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Abstract

The full complexity of deformation associated with natural faults is difficult to understand, given the
lack of three-dimensional exposure in outcrop and the limitations of seismic resolution in the sub-
surface. Analogue physical experiments are therefore widely used to gain insight into the nature and
evolution of deformation associated with fault growth. In this study we use plaster of Paris to gain
insight into fault evolution in strike-slip regimes; specifically, we investigate the effect of different
basement structural templates on the evolution of faults in the cover (plaster). The small-scale
structures developed in plaster experiments can quite accurately mimic natural fault systems. The
grain size and rheology of plaster of Paris makes the development and preservation of detailed

structural geometries possible.

Basement templates with differently angled restraining and releasing bends were made, for studying
structures formed by transpressive and transtensive deformation, respectively. A cover sequence of
plaster mixture was poured into a sealed box; manual movement (pulling by hand) controlled the

amount of strain and deformation in the ensuing experiments.

Based on the finished models, results show how the positive flower structure geometry is affected by
the restraining bend angle. Specifically, the pop-up structures comprise more fault blocks in models
with lower-angled restraining bends, and the fault blocks form at a later stage in the deformational
process in experiments with higher-angled bends. The geometry of the fault blocks changes
according to the bend angle. The results also give insight into pull-apart basin development; they
indicate that the aspect ratio of the pull-apart basins increases when increasing the angle of the

releasing bends.

Analogue plaster modelling can, as seen herein, provide valuable insight into fault evolution and

associated minor deformation.
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1 Introduction

1.1 Background and rationale

Analogue modeling studies on the extensional regime have shown that the basement configuration
strongly influences the structures that form in the overlying cover (e.g. McClay, 1990; Gabrielsen &
Clausen, 2001). There has not been as much research done on the role of basement configuration on
strike-slip features. For this thesis analogue modeling is performed with the intention to learn more

about how basement configuration affects the structures formed in the overlying plaster cover.

As fault complexes in nature show the structures at their final state of deformation, the structural
development cannot be fully understood from studying natural fault complexes only (Lindanger et
al., 2004). Outcrops in the field generally provide limited exposure of a structural system and they
are two-dimensional. They therefore do not give a full picture of a structural system, but they allow
for detailed studies of the exposed features. Seismic data provides a better picture of the structural
systems in three dimensions, but due to the resolution of the data small, sub-seismic structures
cannot be studied (Steen et al., 1998; Pringle et al., 2004). Small-scale structures also influence the
fluid flow in the sub-surface, which makes them important features for the petroleum industry
(Knipe et al., 1998). Given the above limitations, a full understanding of the complexity of strike-slip

geometry and growth is hard to obtain based on outcrop and subsurface studies.

Experiments using plaster generate detailed, realistic models representing natural fault complexes
(Gabrielsen & Clausen, 2001). The complexity of the structural system can be studied in 3D, and the
development can be studied during the experiments, as well as from the pictures documenting the
evolution. The models embody large-scale structures as well as the associated sub-seismic features
formed under the experimental conditions. By doing analogue modeling the temporal formation and
evolution of faults and concomitant structures can be studied. The experiments can provide
additional valuable data or confirm the already existing information over an area (Clifton et al.,

2000).

1.2 Aims and objectives

The main aim for this study is to gain new insight to the geometry, nucleation and growth of strike-

slip faults and concomitant features through experimental modeling. Specifically the aim is to get a



better understanding of the relationship between structural basement configuration and the

structures in the sedimentary cover, particularly pertaining to releasing and restraining bends.
This is achieved through the following objectives:

- Perform analogue plaster modeling using basement templates with differently angled
restraining and releasing bends.

- Analyze and compare structures in pictures taken during the experiments.

- Make videos by compiling the pictures from each experiment and use these for studying the
evolution of structures.

- Compare the experiments with similar experimental conditions to see if similarities can be
drawn between the models.

- Compare some structures with similar structures in nature.

1.3  Strike-slip faults

Introduction

One can define strike-slip faults as faults with displacement parallel to their strike, where one fault
block moves laterally relative to the other block (Fossen, 2010). They are common in various
geological settings in both oceanic- and continental tectonic plates, and are found as both small-scale
structures as well as structures stretching over tens to hundreds of kilometers (Cunningham & Mann,
2007; Fossen, 2010). The earthquake that occurred in San Francisco in 1906, caused by the San
Andreas Fault, gave strike-slip faults scientific importance and attention worldwide. These structures
were recognized for their geological importance before this event, particularly after the earthquake
in New Zealand in 1888 that resulted in strike-slip displacement (Sylvester, 1988). In the 1960-70s the
theory of plate tectonics gradually became accepted amongst geoscientists, and they got a new
understanding of the tectonic and mechanical nature of these faults. Earthquakes are more often
associated with these types of faults compared to normal and reverse intraplate faults (Sylvester,

1988).
Classification

Strike-slip faults are divided into different groups based on i) their vertical and lateral extent and ii)
where they are located (Sylvester, 1988). They are interplate or intraplate features and their motion
is either dextral, which means right-lateral, or sinistral, which means left-lateral (Cunningham &

Mann, 2007; Fossen, 2010), (Fig. 1.1). The main classes of strike-slip faults are called transform and



transcurrent faults, and these are further divided into subgroups based on their characteristics

(Sylvester, 1988).

Dextral strike-slip fault Sinistral strike-slip fault

Figure 1.1: Dextral and sinistral strike-slip faults.

Transcurrent faults are intraplate structures. They do not cut through the entire lithosphere, but are
restrained to basement rock and the upper, sedimentary rock. Transcurrent faults, referred to as
wrench faults by some geologists, are close to vertical features with a great lateral extent (Sylvester,
1988; Wilcox et al., 1973). Their free tips move as the displacement grows, and the fault’s length

increases (Fossen, 2010).

Transform faults are interplate structures that form plate boundaries or divide plates (Fossen, 2010).
They cut through the lithosphere and are therefore more deep-cutting than the transcurrent features
(Sylvester, 1988). They are characterized by being long faults or fault zones, and the San Andreas

Fault is a 1200 km long example of such a structure (Fossen, 2010).

There are four main types of transcurrent faults, according to Sylvester (1988). Transfer faults have
tips that terminate against fractures or other faults, and they transfer displacement between two
features. Because of their restricted tips, they have a limited growth possibility, but their scale-range
is still wide. Tear faults are responsible for the differential offset in an allochton or between this
block and a close-lying structure. Indent-linked strike-slip faults are responsible for a part of the total
displacement (Sylvester, 1988). They are located in areas of uplift and shortening (Woodcock & Daly,
1986). Intracontinental transform faults are also confined to the crust, and are therefore under this

category (Sylvester, 1988).



According to Sylvester (1988), there are three main types of transform faults. Ridge transform faults
cut the oceanic lithosphere perpendicular to mid-ocean ridges, and they are only active between the
ocean-ridge parts. The fault’s length is proportional to the spreading rate of the mid-ocean ridge
(Fossen, 2010). Boundary transforms divide oceanic as well as continental plates. They are active for
a long time, and their linear extent is large (Woodcock & Daly, 1986). Trench-linked strike-slip faults
are only responsible for a part of the total displacement of a boundary, and are therefore not
considered real transform features. Since they do cut through the lithosphere, they are categorized
as transform faults. Trench-linked faults are located parallel to a trench, and can develop into long

structures over a long period of time (Woodcock & Daly, 1986).
Simple and Pure Shear

Major strike-slip faults form in areas dominated by simple shear. The length of these faults can be
over a thousand kilometers, and they can have hundreds of kilometers of displacement. For strike-
slip faults in general the maximum principal stress, o,, is oriented with an angle to the fault plane,
making the fault blocks move along each other (Fossen, 2010). The fault zone may be tens of
kilometers wide, and it comprises characteristic features developed during the horizontal movement
(Sylvester, 1988). Riedel-shear fractures (R-shears) develop with a NE-SW orientation relative to an E-
W oriented dextral strike-slip fault (Fig. 1.2). The angle between these structures and the main fault
plane is found by calculating (¢/2), where ¢ is defined as the angle of internal friction (Sylvester,
1988). R’-shears form with the angle (90°- ¢/2), and these are antithetic structures, meaning that
they are oriented oppositely from the main fault plane, and together with the R-shears these

features form a conjugate set of fractures or faults (Wilcox et al., 1973; Sylvester, 1988) (Fig.1.2).
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Figure 1.2: Secondary structures formed during simple shear (Fossen, 2010).

P-shear fractures tend to form after the development of the R-shears, and they are aligned between
the surfaces of the R- and R’-shears (Fossen, 2010). T-fractures, or extension fractures, are also found
along many strike-slip faults (Fig. 1.2). These form at approximately 45° to the orientation of the
main fault, thus almost normal to the maximum instantaneous stretching axis (Sylvester, 1988;
Fossen, 2010). Other secondary features that may form along a simple shear fault are folds, stylolites
and normal and reverse faults (Fossen, 2010). The fold axis will in this case be oriented at less than
45° to the main fault plane, but it may rotate further depending on the amount of fault displacement

(Wilcox et al., 1973).

Where pure shear is the dominating kinematic component strike-slip faults can develop in the form
of conjugate sets (Fig. 1.3). These will be shorter faults compared to the ones developed under
simple shear, due to lack of space. They have an angle of ¢ and -¢ to the direction of shortening
(Sylvester, 1988). Figure 1.3 shows that g;, the maximum principal stress, divides the acute angle
between the two faults (Fossen, 2010). Normal faults and extensional fractures can be found

perpendicular to the elongation axis in these zones, and compressional features, such as folds and



thrust faults, can be found normal to the shortening axis. These types of strike-slip faults are often

associated with fold-thrust belts, where they cut across the fold orientations (Sylvester, 1988).

e

45 + ¢/2

4

Figure 1.3: Conjugate set of faults (Fossen, 2010).

Restraining and Releasing Bends

Strike-slip faults tend to have a fairly straight plane in the vertical direction, but laterally the fault
planes can comprise bends. Based on the relative motion of the fault and the direction of the bend,
contractional or extensional features form in that area (Fossen, 2010). Transpressional deformation
occurs at restraining bends, and transtension is associated with releasing bends (Fig. 1.4). “Fault
bend” or “stepover” are terms used for sites where two strike-slip faults link together at an offset to
form a curved and continuous structure. More rhomb-shaped stepovers do not define one
continuous fault, rather two separate faults with displacement transfer in between (Cunningham &

Mann, 2007).
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Figure 1.4: Restraining and releasing bend.

Restraining bends lead to shortening, and therefore uplift and vertical thickening of the crustal block.
A higher amount of strain will affect the uplifted areas (Sanderson & Marchini, 1984). Elevated areas
resulting from transpression might become a source of sediment for the lower topography nearby
with time (Crowell et al., 1989). Structures associated with this type of deformation are folds and
reverse faults. These features will be high-angled compared to the parts of the shear zone unaffected
by transpression (Sanderson & Marchini, 1984). At sites characterized by double restraining bends,

the uplifted crust can be called a positive flower structure (Cunningham & Mann, 2007), (Fig. 1.5).

Positive /

flower structure

Figure 1.5: Positive flower structure (Fossen (2010)).
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Crust that has been affected by transtension at releasing bends is stretched and thus thinner at this
site than elsewhere in the region. Pull-apart basins form as a result of the thinned and subsiding
crust, and these depressions can be receivers of sediment from uplifted topography nearby (Crowell
et al., 1989). Features one can expect to find at sites of transtension are normal faults, veins, dykes
and folds. The folds will be at a low-angle to the unaffected parts of the shear zone, and the other
mentioned structures will be high-angled (Sanderson & Marchini, 1984). Where double releasing
bends dominate, the subsided crust can be called a negative flower structure (Cunningham & Mann,

2007), (Fig. 1.6).
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Figure 1.6: Negative flower structure (Fossen (2010)).




2 Methodology

2.1 Introduction

This chapter describes the methods used to perform analogue modeling of strike-slip deformation,
using plaster of Paris as the modeling material (2.2 and 2.3). The concept of scalability for analogue
models is described in this chapter along with a section covering some of the historical background
for experimental studies (2.4 and 2.5). Some of the qualities for the plaster type used in this study
are described in section 2.6 and the last sub-chapter describes the material’s advantages and

limitations in association with analogue experiments (2.7).

2.2 Methodology (set-up)

A frame for the plaster is built for each experiment, consisting of a fixed part (part A in dark brown,
Fig. 2.1) that is mounted onto a table, and a movable part (part B in light brown, Fig. 2.1). These parts
are comprised of wooden planks that are high enough (4.5 cm) to keep the plaster from overflowing
the edges. Plywood (thickness of 0.9 cm) and a jigsaw are used to build basement templates for the
strike-slip experiments. The plywood plate is mounted onto the movable part of the frame, as shown
in Figures 2.1 and 2.2. A plastic barrier/ liner is added on top of the fixed part of the frame, but under
the movable part, to prevent leakage (Fig. 2.2). The frame is sealed with a soft barite mixture (barite
and water mixed together, with a consistency of soft butter) along the inside edges of the movable
frame, as well as where the two parts of the frame are joined (the grey parts in Figure 2.1 and the

white mixture in Figure 2.2).



The fixed part
of the frame, part A

The movable part
of the frame, part B

Baser
Barite

<4

ment template

— Table

Figure 2.1: Top-down view of the setup for the experiments.

Figure 2.2: A top-down view of the setup for model 32-14. The parts that are
outlined in red are mounted together and constitute the movable part of the frame.



The plaster is mixed with cold water, and this mixture is stirred until it has the consistency of thick
pancake batter. From experience the plaster mixture should consist of approximately 1 % parts
plaster per 1 part water (measured in liters). According to Saint Gobain Formula the mixture should
contain 1.55 parts plaster per 1 part water measured in weight
(http://www.saintgobainformula.com/Products/Plaster/Molda-3-Normal). The plaster is poured into
the frame which at this point is fixed and not moving while the experiment is being prepared.
Marker stripes are applied on the top surface of the wet plaster, normal to the displacement
direction. This is done with a paint brush and acrylic paint (Fig. 2.3). The consistency of the plaster is
checked repeatedly by dipping the head of a nail into the mixture. When the nail is pulled out of the
plaster and a mound forms, the plaster has consolidated sufficiently to deform by brittle deformation
yet still being able to yield under manually driven force. Part B is (manually) moved upwards along
the long side of part A (Fig. 2.4). This motion represents movement along the basement fault
template, and the plaster on top of the plywood plate moves with the frame, while the plaster

outside of the plate does not move.

Figure 2.3: Marker stripes applied to the plaster (Exp. 34-14).
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Figure 2.4: Top-down view of the set-up after displacement (without the plaster).

Figure 2.5: An oblique view of a model after displacement (experiment 32-14).
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Pictures are taken approximately every quarter of a second, from directly above the experiment
(pictures are taken from three angles, but the most important images are the ones shot top-down
allowing a map-view inspection of the experiments). This makes it possible to observe the spatio-
temporal evolution of structures during each experiment. The painted stripes are used as points of
reference to measure the amount of displacement/ deformation throughout and after each
experiment. Exact measurements of model dimensions are also done before and after deformation.
After the model is subjected to deformation, it is left to completely solidify for about an hour, during

which it releases heat.

2.3 Data processing

Three Nikon D800 cameras with AF-S Nikkor 50 mm f/1.4 G lenses were used for documenting the
experiments. The pictures were used for analysing the deformational process for each experiment,
and these had a resolution of 7360 x 4912 pixels. The software Inkscape was used for making figures
that illustrated the models at different stages throughout the deformation. The interpretational
figures were made by tracing structures in layers added on top of the pictures. The finished plaster
models were also studied. Videos were made of each experiment in Microsoft PowerPoint and they
comprised the pictures taken continuously during the deformational events (Appendix A). The
duration of the videos was approximately the same as for the experiments they displayed and they

were good tools for studying the development of the models.

2.4 Scalability

When developing a model representing a natural structural zone there are several aspects that need
to be taken into consideration; one of these aspects is scalability. Koenigsberger and Morath (1913)
were the first geoscientists that applied the concept of scalability to structures, but the scalability
work by Hubbert (1937) is more well-known and has been the basis for later work in this matter. The
models need to have similar geometric, kinematic, as well as dynamic properties to their natural
examples in order to be an ideal representation (Hubbert, 1937; Ramberg, 1981; Schlische &

Withjack, 2009).

Geometric similarity is achieved when the model is a geometric copy of a different scale of the
natural prototype. The length between any pair of corresponding points in the model and its natural
prototype thus has to have a constant ratio (Ramberg, 1981).The model and its natural counterpart

are kinematically similar when the model remains geometrically analogous to the natural prototype

13



at corresponding times throughout the evolution. Dynamic similarity is achieved when the ratio
between the mechanical forces acting on equivalent particles in the model and the original is
constant, given that the model and the original are kinematically and geometrically similar (Langhaar,

1951; Ramberg, 1981).

When aiming to make models similar to fault zones in nature one has to consider the scale
difference, as well as the strength difference. A body of any material generally has a higher strength
the smaller the body is. A lot of models made by scientists earlier were not good representations of
their natural counterparts, due to the use of materials that were too strong at the modelling scale
relative to the strength and size of the natural features (Hubbert, 1937). Cloos (1930) focused on the
importance of the strength and scale relationships between the original and the model in his

experimental work.

One of the models made for this thesis represents a real natural fault zone and the other models
represent different types of strike-slip situations that can resemble many strike-slip zones in general.
The models are not exact scale representations of natural fault complexes, but because the models
are made of plaster they contain small-scale structures as well as large-scale structures and the
structures in such models closely resemble structures formed in the crust (Fossen & Gabrielsen,

1996).

2.5 Experimental structural geology: Previous work

Introduction

Experimental modeling has been used as a method to acquire knowledge about structural geology
for a long time. Sir James Hall, referred to as the father of experimental geology, pressed pieces of
cloth or clay layers together to replicate folding from a specific area (Cadell, 1889). Since then, a lot
of different materials have been used in experiments, the most conventionally applied ones being
clay and sand. Other substances have occasionally been used in combination with these materials,
such as honey and silicone putty (Dauteuil & Mart, 1998; Mart & Dauteuil, 2000; Vendeville et al.,
1987). Plaster is a less common modeling substance compared to sand and clay, but it has been used
in several studies the last few decades (Fossen & Gabrielsen, 1996; Gabrielsen & Clausen, 2001;

Lindanger et al., 2004; Mansfield & Cartwright, 2001; Sales, 1987).

Analogue modeling has been carried out through time to imitate and get a better understanding of
the deformation processes that have taken place in natural deformation zones. Attempts have been

made to replicate the formation and evolution of different structures and structural zones through
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the deformation of various materials. Examples of previous experimental work are given below,
divided into categories of models made by clay, sand, sand in combination with other materials, as
well as plaster. Because there has been less focus on the strike-slip regime in experiments in the

past, examples of extensional and contractional modeling are also given.

Clay

Clay has been one of the most commonly used materials in geological experiments throughout time.
It holds the ability to fracture and fold under a wide range of viscosities and its physical properties
can be changed by adding water (Cloos, 1955). One can thus choose which viscosity is best suited for
making its relative strength proportionate to the relative strength of the natural counterpart
(Hubbert, 1937). Some disadvantages with clay are that very small structures do not form in this
substance, and due to its grain size the models do not replicate the structures in nature perfectly

scale-wise (Emmons, 1969; Fossen & Gabrielsen, 1996).

According to Hubbert (1937) the models developed by Hans Cloos up until 1930 were some of the
first realistic analogue models developed in terms of the strength relationship between the model
and the original. After calculating the required approximate strength of the modeling material, Cloos
used clay with the consistency of thick cream (Hubbert, 1937). Hans Cloos” method was used in
experiments done in the 1950s as well, and the models made presented a variety of structures, some
of them being strike-slip faults with the development of en échelon fractures (Cloos, 1955). Wilcox et
al. (1973) studied the process of wrench faulting (also known as transcurrent faulting) using clay

overlying two tin sheets.

The process of inversion was studied in the 90s, when a movable wall attached to a base plate was
pulled to extend a clay layer, and then pushed to invert the extensional structure. Several colored
clay layers were added as the model was extended in order to see the effect of deformation on
newly deposited layers (Eisenstadt & Withjack, 1995). In more recent years clay has been widely used
for analogue modeling of extension. Clifton et al. (2000) studied the effect rift obliquity had on faults
by displacing a metal plate below a clay layer. The middle part of the clay layer was on top of a latex
sheet, and rifting started when the sheet stretched uniformly as the metal plate was moved (Clifton
et al., 2000). Henza et al. (2011) examined how existing faults affected new faults formed in a second
extensional phase. These experiments were set up similarly to previous experiments such as the
modeling set-up made by Clifton et al. (2000), described above. Schlische et al. (2002) focused on
the secondary features formed by oblique-slip normal faults, and they also made some strike-slip

models. Wet clay layers of different colors represented the sedimentary cover, which for the strike-
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slip models were placed on top of a fixed plate and a movable plate representing the two fault blocks

(Schlische et al., 2002).
Sand

Sand has the ability to produce faults and fractures, but very small-scaled features do not develop in
this material. Its large grain size presents a problem when comparing the model’s characteristics to
the attributes of the natural crustal rock (Fossen & Gabrielsen, 1996). Compared to models consisting
of clay, sand models have wider fault zones, and the deformation is spread over a smaller amount of
structures, mainly larger faults. Because faults propagate and link up fast in sand models compared
to clay (and plaster) models, the fault planes become quite straight, and the models will less often
contain relay ramps (Henza et al., 2010). Unlike clay and plaster, dry sand lacks the cohesive strength
that is present in natural crustal rock. Models made with both sand and clay are harder to preserve
than plaster models, but a gelatine solution can be infused into sand models to preserve them

(Fossen & Gabrielsen, 1996; Naylor et al., 1986).

One modeling technique applied to sand was to place the substance in a divided frame, where one
side/ fault block was moved along the other block, resulting in a strike-slip fault zone. Two different
sand colors were used in order to show the displacement more clearly (Emmons, 1969). Naylor et al.
(1986) examined the characteristics of faults formed in the cover above a basement transcurrent
fault by moving one part of a table laterally against the other part of the table. McClay (1990) used
sand when running extensional experiments due to its ability to produce the main structures formed
in the upper part of the crust, important for hydrocarbon exploration. Braun et al. (1994) applied
sand to examine the deformation associated with listric normal faulting. More recently, Schlische and
Withjack (2009) studied the formation and evolution of fault domains in the extensional regime using
sand in some of the experiments. This was carried out in a similar manner to the experiments done
by Clifton et al. (2000), where the sand deformed with the underlying latex sheet (Schlische &
Withjack, 2009). McClay and Bonora (2001) performed analogue modeling using sand to examine the
formation of positive structures developed by transpression at restraining bends. Some of their
experiments involved synkinematic sedimentation with the addition of differently colored sand

layers during deformation (McClay & Bonora, 2001).
Sand in combination with other materials

Sand has also been used in combination with other materials. Brun et al. (1994) used sand and
silicone to model detachment faults, wherein the sand represented the brittle upper crust and the

silicone mimicked the ductile lower crust. Salt tectonics has been the focus of many experimental
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studies in the 1990s and in more recent years, in which sand has represented part of the sedimentary
cover material (e.g. Brun & Fort, 2011; Fort et al., 2004; Vendeville, 2005). Analogue modeling was
performed to examine deformation in cover material, resulting from underlying reactivated
basement- and salt extensional faults. Silicone polymer represented the salt in these experiments,
and the cover material was modeled using dry quartz sand as well as spherical glass beads (Dooley et
al., 2005). Dooley et al. (2007) studied the development of thrust belts with a salt base, utilizing
silicone and silica sand as well as hollow ceramic microspheres representing the salt and the cover
material, respectively. These scientists also modeled the process of lateral compression on salt
stocks, using the same materials as for their thrust belt study (Dooley et al., 2009). Smit et al. (2008)
examined the effect of the model’s rheology and the stepover width on the development and
geometry of pull-apart basins. They used sand as a representation of the brittle crustal material and a

layer of silicone was used in some experiments as the ductile crust.

Plaster

Plaster has also been used for geological modeling purposes throughout the years. Cadell (1889)
used plaster of Paris interlayered with sand in his experiments in the 1800s in order to produce
structures formed in a more brittle regime, as the experiments done earlier represented a more
plastic regime. In these experiments the plaster powder was spread between damp sand layers,
where the sand acted as a source of moisture for the plaster. When it had absorbed enough water
the model was deformed, and if given enough time for consolidation it behaved in a brittle manner

(Cadell, 1889).

Sales (1987) started using plaster in modeling mainly because of its ability to preserve and develop
smaller scale structures, which had not been possible in methods involving other materials. Unlike
Cadell’s experiments, these plaster experiments did not involve the use of sand; the plaster was in
some cases underlain by barite representing the basement structure. The model set-up for the strike-
slip experiments consisted of a wooden frame and two basement boards. The main fault would form

where the two boards met, in the overlying plaster (Cadell, 1889; Sales, 1987).

Mansfield and Cartwright (2001) did a plaster modeling project focusing on the linkage of faults in
the extensional regime. Crystacal plaster and barite was deformed in a similar manner to the
experiments done by Sales (1987). In the last 2-3 decades, many plaster experiments have been run
in the structural geology laboratory at the University of Bergen. The fundamentals of the method
described by Sales (1987) have been followed for the plaster modeling at this University. In the early

90s Ottesen (1991) and Odinsen (1992) focused on strike-slip and extensional fault modelling,
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respectively, for their master theses. Extensional experiments were also run by Fossen and
Gabrielsen (1996), as well as by Gabrielsen and Clausen (2001) more recently. Lindanger et al. (2004)
studied the structures developed in the hanging wall in extensional experiments, using a ramp-flat-
ramp basement. For this master thesis some small adjustments have been made in the experimental

set-up, further described in the methodology chapter.

2.6 Plaster of Paris

Plaster of Paris was used in these experiments and it is characterized by its fine and uniform grain-
size (Fossen & Gabrielsen, 1996). The type of plaster used in this study is called Molda 3 Normal
Plaster and its chemical composition is CaSO, * % H,0. It has a gypsum purity of at least 91 %, and it
is white in color. 97% of the plaster has a grain size less than 100 um
(http://www.saintgobainformula.com/Products/Plaster/Molda-3-Normal). Early on in the
deformation of models the plaster has a finite amount of ductile strain due to its relatively high

cohesive strength (Mansfield & Cartwright, 2001).

2.7 Advantages and limitations with plaster as the modeling material

Advantages with plaster as the modeling material

Plaster modeling is a quick process, and several models can be made in one day. When considering
the grain size of the plaster type used, a model scaled up from the size of 50 cm to a natural area of 1
km gives a grain size of less than 10 cm
(http://www.saintgobainformula.com/Products/Plaster/Molda-3-Normal). This characteristic makes
the development and preservation of detailed, structural geometries possible, and the mm- to cm-
scale structures developed in such models are known to quite accurately reproduce natural fault

systems on the scale of hundreds of meters to kilometers (Fossen & Gabrielsen, 1996).

Following the experiment the plaster solidifies completely and the resulting model can be saved for
further analysis. The structures developed in the plaster may shed light on small-scaled structural
geometries that would fall below seismic resolution when present in natural fault systems (Fossen &
Gabrielsen, 1996). This type of experiment is therefore helpful for a better understanding of the

smaller-scale processes that occur in nature (Gabrielsen & Clausen, 2001).
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Limitations with plaster as the modeling material

The plaster mixture can behave quite differently depending on several factors. The relative amount
of water and plaster needs to be consistent in the experiments, as well as the temperature of the
water. The mixture must be stirred properly to make the mixture as homogeneous as possible. If the
mixture is not given enough time to thicken, water will percolate to the surface and ruin the marker
stripes in addition to affecting the small-scaled structures developed with displacement. If it is too
thick when poured into the frame, there will not be enough time to apply marker stripes, and the
plaster will not spread out and form an even layer. This is why the mixture must have the consistency
of thick pancake batter when poured into the frame. The deformational structures in the fault zones
will be less complex when the plaster is deformed at a more brittle stage, whereas the ductile strain
component is larger in experiments where weaker plaster is deformed (Lindanger et al., 2004). It is
therefore important that the plaster mixture for the different experiments is made the same when
comparing the models. In cases where the plaster is poured into the frame too early, plaster powder
is sifted on top of the plaster prior to the application of marker stripes, in order to bind some of the

the water percolating to the surface.

The thickness of the basement template might affect the experiments; due to this the basement
templates made for this project all have a thickness of 9 millimeters. The friction between the plaster

mixture and the table is another influencing factor.
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3  Description of experiments

3.1 Introduction

The focus of this chapter is the description of the plaster experiments performed for this thesis.
Some of the experiments are shown in less detail than others, as only certain aspects of these
models are of importance. Sub-chapter 1.2 describes experiment 32-14, 34-14 and 36-14, which are
models containing positive flower structures formed by transpressional bends at different angles to
the main fault trend. The three next experiments (40-14, 39-14 and 37-14) are described in sub-
chapter 1.3. These were made for comparing the deformation resulting from releasing bends of
variable angle relative to the main fault trend in the basement templates. The last sub-chapter (1.4)
documents experiments where basement templates resulted in both transpressive and transtensive

structures. An overview of the experiments performed in this study is found in Table 3.1.

Table 3.1
Experiment Date Experimental conditions Deformation
number (Basement geometry)
1. 32-14 06.11.14 | 30° restraining bend Transpression
2. 34-14 06.11.14 | 45° restraining bend Transpression
3. 36-14 02.12.14 | 60° restraining bend Transpression
4. 40-14 03.12.14 | 30° releasing bend Transtension
5.39-14 02.12.14 | 45° releasing bend Transtension
6. 37-14 02.12.14 | 60° releasing bend Transtension
7. 19-14 19.02.14 | Two irregularities (paired Transpression and transtension
restraining and releasing bends)
8. 08-13 13.11.13 | Alarge releasing bend and Transtension dominated.
a small irregularity (paired Transpression at the small
restraining and releasing bend) | irregularity

Table 3.1: An overview of the experiments described in chapter 3 is given in this table.

The structures that formed in strike-slip experiments were located quite close to the main fault trace,
and the deformation was active along the entire fault more or less simultaneously. Generally, a lot of
brittle deformation occurred at the edges of each model. These were considered to be caused by so-
called ‘edge effects’, which arose from the influence of the bounding box of the experiment. These

are obviously not present in nature and were therefore disregarded. Figures throughout this chapter

show the areas that were affected the most by the “edge effects” for each experiment.

All experiments were performed with sinistral fault movement. The experiments were given

orientations to use as reference points in order to make the descriptions easier to follow; experiment
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19-14 represented a natural fault zone and the orientations in this experiment were therefore the
same as for the real fault zone. The marker stripes applied to the plaster were also used as reference
points in the descriptions; these were given numbers from the southern edges of the experiments
(shown in figures for each experiment). Percentages given in the descriptions represent the amount
of displacement completed at specific stages in the deformation process, relative to the total amount
of displacement (the total displacement being 100 %). Videos of the experiments are found on a in
Appendix A. All the videos were made with north pointing up towards the northern edge of the

video.

3.2 Transpressive experiments

Experiment 32-14, 34-14 and 36-14 resulted in models containing positive flower structures formed
by transpressional bends of 30°, 45° and 60° angles, respectively. The faults that divided the flower
structures into several fault blocks in these experiments were reverse and thrust faults. Reverse
faults have a higher angle than 30° and thrust faults have an angle less than 30° (Fossen, 2010). The
angles of these faults were hard to measure in the transpressive models and the term reverse fault
was therefore used in the descriptions. These experiments were performed for gaining insight into

the structural influence pertaining to restraining bends of different angles.

3.2.1 Experiment 32-14: 30° restraining bend

The basement template utilized in this experiment comprised a 30° restraining bend, leading to
transpression (Fig. 1). The plaster mixture was slightly stiff when deformation was initiated, but the
results were still of good quality. The pictures were not taken instantly from the time of movement
initiation for this particular experiment, and the duration of movement and percentages
representing the amount of movement completed are therefore slightly less precise compared to the
values of the other experiments. The majority of the motion and all of the brittle deformation was
documented. The plaster mixture was poured into the frame too early, and water percolated to the
top, thus disrupting the marker stripes (Fig. 2). Seven marker stripes were applied to the plaster and
the first one was located the furthest south (Fig. 2). General information about the setup and
duration of experiment 32-14 is found in Table 3.2 and a video of the experiment is found in

Appendix A (Video 1).
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Figure 3.2: Marker stripes applied to the plaster (numbered from the southern edge).
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Table 3.2

Date of the experiment 06.11.2014

Plaster mixture 9.5 liters of plaster and 6 liters of water
Plaster to water ratio 1.58:1

Duration 11 seconds

Length of the short sides of the frame 45 cm

Length of the long sides before and after | Before displacement: 66.8 cm

displacement After displacement: 87.7 cm

Total displacement 20.9cm

Table 3.2: General information about the setup and duration of experiment 32-14 is given in this table.

The model started showing signs of brittle deformation after circa 7 % of the total movement of 20.9
cm (Fig. 3.3 A and B). Two fault traces became visible in the northern and the southern part of the
model, and they consisted of several NNW-SSE oriented fractures/ fault segments arranged in a
relatively straight line (N-S; Fig. 3.3 A and B). The fractures were characterized as riedel shear
fractures and were synthetic relative to the main fault direction. Plaster had started accumulating
and forming a pop-up structure in the area outlined in red in Figure 3.3 B. This figure also shows the

location of the fault traces.
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Figure 3.3 A: The southern fault trace (oblique view).
B: The model after 7 % of the displacement (oblique view).

The fault traces extended close to the pop-up structure shortly thereafter and they became more
continuous with time as fault segments linked up. After c. 11 % of the displacement the positive
structure was quite prominent and it could be defined as a positive flower structure (Fig. 3.4). The
south-western part of the positive flower had moved slightly upwards relative to the flat plaster
layer, thus representing a hanging wall in a reverse fault. The reverse faulting propagated northwards
affecting the north-western side of the flower structure, and a hard link between the two fault traces

had thus formed. Figures 3.5 A and B shows the flower structure c. 21 % into the movement.
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Figure 3.4: The model after c. 11 % of the displacement (oblique view).

.

A | c- 21 % displacement

= Fault traces
= Positive flower structure

--- The top of the flower structure
44 Reverse faults

= Fractures and small faults

- Riedel shear fractures

m Reverse fault offset

BaQement template contour

Figure 3.5 A: The positive structure c. 21 % into the displacement (oblique view).
B: The area lined in red represents the area shown in Figure 3.5 A (oblique view).
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Between 23 % and 100% of the displacement another six fault blocks developed, bringing the total
amount of fault blocks constituting the positive flower to seven (Figs. 3.7, 3.8 and 3.9). The formation
of these blocks was evident by the plaster accumulation northwest of the flower structure, as shown
in Figures 3.6 A and B which illustrates the flower after the formation of the second block. The fault
blocks were separated by reverse faults and they evolved in sequence. The fault blocks thus
propagated towards the foreland, placing the youngest blocks beneath the older ones and closest to

the foreland (to the north) (Morley, 1988).

A | c. 30 % displacement =

10 cm
| 1 B B B .
= Fault traces

— Positive flower structure

--- The top of the flower structure
44 Reverse faults

44 Reverse faults

— Fractures and small faults

1 Reverse fault offset b
- quement template contour c. 30 % displawﬁt ;i

Figure 3.6 A: The flower structure after c. 30 % of the displacement (oblique view).
B: The red square portrays the area shown in Figure 3.6 A (oblique view).

The third fault block was relatively small, underlying the northern half of the second block (Figs. 3.7 A
B). The reverse fault that separated fault blocks 4 and 5 was reactivated as a normal fault shortly
after the formation of fault block 5. The fourth block represented the hanging wall (Figures 3.8 A and
B show the flower structure before this normal fault displacement and Figure 3.9 A shows the flower
structure after displacement). After the formation of all seven fault blocks, the three northernmost
ones (fault blocks 5-7) rotated slightly clockwise towards the northeast as one unit, whilst the four

southern blocks did not rotate (fault blocks 1-4) (Video 1, Experiment 32-14).
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Figure 3.7 A: The flower structure c. 44 % into the displacement (oblique view).
B: The red square portrays the area shown in Figure 3.7 A (oblique view).
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Figure 3.8 A: The flower structure c. 76 % into the displacement (oblique view).
B: The area lined in red represents the area shown in Figure 3.8 A (oblique view).
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Figure 3.9 A: The flower structure after displacement. The fault blocks are numbered (oblique view).
B: The red square portrays the area shown in Figure 3.9 A (oblique view).

A small positive structure was located between the second and third marker stripe and the width of
the fault trace varied in the southern half of the model, as shown in Figures 3.10 A and B. The
deformation was more complex close to the major flower on the southern side. A few of the marker

lines were slightly deflected towards the movement direction.

Riedel shear fractures were evident along the fault trace in the northern part of the model,
particularly on the eastern fault block, as indicated in Figures 3.10 A and B. Some could be seen south
of the flower structure, but they were not as many or as apparent as in the northern part. The angle
between these and the main fault ranged between c. 10-19°. The fractures on top of the flower
structure had the main orientations NW-SE and NE-SW, and there were also some oriented E-W

(Figs. 3.10 A and B).

The model was 87.7 cm long after the experiment, making the total displacement 20.9 cm. The
length of the flower structure was c. 21.5 cm in the finished model, and it had a maximum height of
c. 4.5 cm. Fault blocks 1-6 in the flower structure all showed a sense of ductile deformation, as their
edges folded slightly downwards (towards the northwest) when they moved upwards (Fig. 3.9 A).

The positive flower formed with a similar angle to the basement template in the early stages of the
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experiment, and eventually rotated slightly clockwise giving an overall angle of 30-35° relative to the
main fault direction. The fault blocks constituting the flower structure had similar angles to the

overall structure (Figs. 3.10 A and B).

The angles of the reverse fault planes gradually decreased upwards, as faults in flower structures are

inclined to widen upwards (Fossen, 2010).

A

100 % displacement

= Fault traces
— Positive structures

= Fractures and small faults
— Riedel shear fractures

4+ Reverse faults

4 Reverse faults

am Reverse fault reactivated as a normal fault ——— —
m Reverse fault plane

= Basement template contour

V_
43.5 cm

\\ *“2?

B [100 % displacement

- - -
-— ==
-

HE EEEN
— Fault traces

— Positive structures
— Fractures and small faults
— Riedel shear fractures

44 Reverse faults

4+ Reverse faults

+= Reverse fault reactivated as a normal fault
m Reverse fault plane

--- Basement template contour

Figure 3.10 A and B: The final interpretation of experiment 32-14.
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The area that was the most affected by edge effects is outlined in purple in Figure 3.11 and the red

square portrays the area shown in Figures 3.10 A and B.

Figure 3.11: The red square portrays the areas shown in Figures 3.10 A and B and
the areas lined in purple were the most affected by edge effects.

3.2.2 Experiment 34-14: 45° restraining bend

The basement template utilized in this experiment had a 45° restraining bend, leading to
transpressional deformation (Fig. 3.13 A). The plaster was a bit too stiff when the movement was
initiated, but the structures formed were still of good quality. Five sets of marker stripes were used
as reference points in the description of this experiment; they were numbered from the southern
edge of the model (Fig. 3.13 B). General information about the setup and duration of experiment 34-

14 is found in Table 3.3 and a video of the experiment is found in Appendix A (Video 2).
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Figure 3.12 A: The basement template. B: Marker stripes applied to the plaster (numbered from the south).

Table 3.3

Date of the experiment 06.11.2014

Plaster mixture 10 liters of plaster and 6 liters of water
Plaster to water ratio 1.66:1

Duration 16 seconds

Length of the short sides of the frame 44 cm

Length of the long sides before and after Before displacement: 65.2 cm
displacement After displacement: 89.9 cm

Total displacement 24.7 cm

Table 3.3: General information about the setup and duration of experiment 34-14 is given in this table.

Brittle deformation commenced after c. 8 % of the total displacement of 24.7 cm (Figure 3.13 B
shows the model c. 11 % into the movement). Beginning fractures (very faint stripes) with the main
orientations NNW-SSE and WSW-ENE formed through the southern half of the model. The first ones

mentioned were synthetic relative to the main fault direction and were classified as riedel shear

31




fractures. The latter ones were characterized as riedel marked shears. The light reflection north of

the third stripe-set showed that plaster started accumulating here, forming a pop-up structure (Fig.

3.13).

Two fault traces formed on both sides of the positive structure and they comprised NNW-SSE and
some N-S oriented fractures. The location of these segments and the area of plaster accumulation
are shown in Figure 3.13, c. 11 % into the movement. The southern fault trace developed earlier than

the northern trace.

Figure 3.13: The model after c. 11 % of the displacement.

All the marker lines showed displacement c. 14 % into the movement. The western edge of the
positive structure had become more defined and a hard-link between the two fault segments had
thus formed. The western side of the structure moved upwards compared to the adjacent flat
plaster, thus representing the hanging wall in a reverse fault. The south-eastern and eastern edge of
the pop-up structure became distinct shortly after, and it was defined as a positive flower structure.

Figures 3.14 A and B display the flower approximately 25 % into the movement.
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Figure 3.14 A: The positive flower structure c. 25 % into the displacement.

B: The red square portrays the area shown in Figure 3.14 A.

Between approximately 32 % and 100 % of the displacement four more fault blocks developed as

part of the flower, and this structure thus comprised five fault blocks in total (Figs. 3.15 and 3.16).

The northwestern outer rim of the flower was not as defined as the rest of the rim after

displacement. A significant amount of reverse displacement was evident on its western edge.
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Figure 3.15 A: The flower structure c. 62 % into the displacement.
B: The area outlined in red represents the area shown in Figure 3.15 A.
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Figure 3.16 A: The flower structure after displacement.
B: The red square portrays the area shown in Figure 3.16 A.

The fault trace south of the flower structure developed with a degree of normal displacement; the
eastern fault block had moved downwards compared to the western block and thus defined the

hanging wall (Figs. 3.17 A and B; These figures make the fault south of the flower appear wide, but

this is only due to the normal displacement). A relatively shallow and narrow basin had formed at the

southwestern edge of the flower structure. Some small positive structures had developed in the
southern half of the model, particularly in the area closest to the flower structure, as shown in
Figures 3.17 A and B. All the marker stripes showed varying degrees of deflection towards the

movement direction.

The flower structure had fractures with a big variety of orientations: N-S, NNE-SSW, WSW-ENE, NW-
SE and NE-SW (Fig. 3.16 A). Some riedel shear fractures were evident in the finished model, the angle
between these and the main fault ranged between c. 15-20° (shown in green in Figs. 18 A and B). The

length of the model was 89.9 cm after the experiment, bringing the total displacement to 24.7 cm.
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The positive flower structure had a length of approximately 21.5 cm and it had a maximum height of
5 cm (relative to the flat plaster surface). The overall angle of this structure relative to the main fault
was c. 20°, and the angles between the fault blocks constituting this structure and the main fault

ranged from c. 20° in the south to 40-50° in the north. The reverse faults separating the fault blocks

became less steep further upwards in the flower structure.
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Figure 3.17 A and B: The final interpretation of experiment 34-14.
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The area portrayed in Figures 3.17 A and B is outlined in red in Figure 3.18 and the areas that were
the most affected by edge effects in this experiment are outlined in purple.
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Figure 3.18: The red square portrays the areas shown in Figures 3.17 A and B and
the areas lined in purple were the most affected by edge effects.

3.2.3 Experiment 36-14: 60° restraining bend

The basement template used in this experiment comprised a 60° restraining bend, causing
transpressional deformation (Fig. 3.19 A). The plaster consistency was ideal when deformation was
initiated. Five sets of marker stripes were applied to this plaster model, and these were used as
reference points in the description, with the first set being the southernmost one (Fig. 3.19 B).

General information about the setup and duration of experiment 36-14 is found in Table 3.4 and a
video of the experiment is found in Appendix A (Video 3).
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Figure 3.19 A: The basement template. B: Marker stripes applied to the plaster (numbered from the south).

Table 3.4

Date of the experiment 02.12.2014

Plaster mixture 8 liters of plaster and 4.8 liters of water
Plaster to water ratio 1.66:1

Duration 21 seconds

Length of the short sides of the frame 45 cm

Length of the long sides before and after Before displacement: 64.5 cm
displacement After displacement: 88.5 cm

Total displacement 24 cm

Table 3.4: General information about the setup and duration of experiment 36-14 is given in this table.

Brittle deformation commenced in the southernmost part of the model after c. 9 % of the total
movement of 24 cm. Beginning fractures were (very faint stripes) oriented WSW-ENE and some had
the orientation NNW-SSE (barely noticeable). The most visible ones were characterized as riedel
marked shears, and the faint ones were synthetic and classified as riedel shear fractures. Plaster had

started accumulating north of the third stripe-set, forming a pop-up structure (Fig. 3.20). This was
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evident from the reflection of light in this area. Displacement became evident in the south shortly
after, and the fault trace in the southern area extended northwards to the third stripe-set (Fig. 3.20).

The northern fault trace became visible after slightly more movement.

Figure 3.20: The model c. 10 % into the displacement. The area outlined in red represents
the area of plaster accumulation and the southern fault trace is pointed out.

Circa 22 % into the movement the eastern edge of the pop-up structure was defined and a hard-link
between the two fault traces had formed. With slightly more movement the entire outer rim of the
structure was defined making this a flower structure. Figure 3.21 illustrates the positive flower after
c. 37 % of the movement, before new fault blocks were added to this. As the flower structure moved
northwards it rotated slightly clockwise towards the northeast, up until new fault blocks started

developing (further mentioned below).
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Figure 3.21 A: The flower structure c. 37 % into the displacement.
B: The red square portrays the area shown in Figure 3.21 A.

Between c. 47 % and 100 % of the displacement two more fault blocks formed as parts of the flower
structure (Figs. 3.22 and 3.23). Towards the end of the experiment the positive flower seemed to get
steeper on the eastern side. The northern tip of the flower structure rotated slightly

counterclockwise towards the northwest when the structure came closer to the northern edge of the
model (Fig. 3.23).
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Figure 3.23 A: The flower structure after displacement.
B: The red square portrays the area shown in Figure 3.23 A.

Small structures had formed along the fault in the southern half of the model. An elongated basin
was located just south of the flower structure. Further south of this basin a small positive structure
and a very small basin had formed. The main fault had a degree of normal displacement in addition
to the dominating strike-slip movement in the southernmost area, where the eastern fault block had
moved down relative to the western side and thus represented the hanging wall (Figs. 3.24 A and B).

Deflection of the plaster towards the movement was evident on the majority of the marker stripes,

as shown in Figures 3.24 A and B.

A few riedel shear fractures were evident along the fault trace on the eastern fault block, the angle

between these and the main fault ranged between c. 14-18°. The fractures on top of the flower
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structure had the orientations NNE-SSW, NNW-SSE, NW-SE and N-S. The two newer fault blocks were

less affected by fracturing than the oldest block.

The model was 88.5 cm long after the experiment, giving a total displacement of 24 cm. The flower
structure was 20 cm in length, and the maximum height was c. 4 cm relative to the flat plaster
surface. The overall angle of this feature was approximately 20° relative to the main fault, and it

comprised fault blocks angled c. 45-50° (Figs. 3.24 A and B).

100 % displacement

- Positive structures
- Fault traces

— Basins

= Fractures and small faults
~— Riedel shear fractures

++ Reverse faults —
44 Reverse faults

= Normal/ strike-slip faults

= Normal faults

--- Basement template contour 14

A8 - . | ':
49°cm ﬂm q |

100 % displacement

10 cm
Il B E E W

— Positive structures 44 Reverse faults
— Fault traces 4 Reverse faults _— —>

— Basins Normal faults
= Fractures and small faults Normal/ strike-slip faults
-~ Riedel shear fractures --- Basement template contour

Figure 3.24 A and B: The final interpretation of model 36-14.
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The areas outlined in purple in Figure 3.25 portray the areas that were affected the most by edge
effects. The area outlined in red in this figure represents the area shown in Figures 3.24 A and B.
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Figure 3.25: The red square portrays the areas shown in Figures 3.24 A and B and
the areas lined in purple were the most affected by edge effects.

3.3 Transtensive experiments

Experiment 40-14, 39-14 and 37-14 resulted in models containing pull-apart basins formed by

transtensional bends of 30°, 45° and 60° angles, respectively. These experiments were performed for

gaining insight into the structural influence pertaining to different releasing bend angles.

3.3.1 Experiment 40-14: 30° releasing bend

The basement template used in this model comprised a 30° releasing bend as shown in Figure 3.26 A,
and transtensional deformation occurred. The plaster consistency was quite stiff when poured into
the frame and the structures that formed were of good quality. Five sets of marker stripes were
applied to the plaster and were used as reference points in the description with the first set being
the southernmost one (Fig. 3.26 B). General information about the setup and duration of experiment

40-14 is found in Table 3.5 and a video of this experiment is found in Appendix A (Video 4).
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Figure 3.26 A: The basement template. B: Marker stripes applied to the plaster.

Table 3.5

Date of the experiment 03.12.2014

Plaster mixture 8 liters of plaster and 4.8 liters of water
Plaster to water ratio 1.66:1

Duration 13 seconds

Length of the short sides of the frame 45 cm

Length of the long sides before and after Before displacement: 65 cm
displacement After displacement: 78 cm

Total displacement 13 cm

Table 3.5: General information about the setup and duration of experiment 40-14 is given in this table.

Ductile deformation dominated for the first c. 18 % of the total movement of 13 cm. After
approximately 10 % of the motion plaster started sinking in the area of the third set of marker
stripes. Riedel shear fractures developed (very faint at this stage) with the orientation NNW-SSE,
these were synthetic relative to the main fault direction. Other beginning fractures were oriented

WSW-ENE and NE-SW, thus forming a conjugate set with the other fractures. These were the most
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visible north of the third stripe-set and they were classified as riedel marked shears. The fractures

became more visible after c. 42 % of the displacement as shown in Figures 3.27 A and B.
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Riedel marked fractures

ures

Figure 3.27 A: Riedel shears and antithetic fractures c. 42 % into the displacement.
B: The interpretation of the area shown in Figure 3.27 A (the location of these structures is
outlined in red in Figure 3.28).

The model was moved quite abruptly, and when c. 42 % of the movement was reached a fault trace
had formed in the northern half of the model and southwards through half of the releasing bend (Fig.
3.28). The fault trace in the south was less developed when it came to its extent and continuity.
Although the two fault traces comprised several fault segments (they were not fully continuous) they

were overlapping in the area of the releasing bend and the faults were therefore soft-linked, as can
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be seen in Figure 3.28. This figure also showed where the southernmost part of the northern fault

trace had opened 0.5-1 cm, forming a rift/ a narrow pull-apart basin.

c. 42 % displacement 2

| The area of overlap and the widest
part of the northern fault trace v

=
65 cm

Figure 3.28: The model after c. 42 % of the displacement. The red square portrays the area shown in Figure
3.27 A and B. The green square shows the location of the overlap between the two fault traces
and shows the widest area of the northern fault trace.

With slightly more movement the fault cut through the majority of the southernmost area as well.
The plaster in between the overlapping fault segments was cut by an oblique transfer fault c. 49 %
into the movement, thus connecting the two main fault segments and forming a hard-link (Figs. 3.29
A and B). The tips of the two fault segments were left as inactive branches. A relay ramp formed
where the northern fault segment ended in an inactive branch constituting a part of the eastern
basin wall. The ramp had a relatively gentle dip northwestwards into the basin (it did not have a high
amount of normal displacement). A small and a large basin had developed south of the pull-apart

basin (Figs. 3.29 A and B).
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B: Interpretation of the area shown in Figure 3.29 A. C: The green square portrays the area
shown in Figure 3.29 A and the area outlined in red is the area illustrated in Figure 3.29 B.
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The two basins south of the pull-apart basin grew and these three basins eventually linked up. This

was very apparent when c. 75 % of the movement was reached (Figs. 3.30 A and B).
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Figure 3.30 A: The pull-apart basin area c. 75 % into the displacement, when the two
basins had connected. B: The red square shows the area portrayed in Figure 3.30 A.

The pull-apart basin was approximately 4 cm at the widest and 28 cm in length after displacement.
The overall angle of the basin was quite hard to measure because of its shape, but a rough estimate
would be between 13-20°. The area where the previously separate basins had connected was quite
narrow compared to the overall width of the pull-apart basin. A significant amount of fractures
affected the area to the east and west of the pull-apart; these were oriented similarly to this
structure (Figs. 3.31 A and B). Both the riedel shear fractures as well as the riedel marked shears
were visible in the finished model. The angle between the riedel shears and the main fault ranged

between c. 16-20° and the riedel marked fractures had angles of c. 74-78° relative to the main fault.

As the experiment was moved quite far the fault plane overall ended up quite wide, as can be seen in

the figures below.
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Figures 3.31 A and B: The final interpretation of experiment 40-14.

The area affected the most by edge effects is outlined in purple in Figure 3.32 and the red square
portrays the area shown in Figures 3.31 A and B.
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Figure 3.32: The areas that were the most affected by edge effects are outlined in
purple and the red square portrayed the area shown in Figures 3.31 A and B.

3.3.2 Experiment 39-14: 45° releasing bend

The basement template used in this experiment comprised a 45° releasing bend, leading to
transtensional deformation (Fig. 3.33 A). The plaster mixture was poured into the frame when it was
quite stiff and the structures that formed were of good quality. The five sets of marker stripes
applied to the plaster were used as points of reference when describing the experiment; the first set
was located furthest to the south (Fig. 3.33 B). General information about the setup and duration of

experiment 39-14 is found in Table 3.6 and a video of this experiment is found in Appendix A (Video
5).
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Figure 3.33 A: The basement template. B: Marker stripes applied to the plaster (numbered from the south).

Table 3.6

Date of the experiment

02.12.2014

Plaster mixture

8 liters of plaster and 4.8 liters of water

Plaster to water ratio 1.66:1
Duration 13 seconds
Length of the short sides of the frame 45 cm

Length of the long sides before and after

displacement

Before displacement: 64.7 cm

After displacement: 75.1 cm

Total displacement

10.4 cm

Table 3.6: General information about the setup and duration of experiment 39-14 is given in this table.

Ductile deformation dominated up until 25 % of the total movement of 10.4 cm. Plaster started

sinking north of the third stripe-set after approximately 10 % of the displacement. A few beginning

fractures formed along the middle part of the model apart from the northernmost area, with the

orientation WSW-ENE. These were characterized as riedel marked fractures. Faint fractures with the

orientation NNW-SSE formed north of the third stripe-set. These were classified as riedel shear
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fractures and were synthetic relative to the main fault trend. Some displacement was evident in the

southernmost area.

Normal faults and more fractures had formed in the area of the third stripe-set c. 34 % into the
displacement. These revealed the location of the releasing bend, as shown in Figure 3.34. A fault
trace had formed north of the releasing bend and another one had developed through the southern

half of the model; these comprised several NNW-SSE fractures (Fig. 3.34).

S 64'1 c

Figure 3.34: The model after c. 34 % of the displacement. The area of the releasing bend is outlined
in green and the extent of the fault traces is shown.

Circa 50 % into the displacement a pull-apart basin had started forming just south of the releasing
bend, Figures 3.35 A and B show this basin after c. 58 % of movement. A large relay ramp had
formed, dipping northwestwards into the basin from the eastern fault block (Figs. 3.35 A and B). The
northern fault trace was not completely continuous in the area of the releasing bend, but the
northern and southern fault segments were overlapping and therefore soft-linked at this stage. Two

basins had developed south of the pull-apart basin (Figs. 3.35 A and B).

The fault became wider north of the pull-apart basin, which made the basin really long and narrow
towards the north shortly after its formation. The lower part of the relay ramp was heavily fractured,

and it eventually broke off of the upper part when an oblique transfer fault formed and linked the
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two main fault segments (Figs. 3.35 A and B). After c. 79% of the movement the two basins were

joined (Figs. 3.36 A and B).
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Figure 3.35 A: The releasing bend area c. 58 % into the displacement. B: Interpretation of
The area shown in Figure 3.35 A. C: The area outlined in green represents the area shown in
Figures 3.35 A and the red square portrays the area shown in Figure 3.35 B.
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Figure 3.36 A: The pull-apart basin area c. 79 % into the displacement.
B: The red square shows the area portrayed in Figure 3.36 A.

The fault trace became more continuous in the southern part of the model. A positive structure with
a length of c. 3 cm had formed in the area of the second stripe-set. A small basin had formed north of

the pull-apart basin, as shown in Figures 3.37 A and B.

The pull-apart basin had a length of 23.5 cm after displacement and it was 4 cm at the widest. The
angle of this structure was hard to estimate due to the basin’s shape, but overall it was less than 20°
from the main fault trend. The area around the basin comprised a lot of fractures and normal faults,
particularly the western fault block; these structures had a similar orientation to the pull-apart basin.
The riedel-shears and the riedel marked fractures were visible in the finished model. The angle
between the riedel fractures and the main fault ranged between c. 9-17°, and the angle between the

riedel marked fractures and the main fault was between c. 76-80°.
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Figure 3.37 A and B: The final interpretation of experiment 39-14.

The areas that were the most affected by edge effects are outlined in purple, in Figure 3.38, and the
red square portrays the area shown in Figures 3.37 A and B.
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Figure 3.38: The areas that were the most affected by edge effects are outlined in purple
and the red square portrays the area shown in Figures 3.37 A and B.

3.3.3 Experiment 37-14: 60° releasing bend

The basement template utilized for this experiment had a 60° releasing bend, resulting in
transtensional deformation (Fig. 3.39 A). The plaster mixture was quite stiff when poured into the
frame and the structures that formed were of good quality. Four sets of marker stripes were applied
to this model, and these were used as reference points in the description, with the first set furthest
south (Fig. 3.39 B). General information about the setup and duration of experiment 37-14 is found

in Table 3.7 and a video of this experiment is found in Appendix A (Video 6).
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Figure 3.39 A: The basement template. B: Marker stripes applied to the plaster (numbered from the south).

Table 3.7

Date of the experiment

02.12.2014

Plaster mixture

6 liters of plaster and 3.6 liters of water

Plaster to water ratio 1.66:1
Duration 12 seconds
Length of the short sides of the frame 44.5 cm

Length of the long sides before and after

displacement

Before displacement: 51.2 cm

After displacement: 60.2 cm

Total displacement

9cm

Table 3.7: General information about the setup and duration of experiment 37-14 is given in this table.

Ductile deformation (folding of the marker layers) dominated up until c. 26 % of the total

displacement of 9 cm. After 9 % of the movement plaster started sinking in the area of the third

stripe-set. Beginning fractures (faint stripes) oriented NNW-SSE and WSW-ENE formed between the

third and fourth stripe-set. The first ones were characterized as riedel shears and these were

synthetic relative to the direction of the main fault. The latter ones were defined as riedel marked

shears, and the fractures formed conjugate sets. Other fractures with a NW-SE orientation were
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generated on the third stripe-set, on the eastern fault block. Some displacement was evident in the

northernmost area.

A fault trace developed in the northern part of the model, making the contour of the basement
template more prominent (Fig. 3.40). The fault trace in the southern half of the model was
segmented; it developed quickly after the formation of the northern fault trace. After c. 28 % of the
movement the northern fault curved southeastward and linked up with the NW-SE oriented

fractures, as illustrated in Figure 3.40.

33 % di

"~ 51.2crM!

Figure 3.40: The model after c. 33 % of the displacement. The fault traces are shown
as well as the area of the NW-SE oriented fractures.

Approximately 50 % into the displacement a pull-apart basin had started developing in the releasing
bend area (Figs. 3.41 A and B). The two main fault traces were soft-linked at this stage. A narrow
basin was located south of the pull-apart basin. With more movement the plaster that constituted
the northern part of the basin sunk in further, thus making the basin deeper, and it extended

towards the north. A relay ramp dipped northwestwards into the basin, as shown in Figure 3.41.

59



A AR P RN ~ TS
N\ 1 RNl Y, dienlacamant ——— LR
h e WV Jw \auwrnuvv!uuv- - \‘k‘ = /f_ ‘ ~ — \\.‘w .
—_— N, 7 2~ W T e

meE , /7 \ Tt \\ o g
WL /S A PR\ 4V~ e
! ’ ., . AT P |
Y h s~ R \ A s aaems—i) | |
7 3 WL /. ¢ e ==y |
LA 7 P T 2 §/—F \}
; ok f ‘@ . afeeaf]'k
1)) Ay - Pal v Ay Ly
! +d D/ TN [/
\ Y L 4 K ./ N /
N s ¢ O K] 5 [y A
\ \ AN omErIN I~ F{ ¥y ]
R PR . NI 'L L 4V
A\ 7 A\A\ D7 " J —Fo77" =
\AP\VEA\ TP Lo N g PN A
\\ AV /Ay . H S Ly SN S N
NN W T S, IRVARY g7 PRVE | & | el
Y et Mg\ 7 I /& 4/ MR —
-, h e v £ J T i A
e W 7 | J i N
P M7 7 AR L
e S g La S a” i | A 13
| o AW EY SN k=
A s SV S S O AN Tl 2
L\ A ARV AN [LTIEY
b\ s W ¥
LY e
I 1
L |
i

[an
‘ »

Figure 3.41 A: The area of the releasing bend c. 50 % into the displacement.

B: The area outlined in red represents the area shown in Figure 3.41 A.

With increased displacement the pull-apart basin opened towards the northern edge of the model.

The fault was relatively wide in the northern area when 70 % of the movement was completed. The

smaller basin was very narrow and eventually opened up towards the southern edge.

From approximately 81 % of the displacement and onwards the lower part of the relay ramp in the

pull-apart basin started breaking off and moving southwards with the western fault block. The upper

part of this structure was fixed to the eastern fault block and thus moved northwards (Figs. 3.42 A

and B). An oblique transfer fault split the relay ramp into two parts and this fault connected the two

main fault segments, thus making them hard-linked (Figs. 3.42 A and B).
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Figure 3.42 A: The releasing bend area c. 82 % into the displacement.
B: Interpretation of the area shown in Figure 3.42 A.
C: The green square portrays the area shown in Figure 3.42 A and
the area lined in red represents the area shown in Figure 3.42 B.
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The western part of the relay ramp was located between the two basins. Because this part was at a
lower level compared to the plaster layer one could say that the two basins had connected and that

this particular area was a shallower part of the basin (Figs. 3.43 A and B).

The pull-apart basin had a length of c. 18.5 cm after displacement and it was 5 cm at its widest. The
angle of the basin relative to the main fault was hard to estimate due to its shape, but the northern
wall was at a higher angle (relative to the main fault trend) compared to the basins in the other
transtensive models. The area to the east and the west of the basin contained fractures and normal
faults that were relatively parallel to the basin (Figs. 3.43 A and B). The angle between the riedel
fractures and the main fault ranged between c. 10-18° and the riedel marked fractures had an angle
of c. 78-83° to the main fault trend. The fault became wide through the entire model, as it was

moved quite far.
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Figure 3.43 A and B: The final interpretation of experiment 37-14.

The areas outlined in purple in Figure 3.44 represent the places where the edge effects have made
the biggest impact in this model. The red square portrays the areas shown in Figures 3.43 A and B.
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Figure 3.44: The areas that were the most affected by edge effects are outlined in purple
and the red square shows the area portrayed in Figures 3.43 A and B.

3.4 Experiments with a combination of transtension and transpression

The basement templates used in the following two experiments (19-14 and 08-13) had a more
complex geometry compared to the basement templates used for the six experiments described
above. The finished model of experiment 19-14 comprised three main structures that represented

transpressional and transtensional deformation. Experiment 08-13 was transtension-dominated, but

also contained a small convergent structure.

3.4.1 Experiment 19-14

The purpose of this study was to reproduce deformation associated with a naturally occurring
subsurface fault system, and to see the development of structures by using a similar basement
template to the one in nature. To simplify the description of the development, this report refers to
irregularity X and Y in the basement geometry (Fig. 3.45 A). The mixture was poured into the frame
quite early, resulting in disruption of the marker stripes (Fig. 3.45 B). At the time of deformation it
had the right consistency. General information about the setup and duration of experiment 19-14 is

found in Table 3.8 and a video of this experiment is found in Appendix A (Video 7).
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Figure 3.45 A: The basement template. B: Marker stripes disrupted by water percolation.

Table 3.8

Date of the experiment 19.02.2014

Plaster mixture 8.8 liters of plaster and 6 liters of water

Plaster to water ratio 1.46:1

Duration 16 seconds (significant movement for 9 seconds)
Length of the short sides of the frame 43 cm

Length of the long sides before and after Before displacement: 64 cm

displacement After displacement: 70 cm

Total displacement 6cm

Table 3.8: General information about the setup and duration of experiment 19-14 is given in this table.

Brittle deformation commenced from the beginning of movement in the northern part of the model,
with the expansion of fractures located at heterogeneities (lumps) in the plaster mixture. These
fractures were present before deformation started and one of these gradually opened north of
irregularity X as the western fault block was moved southwards relative to the eastern block. With

continued displacement this structure evolved into a pull-apart basin bounded by the walls of the
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tensile fracture and the main fault. Towards the end of the experiment a tensile fracture on the
basin’s southern side opened further and caused a change in shape (this started happening c. 72 %
into the displacement). Figure 3.46 A shows the basin c. 25 % into the movement, after 1.5 cm
displacement. The next image (Fig. 3.46 B) illustrates the basin c. 58 % into the displacement

(equivalent to 3.5 cm) and Figure 3.46 C shows the basin at its final stage, after 6 cm displacement.
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Figure 3.46 A: The basin c. 25 % into the displacement.
B: The red square portrays the area shown in Figure 3.46 A.
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Figure 3.47 A: The basin c. 58 % into the displacement.
B: The area lined in red represents the area shown in Figure 3.47 A.
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Figure 3.48 A: The pull-apart basin after displacement.
B: The area lined in red illustrates the area shown in Figure 3.48 A.
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Plaster started accumulating south of irregularity X approximately 13 % into the motion, and a pop-
up structure formed. Shortly after, a fault trace formed in the northern part of the model and
extended southwards to just south of the basin. All the stripes north of irregularity X showed
significant displacement after c. 30 % movement. The pop-up structure, classified as a positive flower
structure, grew throughout the experiment, particular on its eastern side (Figs. 3.49 Aand B, 3.50 A

and B, and 3.51 A and B).
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Figure 3.49 A: The flower structure c. 58 % into the displacement.
B: The area lined in red illustrates the area shown in Figure 3.49 A.
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Figure 3.50 A: The positive flower structure after displacement.
B: The area lined in red shows the area illustrated in Figure 3.50 A.

After c. 30 % of the movement another pop-up structure started developing south of irregularity Y in
the basement template. The light reflection and the fractures concentrated in this area made the
plaster accumulation evident. A fault trace (oriented N-S) became visible between the two positive
structures shortly after, and fractures with the orientation NNW-SSE were located along the fault
trace in this area. These fractures were classified as riedel shear fractures. As the displacement
increased these structures became more pronounced. The positive structure in the southern area,
also classified as a flower structure, was smaller than the one that formed first. Figures 3.51 A and B
and 3.52 A and B show this structure circa 58 % into the displacement and after displacement,

respectively.

69



>

J

iy

|||“ wll1n II1|,

Figure 3.51 A: The small flower structure c. 58 % into the displacement.
B: The red square shows the area portrayed in Figure 3.51 A.
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Figure 3.52 A: The small positive flower structure after displacement.
B: The red square shows the area in Figure 3.52 A.
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The fractures on top of the major flower structure had various orientations, but the majority of the
fractures were oriented NW-SE and N-S (Fig. 3.50 A). On the southern side the positive structure
ended in a thinned, elongated tail-like form. One could see that the positive structure expanded
significantly on its eastern side from c. 60 % movement and onwards, and to a smaller degree on its

western side. The plaster built up to a higher angle on the southern side and west of this feature.

The fractures on top of the small flower structure had the main orientations NW-SE, NNW-SSE (Fig.
3.52 A). The western side of this structure formed with a higher angle than the eastern side, and the
structure was largest on the western fault block side. Expansion occurred with the smaller flower

structure as well, but to a less extent.

Fractures formed in other parts of the model as well, shown in Figures 3.53 A and B of the finished
model. The total displacement in this experiment measured approximately 6 cm, making the length
of the model 70 cm. The major flower structure was c. 13 cm long, and had a maximum height of c.
2.2 cm. The small flower structure was c. 11 cm long and c. 0.9 cm at its highest. The basin was c. 6.2
cm in the longest direction. The angle between the riedel shear fractures that were evident in the

finished model and the main fault ranged between c. 20-30°.
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Figures 3.53 A and B: The final interpretation of experiment 19-14.

Figure 3.54 shows the areas that were affected the most by the edge effects in this experiment. The

red square shows the area portrayed in Figures 3.53 A and B.
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Figure 3.54: The red square shows the area portrayed in Figures 3.53 A and B and
the areas outlined in purple are the areas that were the most affected by edge effects.

3.4.2 Experiment 08-13

The setup for this experiment was different than for the other experiments. The frame was
restricting on all sides, as described in chapter 2 (methods).The basement template used in this
experiment contained a large releasing bend and a small irregularity/ paired releasing and restraining
bend (Fig. 3.55 A). The plaster mixture was of the right consistency when the deformation was
initiated. The marker stripes were applied using a rag and were therefore very uneven (Fig. 3.55 B).
Because of this the stripes were not used as reference points in the description. General information
about the setup and duration of experiment 08-13 is found in Table 3.9, and a video of this

experiment is found in Appendix A (Video 8).
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Figure 3.55 A: The basement template. B: Application of marker stripes using a rag.

Table 3.9

Date of the experiment

13.11.2013

Plaster mixture

9 liters of plaster and 6 liters of water

Plaster to water ratio 1.5:1
Duration 15 seconds
Length of the short sides of the frame 42 cm
Length of the long sides 68.5 cm

Total displacement

Approximately 3.8 cm

Table 3.9: General information about the setup and duration of experiment 08-13 is given in this table.

Brittle deformation started c. 11 % into the total displacement of 3.8 cm, when a small fracture

oriented NW-SE formed in the middle part of the model, in the area of the releasing bend. Many

more tensile fractures formed in this area with orientations similar to the underlying releasing bend,

as shown in Figures 3.56 A and B which portray this area c. 21 % into the movement. With further
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displacement many fractures expanded in width. Some large fractures developed with a high degree
of normal displacement as they were expanding; Figures 3.57 A and B illustrate this normal faulting c.
47 % into the movement. The north-eastern fault block defined the hanging wall, and thus sloped
downwards towards the south-western footwall block. The area thus contained a large basin, which
will be referred to as a rift basin/ pull-apart basin in the continued description. The northern edge of

this basin became noticeable with further displacement (after 47 % of the movement).

b

21 % displacement

21% displacement

‘_,.he area shovqirﬁ in Figuré 3.

F.-.msv"’“' ‘ R W‘ﬁ@ "5‘%;%"

Figure 3.56 A: The area of the releasing bend shortly after c. 21 % of the displacement.
B: The area in the red square is the area shown in Figure 3.56 A.

Approximately 34 % into the movement WSW-ENE aligned fractures had formed just south of the rift
basin and these were classified as riedel marked shears. Further south fractures characterized as
riedel shears were oriented NNW-SSE, synthetic to the main fault trend (Figs. 3.57 A and B).
Northwest of the rift basin very pronounced normal faults eventually formed. These were subparallel
structures located next to one another, as illustrated in Figure 3.57 A. Strike-slip fault traces
consisting of several segments had formed northwest and southeast of the releasing bend area c. 47

% into the movement (Fig. 3.57 A).
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Figure 3.57 A: Experiment 08-13 c. 47 % into the displacement.
B: The area lined in red represents the area illustrated in Figure 3.57 A.

After c. 55 % of the movement the southern fault trace was close to continuous. Four small basins
had formed in the southern area where fractures had expanded. A part of the plaster comprising the
northern side of the rift basin had partly detached from the north-eastern fault block, due to this

part being down-faulted relative to the western side of the basin (Fig. 3.58 A).
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Figure 3.58 A: The releasing bend area c. 57 % into the displacement.
B: The red square shows the area illustrated in Figure 3.58 A.

When c. 70 % of the motion was reached the rift basin had expanded in width. More fault segments
had developed northwest of the parallel normal faults; these were also subparallel and located next
to one another. Towards the end of movement one of these fault segments expanded and a basin

formed, as shown in Figures 3.59 and 3.60.

Some of the smaller basins in the southern area linked together and three basins were present in the
finished model (Figs. 3.59 and 3.60). The northern area also held two small basins after displacement,
one of which was mentioned above (as the previous normal fault). The plaster between the parallel
fault segments showed normal displacement (as the hanging wall) relative to the two main fault
blocks. Because this area was connected to the pull-apart basin, the extent of the basin became
much greater when this area sunk, as illustrated in Figures 3.59 and 3.60. The maximum width of the
basin was c. 3.6 cm after displacement and the length of the basin was c 28 cm (including the area

northwest of the large pull-apart basin).
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A small positive structure had formed in the north, just south of irregularity X in the basement
template. Several fractures of significant extent were located east and southeast of the flower
structure (Figs. 48 and 49). Riedel shear fractures were evident in the southern half of the model and
a few antithetic fractures could be seen further north. The angle between the riedel shears and the
main fault varied between c. 11-20°, and the antithetic fractures had an angle of c. 60-70°, because

these latter structures were curved this is a rough estimate.

The north-eastern fault block was the most affected by transtension, in the area of the bend; a lot of
tensile fractures had developed here, as illustrated in the figures below (Figs. 3.59 and 3.60). This
model was displaced less than the other experiments described, namely 3.8 cm. Several of the
marker stripes were deflected towards the movement direction, the ones located in the middle of
the model were the most affected. The finished model displayed several relay ramp structures
sloping into the large basin from the north-eastern from both fault blocks and ramp structures had

formed in two of the small southern basins (Figs. 3.59 and 3.60).
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Figure 3.59: The final interpretation of experiment 08-13.
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Figure 3.60: The final interpretation of experiment 08-13.
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The areas that were affected the most by edge effects are pointed out in Figure 3.61. Because the
frame used in this experiment was restricting on both of the short sides a lot of plaster accumulated
in the northern area. The red square outlines the area shown in Figures 3.59 and 3.60.

Figure 3.61: The red square shows the area portrayed in Figures 3.59 and 3.60 and the areas
lined in purple were affected the most by edge effects. A lot of plaster
accumulated in the northern area due to the restricting frame.
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4 Discussion

4.1 Introduction

The main aim for this analogue modeling study has been to gain insight into the geometry and

evolution of structures formed as a result of differently angled releasing and restraining bends in the
basement configuration of strike-slip faults. In this chapter, the results from this study are discussed,
and compared with natural strike-slip fault systems as well as with other analogue modeling studies

focusing on strike-slip deformation.

All of the experiments described in this thesis emulated sinistral fault settings. For strike-slip faults in
general, and thus for the main faults in the eight experiments described, o is horizontal with an
angle to the main fault direction, making the fault blocks move along each other (Fossen, 2010). This

is illustrated in Figure 4.1.

According to Christie-Blick and Biddle (1985) there are four main factors that control the nucleation
and growth of structures along a continental strike-slip fault. The influence of transpressive and
transtensive deformation along a fault is one important factor. Another element is the amount of
displacement along a fault. The characteristics of the materials being deformed is a third key factor,
and the fourth is the presence and location of previously formed structures along a fault. These
factors have affected the models made in this study and some will be discussed in the following sub-

chapters, with a particular focus on transpressive and transtensive deformation.

4.2 Transpressive experiments

A comparison between the transpressive experiments (32-14, 34-14, 36-14 and 19-14) has been
done. The model with the two irregularities in the basement geometry (19-14) had very different
experimental conditions from the other models, and was therefore compared to the other models at

the end of the section “Positive flower structures”.
Positive flower structures

The width of the bends in the three models with simple restraining bends (32-14, 34-14 and 36-14)
was 7 cm (normal to the main fault orientation). Brittle deformation on the model surface
commenced before 10 % of the displacement was reached for all these experiments. The plaster

mixtures used in these experiments were of the same consistencies when deformation commenced,
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and the condition of the plaster mixture can therefore largely be disregarded when comparing the

experiments.

The positive flower structures that formed in the experiments with 30°, 45° and 60° angles had very
different characteristics. Seven fault blocks constituted the flower in the model with the most gently
angled bend (30°) after a total displacement of 20.9 cm (Fig. 3.9 A). These were oriented similarly to
the releasing bend in the underlying basement template and to the overall orientation of the flower
structure relative to the main fault trend (Figs. 3.10 A and B). All the fault blocks were relatively

narrow and long (Figs. 3.10 A and B).

The flower structure that formed in the model with the 45° bend comprised five fault blocks after a
displacement of 24.7 cm (Fig. 3.16 A). The southern fault block had an angle of c. 20° relative to the
main fault trend (N-S), and the blocks further north were angled c. 40-50° relative to the main fault.

These blocks were wider compared to the ones that formed in the 30° experiment.

Three fault blocks constituted the positive flower structure in the model with the highest angled
bend (60°) after a displacement of 24 cm (Fig. 3.23 A). The angles between the fault blocks and the
main fault were approximately 45-50°. The fault blocks were wide and much shorter compared to the

ones that formed in the other two experiments.

The first fault block within the flower structure in the model with the lowest-angled bend (30°) had
formed c. 21 % into the movement, which was equivalent to 4.4 cm of displacement. In the model
with a 45° bend the first fault block within the flower structure had developed c. 25 % into the
movement, equal to 6.2 cm of displacement. In the experiment with the highest-angled bend (60°)
the first block within the flower had formed approximately 37 % into the displacement, equivalent to
8.9 cm of displacement. The fault blocks thus formed at a later stage in the models with the higher-

angled bends, and the blocks that formed at a later stage in the deformation also followed this trend.

From these above observations it appears that the flower structures comprise more fault blocks in
experiments where the basement geometry contains lower-angled restraining bends. The blocks also
form at an earlier stage for the models with lower-angled bends. The flower structures that develop
at high-angled restraining bends comprise fault blocks with large angles to the main fault trend,
based on the results from this study. According to Cunningham and Mann (2007) large positive
flower structures will form in areas where o, (sh max) is at a high angle to the transpressional zone
(Fig. 4.1). The flower structures from the experiments discussed thus far were quite similar in size,
and the flower in the 60° experiment was slightly shorter in length and height (by 1 cm) from the

other two flowers discussed. The models in this study thus behaved differently from what
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Cunningham and Mann (2007) stated. Figure 4.1 shows the direction of o;to 30°, 45° and 60°
restraining bends, where the largest bend is close to normal to the orientation of the maximum

stress.

Figure 4.1: The orientation of o, relative to restraining bends and the strike-slip fault.

The major flower structure in the model with two basement irregularities (19-14) developed in a very
different manner from the flower structures discussed above. It was the result of transpression along
a restraining bend with a 65° angle (Fig. 3.50 A). It comprised two fault blocks, although the reverse
fault that separated these two blocks did not fully cut through the entire flower. The reverse fault

was oriented N-S, thus with the same orientation as the main fault, this is illustrated in Figure 3.50 A.

The shape of the flower structure was also very different from the other mentioned pop-up
structures; it was more round whereas the flowers in the 30° and 45° experiments were more oval
(Figs. 3.50 A, 3.9 A and 3.16 A). The flower structure in the 60° experiment had a rhomboidal shape
(Fig. 3.23 A). In the analogue modeling study performed by McClay and Bonora (2001) the geometry
of the positive structures mostly depended on the angle and width of the stepovers and the
thickness of the material layer (they used sand as the modeling material). The model observations
made in this thesis suggest that higher-angled bends result in more rhomboidal or round shapes,
whereas smaller angles lead to more oval structures. The fault blocks constituting the flowers also
differ according to bend angles, as discussed earlier. The width of the bend has been 7 cm in all the
experiments performed in this study. If a narrower bend would have been used the resulting flower
structure would have been narrower and the flower would have more complex internal deformation,

based on the study by McClay and Bonora (2001).

84



The displacement of the experiment (19-14) with two irregularities was 6 cm, thus much less than for
the other experiments discussed (Fig. 3.53 A). Because a second fault block started developing c. 47
% into the movement in the 60° bend model (after c. 11 cm of displacement; Fig. 3.22 A), one can
assume that more fault blocks would develop if this model (with two irregularities) would have been
further displaced. Irregularity Y south of the pop-up structure might have stopped it from developing
as freely as the other flower structures. The small flower structure south of irregularity Y also
comprised two fault blocks, oriented N-S (Fig. 3.52 A). This flower structure had an oval-shaped and

formed from a restraining bend with an angle of c. 20-30°.

The first fault blocks that formed in the flower structures were more affected by fracturing than the
ones that formed later on in the development. Because of the amount of uplift that these fault
blocks underwent relative to the younger fault blocks tensile fractures were more abundant on these

blocks (3.9 A,3.16 A, 3,23 A,3.50 Aand 3.52 A).
Riedel shear fractures

Riedel shear fractures formed in the three transpressive experiments when brittle deformation
commenced (Fig. 3.3 A). These structures had an angle between 10-20° relative to the main fault
orientation. In the model with two irregularities in the basement geometry (19-14), riedel shear
fractures formed after c. 30 % of the movement was reached with angles between 20-30° from the
main fault trend (Fig. 3.52 A). For the model with the 30° bend these fractures formed after a
movement of c. 1.5 cm, they formed after c. 2 cm movement in the 45° bend model and for the
experiment with the 60° bend riedel shears formed after a movement of c. 2.2 cm. The model with
two irregularities formed riedel shears after 1.8 cm displacement. The riedel fractures thus formed
after a similar amount of movement in all these experiments. (Measurements of the angles for these

fractures were made after displacement).
Summary
General similarities between the experiments were:

- The first fault blocks that formed in the flower structures were more affected by fracturing
compared to the younger fault blocks due to the amount of uplift.
- Riedel-shear fractures formed after similar amounts of displacement in the transpressive

experiments.

When increasing the angle of the restraining bend, the following observations were made:
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- The flower structures comprised less fault blocks after similar amounts of displacement. (The
two models with higher angled bends were displaced further than the model with the 30°
bend and still comprised less fault blocks).

- The fault blocks constituting the flower structures formed at a later stage in the deformation
process in the models with higher-angled restraining bends.

- The fault block angles relative to the main fault trend were higher for the experiments with
higher angled bends.

- The fault blocks constituting the flower structures were shorter and wider in the models with
higher angled bends.

- The shape of the flower structures varied for the different angled bends. The flowers that
formed by smaller-angled bends were more oval-shaped and the ones formed by higher-

angled bends were rhomboidal or rounder.
Comparisons with natural examples and other experimental work

Many positive structures in nature have been formed by restraining bend uplift, such as several of
the mountains comprising the Gobi-Altai orogen in southern Mongolia (including Ih Bogd, Baga Bogd,
Bayan Tsagaan Uul and Chandiman Uul; Cunningham, 2010; Cunningham et al., 1996). Eemeltik Uul,
which is one of the mountains in this range, was interpreted as an asymmetric flower structure with
more thrust faults propagating towards the south compared to the north (Cunningham et al., 1996).
The flower structures that formed in the three experiments with simple restraining bends share
similarities with this structure, as they are asymmetric flowers with the majority of the faults

propagating towards the foreland.

Another example of a flower structure is one bordering the Dent Fault in NW-England. The faults
comprising the middle part of the flower structure cut through a monocline, showing that ductile and
brittle deformation occurred as a result of transpression; folding most likely occurred before the
faults cut through to the surface (Woodcock & Rickards, 2003). The flower structures from the
experiments were affected by both ductile and brittle deformation as well. The fault blocks
constituting the flowers (particularly the 30° and 45° models) displayed various amounts of folding
when new blocks were generated and they moved up from the flat plaster layer. This can be seen

particularly well in the figures showing the evolution of the 30° experiment (Figs. 3.5-3.9).

McClay and Bonora (2001) did a sand modeling study where they focused on the geometry and
evolution of pop-up structures. They varied the width and the angle of the stepovers and they

studied the effect of synkinematic sedimentation in some experiments. The pop-up structure that
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formed in their experiment with a 30° stepover share similarities with the 30° restraining bend model
made for this thesis (Figs. 4.2 A, B and C). Their model was displaced 10 cm, thus c. half of the
movement compared to the experiment discussed earlier in this chapter. It comprised five fault
blocks and it had a slightly rhomboidal shaped. The model made for this study had an eye-shape, and
comprised three fault blocks after having been displaced the same amount as their model. The
flower structure in the model made for this study comprised Riedel shears formed 20 % into the
displacement in their model (after 2 cm displacement), compared to 1.5 cm (equivalent to 7 % of the

displacement) in the model in this thesis.

1 00 % displacemen

/| I . = = .

- Fault traces

= Positive structures

= Fractures and small faults

- Riedel shear fractures

44 Reverse faults

44 Reverse faults

4= Reverse fault reactivated
as a normal fault

1 Reverse fault plane

--- Basement template contour

Figure 4.2 A: The positive flower structure that formed in the 30° experiment.
B: The area lined in red represents the area shown in Figure 4.2 A. C: The pop-up structure
that formed by a 30° stepover in the study done by (McClay & Bonora, 2001).
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Figure 4.3: The Cerro de la Mica pop-up structure
in the Atacama fault zone, Chile (McClay & Bonora, 2001).

The analogue models shown in Figures 4.2 A (and B) and C closely resemble the pop-up structure

called Cerro de la Mica, located in Chile (Fig. 4.3). It formed at a stepover between two faults in the
Atacama fault zone in Chile. Steep reverse faults define the outer edges of this structure (McClay &
Bonora, 2001). The shape of this structure particularly resembles the sand model made by McClay

and Bonora (2001), and the orientation of its fault blocks is quite similar to the blocks within the two

analogue models (Figs. 4.2 A and C).

Not many flower structures studied in the field have been described in detail. One does not always

get a detailed overview of structures in the field, both due to their large scale, lack of exposures and
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due to erosion after their formation. Based on the comparisons between the analogue models and
the natural examples, several similarities are observed, such as the shape and the asymmetric
geometry of the structures. This study offers an insight to the flowers’ structural development, which
cannot be studied in the field. Structures can be studied as a whole in analogue models, whereas in
the field one often has limited access to the full structures. The models can provide a better
understanding of the full fault architecture, which is often difficult in nature as the structures have
been subjected to erosion. Small-scale structures that form on top of the flower structures (and in
the other parts of the model) can be studied in the plaster models, whereas sand models, such as the

one shown in Figure 4.2 C, can be used to study the large-scale deformation.

4.3 Transtensive experiments

A comparison between the four transtensive experiments (40-14, 39-14, 37-14 and 08-13) described
in chapter 3 has been done. The experiment with the large releasing bend and small irregularity in
the basement geometry (08-13) had very different experimental conditions from the other
experiments, and was therefore compared to the other models at the end of the section “Pull-apart

basins”.
Pull-apart basins

The width of the bends in the three models with simple releasing bends was 7 cm (measured normal
to the main fault orientation). The plaster mixtures used in these experiments were of the same
consistencies when deformation commenced and the plaster mixture condition can therefore largely
be disregarded when comparing the experiments. The three experiments with simple releasing
bends were moved far, shown by the wide faults through the entire models (Figs. 3.31, 3.37 and
3.43). Brittle deformation commenced c. 18 % into the movement in the experiment with the 30°
releasing bend and c. 25 % and 26 % into the displacement for the 45° bend model and the 60° bend

model, respectively.

Elongated pull-apart basins formed in the models with 30°, 45° and 60° releasing bends (Figs. 3.31,
3.37 and 3.43). The main basins that formed in the area of the releasing bend connected to basins
that had formed further south after 75-80 % of the displacement, therefore making the basins in the
finished models quite large. Experiment 37-14 was an exception in this regard, as the small southern
basin opened up towards the southern model edge, although it did connect to the main pull-apart via

the down-faulted plaster that constituted the lower part of a relay ramp.
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A relay ramp formed in the same area in all three models, dipping northwestwards into the pull-apart
basins from the eastern fault blocks (Figs. 3.29, 3.35, 3.41). The faults that formed in the northern
and the southern part of the models were connected by an oblique transfer fault. The transfer fault
connected the two main fault segments c. 49 % into the displacement in the experiment with a 30°
bend, which was equivalent to 6.4 cm of movement (Fig. 3.29). In the model with a 45° bend the
transfer fault linked the two fault segments together c. 58 % into the movement, equivalent to 6 cm
of displacement (Fig. 3.35) and the fault segments in the model with the highest angled bend (60°)
were connected when c. 82 % of the displacement was reached, after 7.4 cm of the movement (Fig.

3.42). The transfer fault in each experiment thus formed after 6-7.4 cm of the displacement.

The basin that formed in the model with the smallest angle in the basement template was 28 cm
long and had a maximum width of 4 cm after a total displacement of 13 cm (Fig. 3.31). The aspect
ratio of this basin was 1:7 (the ratio of the basin’s width to its length). The majority of the basin was
narrower than the widest area just north of the big relay ramp. The basin had an overall small angle
relative to the main fault orientation; a rough estimate would be between 13-20° (the curvature of

the basins in all experiments made measurements of angles difficult).

The experiment with a 45° releasing bend resulted in a 23.5 cm long basin with a maximum width of
4 cm, after a total displacement of 10.4 cm (Fig. 3.37). The aspect ratio was 1:5.9, thus slightly higher
than for the basin that formed by the 30° bend. This basin was also the widest north of the relay
ramp, elsewhere it was quite narrow. The overall angle of this basin was less than 20° relative to the
main fault trend, but a part of the wall on both the northeastern side as well as the southwestern

side had an angle between 40-50°.

The basin that developed in the experiment with a 60° bend was 5 cm at its widest and had an
approximate length of c. 18.5 cm, after a total movement of 9 cm (Fig. 3.43). The aspect ratio of this
basin was 1:3.7 based on these measurements, and it therefore had the highest ratio out of the three
experiments discussed. Figure 4.4 is a conceptual diagram showing the relationship between the
aspect ratio of the basins and the releasing bend angles. The angle of the basin that formed at a 60°
bend was very hard to estimate due to its high curvature, but a part of the northeastern side of the
basin was c. 45-50° relative to the main fault. The angle of the basin overall was much smaller. Basins
that form as a result of transtension are often wider and deeper where o, is at a high angle to the
releasing bend, thus where the bends are at a high angle to the overall fault trend (Cunningham &
Mann, 2007). The basins that formed in the three experiments discussed thus far did not follow this

general trend, but the aspect ratio did increase with an increase in releasing bend angle.
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Figure 4.4: A conceptual diagram showing the relationship between the aspect ratio and the
releasing bend angle. The numbers are the aspect ratio values for the three pull-apart basins in
the models with 30°, 45° and 60° bend angles.

Brittle deformation commenced c. 11 % into the deformation in the experiment with the large
releasing bend, thus earlier compared to the other transtensive experiments. The pull-apart basin
that formed in this model had different characteristics compared to other basins discussed. It had a
length of c. 28 cm and the maximum width of the basin was 3.6 cm (when including the down-faulted
area northwest of the large pull-apart basin; Fig. 3.59). The aspect ratio was 1:8, thus smaller
compared to the other basins’ ratios. The main part of the basin (the part that was located over the
highest-angled part of the releasing bend relative to the main fault orientation) was oriented WNW-
ESE, thus similarly to the underlying releasing bend (Fig. 3.59). Several relay ramps dipped into the

basin from both the southwestern and the northeastern fault block.

The total amount of displacement was 3.8 cm for the large releasing bend experiment, thus much
less compared to the other models’ displacements, but it was not less affected by brittle deformation
(Figs. 3.59 and 3.60). The basement geometry north and south of the releasing bend area was more
angled compared to the basement templates for the other experiments. Several structures formed
along the fault traces over these basement areas, such as three basins along the fault trace south of
the bend and basins as well as a positive structure northwest of it (Figs. 59 and 60). If this model
would have been displaced further, the fault would probably have become wider through the model,
due to the angle of the faults relative to the movement direction (movement towards north). The

small basins would most likely have linked up or opened with the fault, based on observations from
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the other experiments. The fault trace in the north might also have extended. For all the models, the
fault traces have become more continuous with increased displacement and a lot of the smaller
structures have evened out or opened up towards the edges. According to Christie-Blick and Biddle
(1985) strike-slip faults with small lateral displacement tend to contain discontinuous faults and
folds, and faults with large displacement tend to comprise continuous fault traces. The faults in the
models made for this study thus had large displacements, as the fault traces were continuous

through the finished models.

The basin that formed in the experiment with two irregularities (19-14) evolved from a tensile
fracture already present at the start of deformation (Fig. 3.46). This may have had an effect on the
development of the basin in this area, as already present structures strongly influence the nucleation
and growth of structures along strike-slip faults, according to Christie-Blick and Biddle (1985).
Although an extensional structure was expected here due to irregularity X forming a releasing bend
of c. 20-30° relative to the main fault, the fracture may have affected the shape or the timing of its

development.
Fractures

The areas east and west of the pull-apart basins in the experiments with 30°, 45° and 60° bends were
characterized by a lot of fracturing and some normal faulting, as shown in Figures 3.31, 3.37 and
3.43. For the two models with the higher angled bends these structures covered a larger area on the
western fault block compared to the eastern side (east of the relay ramp) (Figs. 3.37 and 3.43). The
area just north of the basin that formed in the model with the large releasing bend (08-13) was more
affected by fractures and normal faults than the area south of it (Figs. 3.59 and 3.60); the plaster
overlying the basement template was thus less affected. This was the case for the other three

transtensive experiments as well.

Riedel shear fractures and riedel marked fractures formed in the three experiments with the simple
bends (30°, 45° and 60°) when brittle deformation commenced. These types of fractures developed
in the model with the large releasing bend after the formation of tensile fractures in the area of this
bend. The angles of the riedel fractures were between c. 10-20° relative to the main fault trend in all
four transtensive experiments. Riedel shears formed in the model with the 30° bend after c. 18 % of
the movement, which was equivalent to 2.3 cm of the displacement (Fig. 3.27). In the model with the
45° bend these fractures formed after a movement of about 2.8 cm, equivalent to c. 25 % of the
movement. They developed after 26 % of the displacement in the experiment with a 60° bend, which

was equivalent to 2.3 cm of movement. Riedel shears became evident in the southern area of the
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model with the large releasing bend after c. 34 % of the movement, equivalent to 1.3 cm of

movement.

Riedel marked fractures formed at approximately the same time as the riedel shears in all four
experiments. In the three experiments with simple releasing bends these fractures were angled
between c. 74-83° relative to the main fault trend. In experiment 08-13 the angles between these
structures and the main fault were between c. 60-70°. As the riedel marked structures had a

curvature these angles are estimates.

Summary
General similarities between the experiments were:

- Transfer faults connected the two main fault segments together after 6-7 cm of displacement
in the models with 30°, 45° and 60° bends.

- Arelay ramp formed with a dip-direction northwestwards into the pull-apart basin, from the
eastern fault block in the 30°, 45° and 60° bend models.

- The main pull-apart basins connected to basins located further south after 75-80 % of the
displacement for the experiments with simple releasing bends in the models with simple
bends in the basement templates.

- The fault blocks that were not underlain by the basement templates were more affected by
brittle deformation in the releasing bend area for the transtensive experiments, except for
the 30° bend model.

- Riedel shear fractures and riedel marked shear fractures formed in all the transtensive
models.

When increasing the angle of the releasing bend the following happened:

- The aspect ratio increases when using a higher-angled bend.

Comparisons with natural examples and other experimental work

The Baikal Rift System, located in Siberia, Russia, share similarities with the pull-apart/ rift basin that
formed in the experiment with the large releasing bend and the small irregularity in the basement
template (08-13) (Jolivet et al., 2013). The deformation mechanism for this rift system is largely
debated, but one of the main theories, which is further studied by Jolivet et al. (2013), is that this
was the result of movement along large sinistral strike-slip systems. The shape of these two basins is
remarkably similar and the area to the east of Lake Baikal and north of the basin in the plaster model

(Figs. 4.5 and 4.6 A and B).
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Figure 4.5: Lake Baikal along with structures in the area of this feature is presented in the figure by Mann
(2007).
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Figure 4.6 A: The pull-apart basin that formed in the experiment with the large releasing bend (08-13).
B: The red square outlines the area shown in Figure 4.7 A.

The pull-apart basins that formed in the experiments with 30°, 45° and 60° releasing bends share
similarities with the basins formed in the sand experiments performed by Smit et al. (2008). In their
experiments, they studied the geometry and development of basins that had formed on varying
widths of stepovers as well as varying rheology. The overall shape of the two basins shown in figures
4.6 A (and B) and C is quite similar and the basement geometry for the two structures contain a 30°
bend with different widths. The width of the bend in the plaster model is 7 cm, whereas the width of

the stepover is 10 cm in the sand model (Smit et al., 2008).
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Figure 4.6 A: The pull-apart basin from experiment 37-14 after displacement.
B: The red square portrays the area shown in Figure 4.6 A.
C: A sand model made by Smit et al. (2008).

Source of errors

Although the experiments used in this study can be useful analogues to natural structures associated
with transtensional and transpressional deformation, there are several factors that must be taken

into consideration when comparing models to natural fault systems.

- The plaster mixture is relatively homogeneous whereas the crust is heterogeneous. The
material properties will influence the deformation during displacement. The material utilized
for these experiments is quite homogeneous compared to the heterogeneous rock
constituting the natural sedimentary cover, and this may have an effect on the material’s
behaviour during deformation (Schlische et al., 2002).

- No material is added during the deformation process in the experiments whereas in nature,
where the deformation generally occurs over long periods of time sediments are deposited
over the active structures.

- The structures in nature often have a complex deformation history with phases of
transpression and phases of transtension. The models are only subjected to one direction of

movement and each part of the model is therefore subjected to one type of deformation.
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- Due to the fact that the plaster models are moved by hand, the strain rate changes
throughout the experiments. According to (Fossen & Gabrielsen, 1996), this may be accurate

to how seismogenic faults behave in nature.
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5 Conclusions and further work

Through this study the aim was to gain a better understanding of deformation along strike-slip faults,
with a particular focus on differently angled restraining and releasing bends. To accomplish this,
analogue plaster models with varying basement configurations have been made. It has been shown
that the angle of the bend/ stepover is an important factor along with the amount of displacement
along the fault. The condition of the material used also affects the results, and the models in this
study have therefore been made with similar material conditions (e.g. consistency and water to
plaster ratio). From the experimental work presented herein, the findings are listed in the following

section.
Transpressive experiments

Observations made of the experiments with simple restraining bends (30°, 45° and 60° bends) in the
basement templates suggest that the geometry of the positive flower structures was affected by the
angles of the bends. The model with two irregularities in the basement template differed from the
other transpressive models, and the general findings listed below were drawn from the three models

with simple bends, unless otherwise stated.
The main findings for these models were:

- The angles of the restraining bends influenced the amounts of fault blocks that constituted
the positive flower structures.

- The fault blocks constituting the flower structures formed at a later stage in the deformation
process in the experiments with higher-angled bends.

- The angles between the fault blocks and the main fault were higher for higher-angled
restraining bends.

- The first fault blocks that developed as parts of the final flower structures in each experiment

were more affected by brittle deformation in the form of fractures.
Transtensive experiments

The pull-apart basins that formed in the transtensive experiments appeared to be less affected by
the angles of the bends in the basement templates. Similarities between the three models with
simple releasing bends (30°, 45° and 60° bends) were found. The experiment that had a very

different basement geometry resulted in a model that was not easily comparable to the other
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experiments, and the general findings listed below were drawn from the three experiments with

simple bends, unless otherwise stated.

The main findings for the transtensive experiments were:

A relay ramp formed, dipping northwestwards into the pull-apart basins from the eastern
fault block in the simple bend models.

A transfer fault oriented obliquely to the main fault trend formed and connected the two
fault segments after 6-7 cm of displacement in the simple bend experiments, making them
hard-linked.

When increasing the angle of the releasing bend the aspect ratio of the pull-apart basins
increased.

The fault blocks that were not underlain by basement templates were subjected to more

brittle deformation compared to the opposite blocks, apart from in the 30° bend model.

Significance and wider implications

This study provides a valuable insight to the geometry and the development of positive and negative

structures associated with transpressive and transtensive deformation. As the structures that form in

plaster experiments share similarities with structures in nature, these types of experiments can be

used to improve the understanding of the nucleation and growth of natural structures in 3D.

Suggestions for further work

A study of models made with a wider variety of angled restraining and releasing bends could
give more information about the development of positive and negative structures, and the
general trends could be validated or not.

The effect of varying the bend widths on the structures formed in the plaster could be
studied.

The aspect ratios of the pull-apart basins could be studied further and compared to the
aspect ratios for natural basins or other analogue model studies.

The small-scale structures could be studied more intricately.
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Appendix A

An overview of the videos showing the experiments is found in Table A.1.

Table A.1

Video Number 1 2 3 4 5 6 7 8

Experiment Number 32-14 | 34-14 | 36-14 | 40-14 | 39-14 | 37-14 | 19-14 | 08-13

Figure A.1: An overview of the videos showing the experiments is given in this table.
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