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Abstract

Ensemble-based data-assimilation methods have gained fast growth since the ensemble
Kalman filter (EnKF) was introduced into the petroleum engineering. Many techniques
have been developed to overcome the inherent disadvantages of the ensemble-based
methods including the assumptions of linearity and Gaussianity, to make it more ro-
bust and reliable for practical reservoir applications. The current trend in petroleum
reservoir history matching is towards taking into account more realistic reservoir mod-
els with complex geology. Geologic facies modeling plays an important role in the
reservoir characterization as a way to reproduce important patterns of heterogeneity
in petroleum reservoirs and to facilitate the modeling of petrophysical properties of
reservoir rocks. Because the static data and general geological knowledge are almost
always not sufficient to determine the distribution of geologic facies uniquely, it is ad-
vantageous to assimilate dynamic data to reduce the uncertainty.

The history-matching problem of geologic facies involves large nonlinearity and
non-Gaussianity. When the ensemble Kalman filter (EnKF) or related ensemble-based
methods are used to assimilate data in a straightforward way, the updated model vari-
ables would lose the geological realism and be contaminated with noise. Therefore,
it is necessary to develop some effective measures to adapt the ensemble-based data-
assimilation methods to the facies problems. This thesis is motivated by this neces-
sity and explores the ways to conditioning geologic facies to production data using
ensemble-based methods. The focus is placed on the post-processing approach.

By modifying the standard randomized maximum likelihood algorithm to accom-
modate non-Gaussian problems, we introduce a methodology that consists of a straight-
forward implementation of ensemble-based data assimilation in the first place and a se-
quential optimization procedure without iteration as a follow-up. In a similar manner,
we develop another method for the post-processing of the updated reservoir models af-
ter data assimilation using ensemble-based methods. In the post-processing step, the
objective function is composed of a weighted quadratic term measuring the distance to
the posterior realizations, and a penalty term forcing model variables to take discrete
values. A special emphasis is put on the investigation of the importance of the corre-
lation information among the updated model variables introduced by the data which is
usually ignored for the probability map approach. All of the proposed methodologies
are evaluated via numerical experiments and demonstrated their utilities for improving
the assimilation of data to geological facies models.

In this thesis, we also investigate the application of discrete curvelet transform in
the denoising problem of updated model variables by the direct use of ensemble-based
data-assimilation methods. According to the numerical experiments, the results show
that curvelets are useful for denoising in the problem concerned but lose data match
unless the covariance is included.
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“As far as the laws of mathematics refer to reality, they are not certain, and as far
as they are certain, they do not refer to reality.”

Albert Einstein (1879–1955)





Chapter 1

Introduction

1.1 Motivation and research objective

The ensemble Kalman filter (EnKF) has established itself as the most promising method
for data assimilation in real reservoir models but, because the method uses only esti-
mates of the first- and second-order moments of the distributions of reservoir properties
and states for updating, it is a challenge to apply the method to reservoirs with complex
geology.

The complex geology in many real reservoir models are created using geological
models that simulate the spatial relationships of one type of geological facies to another.
These models often contain regions that are relatively homogeneous compared to the
difference with other regions. Geologic facies are commonly described as categorical
variables. The petrophysical values like porosity and permeability might be assumed
to be discrete. Unfortunately, the ensemble Kalman filter does a poor job at updating
discrete variables. In a standard approach, the variables take continuous values after
updating. Truncation of continuous values results in models that fail to honor the data
and fail to honor spatial transitions. Various solutions, such as the use of truncated
pluri-Gaussian models, level sets, and kernel methods have been partially successful
but none are general enough to capture the complex transitions between facies. The
main objective in this thesis is investigating approaches for assimilation of production
data for updating of complex discrete geological reservoir models using modifications
to the EnKF-like assimilation methods.

The thesis consists of two chapters. Chapter 1 is focused on the introduction of
the research background and basic theory required for the included research papers
presented in Chapter 2.

Section 1.2 provides a brief overview of the general procedure in reservoir charac-
terization and puts the emphasis on the description of history-matching problems from
a Bayesian point of view.

As the most promising techniques for automatic history matching, ensemble-based
data-assimilation methods are introduced in Section 1.3, including the standard for-
mulations of the ensemble Kalman filter and the ensemble smoother (ES), as well
as several typical iterative forms of EnKF/ES. In addition, some common issues of
ensemble-based methods in history-matching applications are discussed and the avail-
able solutions are concisely reviewed.

In Section 1.4, we introduce several typical geostatistical simulation methods that
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have been commonly used in geologic facies modeling. In particular, some of these
methods have been actively utilized in combination with ensemble-based methods for
the problem of conditioning facies distributions to production data.

In Section 1.5, we provide a brief literature review of the techniques that have
been proposed in the history matching of geologic facies using ensemble-based data-
assimilation methods.

Finally, Chapter 2 is structured into two parts by starting with an introduction of
the included papers, followed by the scientific results containing the details of these
papers.

1.2 Reservoir characterization in a Bayesian framework

As an indispensable evaluation tool in the oil and gas industry, reservoir simulation has
been playing an increasingly important role in the decision-making process involved in
the development, planning and management of petroleum reservoirs. The major goal
of reservoir simulation is to predict future performance of the reservoir and investigate
the ways to improve the oil recovery under various operating strategies. In a simulation
study it is of fundamental importance to build reliable and robust reservoir simulation
models, which can represent the actual reservoir for particular forecasts with reasonable
credibility. For this purpose, all the available data and relevant information about the
reservoir should be integrated into the model in a consistent and effective way.

It is generally difficult, if not impossible, to incorporate all types of data simultane-
ously into a model. The general practice to model a petroleum reservoir consists of two
basic steps, which are known as geological modeling and history matching. First, geo-
scientists build geological models that are conditioned to all of the static data such as
geology, geophysics, petrophysics, seismic data and geostatistical information. These
models provide a geologically realistic representation of the petroleum reservoir, how-
ever, they rarely honor the reservoir’s dynamic behavior. Then these models are passed
to petroleum engineers who incorporate the dynamic data like well rates, pressures, and
4D seismic survey to improve the reservoir characterization and reduce uncertainty.

History matching is difficult because it poses a nonlinear inverse problem in which
the relationship between the reservoir model parameters and the dynamic data is highly
nonlinear and there exist multiple solutions. In order to match the dynamic data, of-
ten some of the static data (e.g., geological continuity) are disregarded. Although the
models after history matching are matched to the dynamic data adequately, they are
unrealistic from a geologic point of view. The goal of history matching is not only to
obtain history-matched reservoir models, but more importantly to improve the reservoir
model’s predictive power. Compared with the history-matched models with inconsis-
tent geology, models that match the dynamic data and honor all of the other informa-
tion are more likely to be predictive. Recently, it has seen growing research in history
matching made on generating geologically consistent reservoir models [4, 5, 15, 103].

In this section, we give a brief introduction of the general procedures involved in
a reservoir characterization study with the emphasis on the reservoir history matching,
which is introduced in a Bayesian flavor. Meanwhile, some key features about geologic
facies as the primary history matching target in this dissertation are described.
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1.2.1 Geologic modeling

The main goal of geologic modeling is to build a plausible representation of a reser-
voir that incorporates and quantifies all the geologic characteristics of the reservoir.
The geological model is usually constructed from analyses and interpretations of well
log, core, seismic and outcrop analogue data based on an interdisciplinary collabora-
tion. The modeling process proceeds sequentially and logically by following a pre-
scribed work flow. In general, the work flow starts with establishing the structural and
stratigraphic framework in the fist place, then continues by building a facies model de-
scribing the internal architecture and ends up populating petrophysical properties such
as porosity and permeability into the established 3D model. As geostatistical meth-
ods are extensively used to improve the integration of geologic information, multiple
realizations may be generated to quantify uncertainty in the geological model. The
resultant models are commonly built at high levels of resolution, based on the recogni-
tion that fine-scale features can impact greatly on reservoir performance. Because the
high dimensional geological models often exceed the capabilities of standard reservoir
simulators, one has to compromise between the detailed geologic description and prac-
tical computational capabilities, by upscaling the fine-scale geologic model to obtain
an affordable lower-dimensional reservoir flow model.

Although to the geologist, such a comprehensive description generally provide a
sufficiently detailed characterization of the overall geologic complexity of the reser-
voir, the characterization may still prove to be unsatisfactory when the dynamic perfor-
mance of the field is being considered. The dynamics of fluid flow within a reservoir is
closely related to the reservoir heterogeneities, which are small to large scale geologi-
cal features. These features can comprise variations in lithology, texture and sorting, as
well as the presence of fractures, faults and diagenetic effects of different nature, all of
which significantly affect the fluid flow at different scales. Due to inadequate and in-
accurate data, uncertainty exists at all levels and most history-matching techniques are
focused on modifying the smallest scale structures like gridblock permeabilities and
porosities. When the dominant feature comes from the larger scales such as facies dis-
tributions, the adjustments at the smallest scale may result in a history-matched model
but destroy the intended geological realism, leading to an unrealistic model with poor
capability in production forecasting and reserves estimation, even though the resulting
model has an excellent historical data match. From this point of view, an appropri-
ate characterization of reservoir heterogeneity is one of the key issues of an integrated
reservoir study.

1.2.2 Facies

In geology, a facies refers to a body of rock with distinctive characteristics that can be
used to identify its depositional environment [23], such as river channel, delta system,
submarine fan, and the like. Facies are considered important in reservoir modeling be-
cause there often exists a significant correlation between petrophysical properties and
facies types. In particular, it is common that the variability and continuity in poros-
ity and permeability distributions is dominated by the facies heterogeneity. As a result
the variations in facies may have a dramatic effect on the flow response. Therefore, in
a geologic modeling workflow where facies modeling is considered, the facies model
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is always established first to constrain the distributions of porosity and permeability so
as to narrow down the range of uncertainty. On the other hand, a geologically realistic
reservoir model is usually more reliable on the prediction of the reservoir’s perfor-
mance. In this regard, the facies description contributes a significant amount of realism
to the model. Since the facies types can only be precisely identified at well locations
from well log and core data, the uncertainty on the facies distribution spreads through-
out the reservoir. It is therefore advantageous to reduce the uncertainty by including
facies into the history-matching process. However, unlike other common targets (e.g.,
permeability and porosity) in a history-matching study, it is very challenging to condi-
tion geologic facies to production data due to its complexity.

In the geological respect, modeling of facies is inherently complicated. There is a
wide variety of geostatistical algorithms available for building facies models, such as
variogram-based, multiple-point, object-based, and process-mimicking facies model-
ing techniques [100]. They are also usually categorized as grid-based (e.g., variogram-
based and multiple-point-based) and object-based modeling methods. However, there
is no single universal method that is able to handle all kinds of facies heterogeneities.
The selection of modeling method heavily depends on the complexity of facies features.
When the facies have no clear geometrical units like fluvial channels or crevasse splays,
variogram-based methods like sequential indicator simulation and truncated Gaussian
simulation are commonly the first choice. Multiple-point-based methods may be pre-
ferred if more complex and curvilinear features are required. When the facies exhibit
clear geometrical patterns or long-range structures, object-based or process-mimicking
methods should be used. Of course, geological complexity is not the only deciding
factor for modeling method selection. Another important (maybe major) factor con-
straining the selection is data conditioning. Generally, a modeling method’s ability to
honor the data is inversely proportional to its ability to characterize the facies com-
plexity. For example, in comparison with object-based methods, grid-based methods
are more flexible and more capable in honoring dense data, while these methods lack
the ability to match complex geological features like sharp geometries and long-range
structures. Other than choosing modeling method, there are still many other aspects
that need to be taken into account in practical applications. More importantly, software
and modeler’s expertise are the prerequisite. The sophisticated facies modeling process
imposes great difficulties and leaves less flexibility on the history matching.

In terms of reservoir flow dynamics, conditioning facies to production data usu-
ally involves strong nonlinearities. Compared with permeability and porosity, facies is
characterized by larger scale heterogeneities. Reservoir properties vary significantly at
the locations of facies boundaries where small changes may cause dramatic flow re-
sponse. Moreover, facies by nature are defined as categorical variables which is intrin-
sically non-Gaussian. Without proper modifications, most history-matching techniques
are unable to be used readily. In summary, history matching of facies is distinguished
from other history-matching problems by geological complexity, high nonlinearity and
non-Gaussianity.

1.2.3 History matching as an inverse problem

More often than not, there is still considerable uncertainty left in the reservoir model
after the geological modeling due to the limited amount of information. Therefore, con-



1.2 Reservoir characterization in a Bayesian framework 5

structing a reservoir simulation model that is consistent with historical dynamic data is
necessary to better characterize the reservoir properties and to improve the model’s pre-
dictive capability. This process is known as history matching during which unknown
reservoir properties such as permeabilities and porosities are adjusted so that the ob-
tained model can reproduce the observed historical performance in an optimum way.

History matching is well-known as a type of inverse problem. In its most basic form,
if the relationship between the model variables m ∈ R

Nm and the observable variables
(data) d ∈ R

Nd is given and denoted by

g(m) = d, (1.1)

the inverse problem can be expressed as finding m that is the solution of (1.1) with
known d. In order to give a general picture of the distinctive features of history-
matching problems in petroleum engineering, it is straightforward to address each term
of (1.1) individually. Throughout the dissertation, terms such as “data”, “observations”
and “measurements” are used interchangeably.

The forward operator g(·) represents an approximation to the true physical relation
between reservoir properties and data. The forward model is usually governed by a
set of coupled, nonlinear partial differential equations based on Darcy’s law, mass con-
servation and other related conditions. The relationship between m and d is typically
highly nonlinear. A numerical reservoir simulator is often run to predict outcomes of
the forward model. In most cases, the forward prediction requires a very high com-
putational cost and is the most time-consuming part in the history-matching process,
especially when the problem involves large-scale and complex reservoirs with a long
production history. Because of this, computational efficiency as a key consideration
in practice sets a high threshold for the feasibility of methods that one takes to solve
history-matching problems, which makes trial-and-error-based approaches mostly im-
practical.

The model variables m are customarily organized in the form of a vector contain-
ing a variety of uncertain reservoir properties that need to be improved with more data.
From the time varying point of view, the model variables are usually divided into model
parameters and state variables. The former refers to the variables that are static and
not time varying such as porosities and permeabilities, and the latter includes time-
dependent variables that define the state of the system like saturations and pressures.
Since the state variables can be sufficiently determined by the model parameters, the
history-matching problem is traditionally formulated as a parameter estimation prob-
lem. Herein we narrow down the definition of m only referring to model parameters.
Under the necessity of reservoir characterization and history matching of the dynamic
data, most often the reservoir model contains a large number of model parameters. The
inverse problem is often defined in a significant high dimensional model space and be-
comes severely ill-posed in the sense that the amount of independent data is commonly
much smaller than the number of model parameters. On the other hand, there is al-
most always certain amount of prior information about the reservoir available to assist
in restricting the solution space, like positivity, smoothness, and bounds.

The observable data of d always contain errors. Just like other physical systems,
sources of the errors in d, denoted as ε , can come from artificial readings, measuring
instrument precisions, data processing or usually a mixture of them all. Taking this into
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account, Equation (1.1) is replaced with

dobs = g(m)+ ε. (1.2)

The observations dobs contain many types of measurements such as production data,
time-lapse seismic data, well test data, etc. In this thesis, we consider only the produc-
tion data which are the most widely used for history matching. Production data include
a set of measurements of flow rates, pressures, or ratios of flow rates, made at locations
of producing or injecting wells [96]. They are collected in sequence of time along the
development of petroleum reservoir. The key features of the production data that make
the history-matching problem very special, consist in [92]:

• production data are usually limited in number in the sense that they are only
obtained at well locations;

• the information content of production data is relatively low;

• the relationship between production data and model parameters is generally non-
local and nonlinear,

Gathering all the information discussed above together, history matching is typi-
cally described as an ill-posed large-scale inverse problem, in which uncertain model
parameters are estimated from inadequate and inexact data given an approximate rela-
tion between the model parameters and the data. Here the ill-posed problem is defined
in terms of [52], that is, a problem is ill-posed if it does not satisfy the following con-
ditions simultaneously:

• it has a solution,

• the solution is unique, and

• the solution is a continuous function of the data.

The ultimate goal of history matching is to improve the reliability of reservoir fore-
casts and to assist the decision making. However, the history-matching process involves
various sources of uncertainty. There exist numerous possible combinations of model
variables that enable the resulting reservoir models to match the observations equally
well. Therefore, it is impossible to make an informed decision on revservoir manage-
ment and investments without a proper assessment of uncertainty. From a probabilistic
point of view, Bayesian statistics provides a straightforward theory for dealing with
uncertainty.

1.2.4 Bayesian formulation

In the setting of Bayesian statistics, model parameters are considered as random vari-
ables and their distributions are described with probability density functions (PDF).
Based on Bayes’ theorem, the conditional (posterior) PDF, p(m|dobs), for model vari-
ables m given observations dobs is defined as

p(m|dobs) =
p(dobs|m)p(m)

p(dobs)
=

p(dobs|m)p(m)∫
D p(dobs|m)p(m)dm

= a L(m|dobs)p(m). (1.3)
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In (1.3), p(m) is the prior PDF for the vector of model parameters and represents the
prior information or geostatistical knowledge of the reservoir before incorporating the
observations. The prior PDF of p(m) describes the dependency between the model
parameters and imposes constraints on the set of possible inverse solutions. The depen-
dency may refer to the spatial structure of m based on a covariance or a training image.
p(dobs|m) is the conditional PDF of dobs given m. We also call the function p(dobs|m)
the likelihood function denoted by L(m|dobs) for m, given dobs. The likelihood func-
tion L(m|dobs) models the stochastic relationship between the observed data d and each
particular model m maintained. p(dobs) is the PDF for the vector of observations and
a is a normalizing constant. In this formulation, the solution to the aforementioned in-
verse problem is given by the posterior PDF which is proportional to the product of the
prior PDF and the likelihood function. A common and instructive assumption is often
made that the prior PDF is multi-variate Gaussian in which case the prior distribution
is fully defined by the mean and the covariance. In particular, if g(m) is linear and ε
is Gaussian, the posterior PDF is also Gaussian and completely characterized by the
mean and covariance [48]. The likelihood function measures the uncertainty in mea-
surements and their predictions which normally involves forward simulations of data
acquisition processes and corresponding estimations of measurement errors.

Under Gaussian assumptions on the prior PDF and the measurement errors ε in
(1.2), we can write p(m|dobs) as

p(m|dobs) = a exp

[
−1

2
(m−mpr)

T C−1
M (m−mpr)

]
× exp

[
−1

2
(g(m)−dobs)

T C−1
D (g(m)−dobs)

]
,

= a exp

[
−1

2
(m−mpr)

T C−1
M (m−mpr)

− 1

2
(g(m)−dobs)

T C−1
D (g(m)−dobs)

]
,

= a exp [−S(m)] , (1.4)

where S(m) is often termed the objective function [47, 74, 95]

S(m) =
1

2
(m−mpr)

T C−1
M (m−mpr)+

1

2
(g(m)−dobs)

T C−1
D (g(m)−dobs). (1.5)

In (1.4), mpr and CM ∈ R
Nm×Nm are the prior mean and the prior covariance matrix

respectively. CD ∈ R
Nd×Nd is the covariance matrix of observations errors and g(m) is

the predicted data for a given m. In (1.5), the objective function consists of two terms
that the first term is the model mismatch and the second term is the data mismatch. In
a sense, the model mismatch term can be seen as a regularization to mitigate the ill-
posedness of the problem of the minimization of the data mismatch by penalizing the
deviations of model variables from the initial guess. Note that minimizing the objective
function in (1.5) is equivalent to maximizing the posterior PDF in (1.4). From the
Bayesian viewpoint, the best estimate of m is the model which maximizes the posterior
PDF, or equivalently minimizes the objective function. This estimate is then referred to
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as the maximum a posteriori (MAP) estimate of (1.4)

mMAP = argmax
m

p(m|dobs),

= argmin
m

S(m). (1.6)

When the relation between data and model parameters is linear, i.e., g(m) = Gm with
sensitivity matrix G ∈ R

Nd×Nm , mMAP is also the posterior mean and can be derived in
the two following equivalent forms by using the matrix inversion lemmas [96]

mMAP = mpr +(C−1
M +GT C−1

D G)−1GT C−1
D (dobs −Gmpr) (1.7)

and
mMAP = mpr +CMGT (CD +GCMGT )−1(dobs −Gmpr). (1.8)

The selection of the two equations has a prominent influence on the computational ef-
ficiency when the difference between the number of model parameters and the number
of data is large. For example, if the number of model parameters is far more than the
number of data, i.e., Nm � Nd , which is the usual case in petroleum reservoir charac-
terization problems, expression (1.8) is more favorable for the computation of mMAP
than (1.7) because the time-consuming part of the matrix inversion involved in (1.8)
(Nd ×Nd dimensions) is easier to compute than the one in (1.7) (Nm×Nm dimensions).
In the same way, the covariance matrix CMAP is given as

CMAP = (C−1
M +GT C−1

D G)−1 (1.9)

or equivalently

CMAP = CM −CMGT (CD +GCMGT )−1GCM. (1.10)

In this linear Gaussian case, the posterior PDF is fully characterized by mMAP and
CMAP. However, when g(m) is nonlinear, the posterior PDF may be multimodal which
means S(m) may have multiple local minima or even global minima so that the estimate
mMAP is not unique. In this case, the initial guess of m is critical for the convergence
of gradient-based methods.

1.2.5 Sampling the posterior distribution

In a Bayesian framework, uncertainty is measured by probability. In petroleum reser-
voir characterization, it is generally impractical to evaluate the entire posterior PDF to
quantify the uncertainty in reservoir properties and in reservoir predictions. The fea-
sible way to explore the posterior PDF is by sampling. Following this idea, the focal
point for uncertainty quantification is shifted to how to generate samples from the pos-
terior PDF correctly and efficiently. If a set of model realizations can be obtained as a
sample from the posterior PDF, the uncertainty in reservoir performance predictions are
possibly being evaluated by constructing statistics (e.g. histogram, mean and variance)
from the predicted outcomes of the sampled model realizations.

Among various sampling methods, Markov chain Monte Carlo (McMC) and the
randomized maximum likelihood (RML) methods have been extensively examined to
quantify the posterior uncertainty in reservoir characterization.



1.2 Reservoir characterization in a Bayesian framework 9

McMC

McMC is an exact method for sampling which provides an iterative procedure for gen-
erating samples from a target PDF, p(m|dobs) of our interest, by constructing a Markov
chain where the probability of introducing a new state in the chain depends only on
the current state. Theoretically, under satisfied conditions on the chain, McMC method
is guaranteed to sample the desired posterior distribution correctly in the limit as the
number of states in the chain goes to infinity regardless of the initial state [49]. The
most frequently used scheme is perhaps the Metropolis-Hastings algorithm [55] which
is known as a generalization of the Metropolis algorithm [87]. At each iteration, a new
state or realization m∗ is sampled from a proposal PDF of q(m∗|m) and is accepted
with the probability of α(m,m∗). If the candidate state is rejected, the Markov chain
will repeat the current state. A generic implementation procedure of McMC based on
Metropolis-Hastings is presented in the Algorithm 1.2.1.

Algorithm 1.2.1 McMC (Metropolis-Hastings)

1. Choose an initial state of the Markov chain m0 and set the iteration index �= 1.

2. Generate a sample m∗
� from the proposal PDF, q(m∗

� |m�−1)

3. Compute the acceptance probability of m∗
� as

α(m�−1,m∗
�) = min

{
1,

q(m�−1|m∗
�)p(m∗

� |dobs)

q(m∗
� |m�−1)p(m�−1|dobs)

}
.

4. Take

m� =

⎧⎨⎩m∗
� with probability α(m�−1,m∗

�),

m�−1 with probability 1−α(m�−1,m∗
�).

5. Set �= �+1 and return to step 2.

In the Metropolis-Hastings algorithm, the chain will asymptotically produce draws
from p(m|dobs) as long as the proposal scheme ensures a positive probability of going
from any one state to another in a finite number of transitions. It is worth noting that
generating samples from the desired posterior PDF using McMC methods is advanta-
geous when the computation of the normalization constant, i.e. a in (1.4), is intractable
because it cancels out shown at the third step as above. For specific applications, there
are some implementation issues that need to be considered before using McMC to ex-
plore the target distribution. These may include choosing a sample plan (single long run
or multiple relative short runs), determining burn-in, setting the run length and moni-
toring the performance of the sampler. More detailed discussions on this topic can be
found in [49] and [114].

McMC methods have been applied and investigated in many history-matching ap-
plications [28, 57, 94, 115]. The major difficulty encountered when implementing
McMC particularly in high-dimensional problems is the slow convergence and mix-
ing. A large number of iterations is typically required for McMC to produce reasonable
samples from the target distribution. However, in reservoir characterization problems,
the computation of acceptance probability of α(m,m∗) requires a run of the reservoir
simulator to evaluate the likelihood part of p(m|dobs). This prohibitively restricts the
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use of McMC in realistic reservoir problems in terms of the current computing capabil-
ity. Even though McMC is computationally expensive and unfeasible for uncertainty
quantification of reservoir performance, it is often used to validate the performance of
approximate methods when the generation of a large number of realizations is manage-
able.

RML

The randomized maximum likelihood (RML) method was independently proposed by
Kitanidis [69] and Oliver et al. [95] as an approximate sampling method. In an effort to
improve mixing of McMC algorithm, Oliver et al. [95] presented a two-step proposal
mechanism such that the resulting state has a high acceptance probability. It proceeded
by firstly generating unconditional realizations of model and data variables from their
prior distributions which are known and then calibrating the sampled model variables
to the sampled data variables. The Metropolis-Hastings algorithm was used to decide if
the calibrated model variables are accepted as a state of the chain. However, because the
acceptance rate was very high and the acceptance criterion was difficult to evaluate, the
authors suggested that the acceptance test could be ignored and all proposed transitions
were accepted.

It can be shown that the RML algorithm samples correctly when the prior PDF is
Gaussian and the relationship between the model variables and the data is linear [91,
101]. For nonlinear relationships RML is not guaranteed to sample the posterior PDF
correctly and only an approximation, although there is considerable evidence that it is
able to sample well for non-Gaussian and nonlinear problems in high dimensions [45,
76, 112, 121]. If we assume the model variables have a Gaussian prior such that m ∼
N[mpr,CM] and the observation errors are also Gaussian with ε ∼ N[0,CD], samples
from the RML algorithm can be generated as follows:

Algorithm 1.2.2 RML

1. Generate an unconditional realization of m from the prior distribution, m∗ ∼N[mpr,CM]

2. Generate an unconditional realization of the data, d∗ ∼N[dobs,CD]

3. Compute the conditional realization mrml:

mrml = argmin
m

[
1

2
(m−m∗)T C−1

M (m−m∗)+
1

2
(g(m)−d∗)T C−1

D (g(m)−d∗)
]
.

The minimization step is analogous to the computation of the MAP estimate in (1.5),
except that the regularization is with respect to the unconditional realization instead of
a prior model and the predicted data is matched to the sampled data instead of observed
data. The conditional realization, mrml , will stay close to the unconditional realization,
m∗, unless the minimization of the data mismatch requires large corrections to the
model variables. Additional conditional realizations can be generated by repeating the
procedure above with independent unconditional realizations of m∗ and d∗.

The challenging part of RML is to perform the minimization which is required
for each sampled realization. There are no specific requirements on the method of
minimization in the algorithm, so almost any optimization method could be used to
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minimize the objective function. Among the methods used for the minimization in
history-matching problems, gradient-based methods are probably the most efficient and
computational feasible options for large-scale problems, when the objective function
concerned is sufficiently smooth. Newton-like methods including Gauss-Newton and
Levenberg-Marquardt algorithms have been used to generate conditional realizations
with RML [73, 120]. In these methods, a significant part of the efficiency depends on
the algorithm that is used to compute the sensitivity of an objective function or pre-
dicted data to model parameters. One of the most efficient methods commonly adopted
for accurately computing the sensitivity coefficients, i.e. the derivatives of predicted
data with respect to model variables is the adjoint method [74, 96]. In this method,the
adjoint state variables are solutions of a linear system of equations and computed only
once. However, an implementation of the adjoint system requires specific knowledge of
the forward discrete equations, which is not commonly available in commercial reser-
voir simulators.

1.3 Ensemble-based data-assimilation methods

The use of ensemble-based data-assimilation methods has recently become popular
within petroleum engineering and has provided encouraging results in terms of reser-
voir characterization and uncertainty quantification, since Lorentzen et al. [80] first
applied the ensemble Kalman filter (EnKF) to dealing with reservoir problems. Oliver
and Chen [92] reviewed the recent developments of history-matching technology with
the focus on reparameterization techniques, algorithms for computation of sensitivity
coefficients and methods for uncertainty quantification. They demonstrated that great
progress has been made over the past decade especially in the ability to history match
large-scale reservoir models with substantial amounts of uncertain parameters. They
also pointed out that the EnKF method is currently the most promising solution to deal
with realistic problems among the various methods proposed for performing history
matching.

Ensemble-based data-assimilation methods are based on Monte Carlo techniques
among which the most well-known form of ensemble-based assimilation is probably
the EnKF algorithm. The EnKF is a sequential data-assimilation method in which the
model uncertainties are represented by an ensemble that is a group of realizations for
model parameters (e.g., permeability and porosity) and for model states (e.g., satura-
tion and pressure). The ensemble itself provides an empirical estimate of the PDF for
the model variables. By continuously assimilating new observations, each realization
in the ensemble is updated to be consistent with the data using a Bayesian formulation.
The method is able to estimate a large number of model variables and integrate differ-
ent types of data. It is also readily adapt to any reservoir simulator and easy to code
and maintain in the sense that neither a tangent nor an adjoint model is required. Ad-
ditionally, the sequential updating scheme makes EnKF well-suited for real-time data
assimilation, reservoir monitoring and performance prediction that are all required for
closed-loop reservoir management. All of these attractive features contribute to the
popularity of the EnKF method being explored by a rapidly growing number of re-
searchers as a viable alternative to traditional history matching. Significant research
has been done on enhancing the performance of the standard EnKF in dealing with
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realistic problems. An thorough review of the development of EnKF in reservoir en-
gineering was provided in [1], and a complementary review of the key developments
completed after that paper was supplied in [92].

As an alternative ensemble-based assimilation method, the ensemble smoother (ES)
was first applied for petroleum history matching by Skjervheim and Evensen [108],
mainly motivated by the computational inefficiency of EnKF caused by the frequent
restart of the reservoir simulator at every update step, which leads to a severe disad-
vantage in some real applications. In the ES methodology, all of the available data are
assimilated simultaneously with a single analysis step taking the similar form to the
EnKF, in which only the model parameters are updated so that simulator restarts are
avoided. However, the ES in its original form is not as effective as the EnKF especially
when the nonlinearity of the concerned problem is strong and when the changes to the
model parameters are dramatic [19]. As a result, several iterative versions of the ES
were proposed to improve the performance of the standard ES such as the ensemble
randomized maximum likelihood method as an iterative ES (batch-EnRML) [19], the
ES with multiple data assimilation (ES-MDA) [32] and the Levenberg-Marquardt form
of the ES (LM-EnRML) [21]. The EnKF has been successfully applied to a number
of synthetic cases (e.g., PUNQ-S3 and Brugge benchmark cases) for history matching
[18, 45, 50, 99]. Moreover, there also exist a number of real field applications of the
EnKF and the ES for history matching in the literature [12, 56, 108, 109, 124]. In par-
ticular, Chen and Oliver [22] lately applied the LM-EnRML to the history matching of
the Norne full-field in which a wide variety of approximately 150,000 model param-
eters were updated and the resulting data matches were better than those obtained by
manual history matching.

In the following section, we introduce some widely used ensemble-based meth-
ods in the context of petroleum engineering. We first recall some basic concepts of
data assimilation and give a brief description of the classical recursive approaches of
the Kalman filter (KF) and the extended KF. Then we introduce the EnKF and ES as
a variation of the classical recursive methods and as an alternative to traditional his-
tory matching. Several typical iterative forms of EnKF and ES proposed for handling
strongly nonlinear problems are addressed. Finally, we discuss some common issues
of the ensemble-based methods in the applications of petroleum history matching.

1.3.1 Basic concepts of data assimilation

The general data-assimilation problem can be formulated as a joint parameter and state
estimation problem based on Bayesian statistics [37]. Let y ∈R

Ny denote a state vector
containing the uncertain model variables

yk =

[
m
fk

]
, (1.11)

where m represents a Nm-dimensional vector of model parameters which are constant
in time and f represents a Nf -dimensional vector of state variables which describe the
dynamic state of the system and hence are time-dependent (so Ny = Nm +Nf ). The
subscript k is introduced to indicate the time dependence on model variables, which
are assumed to be discretized in time. Now assume that observations are available at
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the same discrete set of times as where the model variables are estimated, and denote
the observations up to time step n by dobs,1:n = {dobs,1, . . . ,dobs,n}. When considering
Bayesian assimilation, our aim is to evaluate the posterior distribution p(yt |dobs,1:n).
The state estimation problem can be classified into three categories depending on the
comparison of t and n:

• if t < n, p(yt |dobs,1:n) is called a smoother in which data measured after the time
of interest t are used for the estimation of the state vector at time t;

• if t = n, p(yt |dobs,1:n) is called a filter in which the state vector at time t is obtained
by using data measured up to and including time t;

• if t > n, p(yt |dobs,1:n) is called a predictor whose aim is to forecast the model state
in future (or next observation time) by using data measured up to and including
time t.

In its smoother form, the conditional PDF of p(y0:n|dobs,1:n) can be given by Bayes’
theorem

p(y0:n|dobs,1:n) ∝ p(dobs,1:n|y0:n)p(y0:n), (1.12)

∝ p(dobs,n|y0:n)p(yn|y0:n−1)p(y0:n−1|dobs,1:n−1), (1.13)

∝ p(dobs,n|yn)p(yn|yn−1)p(y0:n−1|dobs,1:n−1), (1.14)

where the normalizing constant in the denominator is omitted and hence the equal sign
is replaced with the proportional symbol, ∝. Expression (1.13) is obtained from (1.12)
by assuming that the data collected at different times are independent and the data at a
particular time depend only on the states up to and including the this time, i.e.,

p(dobs,1:n|y0:n) = p(dobs,1|y0:1)p(dobs,2|y0:2) · · · p(dobs,n|y0:n),

= p(dobs,1:n−1|y0:n−1)p(dobs,n|y0:n). (1.15)

The expression (1.14) is a simplification of (1.13) by further assuming that the forward
model is a first-order Markov process, i.e.

p(yn|y0:n−1) = p(yn|yn−1), (1.16)

and that dk only depends on yk for k = 1, . . . ,n. In (1.14), p(y0:n−1|dobs,1:n−1) is the
posterior PDF at previous time n−1, and p(yn|yn−1) represents the forward model that
advances from time n−1 to time n. The product of the these two terms represents the
prior distribution at time n. The conditional PDF p(dobs,n|yn) is the likelihood function
for the data at time n.

These three equations simply indicate that the smoother solution can be evaluated
either by assimilating all data simultaneously with (1.12) or by integrating the data
sequentially as they become available with the recursive formulas (1.13) and (1.14).
When the assumptions are satisfied, the two approaches are equivalent [40]. Note that
the smoother solution yk at all times is conditioned to all of the measurements including
the ones from subsequent times.
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On the other hand, the filter solution may be obtained by integrating (1.14) over
y0:n−1 and can be written as

p(yn|dobs,1:n) ∝
∫

y0:n−1

p(y1:n|dobs,1:n)dy1:n−1,

∝ p(dobs,n|yn)p(yn|dobs,1:n−1), (1.17)

where p(yn|dobs,1:n−1) is the prior PDF given by

p(yn|dobs,1:n−1) =
∫

y0:n−1

p(yn|yn−1)p(y1:n−1|dobs,1:n−1)dy1:n−1. (1.18)

In comparison with the smoother solution, the filter solution is calculated based only on
the measurements up to and including the current time step. However, the two solutions
will be identical at the last data-assimilation time step.

In summary, the Bayesian data-assimilation process can be separated into an anal-
ysis (or update) step and a forecast step. At the analysis step, an improved estimate of
model variables is obtained by applying Bayes’ theorem to compute the posterior PDF
for the model variables given the observations, for instance, with (1.14) or (1.17). At
the forecast step, the dynamical model is advanced in time and its result becomes the
forecast (or prior) in the next analysis cycle. Even though the Bayesian assimilation
provides a fundamental framework for updating model variables with observed data,
the solution to (1.14) or (1.17) is generally difficult to be found without some simplifi-
cation. If we put the problem under the assumptions of linear dynamics and Gaussian
statistics, the KF method provides a closed-form solution to the filter problem of (1.17).

1.3.2 Kalman filter and extended Kalman filter

The KF is an efficient sequential data-assimilation algorithm which was first introduced
by Kalman [67] in an engineering context as a recursive solution to linear filtering and
prediction problems. In the original paper [67], the KF was derived as a minimum
variance estimator with the orthogonal projection method. However, the KF can also
be well interpreted from a Bayesian standpoint [66, 86]. For a linear Gaussian prob-
lem, the KF is an optimal sequential assimilation algorithm in the sense that it provides
the best linear unbiased estimate (BLUE) of the posterior mean and the posterior co-
variance. Because the prior and the likelihood are both assumed to be Gaussian, the
posterior is also Gaussian which is completely characterized by the mean and the co-
variance.

Let us consider a linear filtering system for which the state and measurement equa-
tions are described as

yk = Akyk−1 +ωk−1, (1.19)

dobs,k = Gkyk + εk, (1.20)

where Ak represents a linear model operator and Gk denotes an observation operator
which defines a linear relationship between the state vector yk and the measurement
vector dobs,k. The sequences {ωk}n

k=1 and {εk}n
k=1 are the model noise and the mea-

surement noise respectively. Now we make the following assumptions on the error
statistics:
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• Gaussian model and observation noises: ωk ∼ N(0,Cωk) and εk ∼ N(0,Cεk),
where Cωk and Cεk are model and observation covariance matrices respectively.

• yk, ωk and εk are mutually independent: E[ykωT
l ] = 0 and E[εkωT

l ] = 0 for all

k, l; E[ykεT
l ] = 0 for k ≤ l.

Furthermore, we assume that the initial prior PDF of y0 is Gaussian y0 ∼ N(μ0,Cy0
).

Based on these assumptions, all the PDFs in (1.17) are Gaussian. The mean and the
covariance matrix of p(yk|dobs,k) are calculated by

E[dobs,k|yk] = E[Gkyk + εk] = Gkyk, (1.21)

Cov[dobs,k|yk] = Cov[εk|yk] = Cεk , (1.22)

and hence the likelihood p(dobs,k|yk) can be written as

p(dobs,k|yk) ∝ exp

[
−1

2
(dobs,k −Gkyk)

T C−1
εk
(dobs,k −Gkyk)

]
. (1.23)

Given the posterior distribution at time k−1, p(yk−1|dobs,1:k−1),

yk−1 ∼N(ya
k−1,C

a
ωk−1

), (1.24)

the mean y f
k and the covariance C f

yk−1
of the prior p(yk|dobs,1:k−1) are calculated by

y f
k = E[yk|dobs,1:k−1] = Akya

k−1, (1.25)

Cy f
k
= E[(yk −y f

k )(yk −y f
k )

T |dobs,1:k−1] = AkCa
yk−1

AT
k +Cωk−1

, (1.26)

and then

p(yk|dobs,1:k−1) ∝ exp

[
−1

2
(yk −y f

k )
T C−1

y f
k
(yk −y f

k )

]
. (1.27)

By substituting equations (1.23) and (1.27) into (1.17), the posterior can be written as

p(yk|dobs,1:k) ∝ exp

[
−1

2
(dobs,k −Gkyk)

T C−1
εk
(dobs,k −Gkyk)

−1

2
(yk −y f

k )
T C−1

y f
k
(yk −y f

k )

]
. (1.28)

The best estimate, yk, is the state vector that maximizes the posterior PDF in (1.28),
which is often referred to as the MAP estimate mentioned in Section 1.2.4. In par-
ticular, the MAP estimate is also the posterior mean for the Gaussian case. Taking
the derivative of p(yk|dobs,1:k) or equivalently ln p(yk|dobs,1:k) with respect to yk, and
setting it to zero, i.e.

∂ ln p(yk|dobs,1:k)

∂yk

∣∣∣∣
yk=ya

k

= 0, (1.29)

the MAP estimate of ya
k and the corresponding posterior covariance, Cya

k
, are obtained

[96]

ya
k = y f

k +Kk(dobs,k −Gky f
k ), (1.30)

Cya
k
= Cy f

k
−KkGkCy f

k
, (1.31)
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where Kk ∈ R
Ny×Nd is known as the Kalman gain that is given by

Kk = Cy f
k
GT

k (GkCy f
k
GT

k +Cεk)
−1. (1.32)

As the derivation shows, the KF scheme consists of two steps. At the forecast step,
the mean vector and the covariance matrix characterizing the posterior PDF at previous
time (or the initial prior PDF) are updated with (1.25) and (1.26) to predict the prior
PDF of model variables before conditioning to new data. At the following analysis
step, the prior estimates of the mean and the covariance matrix are improved by as-
similating the new data using equations (1.30-1.32). Because the posterior distribution,
p(yk|dobs,1:k), is Gaussian, it is fully determined by the mean ya

k and the covariance Cya
k
.

There are two major difficulties in applying the KF to geophysical data-assimilation
problems: handling large amounts of model variables and data, and dealing with non-
linear dynamics. As we discussed above, the KF requires repeated computation of
covariance matrices at each update step. When the number of model variables and/or
observations is very large (it is typical for reservoir history matching), the computa-
tional cost and the storage on the covariance matrices at the forecast and analysis steps
will become unaffordable. In addition, the KF is based on the assumption of linear
model dynamics, which will not hold for the reservoir flow problems.

The extended KF is an adaptation of the KF method for nonlinear problems [66, 85].
Let us consider the nonlinear state-space model

yk = hk(yk−1)+ωk−1, (1.33)

dobs,k = gk(yk)+ εk, (1.34)

where hk and gk represent the nonlinear model operator and the nonlinear measurement
operator respectively. The extended KF uses linearization techniques to approximate
(1.33) and (1.34) by defining

Ak =
∂hk(yk−1)

∂yk−1

∣∣∣∣
yk−1=ya

k−1

, (1.35)

Gk =
∂gk(yk)

∂yk

∣∣∣∣
yk=y f

k

. (1.36)

Based on the linearized dynamics, the conventional KF is further employed. Unlike
the KF, the extended KF is not an optimal filter in any sense. For weakly nonlinear
problems, the extended KF usually reasonable good performance when used carefully.
However, in cases of highly nonlinear models the extended KF may become problem-
atic and even fail. Moreover, the extended KF is not suitable for large-scale systems
either, due to the problems with maintaining the covariance matrix.

1.3.3 Ensemble Kalman filter

The EnKF method was originally introduced by Evensen [34] as an improvement to the
extended KF to handle data assimilation in high-dimensional nonlinear systems. The
EnKF is a modification of the KF based on Monte Carlo method in which an ensem-
ble of model states is employed to represent the probability density. The basic idea
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of the EnKF is to use the ensemble of states to approximate mean vectors and covari-
ance matrices, based on which each member of the ensemble is estimated using the KF
update equation and integrated forward in time independently using a forecast model.
The predicted ensemble provides an approximation of the prior PDF before assimila-
tion of new data for the subsequent analysis cycle. Because the mean and covariance
are approximated with the sample mean and covariance computed from the ensemble,
the EnKF avoids the disadvantages of storing and evolving the covariance matrix ex-
plicitly required by the KF and the extended KF. For typical EnKF applications, the
number of ensemble members is often much smaller the number of uncertain model
variables, so the computational savings can be significant compared with the use of KF
or the extended KF (if they are still applicable). Moreover, the EnKF does not require
any sensitivity calculations which enable the method to be easily adaptable to differ-
ent physical systems and model variables. Therefore, the EnKF methodology is very
suitable and practical for solving large-scale problems in many science fields.

Instead of introducing the EnKF in a general sense, here we describe the method
specially in the context of petroleum reservoir history matching. It is useful to define
an augmented state vector, by adding the predicted data dk into the vector of model
parameters and state variables, when applying the EnKF to nonlinear problems, i.e.,

ỹk =

[
yk
dk

]
=

⎡⎣m
fk
dk

⎤⎦ . (1.37)

where
fk = hk(m), dk = gk(m). (1.38)

For a typical reservoir history-matching problem,

• m consists of the time-invariant variables for rock properties and flow system
such as the gridblock permeabilities, porosities, etc.,

• fk includes the time-varying variables describing the dynamic states of the reser-
voir such as gridblock pressures, saturations, etc.,

• dk contains the predictions of observations or theoretical data like water and oil
production rates, bottom-hole pressures, and so on.

Note that the sate variables and data are both expressed as functions of the model pa-
rameters in (1.38), because the state variables can be determined by the model param-
eters when the initial sate of the reservoir is given (which is a common assumption).

With this definition of ỹk, we can rewrite the relation between the state vector and
the data in (1.34) as a linear equation [36]

dk = Hỹk, (1.39)

where
H = [0 INd ], (1.40)

and 0 ∈ R
Nd×(Nm+Nf ) is the null matrix with only zero elements and INd ∈ R

Nd×Nd is
the identity matrix. Although expanding the state vector with the predicted data allows
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an easy derivation of the EnKF within the framework of the standard KF methodology,
Li and Reynolds [72] show that the EnKF can sample correctly from the marginal PDF
of yk(·) only when the relation between yk(·) and dk(·) is linear at each updating step.
So using the augmented state vector will not remove the influence of the nonlinearity
on the performance of the EnKF.

From the implementation point of view, the EnKF algorithm can be divided into
two stages: generation of the initial ensemble and sequential data assimilation. Let us
denote the ensemble of augmented state vectors at time step k by Yk:

Yk = [ỹk,1 ỹk,2 . . . ỹk,Ne] ∈ R
Nỹ×Ne, (1.41)

where Ne is the number of ensemble members and Nỹ = Nm +Nf +Nd . At the first
stage, an initial ensemble of Ne independent samples m0, j for j = 1, . . . ,Ne is generated
consistent with prior knowledge of the initial state and its probability distribution. In
reservoir history-matching problems, the initial state of the reservoir is often assumed
known and the joint probability of reservoir parameters before assimilation of data can
be characterized. Therefore, the estimation of the prior PDF of p(y0) is available. For
the vector of model parameters m, the posterior solution after the analysis step of EnKF
at all times is a linear combination of the initial ensemble, so it is important that the
initial ensemble of model parameters characterizes the prior uncertainty properly.

By advancing each member of the initial ensemble usually in a parallel manner for-
ward to the first observation time, we have already entered the forecast step of the sec-

ond stage which is a recursive two-step process. Let Ỹ f
k denote the forecast ensemble

of augmented state vectors at time step k, for k = 1,2, . . . ,n, i.e.,

Ỹ f
k = [ỹ f

k,1 ỹ f
k,2 . . . ỹ f

k,Ne
], (1.42)

with

ỹ f
k, j = Γ(ỹa

k−1, j), (1.43)

where Γ(·) represents the reservoir simulator and the the superscript a denotes the pos-
terior (analyzed) solution from the previous time step. It is easy to compute the mean

Ỹ
f

k and the covariance matrix Cỹ f
k

from the forecast ensemble:

Ỹ
f

k = [ỹ
f
k ỹ

f
k . . . ỹ

f
k ], with ỹ

f
k =

1

Ne

Ne

∑
j=1

ỹ f
k, j, (1.44)

Cỹ f
k
=

(Ỹ f
k − Ỹ

f

k )(Ỹ
f
k − Ỹ

f

k )
T

Ne −1
=

ΔỸ f
k (ΔỸ f

k )
T

Ne −1
. (1.45)

At the following analysis step, each ensemble member is updated using the KF
analysis equation based on the sample approximation to the mean and covariance,

ỹa
k, j = ỹ f

k, j +Kk(d
j
obs,k −Hỹ f

k, j), for j = 1,2, . . . ,Ne, (1.46)

and

Kk = Cỹ f
k
HT (HCỹ f

k
HT +Cdobs)

−1, (1.47)
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where d j
obs,k ∼N(dobs,k,Cdobs) is a sample from the measurement distribution obtained

by adding stochastic perturbations to the observed data vector dobs,k [13, 59]. Like the
KF, the analysis step of EnKF is only optimal for linear model with Gaussian statistics
and it can shown that the analyzed ensemble mean and covariance from EnKF asymp-
totically converges to the corresponding estimates given by the KF as the ensemble size
goes to infinity [14].

In fact, the covariance matrix Cỹ f
k

is not necessary to be explicitly formed during the

computation. In order to emphasize the computational efficiency of EnKF, we rewrite
the update equation (1.46) in the following matrix form:[

Ma
k

Fa
k

]
=

[
M f

k

F f
k

]
+

[
CmdXk

C f dXk

]
, (1.48)

and

Xk = (Cdd +Cdobs)
−1(Dk −HỸ f

k ), (1.49)

where the matrices Mk and Fk are the ensembles of model parameters and state vari-
ables respectively. Cmd is the covariance between model parameters and data, C f d is
the covariance between state variables and data, and Cdd is the covariance of simulated
data, where the time step k is not attached for notational simplicity. Because Cmd and
C f d are estimated from the ensemble

Cmd =
ΔMkΔDk

Ne −1
, C f d =

ΔFkΔDk

Ne −1
, Cdd =

ΔDkΔDk

Ne −1
, (1.50)

and do not need to be formed in implementation (only ΔMk ∈ R
Nm×Ne , ΔFk ∈ R

Nf×Ne ,
ΔDk ∈ R

Nd×Ne used and stored), the computational cost of EnKF largely depends on
the ensemble size (typically 10 to 100) which is much smaller than the number of
model variables in most cases. Thus, the EnKF algorithm is very efficient, easy to code
and robust on storage for high-dimensional models. However, the ranks of Cmd and
C f d cannot be larger than Ne − 1 since they are calculated from the ensemble and the
quality of the estimates highly depends on the size of the ensemble.

One advantage of the EnKF is that the ensemble forecast of reservoir performance
after each analysis step can be made by running the forward model from the most
recent data-assimilation time without the necessity of rerunning the whole past history.
When the relationship between model parameters and state variables is linear, it can be
shown that the updated state variables is consistent with those obtained by rerunning
the forward model from the initial time [51, 113]. Otherwise, the consistency may not
hold. To overcome this problem in nonlinear problems, Wang et al. [118] proposed a
half iterative EnKF (HIEnKF) in which only model parameters are updated using the
EnKF analysis equation (first row of (1.48) above) and the predicted data after each
data-assimilation time are obtained by rerunning the simulator from time zero with the
updated ensemble of model parameters. The HIEnKF retains the sequential feature
of EnKF, however, at the expense of repeatedly restarting simulation runs. As shown
in [119], the HIEnKF is equivalent to the first iteration of the ensemble randomized
maximum likelihood (EnRML) [51] with a full step length.
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1.3.4 Ensemble smoother

The ES was first introduced by van Leeuwen and Evensen [117] in the context of
oceanographic and atmospheric applications. Similar to the EnKF, the ES approximate
the same Bayesian formulation using Monte Carlo methods via a variance-minimizing
update scheme. However, ES differs from EnKF by assimilating data at all times si-
multaneously instead of integrating data sequentially in time as in EnKF. So the ES
requires only a single update step. If we ignore the errors in the forward model which
is common in reservoir history-matching problems, we only need to consider the pa-
rameter estimation problem while applying the ES. In this case, the state vector only
includes model parameters and the analysis equation is similar to the one for EnKF,
written as

ma
j = m f

j +Cmd(Cdd +Cdobs)
−1(dobs, j −d j), for j = 1,2, . . . ,Ne. (1.51)

Since the same notations are used here, it is necessary to clarify some definitions of
the terms in (1.51) which are a little different from the ones for the EnKF. Other than
including only the measurements at a certain assimilation time as for EnKF, dobs, j ∈R

Nn

in (1.51) contains all of the measurements made at all times, where Nn = ∑n
i=1 Ndi

and Ndi denotes the number of measurements at ith time step. The cross-covariance
matrix Cmd ∈ R

Nm×Nn is computed based on the initial ensemble of model parameters
and its corresponding ensemble of predicated data. The matrices Cdd ∈ R

Nn×Nn and
Cdobs ∈ R

Nn×Nn are the covariances of predicted data and observed data, respectively.
For linear problems, the ES provides identical results with the EnKF [38]. For non-

linear problems, however, the EnKF has been shown to perform better than the ES. van
Leeuwen and Evensen [117] first tested the ES on an ocean circulation model where
they found that the ES was outperformed by the EnKF. The inferior performance of the
ES was further proved on the following tests on a Lorentz model [35, 40]. The best
explanation for the better performance of EnKF was attributed to its sequential updat-
ing scheme which appears to mitigate the chaotic dynamics of the problem and keep
the model closer to the true solution. Skjervheim and Evensen [108] introduced the use
of ES for petroleum history matching, motivated by the fact that reservoir-simulation
models are different from the chaotic dynamic systems that were previously used to test
ES. They compared ES and EnKF on both a synthetic case and a real North-Sea field
application where both methods gave comparable results. However, this is not always
the case as shown in [19, 32] that ES performed poorly compared to EnKF. Neverthe-
less, in many real petroleum reservoir applications there is a strong practical motivation
to use ES instead of EnKF [108]. This is due to the fact that the cost of frequent restarts
of reservoir simulator and convergence issues related to the updates to state variables
can be significant while performing EnKF in some applications. In contrast, the ES
avoids these disadvantages because in its implementation all data are assimilated at a
single step and only the model parameters are updated. The two examples presented in
[108] showed that ES required only 10% of the simulation time used by EnKF.

1.3.5 Iterative forms of EnKF / ES

The standard EnKF has been shown to give acceptable history matches and uncertainty
estimations in many reservoir applications [39, 50, 90]. Even though the EnKF was
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originally proposed as an alternative to the extended KF for applications in nonlinear
dynamical systems, the update step in the EnKF is still linear. For highly nonlinear
problems, however, the EnKF may yield unphysical updates of model variables and
poor data matches. For example, porosity and saturation may be lower than zero or
greater than one. In such cases, iterative EnKF methods are usually used in order to
overcome the high nonlinearity and improve the quality of data match. On the other
hand, the ES often requires iteration to achieve satisfactory matches to data especially
when the problem is strongly nonlinear [19]. Many iterative methods based on EnKF
and ES have been proposed, most of which are achieved through the way of minimizing
a stochastic objective function or equivalently maximizing the posterior probability of
each realization [1]. Here, we introduce several typical iterative forms of EnKF and ES
based on RML and multiple data assimilation (MDA).

EnRML

The ensemble randomized maximum likelihood (EnRML) was first introduced by Gu
and Oliver [51] as an iterative EnKF. The method was then generalized by Chen and
Oliver [19] who propose to use EnRML as an iterative ES. Following the notations used
in [19], we refer to [51] as seq-EnRML, and [19] as batch-EnRML. In a recent paper,
Chen and Oliver [21] introduced an improved version of batch-EnRML by using a
modified Levenberg-Marquardt (LM) method instead of Gauss-Newton (GN) method,
which is called LM-EnRML. Here, we give a brief introduction of these three closely
related methods.

As shown in Section 1.2.5, under assumptions of Gaussian PDFs for model param-
eters and data, one can generate samples of model parameters from the posterior PDF
with the RML method by minimizing the objective function (1.5) . RML method by
minimizing the objective function (1.5) in which the prior mean has been replaced by
a sample from the prior and the observed data has been replaced by a perturbed obser-
vation as in Algorithm 1.2.2. Using the GN method, the estimate of a sample of model
parameters at the �+1th iteration can be written as [111]

m�+1 = m�+β�δm�+1, (1.52)

with

δm�+1 =−(GT
� C−1

D GT
� +C−1

M )−1

× [C−1
M (m�−mpr)+GT

� C−1
D (g(m�)−dobs)], (1.53)

= mpr −m�−CMGT
� (G�CMGT

� +CD)
−1

× [g(m�)−dobs −G�(m�−mpr)], (1.54)

where g(·) denotes the nonlinear relationship between data d and model parameters m.
G is the sensitivity of data to model variables and β is the step length parameter whose
optimal value can be determined using standard methods [24]. In (1.53), the matrix

H = GT
� C−1

D GT
� +C−1

M , (1.55)

is the Hessian matrix. The two forms (1.53) and (1.54) are equivalent and obtained by
using the matrix inversion lemmas. As discussed in Section 1.2.4, the computational
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efficiency of these two equations depends on the distinction between the dimensions
of model parameters and data. In many cases, the dimension of model space is much
larger than the dimension of the data space, so the formula (1.54) is often used.

Taking advantage of ensemble approaches like the EnKF, the prior model covari-
ance CM and the sensitivity G can be approximated from a finite number of ensemble
members, which are written as

Ce
M =

ΔMprΔMT
pr

Ne −1
, (1.56)

Ge
� = ΔD�ΔM†

� , (1.57)

where ΔMpr ∈ R
Nm×Ne represent the matrix of deviation realizations of model param-

eters from the prior mean. The columns of ΔM� ∈ R
Nm×Ne and ΔD� ∈ R

Nd×Ne are de-
viation realizations of model parameters and deviation realizations of predicated data
from the mean at �th iteration, respectively. Because ΔM� is generally not invertible,
pseudo-inverse of ΔM� is used which is denoted by the superscript † and can be com-
puted with singular value decomposition (SVD) [51]. Typically, Ne � Nm, so the cost
to compute the SVD is reasonable. Utilizing the ensemble approxmiations Ce

M and Ge
�,

(1.52) becomes

m�+1 = β�mpr +(1−β�)m�−β�Ce
MGeT

� (G�Ce
MGeT

� +CD)
−1 (1.58)

× [g(m�)−dobs −Ge
�(m

�−mpr)],

where the search direction δm�+1 is computed by (1.54). If we set � = 0, β0 = 1 and
m0 = mpr, the estimate at the first iteration of (1.58) is

m1 = mpr +Ce
MGeT

0 (G0Ce
MGeT

0 +CD)
−1[dobs −g(mpr)]. (1.59)

This is the same as the EnKF upate equation (1.46-1.50) except that both state variables
and model parameters are updated in EnKF. When the data dobs contains all the mea-
surements, (1.59) is the ES update identical with (1.51). One advantage of EnKF and
ES is that neither Ce

M nor Ge
� is computed explicitly, which makes EnKF and ES very

computationally efficient. However, in the EnRML, Ce
M and Ge

� need to be computed
separately in (1.58). As shown in (1.56-1.56), Ce

M is only computed once based on the
prior ensemble of model parameters before assimilation of data, while Ge

� varies with
iterations.

seq-EnRML and batch-EnRML

Like the EnKF, seq-EnRML integrates the data sequentially in time. The iterative es-
timate of each realization of model parameters at data-assimilation time k is obtained
using (1.58) as

m�+1
j = β�mk−1, j +(1−β�)m�

j −β�Ce
M,k−1GeT

k,�(Gk,�Ce
M,k−1GeT

k,�+CD,k)
−1 (1.60)

× [gk(m�
j)−dobs,k, j −Ge

k,�(m
�
j −mk−1, j)], for j = 1,2, . . . ,Ne,

where gk(·) represents the nonlinear relationship between the the data at time k and
model variables. Ce

M,k−1 is the prior covariance before the assimilation of data at time k
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and Ge
k,� is the sensitivity matrix which is a linearization of gk(·) at the �+1th iteration.

dobs,k, j are sampled from normal distribution with mean dobs,k and covariance CD,k.
seq-EnRML requires to rerun the reservoir simulator with the updated ensemble of
model parameters from time zero to predict the data and state variables at each iteration.

Alternatively, batch-EnRML implements the EnRML in a similar manner to the
ES, in which all data collected at different times are assimilated together. The update
equation is similar to (1.60) given as

m�+1
j = β�mpr, j +(1−β�)m�

j −β�Ce
MGeT

� (G�Ce
MGeT

� +CD)
−1 (1.61)

× [g(m�
j)−dobs, j −Ge

�(m
�
j −mpr, j)], for j = 1,2, . . . ,Ne,

where dobs, j contains all of the available data that is a sample of the normal distribution
with mean dobs and covariance CD. Compared with (1.60), Ge

� is expanded to include
sensitivity of data at different times. Analogous to the ES, batch-EnRML has a prac-
tical motivation in applications when the expense of repeatedly updating variables and
restarting simulation runs is substantial for seq-EnRML.

In both seq-EnRML and batch-EnRML, the same ensemble-based sensitivity ma-
trix Ge is used for all realizations. Thus, seq-EnRML and batch-EnRML may not sam-
ple multimodal distribution well. Li and Reynolds [72] presented two iterative EnKF
methods based on adjoint methods. In these methods, the ensemble is primarily used to
approximate the Hessian at each iteration. Because each ensemble member is updated
using a different gradient, these two methods are able to sample a PDF with multiple
peaks. However, for problems with multiple local minima the ensemble-based sensitiv-
ity might be better than the adjoint-based methods, because it is less likely to get stuck
at local minima [7, 19, 77].

LM-EnRML

Chen and Oliver [19] showed that the ensemble approximation of the sensitivity is
usually poor and quite noisy for large-scale problems. But they also found that the sen-
sitivity matrix Ge in (1.58) generally occurs as the product of CMGe, leading to the
instability alleviated somewhat by the model covariance. So the influence of comput-
ing the sensitivity from a small ensemble did not draw much attention at the beginning.
In a later paper [21], however, they found that the poor approximation of sensitivity can
cause numerical instability and affect the rate of convergence especially for large-scale
problems, which partially explains the slow convergence rate of batch-EnRML. Chen
and Oliver [21] introduced an efficient iterative ES algorithm called LM-EnRML that
avoids the explicit computation of the sensitivity matrix and shows significant improve-
ments compared to batch-EnRML.

Similar to the gradient-based history matching using adjoint methods [44, 73], it is
important to restrict the roughness arising in the early iterations for iterative ensemble-
based assimilation methods, when the initial data mismatch is large or large amounts of
data are integrated at the same time. In this respect, the LM algorithm has been shown
to give good performance in many history-matching applications [8, 73]. Similar to
the GN equations (1.53-1.54), the LM implementation can also be expressed in the
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following two equivalent forms:

δm�+1 =−(GT
� C−1

D GT
� +(1+λ�)C−1

M )−1

× [C−1
M (m�−mpr)+GT

� C−1
D (g(m�)−dobs)], (1.62)

=
mpr −m�

1+λ�
−CMGT

� [G�CMGT
� +(1+λ�)CD]

−1

× [g(m�)−dobs − G�(m�−mpr)

1+λ�
], (1.63)

where λ� is the damping parameter. When � = 0, m0 = mpr. As before, the compu-
tational efficiency of the two formulas depends on the dimensions of model space and
data space. Following [21], method based on this LM scheme is called LM-EnRML
(orig). Note that when λ� = 0, LM-EnRML (orig) is identical with batch-EnRML with
full step size.

Chen and Oliver [21] developed a modified LM regularization scheme in which the
Hessian term (1.59) is changed to the following form:

H = GT
� C−1

D GT
� +(1+λ�)P−1

� , (1.64)

with

Pe
� =

ΔM�ΔMT
�

Ne −1
, (1.65)

where P� is the covariance of model parameters at the �th iteration, which is estimated
from the ensemble denoted by Pe

�. When � = 0, P0 = Cpr. Note that the only dif-

ference between LM-EnRML and LM-EnRML (orig) is that C−1
pr is replaced P−1

� in
LM-EnRML.

The benefits of the modifications made in LM-EnRML are at least twofold. First,
similar to the standard LM algorithm, adjusting λ influences not only the step size
but also the search direction. By increasing the value of λ , the search direction gets
closer to the steepest descent direction with a decreasing step size, so the updates are
small and the convergence rate is slow. Conversely, reducing the value of λ makes the
search direction less likely to be descent and imposes large corrections on the model
variables, but it may accelerate the convergence rate if the current iterate is not far from
the solution. So an intuitive tuning strategy is that λ starts with a relatively large value
and “smartly” decreases as the minimization gets more stable with iterations. Second,
replacing C−1

pr with P−1
� avoids the explicit computation of the sensitivity Ge, which

turns out to be a significant unstable factor in the minimization. Chen and Oliver [21]
compared LM-EnRML with LM-EnRML (orig), in a one-dimensional multiphase flow
problem. The experiment shows that LM-EnRML (orig) stopped before reducing the
data mismatch to an acceptable level, while LM-EnRML resulted in a rapid and steady
decrease in the data mismatch and achieved a much better result.

In view of the fact that the implementation of LM-EnRML method has been well
described in the included papers, we will not repeat the description here and refer the
reader to these papers or the original paper [21] for more information.
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EnKF-MDA and ES-MDA

Multiple data assimilation (MDA) method was introduced by Emerick and Reynolds
[31, 32] to improve the performance of EnKF and ES for nonlinear problems. The
MDA procedure seeks the improvement simply by assimilating the same data multiple
times with an inflated covariance matrix of measurement errors. It was proved that
MDA is equivalent to the single data assimilation for the linear-Gaussian case, under
the condition that the covariance matrix of measurement errors in MDA is multiplied
by the number of data assimilations [31]. Emerick and Reynolds [32] generalized the
procedure and presented the following condition that the inflation coefficients should
satisfy in order to keep the equivalence for the linear-Gaussian case,

Nτ

∑
�=1

1

τ�
= 1, (1.66)

where Nτ is the total number of data assimilations that need to be predefined. τ� is
the inflation coefficient at the �th data assimilation by which the measurement error
covariance is multiplied. Under this condition, the previous work in [31] becomes a
special case of (1.66) when τ� = Nτ , for � = 1,2, . . . ,Nτ . MDA is very simple for
implementation and only requires minor modifications on the update equation for both
EnKF and ES. Take the ES-MDA for example, in which the update equation becomes

ma
j = m f

j +Cmd(Cdd + τ�Cdobs)
−1(dobs, j −d j), for j = 1,2, . . . ,Ne. (1.67)

with

dobs, j = dobs +
√

τ�C
1/2
dobs

zd, zd ∼N(0,INn). (1.68)

In comparison with the ES update equation (1.51), we see that the only differences are
that Cdobs replaced with τ�Cdobs , and that the observation vector is perturbed at each
iteration using (1.68).

For the nonlinear case, however, the equivalence does not hold. The use of MDA
for nonlinear problems is motivated by the connection between EnKF (ES) and GN
method as we discussed before shown by (1.59). The performance of EnKF (ES) in
reservoir history-matching problems can be explained in a similar way as GN method.
Analogous to the overcorrection problem of GN method at early iterations, EnKF (ES)
may render excessive modifications to reservoir models, especially when the nonlin-
earity is strong and the initial data mismatch is large. In this sense, MDA is similar
to those improving strategies used for gradient-based methods. For example, Wu et al.
[120] artificially inflated the data covariance matrix during early iterations to relieve the
overcorrection of model variables with the GN method, which resulted in either slow
convergence rate or unacceptable final data mismatch.

Another way is to switch GN to LM [73] as we see in LM-EnRML. For the purpose
of illustration, we take the ES-MDA for example. Recall the update equation for LM-
EnRML (orig) shown in (1.63), if we set �= 0 (i.e., first iteration), it becomes

δm1 =−Ce
MGeT

0 [Ge
0Ce

MGeT
0 +(1+λ0)CD]

−1 × [g(mpr)−dobs],

= Cmd[Cdd +(1+λ0)CD]
−1 × [dobs −g(mpr)]. (1.69)
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The notations used here are probably a little confusing. We need to remind that equa-
tions (1.67-1.69) are all computed from ensemble no matter with or without the su-
perscript e. Comparing (1.67) and (1.69), it is clear that ES-MDA and LM-EnRML
(orig) share similar forms at the first iteration. Moreover, ES-MDA is very similar to
the LM-EnRML (approx) in [21] where the Ce

M is replaced with Pe
�.

Although EnKF-MDA and ES-MDA generally work well [33], there are some re-
maining issues that worth further investigation. For example, it is necessary to specify
the number of iterations in MDA prior to performing the data assimilation. If the re-
sults are not satisfactory, it may be necessary to discard the results and start over with
a larger number. Conceptually, there are numerous possible choices for the inflation
coefficients, however, it is unclear how to choose them optimally. Le et al. [70] shed
some light in this direction.

1.3.6 Sampling errors and rank deficiency

One fundamental issue for ensemble-based data-assimilation methods relates to the fact
that the number of ensemble members is usually quite small compared to the dimension
of the model space. Theoretically, increasing the ensemble size could solve much of the
difficulty, however, it would sacrifice the efficiency of EnKF and its variants, which is
valuable in practical applications. So the goal is always to use as small as an ensemble
as possible. It has been well recognized that two problems become prominent in a
standard implementation of EnKF with a limited ensemble size [1].

• Sampling errors produced by using a small size of the ensemble could result in
spurious correlations arising in the ensemble approximation to the covariance
matrix. These spurious correlations, when carrying out the analysis step using
the Kalman gain, give rise to changes to model or state variables in regions that
should not be updated, and collapse of ensemble variability. For example, Lorenc
[79] investigated the effect of noise in sampled covariances on the estimation of
EnKF, in which an ensemble of 100 realizations is updated with a single perfect
observation (i.e., zero error). He found that the global variance estimate increased
after assimilation of data, although the analysis error decreased in the local area
around the observation. He concluded that the harmful effect of spurious covari-
ances on distant grid points overtakes the local benefit.

• The number of degrees of freedom is only as large as the size of the ensemble,
and the updates in EnKF are confined in the subspace spanned by the realizations
of forecast ensemble, so the ability to assimilate large amounts of accurate, inde-
pendent data for a standard EnKF is severely constrained. The problem with the
rank-deficiency becomes acute when the number of measurements is large as in
the 4D seismic or in fields with many wells and a long history.

Attempts to reduce effectively the sampling error due to small ensembles and mean-
while maintain an ensemble spread that realistically describes error statistics have trig-
gered the development of various techniques [1, 29, 92].
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Distance-based covariance localization

The most common method of eliminating the influence of spurious correlations on the
update is to apply some type of distance-based covariance localization. This kind of
method relies on the assumption that any covariance beyond a certain distance is purely
a result of sampling errors. In its most basic form, the localization is performed by lim-
iting the data that will be used for the update of a variable to those data that lie within a
particular distance of the variable to be updated, or conversely by limiting the variables
that will be updated to those that are within a particular distance of the observation lo-
cation. The first application of localization in the EnKF [59] took a simple approach
in which a cutoff radius was applied to the Kalman gain, so that only model variables
within a critical distance of the observation were updated. According to their results,
the optimal radius of the cutoff increased as the ensemble size increased. In most
current applications of localization, it has been carried out by means of multiplying
the ensemble estimate of the covariance matrix by a localization function through the
Schur/Hadamard product [46]. Houtekamer and Mitchell [60] have used the fifth-order
compactly supported correlation function of Gaspari and Cohn [46] as the localization
function, and pointed out that with this procedure, the updated models were relatively
smooth compared to those obtained using the distance cutoff or using no localization
at all.

In this type of localization, the localized covariance Cloc
y can be expressed as

Cloc
y = ρ ◦Cy. (1.70)

where ◦ denotes the Schur product with which Cy is multiplied element-wise by the
localization matrix ρ . One advantage of using the element-wise multiplication is the
Schur product theorem [58] which states that, if matrix A is positive definite and matrix
B is positive semidefinite with all of its main diagonal entries positive, then the product
A ◦ B is positive definite. Once Cy is positive semidefinite with positive values on

the diagonal in the EnKF, the Schur product theorem guarantees that Cloc
y is positive

definite if we use a localization matrix ρ which is positive definite. As a consequence,
localization allows the model update to be obtained from a much larger space than the
one spanned by the ensemble. The localized Kalman gain in the EnKF is then given by

Kloc = (ρ ◦Cy)ĤT [Ĥ(ρ ◦Cy)ĤT +Cdobs]
−1, (1.71)

= (ρyd ◦Cyd)(ρdd ◦Cdd +Cdobs)
−1, (1.72)

= ρK ◦ [Cyd(Cdd +Cdobs)
−1]. (1.73)

To keep the equivalence of these three equations, the localization functions, ρ , ρyd and
ρK , are generally different. Note that, because the state vector y only contains the model
and state variables, the observation operator Ĥ is introduced for symbolic use to retain
the consistency with the original Kalman gain equation (1.47), where the augmented
state vector ỹ is used.

Since the covariance matrix Cy is never formed in EnKF methods, localization with
(1.71) is rarely used. The implementation of localization methods with the Schur prod-
uct is hence mainly focused on (1.72) and (1.73), but far from standardized. Hamill
et al. [53] localized Cyd but not Cdd . They justified the partial use of localization in
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view of the fact that the observation operator Ĥ in their study is a simple linear opera-
tor so that only minor approximation is induced. Houtekamer and Mitchell [60] (also
e.g., [61], [41]) localized both Cyd and Cdd but they assume

(ρ ◦Cy)Ĥ ≈ ρ ◦Cyd, (1.74)

Ĥ(ρ ◦Cy)ĤT ≈ ρ ◦Cdd. (1.75)

Chen and Oliver [18] (also e.g., [2], [124]) applied localization directly to the Kalman
gain instead of covariance matrices under the assumption of

ρK ≈ ρyd. (1.76)

The use of the direct localization to the Kalman gain guarantees zero updates from data
to regions that are not highly sensitive to the data. However, as shown in [17], the direct
localization of the Kalman gain tends to introduce artifacts in the updates and causes
an increase in variability when the size of the localization area is smaller than a single
pattern or only slightly bigger than a single pattern. They anticipate the influence of
using (1.76) would decrease if the size of the localization area is large, based on the
fact that the artifacts observed did not occur in [18]. In particular, Agbalaka and Oliver
[2] also distinguished between localization of updates to the model parameters and
localization of updates to the state variables, while applying EnKF to the problem of
adjusting facies boundaries in a 3D model. Facies constraints were iteratively enforced
using the Gaspari-Cohn distance-dependent localization of the Kalman gain to update
the Gaussian random fields for facies. But updates are not applied to the state variables
during iterations.

On the other hand, the selection of localization function is mainly based on an ad
hoc basis. The Gaspari-Cohn function is a common choice. When this kind of function
is used for localization, the only free parameter is the range parameter for the correla-
tion which determines the radius of localization. The range parameter is usually chosen
on the basis of experience. Lorenc [79] showed that the optimal choice for the range
parameter increases as the ensemble size increases because there is less need for local-
ization when the ensemble size is large. For an ensemble of 100 members that is typical
in many EnKF applications, the optimal range is almost twice the (practical) range of
the prior covariance. Other types of correlation functions are also used such as the ex-
ponential covariance function [16], the unit-step function [20] and the like. Instead of
using one particular correlation function for localization, Furrer and Bengtsson [42]
derived a relationship between a nearly optimal localization function and the true prior
covariance. The optimal localization functions determined by the relationship also in-
volves the ensemble size explicitly so that the experimentation with ensemble size is
avoided. However, the need to know the true covariance is a strong constraint in some
applications. Chen and Oliver [22] (also e.g., [18]) used the method with a spherical
covariance function representing the cross-covariance between the data and state vari-
ables, to prevent ensemble collapse and to reduce the effect of spurious correlations
on the updates in history matching a field case using the LM-EnRML. Some localiza-
tion functions are based on the regions of sensitivity. Arroyo-Negrete et al. [10] and
Devegowda et al. [26] proposed a covariance localization method for petroleum reser-
voir flow that uses sensitivities from the streamline simulation method to quantify the
region of influence of model parameters on the observed data. The cross-covariance
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between production observations and model parameters is assumed to be nonzero only
in regions where the magnitude of the sensitivity (in any of the realizations) exceeds a
small threshold value. By localizing the updates to regions of nonzero sensitivity, the
method was shown to be able to reduce the effect of spurious correlations. However, it
has been shown that the localization based only on these regions of influence embraces
the possibility of keeping model updates too localized around wells, especially when
the prior model covariance has a long correlation range [17, 30].

Chen and Oliver [17] gave a detailed study of distance-based location for applica-
tions of EnKF in porous media flow. They considered both ρyd and ρdd in (1.72), and
investigated the true sensitivity and cross-covariance between data and model and state
variables for various problems. The pointed out that, since localization is applied to
the cross-covariance, it cannot be determined by the region of sensitivity alone, but
the contribution of the prior covariance must be considered. The choice of localiza-
tion function needs to reconcile the effect of the prior data assimilation on the prior
covariance and the ensemble approximation to the sensitivity. This means that differ-
ent localization functions might be needed for different types of data, different model
and state variables and different data assimilation times.

Non-distance-based covariance localization

When the localization function is appropriately chosen, distance-based localization
usually works well. However, the selection of the localization function can be com-
plicated so that it is difficult to balance the harm done by spurious covariance resulting
from the small ensembles against the harm done by excluding real correlations. In ad-
dition, there exist model or state variables for which a distance interpretation is not
sensible, such as the variables define the shape of the relative permeability curve, or
the depth of the oil-water contact. In these situations, non-distance-based covariance
localization method are more general and proper to use.

Furrer and Bengtsson [42] proposed two types of localization, one of which is not
distance-dependent. The approach they took involves the minimization of the differ-
ence between the true covariance matrix and the localized ensemble estimate of the
covariance:

min
ρ

‖Cȳ −ρ ◦Cy‖2
E , (1.77)

where
‖Cȳ −ρ ◦Cy‖2

E = E[tr((Cy −ρ ◦Cy)
2)], (1.78)

and tr represents the trace of the matrix which is the sum of the diagonal elements, and
Cȳ denotes the true covariance. Furrer and Bengtsson [42] showed that it was possible
to minimize (1.77) term by term if ignoring the positive-definite constraint, and they
obtained an expression for each element of the optimal localization. Although the
method may not provide a positive definite taper matrix, it is not restricted to distance-
dependent localization so it can be applied to nonspatial parameters.

Anderson [6] developed a hierarchical ensemble filter method in which a small num-
ber of ensembles are used to compute a regression confidence factor (RCF) to estimate
the reliability of the regression coefficients. The set of RCFs for each observation forms
a “regression confidence envelope”, which can be thought of as a type of localization.
By using the RCF, the effect of sampling errors on the updates is reduced. This method
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provides a mechanism for discriminating between real and the spurious correlations,
but the extra computational cost of running a group of ensembles limits its practical ap-
plicability. Based on the work by [6], Vàlles and Nævdal [116] evaluated the use of
the hierarchical EnKF (HEnKF) for updating real size synthetic reservoir models. In
HEnKF, a damping factor (i.e., RCF in [6]) is computed by minimizing the variance of
the estimate of Kalman gain from different ensembles. The damping factor αmin,n at
time n is chosen to be positive, by truncating the negative one to zero, for not changing
the sign of the Kalman gain and defined as

αmin,n = max

⎛⎝⎧⎨⎩
⎡⎣( Ng

∑
i=1

ki

)2/ Ng

∑
i=1

k2
i

⎤⎦−1

⎫⎬⎭
/

(Ng −1),0

⎞⎠ , (1.79)

where ki is an element of the Kalman gian matrix for the ith ensemble at time n, and Ng
is the number of sub-ensembles. The analysis step of HEnKF is then given by

yak, j
n = y f k, j

n +An ◦Kk,n(d j
n − Ĥny f k, j

n ), (1.80)

where An has the same dimensions as the Kalman gain and is composed of the damping
factors. k and j indicate the indices of sub-ensemble and ensemble member in the
sub-ensemble, respectively. Vàlles and Nævdal [116] compared the results with those
obtained using the standard EnKF, and found that spurious correlations were avoided
when using HEnKF and it was simpler and more straightforward to use than distance-
based localization approaches.

Zhang and Oliver [122] used the similar idea for damping the spurious correlations
but used bootstrap sampling to generate multiple estimate of the Kalman gain matrix
with almost no computational cost. They also derived an alternative version of objective
function which ensures the the damping factor is positive, so that the truncation using
in [6, 116] is avoided. Moreover, Zhang and Oliver [123] evaluated and compared the
estimation errors when the distance-based localization and the bootstrap-based screen-
ing are applied on the covariance and the Kalman gain. They concluded that, when the
localization (ρyd , ρdd) is applied to the covariance matrices, a consistency condition
must be satisfied. However, for nonlocal observations, it is generally difficult to satisfy
the consistency condition for distance-dependent covariance localization. They also
found that the estimate of Kalman gain based on the covariance localization is subject
to greater errors than the estimate of the Kalman gain based on direct regularization.
The results showed that the performance of screening Kalman gain is comparable as
the performance of localization mehods, but screening Kalman gain is more advanta-
geous in terms of generality for application and no assumption required for the prior
covariance.

1.4 Geostatistical methods for facies modeling

Facies are often important in reservoir modeling because the petrophysical properties of
interest are highly correlated with facies type. Knowledge of facies constrains the range
of variability in porosity and permeability. As we discussed before, however, the facies
modeling process is inherently complicated which is often the comprehensive result of
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elements like available data, software, geoscientist’s knowledge and experience, and
project goals. Many geostatistical tools have been developed to simulate the facies
distribution and facilitate the modeling process. In this section, we introduce several
typical geostatiscal facies modeling methods, some of which have been actively utilized
to adapt EnKF-like methods to history matching of facies with production data.

Conditional simulation was initially introduced to correct for the smoothing effect
produced by the kriging algorithm [25]. Unlike kriging that yields the “best” local
estimate of an attribute with minimum error variance, conditional simulation algorithms
reproduce global statistics and spatial features of the attribute such as a variogram,
training image and the like. A set of conditionally simulated realizations provides a
measure of uncertainty about the spatial distribution of the attribute. The simulation
process is described as conditional if it produces realizations that honor sample data at
their locations. Otherwise, the simulated results are called unconditional realizations.

1.4.1 Sequential Indicator simulation

Sequential indicator simulation (SIS) is a widely used technique for categorical vari-
able models. Let us consider a facies model which contains NF mutually exclusive
facies categories zk, k = 1, . . . ,Nf . The binary indicator variable i(u j;zk) at a particular
location u j for a particular facies zk is defined as the probability of facies zk prevailing
at that location:

i(u j;zk) = Prob{facies zk being present},
=

{
1 if facies zk is present at u j
0 otherwise

. (1.81)

The expected value E[i(u j;zk)] ∈ [0 1] is the marginal prior probability of facies zk,
denoted as pk. If pk is given, direct kriging of the indicator variable i(u j;zk) provides
an estimate for the probability of facies zk at location u j. For example, if the simple
indicator kriging is used, a model of uncertainty at unsampled location u is given by:

pIK[i(u j;zk)] =
n

∑
α=1

λα(k)[i(uα ;zk)− pk]+ pk, for k = 1, . . . ,Nf , (1.82)

where n is the number of all available data including the previously simulated values.
The computation of the weights λα requires a variogram measure of correlation for
each facies. Note that the estimated probabilities pIK(zk), k = 1, . . . ,Nf using indicator
kriging are not guaranteed to be non-negative and sum to one. So the negative value
needs to be truncated to zero and then the estimated probabilities are reset according to

p∗(zk) =
pIK(zk)

∑NF
k=1 pIK(zk)

, (1.83)

which ensures they sum to one. SIS algorithm is obtained by extending the principle
of sequential simulation to the indicator-based model of uncertainty. Algorithm 1.4.1
shows a general procedure of SIS for generating realizations of facies. Multiple real-
izations can be generated by repeating Algorithm 1.4.1 with a different random number
seed each time.
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Algorithm 1.4.1 SIS

1. Generate a random path and start the simulation from the first random location.

2. Search for nearby data and previously simulated grid nodes

3. Calculate the probability of each facies being present at the current location by building

the conditional distribution with kriging, e.g., Equation 1.82.

4. Draw a simulated facies from the set of probabilities.

5. Move to next grid node following the random path and repeat steps 2 ∼ 4 till all grid nodes

are visited

SIS is simple, flexible and able to constrain spatial continuity for each facies. How-
ever, it cannot account for ordering relationships between different facies types because
the indicator variogram is only a measure of probability of transition from the current
facies type to any other facies types. To reproduce facies ordering relationships, trun-
cated Gaussian simulation or multiple-point simulation (MPS) is favorable.

1.4.2 Truncated Gaussian simulation

The key idea with the truncated Gaussian simulation [84] is to generate realizations of
a continuous Gaussian variable and then truncate them at a set of thresholds to create
categorical facies realizations. Here, we use a 1D schematic example shown in Figure
1.1, to illustrate some basic concepts behind the truncated Gaussian simulation.

Figure 1.1: Schematic illustration of one Gaussian function using two thresholds.

In this 1D reservoir model of 150 gridblocks, each gridblock is assigned a random
Gaussian variable. Thresholds are set at -1 and 0.3 (i.e., red horizontal line in Fig. 1.1).
The plane is divided into three regions, each of which corresponds a type of facies.
Then gridblocks with Gaussian variables falling into each region are assigned the cor-
responding facies type. It is clear that a slight perturbation of the thresholds will first
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change the facies type of the grids at the boundary of facies regions. This figure also
reflects an important feature of truncated Gaussian simulation: the ordering of the re-
sultant facies models. It means that the facies represented by nonadjacent scales of
Gaussian values can never be in direct contact with each other in the facies field map.
This feature makes the truncated Gaussian simulation very suitable for reproducing fa-
cies where the ordering is evident and predictable. Meanwhile, however, the method
(single Gaussian random function is truncated) proves to be too restrictive, for exam-
ple, if there is no natural sequence in the facies or if certain facies can be in contact
with more than two facies.

In the truncated Gaussian simulation, there is a one-to-one relationship between the
facies proportions and the thresholds, once the order has been established. Assume that
the proportion of each ordered facies is known at each location u in the layer L, denoted
by szk(u), u ∈ L, k = 1, . . . ,Nf . The cumulative proportions is hence

cszk(u) =
k

∑
i=1

szk(u), (1.84)

where csz0
= 0 and cszN f

= 1. The NF − 1 thresholds for transforming the continuous

Gaussian variables to facies are given by

ιzk(u) =

⎧⎨⎩
−∞ k = 0

Φ−1(cszk(u)) 0 < k < Nf
∞ k = Nf

. (1.85)

where Φ−1(·) is the inverse cumulative distribution function for the standard normal
distribution. Given a Gaussian variable w(u) at u, these thresholds can be used to
assign a facies code:

facies at u ← zk, if ιzk−1
(u)< w(u)≤ ιzk(u). (1.86)

If the facies are stationary, the thresholds are constant in space; otherwise they vary.
In practice, the facies proportions can be obtained experimentally and then be used
to deduce the thresholds. The general procedure for implementation of the method is
summarized as below [100]:

Algorithm 1.4.2 Truncated Gaussian simulation

1. Determine the thresholds to honor facies proportions and ordering relations .

2. Infer a single continuous variogram to represent the spatial continuity of all the facies.

3. Compute a continuous simulation conditioned to the facies data which is transformed into

continuous variables, such as sequential Gaussian simulation.

4. Truncate the continuous Gaussian realization with the thresholds and obtain the categorical

facies realization.

Pluri-Gaussian simulation

Pluri-Gaussian simulation (PGS) [43, 71] extends the truncated Gaussian simulation
for multiple, non-nested, facies utilizing multiple Gaussian random functions. In most
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pluri-Gaussian applications, two gaussian random functions are used. The two ran-
dom functions can be either independent or correlated. The strength of the correlation
between these two functions controls the degree of ordering of the resultant facies re-
alizations. It is possible to use more than two Gaussian random fields but would add
much more difficulties to compute the variograms, to estimate the parameters and to
carry out the simulations [9].

Unlike the truncated Gaussian simulation in which the truncation is effectively de-
fined by the values of thresholds, the situation becomes more complex in PGS where
the truncation is represented graphically via the rock type rule [9] defining the relations
between the facies in a diagram. The choice of a rock type rule is therefore a major
step of the methodology. In practice, this is based on both the analysis of well logs and
on a geological conceptual model. It becomes more and more difficult as the number
of facies increases.

The thresholds and the variogram model of the underlying gaussian variables are
two key factors that control PGS. To compute the value of the thresholds precisely, one
needs to determine the relative proportions of the different facies that will be simulated.
If the facies field in nonstationary, these proportions are not constant and may vary
vertically and laterally because of the existence of trends in the geological processes.
The rock type rule is then locally updated by adjusting the values of the thresholds
to match the target proportions while preserving the respective positions of the facies.
Estimating the parameters of the variogram of underlying Gaussian variables involves
an inverse procedure which can be cumbersome.

PGS has demonstrated the flexibility and utility in being able to honor higher-order
connectivity relations in many applications. In particular, PGS has been utilized to
assist EnKF-like methods in history matching of geological facies. Because PGS pro-
vides an underlying gaussian framework for updating non-Gaussian categorical facies
variables, on which EnKF-like methods can be applied. More detail in this respect is
presented in Sections 1.5.1.

1.4.3 Multiple-point simulation

Among the stochastic methods for facie modeling, multiple-point simulation (MPS)
[110] stands in a special position. One the one hand, compared with previously men-
tioned stochastic methods which are all based on two-point statistics, MPS utilizes
multiple-statistics so that it can offer improved ability to honor more complex geolog-
ical concepts ( e.g., curvilinear features). On the other hand, because MPS is still a
cell-based simulation method, it preserves more flexibility to honor the conditioning of
data than object-based methods, although they are able to reproduce higher geologic
complexity and heterogeneity.

In MPS, reservoir heterogeneities are represented by a training image which pro-
vides a direct and intuitive way to estimate the spatial statistics of the reservoir. The
training image need not be locally accurate or conditional. It need only reflect a prior
geological concept and can come from different sources, for example, interpreted out-
crop data or a geologist’s judges. In addition, training images should be large enough
so that sufficient replicates of patterns are available to compute the local conditional
probability distributions by sampling the training image with a multiple-point template.
In practice, training images are usually generated using unconditional object-based or
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process-based simulation programs [100].

One commonly used implementation of MPS is the SNESIM algorithm [110]. The
introduction of the search tree is the technical breakthrough that makes SNESIM the
first practical implementation of MPS. The algorithm scans the training image using
a predefined data template to extract training image events. For every data event, the
algorithm searches for replicates of that event, then retrieve the corresponding condi-
tional probability, which is computed directly from the frequency of data events asso-
ciated with a specific occurrence at the central location of the template, divided by the
total number of data events. Once data events and their associated central values are
retrieved from the training image, SNESIM stores them in the search tree (a dynamic
data structure). The algorithm, then, follows a typical sequential simulation scheme,
visiting unsampled nodes using a random path and simulating these nodes conditional
on available original data and previously simulated values. The search tree is applied
to look up required conditional probabilities for all simulated nodes during simulation.

The utility of MPS for reservoir modeling has been demonstrated in various appli-
cations, and it is still experiencing ongoing development. As the core of the method,
how to select or generate training images is a major challenge.

1.4.4 Object-based simulation

Object-based simulation (see e.g., [100]) is a totally different framework for facies
modeling, in comparison with the cell-based simulation including all aforementioned
stochastic methods. It provides a direct control on large-scale geometry. So the fa-
cies models obtained with object-based methods are visually attractive because the re-
sulting facie realizations mimic idealized geometries interpreted in outcrops and high-
resolution seismic analogs. This is not possible with cell-based methods.

A fundamental assumption with object-based simulation methods is that the shapes
of the specific depositional unit are clear and can be characterized by parametric ge-
ometries. For example, a fluvial channel system may be composed of multiple channel
fills, levees, or a massive sand with shale lenses. All these architectures are converted to
parametric geometries, defined by length, width, depth and the like. In general, these
parameters are considered uncertain and may be related to each other. For example,
channel geometries may be characterized by a uniform distribution of length ranging
between an interval, while the width and depth of the channel are related to length by
certain ratios. After parameterizing the geometric objects, the next step would be how
to simulate with them. This is a major distinction with the cell-based methods, which
assign data to the model cells and proceed along a random path simulating at other
cells. However, object-based modeling initializes the model space with a background
facies and place geometries randomly until some criteria like a global proportion of
objects is met. The placement usually involves complicated statistical constraints.

There are many practical situations that are well-suited for object-based simulation
including stochastic shales, fluvial channels, and deep-water channels and lobes. The
main challenge in object-based simulation methods is the data conditioning which is
not automatic and guaranteed as is the case with cell-based methods.



36 Introduction

1.5 General approaches for handling non-Gaussian priors

Since ensemble-based data-assimilation methods using the traditional Kalman filter up-
date suffer from the constraints of Gaussian and linear assumptions, it is difficult to con-
dition geological facies to production data for history matching. There are many meth-
ods that have been proposed to overcome this challenge and it is still experiencing on-
going developments. Generally, the existing methods for dealing with non-Gaussianity
for ensemble-based data-assimilation methods can be categorized into two main ap-
proaches: parameterization and post-processing. In this section, we give a brief review
of previous applications of the EnKF to the problem of assimilating data into facies
models.

1.5.1 Parameterization

The main idea behind the parameterization approach is to apply a transform to the non-
Gaussian facies variables to obtain a different set of latent variables with appropriate
distribution that can be more easily updated using EnKF. Here, we introduce some
techniques that have been combined with EnKF for handling the problem of history
matching of geologic facies.

Truncated Pluri-Gaussian

As introduced in Section 1.4.2, truncated pluri-Gaussian method (TPG) for modeling
geologic facies is useful not only in generating a variety of textures and shapes, but
also in providing an underlying Gaussian framework that maps from a continuous state
space to a discrete state space (indicators) and honors the underlying covariances, cross-
covariances and facies proportions.

Liu and Oliver [77, 78] first introduced the use of TPG in combination with EnKF
for updating reservoir facies models and demonstrated the superiority of EnKF in the
history-matching problem of estimating facies boundaries over the gradient-based min-
imization method. In the TPG model, two Gaussian random fields (GRF) are used and
the truncation thresholds are defined by three randomly generated intersecting lines,
which divide the plane into seven regions indicating that up to seven different kinds of
facies can be modelled with appropriate relative percentage. Facies are hence assigned
to each gridblock depending on the region of the truncation threshold map occupied by
the two GRFs. Liu and Oliver [78] suggested using the GRFs in the state vector instead
of the petrophysical properties (permeabilities and/or porosities) because the GRFs are
more consistent with the Gaussian assumptions required by EnKF and the geological
realism is preserved as well. In their study, the geological model consists of three facies
and is fully specified by the threshold truncation map and the covariance models for the
two GRFs. All the parameters of the stochastic model are assumed to be known, and
the petrophysical properties are distributed homogeneously within each facies. Both
hard data (i.e., facies observations at the wells) and production data are considered in
the experiments. Because the facies data are nonnumerical, they proposed a solution
by replacing the simulated facies with the facies mismatch f , which is equal to zero
if the simulated and real observed facies types are identical and is equal to one other-
wise. This strategy also ensures that all facies mismatch terms are equally weighted in
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the analysis step. The results proved the usefulness of the method in solving reservoir
history matching problems with geologic facies

Based on the work by Liu and Oliver [77, 78], Agbalaka and Oliver [2] extended
the application to a 3D reservoir with greater nonlinearity in the production data, and
investigated some key issues related to the difficulty in applying the history matching
to facies. First, to better handle the assimilation of facies observations and production,
they propose a sequential global assimilation scheme in which production data are inte-
grated first and facies data afterward in every analysis step. An iterative enforcement is
only applied to the facies data to achieve a perfect match of facies observations at well
locations, where the state vector is reformulated excluding the dynamic state variables
(i.e., saturation and pressure). In doing so, they seem to solve the problems of improper
weighting of the production data and inappropriate adjustments to the state variables.
Second, they apply the localization to the Kalman gain matrix through a Schur product
using a Gaspari-Cohn damper function, which turned out to be effective in reducing the
need for very large ensemble size and the risk of excessive reduction of variance in the
ensemble, as previously observed in [77, 78].

Zhao et al. [125] proposed a different approach to ensure that facies observations at
wells are honored at each data assimilation time. The procedure consists of redoing the
EnKF analysis step with pseudodata whenever the normal EnKF update violates the
observed facies. These pseudodata are the pairs of GRF values which are derived to
be as close as possible to the currently updated values but also are consistent with the
observations of facies. In addition, they used two different truncation maps in the TPG
model to generate facies realizations, one of which is the same as the one introduced by
Liu and Oliver [77, 78] and the other is defined by two intersecting ellipses shown to be
able to model the connectivity of a channelized reservoir. An iterative EnKF is applied
to assimilate production data together with seismic data into these facies models, which
shows better data match and reliable predictions compared to the standard EnKF or only
production data used. Zhao et al. [125] also, for the first time, shows the possibility of
jointly updating the facies and the petrophysical properties for each facies, although
they assumed that each facies is homogeneous and that permeability is isotropic.

Following this direction, Agbalaka and Oliver [3, 4] described a method for updat-
ing both the facies variables and the petrophysical properties with the EnKF, where
both heterogeneous petrophysical properties and non-stationary facies proportions are
considered. The approach is based on the use of pseudoproperties of the facies which
allows consistent updates to the multimodal petrophysical properties and the GRFs that
parameterize the facies. To address the problem of getting stuck in a local minimum
during the iterative loop for constraining the mismatch of facies observations, they
propose to add random perturbations to the facies proxies (i.e., facies mismatch f ) to
compensate the loss of variability so that the data match can be obtained. Compared to
two alternative approaches based on adjusting only GRFs or petrophysical properties
directly, the results show that the pseudoproperties approach is better in obtaining geo-
logically plausible models with acceptable matches to production data. Moreover, they
observed that the assumption of stationarity or nonsationarity for facies estimation dur-
ing history matching appears to be trivial, when the correlation lengths and direction
of anisotropy are specified correctly. The facies model in this paper is generated from
the truncated Gaussian simulation, but the proposed method can be used with other
simulation algorithms like the TPG.
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Astrakova and Oliver [11] used the pseudoproperties approach for joint updating of
permeability and facies variables where they considered the problem of history match-
ing of 3D TPG models with strongly correlated hard data. The synthetic model consists
of 5 different facies and 22 layers. Rectangular truncation maps [9] are used and vary
vertically to honor the facies proportions. In order to preserve the match of a large
amount of hard data at well locations, different from [2, 78, 125], they adopted the
interior-point formulation on the objective function by expressing the hard data con-
ditioning as a set of inequality constraints on the model parameters associated with
well locations. The derived update equation is similar to the LM-EnRML. The results
showed that the data match of facies observations at well locations are maintained dur-
ing the iteration by adjusting the weight of the interior-point penalty term.

Sebacher et al. [107] constructed a truncation map for three facies using two GRFs
from a probabilistic approach. The probabilities field for the occurrence of each facies
is introduced into the TPG model by transforming the GRFs through a projection func-
tion. They derived two equivalent truncation maps in the two fields by honoring the
maximization criterion, that is assigning each gridblock a facies type with the highest
occurrence probability in that gridblock. The truncation map depends only on two pa-
rameters which, if changed, do not perturb the geometry of the map but can alter the
facies proportions. So the truncation parameters can be introduced in the state vector
to improve the estimation process and the description of uncertainty. In addition, the
observation operator of the facies types at the well locations measures the occurrence
probability of each facies type which appears to show more flexibility than the proxy
function. However, this method assumes that any two of the three facies have a contact
and seems difficult to be extended to model more complex geology.

It is clear that great progress has been made in the application of TPG model in
combination with EnKF for the history matching of geologic facies. Especially, the
research proceed taking more and more realistic aspects of the problem into account.
However, there are some disadvantages of the TPG method that limit its utility in some
situations. For example, it is difficult to determine truncation maps and correlation
structures of the GRFs that are suitable for very complex reservoirs such as meandering
channels, or carbonate systems.

Level set

The level set method was originally introduced by Osher and Sethian [98] for study-
ing surface motion problem. Moreno and Aanonsen [88] first combined the level set
method with EnKF to condition facies models to production data.

For a region Ω(τ), the level-set function φ(x,τ) is commonly defined as a signed
distance function ⎧⎨⎩ φ > 0 φ ∈ Ω

φ = 0 φ = Θ(τ)
φ < 0 φ /∈ Ω

, (1.87)

where τ denotes the time variable and Θ(τ) represents the boundary of the domain
Ω(τ), which corresponds to the zero level set of the function φ . The evolution of the
level set function can be described by a partial differential equation,

∂φ(x,τ)
∂τ

+V |∇φ(x,τ)|= 0. (1.88)
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The velocity term V contains the available information on texture and structure within
the image which informs the algorithm on how, in what direction, and at what speed
the interface Θ(τ) should be relocated. Therefore, a proper choice of V is crucial
for the level set method which would reflect the important information for edges and
connectivity [102]. In the context of facies modeling, Θ(τ) represents the boundary
between two different facies types. Since the resulting function is not necessarily a
signed distance function after evolving the level-set function with (1.88), the reinitial-
ization equation [97] is usually used

∂φ(x,τ)
∂τ

+ sgn[φ(x,0)](|∇φ(x,τ)|−1) = 0. (1.89)

Moreno and Aanonsen [89] assumed that there exists a template model based on
which level-set functions are derived. The template model may either be an initial best
guess model or a more generic model representing prior knowledge of facies distribu-
tions. The boundary velocity is modeled as a GRF and different realizations of velocity
give different reservoir facies models. Hence, the initial ensemble of facies realiza-
tions is generated by Gaussian perturbations of the original level-set function of the
template model. The GRFs, instead of porosities and/or permeabilities, are updated
by EnKF while matching the production data. This ensures better agreement with the
Gaussian assumptions of EnKF. At each analysis step, the new updated velocity fields
(i.e., GRFs) are applied to the same original level-set function to get new realizations.
The authors have tested their approach on two 2D synthetic models composed of two
and four facies respectively. The petrophysical properties such as permeabilities and
porosities within each facies are assumed known and constant. The results showed rea-
sonably good match to measured data and strong similarities with the reference model
in some experiments. However, because only perturbations of a fixed based model are
updated instead of the signed distances directly, the results of this method somehow
depend on the quality of the template model. Chang et al. [16] proposed a different ap-
plication of the level-set parameterization in the EnKF for history matching of facies.
They predefined a representing node system, on which the values of level-set func-
tion are treated as Gaussian random variables with known distribution, and the sign
of the level-set function determines the facies type at the nodes. Then, using a linear
interpolation procedure, the values of level-set functions at the other grid nodes are ob-
tained. The values of level-set functions at the representing nodes are updated using the
EnKF. This approach is applied to 2D reservoir with two or three facies. For the case
with three facies, two level set functions are used and the facies models are constructed
based on the combination of the signs of those function values. It is demonstrated that
this method is able to capture the main features of the reference facies distributions.

In Lorentzen et al. [81], a signed distance function is defined as: (1) the value of the
function is the shortest euclidian distance from each grid node to the boundary sepa-
rating facies types; (2) the sign of the function differentiates two different facies types.
By directly updating the distances with EnKF, the proposed method allows the initial
ensemble to be generated using any suitable geostatistical tool, which provides more
flexibility on quantifying the prior uncertainty of facies distributions compared with
[89]. In addition, the authors proposed several techniques for improving the results
including boundary treatment and conditioning on specific statistical measurement of
prior distribution. The conditioning of facies observations at well locations is also pre-
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served. The methodology is evaluated in two synthetic models with channel structure
where the initial facies realizations are generated by SNESIM, and gives promising re-
sults. Lorentzen et al. [82] extended the method to handle multiple facies by assigning
each facies type a level-set function. The facies type in a given grid node is determined
by the maximum of the distances in this grid node.

One limitation on the multiple facies parameterization with two or more level-set
functions in [16, 89] is that it is difficult to estimate the facies models in which all
types of transitions between facies types occur. Mannseth [83] proposed a hierarchical
level-set representation which avoids the aforementioned topological constraints and
Lien and Mannseth [75] first applied the method in conjunction with the HIEnKF [118]
to the problem of facies estimation in 2D and 3D synthetic models. More importantly,
Mannseth [83] compared the level set and TPG for facies representation and revealed
that there exist strong similarities between these two methodologies.

Other approaches

Jafarpour and McLaughlin [65] introduced the use of the discrete cosine transform
(DCT) for geological reservoir parametrization to reduce the number of parameters
that must be updated, and to improve the representation of facies geometry. The DCT
originates from images processing and is widely used for image compression. It is a
Fourier related transform that uses orthonormal cosine basis functions for representing
an image, in the context of history matching, which can correspond to the spatial distri-
bution of model parameters or state variables. Jafarpour and McLaughlin [65] showed
the powerful compression property of DCT using several examples, in which the DCT
allows for retaining only a few basis functions to give a reasonably good approxima-
tion. The authors combined the DCT with EnKF for history matching and evaluated the
approach in a 2D channelized reservoir with two facies. The coefficients of the retained
cosine basis functions representing the permeability field are updated instead of perme-
ability. The updated gridblock permeabilities are then constructed from the updated
coefficients. The results suggest that the DCT approach improves the ill-posedness of
history-matching problems and reproduction of the spatial continuity of geological fa-
cies. Based on similar idea, Jafarpour [63] investigated the wavelet parameterization
for the inverse problem of reconstructing geologic facies from the dynamic multiphase
flow observations using EnKF.

Since the distribution of petrophysical properties within distinct facies in a reservoir
are typically multimodal, Dovera and Della Rossa [27] extended the EnKF to sample
from the Gaussian mixture models (GMM). The GMMs are models in which the PDFs
of model parameters are parametrically described as weighted sums of Gaussian PDFs
[54]. For linear inverse problems, with GMM prior and Gaussian likelihood, the pos-
terior PDF is also a GMM. To combine the GMM with EnKF, Dovera and Della Rossa
[27] reformulated the EnKF update equations assuming Gaussian mixture priors and
derived an analogous expressions for the GMM update. They proved that the updated
ensemble is a correct sample of the posterior Gaussian mixture distribution, under an
assumption of a linear inverse problem. The method was tested in the Lorenz model
and a 2D synthetic reservoir example with two facies types, both of which showed im-
proved performance in estimation of the posterior distribution and the uncertainty. Hu
et al. [62] parameterized geostatistical models generated by MPS using the underlying
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uniform random field that is used to draw the local conditional probability in the MPS
model. After transformation into Gaussian random fields, the values are updated in the
EnKF. The method was evaluated on a 2D synthetic channelized reservoir problem us-
ing a small number of parameters and the results provided plausible facies realizations
of channels with improved match to production data.

Other approaches to the problem of updating reservoir models with facies have been
focused on inclusion of higher moments in the updating equation. In Sarma and Chen
[104], the kernel principle component analysis (kernel PCA) is used to derive a gen-
eralized EnKF (KEnKF) that is capable of representing non-Gaussian random fields
characterized by multi-point geostatistics. The basic idea is to map the data in the input
space (state space of the EnKF) to a so-called feature space through a nonlinear map,
and then apply a linear algorithm in the feature space, which is chosen such that the lin-
ear algorithm is more appropriate to be applied than the input space. Sarma and Chen
[104] developed computationally efficient expressions for the nonlinear update equa-
tions and nonlinear Kalman gain, where the polynomial kernel [106] is used although
it is not limited to this kernel function only. The approach was applied to two synthetic
examples based on MPS, and the results indicate that as the order of the kernel is in-
creased, important geological features are better reproduced by the updated ensemble,
however, there exists a balance between geological realism and quality of data match.
The KEnKF was then further extended by Sarma and Chen [105] to efficiently han-
dle constraints on the state and other variables of the reservoir model that arise from
physical or other reasons.

1.5.2 Post-processing

Contrary to the parameterization approach, ensemble-based data-assimilation methods
can be used to adjust the model variables directly, ignoring their non-Gaussian distribu-
tion. After updating, it would then be necessary to apply a post-processing step to the
variables to ensure that the values are consistent with the prior probability distribution.
This type of approaches has some practical advantages. In particular, it is sometimes
useful to be able to update geological reservoir realizations that have been created from
a very general stochastic algorithm. Post-processing of EnKF results is particularly use-
ful when the prior model is uncertain, or when it contains hyperparameters that have
uncertainty.

Oliver et al. [93] proposed a modified RML algorithm to sample conditional real-
izations from models with non-Gaussian priors on the model variables. The objective
function in the algorithm consists of two components in a product form. The first com-
ponent is a ratio of the prior PDF to its Gaussian approximation, which captures the
non-Gaussian relationships in the prior probability density that are otherwise ignored
in the EnKF. The second component is equivalent to the standard RML in which the
prior distribution for the model variables is Gaussian. So it can be obtained from the
EnKF or other ensemble-based data-assimilation methods. When the prior PDF of
model variables is Gaussian (the first component equals 1), the modified RML is the
same as the standard RML. The specific implementation of the methodology is then di-
vided into two steps: (1) data assimilation using EnKF without regard for the discrete
nature of the variables, or the probability of transition from one state to another; (2)
projection of the updated model variables back to the discrete state space based on the
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Viterbi algorithm. Oliver et al. [93] demonstrated the application of the method in a 1D
nonlinear fluid flow problem for Markov-chain models and obtained promising results.
However, the extension of the methodology to 2D and to multiple facies levels requires
a more general modeling method and an efficient optimization algorithm, where the
Viterbi algorithm is not directly applicable in higher dimensions. Our work presented
in this thesis can be seen as the 2D/3D extension of this methodology.

Jafarpour and Khodabakhshi [64] presented a data assimilation method using the
EnKF to condition MPS realizations of geologic facies. The initial ensemble of un-
conditional facies realizations is first drawn from the training image conditioned on
a uniform probability map and equal weights, in which the permeability is assumed
to be constant within each facies. The gridblock log-permeabilities are then updated
with EnKF analysis equations. They propose, at each data assimilation time step, to
update the ensemble of log-permeability fields whose mean field is used to derive a fa-
cies probability field, then to use the MPS algorithm to generate a new ensemble of
log-permeability fields conditioned to the facies probability field for the next data as-
similation time step. With this method, the dynamic data are actually used as a soft
constraint for generating MPS realizations. The final ensemble has a realistic geometry
structure with a reduced data mismatch. However, the variability and the randomness
introduced by the MPS model does not ensure a good data match for the regenerated
ensemble members. As pointed out in [64] that a reliable training image is critical
for the history matching problems using the proposed method, Khodabakhshi and Ja-
farpour [68] generalized the method to the use of multiple uncertain training images
based on a Bayesian mixture model.



Chapter 2

Introduction to the papers

Several research papers have been produced as a part of this study. In this chapter,
we provide a brief summary of these papers. The specific detail about each paper is
presented in the later sections (2.4-2.7).

2.1 Summary of Papers A and B

Paper A
Title: Data assimilation using the EnKF for 2-D Markov chain models
Authors: Yanhui Zhang, Dean S. Oliver, Yan Chen and Hans J. Skaug

Paper B
Title: Data assimilation by use of the iterative ensemble smoother for 2D facies models
Authors: Yanhui Zhang, Dean S. Oliver, Yan Chen and Hans J. Skaug

In Paper A, we develop an ensemble-based data-assimilation method for updating reser-
voir models containing facies variables using production data. The method takes ad-
vantage of the efficiency of the ensemble-based methods for data assimilation, while
removing some limitations on multi-Gaussianity of the distributions. In the proposed
method, model parameters are first updated using the standard EnKF without regard to
the categorical nature of the facies variables, or the discrete distribution of permeability.
The realizations in the updated ensemble from the EnKF usually match the production
data very well, but do not honor prior constraints on the distribution of properties. To
correct for this, an optimization step is used to project the updated ensemble members
back to discrete variables by maximizing the product of the prior probability, which
only allows discrete variables, and an ensemble approximation of the likelihood func-
tion, which penalizes models that do not match data. Because the optimization step
is non-iterative and is applied to each ensemble member independently (easily paral-
lelized), the proposed method is quite efficient. Paper A was presented at 13th European
Conference on the Mathematics of Oil Recovery in Biarritz, France.

The methodology is based on a modification of the RML algorithm and consists of
a series of steps as follows:

1. Generation of initial ensemble. One advantage of the proposed methodology is
its flexibility on the generation of facies models from which arbitrary method
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can be used. In this paper, we generate the initial ensemble using the SNESIM
algorithm.

2. Modeling of prior probability. Ideally, the methodology would work best when
the stochastic mode to represent the prior probability is consistent with the model
used to generate the initial ensemble. However, it is of practical importance if
the results after updating are good even when the two models are different. This
point is better illustrated in Paper B where both conditions are evaluated in the
experiments. In both of these two papers, a maximum entropy model (bivariate
transition probability function) is used to represent the joint probability of the
prior facies model.

3. Continuous updating of petrophysical properties. In Paper A, the standard EnKF
is used to update reservoir variables for consistency with production data. Be-
cause the facies estimation problem often involves large nonlinearity, the standard
EnKF would fail to work and hence iteration is necessary. In Paper B, we adopt
an iterative ensemble smoother (LM-EnRML) to improve the model update and
data conditioning.

4. Optimization for projection onto prior pdf. We develop an sequential optimiza-
tion algorithm without iteration, in which the facie type within each gridblock is
determined sequentially to maximize the posterior probability given the approxi-
mate prior ( from step 2) and likelihood ( from step 3).

In Paper A, we demonstrated the approach with conditioning two synthetic channel
models with two facies types to both linear and nonlinear observations. The results
showed that the distribution of facies after data assimilation honors data much better
than before assimilation, and the transitions among facies are consistent with the prior
model.

Paper B is an extension of Paper A and includes some improvements on the pro-
cedure and deeper evaluation of the methodology. Apart from the aforementioned
changes in Paper B, we also introduced the use of graphical lasso algorithm to esti-
mate the posterior covariance which is required in the optimization step.

The methodology was tested with four 2D history matching problems. Two dif-
ferent types of geological models are considered. The first three test cases are typical
binary channelized facies models, which are not geologically complex, but are highly
nonlinear so that the data are highly sensitive to facies in a few cells in addition to be-
ing sensitive to averages over large regions. The emphasis of the first two examples is
on the influence of the data on the performance of the proposed method: one example
has sufficient data such that the location of facies boundaries is relatively well deter-
mined, the second example includes a region at which data provide little information.
The third example investigates a case in which channel width is reduced so that the ap-
proximation of the prior probability based on two points statistics is not particularly
good. In the three channel examples, the initial realizations are generated using a dif-
ferent stochastic model than the one used in the optimization step. The final example,
a three-facies model of sand dunes, illustrates the properties of the methodology when
the model used for generation of the initial ensemble and for optimization/projection
are consistent. In all cases, the only unknown variables are the facies type in each grid
cell and the only data are production data.
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The methodology worked well when applied to four test cases. We investigated the
use of both truncated singular value decomposition and the graphical lasso. In general,
better results were obtained from the graphical lasso method, which encourages sparsity
of the estimate and eliminates correlations between variables.

The results also showed that the maximum entropy model worked quite well for
channels when the dimensions of the channels were large compared to well spacing
(examples 1 and 2), but resulted in loss of continuity when channels were meandering
and thin (example 3). Best results are obtained if the same probabilistic model can be
used for generating initial realizations and for optimization (example 4, in which the
maximum entropy model is used for both).

2.2 Summary of Paper C

Title: Beyond the Probability Map: Representation of Posterior Facies Probability
Authors: Yanhui Zhang, Dean S. Oliver and Yan Chen

In Paper C, we present another data assimilation method for the problem with categor-
ical variables. The methodology consists of two major steps, an assimilation step and a
post-processing step. At the assimilation step, the model variables are updated directly
with observations using the EnKF-like methods without honoring the discreteness of
the model variables. This is similar to the methodology proposed in Papers A and B.
At the post-processing step, however, a penalty term forcing model variables to take
discrete values is jointly minimized with the distance to the posterior realizations to
solve for facies models that match data. The distance to posterior realizations is quan-
tified using the ensemble approximation of the posterior covariance, which represents
the joint probability of model parameters. The proposed method is compared with the
probability map approach in terms of the preservation of data conditioning. Paper C
was presented at 14th European Conference on the Mathematics of Oil Recovery in
Catania, Sicily, Italy.

In this work, we considered a binary field (e.g., 2 facies types) and utilized the prior
information of the discrete nature of model variables by adding a penalty term into the
objective function to enforce the binary constraints during the optimization. Using the
Gauss-Newton method, we derived an update equation for the minimization of the ob-
jective function, which is similar to the EnKF update equations. In the standard EnKF
updating formulas, the posterior realization is a linear combination of the realizations
from the initial ensemble. In a similar way, we observed that the updated realization
with the derived update equation is actually a linear combination of the posterior real-
izations. If no localization was used in the original data assimilation, then the updated
realization after the post-processing step must be a linear combination of initial realiza-
tions. As a result, localization of the covariance was used in the minimization step. In
this case, localization is not necessary to prevent ensemble collapse, but only necessary
to provide sufficient degrees of freedom to incorporate the binary constraints.

In another type of post-processing approach, the probability map is inferred from
the updated mean of the ensemble using a linear transformation function and then in-
corporated into a resampling process attempting to retain the data match of the regen-
erated realizations. Data matches obtained in this method are generally poor, however,
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because the probability map neglects important joint probabilities of model parameters
imposed by flow data. To illustrate the importance of preserving the correlation infor-
mation captured by the posterior ensemble, the proposed method is compared with the
probability map approach in three synthetic cases with a focus on the aspect of the data
match. All the results in the three examples show better data matches for the proposed
post-processing approach which attempts to capture the data information not only from
the marginal probabilities for each model variable but also the important joint proba-
bilities between model variables.

2.3 Summary of Paper D

Title: Ensemble Updating of Geologic Faceis with Curvelet Regularization
Authors: Yanhui Zhang, Dean S. Oliver, Hervé Chauris and Daniela Donno

In Paper D, we focus on the use of the curvelet transform to reduce the noise from
the posterior realizations after the assimilation of production data with ensemble-based
methods. Curvelets provide an almost optimal sparse representation of objects with
edges, making them well-suited for denoising estimated geologic facies distributions.
The denoising of the updated model variables is implemented in the curvelet domain by
minimizing an objective function which promotes the sparsity of curvelet coefficients.
Because preservation of the data match is an important measure of the performance of
the denoising method, the role of the approximation of the inverse posterior covariance
is examined in the minimization.

An iterative ensemble smoother (LM-EnRML) is used to condition model variables
to production data in a straightforward way. The posterior covariance is estimated from
the updated ensemble as a measure of posterior PDF. In order to examine the ability to
maintain a good data match while denoting the image with a curvelet representation two
different objective functions are evaluated. The first objective function, without the in-
verse posterior covariance, neglects the correlations in model variables that result from
assimilation of production data, and is analogous to the one used in the basis pursuit
denoising problem in image processing. This approach allows us to look into the de-
noising behavior of curvelets from the relationship between the sparseness of curvelet
coefficients and the data mismatch of corresponding reconstructed realizations. The
ensemble approximation of the inverse posterior covariance is added into the objective
function in the second approach to measure the deviation from the posterior realiza-
tions. Here we focus on the improvement of the preservation of data match after the
curvelet shrinkage. An iterative shrinkage scheme is then implemented on the curvelet
coefficient domain of the updated model variables to minimize the objective functions
to reduce the incurred noise from the data-integration process.

We examined the proposed approach in a synthetic 2D binary channelized facies
model. The first experiment was focused on inspecting the efficiency of curvelets in
representing the facies fields with channels. The second example considered a history-
matching problem in which the curvelet transform was used to reduce the noise from the
posterior realizations obtained by integration of production data with LM-EnRML. The
results showed that curvelets are useful for denoising of posteriori images of channels
after history matching, but lose data match unless the covariance is included. In that
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case, the data match remains relatively good, but not as good as achieved at the end of
history matching.
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