption_factor * distance_in_km(i_source,

i_receiver) + TL_spreading ;

else
% spherical nd cylindrical loss u

TL_spreading= 20*log10(waterdepth) + 10*log10( distance_in_km(i_source,
i_receiver)*1000 /waterdepth ) ;

tl_db(i_source,i_receiver)= absorption_factor * distance_in_km(i_source,
i_receiver) + TL_spreading ;

end

else
tl_db(i_source,i_receiver)= 0;

end
clear TL_spreading

end
end
tl_db=-tl_db;
save(target_filename,'tl_db')

Listing 9: Function to calculate the transmission loss in 360 degree slices around the
source locations using the raytracing model BELLHOP

function tl_bellhop_slices(source_file,etopo_location,ssp_file,bellhop_location
,scenario_name,frequency,latlim,lonlim,rec_depth)

100



Matlab code

% function to model the transmission loss using the raytracing model
% BELLHOP, it generates slices covering 360 degrees around each source
% until the longitude and latitude limits are reached
% by Sebastian Menze

% example:
% tl_bellhop_slices('sim_source_location_files/sim_sources_geodesic_195.loc','

tl_model/etopo1_ice_c_i2/etopo1_ice_c_i2.bin','tl_model/
woa_annual_mean_global_ssp.mat','tl_model/BELLHOP_UNIX/bin/bellhop.exe','
scenario_1',20,[65 80],[-30 25],100)

% scenario_name='ss195'
% rec_depth=100;
%% calculate TL slices

S = referenceSphere('earth');
% latlim=[65 80];
% lonlim=[-30 25];
% addpath('BELLHOP_UNIX/Matlab/ReadWrite')
% frequency=20

% load source file
% source_file='source_distribution_files/gaussian_source_distribution_100.sl'
if strcmp(source_file(end-2:end),'.sl')
[source_ID,source_lat,source_lon,source_depth,source_sl_db] = import_sl_file(

source_file);
n_sources=source_ID(end);
else

% source_file='sim_source_location_files/sim_sources_geodesic_195.loc'
[source_ID,source_lat,source_lon,source_depth] = import_loc_file(source_file);
n_sources=source_ID(end);
end

% read World Ocean Atlas
% ssp_file='tl_model/woa_annual_mean_global_ssp.mat';
load(ssp_file);

if exist(scenario_name,'dir')==0
mkdir(scenario_name)

end

for i_source=1:n_sources

write_folder=[scenario_name,'/raytracing_source_',num2str(i_source)];

% check if raytrace has been done previously
if exist([scenario_name,'/slices_source_',num2str(i_source),'.mat'])==0

% find maximum range
dist=distance(source_lat(i_source),source_lon(i_source),latlim(1),lonlim(1))

;
dist_source_rec_km(1)=deg2km(dist);
clear dist
dist=distance(source_lat(i_source),source_lon(i_source),latlim(1),lonlim(2))
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;
dist_source_rec_km(2)=deg2km(dist);
clear dist
dist=distance(source_lat(i_source),source_lon(i_source),latlim(2),lonlim(1))

;
dist_source_rec_km(3)=deg2km(dist);
clear dist
dist=distance(source_lat(i_source),source_lon(i_source),latlim(2),lonlim(2))

;
dist_source_rec_km(4)=deg2km(dist);
clear dist

[max_dist,ix_max_dist]=max(dist_source_rec_km);

% generate env files for 360deg slices
angle_vector=0:5:360;
for i_angle=1:numel(angle_vector)
[circle_lat(i_angle),circle_lon(i_angle)] = reckon(source_lat(i_source),

source_lon(i_source),km2deg(max_dist+100),angle_vector(i_angle)) ;
end

% read ETOPO
% etopo_location='etopo1_ice_c_i2/etopo1_ice_c_i2.bin'
[Z_etopo, R_etopo] = etopo(etopo_location,1, [min(circle_lat),max(circle_lat)],

[min(circle_lon),max(circle_lon)]);
Z_etopo(Z_etopo>0)=0;

%%
for i_angle=1:numel(angle_vector)
s_lat=source_lat(i_source);
s_lon=source_lon(i_source);
r_lat=circle_lat(i_angle);
r_lon=circle_lon(i_angle);

%%%%% write bty file

clear zi ri profile_lat profile_lon
[zi,ri,~,~] = mapprofile(Z_etopo,R_etopo,[s_lat,r_lat],[s_lon,r_lon],'km');
is_nana=isnan(zi);
ri(is_nana)=[];
zi(is_nana)=[];
clear is_nana

bty_name=['slice_',num2str(i_angle),'.bty'];

if exist(write_folder,'dir')
else

system(['mkdir ' write_folder]);
end

% Open file for writing
file_identifier = fopen([write_folder,'/',bty_name], 'w');

fprintf(file_identifier,'''L''\n');
fprintf(file_identifier,'%d\n',numel(ri));
for i=1:numel(ri)

fprintf(file_identifier,'%6.1f %6.1f\n',ri(i),abs(zi(i)));
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end
fclose(file_identifier);
clear file_identifier bty_name

deepest_point(i_angle)=abs(min(zi));

%%%%% write ssp file
clear ssp_section
for i_depth=1:numel(global_ssp_depth)
[ssp_section.ssp(i_depth,:),ssp_section.range,~,~] = mapprofile(global_ssp(

i_depth,1).z,global_ssp(i_depth,1).r,[s_lat,r_lat],[s_lon,r_lon],'km');
end

ssp_name=['slice_',num2str(i_angle),'.ssp'];

% Open file for wiriting
file_identifier = fopen([write_folder,'/',ssp_name], 'w');

fprintf(file_identifier,'%d\n',numel(ssp_section.range));
row_string=[repmat('%6.2f ',1,numel(ssp_section.range)),'\n'];
fprintf(file_identifier,row_string,ssp_section.range);

for i_depth=1:numel(global_ssp_depth)
fprintf(file_identifier,row_string,ssp_section.ssp(i_depth,:));

ssp_depth(i_angle,i_depth)=global_ssp_depth(i_depth);
ssp_env(i_angle,i_depth)=ssp_section.ssp(i_depth,1) ;

end
fclose(file_identifier);
clear file_identifier ssp_name

end

clear Z_etopo R_etopo
% replace woa end depth with deepest point
ix_bty_below_ssp=ssp_depth(:,end)<deepest_point';
ssp_depth(ix_bty_below_ssp,end)=deepest_point(ix_bty_below_ssp);
clear deepest_point

%% run bellhop for 360deg slices

parfor i_angle=1:numel(angle_vector)

s_lat=source_lat(i_source);
s_lon=source_lon(i_source);
r_lat=circle_lat(i_angle);
r_lon=circle_lon(i_angle);

env_file=[write_folder,'/slice_',num2str(i_angle),'.env']
disp(['run BELLHOP for: ' env_file])

% Open file for writing
% frequency=20
file_identifier = fopen(env_file, 'w');

fprintf(file_identifier,'''%s''\n','Matlab generated env file'); % fclose(xfid)
fprintf(file_identifier,'%d ! FREQ(Hz)\n',frequency);
fprintf(file_identifier,'%d ! NMEDIA\n',1);
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fprintf(file_identifier,'''%s'' \n','QVWT'); % for range dependent ssp
fprintf(file_identifier,'%d %6.1f %6.1f \n',[0,0,ssp_depth(i_angle,end)]);
for i_depth=1:numel(ssp_depth(i_angle,:))
fprintf(file_identifier,'%6.1f %6.1f /\n',[ssp_depth(i_angle,i_depth),ssp_env(

i_angle,i_depth)]);
end
fprintf(file_identifier,'''A*'' 0.0\n');
fprintf(file_identifier,'%6.1f %6.1f %6.1f %6.1f %6.1f %6.1f\n',[ssp_depth(

i_angle,end),1800.0,0.0,2.0,0.1,0.0]);
fprintf(file_identifier,'%d \n',1);
fprintf(file_identifier,'%6.1f /\n',source_depth(i_source)) ;
fprintf(file_identifier,'%d \n',1) ;
fprintf(file_identifier,'%6.1f /\n',rec_depth) ;
fprintf(file_identifier,'%d \n',500) ;
fprintf(file_identifier,'0 %6.1f /\n', deg2km(distance(s_lat,s_lon,r_lat,r_lon)

) ) ;
fprintf(file_identifier,'''IB''\n');
fprintf(file_identifier,'%d 0 \n',1000); % n rays choose by beelhop
fprintf(file_identifier,'%d %d /\n',[-45,45]); % angle
fprintf(file_identifier,'0.0 %6.1f %6.1f \n',[ssp_depth(i_angle,end), deg2km(

distance(s_lat,s_lon,r_lat,r_lon))]);
fprintf(file_identifier,' \n');

fclose(file_identifier);

% RUN BELLHOP RAYTRACING MODEL
system([ bellhop_location,' ',env_file(1:end-4)]);

% get lat and lon of each of the 500 slice points
[slice_lat(i_angle,:),slice_lon(i_angle,:)] = track2(s_lat,s_lon,r_lat,r_lon,S,

'degrees',500);

[ PlotTitle, ~, freq, ~, Pos, pressure ] = read_shd( [env_file(1:end-4),'.shd']
);

slice_pressure(i_angle,:)=squeeze(pressure);

end
save([scenario_name,'/slices_source_',num2str(i_source),'.mat'],'slice_lat','

slice_lon','slice_pressure')
else

end
clear slice_lat slice_lon slice_pressure slice_tl_db circle_lat circle_lon

end

end

Listing 10: Function to calculate the transmission loss matrix from the slices generated
by the raytracing model BELLHOP

function raytracing_slices_2_tl_matrix(source_file,scenario_name,
recorder_folder,latlim,lonlim)

% function to interpolate from the raytracing slices generated by the
% BELLHOP model to a TL matrix connecting each source and receiver
% by Sebastian Menze, 2015
%
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% example:
% slices2tlmatrix('sim_source_location_files/sim_sources_geodesic_195.loc','

scenario_1','recorder_location_files',[65 80],[-30 25])

% load source file
% source_file='source_distribution_files/gaussian_source_distribution_100.sl'
if strcmp(source_file(end-2:end),'.sl')
[source_ID,source_lat,source_lon,source_depth,source_sl_db] = import_sl_file(

source_file);
n_sources=source_ID(end);
else

% source_file='sim_source_location_files/sim_sources_geodesic_195.loc'
[source_ID,source_lat,source_lon,source_depth] = import_loc_file(source_file);
n_sources=source_ID(end);
end

% loop through recorder files
% recorder_folder='recorder_location_files'
rec_ls=dir([recorder_folder,'/*.loc']);

%% interpolate TL for all receiver files in folder

for i_source=1:n_sources

load([scenario_name,'/slices_source_',num2str(i_source),'.mat'],'slice_lat','
slice_lon','slice_pressure')

% interpolate

recgrid_lat_vec=linspace(latlim(1),latlim(2),500);
recgrid_lon_vec=linspace(lonlim(1),lonlim(2),500);
[recgrid_lat,recgrid_lon] = meshgrid(recgrid_lat_vec,recgrid_lon_vec);

ix_valid=(slice_pressure(:)~=0);

F = scatteredInterpolant(slice_lat(ix_valid),slice_lon(ix_valid),slice_pressure
(ix_valid),'natural','nearest') ;

recgrid_tl_p=F(recgrid_lat,recgrid_lon);
recgrid_tl_db=real(20*log10(recgrid_tl_p));
recgrid_tl_db(recgrid_tl_db==-Inf)=NaN;
save([scenario_name,'/recgrid_source_',num2str(i_source),'.mat'],'recgrid_lat',

'recgrid_lon','recgrid_tl_p','recgrid_tl_db');

for i_recorder_file=1:size(rec_ls,1)
% load receiver file
recorder_file=[recorder_folder,'/',rec_ls(i_recorder_file).name] ;

[recorder_ID,recorder_lat,recorder_lon,recorder_depth] = import_loc_file(
recorder_file);

% interpolate
recorders_tl_p=F(recorder_lat,recorder_lon);
recorders_tl_db=real(20*log10(recorders_tl_p));

recorder_string=rec_ls(i_recorder_file).name(1:end-4);

eval(['tl_p_' ,recorder_string,'(i_source,:)=recorders_tl_p;'])
eval(['tl_db_' ,recorder_string,'(i_source,:)=recorders_tl_db;'])
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end

clear F

% optinal figure:

% figure(1)
% clf
% set(gcf,'color','w')
% scrsz = get(0,'ScreenSize');
% set(gcf,'Position',[scrsz(1) scrsz(2) scrsz(3) scrsz(4)])
%
% subplot(121)
% hold on
% scatter(slice_lon(:),slice_lat(:),10,slice_tl_db(:),'fill')
% [coast]=load('coast');
% plot(coast.long,coast.lat,'-k')
% plot(recorder_lon,recorder_lat,'ok')
% colorbar
% colormap('jet')
% set(gca,'clim',[-150 -80],'ylim',latlim,'xlim',lonlim)
% title(['Source ',num2str(i_source)])
%
% subplot(222)
% hold on
% worldmap(latlim,lonlim)
% [coast]=load('coast');
% plotm(coast.lat,coast.long,'-k')
% geoshow(recgrid_lat,recgrid_lon,recgrid_tl_db,'DisplayType','surface')
% colorbar
% colormap('jet')
% set(gca,'clim',[-150 -80])
%
% subplot(224)
% hold on
% worldmap(latlim,lonlim)
% [coast]=load('coast');
% plotm(coast.lat,coast.long,'-k')
% plot_value=recorders_tl_db;
% plot_bins=100;
% plot_range=[-150 -80];
% set(gca,'clim',[-150 -80])
% colormap('jet')
% jet_cmap=jet(plot_bins);
% [~,ind] = histc(plot_value,linspace(plot_range(1),plot_range(2),plot_bins));
% ind(ind==0)=1;
% for i_point=1:numel(plot_value)
% plot_cmap=jet_cmap(ind(i_point),:);
% plotm(recorder_lat(i_point), recorder_lon(i_point),'marker','o','markersize

',6,'MarkerFaceColor',plot_cmap,'color',plot_cmap,'linestyle','none');
% end
% colorbar
%
% set(gcf,'PaperPositionMode','auto')
% print(gcf,'-dpng',['Raytracing_transmission_loss_source_ ',num2str(i_source)

,'.png'],'-r300')
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end

for i_recorder_file=1:size(rec_ls,1)

recorder_string=rec_ls(i_recorder_file).name(1:end-4);

% save tl matrix
save([scenario_name,'/tl_bellhop_',recorder_string,'.mat'],['tl_p_' ,

recorder_string],['tl_db_' ,recorder_string])

end

end

Listing 11: Example script demonstrating the inversion method based on published fin
index measurements.

%% inversion of published fin index values
%
% fin whale chorus received level dataset averaged as composite dataset
% from Nieukirk et al 2012 and Nierkirk and Klink 2012
%
% averged fin index take s as chorus signal to noise ratio,
% values taken from the 1. of January
%
% by Sebastian Menze, 2015

%% generate composite fin whale chorus received level dataset

base=90;

% from nieurkirk et al. 2012

fin_rl.lat(1)=50;
fin_rl.lon(1)=-34;
fin_rl.db(1)=base+10;

fin_rl.lat(2)=50;
fin_rl.lon(2)=-24;
fin_rl.db(2)=base+9;

fin_rl.lat(3)=42;
fin_rl.lon(3)=-34;
fin_rl.db(3)=base+9.5;

fin_rl.lat(4)=42;
fin_rl.lon(4)=-26;
fin_rl.db(4)=base+5;

fin_rl.lat(5)=39;
fin_rl.lon(5)=-34;
fin_rl.db(5)=base+7;

fin_rl.lat(6)=37;
fin_rl.lon(6)=-29;
fin_rl.db(6)=base+6;
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ix=7;
fin_rl.lat(ix)=32;
fin_rl.lon(ix)=-43;
fin_rl.db(ix)=base+5;

ix=8;
fin_rl.lat(ix)=32;
fin_rl.lon(ix)=-35;
fin_rl.db(ix)=base+4;

ix=9;
fin_rl.lat(ix)=26;
fin_rl.lon(ix)=-50;
fin_rl.db(ix)=base+4;

ix=10;
fin_rl.lat(ix)=26;
fin_rl.lon(ix)=-40;
fin_rl.db(ix)=base+3;

ix=11;
fin_rl.lat(ix)=16;
fin_rl.lon(ix)=-49;
fin_rl.db(ix)=base+2;

ix=12;
fin_rl.lat(ix)=16;
fin_rl.lon(ix)=-43;
fin_rl.db(ix)=base+2;

% from klinck and nieurkirk 2012

fin_rl.lat(13)=78+(50/60);
fin_rl.lon(13)=05+(29/60);
fin_rl.db(13)=base+1.5;

fin_rl.lat(14)=74+(56/60);
fin_rl.lon(14)=-04+(37/60);
fin_rl.db(14)=base+2;

%% generate sim_source distribution scenarios

% geodesic distribution
addpath('GridSphere')
folder=['inversion_from_literature_6'];
mkdir(folder)

latlim=[10 85];
lonlim=[-80 20];

source_depth=10;

resolution_factor=4
resolution= 2 + ( 10 * (4 ^ resolution_factor) )

[sim_sources]=geodetic_grid_north_atlantic(resolution,latlim,lonlim);
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n_sim_source=sim_sources.id(end)

% write simulated sources file
fid=fopen([folder,'/sim_sources.loc'],'w');
fprintf(fid,'ID latitude longitude depth\n');
for i_element=1:numel(sim_sources.id)
fprintf(fid,'%d %f %f %d\n',[sim_sources.id(i_element),sim_sources.lat(

i_element),sim_sources.lon(i_element),source_depth]);
end
fclose(fid);

%% prepare RL data

fin_rl.p=10.^(fin_rl.db/20)
fin_rl.id=1:numel(fin_rl.p)

figure(1)
clf
set(gcf,'color','w')
hold on
worldmap(latlim,lonlim)
[coast]=load('coast');
plotm(coast.lat,coast.long,'-k')
plotm(sim_sources.lat,sim_sources.lon,'ok')

plot_value= fin_rl.db;
plot_bins=100;

plot_range=[min(plot_value),max(plot_value)];

jet_cmap=jet(plot_bins);
[~,ind] = histc(plot_value,linspace(plot_range(1),plot_range(2),plot_bins));
ind(ind==0)=plot_bins;
for i_point=1:numel(plot_value)

plot_cmap=jet_cmap(ind(i_point),:);
plotm(fin_rl.lat(i_point), fin_rl.lon(i_point),'marker','o','markersize',10,'

MarkerFaceColor',plot_cmap,'color',plot_cmap,'linestyle','none')
end
set(gca,'clim',[plot_range(1),plot_range(2)])
cb=colorbar;
ylabel(cb,'RL in dB re 1 \muPa')
colormap('jet')
drawnow

set(gcf,'PaperPositionMode','auto')
print(gcf,'-dpng',[folder,'/input_data.png'],'-r300')

%% write recover location and received level file

rec_depth=4000;
n_recorder=6;

% write recorder and rl file
fid=fopen([folder,'/recorders.loc'],'w');
fprintf(fid,'ID latitude longitude depth\n');
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for i_element=1:numel(fin_rl.id)
fprintf(fid,'%d %f %f %d\n',[fin_rl.id(i_element),fin_rl.lat(i_element),fin_rl.

lon(i_element),rec_depth]);
end
fclose(fid);

% write true reveived level file
fid=fopen([folder,'/recorders.rl'],'w');
fprintf(fid,'ID RL_p RL_db\n');
for i_element=1:numel(fin_rl.id)
fprintf(fid,'%d %f %f\n',[fin_rl.id(i_element),fin_rl.p(i_element),fin_rl.db(

i_element)]);
end
fclose(fid);

%% calculate tl matrix with cylindrical spreading

tl_matrix_cylindrical_spreading([folder,'/sim_sources.loc'],[folder,'/recorders
.loc'],[folder,'/tl_cylindrical.mat'],0.02,4000)

%% run inversion

load([folder,'/tl_cylindrical.mat'])

%%% estimate sum of energy from all calling fin whales

n_males_max = 40000 /2;

fin_sl_mean_db=189;
fin_sl_mean_p=10^(fin_sl_mean_db/20);

inter_call_interval= 12;
call_duration=1;

call_rate= call_duration/(call_duration+inter_call_interval);

p_min= 1 * fin_sl_mean_p *call_rate
p_max= n_males_max * fin_sl_mean_p* call_rate

sa_parameter_estimation(5000,50,4,p_min,p_max,[folder,'/sim_sources.loc'],[
folder,'/recorders.loc'],[folder,'/recorders.rl'],tl_db,6,[folder,'/
inversion.mat'])

plot_posterior_source_grid(['inv_result'],[folder,'/inversion.mat'],[folder,'/
sim_sources.loc'],latlim,lonlim,folder,90,50)
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