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1 intro

Many interesting problems can be solved by algorithms on graphs. Unfor-
tunately there are many problems which are NP-Hard which means they
are practically intractable. Vertex Cover is one such problem. When facing
an NP-Hard problem there are different strategies for making it tractable.
One such strategy is to confine the possible exponential running time to a
function of a parameter alone, so called Fixed-Parameter Tractable(FPT)
algorithms.

Vertex Cover was one of the first problems shown to be FPT and has
since undergone a lot of research. The most common parameter up to date
has been the solution size but recently another above guarantee parameter,
the gap between the solution size and an optimal LP solution, has gained
more attention. This is both due to the fact that better algorithms for many
NP-Hard problems can be achieved through better Vertex Cover above LP
algorithms and that an above guarantee parameter can itself yield better
FPT algorithms for some instances of Vertex Cover.

In this thesis we will do a survey of three published algorithms for Vertex
Cover above LP and present them in a concise way. We will also implement
the algorithms to see whether we can gain more insight to them through
experiments.

2 Preliminaries

In this chapter we will introduce notation used throughout this thesis and
some graph theoretical terms needed to understand the algorithms pre-
sented.

2.1 Graphs

A graph is a discrete mathematical structure consisting of points called
vertices and lines between points called edges. Graphs are widely used to
represent different problems in informatics and also many other fields. The
vertices in a graph represents some sort of data and edges shows pairwise
relations between different data points in the graph. Edges can also store
data relevant to the problem.

An example of how a graph can be used to model a real world problem
is how to find the cheapest flight from one airport to another. Here the
vertices represent airports and edges between vertices represents that there
exist a flight between the two airports. In this problem the edges must also
store the price of the given flight and maybe other data like company name,
duration etc. We then seek to find the cheapest path in the graph from a
given airport to a destination. The graph gives us a good representation of
the problem on which we can design algorithms. If price is of less importance
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for a customer, but she wants as few transfers as possible or as short duration
as possible, we can use the same graph and then tweak the algorithm to find
a flight with as few transfers or as short duration as possible.

2.1.1 Formal definition

A graph G = (V,E) is an ordered tuple where V is a set consisting of vertices
and E is a set consisting of edges. Each edge is also a tuple, denoted by
(u,v), where u and v are vertices in the graph. The vertices u and v are
also said to be the end-points of the edge. In some graphs loops connecting
a vertex to itself and multiple edges between two vertices are allowed, but
for our work we will not need such graphs. An example of a graph needing
multiple edges is the cheapest flight problem, as there most likely exists
different flights from different companies between airports.

In some problems it is necessary for the edges to have a direction. Graphs
which allows directed edges are called directed graphs. An example of a
directed graph is a model of the streets and intersections in a city. Every
vertex represents an intersection and every edge represents a road between
intersections. As many cities have one way streets, these streets must be
modeled as a directed edge pointing in the direction in which you are allowed
to drive. Formally, in a directed graph each edge is an ordered tuple (u, v),
starting in u and pointing towards v. This means that in a directed graph
(u, v) is different from (v, u).

We denote the vertices of a graph G by V(G) and the edges by E(G).
The size of a graph is measured in both vertices and edges. |V (G)| = n and
|E(G)| = m are standard notations also used in this thesis.

2.2 Definitions

The open neighborhood of a node v is the set of vertices adjacent to v.
Formally we write N(v) = {u ∈ V (G) : (u, v) ∈ E(G)} where the degree of
v, denoted deg(v), equals the size of its neighborhood. The closed neigh-
borhood N[v] is N(v) ∪ {v}. Also sets of vertices can have closed and open
neighborhoods. For a subset S ⊆ V(G), N(S) = ∪s∈SN(s) \ S is the open
neighborhood and N[S] = N(S) ∪ S the closed.

We denote the set of edges incident to a vertex v by δ(v). For a subset S
∈ V (G), δ(S) is the set of all edges going out from S. For a directed graph,
the set of edges pointing to a vertex v is denoted δ−(v) and the set of edges
going out from v are δ+(v). Analogous, δ−(S) and δ+(S) are all the edges
pointing to and going out from a subset S ∈ V (G).

The subgraph induced by a vertex set S⊆ V(G) is the graph restricted
to only vertices in S and edges in E(G) where both end-points are in S. We
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denote the graph induced by S by G[S]. A subset S which induces a graph
without any edges is called an independent set.

A bipartite graph G is a graph where the vertex set V(G) can be parti-
tioned into two partitions, L and R, such that every edge connects a vertex
from L to a vertex in R. In other words, both L and R are independent sets.

A matching M in a graph G is a subset M ⊆ E(G) such that no two
edges in M share an endpoint. A maximal matching is a matching that can
not be augmented by another edge and a maximum matching is a largest
obtainable matching in a graph.

A path P in a graph is an ordered set of edges such that every consecutive
pair of edges is of the form (u, v), (v, s). An augmenting path relative
to a matching M is a path where all the edges alternates between being
matched and unmatched. The first and last edges in an augmenting path
are unmatched and the first and last vertex in an augmenting path can not be
the endpoint of any edge in M. Notice that taking the symmetrical difference
of matched and unmatched edges in an augmenting path will augment the
matching with one edge. This is why augmenting paths have a crucial role
in finding maximum matchings in graphs.

In directed graphs, a subset S ∈ V (G) is said to be strongly connected
if there exists a path in both directions between any pair of vertices in S.
A strongly connected component S is said to be tail strongly connected if
δ+(S) = ∅.

2.3 P vs NP

In computer science the question whether P equals to NP is a major unsolved
problem. The class P is the class of all problems which can be solved in
polynomial time while the class NP is the class of all the problems which
can be verified in polynomial time.

In NP there is a subset of problems which we call NP-Hard. This is the
subset of problems which any other problem in NP can be reduced to in
polynomial time. This means that if a polynomial solution is found for one
NP-Hard problem, a polynomial solution is found for all.

Even though a huge polynomial like n1000 is clearly intractable, these
polynomials rarely occur and in practice the divide between P and NP-
Hard problems have been a useful measurement for tractability. Complexity
theory is a huge research field in Computer Science and this section is just
a short introduction to the terminology from it we need for this thesis.

2.4 Vertex Cover

Vertex Cover is a well known NP-Hard problem. In a Vertex Cover instance
you are given a graph G and are asked to find a smallest possible subset S
of the vertices in G such that all edges in G have at least one end-point in

3



S. In other words, the vertices in S covers all the edges in the graph. Given
a graph G, we denote the size of its minimum obtainable vertex cover by
vc(G).

2.5 Parameterized Problems

Some times it makes more sense to formulate NP-Hard problems as parame-
terized problems. In a parameterized problem you are given both a problem
instance and a parameter as input. The parameter is often the size of the de-
sired solution but can also be structural objects like subgraphs of the graph
or a matching in the graph. The motivation to add a parameter is that
the information it gives can be useful to design smarter and more efficient
algorithms. A parameter can also be used to analyze the running time of
the algorithm(see section Fixed Parameter Tractable Algorithms below).

Definition 2.1. A parameterized problem is a language L ⊆ Σ∗ × N where
Σ is a fixed finite alphabet and the second component is called the parameter.

In the parameterized version of Vertex Cover you are given as input a
graph G and an integer k and are asked if there exists a vertex cover of size
at most k. Notice that we can still find an optimal solution by iteratively
increasing the size of k until we find a solution.

Definition 2.2. Vertex Cover parameterized by solution size

Instance: Undirected graph G
Parameter: k ∈ N
Problem: Does G have a Vertex Cover of size at most k?

Vertex Cover has as mentioned undergone a lot of research and the cur-
rently best FPT algorithm for the parameterized version of Vertex Cover
runs in O(1.2738k + kn)[3].

2.6 Fixed-Parameter Tractable Algorithms

When dealing with NP-Hard problems there are different ways of attacking
the likely inevitable exponential running time needed to solve the problem.
Facing an NP-Hard problem we often still need to find a solution and dif-
ferent approaches can be used. If the optimal solution is not of crucial
importance but it is sufficient with something “close” to optimal, we can try
to design an approximation algorithm that outputs a solution that is bound
to be within an acceptable distance from the optimal solution. This ap-
proach trades optimality for efficiency. In other cases we know that we only
face certain input instances and this restriction may help us find efficient
algorithms for these types of inputs. Kernelization where you cut away easy
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parts of the problem before starting the exhaustive search and heuristics are
also some approaches tackling NP-Hard problems.

In this thesis we will focus on Fixed Parameter Tractability(FPT) as a
way of attacking NP-Hard problems. When designing an FPT algorithm
you are given as input a parameterized problem and try to exploit the extra
information given by the parameter. It is believed that all NP-Hard prob-
lems admits an exponential running time and the goal of an FPT algorithm
is to confine this exponential running time to a computational function of
the parameter k alone.

Definition 2.3. A parameterized problem L is said to be Fixed Parameter
Tractable if given an instance (x, k), we can in time O(f(k) · nO(1)) decide
whether (x, k) is in L or not.

A crucial part in designing FPT algorithms is to find a good parameter.
As the running time is decided by a function depending on the parameter
alone it makes sense to find parameters that are usually small. A problem
can always be attacked from different angles and trying to solve a prob-
lem with different parameters in mind gives a deeper understanding of the
problem. This can be a motivation by itself for designing FPT algorithms.

FPT algorithms are not necessarily more efficient than exact algorithms.
This is because of the unrestricted nature of f(k) which can hide a tower

of exponentials like 22
2k

, a function giving astronomical running times even
for small k. The polynomial part of the running time can also be huge.
Often research focuses on pushing just one of these factors down, ignoring
the other. Some algorithms may be linear in the input size but have a huge
f(k) and vice versa.

In this thesis we will compare three different FPT algorithms solving
Vertex Cover Above LP to observe how they perform in practice. The first
algorithm is the conceptual simplest, running in time O(4µm

√
n)[4]. The

second algorithm introduces some more refined reduction rules that improves
the exponent in f(µ), giving it a running time of O(2.6181µm

√
n)[8]. The

last algorithm focuses on reducing the polynomial factor, giving a running
time of O(4µ(m+ n))[6].

The three algorithms are slight variations of each other. The first giving
a simple FPT algorithm while the second and third focuses on improving
the exponential part and the polynomial part respectively. It is therefore
of great interest to us to see which of these algorithms perform best when
implemented. It may be that the theoretical improvements introduced in the
second and third algorithms will be lost in practice due to extensive overhead
computations during the algorithm. It is also interesting to see which of the
exponential and polynomial improvements works better in practice.
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3 Kernel based on Linear Programing

In this chapter we will show how to exploit a linear program solution of
Vertex Cover to obtain a linear kernel for the problem.

3.1 Kernelization

When looking at parameterized NP-Hard problems we can often in poly-
nomial time find parts of the instance which either can be included in the
solution or be ignored and removed. When such parts are found we say that
we reduce the given instance to a smaller equivalent one, equivalent meaning
that the given instance is a yes-instance if and only if the reduced instance
is a yes-instance. This technique allows us to efficiently cut away easy parts
of the problem to make the instance is as small as possible before we start
the time consuming exponential algorithm.

The way we find such parts are by applying reduction rules. A reduction
rule is a mapping that in polynomial time maps a given instance to an
equivalent smaller instance. A reduction rule is often dependent on the
parameter, but can also be parameter independent. The goal of a reduction
rule is to make the instance smaller and it can achieve this by either removing
parts of the instance or decrease k, often both.

Definition 3.1. For a parameterized problem L, a reduction rule is a map-
ping that in polynomial time maps an instance (x, k) ∈ Σ∗ × N to an equiv-
alent smaller instance (x′, k′) ∈ Σ∗ × N. Let φ : Σ∗ × N → Σ∗ × N be the
mapping, then the following conditions must hold:

• (x, k) ∈ L ⇐⇒ φ(x, k) = (x′, k′) ∈ L

• φ can be computed in time polynomial in |x| and k

We say that a reduction rule is safe or that a reduction rule is sound if it
satisfies these conditions.

After finding a set of reduction rules we can combine them to design
a kernelization algorithm. A kernelization algorithm takes as input a pa-
rameterized instance of a problem and reduces the instance by applying the
reduction rules. Sometimes the order in which the reduction rules are ap-
plied is important. After all reduction rules are applied exhaustively we may
have additional information about the instance that we can exploit algorith-
mically. For example it can help us prove an upper bound on the size of the
reduced instance.

Definition 3.2. Given an instance (x, k) ∈ Σ∗ × N and a finite set of
reduction rules, a kernelization algorithm for a parameterized problem L ∈
Σ∗ × N reduces the instance to a problem kernel (x′, k′) in time polynomial
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in |x|+ k. The following conditions must hold for a kernelization algorithm
to be sound:

• |x′| ≤ g(k)

• k′ ≤ h(k)

• (x, k) ∈ L ⇐⇒ (x′, k′) ∈ L

We call the output of a kernelization algorithm the problem kernel. If
g(k) = kO(1) we say that the problem admits a polynomial kernel. Because
we will start the time consuming algorithm on the problem kernel, we try to
find as small a kernel as possible. The soundness of the kernel produced by a
kernelization algorithm follows directly from the soundness of the reduction
rules given.

The classical kernelization example for Vertex Cover is Buss’ reduction.
This algorithm uses two simple observations about the Vertex Cover problem
to remove vertices of high degree and also to remove isolated vertices. A
vertex is said to be isolated if it has no edges incident to it. As we are
only interested in vertices that can cover edges, the isolated vertices are
of no interest and we can remove them from the graph. This proves the
soundness of the following reduction rule, which is an example of a parameter
independent rule.

Reduction Rule 1. Remove all isolated vertices in G

If a vertex v has degree more than k it is easy to verify that v must be
in any vertex cover of size at most k. Assume v is not included in the vertex
cover, then all its neighbors have to be, in order to cover all edges incident
to v. But then we will already have exceeded our budget of k vertices in
the vertex cover. This proves the soundness of the following reduction rule,
which is an example of a parameter dependent reduction rule:

Reduction Rule 2. If G has a vertex v of degree more than k, include v
in the vertex cover, remove v from G and reduce k by one.

By applying these two reduction rules we can design a kernelization
algorithm for the Vertex Cover problem which gives a quadratic kernel.

Lemma 3.1. Vertex Cover admits a quadratic kernel where |V (G)| ≤ k(k+
1) and |E(G)| ≤ k2.

Proof. After exhaustively applying reduction rule 1 and 2, we know that
the graph has no vertices of degree more than k and no isolated vertices.
Assuming there exists a vertex cover of size k, these k vertices can have at
most k neighbors each. This means that at most k2 vertices in G are not
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in the vertex cover. This gives a total of k(k + 1) vertices in the reduced
graph.

All the edges in the reduced graph must also be incident to one of the
vertices in the vertex cover. As the maximum degree in the graph is k, the k
vertices in the vertex cover can cover at most k2 edges, which upper bounds
the number of edges and proves the quadratic kernel of Vertex Cover.

If the reduction rules have been applied exhaustively and the graph has
either more than k(k+ 1) vertices or more than k2 edges, we instantly know
that there exists no vertex cover of size at most k.

Lemma 3.1 shows how we can exploit the additional information applying
reduction rules gives us to analyze the size of a kernel.

3.2 Integer Linear Programing

In an Integer Linear Programing (ILP) instance we are given a set of vari-
ables, a set of linear constraints and a cost function. The goal of an ILP
is to find an integer evaluation of the variables such that all constraints are
satisfied and the cost function is optimized(maximized or minimized, de-
pending on the problem). Many NP-Hard problems can easily be expressed
as integer linear programs. A polynomial time algorithm for ILP would thus
imply that P = NP, which is highly unlikely. We therefore have little hope
to find efficient algorithms for ILP.

In the ILP formulation for Vertex Cover we create a variable xv for every
vertex v ∈ V(G). If a variable is set to one, it means that the corresponding
vertex is in the vertex cover. As this is a vertex cover instance we need to
make sure that every edge is covered by at least one vertex. We do this by
creating m constraints, one for each edge, s.t. if (u,v) is an edge in the graph
then the sum of xu and xv must be greater or equal to one. We measure the
cost of an ILP solution x by the sum of all its variables. We denote an ILP
solution by ILPVC(G).

Definition 3.3. Integer Linear Program for Vertex Cover

minimize:
∑

v∈V (G)

xv

subject to:xu + xv ≥ 1 ∀(u, v) ∈ E(G)

0 ≤ xv ≤ 1 ∀v ∈ V (G)

xv ∈ Z ∀v ∈ V (G)

In a Linear Programming relaxation of Vertex Cover, denoted LPVC(G),
the integrality constraint from ILPVC(G) is relaxed so that all variables can
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take any real numbered value. Each edge constraint in a LP for Vertex Cover
still has to be completely covered, but instead of being covered by one or
both end-points taking the value one, an edge can be fractionally covered
from both its end-points. For example given an edge (u, v) this edge can
be covered by giving both u and v the value one half. This means we take
“half of u” and “half of v” in the vertex cover, thus a solution to LPVC(G)
will not necessarily give us an optimal vertex cover solution. Nonetheless
we gain a lot of information from a LPVC(G) that we can exploit when
finding an optimal vertex cover. The real strength of Linear Programs is
that they can be solved efficiently in polynomial time. The formal definition
for LPVC(G) is:

Definition 3.4. Linear Program for Vertex Cover

minimize:
∑

v∈V (G)

xv

subject to:xu + xv ≥ 1 ∀(u, v) ∈ E(G)

0 ≤ xv ≤ 1 ∀v ∈ V (G)

xv ∈ R ∀v ∈ V (G)

The solution to a LPVC(G) will be used to design reduction rules in all
three algorithms presented in this thesis. How quickly we can compute a
LPVC(G) solution in a branching step thus greatly affects the polynomial
part of the running time in all three algorithms. It is therefore important to
thoroughly understand how solutions to LPVC(G) are computed, especially
in order to try to improve the polynomial part of the running time. Lets
first fix some notations and some results.

A feasible solution x = (xv)v∈V (G) is a vector in R|V (G)| such that all the
constraints of LPVC(G) are satisfied. The cost, often also referred to as the
weight of the solution, is denoted by w(x) =

∑
v∈V (G) xv. The value of an

optimal solution to LPVC(G) will be denoted by vc∗(G).
Clearly, every feasible solution to an ILPVC(G) is also a feasible solu-

tion to the corresponding LPVC(G) relaxation. The optimal weight of an
ILPVC(G) instance is therefore an upper bound to the optimal weight of
the corresponding LPVC(G) relaxation. As the cost of an optimal solution
to ILPVC(G) equals the size of a minimal vertex cover in G, we get the
following lemma:

Lemma 3.2. vc∗(G) ≤ vc(G)

The value vc∗(G) thus gives a lower bound to the size of a vertex cover
in G. We will use this later to establish a new parameter on which we can
analyze the running time of our algorithms.
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Lemma 3.3. Given an Vertex Cover instance (G,k), if k < vc∗(G), then
(G,k) has no vertex cover of size at most k.

Proof. We know instantly from lemma 3.2 that k < vc∗(G) ≤ vc(G), hence
the instance is a no instance.

We can also make some more simple but useful observations about solu-
tions to LPVC(G).

Lemma 3.4. For a graph G, the vector x where all variables takes value 1
2

is a feasible solution to LPVC(G).

Proof. Is it easy to see that xu + xv = 1
2 + 1

2 ≥ 1 for every edge (u,v)
∈ E(G).

We refer to solutions where all variables take value one half as the all-half
solution. We can use the previous lemma to upper bound the value of any
optimal solution to LPVC(G)

Corollary 3.5. For any given graph G, the value vc∗(G) is at most half the
number of vertices in the graph.

vc∗(G) ≤ |V (G)|
2

3.3 Linear Kernel for Vertex Cover

In section 3.1 we showed how to create a quadratic kernel by applying some
simple reduction rules that removed isolated vertices and vertices of high
degree in the graph. In this section we add a new reduction rule that is
based on an optimal LPVC(G) solution. This added rule will improve the
kernel size so it becomes linear.

Given an optimal solution x = (xv)v∈V (G) of LPVC(G), we can partition
the vertices in the graph into three partitions based on the value of their
corresponding variable. The intuition behind these partitions is that vertices
whose variable have higher fractional value are of bigger importance than
the vertices whose variable admits a low value. The partitions are as follows:

Definition 3.5. Given a graph G and an optimal LPVC(G) solution x, we
define the following three partitions:

• V x
0 = {v ∈ V (G) : xv <

1
2}

• V x
1
2

= {v ∈ V (G) : xv = 1
2}

• V x
1 = {v ∈ V (G) : xv >

1
2}
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From the properties of a feasible solution to LPVC(G) and definition 3.5,
we can state some useful facts about V0 and V1. In all the coming lemmas
we assume x to be an optimal LPVC(G) solution from which the sets V0, V 1

2

and V1 have been derived.

Lemma 3.6. V0 is an independent set.

Proof. Assume there exist an edge between two vertices u and v in V0. Then
xv +xu <

1
2 + 1

2 = 1, contradicting x as a feasible solution to LPVC(G).

Lemma 3.7. The neighborhood of V0 equals V1

Proof. We show two inclusions to prove the lemma:

• N(V0) ⊂ V1
Assume there exist an edge from a vertex u in V0 and a vertex v in
V 1

2
. Then xu + xv <

1
2 + 1

2 = 1, contradicting x as a feasible solution

to LPVC(G). This proves that all edges out from V0 goes to vertices
in V1.

• V1 ⊂ N(V0)
Assume there exist a vertex v in V1 which is not in the neighborhood
of V0. Then all the neighbors of v has a variable with value at least
one half. Reducing the value of the variable of v to one half would
then still yield a feasible solution to LPVC(G), which is clearly better
than x, This contradicts the optimality of x, hence all vertices in V1
must be the neighbor of a vertex in V0

Lemma 3.8. If V1 < V0, there exist a matching M between V0 and V1 that
saturates V1.

Proof. Assume no such matching exist. Then Hall‘s Theorem [5] guarantees
that there exist a subset S of V1, such that N(S) < S. Let ε be the smallest
distance from a variable in N[S] to one half:

ε = min{
∣∣xv − 1

2

∣∣ : v ∈ N [S]}

We can now create a new feasible solution y to LPVC(G):

yv =


xv − ε v ∈ S
xv + ε v ∈ N(S)

xv otherwise

As N(S) < S, this will be a feasible solution with w(y) < w(x), con-
tradicting the optimality of x.

11



The classic Nemhauser-Trotter Theorem shows how these partitions can
be used to reduce an Vertex Cover instance.

Theorem 3.9. (Nemhauser-Trotter’s Theorem) [9]
Given a graph G and an optimal LPVC(G) solution x partitioning G into
V x
0 , V x

1
2

and V x
1 , there exists a minimum vertex cover S such that S contains

all of V x
1 and none of V x

0

V x
1 ⊆ S ⊆ V x

1
2

∪ V x
1

Proof. Let S∗ be an optimal vertex cover for G. We show that we can con-
struct an optimal vertex cover S from S∗ by removing all vertices in V x

0 from
S∗ and adding all vertices in V x

1 to S∗:

S = (S∗ \ V x
0 ) ∪ V x

1

Given the way the partitions are created, every vertex in V x
0 must have

an edge to a vertex in V x
1 . From this it is easy to see that S is a valid

vertex cover of G. We now have to prove that S is also optimal. To get to
a contradiction, assume the contrary, that |S| > |S∗|. We already know the
size of S:

|S| = |S∗| − |V x
0 ∩ S∗|+ |V x

1 \ S∗| (1)

Given that our assumption holds, this infers that:

|V x
0 ∩ S∗| < |V x

1 \ S∗| (2)

Let us now define an epsilon, which intuitively measures the smallest
distance from the value of a variable in V x

0 ∪ V x
1 to one half on the real

number line.

ε = min{
∣∣xv − 1

2

∣∣ : v ∈ V x
0 ∪ V x

1 }

With this epsilon we can now define a new vector y = (yv)v∈V (G) where:

yv =


xv − ε v ∈ V x

1 \ S∗

xv + ε v ∈ V x
0 ∩ S∗

xv otherwise

In our chase for a contradiction we need to show that y is a feasible
solution to LPVC(G) of weight less than x. From the construction of y and
from (2), it is easy to see that w(y) < w(x).

Observe that all variables in y will take legal values and the partitions
with respect to y will be equal to the partitions with respect to x, due to
the construction of ε and y.

12



0 ≤ (yv)v∈V (G) ≤ 1.

For an arbitrary edge (u,v) in E(G), we need to prove that yu + yv ≥ 1.
If none of u or v are in V x

1 \ S∗, then yu ≥ xu and yv ≥ xv which implies
yu + yv ≥ xu + xv ≥ 1. We need to consider the case where exactly one of u
or v is in V x

1 \ S∗. By symmetry we can assume u to be this vertex. Then
v must be in S∗ in order to cover the edge (u,v). This can happen in two
ways:

• v ∈ V x
0 ∩ S∗

⇒
yu + yv = xu − ε+ xv + ε = xu + xv ≥ 1

• v ∈ (V x
1
2

∪ V x
1 ) ∩ S∗

Notice that yu = xu − ε ≥ 1
2 and that xv ≥ 1

2
⇒
yu + yv ≥ xu − ε+ xv ≥ 1

2 + 1
2 = 1

We have shown that given the assumption, we can construct a new so-
lution y to LPVC(G) which is better than x. This is a contradiction which
proves that |S| ≤ |S∗| which again proves the theorem.

From Theorem 3.9 and lemmas 3.6 and 3.7 we can now prove that there
always exists an optimal solution to LPVC(G) where all the variables in the
solution admits values from the set {0, 12 , 1}. We will refer to such solutions
as half-integral optimal solutions to LPVC(G):

Lemma 3.10. For any optimal solution x to LPVC(G), there exists an
optimal half-integral solution x’.

Proof. Let x be an optimal solution to LPVC(G) and let x’ be a vector in
which all variables in x have been rounded to its nearest half-integral value.
The weight of x’ will then be:∑

v∈V (G)

x′v =
∑

v∈V0∪V1

x′v +
∑
v∈V 1

2

x′v

=
∑

v∈V0∪V1

x′v +
∑
v∈V 1

2

xv

= |V1|+
∑
v∈V 1

2

xv

≤
∑

(u,v)∈M

(xu + xv) +
∑
v∈V 1

2

xv

≤
∑

v∈V0∪V1

xv +
∑
v∈V 1

2

xv =
∑

v∈V (G)

xv

(3)

13



where the first inequality is a result of lemma 3.8 which says there is a
matching between V0 and V1 saturating V1.

From this point on, whenever we speak about an optimal solution to
LPVC(G) we will refer to an optimal half-integral solution where all the
variables admits values from the set {0, 12 , 1}.

A vector in which all variables admits the same value i is denoted x ≡ i,
where i ∈ {0, 12 , 1}. Of special importance to us is the solution in which all
variables takes the value one half. This will be referred to as the all-half
solution.

3.3.1 Reduction

Theorem 3.9(Nemhauser-Trotter) gives us the following reduction rule:

Reduction Rule 3. For a parameterized Vertex Cover instance (G,k) and
an optimal solution x to LPVC(G), define V x

0 , V x
1
2

and V x
1 as in definition

3.5.
If w(x) > k, lemma 3.3 proves that the given instance is a no-instance.

Otherwise, Theorem 3.9(Nemhauser-Trotter) proves that there exists a ver-
tex cover of minimum size that includes all of V x

1 and none of V x
0 . The

reduction rule therefore includes V x
1 in the vertex cover and deletes V x

0 ∪V x
1

from the graph. The reduced instance G′ = G[V x
1
2

] is then a smaller equiva-

lent instance with k′ = k − |V x
1 |.

The following lemma proves the soundness of reduction rule 3:

Lemma 3.11. Given an instance (G, k) and an optimal solution x to LPVC(G).
Let G′ = G[V x

1
2

] and k′ = k − |V x
1 | be the kernel produced by reduction rule

3. Then (G, k) is a yes-instance if and only if (G′, k′) is.

Proof. If (G, k) is a yes instance, let S be a minimum vertex cover of G
such that V x

1 ⊆ S ⊆ V x
1
2

∪ V x
1 . Theorem 3.9(Nemhauser-Trotters Theorem),

proves that there exists such a minimum vertex cover. Any vertex cover
restricted to a subgraph will always be a vertex cover of this subgraph. This
means S ∩ V x

1
2

will be a vertex cover of G′ of size at most k − |V x
1 |, proving

that if (G, k) is a yes-instance then (G′, k′) also is.
In the other direction, let S′ be a vertex cover of G[V x

1
2

] of size k′. As

all vertices in V x
0 can only be adjacent to vertices in V x

1 , S′ ∪ V x
1 will be a

vertex cover of G. |S′ ∪ V x
1 | = k′ + |V x

1 | ≤ k − |V x
1 |+ |V x

1 | = k.

The soundness of reduction rule 3 thus follows from the correctness of the
Nemhauser-Trotter theorem. After reduction rule 3 has been applied we are
left with a kernel consisting of the graph induced by V 1

2
. When removing the

14



vertices in V0 ∪ V1 from G, we can also remove the corresponding variables
from the optimal LPVC(G) solution x. We will now show that not only is
this restriction of the LPVC(G) solution a feasible solution to LPVC(G[V 1

2
]),

it is also optimal.

Lemma 3.12. Given an instance (G,k) and an optimal solution x to LPVC(G).
Let (G′, k′) be the new instance after applying reduction rule 3 and let x’ be
the restriction of x after removing all variables corresponding to vertices that
have been removed. Then x’ will be an optimal solution to LPVC(G’).

Proof. Notice that all edges connecting the vertices in G′ and V0 ∪ V1 are
covered when the variables corresponding to vertices in V1 are set to one.
Hence, all feasible solutions y to LPVC(G′) with the added variables cor-
responding to vertices in V0 ∪ V1 set to zero and one respectively will be a
feasible solution to LPVC(G).

Now consider the case where there exists an optimal solution y to LPVC(G′)
which is better than the restriction x’ found after applying the reduction
rule. Then we could get a new feasible solution x” to LPVC(G) by adding
the variables corresponding to vertices in V0 ∪ V1 set to zero and one re-
spectively, to y. This solution will clearly be a solution to LPVC(G) of
weight less than w(x), contradicting the optimality of x. Thus proving the
optimality of x’.

We now have the results to prove the new improved linear kernel to
Vertex Cover:

Theorem 3.13. Vertex Cover admits a kernel of size at most 2k

Proof. Given an instance (G,k), let (G′, k′) be the reduced instance after
applying reduction rule 3 according to an optimal LPVC(G) solution x.
Lemma 3.12 now guarantees that the restriction x’ of x to G′ will be an
optimal solution where all variables take value one half. This gives us:∣∣∣G[V 1

2
]
∣∣∣ = 2

∑
v∈V 1

2

x′v ≤ 2
∑

v∈V (G) xv ≤ 2k

3.4 Efficient Algorithm for LPVC(G)

When computing the kernel in theorem 3.13 we need an efficient way of com-
puting the linear program values of an optimal LPVC(G) solution. We do
this be reducing LPVC(G) to finding a minimum vertex cover in a bipartite
graph H constructed from G. We construct the vertices in H by making two
partitions, LH and RH , both being copies of the vertex set V(G).

Definition 3.6. A bipartite graph HG with partitions LH and RH is con-
structed from a graph G as follows:
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1. For every vertex v ∈ V (G), create two copies vl and vr and place them
in LH and RH in V(HG) respectively

2. For every edge (u, v) ∈ E(G), create (ul, vr) and (ur, vl) in E(HG)

Whenever it is clear from the context which graph H is constructed from
we leave the subscript G out and only write H.

3.4.1 Hopcroft-Karp

To find a minimum vertex cover in H we first use Hopcroft-Karp’s [7] algo-
rithm to find a maximum matching in H. Like many other algorithms finding
maximum matchings, the Hopcroft-Karp algorithm is based on finding aug-
menting paths. An augmenting path relative to a matching M is a path in
which the edges alternates between beeing in the matching M and not. In
an augmenting path P the first and last vertices must be free, where a vertex
v is said to be free relative to a matching M if none of the edges in M are
adjacent to v. That the first and last vertices are free means that the first
and last edges in P can not be in M. When having an augmenting path P
we can remove all matched edges in P from M and add all unmatched edges
in P to M, in order to create a new matching M ′ with cardinality |M |+ 1.
This is why augmenting paths are used to find maximum matching. When
the edges of a path alternates between being and not being in M, but is not
an augmenting path, we call it an alternating path.

To formalize the importance of augmenting paths we state the well known
fact that a matching M is maximum in a graph G if and only if there is no
augmenting path in G.

Lemma 3.14. (Berge‘s lemma) [2]
A matching M is maximum in G ⇐⇒ there exists no augmenting path in
G

Instead of just finding one augmenting path in each iteration of the
algorithm, Hopcroft-Karp finds a set of disjoint shortest augmenting paths.
Then, instead of augmenting and increasing the size of the matching with
just one per iteration, it augments a set of augmenting paths, reducing the
number of iterations needed for the algorithm to terminate from O(n) to
O(
√
n).

In order to find a set of disjoint shortest augmenting paths the algorithm
partitions the graph into layers P. The free vertices in LH form the first layer
in P and the starting point for the partitioning. From this layer we perform
a Breadth-First Search(BFS) that is guided so it only uses unmatched edges
when going from LH to RH and only matched edges when going in the
other direction. When the BFS encounters a free vertex in RH , a shortest
augmenting path has been found. The BFS finishes finding all vertices
reachable in this layer before it terminates.
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The algorithm then proceeds to perform a Depth-First Search(DFS) from
the free vertices in the last layer in P. The DFS uses the layers in P as
guidance, meaning it only traverses edges from a layer to the layer above.
When a free vertex in LH is reached, this will be an augmenting path. The
DFS proceeds until it finds a maximal set of disjoint augmenting paths.
These paths are then augmented and the algorithm will start again until no
more augmenting paths can be found.

It can be proven that the algorithm only needs O(
√
n) iterations before

it terminates. Each iteration, consisting of a BFS and a DFS, can be done in
O(m+ n) time, which gives the total running time O(m

√
n). For the proof

of correctness and the running time analysis of Hopcroft-Karp the reader is
referred to [7].

3.4.2 Finding minumum vertex cover from maximum matchings
in bipartite graphs

We now want to find a minimum vertex cover in H from a maximum match-
ing M in H. Unless M is a perfect matching, where a perfect matching is
a matching where all vertices in one of the partitions of a bipartite graph
are endpoints of an edge in M, we have free vertices in both LH and RH .
Let Z be all the vertices reachable in H by an alternating path from the free
vertices in LH . The following lemma shows how to construct a minimum
vertex cover from M and Z:

Lemma 3.15. Let M be a maximum matching in H and let Z be all the
vertices reachable by an alternating path in H from the free vertices in LH .
Then

S = (RH ∩ Z) ∪ (LH \ (LH ∩ Z))

will be a minimum vertex cover for H.

Proof. Notice that there can not exist any edges between LH∩Z and RH \Z
as this would imply there exist an augmenting path in H, contradicting the
optimality of M. Thus S have to be a valid vertex cover for H.

The size of S has to be the same as the size of M, proving that S is an
optimal vertex cover.

From a minimum vertex cover S of H we can find an optimal solution to
LPVC(G):

Lemma 3.16. Given a graph G and a minimum vertex cover S for HG,
then the vector x:
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xv =


0 if none of v1 or v2 are in S
1
2 when exactly one of v1 or v2 is in S

1 if both v1 and v2 are in S

will be an optimal LPVC(G) solution.

Proof. To show that x is a feasible solution we need to show that the con-
straints of LPVC(G) are satisfied. Hence for every edge (u, v) ∈ E(G) we
need to show that xu + xv ≥ 1. As S is a vertex cover of H, we know that
for every edge (u, v) in E(G), at least two of the vertices {u1, u2.v1, v2} must
be in S. Then either both xu and xv will take the value one half or at least
one of them will take the value one. This clearly satisfies the constraint
xu + xv ≥ 1.

In order to prove the optimality of x, assume y is an optimal solution
to LPVC(G) and show that the weight of x can be at most the weight of y.
Give each vertex vi i ∈ {1, 2} in H the weight yv. Then these weights will
form a fractional vertex cover of H and we have:∑

v∈V (G) yv = 1
2

∑
v∈V (G)(w(v1) + w(v2))

We know that the size of a vertex cover is at least as big as the size of
a fractional vertex cover. We also know that the weight of x equals half
the size of S, as each vertex in S will contribute one half to a variable in
LPVC(G). This gives us:∑

v∈V (G) yv = 1
2

∑
v∈V (G)(w(v1) + w(v2)) = 1

2

∑
v∈V (H)w(v)

≥ |S|2 =
∑

v∈V (G) xv

which proves the optimality of x.

3.4.3 Algorithm

We now have the results to present the algorithm for finding optimal solu-
tions to LPVC(G). First construct the bipartite graph H from G, then, using
Hopcroft-Karp, find a maximum matching M in H. From M and lemma 3.15
we can find a minimum vertex cover S in H. From S and lemma 3.16 we can
compute an optimal solution x of LPVC(G). As Hopcroft-Karp is the time
dominating part of the algorithm, we get a O(m

√
n) running time:

Theorem 3.17. Given a graph G, we can compute an optimal solution of
the linear program LPVC(G) in O(m

√
n)time.

Theorem 3.17 gives rise to the following corollary:

Corollary 3.18. We can compute a 2k kernel for Vertex Cover of Theorem
3.13 in O(m

√
n) time.

18



4 Vertex Cover Above LP

In this chapter we will introduce the main problem that we focus on in this
thesis, Vertex Cover Above LP.

4.1 Above Guarantee Parameterization

Some parameterized problems have a natural lower bound to their solution
size. If this lower bound is relatively big, then using the solution size as
parameter might not be the most appropriate. The idea behind FPT algo-
rithms is to make NP-Hard problems tractable by confining the exponential
running time to a function of a parameter k alone. The running time of
an FPT algorithm can be expressed as f(k) · nc, where f(k) is a (possibly)
exponential function depending on k alone. In practice FPT algorithms will
only be tractable for small k. It will therefore make sense to search for a
different parameter in situations where there is a relatively big lower bound
to the solution size.

One approach is to use the excess above the lower bound as a parameter.
We still ask if the problem has a solution of size k, but we analyze the
algorithm with the parameter µ = k−l, where l is the size of the lower bound.
By using this parameter we obtain a running time of O(f(k−l)·nO(1)). This
parameterization, called Above Guarantee Parameterization, makes sense as
the parameter will be much smaller than k. Depending on the exponent in
the running time and how efficiently the lower bound can be computed, this
can give more efficient algorithms.

Vertex Cover is a problem which has a natural lower bound in the size
of the maximum matching in the given graph. A maximum matching M in
a graph is a collection of edges where no two edges in M share an end-point.
In order to cover all these edges, the vertex cover has to include at least
one end-point from every edge. The size of M therefore gives a lower bound
to the size of a vertex cover in a graph. This parameter gives rise to an
important problem called Vertex Cover above Matching.

Definition 4.1.
Vertex Cover Above Matching

Input: Undirected graph G, integer k
Parameter: µ(G, k) = k − |M |
Problem: Does G have a vertex cover of size at most k?

This is an important problem because many interesting problems like
ALMOST-2-SAT and ODD CYCLE TRAVERSAL can be reduced to it.
Improved algorithms for Vertex Cover above Matching can therefore also
give better algorithms for these problems. The interested reader is referred
to [8] for a more detailed introduction to the problem and its reduction to
other problems.
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4.2 Vertex Cover Above LP

As already mentioned, Vertex Cover has a natural lower bound in the size
of the maximum matching of a graph. In section 3.2 we also got introduced
to another lower bound for Vertex Cover, the optimal linear program value
vc∗(G). With this lower bound we can introduce a new problem Vertex
Cover above LP, which is the problem this thesis will focus on:

Definition 4.2.
Vertex Cover Above LP

Input: Undirected graph G, integer k
Parameter: µ(G, k) = k − vc∗(G)
Problem: Does G have a vertex cover of size at most k?

It is easy to see that vc∗(G) ≥ |M |, where M is a maximum matching
in G, as every edge in M has to be fractionally covered by the variables in
any solution to LPVC(G). The parameter k−vc∗(G) in Vertex Cover above
LP will therefore always be at most as big as the parameter in Vertex Cover
above Matching:

k − vc∗(G) ≤ k − |M |

Due to this, every parameterized algorithm for Vertex Cover above LP
will also be a parameterized algorithm for Vertex Cover above Matching. Im-
proved algorithms for Vertex Cover above LP will therefore give improved
algorithms to all the problems which currently best algorithms are reduc-
tions to Vertex Cover above Matching.

5 The Surplus of a vertex set

Up until this point we have viewed the sets V0 and V1 found by reduction
rule 3 from a linear programing point of view. They have been the vertices
in which the corresponding variables admit integer values in an optimal
LPVC(G) solution. It is also possible to look at these sets from a graph
structural perspective which can help further understanding the reduction
rules and algorithms presented.

Reduction rule 3 guarantees that it is safe to remove the vertices in V0
and V1 from the graph when all the vertices in V1 are included in the vertex
cover. That it is safe to remove all the vertices in V0 without including any
of them in the vertex cover means that there can not be any edges between
any vertices in V0, i.e. V0 is an independent set.

Proposition 5.1. The vertices in V0 found by reduction rule 3 form an
independent set.
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Further, since it is safe to only include vertices in V1 into the vertex cover
in order to also remove V0 from the graph, we know that all outgoing edges
from V0 are covered by vertices in V1. This means that the neighborhood of
V0 has to be included in V1.

Proposition 5.2. Let V0 and V1 be the sets found by reduction rule 3. Then
N(V0) ⊆ V1

Hence we see that what reduction rule 3 is really searching for are inde-
pendent sets where it is guaranteed that including the neighborhood of the
independent set into the vertex cover will give a solution at least as good as
any optimal solution. To further formalize this idea we introduce the notion
of surplus for independent sets. The surplus of an independent set is defined
to be the difference between the size of its neighborhood and itself.

Definition 5.1. The surplus of an independent set Z, denoted by sur-
plus(Z), is |N(Z)| − |Z|

To further expand on this idea, the surplus of a graph is defined to be the
minimum surplus of any independent set in the graph. This is an important
concept which we will use later when analyzing the algorithms.

Definition 5.2. Let A be the set of all independent sets in a graph G. The
surplus of the graph, denoted surplus(G), is defined to be the minimum
surplus over all sets in A

surplus(G) = minX∈A surplus(X)

Translated to the notion of surplus, reduction rule 3 finds independent
sets with negative surplus and removes them from the graph. Intuitively, as
independent sets with negative surplus has a neighborhood of lesser cardinal-
ity that covers all edges between the independent set and the neighborhood,
it is tempting to generalize reduction rule 3 so that all neighborhoods of
independent sets with negative surplus can safely be included in any opti-
mal vertex cover. However, care must be taken as there exist examples of
independent sets with negative surplus where the optimal solution does not
include all of its neighborhood.

The independent sets V0 found by reduction rule 3 have an extra property
which makes it safe to include N(V0) = V1 in the vertex cover and remove
N [V0] from the graph. They are inclusion-minimal sets Z with negative
surplus, meaning that for any subset Z ′ of Z the surplus of Z ′ is greater or
equal to the surplus of Z:

surplus(Z ′) ≥ surplus(Z), for all Z ′ ⊆ Z

This means that reduction rule 3 finds inclusion-minimal independent
sets of negative surplus and removes them from the graph. Thus after re-
duction rule 3 has been applied, x ≡ 1

2 is an optimal solution to LPVC(G)
and the graph G has a surplus of at least zero:
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Lemma 5.1. Let x ≡ 1
2 be an optimal solution to LPVC(G), then

surplus(G) ≥ 0

Proof. Assume G has an independent set Z with negative surplus. Let x′ be
a new vector with variables set to the following values:

x′v =


xv v ∈ V (G) \N [Z]

0 v ∈ Z
1 v ∈ N(Z)

clearly x′ will be a feasible solution to LPVC(G) with weight

w(x′) = w(x) + 1
2 (|N(Z)| − |Z|)

as the surplus of Z is negative, (|N(Z)| − |Z|) must be negative. Thus

w(x′) < w(x)

which contradicts the optimality of x. Hence the surplus of G is greater or
equal to zero.

The following two lemmas give rise to an even stronger and more general
result:

Lemma 5.2. For any independent set Z with surplus i in G, the vector xZ

where:

xZv =


0 v ∈ Z
1 v ∈ N(Z)
1
2 v ∈ V (G) \N [Z]

will be a feasible solution to LPVC(G) with weight w(xZ) = |V (G)|
2 + i

2 .

Proof. xZ is clearly a feasible solution to LPVC(G). To prove the weight of
xZ , set all variables to one half, then subtract one half for each vertex in
Z as these are now set to zero and add one half for each vertex in N(Z) as
these are now set to one. This gives

|V (G)|
2 + 1

2(|N(Z)| − |Z|) = |V (G)|
2 + 1

2(surplus(Z))= |V (G)|
2 + i

2

which proves there exist a solution x to LPVC(G) with the desired weight.

The converse of this lemma is indeed also true:

Lemma 5.3. For any half-integral solution x of LPVC(G), V0 will be an

independent set with surplus i ≤ (w(x)− |V (G)|
2 ) · 2
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Proof. V0 is an independent set by lemma 3.6. To prove the surplus of V0,
observe that N(V0) must be a subset of V1. The weight of x is:

w(x) = |V (G)|
2 + 1

2(|V1| − |V0|)

As N(V0) ⊆ V1, |V1| − |V0| ≥ surplus(V0). This gives us:

w(x) = |V (G)|
2 + 1

2(|V1| − |V0|) ≥ |V (G)|
2 + 1

2 surplus(V0).

rewriting this we get:

surplus(V0) ≤ 2·w(x) - |V (G)|

proving the lemma.

We can now prove the following useful corollary:

Corollary 5.4. vc∗(G) = |V (G)|
2 + 1

2(surplus(G))

Proof. We prove the corollary in two parts:

• vc∗(G) ≤ |V (G)|
2 + 1

2(surplus(G))
Let Z be an independent set of minimum surplus in G, then xZ from
lemma 5.2 will be a feasible solution to LPVC(G) with w(xZ) =
|V (G)|

2 + 1
2surplus(G), proving the inequality.

• vc∗(G) ≥ |V (G)|
2 + 1

2(surplus(G))
Let x be an optimal half integral solution to LPVC(G), then lemma 5.3

guarantees that vc∗(G) = w(x) ≥ |V (G)|
2 + 1

2 surplus(V x
0 ) ≥ |V (G)|

2 +
1
2(surplus(G))

6 Simple Algorithm for Vertex Cover above LP

We will now describe in detail the first and conceptually simplest of the three
algorithms for Vertex Cover Above LP that we have implemented. This
algorithm is based on the algorithm given in [4] and will also form the basis
for the next two improved algorithms. The algorithm exhaustively searches
for a vertex cover of size at most k by first applying a set of reduction
rules before branching using a familiar neighborhood branching strategy
for vertex cover. Even though the algorithm is quite simple, analyzing the
running time using the above guarantee parameter µ(G, k) is more advanced
and it is of great interest to us to understand how this parameter behaves
during the algorithm.

In the following sections we will present the algorithm. We first show the
reduction rule used, prove its correctness and show how applying it affects
the parameter. We then proceed to describe the branching strategy and also
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show how it affects the parameter µ(G, k). We then wrap up to give the
complete algorithm and prove its running time.

6.1 Reduction

In the first stage of the algorithm we want to reduce the graph to as small
an instance kernel as possible. In section 3.3 we showed how to obtain a
linear kernel based on reduction rule 3. Here we will use a stronger version
of that rule so that exhaustively applying it will not only give us a 2k kernel,
but also guarantee that the all-half vector is the unique optimal LP solution
to the kernel. The all-half uniqueness is important for the running time
analysis of this algorithm.

Lemma 6.1. For a graph G with no isolated vertices, an optimal solution
to LPVC(G) which is not the all-half solution can be found in O(mn

3
2 ) time.

If no such solution can be found the all-half solution is the unique optimal
solution to LPVC(G).

Proof. First compute a solution x to LPVC(G) using the algorithm from
theorem 3.17 in section 3.4. If x is not the all-half solution simply return
it. If x ≡ 1

2 , proceed as follows:
To find an optimal non all-half solution we try, one by one, to fix a

variable to be one. If the optimal LP value does not change after the variable
xv is fixed to be one, this will be a feasible solution with at least one integer
value, namely xv.

For every vertex v ∈ V(G), solve the Linear Program where v is removed
from the graph. Let xv be an optimal solution to LPVC(G-v) with value
vc∗(G− v). If vc∗(G− v) ≤ vc∗(G)− 1, fix xv to be one and let xv,0 be xv

with the added variable xv. This will be a feasible solution to LPVC(G), as
adding a variable with value one surely covers all edges incident to it. Given
the assumption it will also be an optimal solution that is not the all-half
solution. Return xv,0.

If no vertex in G gives us an optimal non all-half solution we need to prove
that the all-half solution indeed is the unique optimal solution. That no
vertex in G gave an optimal non all-half solution means that:

vc∗(G− v) > vc∗(G)− 1 for all v ∈ V(G)

Notice, as there exist an half-integral optimal solution for any optimal
solution, see lemma 3.10, this slightly stronger assumption also holds:

vc∗(G− v) ≥ vc∗(G)− 1
2 for all v ∈ V(G)

To prove the uniqueness of the all-half solution we chase a contradiction.
Assume x is an optimal solution to LPVC(G) that is not the all-half solution.
As we already know that the all-half solution is optimal, there must exist
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a vertex v ∈ V(G) s.t. xv >
1
2 . Then x restricted to G-v will be a feasible

solution to LPVC(G-v) with value:

w(x)− xv = vc∗(G)− xv < vc∗(G)− 1
2

which is a contradiction that proves the uniqueness of the all-half solution.
The running time can easily be seen as we in worst case have to invoke the
algorithm from Theorem 3.17 n+1 times.

We can now state our enhanced reduction rule:

Reduction Rule 4. Invoke the algorithm from lemma 6.1. If an optimal
solution x is returned and x is not the all-half solution, use reduction rule
3 to reduce the instance according to x. If x ≡ 1

2 , we know it is the unique
optimal solution and can start to branch on the kernel G[V 1

2
].

Once Reduction Rule 4 is not longer applicable, we know that we have
a problem kernel G′ where the all-half vector is the unique optimal solution
to LPVC(G′). The uniqueness of the all-half vector as an optimal solution
gives us further information about the surplus of the graph. The following
lemma builds on 5.1 and strengthens it according to the knowledge that x
≡ 1

2 is the unique optimal solution to LPVC(G).

Lemma 6.2. Given a graph G where x ≡ 1
2 is the unique optimal solution,

then the surplus of G is at least one:

surplus(G′) ≥ 1

Proof. Assume there exists an independent set Z with surplus(Z) = 0. Let
x′ again be a new vector with variables set to the following values:

x′v =


xv v ∈ V (G) \N [Z]

0 v ∈ Z
1 v ∈ N(Z)

clearly x′ will be a feasible solution to LPVC(G). Lemma 5.2 guarantees
that:

w(x′) = |V (G)|
2 + 1

2surplus(Z) = |V (G)|
2

which contradicts the unique optimality of x. Hence G must have a
surplus of at least one.

The algorithm will be analyzed using the measure µ(G, k) and it is there-
fore of importance to understand how the reduction rule influences this mea-
sure.
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Lemma 6.3. Let an instance (G′, k′) be created by applying Reduction Rule
3 to an optimal LPVC(G) solution x. Then µ(G′, k′) = µ(G, k). In other
words, the value of the new parameter will equal the value of the old.

Proof. In order to prove the statement it is sufficient to prove the following
two equalities:

vc(G) = vc(G′) + |V x
1 |

vc∗(G) = vc∗(G′) + |V x
1 |

as they are implying:

vc∗(G)− vc∗(G′) = vc(G)− vc(G′) = |V x
1 | = k − k′

k − vc∗(G) = k′ − vc∗(G′)
µ(G, k) = µ(G′, k′)

• vc(G) = vc(G′) + |V x
1 |

– vc(G) ≤ vc(G′) + |V x
1 |

For every vertex cover S of G′, adding V1 to S will give a feasible
vertex cover to G as all vertices in V0 can only have edges to
vertices in V1. Hence a minimum vertex cover of G is at most the
size of vc(G′) + |V x

1 |.
– vc(G) ≥ vc(G′) + |V x

1 |
This direction follows directly from Theorem3.9(Nemhauser-Trotter).

• vc∗(G) = vc∗(G′) + |V x
1 |

– vc∗(G) ≤ vc∗(G′) + |V x
1 |

For any feasible solution y′ of LPVC(G′), define a vector y as
yv = y′v for v ∈ G′ and yv = xv for v ∈ V (G) \ V (G′). Then y is
a feasible solution to LPVC(G) with value vc∗(G′) + |V x

1 |.
– vc∗(G) ≥ vc∗(G′) + |V x

1 |
This direction is proven by noticing that x restricted to G′ is a
feasible solution of vc∗(G′) of size vc∗(G)− |V x

1 |.

As reduction rule 4 is just repeatedly executing reduction rule 3, exhaus-
tively applying reduction rule 4 will also not affect the parameter.

Lemma 6.4. Let (G′, k′) be the reduced instance after exhaustively applying
reduction rule 4 on (G,k). Then µ(G′, k′) = µ(G, k)
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6.2 Branching

A branching algorithm for a parameterized problem is an algorithm that
exhaustively searches through the solution space of the problem to find its
optimal solution. A branching algorithm can be viewed as a rooted tree,
where the root is the original instance from where the search begins and
all the vertices in the tree are sub problems of the original instance. We
call this tree the search tree of the algorithm. In each vertex v in the
tree, the algorithm finds smaller subproblems on which it can be proven
that there exist a solution to the instance corresponding to v, if and only
if there exist a solution to at least one of the subproblems. The different
subproblems are called branches in the search tree. A crucial part when
finding sub problems on which the algorithm can branch is that these new
problems must be smaller and provable closer to terminating the algorithm.
As a branch in the algorithm terminates when the parameter is zero, this is
measured in the drop of the parameter.

6.2.1 Time analysis

To analyze the running time of a branching algorithm one finds an upper
bound to the number of leaves in the search tree. As each node in the tree
has at least two children, this will also bound the number of nodes in the
tree. Lets say an instance I can be split up into k sub problems (I1...., Ik)
where in each subproblem Il the parameter is reduced by il. If the parameter
of I was µ, then we can bound the number of leaves for I by the recursion:

T (µ) = T (µ− i1) + T (µ− i2) + ...+ T (µ− ik)

In this thesis the branching rules will only simplify the instance into two
branches where the parameter drops either by one half in both branches or
by one half and one. The only two recursion we need to know is therefore:

T(µ) = T(µ− 1
2) + T(µ− 1

2)

T(µ) = T(µ− 1
2) + T(µ− 1)

which will give upper bounds on the number of leaves in the search tree
by O(4µ) and O(2.6181µ) respectively.

6.2.2 Branching strategy

The branching phase of this algorithm follows a well known strategy for
finding a vertex cover; for any vertex v in the graph, either v or all of its
neighborhood has to be included in any valid vertex cover.

Lemma 6.5. For a vertex v ∈ V (G), in any valid vertex cover S for G,
either v is in S or all of its neighbors must be in S.
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Proof. Assume S is a valid vertex cover for G and that there exists a vertex
v such that neither v or all the vertices in N(v) are in S. Let y be one of the
vertices in N(v) not in S. Then there will exist an edge, (v,y) ∈ E(G) not
covered by S, contradicting it as a valid vertex cover. Hence either v or all
of N(v) must be in any valid vertex cover for G.

Lemma 6.5 gives us the result needed for a branching strategy that ex-
haustively searches the solution space for the Vertex Cover above LP prob-
lem. Assume that none of the given reduction rules are applicable. Es-
pecially that reduction rule 4 is no longer applicable is important, as this
guarantees that the instance (G,k) on which we branch have a surplus of at
least one.

Branching Rule 1. For a graph G, select an arbitrary vertex v and branch
in two cases. In the first, include v in the vertex cover, remove v from the
graph and work recursively on the instance G′ = G−v with k′ = k−1. In the
other branch, include N(v) in the vertex cover, remove N[v] from the graph
and work recursively on the instance G′ = G \ N [v] with k′ = k − |N(v)|.
This gives us the following recursion:

V C(G, k) iff V C(G− v, k − 1) or V C(G \N [v], k − |N(v)|)

In order to analyze the running time of the algorithm we need to un-
derstand how each branch affects the parameter. We will analyze the two
branches individually and we will see that in both branches the parameter
is guaranteed to drop by at least one half. First we need to show how the
branching rule affects the optimal LPVC(G) solutions:

Lemma 6.6. Let G be a graph where x ≡ 1
2 is the unique optimal LPVC(G)

solution. Then, for any vertex v in G, the value of an optimal solution to
LPVC(G-v) is bounded by:

vc∗(G− v) ≥ vc∗(G)− 1
2

Proof. Assume vc∗(G − v) < vc∗(G) − 1
2 . Let x′ be an optimal solution

to vc∗(G − v), then x′ extended with the variable xv = 1 would be an
optimal solution to LPVC(G) with integer values, contradicting the unique
optimality of x ≡ 1

2 .

Lemma 6.7. For a graph G where x ≡ 1
2 is the unique optimal LPVC(G)

solution, the value of LPVC(G \N [v]) for a vertex v is bounded by:

vc∗(G \N [v]) ≥ vc∗(G)− |N(v)|+ 1
2
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Proof. Assume vc∗(G \ N [v]) ≤ vc∗(G) − |N(v)|. Let x′ be an optimal
solution to LPVC(G \N [v]) and let x′′ be an extension of x′ where xv = 0
and xu = 1 for every u in N(v). Clearly this will be a feasible solution
to LPVC(G) and w(x′′) = w(x′) + |N(v)|. If the claim vc∗(G \ N [v]) ≤
vc∗(G) − |N(v)| holds, this will be an optimal solution for LPVC(G) with
integer values, contradicting the unique optimality of x ≡ 1

2 .

Lemma 6.8. Branching rule 1 yields an O(4µ) upper bound on the number
of leaves in the search tree.

Proof. We prove the two branches separately:

• We first prove the case where a vertex v is included in the vertex cover.
Let G and k be the instance on which we branch after exhaustively
applying reduction rule 4. The new instance after including v in the
vertex cover is then G′ = (G− v) with parameter k′ = k − 1.

From reduction rule 4 we know that x ≡ 1
2 was the unique optimal

solution to LPVC(G). To understand how the parameter µ(G′, k′) re-
lates to µ(G, k), we need a bound on vc∗(G− v). Lemma 6.6 provides
this bound and we can prove that the parameter µ(G, k) drops with
at least one half in a branch where a vertex v is included in the vertex
cover:

µ(G′, k′) = k′ − vc∗(G′) ≤ k − 1− (vc∗(G)− 1
2) = µ(G, k)− 1

2

Remark that the parameter in this branch drops by exactly one half
as a bigger drop would imply that an optimal LPVC(G-v) solution
together with xv set to one would give an optimal LPVC(G) solution,
contradicting the unique optimality of x ≡ 1

2 provided by reduction
rule 4.

• The case where we include the neighborhood of v is very similar. Let
G′ = G \N [v] and k′ = k − |N(v)|, again after exhaustively applying
reduction rule 4 to obtain G and k. Lemma 6.7 provides the lower
bound on vc∗(G \N [v]) needed. We can now see that the parameter
in a branch where the neighborhood of a vertex v is included in the
vertex cover and the closed neighborhood of v is removed from the
graph also drops by one half:

µ(G′, k′) = k′ − vc∗(G \N [v]) ≤ k− |N(v)| − (vc∗(G)− |N(v)|+ 1
2) =

µ(G, k)− 1
2

This proves that in each branch the parameter drops by at least one
half, yielding the O(4µ) upper bound on the number of leaves in the search
tree.
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6.3 Algorithm

Reduction Rule 4 and Branching Rule 1 gives us the theoretical tools needed
for an FPT algorithm parameterized by µ(G, k) for Vertex Cover Above LP.
In each iteration it reduces the graph as much as possible, until the reduced
kernel consists of a graph where x ≡ 1

2 is the unique optimal solution. It
then branches into two branches according to branching rule 1.

Theorem 6.9. Vertex Cover above LP can be solved in O(4µ ·mn
3
2 ) time.

Proof. From lemma 6.8 we have bounded the number of leaves and therefore
also the number of nodes in the search tree by O(4µ). All the reduction rules

performed on each node in the search tree can be performed in time O(mn
3
2 )

by lemma 6.1. This gives us the claimed running time for the algorithm.
The soundness of the algorithm follows from the soundness of all reduction
rule and the fact that the branching strategy exhaustively searches through
the solution space.

7 Improved exponential algorithm

In this section we will present an algorithm that builds on the algorithm in
the previous section and that, by adding some new reduction rules, improves
the exponential running time to O∗(2.6181µ). The algorithm presented was
published in the paper “Faster Parameterized Algorithms using Linear Pro-
gramming” by Loksthanov et.al. [8]. In this paper the algorithm was given
as a step in explaining an algorithm with an even better worst-case depen-
dence on µ, O∗(2.3146µ). In this thesis we will only focus on the O∗(2.6181µ)
algorithm.

The algorithm in this section will further exploit the surplus of a graph.
We will see that adding two simple reduction rules, both applicable in poly-
nomial time, will guarantee that the graph has a surplus of at least two.
With this surplus, the neighborhood branching strategy will yield a drop
by at least one half in the parameter in the branch where a vertex v is in-
cluded in the vertex cover and a drop by at least one in the branch where
the neighborhood of v is included. This gives the O∗(2.6181µ) upper bound
on the number of leaves in the search tree.

7.1 Reduction

The first part of the reduction phase is to reduce the graph to an instance
where the all-half vector is the unique optimal LPVC(G) solution. Again we
use reduction rule 4 to obtain such an instance. In addition to this reduction
rule we will introduce two new rules which handle all the surplus one sets in
the graph. After all rules have been exhaustively applied, we are left with
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an instance where the all-half solution is the unique optimal solution and
the surplus of the instance is at least two.

Lemma 7.1. Let G be a graph and Z an independent set such that surplus(Z ′)
≥ surplus(Z) for all subsets Z ′ ⊆ Z. Then there exists a minimum vertex
cover for G that either contains all of Z or none of Z.

Proof. Let Z be an independent set with surplus i in G, satisfying the con-
ditions of the lemma. Let S be a minimum vertex cover of G not satisfying
the conditions in the lemma. In other words S does not contain all of Z nor
all of N(Z). We will then show that S \ Z ∪ N(Z) will also be a minimum
vertex cover for G.

Let X = Z \ S and Y = Z ∩ S. As Z = X ∪ Y has a surplus of i, we
know that |N(Z)| = |X|+ |Y |+ i. As S is a valid vertex cover, all of N(X)
must be in S. Given that X has a surplus of at least i, |N(X)| ≥ |X| + i.
This means there are at most |Y | vertices in N(Z) \ N(X). Removing Y
from S and including all of N(Z) to S will clearly be a valid vertex cover
for G. As we then have removed |Y | vertices from S and added at most
|N(Z) \N(X)| ≤ |Y |, S \ Z ∪ N(Z) will also be minimum and we have
proven the lemma.

We can state a more specific lemma which will help us prove some im-
portant results later:

Lemma 7.2. Let G be a graph with surplus(G) ≥ 1 and let Z be an inde-
pendent set with surplus(Z) = 1. Then there exist an optimal vertex cover
S for G such that either all of Z and none of N(Z) is in S or none of Z and
all of N(Z) is in S:

1. Z ⊆ S and N(Z) ∩ S = ∅, or

2. Z ∩ S = ∅ and N(Z) ⊆ S

Proof. According to lemma 7.1 there exist an optimal vertex cover such that
either all of Z or none of Z is in S. We use this to prove the two cases:

• Let S be an optimal vertex cover such that Z ⊆ S, in other words, all
of Z is in S. Then, if N(Z) ∩ S = ∅, the conditions in 1 are already
satisfied. If N(Z) ∩ S 6= ∅, notice that then S′ = S \ Z ∪ N(Z) will
also be an optimal vertex cover, satisfying the conditions in 2.

• Let S be an optimal vertex cover such that Z ∩ S = ∅. As S is a valid
vertex cover this implies that all of N(Z) must be in S and thus proving
the claim.
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These lemmas gives us all we need to prove the two reduction rules in
this chapter. We always assume that reduction rules of a lower number are
no longer applicable before applying a reduction rule.

Reduction Rule 5. For an instance (G,k), let Z be an independent set in G
with surplus one such that the graph induced by N(Z) is not an independent
set. Then we can put N(Z) in the suggested solution and create a new
equivalent instance G′ = G \N [Z] and k′ = k − |N(Z)|.

Lemma 7.3. Reduction rule 5 is safe.

Proof. As reduction rule 4 is no longer applicable, surplus(G) ≥ 1 and Z
will be a set of minimum surplus, automatically satisfying the conditions of
lemma 7.1. This means that there either exist a minimum vertex cover S for
G containing none of Z or there exist a minimum vertex cover S′ containing
all of Z. If none of Z is in S then all of N(Z) must be for S to be a valid
vertex cover. If all of Z is included in S′ there will be at least one vertex v
in S′ ∩ N(Z) as N(Z) is not independent. In this case S′ = S \ Z ∪ N(Z)
will also be a minimum vertex cover of G. Hence we have shown that given
the conditions of the lemma, there exist a minimum vertex cover for G
containing all of N(Z).

The following lemma shows how applying reduction rule 5 will affect the
parameter µ(G, k):

Lemma 7.4. Let (G′, k′) be the new reduced instance after applying reduc-
tion rule 5 on (G,k). Then µ(G′, k′) ≤ µ(G.k)− 1

2

Proof. Given an instance (G,k), assume Z is an independent set found by
reduction rule 5. Remember that the all-half solution was the unique optimal
solution to LPVC(G). Let (G′, k′) be the new instance after the reduction
rule has been applied. Then the weight vc∗(G′) of an optimal solution to
LPVC(G′) will be:

vc∗(G′) = vc∗(G) - 1
2(|Z|+ |N(Z)|)− 1

2

∣∣∣V x′
0

∣∣∣+ 1
2

∣∣∣V x′
1

∣∣∣
As both Z and V x′

0 are independent sets in G, the union of them will
surely also be an independent set in G. We can easily see that N(Z ∪V x′

0 ) =
N(Z) ∪ V x′

1 . By adding and subtracting the size of N(Z) we obtain the
following equation:

vc∗(G′) = vc∗(G) - |N(Z)|+ 1
2((|N(Z)|+

∣∣∣V x′
1

∣∣∣)− (|Z|+
∣∣∣V x′

0

∣∣∣))
With a minimum surplus of one and as N(Z)∪ V x′

1 is the neighborhood
of Z ∪ V x′

0 , This gives us:

vc∗(G′) ≥ vc∗(G) - |N(Z)|+ 1
2
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With this bound on vc∗(G′) we can now bound the new parameter:

µ(G′, k′) = k′ − vc∗(G′) ≤ k − |N(Z)| − (vc∗(G)− |N(Z)|+ 1
2) =

k − vc∗(G)− 1
2 = µ(G, k)− 1

2

Reduction Rule 6. For an instance (G,k), let Z be an independent set with
surplus one such that the graph induced by N(Z) is an independent set. Then
we can create a new instance (G′, k′), where G′ is created by removing all of
N[Z] from G and adding a new vertex z, making all vertices in V (G) \N [Z]
that were adjacent to a vertex in N(Z) adjacent to z. Decrement k by the
size of Z to obtain the new k′. Then (G,k) is a yes instance iff (G′, k′) is a
yes instance.

Lemma 7.5. Reduction rule 6 is safe.

Proof. We show both implications separately:

• (G, k)⇒ (G′, k′)
According to lemma 7.2, there exist an optimal vertex cover S of G
such that either all of Z is in S or all of N(Z) is. We consider the two
cases:

– If Z ⊆ S and N(Z)∩S = ∅, all the edges from N(Z) to G \N [Z]
must be covered from G \ N [Z]. This means that S′ = S \ Z
will cover all edges in G′, including the edges to the new vertex
z. |S′| = k − |Z|, proving this case.

– If Z ∩ S = ∅ and N(Z) ⊆ S, at least one of the edges between
N(Z) andG\N [Z] must be covered fromN(Z), otherwise S = S\
N(Z)∪Z would be an vertex cover smaller than S, contradicting
the optimality of S.

Then S′ = S \N(Z) + {z} will be a vertex cover for G′ with size
k − |N(z)|+ 1 = k − (|Z|+ 1) + 1 = k − |Z|

• (G, k)⇐ (G′, k′)
Let S′ be a vertex cover for G′ of size k′ = k− |Z|. We again consider
two cases, one for when z is in S′ and for when z is not in S′:

– If z is in S′, then S = S′ \ {z}∪N(Z) will be a vertex cover of G
with size k′ − 1 + |N(Z)| = k − |Z| − 1 + |Z|+ 1 = k

– If z is not in S′, then S = S′ ∪ Z will be a vertex cover of G of
size k′ + |Z| = k − |Z|+ |Z| = k.
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Again, we need to analyze how applying the reduction rule will affect
the parameter:

Lemma 7.6. Let (G′, k′) be the new reduced instance after applying reduc-
tion rule 6 on (G,k). Then µ(G′, k′) ≤ µ(G.k)

Proof. If we can prove the following claim then the upper bound on the new
parameter follows directly.

Claim 1. The weight vc∗(G′) of an optimal LPVC(G′) solution is bounded
by:

vc∗(G′) ≥ vc∗(G) - |Z|

Proof. In order to prove the claim we chase a contradiction, assuming that
vc∗(G′) ≤ vc∗(G) - |Z| − 1

2 . This inequality can be re-written to vc∗(G′) +
|Z| ≤ vc∗(G) - 1

2 . We need to look at the three cases where x′ is an optimal
solution to LPVC(G′) and the variable of the new vertex z, created by the
reduction rule, admits the three different values in {0, 12 , 1}

• Case 1: x′z = 1
Create a new feasible LPVC(G) solution as follows:

x′′v =


x′v v ∈ V (G′)− {z}
0 v ∈ Z
1 v ∈ N(Z)

The weight of this solution, given that our assumption holds, will be:

w(x′′) = w(x′) - 1 + |N(Z)| = w(x′) + |Z| ≤ w(x) - 1
2 .

which is a contradiction to the optimality of x.

• Case 2: x′z = 0
Create a new feasible LPVC(G) solution as follows:

x′′v =


x′v v ∈ V (G′)− {z}
1 v ∈ Z
0 v ∈ N(Z)

The weight of this solution, given that our assumption holds, will be:

w(x′′) = w(x′) + |Z| ≤ w(x) - 1
2 .

which is a contradiction to the optimality of x.
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• Case 3: x′z = 1
2

Create a new feasible LPVC(G) solution as follows:

x′′v =


x′v v ∈ V (G′)− {z}
1
2 v ∈ Z
1
2 v ∈ N(Z)

The weight of this solution, given that our assumption holds, will be:

w(x′′) = w(x′) - 1
2 + 1

2(|Z|+ |N(Z)|) = w(x′) - 1
2 + 1

2(|Z|+ |Z|+ 1)
= w(x′) + |Z| ≤ w(x) - 1

2 .

which is a contradiction to the optimality of x.

Thus we have seen that vc∗(G′) ≥ vc∗(G) - |Z|. We can use this to bound
the new parameter:

µ(G′, k′) = k′ − vc∗(G′) ≤ k − |Z| − (vc∗(G)− |Z|) = k − vc∗(G) = µ(G, k)

In order to apply the reduction rules we need an efficient way to find
independent sets with surplus one in G. The following claim shows us how:

Claim 2. For a graph G where reduction rule 4 is no longer applicable, there
exists an independent set Z with surplus(Z) = 1 if and only if there exists
a vertex v in G such that the optimal LPVC(G) value with xv fixed to zero
increases with exactly one half.

Proof. Suppose there exist a vertex u in G such that the weight of an optimal
LPVC(G) solution x′ after fixing x′u to zero is w(x′) = w(x) + 1

2 . Let

Z = V x′
0 and N(Z) = V x′

1 . Then:

w(x′) = w(x) - 1
2 |Z|+

1
2 |N(Z)| = w(x) - 1

2
⇒

|N(Z)| − |Z| = surplus(Z) = 1

For the other direction, assume there exists an independent set Z with
surplus one. Now create a new feasible LPVC(G) solution x′ where all
vertices in Z are assigned the value zero, all vertices in N(Z) are assigned
one and the rest of the vertices are assigned one half. The weight of this
new LPVC(G) solution must then be:

w(x′) = |N(Z)|+ 1
2(V (G) \N [Z])
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Now subtract the weight of x on both sides, which we know was the
unique all half optimal solution to LPVC(G), and get:

w(x′) - w(x) = |N(Z)| − 1
2(|Z|+ |N(Z)|) = 1

2(|N(Z)| − |Z|) = 1
2

.

Notice that the independent sets found in claim 2 will be inclusion-
minimal, as the surplus of G before invoking the algorithm was at least
one.

Lemma 7.7. Reduction rules 5 and 6 can be found in O(n(mn
1
2 ) time.

Proof. Invoke the algorithm from claim 2. If it returns an independent set
Z then:

• If Z is not an independent set, invoke reduction rule 5

• If Z is an independent set, invoke reduction rule 6

The algorithm from claim 2 will in worst case recompute the LPVC(G)
value n times. To check whether the neighborhood of Z is independent can
be done in linear time. This gives the total O(n(mn

1
2 ) running time.

7.2 Branching

The branching part of this algorithm follows the same strategy as the pre-
vious algorithm. After all reduction rules have been exhaustively applied,
pick a vertex v and branch on either including v or all of its neighborhood
in the vertex cover. This branching rule was proven to be correct in section
6.2, but we still need to analyze how the parameter drops now that two
more reduction rules have been added.

Lemma 7.8. After exhaustively applying all the reduction rules, branching
according to branching rule 1 will yield an upper bound on the size of the
search tree by O∗(2.618µ(G,k))

Proof. The two branches are proved separately:

• The case where the vertex v is included in the vertex cover is equal to
the first part of lemma 6.8, which proves that the parameter drops by
at least one half in the new instance (G′, k′):

µ(G′, k′) ≤ µ(G, k)− 1
2
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• Let (G′, k′) be the new instance created from (G,k) after including the
neighborhood of v in the vertex cover and removing N[v] from G. Then

k′ = k − |N(Z)|. We know that vc∗(G) = |V (G)|
2 as reduction rule 4

was no longer applicable on G and that surplus(G) ≥ 2 as reduction
rules 5 and 6 were no longer applicable. To prove the claimed drop of
the parameter, it is sufficient to prove a lower bound to LPVC(G′):

vc∗(G \N [v]) ≥ vc∗(G)− |N(v)|+ 1 (4)

To prove this, we assume the contrary:

vc∗(G \N [v]) ≤ vc∗(G)− |N(v)|+ 1

2
(5)

Let x’ be an optimal solution to LPVC(G \ N [Z]) and let x be the
extension of x’ where xv = 0, xu = 1 for all u ∈ N(V ) and the
variables for vertices in G \ N [v] stays the same. x will clearly be
feasible and its weight will be:

w(x) = w(x’) + |N(v)| ≤ vc∗(G)− |N(v)|+ 1
2 + |N(v)| = |V (G)|

2 + 1
2

But now lemma 5.3 tells us that:

surplus(V x
0 ) = 2· w(x) - |V (G)| ≤ 2 · ( |V (G)|

2 + 1
2)− |V (G)| = 1

This contradicts that surplus(G) ≥ 2, proving the lower bound on
vc∗(G′). With this lower bound the parameter of the new instance
will drop by at least one:

µ(G′, k′) = k′ − vc∗(G′) ≤ k − |N(v)| − (vc∗(G)− |N(v)|+ 1) =
k − vc∗(G)− 1 = µ(G, k)− 1

7.3 Algorithm

We have seen that exhaustively applying reduction rules 4, 5 and 6 will give
a reduced kernel instance (G′, k′) where the all-half solution is the unique
optimal solution to LPVC(G′) and surplus(G′) ≥ 2. Lemma 7.7 proved

that the reductions 5 and 6 can be found in O(mn
3
2 ) time. Using the

neighborhood branching strategy lemma 7.8 showed that the search tree
will have an upper bound of O(2.6181µ) leaves. All these results gives us
the main theorem of this section:

Theorem 7.9. Vertex Cover above LP can be solved in O(2.6181µ ·mn
3
2 )

time.
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8 Linear Time FPT Algorithm

Up until this point the algorithms presented have found the LPVC(G) so-
lutions by reducing it to finding a vertex cover in a constructed bipartite
graph. This has yielded a polynomial running time as the algorithm used
for finding vertex cover in bipartite graphs, Hopcroft-Karp, runs in time
O(m

√
n). In this chapter we will introduce and explain an algorithm that

reduces the polynomial running time so it becomes linear. The algorithm
is from the paper “Linear-Time FPT Algorithms via Network Flow ”[6] by
Yoichi Iwata, Keigo Oka and Yuichi Yoshida. In this paper the authors
consider weighted graphs but, as we are only concerned with finding ver-
tex cover in unweighted graphs, the results from the paper are restated and
simplified for the unweighted case.

The algorithm from [6] proceeds much like the algorithm presented in
section 6. The main difference is the way an optimal LPVC(G) solution is
computed. In this algorithm a maximum flow in a flow network is computed
and an optimal solution to LPVC(G) is found from properties of its residual
graph. We will see later that this is really similar to what we have already
done as there are a lot of similarities between the network and the bipartite
graph(definition 3.6) created from G.

A key observation that allows this algorithm to achieve a linear running
time is that the flow in the network can be re-used after applying a reduction
rule. With re-use we mean that all edges with flow not incident to a vertex
that has been removed keep its flow. In fact, the flow restricted to the new
reduced instance is still optimal after reducing the network according to re-
duction rule 3. Hence the algorithm avoids time consuming re-computations
and the only time the flow has to be re-computed is after branching. But, as
we will see, this flow update will only need at most one breadth-first search
in each branch, making the running time linear.

8.1 Reduction

As in the previous algorithms this algorithm will also find sets V0, V 1
2

and

V1 based on an optimal LPVC(G) solution and reduce the graph accord-
ingly. Stated in surplus terminology, it first finds all the inclusion minimal
independent sets with non-positive surplus and removes them according to
reduction rule 3. Then, all surplus zero sets in the network are found and
also removed according to reduction rule 3. In the previous algorithms the
surplus zero sets have been found by completely re-computing LPVC(G)
several times. It is easy to observe that these re-computations do a lot of
unnecessary work, as the restrictions of LPVC(G) solutions by removing one
or some variables are never far from optimal. The algorithm in this section
exploits connectivity properties in the residual graph of a network with a
maximum flow, completely avoiding to re-compute LPVC(G) values, to find

38



the surplus zero sets.

8.1.1 Flow networks

A flow network is a directed graph with weighted edges. The intuition is that
each edge is a pipe with a capacity in which a flow can be pushed through.
The capacity of an edge is represented by its weight. A flow network has
two special vertices. A source s in which all flow originates and a sink t in
which all flow terminates. One can think of the source as a vertex that can
push infinite amount of flow to the network.

We can formally define a flow network as:

Definition 8.1. N = (V ∪ {s, t}, E) with a capacity function c : E → R+

A flow in a network is a real valued function assigning a flow to the edges
in a network:

Definition 8.2. A flow f : E → R is valid for a network N if:

• f(u, v) ≤ c(u, v), ∀(u, v) ∈ E

• f(u, v) = −f(v, u), ∀(u, v) ∈ E

•
∑

w∈V f(u,w) = 0, ∀u ∈ V \ {s, t}

Given a valid flow f in a network N, the amount of flow running through
a vertex v equals

∑
e∈δ(v)+ f(e). The amount of flow in the network is the

total amount of flow running in to t,
∑

e∈δ(v)− f(e), denoted val(f). Due to
flow conservation, the third condition for a valid flow, this amount has to
equal the sum of flow running out from s. When we have a flow in a network
the graph induced by the amount of capacity left in each edge is called the
residual graph of N:

Definition 8.3. For a network N with a flow f, define Gf to be the residual
graph where the vertices in Gf are identical to the vertices in N and where
for every edge (u,v) in N then:

1. If f(u, v) < c(u, v), create a forward edge (u,v) in Gf with capacity
cf (u, v) = c(u, v)− f(u, v)

2. If f(u, v) > 0, create a backward edge (v,u) in Gf with capacity cf (v, u) =
f(u, v)

For a network N and a flow f, whenever the flow of an edge has saturated
its capacity it will not be present in the residual graph. The residual graph
thus is a representation of available flow in the network. When finding a
maximum flow in a network, augmenting paths in the residual graph are of
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vital importance. An augmenting path in a residual graph is a path from
s to t. As all edges in the residual graph have a positive residual capacity
this means an augmenting path is a way to push more flow from s to t. The
capacity of an augmenting path is the minimum residual capacity of any edge
in the path. Thus, when finding an augmenting path, the flow in the network
can be augmented by increasing the flow running through every edge of the
path by the paths capacity. Analogous to maximum matchings in bipartite
graphs, a flow f in a network is maximum iff there exist no augmenting path
in the residual graph Gf . This fact is used in the Ford-Fulkerson algorithm
for finding maximum flows in flow network, which exhaustively searches for
augmenting paths and augment the flow accordingly.

Connectivity in the residual graph of a network is important for the
algorithm to achieve a linear running time.

8.1.2 Primal and dual LP

In order to efficiently compute solutions to our primal linear program, this
algorithm keeps track of a dual linear program. It is well known from LP
duality that every primal LP has a dual LP that admits the same optimal
value. We will later show that we from an optimal dual solution indeed
can efficiently compute an optimal primal solution. We refer the reader to
“Linear Programming: Foundations and Extensions” by Vanderbei [11] for
an introduction to linear programming and duality. The only properties of
LP duality that we will use in this thesis are captured in lemma 8.2. A
formalization of LP duality is therefore not necessary in this text and we
will only state the few properties of duality that we need. First we will
formally define the dual:

Definition 8.4. Dual Linear Program for Vertex Cover

maximize:
∑

e∈E(G)

ye

subject to:
∑
e∈δ(v)

ye ≤ 1 ∀v ∈ V (G)

ye ≥ 0 ∀e ∈ E(G)

ye ∈ R ∀e ∈ E(G)

We can show that the value of any feasible solution to the dual LP will be
smaller or equal to the value of any feasible solution to the primal LPVC(G):

Lemma 8.1. Given any feasible solutions x and y to the primal and dual
LP respectively, then:
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w(y) ≤ w(x)

Proof. Let x and y be any feasible primal and dual solutions. Then:

w(x) =
∑

v∈V (G)

xv

=
∑

v∈V (G)

xv · 1

≥
∑

v∈V (G)

xv
∑
e∈δ(v)

ye

=
∑

v∈V (G)

∑
e∈δ(v)

xvye

=
∑

e∈E(G)

∑
v∈(e)

yexv

=
∑

e∈E(G)

ye
∑
v∈e

xv

≥
∑

e∈E(G)

ye · 1 = w(y)

(6)

The first inequality follows from the constraints of the dual LP, that all
edges incident to a vertex v can have a total value of at most one. Then,
notice that taking the sum over all vertices v in G and then the sum over
all edges incident to v will be the same as taking the sum over all edges e in
G and then the sum over vertices adjacent to e. The last inequality follows
from the constraints of the primal LP, the value of the vertices adjacent to
an edge e must be at least one.

The following lemma is a direct consequence of the strong duality theo-
rem of linear programming [11] that states that the optimal solutions to an
LP and its dual have the same value.

Lemma 8.2. For optimal solutions x* and y* to the primal and dual LP
respectively, then:

w(x*) = w(y*)

The solutions to the dual LPVC(G) can be represented as a maximum
flow in a flow network constructed from G. To avoid confusion, we will from
now on use an overline whenever we are talking about flow networks. A flow
network created from a graph G will be denoted G and also any subsets of
vertices or edges in the network will have an overline.

Definition 8.5. From a graph G we construct the network G = (V ∪
{s, t}, E, c) with capacity function c : E → N as follows:
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• V = L ∪R, where L = {lv : v ∈ V (G)} R = {rv : v ∈ V (G)}

• E = {(s, lv) : lv ∈ L} ∪ {(rv, t) : rv ∈ R} ∪ {(lu, rv), (lv, ru) : (u, v) ∈
E(G)}

•

c(e) =

{
1 ∀e ∈ {(s, lv) : lv ∈ L} ∪ {(rv, t) : rv ∈ R}
∞ otherwise

For a subset S ⊆ V , define SL = {v ∈ V (G) : lv ∈ S} and SR = {v ∈
V (G) : rv ∈ S}

8.1.3 Relations between matchings in HG and flow in G

To show the similarities between the two approaches computing optimal
primal LPVC(G) solutions we first remark that the network induced by V
is just a directed version of the bipartite graph HG in definition 3.6. We
want to show that there is a one to one correspondence between finding
minimum vertex covers in HG and minimum vertex covers in the network
induced by V . This will later be used to prove how to compute a primal
LPVC(G) solution from a maximum flow in G.

The first step is to prove that there exists an optimal flow for G with
only integer values:

Lemma 8.3. A maximum flow f* in G found by the Ford-Fulkerson algo-
rithm will only admit integer values.

Proof. We can prove this by an inductive argument. Start with an empty
flow f. The first augmenting path P found when looking for a maximum
flow will have capacity one, as all edges from the source and to the sink
have capacity one and the rest of the edges start with infinite capacity.
Now, in the residue graph created by the updated flow, the edges in P from
the source and to the sink will not be present, as their capacity has been
saturated. Let (ul, vr) be the edge in which we now have a flow. The new
back edge (vr, uL) created in the residual graph will then have a capacity of
one.

Now, when looking for a new augmenting path, the minimum capacity
of an edge in the network will be one. The new augmenting path found
will therefore have capacity one. This process will be repeated for every
augmenting path found, always guaranteeing that they will have a capacity
of one. Thus, when a maximum flow has been found it must admit only
integer values.

Corollary 8.4. G has a maximum integer valued flow
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From this point, when talking about maximum flows in G we will always
be talking about an integer flow. We can now show that there is a one to
one correspondence between matchings in HG and flows in G

Lemma 8.5. Let f be an integer valued flow in G. Then M = {(u, v) :
f∗(u, v) = 1, (u, v) ∈ E(V )} will be a matching in HG with |M | = val(f).

Proof. All vertices in L and R can maximum have a flow of one running
through them, which means that no two edges with a flow of one can share
an end-point. As the graph induced by V corresponds to HG we have proven
the statement. The size follows from the construction.

Lemma 8.6. Let M be a matching in HG, then the function f : E → R
defined as:

f(u, v) =


1 if(u, v) ∈M
1 if u = s and v endpoint of an edge in M

1 if v = t and u endpoint of an edge in M

0 otherwise

will be a flow in G where val(f) = |M |.

Proof. To show that f is a flow we need to show that all conditions for a
valid flow are satisfied. Clearly no edges in the network will be given a flow
larger than its capacity. All the flow in to a vertex must also equal the flow
out of the vertex as only one edge out of a vertex in L can have flow equal
to one. Again the size follows from the construction.

Corollary 8.7. There is a one to one correspondence between maximum
flows in G and maximum matchings in HG

Lemma 8.8. Given a a graph G and a maximum flow f* in G. Let Z be
the set of vertices reachable from s in Gf∗. Then,

S = (L \ Z) ∪ (R ∩ Z)

will be an optimal vertex cover for HG where |S| = val(f*).

Proof. Let M be the maximum matching in HG corresponding to f*. We
will show that the vertices in Z are the same as all vertices reachable by
an alternating path relative to M, from the free vertices in LH . Recall that
free vertices in LH are the vertices not incident to an edge in the matching.
Using lemma 3.15 this will prove the claim.

All the edges going out from s in Gf∗ must have a capacity of one and
thus no flow running through them. The vertices in L with an edge from s
in Gf∗ will therefore correspond to the free vertices in LH , as no edges out
from these vertices can have a flow and thus be in the matching M.
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In Gf∗ , the only edges going from R to L are edges in which the edge
going in the opposite direction has a flow. Thus vertices in Z are the exact
same as the vertices reachable be an alternating path from the free vertices
in LH .

To prove that |S| = val(f∗), notice that no flow can go from a vertex
v in L \ Z to a vertex u in R ∩ Z, as then the edge (u,v) would be in the
residue graph Gf∗ and v would then be reachable from s and thus in Z. All
the flow running through vertices in L \Z must therefore go to R \Z before
it ends in t. This means that:

|S| =
∣∣L \ Z∣∣+

∣∣R ∩ Z∣∣ = val(f∗)

Corollary 8.7 proves that the size of a maximum matching M in HG will
be equal to val(f∗). As any minimum vertex cover in a graph must be at
least as big as a maximum matching, this proves the optimality of S.

8.1.4 Dual LPVC(G) as flow in G

In the constructed network G we will create a flow from an optimal dual
solution. In fact, as we will show, there exists a one to one correspondence
between a feasible dual LP solution in G and a flow in the network G. It is
due to this correspondence that finding primal LP solutions in G is reduced
to finding subsets in G with certain properties. We will first show how to
create a flow from a feasible dual LP solution. Remember that δ(v) denotes
all the edges incident to v.

Lemma 8.9. Given a dual solution y to a graph G, define f : E → R as:

f(e) =

{∑
e∈δ(v) ye for (s, lv) and (rv, t) ∈ E

ye otherwise

Then f is a flow in G of amount 2·w(y), i.e. val(f) = 2·w(y).

Proof. In order to prove that f is a valid flow we need to show that no edge
is given a flow more than its capacity and that the amount of in-flow to each
vertex in the network, except s and t, is equal to the amount of out-flow
from the vertex. The first condition follows directly from the fact that y is
a feasible dual solution. The constraints of the dual says that the sum of
all the edges incident to a vertex v can not be more than one. Hence none
of the edges between the source and a vertex in L or between a vertex in R
and the sink can be given a flow more than one, which is their capacity. All
other edges have infinite capacity and hence will not be a problem.

It is easy to see that the amount of in-flow equals the amount of out-
flow for every vertex in V . The out-edges of each vertex lv ∈ L are exactly
the same as the edges incident to v ∈ G and as the edges between L and
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R have been given a flow equal to the dual-variable of the same edge it
follows that the in-flow equals the out-flow. Each edge in E(G) will create
two edges in E, so the amount of flow is two times the value of y. Hence,
val(f) = 2·w(y), as claimed.

Thus we have shown how to create a flow in G from a feasible dual
LPVC(G) solution. We will now show the other direction, how to create a
feasible dual solution to LPVC(G) from a flow in G:

Lemma 8.10. Given a flow f in G, define the variables of the vector y as:

ye = 1
2(f(lu, rv) + f(lv, ru)) for all e = (u, v) ∈ E(G)

Then y is a feasible dual LPVC(G) solution with weight half of the amount
of flow in f.

Proof. We must show that
∑

e∈δ(v) ye ≤ 1 for all v ∈ V (G). As f is a valid

flow and the capasity of edges between s and vertices in L are one, we know
that the in-flow of a vertex lu ∈ L is at most one and hence the out-flow is
at most one: ∑

e=(lu,rv)∈δ+(lu)
f(lu, rv) ≤ 1

Similarly, edges between vertices in R and t have capacity one and hence
the out-flow of a vertex rv ∈ R can be at most one. This means that the
in-flow is also restricted to one:∑

e=(lu,rv)∈δ−(rv) f(lu, rv) ≤ 1

The value of all edges incident to a vertex v in G is equal to half the flow
going out of the left copy of v in the network plus half of the value flowing
in to the right copy of v in the network:∑

(u,v)∈δ(v) ye = 1
2

∑
(lv ,rz)∈δ+(lv)

f(lv, rz) + 1
2

∑
(lz ,rv)∈δ−(rv) f(lz, rv) ≤ 1

The value w(y) =
∑

e∈E(G) ye = 1
2(f(lu, rv) + f(lv, ru)) is clearly half of the

flow in the network.

The two lemmas just presented give rise to the following corollaries:

Corollary 8.11. From a maximum flow f∗ in G we can compute an optimal
solution y∗to the dual LP for G and vice versa.

Corollary 8.12. Given a graph G in which x ≡ 1
2 is an optimal primal

LP solution, then the network G will have a maximum flow which saturates
all its vertices, i.e. it will have a flow of amount one running through all
vertices in V .
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Proof. From lemma 8.2 we know that there exist an optimal dual solution
y* with w(y*) = w(x) = |V (G)|

2 . Lemma 8.11 then shows how to create a
flow f* in G of amount 2· w(y*) = |V (G)|. This means that all edges from
the source to vertices in L must be saturated and hence we have a maximum
flow in G

Corollary 8.13. The maximum amount of flow a network G can have is
equal to |V (G)|.

Proof. The maximum obtainable amount of flow in a network is obtained
when all edges out from the sink have a flow of maximum capacity. In the
network G there is one edge going from the source s to each of the vertices in
L, each with a capacity 1. Hence, no flow in G can exceed

∣∣L∣∣ = |V (G)|.

The following figure sums up some of the relations we have just proven:

Solution to 
Dual LP

Flow in G

Half-integral
Solution to 
Primal LP

Vertex Cover
In H_G

duality

Lem 8.9Lem 8.10

Lem 8.8

Lem 3.16

8.2 Algorithm

As in the previous algorithms, this algorithm consists of a reduction part
and a branching part. The reduction part follows a familiar strategy. Find
independent sets with non-positive surplus, fix the variables accordingly
and remove the vertices whose variables have integer values from the graph.
Then it follows an even simpler branching strategy than before. For each
edge (u,v) in the graph, either u or v has to be in the vertex cover to cover
this edge, so we branch on including either of its end-points in the vertex
cover, remove the end-point from G and reduce the parameter.

Where this algorithm differs from the others is that it finds the non-
negative independent surplus sets via a flow in a flow network and then up-
dates the flow in linear time. The algorithm is linear when an optimal dual
solution is given as input. In other words, an optimal flow has to be found in
the network as a pre-processing step before the algorithm starts. The algo-
rithm was developed to find linear FPT algorithms for a family of NP-Hard
problems, among them ALMOST-2-SAT and ODD CYCLE TRANSVER-
SAL, and in the reduction from these problems to Vertex Cover above LP
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the optimal dual-solution is produced in linear time.

When using a branching strategy to exhaustively search for a solution
to a problem a search tree will implicitly be created. On each node in this
search tree the algorithm is given an instance, a parameter and an optimal
dual solution represented as a flow in the network created from the instance.
If the given instance has no edges and a positive parameter, we know that
a solution has been found. If the parameter is negative, no solution can be
found in this branch in the search tree. After checking these conditions, the
algorithm proceeds with the following steps:

1. From an optimal dual solution, represented as a flow in the network,
compute an optimal primal LP of G. Reduce G according to reduction
rule 3.

2. Find all surplus zero sets in G and reduce G according to reduction
rule 3, by finding subsets S ⊆ Gf∗ that corresponds to surplus zero
sets in G. After this step G has surplus of at least one and the all-half
vector as a unique optimal primal solution.

3. Branch on an arbitrarily selected edge e. In each branch, include
one of the endpoints of e to be in the suggested solution, remove the
endpoint v from G, update the flow in G and work recursively on the
new instance (G-v, k-1).

We will describe the different steps separately in the following sections.
Step one and two are the reduction part of the algorithm while step three is
the branching part.

8.2.1 Step 1

We saw in section 8.1.3 how closely related the networks G and bipartite
graphs HG created from G are. In this step we will find an optimal pri-
mal LPVC(G) solution from the network G and then reduce the instance
accordingly. As we already have a lot of results from previous sections on
how to compute optimal primal solutions to LPVC(G) from HG, we want
to re-use these here. The motivation behind this is both to avoid stating a
lot of results again and to see how the two approaches are connected.

Step one can be implemented by finding all vertices reachable from the
source vertex s in the residual graph Gf∗ :

Lemma 8.14. Given a a graph G and a maximum flow f* in G. Let Z be
the set of vertices reachable from s in Gf∗. Then the vector x in R|V (G)| with
variables:
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xv =


0 lv ∈ Z, rv /∈ Z
1 lv /∈ Z, rv ∈ Z
1
2 otherwise

will be an optimal solution to LPVC(G).

Proof. Lemma 8.8 shows that we can create an optimal vertex cover S =
(L \ Z) ∪ (R ∩ Z) for HG from Z. Now the statement lv ∈ Z, rv /∈ Z is the
same as saying that for a vertex v in V(G), none of lv or rv are in the vertex
cover S and the statement lv /∈ Z, rv ∈ Z is the same as saying that for a
vertex v in V(G) both lv and rv are in S. Thus the vector x is the exact same
vector as found by lemma 3.16, proving the correctness of this lemma. The
vertices in Z can be found by a single BFS search in Gf∗ and thus finding
an optimal primal LPVC(G) solution can be done in linear time.

After computing an optimal primal solution x to LPVC(G) from Gf∗ ,
the vertices of G can be partitioned into the vertex sets V x

0 , V
x
1 and V x

1
2

.

Then reduction rule 3 allow us to remove the vertices in both V x
0 and V x

1

from the graph and its corresponding network and include all vertices in V x
1

to the suggested solution.
Let G′ be the new reduced network after removing vertices in V x

0 and
V x
1 and f ′ be the flow from f* restricted to G′. In order to achieve a linear

running time we want to avoid computing the maximum flow in G′ from
scratch, this turns out to be easy as f ′ can be proven to be optimal:

Lemma 8.15. For a graph G, let

• x and y be optimal primal and dual LP solutions for G

• x‘ and y‘ be the vectors where variables according to vertices in V x
0 ∪V x

1

have been removed from x and y

Then x‘ and y‘ will be optimal primal and dual solutions to G[V x
1
2

]

Proof. x’ will be an optimal primal solution to LPVC(G) due to Theorem
3.9(Nemhauser-Trotter). The weight of x is:

w(x) = w(x‘) + |V1|

When the optimal dual solution y is restricted to y‘, all the variables of
edges incident to V x

1 are removed from y. V x
0 is an independent set in G,

so the edges incident to V x
1 are the only edges removed. As y is a feasible

dual solution to LPVC(G), we know that the values of edges incident to a
vertex can not be more than one. The weight of y will therefore be:

w(y) = w(y‘) +
∑

e∈δ(V1) ye ≤ w(y‘) + |V1|
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We then have:

w(x) = w(y)

w(x‘) + |V1| = w(y) ≤ w(y‘) + |V1|
w(x‘) ≤ w(y‘)

Lemma 8.1 then proves that:

w(x‘) ≤ w(y‘) ≤ w(x‘)

which, as we have already proved x‘ to be optimal, proves the optimality
of y‘.

Hence, after reducing the graph in step one we are left with a graph
G′ = G[V 1

2
], an optimal all-half primal LPVC(G) solution and a maximum

flow in G[V 1
2
]. As we found the sets V x

0 , V x
1
2

and V x
1 by a single BFS, the

time spent on this step is O(m+ n).

8.2.2 Step 2

We now want to find all independent sets with surplus zero to ensure that
the all-half solution is the unique primal LP solution before branching.

In the algorithms from sections 6.3 and 7.3 we have iterated through all
vertices in the graph, setting their value to one and then re-computed the
primal LP in order to find surplus zero sets. If the value of the new primal
after fixing a vertex to one was the same as the old, a non all-half optimal
primal solution was found. If no vertex gave such a value, the all-half was
the unique optimal primal solution. Fixing vertices to one and re-computing
the whole primal solution gave rise to the big polynomial part of the running
time. In this algorithm all the re-computation of the primal LP is avoided,
exploiting properties in the flow network and lemma 8.15. We will see that
finding the surplus zero sets in G is the same as finding strongly connected
components in the residual graph of G with certain properties.

Lemma 8.16. Let G be a graph in which the all-half primal LP solution
is optimal and let G be its corresponding network with a maximum flow f∗.
For a subset S ⊆ V in the network, the following statements are equivalent:

1. There are no edges going out from S into V \ S in Gf∗

2. N(SL) = SR and |SL| = |SR|

Proof. As the all-half vector is an optimal primal solution we know from
corollary 8.11 that there exists a flow of amount |V (G)| in Gf∗ . This means
that there is a unit flow running through all the vertices in V . We partition
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the edges leaving S in Gf∗ into two sets EL and ER according to their
start-point, i.e.:

EL = {(lu, rv) : lu ∈ L, rv ∈ R, (lu, rv) ∈ E(Gf∗), lu ∈ S and rv /∈ S}
ER = {(ru, lv) : ru ∈ R, lv ∈ L, (ru, lv) ∈ E(Gf∗), ru ∈ S and lv /∈ S}

Notice that the only way we can have an edge (ru, lv) in the residual
graph going from R to L is if there is flow going through the opposite edge
(lv, ru). We can now prove the equivalence.

• 1⇒ 2

Assuming 1 is true, we know that EL = ER = ∅. It is easy to see
from EL = ∅ that all the flow running out of S ∩ L has to flow into
S ∩ R, and, as ER = ∅, all flow running in to S ∩ R have to come
from S ∩ L. The amount of flow running out of S ∩ L = |SL| and the
amount of flow running in to S ∩R = |SR|, implying |SL| = |SR|.
From EL = ∅ we can also see that N(SL) ⊆ SR. As there is an integer
flow from S ∩L saturating all vertices in S ∩R, SR ⊆ N(SL) and thus
N(SL) = SR.

• 2⇒ 1

Assuming 2 is true, we need to show this implies EL = ER = ∅.
EL = ∅ follows directly from N(SL) = SR. As |SL| = |SR| all the
in-flow of S ∩R have to come from S ∩L and thus ER must be empty.

As a network is a special directed graph we also have strongly connected
components in networks. A strongly connected component is a subset of
vertices in the network where all vertices have a directed path to each other,
i.e. from any pair of vertices u and v in the component there is a directed
path from u to v and from v to u. A tail strongly connected component is a
component where none of the vertices have an edge to a vertex outside the
component. Notice that any tail strongly connected component in a network
will be satisfying the first condition in lemma 8.16.

Lemma 8.17. If there exists a tail strongly connected component S in Gf∗

such that SL∩SR = ∅, then SL will be an independent set with surplus zero.

Proof. As S is a tail strongly connected component in G we know that part
one of the equivalence in 8.16 is satisfied. From this it follows that N(SL)
= SR and |SL| = |SR|. That SL is independent now follows directly from
SL ∩ SR = ∅. That surplus(SL) = 0 follows from N(SL) = SR and that
|SL| = |SR|.
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Lemma 8.18. If there exists an independent set Z with surplus(Z) = 0 in
G, then T = Lz ∪RN(Z) will be a tail strongly connected component in Gf∗

with TL ∩ TR = ∅.

Proof. Let Z be a minimal independent set with surplus zero. Define T =
Lz ∪ RN(Z) to be a subset of V . As surplus(Z) = 0, we know that |Z| =
|N(Z)| which implies that |TL| = |TR|. It is also easy to see that N(TL) =
TR and hence T will satisfy both the conditions in part 2 of lemma 8.16.
From this we can conclude that no edges goes from T to V \ T and thus no
edges points out from T .

We also need to prove that T is a strongly connected component. Assume
that it is not strongly connected. Then there will exist a subset T ′ ⊂ T such
that there are no edges from T ′ to T \ T ′. As there are no edges from T to
V \ T there can not be any edges from T ′ to V \ T ′. Then T ′ will satisfy
the first part of lemma 8.16 and hence TL will be an independent set in G
with surplus zero. TL will also be a proper subset of Z, contradicting the
minimality of Z. Hence T must be a tail strongly connected component.

We have now proven a one to one correspondence between independent
sets with surplus zero in G and tail strongly connected components S in the
residual graph where SL ∩ SR = ∅. Thus the task of finding all surplus zero
sets in G has been reduced to finding tail strongly connected components in
Gf∗ . We can do this in linear time, as the following lemma shows:

Lemma 8.19. For a graph G and a maximum flow f* in Gf∗, we can find
all surplus zero sets of G in linear time.

Proof. To compute the strongly connected components of G we use the
famous algorithm by Tarjan [10], which runs in linear time. All connected
components are then connected as an Directed Acyclic Graph(DAG) by
creating an edge from one component Ci to another component Cj if there
is an edge from a vertex in Ci pointing to a vertex in Cj . Then all tail
strongly connected components C can be found and if CL ∩ CR = ∅ they
can be removed from the network and the graph. When a component is
removed all other components pointing to this component must be updated
by removing the edge pointing to this component. With some care in the
implementation this can be done in linear time.

After all the surplus zero sets have been found and removed from the
network we are left with a flow f∗ restricted to the remaining edges in the
reduced network G′. From lemma 8.15 we know that this flow will still
be optimal for G′. Thus in linear time we can find and remove all surplus
zero sets in G, guaranteeing that the unique optimal primal solution to the
reduced instance is the all half vector and that the flow f∗ restricted to the
reduced instance is maximum.
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8.2.3 Step 3

After step two the algorithm has reduced the given instance as much as
possible. We now have a graph G in which x ≡ 1

2 is the unique primal LP
solution and we also have an optimal dual LP solution given as a maximum
flow in a flow network G. In this section, when referring to a graph G we
mean a graph in the state that step 2 has been exhaustively executed. From
this we start the branching part of the algorithm.

As mentioned, this algorithm follows a simpler branching strategy than
the neighborhood strategy used in the previous algorithms. For every edge
(u, v) ∈ E(G) it is easy to see that either u or v has to be in the vertex cover
in order to cover this edge.

Lemma 8.20. For every edge (u, v) ∈ E(G), either u or v has to be in any
vertex cover.

Proof. If neither u or v is in the vertex cover then clearly this edge is not
covered.

This give rise to the following branching rule:

Branching Rule 2. For a graph G, select an arbitrary edge e = (u,v) and
branch in two cases. In the first branch, include u in the suggested solution,
remove u from G and work recursively the new instance G′ = G − u with
k′ = k − 1). The other branch is similar only with v. Then we get the
following recursion:

VC(G) iff VC(G-v, k-1) or VC(G-u, k-1)

Proof. The soundness of this branching rule follows directly from lemma
8.20.

When a vertex v is removed from G its copies must also be removed
from the flow network G and the flow needs to be updated. As the all-half
vector was a unique optimal LP solution to G before we removed v, we know
from corollary 8.12 that there was a unit flow running through each vertex
in V . Hence, when removing the copies lv and rv of a vertex v ∈ V (G), we
also remove a flow of amount one running through each of these copies and
hence the remaining flow is reduced by two.

From corollary 8.13 the maximum amount of flow running through a
flow network can be at most |V (G)|. After removing a vertex in a branch
we thus see that the maximum obtainable flow in the new instance is reduced
by one. As removing the two copies reduced the flow by two, we see that
the remaining flow is at most one away from the optimal.

Lemma 8.21. When branching on a graph G with a maximum flow f∗ by
removing a vertex v, the optimal flow in the new instance can be found in
O(m+ n) time.
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Proof. When removing the copies of v in G, the flow restricted to the new
instance is reduced by two. As the new instance has a maximum flow of at
most the amount of f∗ -1, the gap between the flow restricted to the new
instance and the maximum obtainable flow can be at most one. If this gap
is one, it can be found by a single BFS search, searching for augmenting
paths in the residual graph of the new instance. If no augmenting paths are
found the flow is already optimal.

Thus we see that branching and updating the flow in step 3 can be done
in linear time.

8.3 Time analysis

We have this far seen that all the steps in the algorithm can be done in
linear time. Now we need to understand how the different steps changes the
parameter µ(G, k).

Steps one and two reduces the graph according to reduction rule 3 which
we previously have seen will not change the parameter. In order to upper
bound the number of leaves in the search three created by the algorithm,
we need to show that the parameter drops after each branch.

First we state what happens with the optimal primal LP after branching:

Lemma 8.22. When branching according to branching rule 2, the optimal
primal LP of the new instance G′ = G− v will be bounded by

vc∗(G′) ≥ vc∗(G)− 1
2

Proof. Assume vc∗(G′) < vc∗(G)− 1
2 . Then any optimal primal solution to

G′ together with xv = 1 would be a feasible optimal primal solution to G,
contradicting the fact that x ≡ 1

2 is the unique optimal solution.

From this we can see that the parameter drops by at least one half after
each branch:

Lemma 8.23. After branching according to branching rule 2, the parameter
drops by at least one half.

Proof. µ(G′, k′) = k′ − vc∗(G′) ≤ k − 1− (vc∗(G)− 1
2) = µ(G, k)− 1

2

From this we see that the parameter drops by one half in each branch,
giving a O(4µ) upper bound to the number of leaves in the search tree and
thus also the total number of vertices in the tree. We can now state the
main result in this chapter:

Theorem 8.24. We can in time O(4µ(m + n)) solve Vertex Cover above
LP.
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9 Implementation

The algorithms in this thesis have been implemented in Java for testing
purposes. What was of interest to us was to see how the three algorithms
performed against each other in practice on different types of graphs. Es-
pecially interesting was it to see how an FPT algorithm with improved
exponential running time performed against an FPT algorithm where the
focus had been to improve the polynomial part of the running time.

This section will be a discussion on what kind of implementation de-
cisions there are when implementing these algorithms and some reasoning
why some key decisions were made. We will refer to the algorithm presented
in section 6 as algorithm 1, the algorithm in section 7 as algorithm 2 and
the last algorithm from section 8 as algorithm 3.

9.1 Algorithm 1 and 2

In order to implement algorithm 1 and 2, many design decisions had to be
addressed early. One of the main decisions was to decide whether or not
to implement an own graph class. After some research on existing graph
libraries in Java, the decision was made on implementing an own. This
was mainly due to the increased flexibility having an own implementation
provided.

9.1.1 Graph representation in memory

When designing a graph class for the vertex cover problem many consider-
ations must be taken into account. First of all, which kind of graph repre-
sentation will be the most efficient. In order to answer this question it is
helpful to analyze which operations on the graph will be needed during the
algorithms and how often they will be needed.

Throughout the algorithm vertices will be removed and reinserted into
the graph, making vertex deletion and insertion some of the most often
performed operations. Graph traversals, both Breadth-First and Depth-
First searches, will also play a vital role in all the algorithms. It is therefore
important to efficiently be able to delete and insert vertices to the graph
and also to be able to traverse all neighbors of a vertex efficiently.

A matrix representation of a graph will offer constant deletion and inser-
tion, but will have a O(n) running time for going through all neighbors of
a vertex. It will also demand more memory, but this will be of less concern
as we work on an NP-Hard problem and most likely will not work on very
large instances. The advantages of constant deletion and insertion offered
by a matrix representation did not outweigh the linear running time when
iterating through neighbors. An adjacency list representation of graphs was
therefore chosen.
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To implement a graph using an adjacency list representation an own
vertex class holding references to all its neighbors was created. All vertices
have a unique identifier between zero and n-1 and the graph stores these
vertices in a map, mapping an identifier to a vertex. The reason behind
using a map instead of a linked list was that one of the reduction rules in
algorithm 2 added new “auxillary“ vertices to the graph. It was desirable to
be able to access vertices in the graph by the unique identifier and thus have
a dynamic structure where elements could be deleted and inserted easily.
A problematic scenario using a linked list was when vertices are deleted.
Ideally a vertex should be stored on the index equal to its identifier, but if
a vertex in the list is removed, all the vertices after it will be stored on a
new index with lower value. This scenario was especially present as there
were no guarantees on how many new “auxillary” vertices could be added
during a run of the algorithm and how many of these could be present at
the same time. A solution could be to store the vertices in an array where
each index in the array corresponded to a unique vertex. The problem then
is, how large must this array be in order to take into account the new added
auxillary vertices and how to expand the array when needed?

A map between identifiers and vertices was therefore chosen for simplicity
when adding and deleting vertices. The choice of a mapping as the data
structure comes with an efficiency cost though. Operations like look up,
deletion and insertion will in a map take O(log n) time. This will not violate
the desired polynomial running time in the two first algorithms, but because
of the amount of inserts and deletions executed throughout the algorithms, it
is suspected that it will add a substantial constant factor to the running time.
Having a log factor in look ups, insertions and deletions would violate an
algorithm trying to achieve a linear running time, but as this graph structure
was only used in the polynomial algorithms, this was not a problem.

9.1.2 Sub structures represented in memory

To simplify the implementation a lot of smaller structures were implemented
as own classes. These included augmenting paths, neighborhoods, deleted
vertices, vertex covers and reductions. These structures made implementa-
tion easier as the different classes could have specific behavior that would
be called in different situations. F.ex. the vertex cover class has a method
that takes as input a graph and checks if the vertex cover is valid for this
graph.

In the classes representing reductions two lists of vertices were stored.
One for the vertices in V0 that could be removed from the graph and one
for the vertices in V1 that could be included in the vertex cover and then
removed from the graph. Having these classes simplified storing the state of
these vertices while searching for a solution. It was important to store the
state of the vertices removed by a reduction rule as later, if no solution was
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found in either of the branches, it would be necessary to reinsert them to
the graph to get the graph back to its original state.

9.1.3 Hopcroft-Karp

Hopcroft-Karp was needed as a subroutine for finding optimal LPVC(G)
solutions in both algorithm 1 and 2. It was implemented as an own class
which had a method taking as input a bipartite graph and gave a matching
as output. This approach made it easy to reuse the code in both algorithms
and it is also available to be used for future implementations of algorithms
needing maximum matchings in bipartite graphs.

9.1.4 Considerations

When exhaustively searching for a solution in the branching algorithm, ver-
tex removal and insertions will be performed very often. This happens
both when reductions are found and removed from the graph and also when
branching on including either a vertex or its neighborhood in the vertex
cover. One of the most important things to consider when implementing a
recursive branching algorithm is that operations deep in a branch must not
affect the state of an instance longer up in the search tree, i.e. when return-
ing from a branch, the instance in the parent node should have exactly the
same state as before it started branching. We can say that the branching
method has to comply with a contract saying that the instance given as a
parameter to the method has to be in the exact same state after the method
call returns.

There were two strategies which were considered to make the branching
methods comply to this contract. The first was to make copies of the instance
at the beginning of the method so each branch would work recursively on
a copy of the instance. The good thing about this approach is that it is
very easy for the method to comply with the contract. Whatever operations
that will be performed in the branch will only be done on the copy of the
instance. It is important to be aware that copying in Java often only copies
the reference and that the new copy then will point to the same object.
Thus, to use this strategy, a copy method would be needed for the instance
that would make a deep copy. A deep copy is a new object in the exact same
state as the previous with new references to new copies of every object in
the original object. This copy method would only use linear time, thus not
violating the running time of any of the algorithms, but, as the algorithm
would have to copy the entire graph on each node in the search tree, it was
feared to add a significant constant factor to the running time. This strategy
was therefor not used.

The other strategy considered, and implemented, was to remove only
local parts of the graph before branching, and then reinsert them before the
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method returns. It is once again important to store the removed parts in
a way that makes it easy to insert them so the state of the graph returns
to exactly what it was before the part was removed. This was solved by
creating special book keeping objects that saved the exact state of the part
removed. Thus no operations further down the branch could affect the book
keeping objects and it was easy to reinsert it to the graph after both branches
had returned.

9.1.5 Reduction rules

All the reduction rules were implemented in own classes for easy reuse of
code. Each reduction rule has a method that takes as input a graph, removes
the part that can be removed according to the reduction rule and returns a
reduction object which stores the parts removed in the state they were before
removal. All reduction rules implements a simple interface which allows
them to be referenced by this interface but to also have specific behavior
depending on the reduction rule they implement.

By this approach new reduction rules can easily be added to a branching
algorithm and modifications and improvements can be performed in the
specific classes, simplifying maintenance.

9.2 Algorithm 3

In algorithm 3 flow networks and maximum flows was used for finding op-
timal solutions to LPVC(G). It was therefore necessary with an implemen-
tation of a directed graph, which represented a network. A maximum flow
algorithm and also an algorithm for finding strongly connected components
in a directed graph was needed as sub routines for the main algorithm.

9.2.1 Network

In this algorithm a graph structure is no longer needed during the algorithm
as all the operations and updates can be performed on the network created
from the graph. The network implemented is not a generalized network,
but rather a special class that takes a graph as input in the constructor and
creates a network according to definition 8.5.

In this algorithm the only reduction rule applied is reduction rule 3.
There is therefore no worries when creating the network that new vertices
will later be added, which was a concern when creating the graph class. The
network therefore store its vertices in two arrays, one for the left partition
and one for the right partition, making look ups, deletions and insertions
really easy.

Again, some of the most used operations during the algorithm will be
deletions and insertions. This time, instead of deleting vertices from the
network, they are marked as being inactive. This approach simplifies the
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deletion of a vertex to only switching a flag in it, but also comes with an
efficiency cost as every time a graph traversal is done, the neighborhood if
a vertex may consist of inactive vertices.

10 Comparison

10.1 Graph classes

In order to test the performance of each algorithm against each other we
have implemented three different graph generators which generates graphs
with different properties. For the first type no structural properties are
known and we have no expectations of how the algorithms run. The second
type will consist of many cliques which makes them really dense in clusters,
but the clusters will be sparsely connected. They will also have relatively
large vertex covers. The last type of graphs generated are planar grid graphs
with large matchings. Therefore it is expected that the algorithms will be
efficient on these graphs.

10.1.1 Random Graphs

In this generator the desired number of vertices(n) and edges(m) are given
as input. A new SimpleGraph instance is then constructed with vertices
labeled from zero to n-1. Then m edges will be pseudo randomly added. To
find a pseudo random edge, the generator uses the method nextInt(int n)
from the java class Random to pseudo randomly pick a start-point and an
end-point of the edge in the range from zero to n-1. This edge will then be
added to the graph. If the edge is already present or the edge is a self loop,
the implementation of SimpleGraph will ignore the request of adding this
edge and a new psuedo random edge will be found. This process is repeated
until m edges have been successfully added to the graph.

We know no structural properties of the graphs generated by this gen-
erator other than the density of the graph. The graphs generated may be
connected or consist of several connected components. It can also have iso-
lated vertices. It is therefore interesting to test the algorithms on graphs of
this type.

10.1.2 Clique Graphs

We call the second graph class we generate, somewhat inaccurately, for
Clique Graphs. The reason behind this name is that the generator creates
a number of cliques and then connects them by a pseudo random number
of edges. It does this by taking as input the desired numbers of vertices(n)
in the graph and then a parameter k, where k decides the maximum size
allowed for a clique in the graph. It then proceeds to find l cliques of size
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between one and k such that the sum of all the cliques are n. The cliques
get an index between zero and l and all consecutive cliques are connected by
a pseudo randomly picked number of edges. Thus the graph is like a path
of cliques that can be connected with multiple edges.

The structural properties of these graphs makes it easy to determine a
lower bound on the number of vertices in a vertex cover for them. Let G be
a Clique Graph generated by this generator with cliques Q = {Q1, ..., Ql}.
The size of each Qi ∈ Q is less than k and the sum of the sizes of all the
cliques are n. It is easy to see that a vertex cover for a clique of size k must
have k-1 vertices. This helps us create the lower bound

∑
Qi∈Q |Qi| − 1 on

the number of vertices needed for a vertex cover for G.
This lower bound was a motivation for creating these types of graphs

as it made early testing of vertex cover algorithms easier. If an algorithm
returned a vertex cover of size less than the lower bound it obviously was
wrong. These graphs also have a relatively large vertex cover and it is
therefore expected that it will be time consuming to find vertex covers for
them, even for small graphs. Also, as the algorithms we have implemented
tries to exploit a parameter that will make vertex cover instances with high
solution size more tractable, these graphs are interesting.

10.1.3 Grid Graphs

The third graph class we generate we call Grid Graphs. This generator
takes as input the desired width(w) and height(h) of a grid and creates a
new SimpleGraph instance with w · h vertices. It then connects the vertices
as a grid before it removes a pseudo random number of edges in the graph.

These graphs will be planar and quite sparse. The also contain large
matchings, so it is expected that the algorithms will be efficient on these
graph types.

10.2 Testing

As we began with this thesis a case study of Vertex Cover was published by
Takuya Akiba and Yoichi Iwata [1]. It would be desirable to test our imple-
mentation against their results, but, as this implementation is done in Java
and the tests are performed on a personal laptop, such a comparison would
not make much sense. Instead we focused on comparing the algorithms to
a naive neighborhood branching algorithm which did not use any reduction
rules to see if the algorithms presented in this thesis would perform better.
We call this naive algorithm for algorithm 0.

The way the algorithms are tested is by generating many graphs of each
size in the different graph generators and then finding a minimum vertex
cover fpr them. The efficiency will be measured in the average time it takes
for an algorithm to find a minimum vertex cover of a graph of this size. The
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algorithms searches for a minimum vertex cover by starting with k equal to
one and then increasing it by one until it finds a valid vertex cover.

10.2.1 Random Graphs

To test this class, graphs of size 20 to 100 have been generated and then
tested. The x-axis shows the number of vertices in the graph and the y-axis
gives the time in milliseconds. Algorithm 0 was not run on instances of size
100 because it took too long to terminate:
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10.2.2 Clique Graphs

The algorithms where substantially slower for these kinds of graphs and only
graphs of size 10 to 50 were tested. Again the x-axis shows the size of the
instances while the y-axis shows the time in milliseconds. In this case it was
Algorithm 0 which could handle the largest cases most efficiently:
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10.2.3 Grid Graphs

In this class larger instances with up to 400 vertices was generated. Algo-
rithm 0 was not run on instances larger than 50 vertices as it took too long
for it to terminate. As before, the x-axis shows the size of the instances
while the y-axis shows the time in milliseconds:
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10.2.4 Discussion

The results presented in the previous sections are of little value besides being
pointers on how the different algorithms behave on different types of graphs.
This is due to the small sample space they are from and that there was no
time to run the algorithms on larger instances.

We can nonetheless see some tendencies from the results. Especially the
results for Grid Graphs were as expected. These graphs are sparse and each
vertex has a degree of four or less. The neighborhood branching strategy will
therefore never lead to big parameter drops in its branches, something which
could speed up the practical running time considerably. These graphs also
have a large maximum matching and a vertex cover close to the matching
in size, so the above guarantee parameter can be expected to be small and
thus the above guarantee parameter will be a reasonable one.

For Clique Graphs the effect of the neighborhood branching strategy
will be opposite. In these graphs one can expect that a vertex has a big
neighborhood, thus leading to big drops in the parameter. These graphs also
have relatively large vertex covers, so the gap between an optimal LPVC(G)
and k will still be large. This can explain why the naive algorithm performed
the best on these graphs.

For a more thorough examination of how well the algorithms perform it
could be wise to also monitor other behavior than just the time it takes the
algorithms to terminates. The number of branches throughout an algorithm
and the number of reductions and the size of the reductions can tell us more
about the actual value of the reduction rules.
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11 Comment on working with the thesis

The first part of working with this thesis was to get familiarized with the
Vertex Cover above LP problem and all the theory related to Linear Pro-
gramming and the above guarantee parameter. This was done by reading
and understanding the first two algorithms.

Then time was spent to fully understand the linear time algorithm from
[6]. In this paper the authors focused on a slightly different version of the
problem, namely Vertex Cover above LP in weighted graphs. An important
goal of this thesis was to present the three algorithms in a concise way and
an important part of this was to rewrite and simplify the results from [6] to
the unweighted case. This constituted a substantial amount of work on this
thesis.

The three algorithms have been published in three different papers with
different authors and inevitably they will use different terminology and lan-
guage. We wanted to presents all the algorithms in a unified language using
the same terminology throughout. We have also tried to highlight the sim-
ilarities between the different algorithms and believe that this thesis will
therefore be a good starting point for anyone interested in this problem.

The second part of this thesis was to actually implement the algorithms
and test them on different graphs. Due to inexperience with programming
this was a time consuming and difficult part of the thesis. In the end all
algorithms run correctly, to the best of our knowledge, but are far from
being optimized. The experimental results presented are therefore of little
empirical value.
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