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Abstract
The rise of global surface temperature waned during the last decade, despite increasing
greenhouse gas concentrations. The temperature changes were most pronounced over
northern hemisphere land masses during winter (Cohen et al 2012). They were largely
associated with weakening of the mid-latitude westerly flow. To some, these temperature
changes may seem paradoxical in the light of anthropogenic global warming, and thus
there is much interest in explaining them. Peings and Magnusdottir (2014 Environ. Res.
Lett. 9 034018) provide evidence that recent warming of the North Atlantic sea surface
temperature (SST) may be part of the explanation.
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Explanations for the recent cold winters have included the strong reduction in
arctic sea ice (Francis and Vavrus 2012) and increases in Eurasian snow cover
(Cohen et al 2012). Global warming likely contributed to both and as it is
expected to accelerate, we may see more harsh winters. However, cold winters are
not uncommon in the historic record (Jones et al 2012), and unforced internal
climate variability could also play a major role (Wallace et al 2012).

In particular, North Atlantic SST shows pronounced variability with a time
scale of 70–80 years—a phenomenon commonly referred to as Atlantic multi-
decadal variability (AMV) or the Atlantic Multi-decadal Oscillation. Peings and
Magnusdottir (2014 Environ. Res. Lett. 9 034018) suggest that the current warm
phase of AMV could also have contributed to recent cold winters. Through
analysis of historic observations and atmospheric model experiments they show
that the warm phase of AMV increases the occurrence of the negative phase of the
North Atlantic Oscillation (NAO), and vice versa for cold phases. Independently,
Omrani et al (2014) came to similar conclusions using differently defined indices
and a different atmospheric model.

These two studies are exciting because they provide modeling evidence for
an extra-tropical atmospheric response to North Atlantic SST in winter.
Importantly, the response compares well to observations, not only in terms of its
pattern but also its strength. This is in contrast to previous studies that found
only a weak atmospheric response (Rodwell et al 1999, Bretherton and
Battisti 2000).

Why do these two studies reach new conclusions? One reason might be that
previous studies have mostly considered the SST tripole pattern, which is pri-
marily a thermodynamic response to the NAO, while the new studies consider
SST patterns associated with AMV. The AMV’s basin-wide warming (cooling) is
not a direct thermodynamic response to the associated negative (positive) NAO
like patterns, and models suggest ocean dynamics are important (Eden and
Jung 2001). This point, which Bjerknes (1964) noted, has recently been confirmed
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through analysis of reconstructed turbulent heat flux data (Gulev et al 2013). Thus,
multi-decadal SST variations in the Gulf Stream and its extension may act to drive
atmospheric circulation changes on decadal timescales.

However, there have been other studies that investigated the atmospheric
response to AMV and these have not found a consistent response in winter
(Hodson et al 2010). In both new studies, the extra-tropical heating weakens the
meridional temperature gradient and thus reduces baroclinicity (Czaja et al 2003).
This leads to less synoptic scale eddy activity and a weakening of the westerly
flow. Omrani et al (2014) further show that this leads to an increase in upward
propagation of quasi-stationary planetary waves and thus to weakening of stra-
tospheric polar vortex and warming in high-latitude stratosphere. The stratospheric
warming propagates in turn down into the troposphere, further reducing the bar-
oclinicity, and thus enhancing the negative NAO-like changes in late winter. This
wave driven feedback involving the stratosphere (figure 1) adds to our classical
understanding of the NAO-response to extratropical SST (Czaja et al 2003).

Omrani et al (2014) stress that poorly representing stratosphere and its
variability (e.g., major stratospheric warming) can lead to deficiencies in simu-
lating the wintertime response to the AMV, and this could be a key difference to
most previous studies. Peings and Magnusdottir’s [Pers. Comm.] model results
partly agree with this concept, but the stratospheric response is weaker and less
significant, consistent with the model’s poorer representation of the stratosphere.
Other reasons for differences could be the implementation of sponge-layers at the
model top, or the background atmospheric state. For example, the strength and
structure of the westerly flow controls the upward propagation of quasi-stationary
waves. Thus, further work is required to understand the robustness of these
modeling results.

The existence of an extra-tropical response to North Atlantic SST could have
far reaching implications. Firstly, it implies the northern hemisphere winter cli-
mate may be partly predictable on decadal timescales, as SSTs in this region are
predictable (Keenlyside et al 2008). Secondly, it opens the possibility for a cou-
pled ocean-atmosphere mode of variability on multi-decadal timescales, possibly
extending predictability further. Lastly, it has implications for interpreting global
climate variability (Li et al 2013).

Figure 1. Schematic of atmospheric response to extra-tropical ocean heating. Red colours indicate
the perturbations to the oceanic and atmospheric states.



Environ. Res. Lett. 9 (2014) 061001 Perspectives

3

The cause of the recent northern hemisphere winter cooling remains an open
question. While these two new studies suggest the AMV could have contributed,
other recent studies have suggested arctic sea ice reduction, increased Eurasian
snow cover, and internal climate variability could all have played a role. Under-
standing the relative importance of these different factors is a high priority.
Coordinated model experiments provide one approach to address this issue. This is
a theme of a workshop to be held in Bergen in early June, and to which we hope to
interest the international modeling community.
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