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Abstract

The rapid growth in the mobile communications technology and wide cellular coverage
created an opportunity to satisfy the demand for low-cost health care solutions. Mo-
bile Health (a.k.a. mHealth) is a promising health service delivery concept that utilizes
mobile communications technology to bridge the gap between remotely and sparsely
populated communities and health care providers. So far, several mHealth applications
have been developed and deployed in the field. Among those, a digital information
gathering and dissemination system using mobile devices is the main focus of this
work. This type of mHealth system is called Mobile Data Collection System (MDCS).
Although MDCS succeeds over traditional paper form based data collection; it has also
brought unique challenges such as data security in mobile communications technol-
ogy. Despite MDCS are often used to collect sensitive health-related data, more work
was needed to address security issues like confidentiality, integrity, availability and au-
thentication to secure sensitive health related information in storage, data exchange and
processing.

When we began this work, Java ME enabled feature phones, that dominated the
scene for a decade, were the choice of most MDCS. At that time, in collaboration with
our partner project, we proposed a secure custom protocol. The protocol has been
implemented, tested, and integrated into our reference MDCS. We have confirmed the
flexibility of our secure solution by retrofitting the existing openXdata system with user
authentication, secure storage and communication solutions by modifying only a few
lines of code in the client-server application.

However, in the past few years, the explosion of new mobile platforms and cloud-
based services became game changer in our work. The move from feature phones to
smartphones brought to the table the need to reevaluate, redesign, and port our earlier
secure solution to smartphones based MDCS by considering the unique features and
challenges of both smart phone clients and cloud-based server-side deployments.

In this dissertation, we analyze the challenges in securing mobile data collection
systems deployed in remote areas, in resources-constrained environment, and in low
project budget settings. We present a flexible and secure framework that offers user
authentication both online and off-line, secure mobile storage, secure communication,
and secure cloud storage. Besides, the framework provides data integrity, user account
and data recovery, and multi-user management and is designed to be easily integrated
in existing MDCS with minimal effort. Although fundamental security issues are con-
ceptually identical in both old feature phone and current smartphone based solutions,
our framework and the proposed solutions address the unique aspects of both mobile
platforms. We also discuss the solution we designed for older Java ME based devices,
and how they are still relevant. For this work, we collaborated with the open-source
MDCS, openXdata and Open Data Kit (ODK).
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1
Introduction

In the last decade, mobile technology have presented an alternative way of information
dissemination and gathering. This potential has attracted individuals and organizations
including researchers, governments, non-governmental organization (NGOs), donors,
and standard and regulatory bodies. Mobile Health (mHealth) one of the innovations
that emerged from these group collaboration efforts. mHealth try to leverage mobile
communications technology to tackle health care challenges in developing as well as
developed countries. However, mHealth also brought a range of unique challenges.
One of the challenges is information security, which in the case of mobile technology is
taken to a whole new level compared to traditional computers based electronic medical
record systems.

This chapter introduces the mHealth system and its ecosystem and security chal-
lenges and briefly discuss the candidate’s motivation, and the scope of the research. In
the next section, we discuss Electronic Health (a.k.a eHealth) and mHealth.

1.1 eHealth and mHealth

According to [34, 39, 133], eHealth is defined as the use of information and commu-
nication technology (ICT) to improve health and health-care systems. Moreover, ICT
is defined as a term used to encompass all technologies including telecommunications
(both wired and wireless), Internet, computers, software, and storage media which en-
able users to create, process, store, access, transmit, and manipulate information1. The
term eHealth has emerged together with eBanking (electronic banking), eCommerce
(electronic commerce), and eFinance (electronic finance). These all together reshaped
the service delivery landscape around the globe. eHealth systems are designed and de-
veloped using traditional server and desktop based applications, deployed on comput-
ers, and accessed through Internet infrastructure and other similar technologies. Several
standard and regulatory bodies supported the eHealth to grow by building trusted rela-

1What is ICT: https://ci.uky.edu/lis/ict/whatisict
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tionship between service providers and consumers through standards and regulations.
Some of such standards are: the Health Insurance Portability and Accountability Act
(HIPAA) (first outlined in 1996), Federal Trade Commission Act [133], FDA guid-
ance for computerized Systems used in Clinical Trials2, Omnibus data protection in
European Union and Australia, and others [18, 133]. Since the advancement of mo-
bile communications technology, services that use Internet infrastructure with the sup-
port of computers are being customized to the mobile environment. Services such as
mBanking (mobile banking), mCommerce (mobile commerce), mFinance (mobile fi-
nance), and mHealth (mobile health) have emerged to advance the traditional services
using mobile technology. Financial systems such as mBanking and mCommerce have
already gained an enormous success. The health care sector is also trying to tackle
outstanding challenges using mobile technology.

Thus, the broader definition given to eHealth makes mHealth as an emerging part of
the eHealth infrastructure. The American National Institutes of Health defined mHealth
as the delivery of health-care services via mobile communication devices 3, and while
the idea of using mobile devices to provide health care related services is a very conve-
nient prospect in industrialized countries, it is having much greater impact on the health
care system of low-income countries. In fact, health care in these nations can be scarce
or difficult to access due to restraints such as limited resources, finances and health-care
workforce, and because of parts of the population living in remote locations. High mo-
bile phone penetration makes mHealth a viable option for providing better health care4

5 through mHealth systems [81, 134].

1.2 mHealth in developing countries

mHealth intends to provide basic health services to unserved and underserved com-
munities in low-income countries. Even though mHealth began in the context of low-
income countries, industrialized countries have also shown interest [37] to use mHealth
as a tool reduce expenses and offer personalized health care through remote monitor-
ing and diagnostic tools. A typical example is the use of biosensors for the continuous
remote monitoring of chronic diseases [103, 106]. The reason why these sensor tech-
nology is not yet widely deployed also in low-income countries is the rare availability of
low-cost sensors. What is instead available are exceptionally low cost diagnostic tools
like Rapid diagnostic test (RDT) toolkit for HIV and malaria, which costs less than a
quarter of a dollar per a single use 6, and although they have nothing to do with mobile
technology, some mHealth tools can still be used to efficiently collect and transmit the
results of such tests.

However, mobile phone manufacturers have understood the potential impact of sen-

2FDA, Guidance for Industry, Computerized Systems used in Clinical Trials, http://www.fda.gov/OHRMS/

DOCKETS/98fr/04d-0440-gdl0002.pdf
3mHealth Definition: http://caroltorgan.com/mhealth-summit/
4mHealth Services: http://www.grameenfoundation.org/blog/mobile-technology-provides-

lifesaving-tool-race-ebola-vaccines
5mHealth Service: http://www.uib.no/en/cih/72461/using-mobile-phones-track-

immunizations
6Rapid Diagnostic Tool, [Last Accessed: January 2015], http://www.alibaba.com/showroom/malaria-

rapid-diagnostic-test-kit.html
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sors and are embedding different types of sensors in the smart-phone platforms. Some
sensors already appearing in mobile platforms are accelerometers, digital compass,
proximity sensor, gyroscope, GPS, microphone, and camera [68, 81]. Based on the
growing research and development in this area, there is strong indication that biosen-
sors will also be an integral part of ordinary cell phone and smartphone platforms [68]
7 or new wearable gadgets 8 in the near future. Sensors embedded in mobile phones
can in addition benefit from better computing power, speed and memory as compared
to standalone sensors. Still, there are some obstacles to this integration. For instance,
the level of expertise required to develop a mobile sensing application, security and pri-
vacy policies, and possibly low bandwidth. Besides, if data from the sensor is also to
be processed on the device in order to meet the quality standards that are expected by
medical or other instrumental records 9 10, then even a smartphone might not have high
enough computing power for this kind of computation. So, assuming that the techni-
cal challenges will be solved and biosensors are going to be part of commercial mobile
devices, that of developing a mHealth application based on them will have to be a par-
ticipatory design process where all stakeholders (for instance: policy makers, users,
service providers, product vendors) are involved.

As of this writing, not much research has been published on how to solve some
of the listed technological challenges, but some activities exist. Regarding security
in resource constrained environment with low budgets, the candidate work including
this thesis and a previous publication in collaboration with the Council for Scientific
and Industrial Research in South Africa (CSIR) [47] and the SecourHealth framework
[76] are some of the few existing results. When it comes to the problem of sensor
technology and data processing, there are promising research activities at the CSIR,
while the Open Data Kit (ODK) community aims to minimize the technical expertise
needed to develop mobile sensing application through a mobile sensor framework [15].
Still, a great deal of work is needed to achieve a real and usable integrated mobile
platform for biosensors.

1.3 Mobile Data Collection (MDC)

As a result of the situation described in the previous section, mHealth systems in low-
income countries have not yet considered the use of sensors technology as an automated
way of gathering medical data from individuals in the field. Instead, the systems lever-
age human operators that input collected data into mobile devices manually. Hence,
in this dissertation, we consider mHealth systems where data is entered by human col-
lectors (aka data collectors), and we are not considering the situation where a sensor
is feeding data to a remote server or device, or that a monitoring program is installed
on the mobile device and its correct operation must be guaranteed at all times as in
considered by other research [124]. The collected data is also not thought to be read-
ily accessible to health-care providers, or in general to be offered as a service. Data is

7Sensors for Health Care, [Last Accessed: April 2015], http://www.sensorsmag.com/specialty-

markets/medical-devices/sensors-help-advance-health-care-856
8iWatch, [Last Accesed: April 2015], https://www.apple.com/watch/
9http://www.hhs.gov/ocr/privacy/

10http://www.fda.gov/
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rather stored in a central repository which is not necessarily connected to any medical
system that health operators can access. In general we are not concerned with medical
record systems with patient journal that need to be update, retrieved and protected from
unauthorized disclosure either, although similar problems may be relevant for some of
our scenarios.

The particular area of mHealth that deals specifically with data collection as we de-
scribed it here, is identified in a report by the United Nations Foundation and Vodafone
Foundation [134] and it is called Mobile Remote Data Collection or MDC from here
on. Nevertheless, almost all specialized mHealth applications incorporate data collec-
tion processes directly or indirectly. Therefore, the work presented here is applicable
also in any context where secure framework is required to protect data at rest and in
transit, although initially developed specifically for Mobile Data Collection Systems.
In the next section, we discuss the computer security which eHealth security standards
and regulations is built on and present unique challenges in mHealth work space that
requires independent security analysis and solution.

1.4 Security in health related systems

The basic security principles one shall ensure in information systems are confidential-
ity, integrity, and availability of data (CIA) in any possible circumstances. FIPS PUB
199 [40] defines these security objectives as follows:

Confidentiality: "Preserving authorized restrictions on information access and disclo-
sure, including means for protecting personal privacy and proprietary informa-
tion. . . "

Integrity: "Guarding against improper information modification or destruction, and
includes ensuring information non-repudiation and authenticity. . . "

Availability: "Ensuring timely and reliable access to and use of information. . . "

When considering health related data and systems we shall also add information privacy
and security considerations to the above principles what is presented in in [57, 133]:

“Information Privacy: an individual’s right to control the acquisition, use, and
disclosure of identifiable health data”

Information Security: physical, technological, or administrative safeguards
or tools used to protect identifiable health data from unwarranted access
or disclosure, including security of wireless networks, security of devices,
applications security, back-end systems security, and secure user practices.

In order to achieve such objectives, security safeguards should be in place so that all
aspects of a system are covered. The HIPAA [57] standard for protection of electronic
health information (ePHI) identifies three types of safeguards:

• Administrative Safeguards is defined as the "administrative actions and poli-
cies, and procedures to manage the selection, development, implementation, and
maintenance of security measures to protect electronic protected health informa-
tion and to manage the conduct of the covered entity’s workforce in relation to
the protection of that information."
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• Physical Safeguards is defined as the "physical measures, policies, and pro-
cedures to protect a covered entity’s electronic information systems and related
buildings and equipment, from natural and environmental hazards, and unautho-
rized intrusion."

• Technical Safeguards is defined as the "the technology and the policy and proce-
dures for its use that protect electronic protected health information and control
access to it."

Technology in particular is also mentioned as the first line of defense for protecting
data that are labeled private and sensitive in [133], and this is also what we focus on in
this thesis.
An in depth analysis of information privacy when using mobile technology in the
health-care system is presented in [8, 133]. We recommend these documents to readers
interested in subject related to information privacy. The work presented in the disserta-
tion is only for Information security.

1.4.1 How mHealth Security differs from eHealth Security?

As the focus of this thesis is mHealth security, a central question becomes: In what
sense is research on the security of mobile devices different from common security
research? Is it possible to transfer known security solutions from ordinary desktop
computers to mobile devices? Could it possibly be the same, only with the additional
word "mobile" in the title?

In particular "Is it possible to transfer known eHealth security standards and solu-
tions to mHealth systems? If not, what makes mHealth security needs different from
that of eHealth systems?".

Computing devices differ in their design, architecture, form factor, hardware spec-
ification and main usage purpose. A personal computer and today’s smartphones have
one thing in common, both can be used for computing, but the two are completely dif-
ferent as per the above mentioned parameters. When one think of designing or devel-
oping a solution, it’s important to consider such differences among the target platform
even if the purpose is the same. Browsers, games, tools like calculator and planner,
media players and the likes work in a varieties of computing devices and the seamless
functioning of such solutions depends on their design consideration of the nature of the
target platform. Security solutions are not an exception. Becher, M. et al. [11] identi-
fies the critical distinction between mobile devices and other computing devices in the
design and implementation of security solutions. Although one can identify quite many
specialities of mobile devices, the attack vectors are one way or another related to:

1. The communication network model: the communication between mobile de-
vices and mobile network operators is very strong and trust based. The mobile
network operator has strong influence on the device which is different from the
communication model between computers and network providers, in which the
network operator has almost no influence on the computers in the network. Even
though the trust model is helpful for usage and development of applications, a
weakness or vulnerability in the communication can open a door for serious se-
curity breaches.
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2. Strong attachment between the owner and the device: mobile devices are very
personal and they are strongly connected to the owner. Which means they have
more power to perform some actions on behalf of their owners, which is usually
unlikely in computers. A ping from a computer and a call attempt from a mobile
device are both connection attempts but are not equally interpreted.

3. Gains from attacks: with attacks on different computing devices attackers aim
at gaining access to the device’s resource or sensitive data stored on it. In mobile
devices in addition to this two, it’s also possible to make financial gains by con-
trolling the device for instance sending rogue SMS or calling to some numbers in
which the target made to pay for a service that he/she hasn’t initiated. As mobile
devices are usually on the hands of individuals, knowing the location of the de-
vice by itself may be interesting enough for an attacker and a privacy breach for
the target.

4. Usage environment: mobile devices are used in public places and the attack
vectors can also extend to getting sensitive information through eavesdropping.
Even if eavesdropping is used to get sensitive information from computer users,
the public usage of mobile devices makes them more susceptible to that.

Mobile devices specialties do not only determine the attack vectors, but also the type
of security solutions to block such attacks. Becher, M. et al. [11] also identifies device
resources as the most obvious differences from computers when designing and imple-
menting security solutions. The main limiting factors are CPU, memory, and battery.
Sometimes these type of resource limitations are mitigated with transferring computa-
tion load from the mobile device to the mobile network. But that also requires usage of
wireless network which uses more battery power, one of the limited resources in mo-
bile devices. This leads to trade-off between which limited resources one can sacrifice
on mobile devices.

In summary, mobile devices present some unique security challenges that have not
been addressed in traditional computer security. Mobile devices are small, light and can
be easily compromised. The mobility nature of the mobile devices does not allow us
to provide physical security protection at the same level as the traditional computers at
the data center or workstations. Mobile devices are becoming part of organizations ICT
infrastructure and they are more and more connected to critical systems to access ser-
vices and resources. Therefore, security researchers, platform providers, phone manu-
factures, corporate security teams, and standard bodies have recognized the challenges
and have been searching for reasonable security solutions to mitigate the risks associ-
ated with the use of mobile devices for creating, storing, accessing, transmitting, and
processing sensitive information. One more important difference to be aware about, is
also the settings in which mHealth systems are deployed, since they can greatly influ-
ence the type of potential threats and define specific design constraints that may limit
the possible countermeasures. This issue is further discussed in the next Section.

1.5 Motivation

In industrialized countries, data security and privacy are the most critical properties
people may be concerned about when they disclose private information to health-care
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service providers. As a result, there is greater consistency in the level of securing
data due to the data protection laws and effective enforcement and control by re-
sponsible government bodies [133]. The case in low-income countries is different.
For example, the use of ubiquitous mobile devices to support HIV care projects in
sub-Saharan African countries are in production use without addressing basic security
requirements[107]. Among several mobile health systems, those developed to function
properly in resource-constrained environment are those where data security is either
completely forgotten or implemented only partially. In this section, we discuss the
motivational factors of this research through real mobile health system use cases.

Health delivery centers in low-income countries are not easily reachable, particu-
larly from remotely and sparsely populated communities. Even if they are reachable,
the very few health-care professionals can not keep up with the high demand of health
services. Moreover, studies show that due to the rare interaction of patients with the
health-care centers, people with diseases like HIV and Tuberculosis are diagnosed later
than the stage that was possible to treat them better or to cure. [107]. As an alterna-
tive solution, low-income countries initiated a program with community health workers
(CHWs) that would deliver health-care services at door-to-door basis. The CHWs are
chosen from a community and provided enough training to conduct basic health-care
services. An information system is crucial for monitoring CHWs activities, providing
a remote channel for professional support, data collection, surveillance and document-
ing provided care quickly, reliably and securely. The expansion of wireless network
infrastructure coverage, notably cellular networks in most parts of low-income coun-
tries, created an opportunity to set up a networked channel between CHWs and health-
care providers remotely and utilize the channel for exchanging electronic health data,
providing remote professional assistance, remote monitoring, data collection, and di-
agnostic and treatment support.

In order to support HIV/AIDS prevention, treatment and care program in sub-
Saharan African countries, the WHO provided a guideline [138] for a "Home based
HIV Counseling and Testing" (hereafter HCT) program powered by CHWs. This
guideline has been implemented by health-care organizations in sub-Saharan African
countries. The aim of the HCT program is to provide HIV cares and treatment ser-
vices at the home of individuals rather than waiting for them to present themselves at
the health-care facility [107, 138]. Each CHWs are assigned a responsibility to visit a
number of people door-to-door in the community. Individuals are counseled, examined,
and tested by CHWs. The examination and testing processes are registered through a
structured paper or electronic forms. The form includes personally identifiable infor-
mation (aka PII) [36] such as full name, location, home address, and HIV test results
[138]. This sensitive information requires comprehensive data protection mechanisms
and the importance of data protection is mentioned briefly without details in the WHO
guideline report as follows:

"Programmes must plan for how HCT service providers (CHWs) will safely
move around with data, and how and where data will be stored securely
in the field. Electronic records and handheld electronic data-entry devices
must be password protected on a secure system and downloaded data stored
according to the legal requirements of the data protection act of the country
concerned."
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If we take a closer look at the above statements, even if a password is an important
element of a complex secure solution on handheld data-entry devices, most of exist-
ing systems took the recommendation and implemented user authentication as the only
means of data protection while data is stored clear in memory. This might be because
it is assumed that the stored data is accessed only through the application layer. But, in
actual scenario, the stored data are easily accessible through other data access means.
This shows either the term "password based data protection" is misunderstood or im-
plemented as security by obscurity.

It is also recommended to follow each country’s legal data protection requirements
when data is downloaded and stored on the devices which is offline use case. Offline
capability is one of the main functional requirements of data collection tools that exist
today due to poor remote connectivity in low-income countries. According to [133],
most of low-income countries do not have data protection laws in the exception of
constitution of countries or regulation related to individual data protection and secu-
rity. Most of the countries participated in the HCT program are far from having the
legal requirements for data protection. In 2006, a group of experts, organizations and
government representatives met in Switzerland and proposed a comprehensive security
guideline for electronic systems that collect, analyze, and disseminate HIV related pa-
tients information [61]. In the guideline, the group stressed the need of customization
of the guideline according to the specific country needs and culture. However, we are
not aware of any initiative for customizing the guidelines considering their needs from
countries that are involved in HCT programs. It seems that they preferred to implement
as a similar fashion as the guidelines is written without customization.

AMPATH is an HIV care program in Western Kenya which implements the HCT
guidelines and it is one the largest in the Sub-Saharan Africa 11. AMPATH has intro-
duced a number of electronic based solutions to manage patient health records since
2004 using open source projects including openMRS 12, an Electronic Medical Record
System (EMR), Open Data Kit 13, and a proprietary solution such as Pendragon forms
software (a PDA based solution) [107]. As of December 2014, these electronic tools
helped to manage, monitor, and follow-up the care delivery to one million individuals
and patients in the catchment area of two millions14. However none of the tools used
really provides adequate security, even if they comply with the HCT guidelines recom-
mendations. The guidelines themselves, after all, do not really give a particularly good
or exhaustive list of security requirements, as we have already noted earlier. Below we
give a quick overview of the problems.

Open Data Kit based Home-based HIV/AIDS counseling and testing program (here-
after ODK-HCT) is one of the tools used at the AMPATH. ODK-HCT is an Android
platform based data-entry tool used to assist and facilitate the data collection process
in remote parts of Western Kenya [107]. It is customized from a generic, XForms stan-
dard based Open Data Kit Collect (ODK-Collect) 15 to fulfill the needs of the HCT
program. CHWs use the household form to collect patient related data using the ODK-
HCT app. The collected data are stored on the mobile device without any protection.

11http://www.ampathkenya.org/
12http://openmrs.org/
13https://opendatakit.org/
14https://opendatakit.org/2014/05/ampath-reaches-one-millionth-person/
15https://opendatakit.org/use/collect/
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Later, the CHWs manually export the collected data from the device to the OpenMRS
instance at the nearest health-care centers using direct USB connection. In ODK-HCT
project [107], the measures taken to secure the system are stated as follows:

"To maintain the highest levels of security possible during this project, sev-
eral measures were undertaken. Despite the capability for data transmis-
sion over wireless networks, we elected only to allow direct connections to
our data repositories. Collected data were stored on the mobile devices
in field, and after transmission to our servers these files were then deleted
from the device’s memory. Counselors were made personally responsible
for their devices and took great care to protect them from theft and loss. As
of the time of writing, no devices have been lost or stolen."

When it comes to data security, the claim made in the above statements (we have seen
a similar trends in other MDC system who claims “the highest level of security”), we
may give a quick comment by splitting it into three parts: first, while data collected and
stored, second, concerns on wireless connectivity, and last, data deletion process after
data export. First, there are no data protection mechanisms in place while data is col-
lected and stored. If the device is stolen or lost, collected data are accessible with no
effort. In their scenario, they simply hope not to lose devices. Moreover, device sharing
among CHWs is one of the functional requirements in ODK-HCT due to tight project
budget, but the current solution does not offer data protection from one CHW to the
others. Second, there are quite few OpenMRS instances installed in the field hospitals
and the measure used to overcome the security concerns on wireless security requires
CHWs to travel long distance in order to export the data. This means the collected data
may have stay longer on the device and become vulnerable to loss and tampering. Be-
yond all, the system does not get all the advantages of wireless connectivity to push and
pull data in different geographical locations instantly and automate the data submission
process. During our field visit at the AMPATH, the candidate has noticed the availabil-
ity of 3G cellular connectivity in most of part of the catchment area but it is not in use
yet. Third, it is stated that the data on the device gets deleted after it is transferred to
the OpenMRS instance. However, once the data is written into memory in clear, it is
hard to assume that data gets deleted when the delete command is executed since the
memory is designed to store data in copies and make it easier to recover 16 17. There-
fore, even the user deletes the data, it might be easy to restore the deleted data using
some tools. Overall, the ODK-HCT solution lacks the data protection mechanisms and
requires a complete security solution.

Open Data Kit Clinic (ODK Clinic) is another mobile health solution introduced
at the AMPATH. ODK Clinic is customized from ODK Collect to support the clinical
decision support system (CDSS) at AMPATH [4]. CDSS aims to improve a health
delivery by linking health observations with health knowledge to create an impact on
health choices by clinicians.[5] Furthermore, ODK Clinic is designed to replace the
paper based clinical summary sheets with electronic sheets. A clinical summary is a
summary of patient information printed on a single page. The summary comprises all
relevant patient data including patient demographic, medication and treatment history,

16http://www.bbc.com/news/technology-28790583
17https://www.getsafeonline.org/smartphones-tablets/safe-disposal/
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and lab test results. ODK clinic connects to the central EMR and download and store
the summary sheets on the device. The clinician can make offline search on the device
and if the patient is not found on the device, the search query can be sent to the central
server when there is connectivity. The app is protected with four digit PIN code, and
the security level is stated as follows:

“All data is stored on the device’s internal memory which is not user-accessible
unless the device is rooted, an unlikely attack vector in the environments where ODK
Clinic will be used. Future versions of the application also promise to encrypt patient
data.” [4]

In many of MDC systems reviewed, either the MDC community knows little about how
to secure the data or security is not their priority. Most of the assumptions made are not
quite right when we come to data protection. The application has been in production
use without even addressing the most common security problems and left the issues to
be fixed in the future, hence making it even harder to provide a good secure solution.
On the other hand, although the assumption on the data protection feature of Android
for data stored under the application folder is true, it may take seconds to break the pin
code protection the application relies on and get the sensitive data. Furthermore, it is
only mentioned that the app is protected with pin, but not how the device protects data
when shared among multiple clinicians who all have the same pin code.

The other challenging issue is the conflict between the liability and the security of data.

"Clinicians were concerned with the financial and legal implications of loosing an
expensive phone with patient data."[4]

This is a reality in resource constrained settings and really hard to address the concerns
altogether. Data can be protected in a reasonable manner, but it is not easy to get a lost
device back.

We have also compared the secure solutions adopted by some Java ME 18 based
MDCS systems to protect the data both in transit between client and server, and when
stored on the mobile device. The results showed that as long as the platform in use
offers some standard means of protection, these were adopted, but otherwise not much
was done to improve the situation. This turned out to be a major problem especially
for the confidentiality of the data stored on the phone, since J2ME does not offer any
libraries for encryption. We found that most clients store their data in clear, but with
different formats. OpenXdata 19 stores the serialized Java objects, but data elements are
still recognizable, while CommCareHQ 20 and EpiSurveyor 21 store all data as XML
in clear text. EpiSurveyor, in addition, stores passwords in clear text if one chooses to
have the login form pre-filled. Windows Data Gathering (formerly called Nokia Data
Gathering 22 client provides password protected data encryption. However a quick
look at the implementation revealed that the encryption key is a direct MD5 hash of the
password, and it is stored in clear on the phone. Hence, one can retrieve both the key

18Java ME: http://www.oracle.com/technetwork/java/embedded/javame/index.html
19openXdata: http://www.openxdata.org/
20Commcarehq: http://www.commcarehq.org/home/
21Magpi: http://home.magpi.com/
22Windows Data Gathering: http://www.windowsphone.com/en-us/store/app/microsoft-data-

gathering/a2bd7f51-6c7f-48d4-9fa7-12b35c550848
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and the encrypted data, rendering encryption useless.
There might be several reasons why these systems have been used in the health-care
domain while not being as secured as we expected to be. However, through our experi-
ence, we deduce the following main factors.

Generic Nature of MDCS: MDCS have been used in several parts of the world to
tackle challenges in health-care, agriculture, election, humanitarian aid, disaster
recovery, education sector, and many more. For instance, ODK has been used
for as a health-care tool [4, 107], for environmental monitoring and food security
23, in election 24, for flood disaster recovery [129], for monitoring and evaluation
in agricultural work in Zambia 25 are some of the use cases of ODK around the
globe. In spite of the differences in the use cases, ODK core principle is to main-
tain a single code base for each toolkit and leave the customization responsibility
to the users community, so that the core ODK is kept as generic as possible. Since
security requirements in the different ODK usage sectors vary, it turns out secu-
rity is not one of the core components of ODK Toolkit. Additional features are
added as an add-on to the core application, and security is an add-on category.

Lack of Awareness: In most cases, security is used as marketing tool, but most sys-
tems have not addressed basic security issues in satisfactory manner. Some of
them do not inform of their system limitations and capabilities in a clear and un-
derstandable way and some of them made a wrong assumption which leads users
community to have false confidence in using the systems. This is due to lack of
awareness.

Lack of National Data Protection Laws and Regulatory Body: If on one side de-
signing such a product is more expensive, the lack of compliance of a MDCS
to the regulations of a certain country can be a deal-breaker for its adoption.

Resources-Constrained Environment: Funding is one of a key problem in open
source communities which makes it more likely to prioretize functional require-
ments of applications over non functional requirements. It is not easy to get all
on board to address the security challenges.

Low Demand: Some MDC providers might have inclined to put no resources for ad-
dressing the security issues because they feel the low-income countries are in
need of services rather than data protection or privacy. They feel no demands
from the users community which mostly happens to be in low-income countries.

These are some of the challenges that motivated the candidate to conduct this research
and contribute a secure solution, create data security awareness among mobile data
collection tools users and developers community.

23CGIAR’s Climate Change, Agriculture, and Food Security with ODK, [Last Accessed: April, 2015]

https://opendatakit.org/2014/04/cgiars-climate-change-agriculture-and-food-security-

with-odk/
24Carter Center on Leading Edge of Technology Use in Election Observation, [Last Accessed: May, 2015]

http://blog.cartercenter.org/2012/08/06/carter-center-on-leading-edge-of-technology-

use-in-election-observation/
25ODK in Agriculture, [Last Accessed: March, 2015] https://opendatakit.org/about/deployments/
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1.6 Collaborations

Since the beginning, our security research has strong ties to partners project. We started
with the openXdata project, and later we partnered with the Open Data Kit community
and mUzima project 26. The mUzima project is a client - server solution from the
University of Indiana, designed to serve as a tool for accessing patient data for example
from the OpenMRS server 27. At the time of this writing, the mUzima project is at the
development stage, and our contribution to the project will be published in the future.
Next, we briefly introduce the openXdata and Open Data Kit projects.

1.6.1 The openXdata Community

Our research effort first emerged late 2010 from a formal request of the openXdata
community to conduct a security analysis on their open source mobile data collection
system called openXdata 28, an open source, freely available, a server-client Java based
MDC solution. We then formed the MDCS security research group and focused our at-
tention on mobile data collection, mostly in the domain of health-care. We created a
collaboration between the Department of Informatics, and the Centre for International
Health, at the University of Bergen to work together in a cross disciplinary study aim-
ing to solve the security challenges in MDCS. At the time, there was an immediate need
for a standard secure solution for OMEVAC project (Open Mobile Electronic Vaccine
Trials)[64] with an objective to develop an electronic system for management of vac-
cine trials in low-resources settings and mVAC project with an objective to develop a
mobile device based solution to record immunizations at the individual level29. openX-
data has been since one of our collaborators. Their open-source MDCS follows the
previously described concept of downloading forms from a server and filling them out
on mobile devices, and is being used in a number of projects in low-income countries
such as Pakistan [63, 65] and Uganda [63, 102]. When we started, Java Mobile Edi-
tion (Java ME) was the dominant mobile platform as it ran on the target feature phones
and most of MDC tools were developed using Java ME, including openXdata. In a few
years, the dynamic nature of the mobile platforms development pushed the JavaME
platform out of the market in favour of the Android platform which gained rapidly the
majority of the market share. Android devices are getting cheaper and the new standard
for data collection purpose. We then began a new collaboration with the Open Data Kit
(ODK) community and tried to port the secure solution developed for Java ME based
MDCS to Android.

1.6.2 The Open Data Kit (ODK)

Open Data Kit (ODK) is a free, open-source suite of standard tools that helps organi-
zations, field researchers, authors, public health and medical practitioners to conduct
data collections using Android mobile devices, data aggregations, analysis, and pre-
sentations. ODK’s core developers are researchers at the University of Washington’s

26mUzima: www.muzima.org
27OpenMRS, [Last Accessed: May, 2015], openmrs.org
28openXdata, [last accessed: April 2015] http://www.openxdata.org/
29mVAC: http://www.uib.no/en/rg/childhealth/65382/mvac

12



1.7. Scope of the Research

department of Computer Science and Engineering and active members of Change, a
multi-disciplinary group exploring how technology can improve the lives of under-
served populations around the world30. ODK began in 2008, as a Google.org sponsored
project. In 2009 it was first deployed in Uganda and Brazil. From 2010 on many other
contributors participated in the development of the ODK tools becoming soon a grow-
ing community of developers and users. The project is currently funded by a Google
Focused Research Award and by donations31.

The ODK Community consists in two user groups: the ODK-Developers and the
ODK-Users. As an open source community, all the code is publicly available and
members are welcome to contribute with their questions, bug reports, new features,
and feature requests. Beyond this community, there is a larger set of projects that are
offspring of ODK by extending or adding some particular features or customizing the
product for certain settings. Even if many of them are commercial software, often
they contribute to the development when the newly developed features are interesting
for the core ODK team or they contribute patches to the core ODK code base. The
diffusion of ODK in different parts of the world has opened up business possibilities for
many small companies developing customizations and assistance on deployment. This
phenomenon acted as a business driver encouraging users and developers to participate
in the community and setting up an ecosystem of mutual convenience. Even more,
the ODK team has a dedicated page with a title "Help for Hire" for promoting the
small companies by displaying company description, location, and web page. As of
this writing, there are close to 60 small companies registered around the globe and
providing the customization and assistance services [52].

The candidate visited the core ODK developers team at the department of Electrical
Engineering and Computer Science at the University of Washington. The visit helped
the candidate to share first-hand experiences with ODK developers on subjects includ-
ing data protection, data security and privacy awareness, work load and compromises,
simplicity, ODK as solution survival business model, maintenance, challenges in new
product release, and so on. The candidate field visit main objective was to have better
understanding on how the ODK applications work and analyze its data protection level
including authentication, data at rest and during data transmission.

1.7 Scope of the Research

The main goal of this research work is to propose a security solution tailored for mobile
data collection systems in mHealth domain. The security solution is designed to be
agnostic to any MDC systems and the solution through its protocol can be ported to
any platform. However, in this study, the candidate worked closely with partner projects
who mainly provide Java ME and Android based MDC systems. Hence, when it comes
to actual implementation, testing, and evaluation, these are the two platforms that have
been used. Besides, since most MDCS projects are low-budget and focus on low-end
devices, iOS devices would not have been a representative platform. Still, some basic
security issues are conceptually identical no matter the underlying system, and most
of the proposed solutions can be applied in several contexts and mobile platforms.

30Change at University of Washington, [Last Accessed January 2015], http://change.washington.edu
31Google Focused Research: https://opendatakit.org/about/
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Solutions we designed for older Java ME based devices, for instance, are still relevant
and easily portable to more modern platforms like Android.

More specifically, in this work we have considered thick (native) client applica-
tions. Browser based MDCS or MDCS that are being developed as a hybrid application,
which is a combination of native and HTML/Javascript/CSS, have not been considered.
As of this writing, there are some research activities in this direction which will be pre-
sented in the future work, but we do not have concrete results yet. Furthermore, we
considered mHealth systems where human collectors enter data, and we are not con-
sidering the situation where a sensor is feeding data to a remote server or device. See
also the next chapter for a more detailed description of the MDCS we consider.

1.8 Dissertation Overview

This dissertation is organized into 9 chapters that are designed to be read in sequential
or randomly order. A modular security framework for mHealth is presented in chapter
4. The rest of the chapters after chapter 3, present an in depth analysis and solution for
each module within the security framework. Therefore, the reader is recommended to
read each chapter to get insightful understanding of the entire security architecture.

Chapter 1 briefly discuss the motivation, the contributions, and the scope of the re-
search.

Chapter 2 presents mobile data collection systems, architecture, mobile device plat-
forms used in mobile data collection systems, discusses general security require-
ments for MDC systems such as user authentication, secure storage, and secure
communication, and review platforms security model

Chapter 3 introduces SecureMDC, a modular security framework for mobile data col-
lection systems and discusses integration approaches to an existing Android based
mobile data collection systems

Chapter 4 presents an Authenticator Module of the security framework which is intro-
duced in Chapter 3. This module provides local and remote user authentication,
serves as a secure keys store, and account management.

Chapter 5 presents a Secure Storage Module of the security framework. This module
provides data confidentiality, key management, recovery procedures and integrity
on mobile devices.

Chapter 6 presents a Secure Communication Module of the security framework and
secure cloud storage. This chapter discusses a secure solution for data transmis-
sion and data protection for cloud based mobile data collection systems.

Chapter 7 explores different approaches for secure application provisioning.

Chapter 8 discusses the candidate’s overall approaches, remaining challenges, and fu-
ture works.

Chapter 9 concludes with related works, conclusions, and contributions.
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2
Mobile Data Collection Systems And Its

Security

This chapter aims to familiarize the reader with mobile data collection systems, their
working principles, architecture, and data flow. In the next sections, we describe more
in detail what mobile data collection is, how mobile data collection systems work and
what problems we try to solve with our work.

2.1 Mobile Data Collection

The family of systems studied for this research are centred on a common task: data
collection. This task can be conducted in many possible ways and it can be easily
confused with something different. For this reason, we need to define the concept of
data collection and choose a model to describe it in a consistent way during the analysis.
We have already informally done that in the previous chapter, but we formalize it better
here.
Starting from the basics, the first question to answer is what can be meant by data
collection. A general definition is given in Medical Subject Headings (MeSH)1:

Def: Data Collection is a systematic gathering of data for a particular pur-
pose from various sources, including questionnaires, interviews, observa-
tion, existing records, and electronic devices. The process is usually prelim-
inary to statistical analysis of the data.

This definition is a good synthesis of the main features of data collection. First of all,
it’s defined as a gathering process, intended to serve other specific analysis tasks. Data
is collected “...for a particular purpose. . . ” indicating that the variables of interest must
be specified in advance, in order to answer stated research questions, test hypotheses

1Medical Subject Headings (MeSH), [Last Accessed: March 2015], http://www.ncbi.nlm.nih.gov/

mesh/68003625
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and evaluate outcomes. For this purpose we do not only have to specify which data has
to be collected, but also how.

According to [52, 115], a formal data collection process is necessary as it ensures
that data gathered is both defined and accurate and that subsequent decisions based on
arguments embodied in the findings are valid. Another feature of great importance is
that information is gathered “...from various sources. . . ”. The variety of sources leads
to different approaches involving the use of many possible tools, but also affecting the
process and the results. This is the reason why the concept of Data Collection is so
broad that often it is not used directly, or it is used to mean a more specific scenario. It
is possible to classify a particular Data Collection scenario in terms of:

• Collected Data

• Collection Tools

• Collection Process

Collected Data can be pieces of simple information codified in the form of strings,
numeric values and similar, as well as more complex ones such as pictures, audio or
video recordings, geographical locations. Measurements coming from sensors can also
be considered. According to the type of data to be collected and many other factors, the
collection tools are chosen. The collection process describes how these tools are being
used. In this work, we refer to a set of data collection scenarios in which the tools are
mobile devices and the process involves form-based surveys. For this reason, here is
given a more specific definition of data collection using mobile devices, also known as
Mobile Data Collection (MDC) [52].

MDC is defined as the targeted gathering of structured information using mobile
devices such as normal cellphones, smartphones, PDAs, or tablets [21]. To avoid con-
fusion it is important to understand the difference between MDC and crowd-sourced
data aggregation. In this last case, data aggregators collect unstructured data from ser-
vices such as social networks, email, and SMS, and then mine data for information. By
contrast, mobile data collection is performed using designed surveys to collect specific
information from a target audience. The collectors can be either staff trained from an
organization, or the target population being studied can be surveyed directly on their
personal mobile devices [52].

2.1.1 Mobile Data Collection Systems

A Mobile Data Collection System (MDCS) is built upon a set of components to provide
functionalities including form design, collect, manage data. While the architecture may
vary greatly, there are some components that are common to all MDCS. For instance the
form designer, MDC server, modules, and client applications or form runner as shown
in figure 2.1. These components are categorized into form design, data collection, and
data management processes. We present each process briefly as follows.

2.1.1.1 Form Design

Form Designer is a software tool used to create an electronic form from scratch or used
to convert a traditional paper-based form into an electronic form (aka Form Defini-
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2.1. Mobile Data Collection

Figure 2.1: Mobile Data Collection System (MDCS)

tion). The form designer assists users to formulate relevant questions used to gather
information needed to answer vital research questions. With some exceptions, most
of designers provide graphical user interface to create simple or complex forms. They
support question types including text, numbers, date, time, single or multiple select,
geo-tagging, and multimedia. Upon this writing, a number of form designers are avail-
able on the market as open source and commercial projects including openXdata form
designer 2, WEPI and Voozanoo 3 from Epi-concept 3, ODK Build and XLSform from
OpenDataKit (ODK) 4, Vellum from Dimagi 5, and many others. Furthermore, the
user can define skip-logic and validation criteria for a specific form through the form
designer.

2openXdata, [Last Accessed: March 2015], http://www.openxdata.org/
3WEPI and Voozanoo 3, [Last Accessed: March 2015], http://www.epiconcept.fr/en
4XLS and ODK Build, [Last Accessed: March 2015], http://opendatakit.org/
5Vellum, [Last Accessed: March 2015], http://www.dimagi.com/
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Figure 2.2: From left to right: openXdata, Wepi, and Vellum form designers screenshot

2.1.1.2 Data Collection

In the context of MDCS, data collection is a process of data gathering using a client
application running on a mobile device or manually coded SMS forms. The concept of
the mobile device applies to a broad range of tools, including regular low-end phones,
Java-enabled phones, smartphones, tablets, and notebooks. From now on we focus
only on these set of devices and clients that are implemented as mobile applications
as native apps. Although the ubiquitous nature of SMS in low-and-high end phones,
SMS coded forms based data collection does not handle complex forms and lacks skip
logic and validation techniques. In this work, despite widely deployed SMS based
solution (RapidSMS6, MOTECH7, and FronlineSMS8), we have not considered SMS
based data collection. However, the proposed secure solution applies to browser based
apps or SMS with some customization.

Before we devise into details of our specific client applications, it is important to
have a clear understanding of how client applications are developed on the fragmented
mobile platforms environment. Upon this writing, there are three categories: Native
apps, web/HTML5 apps, and Hybrid apps and they are defined as in 9:

Native apps are specific to a given mobile platform (BalckBerry or Sym-
bian or iOS or Android) using the development tools and languages that
the respective platform supports (e.g., Objective-C with iOS, and Java or C
with Android, or J2ME with Symbian or BlackBerry). Native apps look and
perform the best.

Web/HTML5 apps use standard web technologies - typically HTML5,
JavaScript and CSS. This write-once-run-anywhere approach to mobile de-
velopment creates cross-platform mobile applications that work on multiple
devices. While developers can create sophisticated apps with HTML5 and
JavaScript alone, some vital limitations remain at the time of this writing,
specifically session management, secure offline storage, and access to na-
tive device functionality (camera, calendar, geolocation, etc.)

6RapidSMS, [Last Accessed: April 2015], https://www.rapidsms.org
7MOTECH, [Last Accessed: January 2015], http://ghsmotech.org
8FrontlineSMS, [Last Accessed: January 2015], http://www.frontlinesms.com
9SalesForce, [Last Accessed: January 2015], https://developer.salesforce.com/page/Native,

_HTML5,_or_Hybrid:_Understanding_Your_Mobile_Application_Development_Options
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"Hybrid apps make it possible to embed HTML5 apps inside a thin native con-
tainer, combining the best (and worst) elements of native and HTML5 apps."

There are a number of mobile platforms such as Android, iOS, Firefox, Blackberry,
Tizen, Ubuntu Touch, Windows Phone, and Sailfish. These platforms provide their
own software development kit (SDK). When we started our research, feature phones
supporting Java ME like Symbian based Nokia handsets were the cheapest and the
dominant platform globally 10. Within a few years, however, smartphones became
increasingly cheaper and more popular until today’s situation where Android is the
leading mobile platform in the market 11. MDCS providers adjusted themselves ac-
cording to the market shift and began developing an Android version of their client, or
cross-platform apps that could run on most smartphones as shown in Table 2.1.

Table 2.1: Samples of Existing Mobile Data Collection Systems

2.1.1.3 Data Management

MDCS uses a centrally located server for managing, distributing form definitions, and
aggregating collected data. The number of MDCS server-side services varies from one
system to another, but most of them provide some or all of the following functionalities:

• Receive and aggregate submitted data from any server compliant client applica-
tions.

• Provide data repository

• Data export with supported formats

• Basic visualization features on the collected data through maps, graphs, and bar
charts

• User management

10Vision Mobile Report on Mobile Platforms: The Clash of Ecosystems, [Last Accessed: May

2015], http://www.visionmobile.com/blog/2011/11/new-report-mobile-platforms-the-clash-

of-ecosystems/
11Gartner smartphones market share, [Last Accessed: June 2015], http://www.gartner.com/newsroom/

id/2996817
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• Integrated data analysis tools such as R12.

As of this writing, there are a number of server applications hosted centrally for manag-
ing data collection such as Open Data Kit Aggregate13, openXdata server [97], Open-
MRS [95], OpenClinica [91], DHIS2 [30], formhub [86], CommCareHQ [22], and
Magpi [72]. Once a form definition is created, an organization or a research institute
interested in conducting the research has to decide where to host the server for manag-
ing the forms and the collected data. There are four alternatives:

1. MDC Server on Privately owned network or Private Cloud: the server appli-
cation can be deployed on a privately owned network or a private cloud that may
exist on or off premises. The server application deployment on private OpenStack
cloud14 is a typical example. In both cases, the organization may own, manage,
and operate the application and the hosting environment. The deployment may
demand a high level of expertise and substantial resources such as dedicated IP,
hosting location, network connectivity, hardware, power, cooling system, and ob-
viously backup and possible fail-over solution. However, it may certainly provide
a complete control over the collected data and form definitions.

2. MDC Server as Software as a Service (SaaS): an organization may use data
collection tools modeled as Software as a Service (SaaS). This solution requires
low resources compared to the previous one, and it is the easiest and can be a
cost-effective way to setup the hosting server within a short time. The only thing
that is required by the project is to set up an account on the server, download the
client on the mobile devices, and pay per number of users and data traffic, as in
dedicated services like formHub, Commcarehq, Magpi, HarvestYourData [56].
All the data stored on these type of servers will be however potentially exposed
to third party entities who might not be authorized to access it. For instance,
the formhub is hosted on Amazon Web Services (AWS)15 public cloud and the
Magpi and HarvestYourData are on the Rackspace public cloud16. Our quick
security review on these systems indicated that the systems are not transparent
with issues such as data ownership, data protection on public cloud, and life cycle
of the collected data. Instead of presenting their approaches to these concerns and
challenges, they provided a link to the cloud provider and the system users do not
have a clue about how their data is accessed or managed remotely.

3. MDC Server on Infrastructure as a Service (IaaS): As in the first case, a virtual
server is offered by third-party as Infrastructure as service (IaaS) and the project
administrator setups the server and load MDCSs server application. Amazon EC2
is a typical example of IaaS. Theoretically, this would allow the project to have
full control over the server applications and collected data, but IaaS providers
do not take any responsibilities related to security breaches and data loss on the
server that potentially would still expose data stored on it to a third party.

12R, statistical computing tool, [Last Accessed: April 2015], http://www.r-project.org/
13Open Data Kit Aggregate, [Last Accessed: April 2015], https://opendatakit.org/use/aggregate/
14OpenStack, [Last Accessed: May 2015], https://www.openstack.org/
15Amazon Web Services, [Last Accessed: May 2015], http://aws.amazon.com/
16Rackspace, [Last Accessed: May 2015], http://www.rackspace.com/
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4. MDC Server Application on Platform as a Service (PaaS): Platform as a Ser-
vice (PaaS) provides a range of platforms, and the project owner needs to deploy
the server application onto the platform. Open Data Kit Aggregate server is a typ-
ical PaaS application developed to be deployed in the Google App Engine. Apart
from limited application level control, PaaS providers do not allow MDC server
application owner to manage or control the underlying cloud resources such as
network, operating systems (OSs), servers, and storage [71]. In general, IaaS is
more flexible and provides more resources and data control over PaaS.

The paradigm of Cloud Computing has been naturally embraced by the MDC service
providers, attracted by the idea of outsourcing all the server part, making it fast setup,
scalable, cost-effective, and less maintenance. These are some of the enabling fac-
tors for the development of these type of systems, especially projects in low resource
settings. In general, as we discussed above, MDCS can be deployed on a cloud as
SaaS, PaaS or IaaS. MDC SaaS providers are growing in number. They provide a com-
plete MDC solution out of the box. The only expected task from the user is to register
and pay per usage of the service. On the other hand, the PaaS and IaaS MDC ser-
vice deployment approach provides the flexibility to the user to customize and deploy
their MDC application and take care of the management and maintenance. However,
from a security point of view, all these scenarios share the disadvantage of involving
a third party in the data collection process. In the SaaS service model, the SaaS MDC
provider itself, as well as any other provider on which it is built upon such as the cloud
infrastructure provider. In the Paas and IaaS service models, we still involve a cloud
infrastructure provider as third party, but at least we have a better control on who is
handling our data in the IaaS case. With a downloadable data collection back-end, it is
sometimes possible also to install it on a private cloud, or on a custom server held lo-
cally. Having a larger number of possibilities requires a more careful choice, and the
trade-off is between having more control on the collected data or improving their avail-
ability. The whole data collection process is focused on data, making availability the
most important quality to pursue.

For the above specified reasons, the cloud seems to be the wisest choice, but at the
same time we need to protect the stored data, mitigating the risks deriving from the lack
of control on their location. When the collected data are sensitive, and especially for
health related information, the situation is even more critical, because the system has
to comply with regulations that may differ in the country where the data are actually
stored. The problem of secure cloud storage is one of the main existing challenges
for mobile data collection. In the secure cloud storage chapter, we will discuss the
challenges and proposed solution when MDCS deployed in a cloud.

2.1.2 MDCS Data Flow

In this work, we focus on form-based mobile data collection, where information is
gathered using structured forms. Unlike paper forms, electronic forms may include any
attachment made available by the collection device, as GPS coordinates, photo, video,
and input data from internal or external sensors. A form is composed of fields, each
one with a name, a data type and some metadata. The form definition encapsulates the
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project-specific tasks while the underlying system is designed to be unaware of the data
collected, being only focused on the higher level tasks [52].

It is important to express the difference between a Form Definition (Form Def or
a Form) and a Form Data (also called Form Instance or Submission). While Form
Definition describes the format and properties of the data we want to collect, a Form
Data contains a unit of the collected data. We can also think about it as the relationship
between a Class and its Instances. The process of form-based mobile data collection is
summarized as follows:

1. Design: the form definition is designed and uploaded to the server.

2. Download: collectors download the form definition.

3. Collection: collecting instance data by filling the downloaded forms and storing
on the device.

4. Submission: the collected data are uploaded to the server.

5. Analysis: data on the server are processed and used by decision makers, on-line
or off-line.

These steps must be seen in the context of the data flow described in 2.1, emphasiz-
ing the distinction between the client part and the server part, as well as the two-way
communication and the direction of data collection.

The collection process itself, schematically illustrated in figure 2.3. The collection
process starts by setting up the server with the list of predefined collectors, form man-
agers, local administrators and data viewers, which all receive a user-name and pass-
word to get access to the server. The project organization remains almost unchanged
over time. The form managers design the form definitions to be used for each project,
and the collectors can download these definitions on their mobile client to start collect-
ing data. Data collectors must first of all install the application on their mobile devices,
and then register to the server for the first time, where they are presented with the list
of possible form definitions they can download. A predetermined workflow might de-
cide in which order the forms should be downloaded. The form definitions are then
downloaded, and the data collection starts. Once the forms are filled, they are regularly
uploaded to the server and deleted from the phone. At this point, the form managers
and data viewers can synchronize with this central repository to download the most
recent data to their personal machines for further analysis.

Other differences among MDCS regard the mode of use of the client and the tech-
nology used. For example whether multiple collectors share a mobile device or if a
collector can modify form submissions, and which platform the client application has
been developed, i.e. Java ME, Android, iOS or HTML5 browsers.

The model we consider in the rest of this work is meant to be general enough to
reason at a product-independent level, but at the same time not too abstract, focusing
on the form-based, one-way mobile data collection as it seems to be the most used in
practice.

22



2.1. Mobile Data Collection

Figure 2.3: Mobile Data Collection System Data Flow Diagram

2.1.3 Advantages of Mobile Data Collection Systems

Paper based data collection has many obvious pros and cons. Paper cons mostly related
to data quality, cost, time, error-prone, storage need, usability, data management, and
transport. Some of paper-based data collection pros are: people are familiar with paper,
require less training, no power source related problem, and less probability of losing
data. Working on a desktop or laptop solves many of the problems of the paper, but
introduces a dependence on power sources and makes the data collection in a specific
location such as health centers. While the collected data are portable, the data collection
tools are not.

Internet, wireless network, and mobile technology brings great opportunity on this
front, providing a communication channel that can be used to connect data collection
sources to a server for storage and analysis. Unfortunately, this introduces another
dependency, the availability of network connectivity. These constraints have a huge
impact when data is to be gathered in areas where electric power or network coverage
are not guaranteed or not available at all. These settings are common in rural areas
and in developing countries, where the coverage of cabled network connection has
expanded at a slower rate compared to the wireless networks, and most of the people,
even when not having a personal computer, have a mobile phone. It is not a surprise
then, that in these cases mobile data collection has often been chosen as a replacement
for paper-based forms without passing through a PC-based phase at all [52]. Another
constraint in these contexts is the restricted economic budget that many projects dispose
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of, discouraging the use of expensive custom hardware and driving towards the use of
cheaper general-purpose devices. Technology achievements allowed manufacturers to
sell increasingly performing devices at lower prices, enabling the adoption of them as
rich clients for data collection [52].

With the advent of smartphones, the capabilities of consumer devices have gone
beyond the original needs, inspiring a new era of MDCS. Cameras, sensors, and on-
board GPS systems provide new sources of data, along with more standard interfaces
enabling connectivity with external tools.

2.2 Relevant MDCS Systems

As of this writing, there are several mobile data collection systems (MDCS), both open
source and commercial. However, as it stated in the chapter 1, we began this project in
partnering with projects such as Open Data Kit (ODK), openXdata (OXD), and mUz-
ima. The proposed solution is designed in the context of these systems requirement.
Thus, in this section, we briefly introduce the systems.

2.2.1 Open Data Kit (ODK)

Open Data Kit (ODK) is an open-source, modular toolkit that enables organizations
to build application-specific information services for use in resource-constrained en-
vironments [16, 55]. The toolkit is a collection of Android based applications and
cloud-based server application. Upon this writing, ODK is evolving from ODK 1.0 to
ODK 2.0. ODK 2.0 is not only a new release but also a complete redesign of ODK
1.0 to keep the state of the art and addresses some challenges in ODK 1.0. An uni-
directional device-to-server data flow in ODK 1.0 has been re-architecture to provide
bi-directional data flow in ODK 2.0. Consequently, it is possible to retrieve submitted
data and make changes across multiple devices using ODK 2.0 tools. Despite the ODK
1.0 is deployed in several countries, the ODK core team does not support or actively
work on ODK 1.0. ODK 1.0 is mainly maintained and new features are contributed
by the community who are using ODK 1.0. The ODK team has outlined the new set
of design principles that are considered under ODK 2.0 development. The principles
include easy application source code customization with limited programming experi-
ences, simple form designer and human readable output using JSON, making changes
on submitted data through bidirectional data flow, and so on. As a result of this, the
ODK 2.0 toolkit consists of the following mobile and cloud-based applications:

ODK Tables: is a mobile app developed that provides a way to synchronize, store,
view and manipulate data on a mobile device. This application is designed to
support bidirectional data flow to make changes on an existing data.

ODK Survey: is the new version of ODK Collect (a native mobile from ODK 1.0)
which provides the basic mobile data collection (offline, online) using form defi-
nition. As it is claimed in [16], its easiness in customization makes ODK Survey
different from the previous release ODK Collect. For this particular purpose, run-
time language (e.g. Javascript) is used over compiled time language (e.g. Java).
The main operations are:
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Download Form Definition: the client connects to the aggregate server and
shows the list of available forms, the user chooses one or more, and they
are downloaded in the form of JSON or XML files. An alternative to this is
performing the process off-line by manually loading the forms on the exter-
nal memory of the phone.

Fill-in form: based on the form definition, the phone creates a wizard that allows
to compile fields one by one, adding multimedia attachments if needed, also
created on-the-fly. At the end of the process data can be saved temporarily
or marked as finalized, meaning that they are ready to be sent to the server
and do not require modifications. Locally, data are stored in SQLite database
and files such images stored in the file systems. Data can be submitted over-
the-air or transfer them manually using the SD-Card.

Uploading Collected Data: the uploading process is mostly designed for typical
data collection scenarios in which network coverage can be unstable. Data
are sent one, by one and the operation can be interrupted and resumed later.

ODK Sensors: is not an actual sensor application, but it is a framework that simplify
the interface between a variety of external sensors and consumer Android devices
[15]. The framework is designed to facilitate sensors based application by sim-
plifying through abstraction the underlying details of the sensor-specific code so
that developers focus on the functionality aspect of the application.

ODK Scan: is a mobile application that uses computer vision techniques to convert
paper forms into electronic forms [29]. At the beginning, the paper forms are
designed using machine-readable data types such as bubbles and checkboxes, and
the ODK Scan application automatically recognize the data types.

ODK Submit due to intermittent connectivity, often data submission is initiated by the
user and organizations are interested to control data transfer costs. ODK Submit
aims to develop a service that enables organizations to specify parameters such as
data priority, data importance, deadlines, and the cost of the transport mediums.
ODK Submit then factors in the device’s connectivity history, and intelligently
uses the connectivity available (e.g., SMS, GPRS/3G, Wi-Fi) to create a priority
routing system that improves data timeliness in the intermittent and expensive
connectivity of the developing world [16]. As it is discussed in [16], connectivity
history can be used to decide which connectivities to use at a particular time.

ODK Aggregate: is server side application, designed for aggregating data coming
from different sources and multiple devices. ODK aggregate provides services
such as data presentation and data analysis and export. ODK Aggregate can be
hosted on the cloud or dedicated privately owned server. In particular, Aggre-
gate is designed to be hosted in the Google App Engine Platform as a Service
infrastructure. With Google App Engine, Aggregate support two types of user
authentication services: via Google OAuth or home-grown RFC2617 [42] based
HTTP Digest Authentication authentication. In addition, anonymous access is
supported, allowing anyone to download a form and publish data, useful when
we want to adopt a crowd-sourcing approach where the collectors are not known
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to the organization or for demonstration purpose. In summary, ODK Aggregate
provides the following services:

User Management: this is needed to manage access control and is the primarily
responsibility of the site administrators. From a web client, they can register
new users and assign roles to them. The roles are:

Data Collector: able to download forms and submit data.

Data Viewer: able to log onto the ODK Aggregate website, filter and view sub-
missions, and export them in many formats.

Form Manager: has all the previous capabilities plus the ability to upload a
form definition, delete a form and its data, and upload submissions man-
ually through the ODK Aggregate website.

Site Administrator: all the previous ones plus the ability to manage users.

The overall ODK 2.0 system architecture [16] is shown in figure 2.4.

Figure 2.4: Cloud based server component (left) and client-side mobile applications (right).

ODK Aggregate server provides services including forms distribution, data aggregation, syn-

chronization, and export. The client-side apps share a common database/file system. ODK

Scan, Survey, and Tables (above the data storage) are tools designed for data collection, pro-

cessing, and presenting. Submit and Sensors are tools for optimizing the services and abstract

the underlying complexity of use of sensors respectively.

2.2.2 openXdata (OXD)

openXdata (OXD) system is a community supported open-source mobile data collec-
tion system that is primarily designed for data collection in resource-constrained envi-
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ronments17. OXD and ODK share similar basic data collection design principles both
on client and server and differs in low-level implementation, choices of mobile plat-
forms, data exchange formats, form definition structure, and authentication protocol.
One of the other main difference between OXD and ODK is OXD client is developed
as a single fully-fledged app (which all services consolidated into single app) and ODK
is developed as multi-applications, each app is designed to provide specific function-
ality. Similarly, OXD consists of a client and server components that provide tools
to:

• Design forms,

• Manage the users involved in the study,

• Collect Data using Java ME-based mobile application. At the time of this writing,
there is an ongoing system and tools development within OXD community to
transform the software to reflect the current state of art, for instance, creating
a new form designer and runner engines based on HTML and JavaScript. The
form runner is a client-side application engine that handles form presentation,
data gathering, validation, skip logic, and other features. The form runner can run
on the normal web or mobile browser or can be packaged as a hybrid application
and distributed as a thick application through for instance Google Play Store.

• Server-side application for data Aggregates, storage, analysis, presentation, and
export collected data in many formats.

2.2.3 mUzima

mUzima is a work-in-progress project from University of Indiana consisting mostly in
the client-side application, which aims to develop an adaptable application for mobile
phone and tablet platforms with primary implementation in the health space that allows
to work both online and offline18. The current implementation is customized to work
well with the widely used open source medical record system, OpenMRS19 which then
takes the role of server-side application. When the application developed will be com-
pleted, the application is planned to be deployed at the AMPATH 20, one of the largest
HIV care program in Sub-Saharan African countries. The AMPATH program serves a
population of 3.5 million people in western Kenya and the program delivers primary
health care services, cares and treatment services for more than 158,000 HIV-infected
patients, and prevent HIV/AIDS through door-to-door counseling and testing21. There-
fore, mUzima tools must address adequately any security concerns before use at the
AMPATH and other OpenMRS related projects around the world.

17openXdata, [Last Accessed: June 2015], openxdata.org
18mUzima, [Last Accessed: June 2015], muzima.org
19OpenMRS, [Last Accessed: May 2015], openmrs.org
20APMATH-Kenya, [Last Accessed: April 2015], http://www.ampathkenya.org/
21AMPATH Partner, Indiana University, [Last Accessed: December 2014], http://medicine.iupui.edu/

INTM/kenya
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2.3 Requirements Analysis for MDC Systems

In the previous sections, we presented what mobile data collection is and its importance
in the domain of mHealth. In the next few sections, we briefly discuss the mobile data
collection systems from a security perspective, identify general functional and non-
functional requirements. There are some additional specific requirements to a particular
service such as user authentication. Hence, these requirements are discussed later in
Chapter 4, 5, and 6.

The domain of mHealth is not the only example where we need to protect the data.
As the MDCS cover different kind of tasks, different needs suggest the adoption of a
secure solution. One of these needs is the physical security of the collectors, that may
be located in a remote hostile area, collecting secret data. For example collected data
can be reports about human rights abuses by a government or a company [52].

In the next subsections, we define the problems related to security in mobile data
collection, exploring how these are perceived and addressed currently and which are
the opportunities, in order to locate the role of this research in the context of other
works. We also find here the description of the case study which was used as a starting
point for developing research intentions. At the end, the precise goals of this work are
defined.

2.3.1 Functional and Security Requirements

An important aspect of concerns is the functional requirements we can expect from
these kind of applications on the client side, as they also put some constraints on the se-
curity solutions that can be designed. After thorough discussion with ODK and openX-
data community, we identified the following functional requirements:

Sharing: The same mobile phone might be shared among multiple collectors while the
same collector might use more than one phone. The client must therefore support
multiple users.

Off-line capabilities: As often collectors might not have sufficient connectivity to
connect to the server, the client application must also work off-line and for ex-
ample store collected data on the mobile device until connectivity is available or
data can be backup through a different connectivity such as USB and Bluetooth.

Rendering and storing media files: : As a part of a data collection process, different
data types might have to be collected. The client must then be able to capture,
store and display video, audio, text, geo-coordinates and so on.

Tight budgets: Any solution that such system might have to adopt should not exceed
the cost of what a typical project can afford.

Among all MDCSs available today, there is none with a complete comprehensive secure
solution for the data handled either by the mobile client or sent and stored on the server,
wherever it might be processed. We will discuss what solutions are in place and whether
they are adequate or not, but first we identify the critical security aspects in MDCSs.
Most of them are standard security requirements, but nevertheless, are often neglected.
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A good place to start is the OWASP Top Ten Mobile Risks 22, where the ten most
common security risks for mobile devices and corresponding server side infrastructure
are classified. In particular we focus on the three of them we have worked on, which are
in the top 5: Insecure Data Storage, Insufficient Transport Layer Protection and Poor
Authorization and Authentication. Besides these general security concerns, there are
others that are more specific to MDCSs: for instance Data recovery and Inter-process
communication.
Here is a brief description of the different security aspects we will consider:

Insecure Data Storage: Insecure data storage is probably the most concerning aspect
of mobile devices, especially when a large amount of health related data are col-
lected. The reason is that, unlike desktop computers, mobile devices are much
more likely to be lost or stolen, or to be readily available in a short period of time
if left unattended. It is enough that most application data is stored unprotected
on the memory card, which can easily be taken out of the phone and read with-
out problems on another device. This is why it is a necessity to always encrypt
sensitive data before storing them locally on a mobile device. With encryption,
however, come also a lot of other unavoidable problems. How to generate strong
cryptographic keys? How to store them in a secure way? Which algorithm to
use? Does the device offer adequate support? Similar problems also arise on the
server side, at least when the server is not under direct control, like for example
in the cloud case.

Insufficient Transport Layer Protection: Protecting the data in transit from the mo-
bile devices to the server, and vice-versa, is another natural security requirement.
When using wireless communication, eavesdropping the data traffic is not a dif-
ficult task, and if no encryption is in place, sensitive information can be easily
stolen. However, only because the communication to the first wireless hotspot
or router is encrypted, it does not mean that the entire communication up to the
server is, and end-to-end encryption should be adopted. The most widespread
solution to this problem is usually HTTPS, but we will argue later that better so-
lutions might exist for MDCSs.

Poor Authorisation and Authentication: An authentication is a major problem both
on the client and on the server side. Especially considering that the same phones
might be shared among collectors, there should be mechanisms that guarantee
that collectors only have access to their data, and this can be done only if some
form of authentication and access control is in place on the client application. A
similar problem is present when a user wants to transfer data from or to the server.
Then it is essential to have mutual authentication, where the user knows that the
server is the real one, and the server knows the identity of the user to enforce
the right permissions. There exist various authentication protocols that allow for
mutual authentication, but often the main problem is the generated traffic and the
definition of a root of trust. For example, if we use a certificate to authenticate
the server, we have to trust the certificate. This can be done by either buying one
from a well known Certificate Authority or by provisioning it to the user through

22OWASP Top Ten Mobile Security Risks, [Last Accessed: January 2015], https://www.owasp.org/

index.php/Projects/OWASP_Mobile_Security_Project_-_Top_Ten_Mobile_Risks
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a secure side-channel. The secure side-channel becomes then the new problem:
how do we know the side-channel is trusted? We will discuss this issue later in
application provisioning chapter 7. Similar problems might exist when generating
and distributing user accounts.

Data recovery: When data is going to be encrypted, it is important to have some re-
covery solution in case the collectors or even the project administrators lose their
encryption keys or passwords. At the same time we do not want to have a re-
covery mechanism that can be easily exploited by an attacker or unauthorized
entities.

Process to Process Communication and Separation : Typically, when a collector
needs to fill a form, it is not only text that is entered, but also GPS-coordinates,
video clips, pictures and so on. On modern smartphones platform such as as
Android, this can be done by any application by simply accessing the existing
hardware on the phone (like the camera) through public APIs offered by the OS.
The problem is that often the data captured in this way is not under the direct con-
trol of the application, which only gets a copy or a link to it, and it is therefore
very difficult to secure it or make sure it is deleted from the phone memory.

2.4 Mobile Platforms Security Reviews

Java ME and Android based MDCS are the focus of this work. In this section, we
briefly describe the security model for Java ME and Android platforms.

2.4.1 Java Micro Edition (Java ME) and its Security Model

Java Micro-Edition Connected Limited Device Configuration (Java ME CLDC) was
identified as the platform of choice to run mobile applications on mobile devices which
are usually resource-constrained (i.e. cell phones, set-top boxes, etc.). Some of the
major reasons that made Java as the defacto standard were its security, portability and
network support features. Java plays a central role with respect to security of mobile
devices because of its layered application on mobile devices.

Java Platform Security Architecture which defines the security features of Java Stan-
dard and Enterprise Edition provides a comprehensive security API to effectively ad-
dresses most of security concerns in the application but this security model is not fully
deployed in Java ME CLDC platform due to the innate nature of mobile devices that
constrains the resource that can be allocated for security design implementations. Even
some important features from main line Java has been either disabled or implemented
in lightweight manner which is less secure.

Debbabi, M. et al [28] makes an interesting comparison between Java Standard
Edition (Java SE) and Java ME with respect to their security model namely - permis-
sions, protection domains, security manager and security policy. For instance in Java
SE permissions are applied on access to resources such as File, Property, Runtime,
etc . . . but in Java ME permission are applied only on access to connectivity proto-
cols and push functionalities such as SMS, Bluetooth and MMS. When it comes to
the protection domains, in Java SE a protection domain is created by instantiating the
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java.security.ProtectionDomain class and it’s an object of this class that specifies a set
of permissions. Whereas in Java ME it is only defined in the security policy which is
not open to users for manipulation and there is no way by which the user can add new
protection domains. Even on the security policy Java SE allows static and dynamic
modification but Java ME allows only static modification. However, on various devices
the policy configuration file is not open to users which makes even static modification
difficult. The last parameter the Debbabi, M. et al paper [28] considers for compari-
son between Java SE and Java ME is the Security manager. Same like the protection
domain, in Java SE it’s a class named java.lang.SecurityManager that represents the
implementation and in Java ME, it’s up to the original equipment manufacturer(OEMs)
to provide an implementation. In addition, in Java SE AccessController can be used
to analyze the context at any moment and decide whether or not to grant a requested
permission which makes it flexible enough to address issues related to access control
mechanisms and decisions. For more details on Java ME and comparisons, we recom-
mend readers to read the Debbabi, M. et al paper [28].

The Java ME platform provides a digital signature verification feature against with
installed certificate authority (CA) root certificates. Typically, Java ME applications
consist of two important file: a Java Archive (JAR) file and a Java Application Descrip-
tor (JAD). The JAR file contains the main application, and the JAD file describes JAR
file using a set of attributes. The application can be installed by sending the JAR file di-
rectly to the mobile phone, through over-the-air (OTA), Bluetooth, WiFi or cable, or it
can be installed through the JAD file. In the last case, the JAD file will have to contain
some mandatory attributes that must match with those in the manifest file contained in
the JAR, plus optional and custom attributes. Among the required attributes is the URL
of the JAR, so that the phone can download it automatically by generating a request and
sending it to the specified URL in the JAD. The application owner can sign the JAR
file with a code signing certificate, and add the signature as an attribute in the JAD file.
This allows to verify that the Java Archive (JAR) file downloaded is indeed the same
indicated in the JAD file, and that the entity distributing it, is a trusted one. Moreover,
code signing protects the application by allowing only signed software to update in-
stalled application, so that it cannot be tampered with after installation. Thus, signing
the JAR file containing the client application, is a necessary condition to guarantee any
kind of security. Therefore, code signing is an important element of the secure software
delivery model but it is not a complete solution.

2.4.2 Android Security Overview

Java ME addressed critical security needs on feature phones but there were some re-
maining challenges such as:

1. Lack of secure key storage

2. Lack of built-in crypto library

3. Restriction on system resources access

4. Usability issues – user login /password strength
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The advent and proliferation of smartphones brought an opportunity to develop ad-
vanced, flexible, and secure applications. According to Gartner report23, among sev-
eral mobile platforms in the market such as iOS, Windows phone, Blackberry, Ubuntu
Mobile24,and Firefox OS25, Android leads the market by a wide margin. Android is an
open source project developed by the Open Handset Alliance and Google and available
since 2008. Android is an application execution environment for mobile devices that
includes an operating system, application framework, and core applications [117, 126].
For device drivers, memory management, process management and networking An-
droid uses a software stack built on the Linux kernel.
With the move from feature phones to smartphones new functionalities and needs were
inevitable such as the requirement for new security architecture; cloud storage became
accessible to mobile devices; multiple apps interaction made possible instead of single
app. Due to these advancements on mobile devices, ultimately a client-server secure
solution compliant with HIPAA requirements on electronic records to support the fol-
lowing scenarios were needed:

• Multiple users per phone

• Multiple phones per user

• Offline data collection

• Lightweight, efficient, and cost-free secure data transmission

• Seamless Integration with zero or few lines of code.

A secure solution compliant to all such requirements might be hard to achieve but an-
droid is claimed to address most of the security challenges in Java ME and any security
issues the might arise due to the added new functionalities. The major security mecha-
nisms introduced in android are:

• Application Permissions

• Component Encapsulation

• Digital Signing of Applications

Application Permissions: it enforces restrictions on specific operations [117] that an
application can perform. With more than 100 built in permissions applications can
control a range of operations on smart phones. Applications need to explicitly request
for a permission but as permissions have associated protection levels the system makes
some checks on the application’s signature or users’ approval depending the level of
protection.
Component Encapsulation: applications can encapsulate their components within
their content to prevent access by other application unless otherwise the application
enables the "exported" property of the component [117]. Even in those accessible com-
ponents application permissions take effect to control the access level.

23Gartner Mobile Platform Marketshare, [Last Accessed: January 2015], http://www.gartner.com/

newsroom/id/2944819
24Ubuntu Mobile, [Last Accessed: January 2015], http://www.ubuntu.com/phone
25Firefox OS, [Last Accessed: January 2015], https://www.mozilla.org/en-US/firefox/os/2.0/
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Digital Signing of Applications: In Android platform there is a mandatory require-
ment to digital sign apps (.apk files) prior to installation on mobile devices. The em-
bedded certificate can be self-signed and there is no need for a Certificate Authority.
App signing on Android is an effective solution to :

• Ensure the authenticity of the author on the first install

• Ensure the authenticity of the author on updates

• Establish trust relationship among apps signed with the same key (share permis-
sions, UID, process). Each process in Android has its own sandboxed address
space, typically running under a unique user ID which is assigned by the kernel
and used to enforce restriction on accessing resources, services, and communi-
cating with other applications.

Android Inter-process communication (Android IPC) is a framework that allows data
exchange across processes. The IPC is used for passing messages, file descriptors,
synchronization signals, remote procedure call(RPC), and so on.

2.5 Summary

mHealth focuses on mobile devices as the primary tool used to deliver health services
and disseminate information to different stakeholders. Among many mHealth services,
remote mobile data collection (MDCS) allows the collection and transmission of data
from remote geographical locations to data storage repositories through wireless or
cellular network. MDCSs are a combination of a client application running on mobile
devices, wireless infrastructures, and remotely accessible server databases. Most of the
existing systems share common principles and guidelines to collect data remotely. As
also reported in [14], MDCSs have been mostly aimed at projects with tight budgets,
deployed in developing countries with sparsely populated areas, where low data rate
and intermittent connectivity exist. This resulted in the development of light mobile
clients targeting the so called "feature phones", i.e., cheap phones with only basic func-
tionality, but able to run simple Java applications. It is not surprising that most MDC
Systems until a couple of years ago would provide only Java ME based clients which
could run on phones such as Nokia 2330c with very low specifications, i.e., a 4.7MHz
processor, 4MB RAM, and 128KB persistent storage. At this point, security was not
considered in any of MDCSs. In fact, the lack of support for cryptographic libraries
in these feature phones, their limited computing capability and memory resources, and
least privileges access for third-party application to the phone, made it extremely dif-
ficult to adopt the most basic and standard security solutions. Even using the HTTPS
[109] protocol for secure communication could be a big problem because of the lack
of a standard list of pre-installed Certificate Authorities (CAs) on the phones, the cost
of these certificates and the poor implementation of the protocol itself on many devices
[122].

However, in the past few years we observed a dramatic change in the mobile operat-
ing systems (Mobile OS) market share. Java ME, that dominated the scene for decades,
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has left the competitive era to the newborn Android 26 and iOS 27. We also saw that
novel mobile OSes such as Ubuntu Mobile 28 and Firefox OS 29 are trying to pene-
trate the market by targeting the emerging market. This OS explosion has brought new
opportunities and challenges to the data collection systems community. The boost in
device computation performance, longer battery life, larger screen, and natural way of
communicating with the device are some of the benefits. On the other hand, cost of the
device and maintaining multiple code base targeting different OS have been the major
challenges. Besides, the skills needed to customize the codebase written in native lan-
guages require high-level computing competence that is hard to find in low-and-middle
income countries. New security challenges are, of course, also another problem.

The server side of MDCSs has also undergone some evolution. Although the tech-
nologies used in the implementation might not have changed so drastically as the mo-
bile counterpart, the way of deploying and offering services on the web has changed. It
should suffice to mention cloud-based services.

In this chapter, we mainly focused on the background of the dissertation and the
security challenges faced by MDCSs specifically when low resources settings and low-
budget applied. In the next few chapters, we will discuss how we approach the security
challenges, design a secure solution using Android and Java ME based MDCS and
cloud-based servers are employed. However, some fundamental security issues are
conceptually identical no matter the underlying system, and most of the proposed so-
lutions can be applied in several contexts and Mobile platforms. We also discuss the
solutions we designed for older Java ME based devices, and how they are still relevant.

26Android, [Last Accessed: May 2015], http://www.android.com
27Apple iOS, [Last Accessed: February 2015], http://www.apple.com/ios/
28Ubuntu Mobile, [Last Accessed: May 2015], http://www.ubuntu.com/phone
29Firefox OS, [Last Accessed: January 2015], http://www.mozilla.org/en-US/firefox/os/
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The SecureMDC Framework Overview

This chapter presents a security framework for mobile data collection systems (MDCS)
in the healthcare domain, which is the main contribution of this dissertation. The se-
curity framework is called SecureMDC and aims to secure existing MDCS by consid-
ering the functional and security requirements discussed in chapter 2 and the next few
chapters. Primarily, the framework provides services such as user management, secure
storage management, secure data transmission, account and data recovery, and appli-
cation provisioning. The framework is designed to make the integration process with
the existing MDCS as easy and transparent as possible. In the next section, we present
a list of design choices and criteria that are considered in the SecureMDC framework.
The design criteria are gathered from our MDCS review experiences, dialog with the
MDCS communities, and API design best practices1.

3.1 SecureMDC Design Criteria

Before starting any work, it is imperative that some goal or ground rules be laid down
regarding what we are trying to accomplish. To be more precise, we identified the
following criteria for the SecureMDC framework to take into consideration.

3.1.1 Generic, Ease of Use, and Transparent Design

When having to incorporate security into an existing system, it is important that the in-
tegration process be as seamless as possible from an implementation and usability point
of view, and maintenance costs do not increase significantly. If adding security meant
to rewrite large pieces of the code base, or radically change interfaces and data flow,
not many developers and users would be willing to put up with it. Hence, a security
solution for MDCS should be flexible enough to be integrated into these systems with

1Joshua Bloch. How to design a good api and why it matters, [Last Accessed: May 2015], http://lcsd05.

cs.tamu.edu/slides/keynote.pdf
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as little effort as possible. This can translate into a trade-off between ad-hoc solutions
that might be especially efficient for specific clients, and more generic approaches that
guarantee wider compatibility.

This is the most important criteria the SecureMDC is designed to address. At the
time of this writing, there are several MDCS in use as discussed in chapter 2, and
many of them lack proper security. If we are to be successful in getting any of these
to adopt the SecureMDC framework into their applications, integration into an existing
system needs to be as hassle free as possible. Trying to address this issue, we have
focused on making the framework design as transparent as possible. This means that a
programmer using the framework to the least possible degree needs to know anything
about the implementation of the underlying framework. Ideally any programmer with
Android or Java ME experience should be able to use the framework without having
security background.

3.1.2 Follow standards

Interoperability between MDCS in a resource-constrained environment is a major fac-
tor for the success of MDCS. Our security solution should not introduce a barrier that
hinder different systems from interactions. Instead, it should follow existing standards
and protocols to facilitate smooth integration between systems.

3.1.3 Functionality Decoupling and Flexibility

The full framework provides more than one functionality. Since each of these services
cover different areas, they should be as decoupled as possible, preferably entirely inde-
pendent of each other. This would make the framework very flexible since a program-
mer could choose to use only the functionality that is needed, and not being forced to
add unwanted functionalities that have implications for performance and maintenance
cost.

3.1.4 Lightweight and Low Cost

Most of the challenges faced when trying to secure MDCS come from the fact that
many projects using these systems run on very low budgets. Hence, the security frame-
work should find an acceptable compromise between cryptographic strength and avail-
able computational power and battery usage, reduced overhead and maintenance cost.

3.1.5 Battery consumption

A very important aspect of remote data collection, is that mobile devices should have
long battery life, since, in some remote regions, electricity might be a scarce resource,
and it might not always be possible to charge them whenever needed. Therefore, if the
security framework consumes too many resources and shortens the battery life consid-
erably, it might render mobile data collection quite simply an unfeasible alternative. In
this work computation intensive operations are considered carefully for their impact on
performance, and therefore on battery life.
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3.1.6 Usability

Data collectors are the one who interact with the people and collect data. The literacy
level of these data collectors and understanding of how the system works or how data
is gathered using mobile devices varies considerably. Collections can be conducted
by data collectors with low educational background or graduates such as clinician and
community health workers. Therefore, usability and simplicity are the most important
requirements from a users point of view. Consequently, the security framework must
find a balanced solution between security and usability [76].

3.2 Secure Solution Integration Approaches

Currently, there are some mobile data collection tools that are developed as a single
fully-fledged mobile app. This means that multiple functionalities and tasks are con-
solidated into a single application and shipped to users. As an alternative approach,
the ODK team develop multiple apps separately, and each app specialized in a certain
functionality. In the later approach, applications are expected to interact each other
to share their functionalities. For instance, ODK toolkit consists of mobile apps such
as Survey, Tables, Scan, Submit, and Sensor as described in chapter 2, section 2.2.1.
When the Tables app, which specialized in data presentation, wants to capture data us-
ing the form definition, it uses Survey app. The ODK team argues that this approach
can facilitate adding new functionalities to the ODK toolkit without touching other ap-
plications [16]. However, both approaches may have pros and cons if we compare them
with issues such as maintaining single code base versus many, performance and mem-
ory footprint, provisioning multiple apps against the single app, and security. However,
among all, a working secure solution that fits both uses case is the primary concern of
this work. Thus, to incorporate both use case scenarios, we identified the following two
design approaches.

1. Distributed Secure Architecture: This architecture aims to meet the MDCS
requirements and design criteria by developing a secure solution for individual
MDCS client. Thus, each client app should provide secure authentication and
storage management by its own. The design approach has two drawbacks. First,
each app has to maintain the key store that is needed for user authentication and
secure storage. Second, the secure solution might be tightly integrated into the
existing app that lowers the transparency of the integration. Third, each client
should incorporate the library project in its APK, and this maximizes the memory
footprint for the app. Besides, code duplication may occur particularly when
different applications interact each other for services sharing, for instance in ODK
client apps. Communication and Sharing data between apps might be insecure as
well.

2. Centralized Secure Architecture: On the contrary, the centralized, secure ar-
chitecture aims to provide security services as a standalone secure app that acts
in the middle of multiple apps. The solution is completely transparent and does
not require refactoring on the existing client apps for integration. Apps share the
same data storage schemes.
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The secure architecture choice differs from MDCS to MDCS, but the main objective of
this work is to meet MDCS requirements and design criteria. We found the centralized,
secure architecture more flexible, less maintenance, and allows data sharing among
multiple apps. As a result, we chose the centralized approach for security framework
discussed shortly.

The following four concrete integration approaches can be applied in either dis-
tributed or centralized, secure architecture. The secure API can be integrated in four
different ways with different degree of control and responsibility for the programmer.
If the programmer is knowledgeable when it comes to security, (s)he can control how
users are authenticated, where and how data are stored and managed, and how the se-
cure communication channel is established. If the programmer is not familiar with
security design then this task can be taken care of by a SecureMDC framework dis-
cussed later in this chapter. The approaches will go from programmer control to the
framework control.

3.2.0.1 Full Programmer Control

With this approach, the MDC application accesses the security API through the Crypto
interface with default implementation as shown in the listing 3.1. The Crypto interface
abstracts the underlying implementation complexity and provides services such as en-
cryption, decryption, message digest, data signing, key derivation function and so on.
The Crypto library is designed and implemented to accept caller input, process it, and
return the result back to the caller immediately. In other words, the Crypto library does
not store or manage any keys or data related to MDCS Client. Also, the programmer
is responsible to initialize the Crypto library directly; this means that the MDCS client
will manage user credentials, tokens, data protection keys, and any additional param-
eters used. From a programmer perspective, this gives the programmer a full control
over how user credentials and data is stored and managed during a transaction. From
a security API provider perspective, there is less work and bookkeeping needed as key
management, where and how the data stored, or how the client communicates with the
server, is managed by the application. Thus, the challenging tasks are left to the MDCS
client or to the programmer to manage. Furthermore, the programmer has to take care
of keeping any keys used safe both from a potential attacker and from being lost.

Figure 3.1 shows how the MDCS client added the crypto API. As previously dis-
cussed, the crypto API provides security features with a default implementation that the
programmer can leverage to build security components including user authentication,
secure data storage, and secure data transmission. It is also programmer’s responsibil-
ity of managing user credentials and keys.

We summarized the pros and cons of this approach as follows:

Pros

• The programmer has full control of the code and when and what is done.

• The crypto API enforces no restrictions, there are no limitations to what
other items might be put in the stream.
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1 public interface Crypto {

2 //"public" and "private" keys are for asymmetric and "secret" key is for
symmetric algorithms.↪→

3 enum KeyType {"public", "private", "secret"};

4 //recognized key values: "encrypt", "decrypt", "sign", "verify", "derivekey",
"wrapKey", and "unwrapKey".↪→

5 enum KeyUsage {"encrypt", "decrypt", "sign", "verify", "deriveKey", "wrapKey",

"unwrapKey"};↪→

6 // Recognized key format values are:
7 enum KeyFormat {"raw", "spki", "pkcs8", "jwk"};

8 // used to get the security provider used for the implementation.
9 public String getProvider();

10 //encrypt data using the specified AlgorithmIdentifier with the supplied
CryptoKey.↪→

11 public byte[] encrypt(AlgorithmIdentifier algorithm, CryptoKey key, BufferSource

data);↪→

12 //decrypt data using the specified AlgorithmIdentifier with the supplied
CryptoKey.↪→

13 public byte[] decrypt(AlgorithmIdentifier algorithm, CryptoKey key, BufferSource

data);↪→

14 //sign data using the specified AlgorithmIdentifier with the supplied CryptoKey.
15 public byte[] sign(AlgorithmIdentifier algorithm, CryptoKey key, BufferSource

data);↪→

16 //verify a signature using the specified AlgorithmIdentifier with the supplied
CryptoKey.↪→

17 public boolean verify(AlgorithmIdentifier algorithm, CryptoKey key, BufferSource

signature, BufferSource data);↪→

18 //Make digest of a data using the specified AlgorithmIdentifier.
19 public byte[] digest(AlgorithmIdentifier algorithm, BufferSource data);

20 //generate cryptographically key using the specified AlgorithmIdentifier with a
particular key usage.↪→

21 public byte[] generateKey(AlgorithmIdentifier algorithm, KeyUsage keyUsages );

22 //drive cryptographically key using the specified AlgorithmIdentifier, with a
particular key usage.↪→

23 public byte[] deriveKey(AlgorithmIdentifier algorithm, KeyParameters parameters,

, KeyUsage keyUsages);↪→

24 }

Listing 3.1: Overview of The Crypto interface.

• The programmer could design his or her own systems for authenticating user,
downloading, storing, and uploading users data to the server.

• It is easy to manage and maintain the crypto API

• The crypto API is generic and agnostic to MDCS and can be used in multiple
MDCS applications.
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Figure 3.1: Full Programmer or MDCS Client Control

Cons

• It is up to the programmer to create the security components such as user
authentication, secure storage, and secure communication.

• Programmer is expected to understand security concerns and risks. It is easy
to make mistakes.

• Requires a high learning curve.

• Application to application communication may get complicated and insecure
during interprocess communication (IPC)2.

Even if this approach provides flexibility to the programmer, the dialog we had with
programmers’ in the MDCS communities indicates that the programmers’ are more
focused towards the functionality aspect of the application. So they prefer an out-
of-box secure solution or a solution that requires fewer resources, zero or minimum
security knowledge, and seamless integration approaches. Hence, it was required to
look for other alternative approaches.

3.2.0.2 Partial Programmer Control

With this approach, the secure API takes the responsibility of handling user-specific
credentials and keys. The API would more or less aggregate the calls on crypto li-
brary shown in the listing 3.1 to create a key and account management components and
expose it to the MDCS client through interfaces.

2Android IPC, [Last Accessed: June 2015], http://developer.android.com/guide/components/

aidl.html
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Figure 3.2 shows how the MDCS client incorporates the secure API with the crypto
library. The secure API provides the key and account manager that securely store and
manage user credentials and keys on the mobile device. The MDCS client interacts
with the key and account manager through exposed interfaces. However, the secure
API still expect the programmer to implement the login user interface that retrieves
user credential and pass it to the security API account manager. Internally, the key
manager uses user’s password to protect user’s keys and credentials. When the user
attempts to login, the key and account manager uses user credential to authenticate
and unlock credentials and keys store. If the login is a success, the secure API returns
user key and token used to protect user’s data and re-authentication respectively. The
programmer is required to initialize necessary objects for data encryption, decryption,
and secure communication. For data recovery purpose, the programmer should also
have a contingency plan for backing up the keys used to secure storage if the user
forget his or her password. Failing to do so could result in not being able to decrypt
data.

Figure 3.2: Partial Programmer or MDCS Client Control

This approach handles keys and credentials storage securely and leaves the programmer
with a decent amount of control. Once the keys store is unlocked, and the storage and
communication objects are initialized, the MDCS client can use these objects to encrypt
and store forms and data in a secure manner. The programmer can still decide where
and how to store the encrypted data.
The pros and cons of this approach are summarized as follows:

Pros

• User credential and keys are securely stored.

• Except the key and credential storage, the programmer has full control on
how to encrypt and store data or to establish a secure tunnel.
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• The crypto API still available to the programmer and enforces no restric-
tions.

• The programmer has control of what goes on while the data is being fetched;
this means that giving feedback to the end user would be simpler.

• May work on multiple apps scenarios with reasonable complexity.

Cons

• Programmer is expected to understand security concerns and risks.

• Requires a high learning curve.

• Integration into existing systems could prove difficult or require some
changes.

3.2.0.3 Transparent Design

A third approach to the integration challenge is to make a compromise between the two
previous solutions. With this approach, we wrap the secure API around the public API
of storage and communications management of a given platform such as Java ME and
Android. The programmer does not need any special knowledge of the underlying se-
curity complexity. With few lines of code changes, the programmer can use the secure
API through standard public API to store, retrieve data in the storage, and establish
a communication channel in a secure manner. The secure API manages encryption,
decryption, key management, authentication, and other security services transparently.

Figure 3.3: Transparent Design

Here are some of pros and cons of transparent design approach:
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Pros

• Very easy to integrate into existing systems.

• Programmer needs no knowledge about underlying security concerns.

• The secure API puts no restrictions on the programmer compared to normal
Java ME or Android.

Cons

• There is only one binary storage in Java ME and the Java ME platform pro-
vides quite a few public APIs for managing data storage and transmission.
Thus, we managed creating transparent secure storage and communication
by wrapping these public APIs securely. However, things have changed with
the introduction of Android and other smartphone platforms. There are many
ways of storing data such as SQLite database, flat files, object storage, and
binary. The platform provides public API for manipulating data in this stor-
age. Similarly, a range of native and third party API are available to commu-
nicate with the server including HTTP API from Apache, Java, or Android
itself. As a result, the MDCS use different API to accomplish similar tasks.
Therefore, if we start wrapping the secure API around these public API, it
may require a significant amount of resources for development, and mainte-
nance. We may conclude that this might not work a platform like Android
where it is possible to use multiple public APIs.

The above three integration approaches apply to both Java ME and Android platforms.
However, the fourth approach discussed below is applicable only to the Android plat-
form. The strict application sandbox enforcement in Java ME and lack of API for
accessing resources or communicating with other apps in Java ME makes the next pro-
posed approach infeasible. In contrast, Android leverages Interprocess Communication
(IPC) extensively and offers public API to third party apps to interact each other. In the
next section, we introduce a modular, secure solution that handles providing security
services to MDCS systems through IPC framework.

3.2.0.4 Full Secure Framework Control (SecureMDC Framework)

In this method of integration, the SecureMDC framework handles providing all im-
portant security services to MDCS. Once the MDCS client app launches, the screen
control would be given to the SecureMDC framework. Depending on the configura-
tion, the framework may prompt users to authenticate to the server on the first run, ask
users to register, or just log in. Once the registration or authentication is successful,
control is given back to the MDCS client to perform activities such as form download-
ing, form filling, data editing, and submission to MDCS server. All these activities are
performed with the help of the SecureMDC framework.

This method makes the programmer completely free from any security concerns.
The framework takes care of server authentication, user registration, local authentica-
tion, account recovery, data protection at rest and during transmission, and initializing
the different components with the appropriate keys. The security framework can be
packaged as standalone application and uses standard IPC calls to exchange data with
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the MDCS client or can be packaged as a library project and added to the main MDCS
client. We present this design approach thoroughly in the next few consecutive chap-
ters. Before delving into the details, here are some of pros and cons of the approach:

Pros

• Easy to integrate into existing systems.

• Programmer needs minimum knowledge about underlying security con-
cerns.

• Handles both the single fully-fledged app and multiple apps scenarios.

• Single and simple data storage scheme for multiple apps.

• Single sign-on is possible.

Cons

• Data cleanup process must be carefully designed, otherwise, data leakage or
loss may occur.

• MDCS may be required to pass some form description information to the Se-
cureMDC framework when performance optimization is needed. We discuss
this subject thoroughly in chapter 5.

An overview of interprocess communication between these apps is shown in figure
3.4. In the next section, we discuss the interaction between MDCS client and the Se-
cureMDC framework in depth and provide our analysis on risk and challenges involved
with this approach.

3.3 The SecureMDC Framework Overview

The SecureMDC framework is a set of modular security features that are designed to
fulfill MDCS requirements and design criteria. The framework abstracts the underlying
secure implementation complexity and provides simple interfaces for interaction. The
framework is designed to be secure by default, but it is also flexible, customizable, and
able to adjust itself to different MDCS security settings. We first developed the frame-
work for Java ME based MDCS and later we ported to Android based MDCS. Also,
we considered the current state of arts including cloud-based MDCS, application pro-
visioning, and standard secure communication mechanisms. Figure 3.5 shows standard
data protection mechanisms that are already developed and integrated into our partner
MDCS projects. Primarily, the framework attempts to provide a comprehensive secure
solution for user authentication, secure mobile and cloud storage, secure communica-
tion, application provisioning, and account and data recovery methods. The remaining
items in the figure 3.5 including GCM agent (Google Cloud Messaging), session man-
agement, and access control mechanisms are research in progress, and the findings will
be presented in future work. In this section, we describe the framework at a high level,
giving an overview of its architecture, design principles, the interaction among its in-
ternal components, and some of the ongoing development.
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Process B: ODK Tables Process A: SecureApp Process C: ODK Survey

AuthenticateUser

Load UserDataLaunch Table (Intent)

Manipulate UserData

Launch Survey (Intent)

Manipulate UserData

Return (Intent)

NotifyFinish

Update UserDataStore

Cleanup

Close App

Figure 3.4: SecureMDC and MDCS client Communication Flow Diagram

Figure 3.5: secureMDC Working Items
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3.3.1 SecureMDC Framework Architecture

When we design the framework, the modular and centralized design approach is fol-
lowed to fulfill the design criteria listed in the section 3.1. The SecureMDC framework
comprises three main modules, and each module provide specific security service. Fig-
ure 3.6 shows the modules and each module functionality is explained as follows:

Figure 3.6: SecureMDC General Architecture

1. Authenticator: is a security module that handles user authentication on a mo-
bile device and a remotely located server and account recovery. It exposes the
authentication services through simple interfaces with a default concrete imple-
mentation. The MDCS client delegates the user authentication to this particular
module. Thus, any attempts of accessing the MDCS client leads to the invocation
of the Authenticator module. The Authenticator is flexible and can be configured
to provide additional features such as device authentication and single sign-on.
The main reason for having the module is the requirement that a phone may be
shared among multiple collectors who should not have access to each others col-
lected data.

2. Secure Storage: is a security module responsible for MDCS application re-
sources protection and management on the mobile device. The secure storage
is accessible via simple interfaces with a default concrete implementation that
handles encryption, decryption, cleaning residual data after user logged out, and
a recovery plan when the application crashes, or the battery dies.

3. Secure Communication: is a security module responsible for establishing a se-
cure tunnel between client and server. The Hypertext Transfer Protocol Secure
(HTTPS) is a widely used protocol for securing HTTP messages [108]. Many of
reviewed MDCS provides HTTPS features. However, in some of our previous
work [44, 73] we argued why HTTPS cannot always be considered as the best
solution for secure communication in low-budget data collection projects. The
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reasons were mainly three: bad support/implementation in older phones, criti-
cisms towards the Certificate Authority Trust Model (see for instance [112]) and
the cost of the certificates. Then, we looked for other protocols that are not depen-
dent on certificates and realised that a password-based approach would be best.
The Secure Remote Password Protocol (SRP) is one of the most reliable mutual
authentication and key exchange algorithms. The SRP is a Password Authenti-
cated Key Exchange (PAKE) protocol based on a pre-shared password for mutual
authentication and key exchange, The SRP is standardised in RFC 2945[139]. It
allows mutual authentication and secure key exchange, while being resistant to
on-line brute-force and Man-in-the-Middle attacks (MITM). Besides, it can be
used in combination with TLS [25] to create a secure transport layer without the
need of certificates or new protocols. We will thoroughly discuss and present a
comprehensive secure communication solution in chapter 6.

The SecureMDC framework is designed to be integrated with an existing MDCS client
and server and securely encapsulate the messages between them. The encapsulation or
wrapping process help us to make a transparent integration, and no prior knowledge
is required to interact with the security framework. In the next few chapters, each
of the modules are examined separately and proposed adequate security solution and
described thoroughly. Before that, we briefly present at high-level how the modules
work and interaction with the MDC application, and some ideas for future development.

3.3.2 Framework Internal Interaction

Application to application communication was not possible when we dealt with the
Java ME platform. The Java ME sandbox model is very restrictive on either system
level API or allowing an app to app communication. Android provides a way to escape
from application sandbox and communicate with another application running on a dif-
ferent process. Android also provides a comprehensive permissions model that protects
applications from malicious code that tries to misuse applications internal communi-
cation channel. Signature based permission is one of the key components of Android
permission model. Each application is signed by a developer, and can be updated only
by the same developer, i.e., by other applications signed with the same key. Similarly,
applications signed with the same key will be assigned the same Linux Kernel User Id,
and will be able to communicate with each other through the IPC we mentioned earlier
and share permissions and resources. If the reader is interested to know more about An-
droid’s application signing and verification, David B. et al. [10] presented a thorough
analysis on the Android signing and verification architecture.

However, this means that any MDC applications that are interested in leveraging
the security framework are required to sign the security framework and the MDC ap-
plication with the same signing key, which might be a challenging task. Fortunately,
Android provides an easy way to incorporate project like the security framework into
the main application as a library project. This way the SecureMDC framework can
be packaged as a library project and signed using the MDC app key. The applica-
tion and framework will still run as two different processes and communicate through
the IPC even though it is called a "library". The downside is the tight integration that
makes it difficult to guarantee the integrity of the framework and its maintenance. If
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the framework is updated, a new version of the application would have to be packaged
and installed. Therefore, we believe that it would be best if the security framework
and the MDC application could be signed each by their signing key, and run as sepa-
rate applications. This is also the working assumption we will make for the rest of the
dissertation. A discussion around this topic is given in Chapter 8 under future work.

3.3.3 Way forward

As we have already mentioned, the framework is constantly evolving to adapt itself
to the new technologies that continuously emerge on the market, and to provide better
security and usability. Lately, we began researching on one of push notification tech-
nology called Google Cloud Messaging (GCM) for Android for managing the client
remotely. GCM is a service that allows the server and client to exchange small but
important messages through Google infrastructure in a secure and automated manner.
This service hold an important role in managing MDC clients remotely and providing
services such as user revocation, data synchronization, and wiping data protection keys
remotely. This is still research in progress, and we briefly present the technology and
the use cases in chapter 5 under section 5.4.4.

Session Management is the other topics in our to-do-list. The SecureMDC frame-
work has a cookie based session management in place but at upon this writing, there
is an active research to replace the traditional cookie-based session management with
a Java Script Notation (JSON) based web token (JWT) that is digitally signed using
another standard called JSON web Signature (JWS). A draft is submitted to the Inter-
net Engineering Task Force (IETF) 3 and we have been closely looking the solution.
Currently, we are actively working to adopt the solution, and we briefly introduce the
technology and importance to our work in the later section.

Role Based Access Control (RBAC) with its pros and cons is the widely used access
control mechanisms for most MDC servers. Attribute-based Access Control (ABAC) is
the fine-grained access control mechanisms that provides resources access based on a
combination of several attributes. Unlike RBAC, ABAC flexibility and manageability,
we begin a research to investigate the use of ABAC in MDC systems. The progress we
made so far will be presented in the future.

3JSON Web Token (JWT) : http://self-issued.info/docs/draft-ietf-oauth-json-web-token.

html
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4
SecureMDC Authenticator: A User

Authentication Module for MDCS

This Chapter is based on the candidate’s

previously published work at the

International Conference on Availability,

Reliability and Security (ARES 2012).

The full paper is available at [73].

4.1 Introduction

User authentication on mobile devices is not a trivial task. Any comprehensive au-
thentication mechanism for MDCS should incorporate local and remote authentication.
The word "local" refers to authenticating users on a mobile device without requiring
server connectivity (i.e. offline mode), whereas the word "remote" refers to the usual
client-server authentication with connectivity (i.e. online). Many of reviewed MDCS
use weak remote authentication methods. Local authentication is either not available or
implemented in an insecure manner. On the other hand, there is a growing need to have
an easily integrable and usable authentication solution for MDCS. In this chapter, we
thoroughly discuss one of the SecureMDC framework modules called Authenticator, as
shown in figure 4.8. The Authenticator provides a comprehensive user authentication
service both on offline and online.

The rest of the chapter is organized as follows. In section 4.2, we present functional
and security requirements specific to user authentication on resource constrained MDC
systems and perform risk analysis. Then, we discuss currently available solutions to
address functional and security requirements in section 4.4. At the end, we present
discussions and conclusions.
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4.2 Requirements and Risk Analysis

After field visits and thorough discussion with our project partners including the ODK
team, the openXdata team, and the mUzima team, we identified the following func-
tional requirements which state what the system must do and non-functional require-
ments (Security Requirements) which constrain how the system must accomplish the
functional requirements.

4.2.1 Functional Requirements

The functional requirements incorporates:

• Multi-Users Per Device (Phone Sharing): The same mobile phone might be
shared among multiple collectors while the same collector might use more than
one phone. Thus, the client must support multiple users.

Figure 4.1: Multiple Users Per Device

• Single User per Multiple Devices: a collector uses more than one device at the
same time.

Figure 4.2: Single User per Multiple Devices

• Offline capability: As often collectors might not have sufficient connectivity
to connect to the server, the client application must also work off-line and for
example store collected data on the mobile device until connectivity is available or
data can be backup through a different connectivity such as USB and Bluetooth.
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• Minimize Maintenance and Overhead Costs: Any solution that such system
might have to adopt should not exceed the cost of what a typical project can
afford.

• Ease of Integration: Even with a system such as the secure framework that is
made to cover all the requirements and limitations discussed so far, if it is hard to
use or requires the MDCS to undergo large changes in order to be secured, few
people would use it. As such, any system addressing security for MDCS needs
to be easy to use and implement into existing systems for the developers, but also
easy to use for the end users.

• Usability: many studies show that strong security enforcement alone does not
provide the ultimate goal related to data protection. System usability is a cru-
cial factor in particular to mobile data collection systems. In many deployments,
the staff responsible for data collection may include people with a little educa-
tion background and/or little experience with computers or use of mobile devices
[121]. Therefore, the security framework should find a balanced, flexible and
transparent solution that maximizes usability and minimizes security risks. [76]

4.2.2 Security Requirements

In addition to the functional requirements, the authentication service must satisfy the
following set of security requirements.

• Mutual Authentication: When data are transferred electronically, sending and
receiving parties will need to be authenticated each other.

• Revocation: the authentication service should incorporate procedures for with-
drawing access rights when staff is no longer employed at the site.

• Account Recovery: the authentication service should provide account recovery
mechanism if a user forget his/her password or username. The recovery mecha-
nism does not compromise the system or users data.

• Single Sign-On: The growing numbers of mobile applications within a single
ecosystem of mobile data gathering demands single sign-on service that provides
end user to login once and use multiple services on the mobile device. Open
Data Kit (ODK) can be a good example that needs single sign-on service for its
multiple mobile apps.

4.3 Threat Model

The disclosure of personal health information can result in a severe damage in terms of
reputation for the organization running the project, or even legal issues and fees. For the
patients this can lead to a loss of privacy over some of the most personal data, the ones
regarding their health conditions, but also in most cases their location and contact data.
Apart from the collected data, also user credentials must be kept as secret as possible.
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Leaked credentials not only can allow the impersonation of the user on the MDCS, but
probably also on other systems, since people tend to re-use the same credentials [52].

On the mobile device, the most likely threats in a Remote Mobile Data Collection
scenario are the following:

The data is lost or stolen : the collector may lose or damage the phone. As a result,
data can be lost or accessible to an authorized user..

Malicious applications : a collector might download malicious apps on the mobile
device that can interfere with the MDCS client and steal, read or hijack the col-
lected data. The MDCS application might be replaced with a malicious version
at download time [52].

Basic Authentication : If the collector credentials are not properly protected during
the authentication process, they may be stolen with a Man-in-the-Middle Attack
(MITM) or simply tapping the connection to the server, or intercepting the process
performing the authentication on the device [52].

4.4 Available Solutions

Mobile platform vendors have recognized the risks related to the phone being lost or
stolen, and they provide built-in security features to minimize the risks. Device authen-
tication is one of the security services that the mobile platform provides. It is common
practice to authenticate the user using single, two, or multiple authentication factors.
These factors can be categorized as follows:

• Something user knows: such as password or pin code

• Something user has: such as a hardware token or a smartcard, or mobile devices

• Something user are: including Biometric characteristics such as fingerprint,
which is started appearing in smartphone devices

• Location and Time: are gathered from the client and assist the server to decide
based on user geographical location and time. Google and Facebook are some of
the examples which use these attributes during user authentication.

The first two factors (something user knows and has) often provided by most mobile
platforms, but the fourth attribute (Location/Time) is considered as best practice to
allow or deny access of service/resource based on user geographical location and/or
time. The third one, Biometric authentication, particularly fingerprint, is one of the key
emerging technology on mobile devices. These and other authentication technologies
are the first line defense on mobile device.Furthermore, mobile devices increasingly
connected to the backend server, services, and resources. So credentials stored on the
device may have the capability of compromising the server. Hence, a comprehensive
authentication solution both on the device and the remote server is vital to the project.
In the next section, we discuss local authentication and explore the built-in security
features that Android platform offers for authenticating users on the mobile device.
Later, we present weak and strong remote authentications methods.
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4.4.1 Local Authentication

As we stated in the section 4.1, we refer local authentication as an offline authentica-
tion mechanism for a user before accessing the mobile app services and data. Some
systems use server-side authentication to allow user have access to the mobile app on
the device. This approach does not require to store some secret on the mobile device.
However, there is always a redirect for user authentication to the server when the user
tries to access the application, and this type of authentication requires connectivity.
However, intermittent connectivity is one of the challenges in low income countries,
and the server-side approach does not work in that context. Hence, local authentica-
tion is performed based on some secret stored on the device. The remaining challenge
are to keep the secret secure and have a credential recovery mechanism in place. The
first line of security is not to store the secret in clear, but rather salted and hashed, en-
crypted or similar. The other is to make it difficult to extract from the device such as
hardware-based credential storage such as smartcard. Android and other similar smart-
phones platform provide a set of security features for protecting data on the device.
However, many of these security features are not activated by default, in other word,
the user must activate them individually. Next, some of the built-in local authentication
features are presented.

4.4.1.1 PIN Codes and Password

PIN codes are the popular method of securing mobile devices. PIN codes are relatively
easy to use and remember on mobile device. As of this writing, Android requires a
minimum of 4 and maximum of 16 numeric digits when setting a new PIN code for
screen locking. Internally, when the user set a new PIN, Android generate a random
salt, concatenate with the user PIN and compute both MD5 and SHA-1 hash of the
concatenated value. It is clear that why Android computes both MD5 and SHA-1 PIN
hash value. The hashed PIN code is stored in a file that has system level protection,
which means that no third-party applications can have read/write access to the file.

On the other hand, Android offers password-based authentication. The password
provides wide varieties of character selection including lowercase, uppercase, numbers,
and special characters. As a result, the entropy can be maximized [66]. But, one of the
challenges is most of password policy and rules such as password size and mixture of
characters in it are optimized for physical desktop keyboards [116]. So applying the
same set of rules on the mobile device with virtual touch screen keyboard or small size
physical keyboard might not work. For instance, typing numbers or special characters
on the smartphone requires navigation to a second or third keyboard page [66]. But,
one of the challenges is most of password policy and rules such as password size and
mixture of characters. Generally, finding a balance between security and usability is a
challenging task. From an implementation point of view, in Android, the password is
implemented in the same way as PIN code as discussed above.

A brute-force attack is one of the potential attacks on either PIN or password authen-
tication. Android tries to protect the device from online brute-force attack by enforcing
30 seconds delay after each five subsequent failed authentication attempts. [33].
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4.4.1.2 Pattern

The idea behind pattern-based authentication mechanism is people are naturally good
at remembering visual pattern than random string or numeric. It is 3x3 matrix (9 points.
As a rule, user expected to select at least four points and each point is used only once.
Each point on the matrix is assigned an index value, where 0 is top left and 8 bottom
right [33]. Hence, the user selection is stored as a byte sequence. Because of the lim-
ited number of selections available (minimum 4, maximum 9 points) which result in
low entropy, pattern authentication is more insecure than PIN or other authentication
methods. In addition, since the pattern byte sequence is computed and stored under An-
droid /data/system/gesture.key as a simple user input hash (SHA-1) value, if an attacker
able retrieve the file, s(he) can able to see the pattern. Furthermore, pattern authentica-
tion is vulnerable to the so-called "smudge attack" [3, 119]. This attack as a result of
the capacitive touch screen that is designed to work by using user finger, and drawing
the unlock pattern several times leaves a trace on the touch screen which can easily see
with high probability using appropriate tools [9, 33]. For these reasons, pattern based
authentication is categorized as weak.

4.4.1.3 Facial Recognition

Facial recognition is a biometric authentication method that Android platform offer
since version 4.0 (a.k.a Ice Cream Sandwich) for unlocking the device using human
face [100]. The security level of this method is categorized as a weak authentication
mechanism. The two-dimensional (2D) face recognition introduced in Android 4.0,
can easily be compromised by holding a picture of the user with the device (user pic-
ture can be retrieved from social networks or online sources). Android improved the
face recognition algorithm by adding Liveness check in Android 4.1 (a.k.a Jelly bean).
The liveness check means the user has to blink their eyes during authentication [20].
However, this additional feature can be tricked by using photo editing or playing blink-
ing video1. There are many hits on face recognition circumventing tutorial on youtube.
Furthermore, Android provides a PIN code or a pattern authentication method as a fall-
back to face recognition during poor lighting and camera malfunction [33]. Hence,
any possible attacks on PIN or pattern are also applied here. A three-dimensional (3D)
facial recognition has been named as one of sophisticated and more secure authen-
tication mechanism that succeed the security challenges in the 2D facial recognition
[13, 20, 105]. As of this writing, this technology is not incorporated in the Android
platform.

4.4.1.4 FingerPrint

Smartphones manufacturers have already understood the potential impact of sensors
and they have been embedding different types of sensors in mobile devices. Some sen-
sors already appearing in mobile platforms are accelerometers, digital compass, prox-
imity sensor, gyroscope, GPS, microphone, camera, touchscreen [47, 69, 103, 106], and
some smartphone vendors like Apple and Samsung have embedded fingerprint sensor

1Android 4.1 Jelly Bean Face Unlock tricked by blinking video, [Last Accessed: March 2015], https:

//www.youtube.com/watch?v=UKIZBbvloO8
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in their flagship products [77]. Apple made progress by embedding fingerprint sensor
on the latest iOS products 2, but the sensor is built only for system applications which
means that the fingerprint sensor is not accessible to third party applications. Samsung
also embedded fingerprint sensor on some of the smartphone models such as Galaxy
S53. Unlike Apple, Samsung has released a public SDK called "Pass"4 that allows a
third-party application to use the fingerprint sensor in the device. The shortcoming
of this SDK is that it only works on Samsung smartphone devices in some selected
models. The upside is that it lets us provide reinforced security, since we can identify
whether the current user actually is the authentic owner of the device5.

Smartphones Fingerprint API preview for Android M (upon this writing, Android
M has not been released, only preview is available6) is found here with Sample App. As
of this writing, Android Compatibility Definition for Android M hasn’t been published.
So, if fingerprint sensor, the key hardware component of the fingerprint framework, is
left as a "SHOULD" requirement (most likely to be true), then OEMs decide either to
include the sensor or not. However, since Android Pay is strongly tied to fingerprint
framework, this may drive OEMs to include the fingerprint sensor.

4.4.2 Remote Authentication

MDCS uses password-based authentication to allow authorized user into the system,
and there are many password related attacks [83]. Many of these MDCS implement
weak authentication schemes based on challenge-response (HTTP Digest Authentica-
tion [43]), encoded passwords (HTTP Basic Authentication [43]), or form-based au-
thentication. All the methods try to solve the same problem: the client proves to the
server that it knows some secret password P, usually set and exchanged in advance.
Hence, in these systems, the password is a key to the kingdom and must be protected
while it is at rest and during a transaction. The protection mechanism may affect the
protocol adoption for exchanging the credential between client server. Here, we briefly
discuss the different type of measures taken to protect the password.

Password based authentication starts with assigning the user a credential such as
a username and a password. Traditionally, the password can be generated randomly
and saved in the database in clear or hashed. The problem with storing the password
in clear is that an attacker who gets into the database can get the password. As a
remedy to this issue, the password can simply be hashed using, for instance, SHA-
1 algorithm and stored in the database. However, the rainbow table makes it easy
reversing the hashed value to recover the plaintext password. This particular problem
can solved by appending a unique string characters, called salt, to the password before
computing the hash. The salt is not a secret, but it is stored in the database together with

2Apple Touch ID sensor, [Last Accessed: May 2015], https://support.apple.com/en-us/HT201371
3Samsung Galaxy S5 Specs, [Last Accessed: May 2015], http://www.samsung.com/global/

microsite/galaxys5/specs.html
4Samsung Pass SDK for Fingerprint, [Last Accessed: May 2015], http://developer.samsung.com/

release-note/view.do?v=R000000009
5Cult of Android - Samsung Will Allow Third-Party App, [Last Accessed: April 2015],

http://www.cultofandroid.com/53140/samsung-will-allow-third-party-app-developers-

use-galaxy-s5s-fingerprint-scanner/
6Android M preview, [Last Accessed: June 2015], https://developer.android.com/preview/

overview.html
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the hashed password. This approach requires significant computational resources to
reverse the hashed password, but still vulnerable when a weak password is used. Once
the password is protected in the database; the next challenge is securing the credential
during client-server authentication. In the next section, we discuss some weak and
strong remote authentication techniques.

4.4.2.1 Weak Authentication Methods

HTTP Basic Authentication Scheme (Basic Auth)

The HTTP Basic Authentication Scheme (Basic Auth) is widely used simple authenti-
cation method [43]. During user authentication, the client sends a (base64) encoded of
username and password in plaintext to the server. The server decodes and verifies the
request against a plaintext or hashed version of the same username and password. The
pros and cons of this technique is discussed as follows:

Pros: Simple to use and works with most browsers. It works without installing client
software

Cons • Basic Auth does not use cookies, session id, or token for session manage-
ment and every client request must contain username and password. This
clearly unsafe practice to send credential in an insecure channel in every re-
quest. So, Basic Auth is vulnerable to man-in-the-middle (MITM) attack.
This type of risk can be mitigated by using TLS/SSL secure link [58]. We
also argue that having TLS/SSL link may bring another security and main-
tenance challenges that we discuss in chapter 6

• Basic Auth does not have the concept of "logging out". Once the user is
authenticated the first time, the Basic Auth user agent on the client caches
username and password internally to use it for a subsequent request. There-
fore, since Basic Auth does not provide a way to log out or timeout, the user
credential stays in the user agent storage (in the browser) for an unspecified
period. This problem can not be solved in a standardized way, but it might
be solved through some ad-hoc solutions which may or may not work in all
clients (browsers).

• Basic Auth does not provide mutual authentication i.e. client and server
verify each others’ identities, which is one of our key requirement in the
requirements list.

• With Basic Auth, the server is dependent on the client user agent with passes
in the credentials. For instance, during credential encoding, special charac-
ters may be treated differently by user agents in different browsers and might
lead to user authentication to fail.

In summary, even though Basic Auth is simple and easy to use, it is vulnerable to
many potential attacks, and it failed to meet our security requirements. Therefore, we
do not recommend or use Basic Auth.
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OpenRosa Authentication API

An alternative secure authentication mechanism to Basic Auth, the OpenRosa Consor-
tium7 proposed an Authentication API for MDC systems based on HTTP Digest Au-
thentication Scheme [43] with some modification. To authenticate the user, the Authen-
tication API on the client computes a hash of the user credential (usernameand password)
before sending it over the network, which make it safer than Basic Auth. It uses MD5
hashing algorithm that is considered too weak hashing algorithm and nounce value for
preventing replay attacks. The OpenRosa Authentication API specification details is
found in [96]. The pros and cons of this authentication technique are presented as fol-
lows:

Pros: • Unlike Basic Auth, the password is not sent in clear text rather a hash is
computed following the specification procedure MD5(username : realm :
password), where realm is an authentication provider domain that limits
the scope of risk when the passwords are compromised). Similar to Basic
Auth, token or session id is not used. But, the computed hash value with
nounce can be used for the subsequent request without storing the clear text
password.

• Client nounce is used to mitigate chosen-plaintext attacks such as rainbow
tables.

• The authentication technique can be used in places or countries that are well
known security solutions like HTTPS are not allowed (blocked)

Cons: • To verify the client request, the server needs to build the same hash. The
server must have access to the username, password and realm in plain text
to compute the hash. It means that the server must keep the user’s pass-
word in clear text that takes away all the advantages of storing credentials
in salted and hashed values. If we assume that an application is exposed
to single realm which is a constant realm for all users, then the server can
store the password in hashed form, the same way as we specified above as
best practice. If the realm is compromised or changed, then the user must be
authenticated again and re-generated the entire users credentials using new
realm (MD5(username : password : realm)).

• Does not provide mutual authentication. Only the server verifies the client
identity, not vice versa.

• The user payload is not protected or the technique does not provide a key
exchange mechanism.

• It prevents the use of key derivative functions such as bcrypt, scrypt, or
PBKDF2 that slow brute-force attacks.

• If an attacker gains an authenticated computed hash value, MD5(username :
password : realm), a brute-force attack is possible against the password.
Further more, the attacker can perform Man-in-the-Middle attack and in-
struct the client to use the Basic Auth instead of the digest authentication.

7OpenRosa Consortium, [Last Accessed: April 2015] https://bitbucket.org/javarosa/javarosa/

wiki/OpenRosaAPI
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In general, OpenRosa Authentication API are considered as weak authentication
method8. It does not fulfill most of our security requirements and it vulnerable to sev-
eral attacks. As a result, we do not use or recommend the authentication API for MDC
systems.

Form-Based Authentication

Form-Based Authentication is another popular but weak method of remote authentica-
tion. The name "Form" refers to the notion of a user being presented with an editable
"form" to fill in and submit in order to log into some system or service9. The server
validates the credential pragmatically and creates a session for successful authentica-
tion. Form-based authentication does not use digest or basic auth protocol rather the
programmer decide the way the client communicate with the server. Like basic auth,
form-based authentication still requires a secure tunnel for user credential.
As a summary, these authentication methods are designed to make simple client and
server authentication but the specifications itself do not address the security concerns
such as exchanging credential in a secure tunnel or how both client-and-server mutu-
ally authenticate each other. Furthermore, the methods do not provide extra features
such as a secure key exchange protocol. In the next section, we present a compre-
hensive, strong authentication method called Secure Remote Password Protocol (SRP)
[139]. The Autheticator uses the SRP protocol for remote user authentication and key
exchange.

4.4.2.2 Strong Authentication Method

A strong password based authentication method provides mutual authentication, rea-
sonably protects low-entropy password from offline attacks, combine authentication
and key exchange schemas based on only the user password, resistant to a number of
attacks, and compromised database is not enough to impersonate the user. Secure Re-
mote Password-Based Protocol (SRP) one of the strong authentication based on user’s
password and presented as follows.

Secure Remote Password Based Protocol (SRP) Background

The Secure Remote Password protocol was first proposed by Tom Wu at the Stanford
University in 1997 and presented at NDSS (Network and Distributed System Security
Symposium) in 1998. [131]. The protocol is standardized in RFC 2945 [139]. Since
the standardization, the SRP protocol has been studied, optimized, and released with
new versions such as SRP-6 [132](2002) and SRP-6a(2005). The SRP-6a maintained
to stay without any changes for the last decade.

We have chosen the SRP protocol because of its simplicity, resistant to many at-
tacks, and its security features such as mutual authentication and key exchange mecha-
nism. Next, we present the protocol description in detail.

8Competitive Analysis of SRP, [Last Accessed: May 2015], http://srp.stanford.edu/analysis.html
9Form-Based Authentication, [Last Accessed: April 2015],https://en.wikipedia.org/wiki/Form-

based_authentication
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The SRP Protocol Description

The following protocol description is based on the original work [131, 132], specifically
the latest version, SRP6a.
The protocol begins with assuming that the user gets hold of a username (Identity)
and password distribute through some kind of side-channel. On the server-side, SRP
does not compute a hash of the password (salted), instead it computes a verifier, an
equivalent of the hashed password, yet calculated in a different way than the traditional
hashed password.

x = H(salt, I,P) (4.1)

v = gx (4.2)

where:

x = private key derived from user salt, identity, and password

salt = randomly generated salt

I = user identity, i.e. username

H() = Hash function

g = primitive root modulo n (a.k.a generator)

v = verifier

First, equation 4.1 generates the private key x (password-equivalent) using user spe-
cific salt, identity, and password as it is specified in the SRP protocol [132]. Then, the
value of x is passed to equation 4.2 to generate the verifier v. The private key x can be
generated in different ways and the verifier changes accordingly. The most important
point here is that the actual implementation of x is designed to maximize the resources
needed when someone tries to reverse and recovery the actual password. Finally, the
server discard the password and the private key x and only stores the verifier v, salt, and
I (username) in the user database.

Note: Before we delve into the details of the SRP authentication and key exchange
handshake, we would like to inform the reader that all the arithmetic operations are
done in module n, where n is a large safe prime number. This means that gx in the
equation 4.2 should be read as gxmodn. The values of n and g can be fixed or ex-
changed during the handshake.

The optimized version of the SRP-6a protocol handshake first initiated by the client
by sending unique user identifier (username) and asks for server parameters as shown in
figure 4.3. Generally, the handshake described in the figure 4.3 is easier to understand,
efficient, and requires only two round trips. By changing the order of the exchanged
messages in the optimized version, the number of round trips is reduced by one. As we
stated previously, the values of n and g can be fixed or it is also possible to exchange
these values during the handshake as shown in the figure 4.3. The overall handshake is
summarized as follows.

1. The client initiate the handshake by sending a request with user identity I,
i.e.username and ask the server some parameters
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2. The server lookup salt and verifier that are associate to the user identity

3. The server chooses random ephemeral private key b and computes the respective
ephemeral public keys B

4. the server return parameters:g, n, salt, B

5. The client chooses random ephemeral private key a and computes the respective
ephemeral public keys A, computes the scrambling parameter u, calculate the
premaster secret S and then the the evidence value M1.

6. the client send the computed evidence M1

7. the server verifies M1 and in order to the client to verify the server, the server
computes M2 and return as a response to the client.

8. If the mutual authentication is success, finally the client and server generate the
session key K.

For implementation special recommendations are stated in the selection of prime
numbers n and g [132]. Furthermore, additional safeguards are stated in the SRP-6a
protocol, in particular:

1. The client will abort if it receives B = 0 or u = 0

2. The server will abort if it detects A = 0

3. The client must show his proof M1 first. If the server detects that the proof is
incorrect, it must abort without showing its own proof M2.

SRP Protocol Security Analysis

A number of studies analyzed SRP strengths and weaknesses [75], addressed security
flaws in hash function used, proposing further changes on the protocol [19], and others
debated over the role of the protocol compared to other similar protocols [35]. The
SRP protocol is resistance to a number of attackes. Here, we present some of them but
further analysis on different attacks are presented in details in [25, 67, 75, 130, 132,
140].

Passive Attacks

Attacks on the Session Key K: The main target of this type of attack is to obtain the
session key K from client/server exchanged values such as A, B, M1, M2. The resis-
tance of SRP is based on one-wayness of the discrete exponentiation function. From
SRP-6 these attacks have been made even harder, since the evidence messages M1/M2
are calculated from the premaster secret S, instead of the relatively smaller key K [52].

Dictionary-Based Attacks: Trying to guess the password off-line using a dictionary
does not give a real advantage, since the attacker should also try exhaustively all the
possible random values of a and b. An on-line dictionary attack corresponds to pos-
ing as the user and trying to guess the password. This can be limited by restricting the
number of password attempt [52].
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Figure 4.3: Optimized SRP Protocol Handshake

Notation:

x = private key derived from user salt, identity, and password

salt = randomly generated salt

I,P = user identity, i.e. username and password

H() = Hash function

g = primitive root modulo n (a.k.a generator)

v = user password verifier

u = random scrambling parameter (public)

k = multiplier

a,b = ephemeral random private keys

A,B = corresponding public keys

S = premaster secret

K = cryptographically strong session key

M1,M2 = evidence messages (or proofs)

Active Attacks

Replay Attacks: SRP is immune to this kind of attacks, due to the randomness that in-
fluence the key generation.

Man-in-the-Middle Attacks (MITM): If the password-equivalent x is known, an at-
tacker can act as the client. If the verifier v is known, it can masquerade as the server.
But, to perform a MITM, both values are required, meaning that we first need to com-
promise both client and server.
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Active Dictionary Attacks: If an attacker manages to steal a user’s verifier (e.g., gain-
ing access to a server’s password file), the attacker can attempt a dictionary attack to
recover that user’s password. This possibility is clearly mentioned by the author of SRP
in [25, 52].

The latest attacks on the SRP based systems are discussed in [49, 89, 125]. Re-
searchers recommend to use more advanced hash function and a modulus value n of at
least 1024-bit. Thus, we conclude that the security of SRP is based on the security of
its primitives.

4.5 Proposed Solution

In this section, we present a secure authentication service that systematically addresses
the functional and non-functional requirements discussed in the sections 4.2.1 and
4.2.2. Before delving into the details, we define concepts, preliminaries and proto-
col used in the proposed solution.

A user account (username and password) must be created and stored on the MDCS
server before the user starts using the system. Even though the user only uses username
and password to authenticate himself or herself, the way the user authentication is im-
plemented on the server, differs from one authentication method to the other. Besides,
the client application role on user authentication also changes from one authentication
method to the other accordingly. For example, if we consider basic authentication, the
client is expected to send username and password to the server in clear text or through a
secure tunnel. Whereas in case of digest authentication, the client challenges the server
instead of sending the actual user’s password. So, when the MDCS system adopts a
new method of authentication, it should examine the advantages of the new method
and required changes to integrate it into the existing system. Based on the discussions
in the section 4.4, we identified the SRP protocol as the preferred client - server authen-
tication method because of the following list of advantages10:

• safe against snooping

• immune to replay attacks

• exchanges a session key in the process of authentication

• can provide mutual authentication

• resists the dreaded off-line dictionary attack based on exchanged messages offers
perfect forward secrecy

• can tolerate a compromise of the verifier database on the host

First, we discussed the changes needed on the MDCS server in order to incorporate the
SRP based authentication method. Later, we presented how the SecureMDC framework
on the client, authenticate the user using the SRP protocol. Since the SRP protocol does
not provide a message exchange format, we chose the JSON Web Token (JWT) for
handling the SRP handshake. Here, we provide a proper definition of JWT as follows:

10SRP Advantages, [Last Accessed: June 2015], http://srp.stanford.edu/advantages.html
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JSON Web Token (JWT): is a compact, URL-safe means of representing
claims to be transferred between two parties. The claims in a JWT are
encoded as a JavaScript Object Notation (JSON) object that is used as the
payload of a JSON Web Signature (JWS) structure or as the plaintext of a
JSON Web Encryption (JWE) structure, enabling the claims to be digitally
signed or MACed and/or encrypted. [62]

N.B.: When we use the word SRP anywhere in this disseration, we are refer-
ring to SRP-6a, the latest and improved version of SRP-3.

4.5.1 Users Sign-up on the MDCS server and Account Distribution

Figure 4.4 and 4.5 show how users are signed up to MDCS system. Many of MDCS
systems use a user management software component on the server-side for signing up
users into the system before conducting data collection. This part is a manual pro-
cess and performed by the project manager. MDCS system users can be data collec-
tors, form manager, data viewers, field supervisors, coordinators, and any other actors
within MDC eco-system. This individual user profile data is recorded through the user
manager console and each user is assigned a username (usr) and password (pwd) for
accessing the system.

Furthermore, resources access privileges are assigned to each account. These user
accounts are distributed through a side-channel. The side-channel can be an e-mail, an
SMS, in person, a phone call, a letter, or some other means. The choice of the side-
channel depends on several factors such as users geographical location, communication
network accessibility, users ability to use these channels, security, and others. Hence,
the choice of the distribution channel varies from system to system, and it is not covered
in our work. However, we believe that this is an important piece of research to be
investigated in the future. Especially when distributing user account in large scale
projects.

Some of MDCS force the user to change the initially distributed password, and
some others do allow the user to keep initially distribute password.In any case, once
user receives the account, any further interaction with the server is protected.

Figure 4.6 and 4.7 compare user sign-up flow between the existing MDC systems
and with the introduction of SRP protocol respectively. After the sign-up form is filled,
the current systems take the user password and randomly generated a salt value as an
input to a hashing function such as SHA-256 as shown in figure 4.6. The computed
hashed password together with the salt is stored in the data storage. When using SRP,
what is stored is a password verifier v instead of the hashed password.

Even if the SRP protocol standard outlined in RFC2945, suggest to create the private
key, x, as SHA1(salt|SHA1(Identity|” : ”|Password)), it is possible to generate the
value x in different ways. For instance, it can be computed as H(salt, password) or
using some key derivation function such as Script or PKCS#5:PBKDF2 as outlined in
RFC2898. Therefore, the verifier creation is mostly left to a particular implementation.
Figure 4.7 shows how the server can simply compute x as H(salt,usr, pwd). Once
the users account are created and distributed through a side channel, users authenticate
themselves through the SRP handshake.
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Figure 4.4: Users Sign-up and Account Distri-

bution
Figure 4.5: OpenMRS User Registration

Figure 4.6: Current Users Sign-up Process Figure 4.7: Users registration with SRP
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As a summary, we assume that the user’s credential for accessing the system consist
of a username (usr) and a password (pwd), provided securely to legitimate users. Typ-
ically, the username is assigned by MDCS, while the password is chosen by the user
after the initial authentication using the distributed password. Password strength policy
is enforced when the user chooses the new password.

4.5.2 General Architecture of the Proposed Solution

In order for the proposed solution to work properly, we are making the assumption
that the application is distributed and installed on mobile devices in a secure manner.
The secure application distribution ensures that the application code that runs on the
client side is not tampered with during distribution or installation. We have provided a
thorough analysis on the application provisioning in Chapter 7.

Figure 4.8 shows the general authentication service architecture of the SecureMDC
framework. It incorporates main components including the authentication security
module, an account store, a key store, the SRP and the JSON Web Token protocols.

Figure 4.8: Authenticator: Local and Remote User Authentication Module

The authentication service itself is designed to be platform and application inde-
pendent and provides an authentication layer on top of an existing application layer.
The aim is to be able to provide adequate secure authentication service based on the re-
quirements and restraints of any given application or project. The intended area of use
is mainly securing MDCS in low-budget settings. User Authentication on the mobile
device is organized into two phases: User registration and local authentication. The
user has to register on the phone the first time, and this requires remote authentica-
tion on the server with the server password. In the next section, we discuss the user
registration.

65



Chapter 4. SecureMDC Authenticator: A User Authentication Module for MDCS

4.5.3 User Registration

Unlike a web-based service where data is frequently exchanged between server and
client, MDCS client applications are designed to hold users data for a certain period.
The collected data may, in fact, stay for days or months on the device. Moreover, due
to limited budgets multiple data collectors can use a single mobile device. Therefore,
the solution should fulfill the following requirements:

1. Data access restriction between registered users on a device

2. Local authentication on the device

Figure 4.9 shows the Authenticator module with its main components used to au-
thenticate the user locally and remotely. The numbers labeled in the figure are used to
describe the user registration steps and we present it shortly.

Figure 4.9: User registration flow Diagram

The Local Auth component in the figure 4.9 is responsible for handling user authenti-
cation on the device. This component checks if a user does exist on the device before
initiating the server authentication through the Remote Auth component. If the user
does not exist, the Remote Auth component starts a server authentication procedure
through the SRP protocol and verifies the server response. If the authentication is a
success, the Remote Auth component creates the credentials used to authenticate the
user during offline access. If the server authentication fails, it allows the user to try to
log in again.

The whole process of authenticating a user to the server for the first time is called
user registration on the device. At the beginning, the device has no information for au-
thenticating the new user and needs help from the remote server to verify and authen-
ticate user credentials. Thus, connectivity to the server is required. Here, we present
steps needed to register a user on a mobile device. The user registration involves mutual
authentication between client and server, creating credential storage on the device for
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offline authentication, changing new password, and mapping the user profile to the de-
vice identity (s)he is trying to register with on the server. All these steps are performed
using the Remote Auth component of the Authenticator module without involving both
MDCS server and client application as shown in the flow diagram in the figure 4.9.
Next, we use the numbers labeled in the figure 4.9 to explain the required steps for user
registration.

1. When a user starts the MDCS client, the client redirects the user to the Authenti-
cator module. A login manager component of the Authenticator launches a user
login form. At this point, the Authenticator takes complete control of the user
authentication process and gets the user credential directly via the login form.

2. The Local Auth component of the Authenticator, looks up its local credentials
storage for the current user credential. If the user does exist, it proceeds with
offline authentication, otherwise, returns false.

3. The login manager then initiate the Remote Auth component to perform server
authentication using the SRP protocol over HTTP.

4. The Remote Auth component runs the SRP protocol for mutual authentication
and key exchange. The Remote Auth verifies the server response and allows the
user to change the old password with a new one. Subsequently, the component
registers the user on the device by creating the necessary offline credentials used
to authenticate the user locally.

5. Once the user registration is completed; the Authenticator returns the control and
the authentication result back to the MDCS client. If the authentication is suc-
cess, the MDCS client allows the user to access the client services such as form
downloading, form filling, editing, and submitting to the server.

6. At the end, the user can initiate the logout function to inform the Authenticator.
Accordingly, the Authenticator logs out the user and clean user related credentials
and data properly.

In the next sections, we delve into each of the above user registration steps and
present how we approach and develop a working authentication module for feature
phones and smartphones based MDCS, both for the Java ME and Android platforms.
The interaction and handling control of the authentication process between the MDCS
client and the Authenticator module is also discussed.

Step 1: Passing control over the Authenticator Module from MDC Application

Passing control from the MDCS client to the Authenticator module and vice versa
differs from Java ME platform to Android.

In the Java ME platform, there are limited ways of passing control. Understanding
how the system thread works in Java ME platform was critical in order to be able to
make a responsive application that will not deadlock. The system thread won’t be able
to do its job, such as updating the current screen until it is not in use. For a more in depth

67



Chapter 4. SecureMDC Authenticator: A User Authentication Module for MDCS

explanation see the article "Networking, User Experience, and Threads" 11. Because of
this, the Authenticator Module has an abstract method called userMenu(), the purpose
of this method is to give control back to the application once the Authenticator has
logged a user in. The logging in steps are run inside a number of threads, this will be
discussed in the next section. Once these threads have logged in a user, they call the
userMenu() method and the application can run its code. The secureclient threads will
then wait until the application calls logout() at which point they will restart the log in
process. There would be nothing wrong with using a normal method instead of the
userMenu() callback method. One such method could be logInScreen() for instance,
which would return once the user has been logged in. However, the downside of this
approach is that the programmer would be responsible for correctly running this method
in a separate thread to avoid application deadlock. This would be a nuisance, go against
good API design as proposed by Josh Bloch 12 and result in boilerplate code 13.

Android platform maintains the Java ME thread handling mechanism with some
built-in remedies for better ways handling thread related operations. When an Android
application is launched, the system creates a thread of execution for the application,
called "main" or "UI thread". The thread is responsible for screen updates and other
system related tasks such as dispatching events.

If we compare the main thread handling between Java ME and Android, in the case
of Java ME, when we tried to make a waiting screen for user feedback while the appli-
cation was communicating with a server, the application would freeze for the duration
of the communication and then for a fraction of a second display the waiting screen be-
fore setting the next screen. This happened because the lengthy operation of network
access was being run in the main thread, so while the system had been instructed to set
the new screen, it had to wait for the server communication to complete in order to be
freed and thus able to order to do so, at which point the server communication would
be done. As a remedy, we could hand over the intensive work to a worker thread, but
when the intensive work was completed, it was not possible to manipulate the main
thread from the worker thread in order update the screen with some result.

Similarly, Android’s single thread model strictly follow the following two rules:

• Do not block the main thread

• Do not access the Android UI toolkit from outside the main thread

Unlike Java ME that lets applications freeze when there is an intensive operation
on the main thread, Android wait few seconds (up on this writing, 5 seconds) and
the application process is killed. A user is notified with "application not responding
(ANR)" error. For a more in depth explanation on Android Processes and Threads see
this 14.

11Jonathan Knudsen. Networking, user experience, and threads. [Last Accessed: Dec 2014], http://www.

oracle.com/technetwork/systems/index-156145.html
12Joshua Bloch. How to design a good api and why it matters. Talk/video: [Last Accessed:June 2011],

http://www.infoq.com/presentations/effective-api-design
13Wikipedia - Boilerplate code, [Last Accessed: August 2011], http://en.wikipedia.org/wiki/

Boilerplate_code
14Android Processes and Threads, [Last Accessed: January 2015], http://developer.android.com/

guide/components/processes-and-threads.html
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Android also offers public API to access the UI thread from other threads but it
comes with more responsibility for handling all threads life cycles and furthermore the
code might get complicated and hard to maintain when threads related operations grow
within the application. In order to alleviate this problem, Android provides "Async-
Task" public API to execute intensive operation on the background asynchronously.
Once the operation is completed, the AsyncTask handles updating the main thread with
a new result.

Furthermore, on the Android platform, the proposed secure solution can be devel-
oped as service application running on a separate process. Hence, the MDC application
can access the service through Interprocess Communication (IPC) which is the under-
lying apps communication mechanism in Android platform. Android supports a simple
form of IPC mechanism through intents 15 and content providers 16 for asynchronous
and synchronous communication respectively. So, the security services can be accessed
through intents asynchronously while, for faster synchronous call execution, Android
offers an alternative solution to create a communication channel between two appli-
cation running on different processes. This is achieved using a Binder Framework17.
Remote Procedure Calls (RPCs) is provided through Android’s IPC based on Android
Binder framework. The RPC mechanism using binder enables us to call a method or
an operation that is running on another process from the MDCS application process
and get a result of the operation to the MDCS application. Since Android IPC mecha-
nism involves the operating system, a simple RPC call requires disassembling the call
and its data to the level the operating system can understand, transmitting to the remote
process address space, reassembling and executing the call on remote process, and re-
turn the call result back to the caller process on the opposite direction. The Android
platform handles all these underlying complexity. This binder based IPC mechanism is
more flexible and faster to establish a communication channel between the applications.

Android centralized user’s account management system (a.k.a Account Manager)
is one of many system services that uses a binder as an IPC mechanism. The Ac-
count Manager handles storing and managing user credentials on the device. In order
to accommodate different authentication schemes for online services such as Dropbox,
Google, Twitter and Facebook, the Account Management framework does not pro-
vide any specific implementation. Rather it is open through a pluggable Authenticator
module. The Authenticator module is an implementation of a specific authentication
service and implemented by a particular service provider. Therefore, we can imple-
ment our own Authenticator Module that fulfill the SecureMDC Authenticator Module
requirements.

The Account Manager provides access to the centralized account registry via a pub-
lic API. Any application can delegate the Account Manager to authenticate users online
account with the remote server and store credentials on the device system storage. The
credential store is outside the application data store and is not accessible from any ap-
plication on the device.

All components in figure 4.10 except for the AccountManager are running as an

15Android Intents, [Last Accessed: April 2015] http://developer.android.com/guide/components/

intents-filters.html
16Android Content Providers, [Last Accessed: April 2015], http://developer.android.com/guide/

topics/providers/content-provider-basics.html
17Android Binder, [Last Accessed: March 2015] http://elinux.org/Android_Binder
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Figure 4.10: Android Account Manager Components

authentication service in a separate process. This authentication service is exposed
to the MDC application by the AccountManager via a binder. The Authentication-
ManagerService is the core component of the account management framework which
handles persisting account data in the account storage. The Authenticator Module is
the actual implementation of SecureMDC Authentication and is identified by a unique
account type "org.securemdc.account". Finally, the AccountAuthenticatorCache iden-
tifies the Authenticator modules by scanning the packages that define the Authenticator
modules and make them available to the AccountManagerService.

The sequence diagram in figure 4.11 shows the interaction between the MDC ap-
plication and the Authenticator module via a binder. The MDC application is running
on process A and access the Authenticator module which is running on process B. The
method call addAccount with the passing parameters are decomposed into transaction
and data before it reaches the binder driver which is responsible for handling process
to process communication. The transaction and the data are reassembled on the other
end, and the method call is performed on the Authenticator module. The Authenticator
module returns back the result on the opposite direction. The Android platform pro-
vides all the underlying complexity of data marshaling, unmarshaling, transaction, and
thread handling. From the MDCS application perspective any method call feels like a
local call, but it is executed on a remote service using RPC.

At the end, the returned result from the Authenticator may contain a token when the
authentication is a success or an error if the authentication fails. The MDCS application
verifies the response and allows the user to use the application.
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Figure 4.11: Android Account Management Sequence Diagram

Step 2: Does a User Exist on Local Account Storage?

Once the control is passed over to the Authenticator module in step 4.5.3, the Authen-
ticator module launches the login screen to capture user credential in a secure manner.
Then, the Local Auth component in figure 4.9 takes the unique username and checks if
the user does exist in the account storage. If user does not exist, the Remote Auth com-
ponent is notified to authenticate the user credentials with the remote server using SRP
protocol.

Step 3 and 4: Client-Server Mutual Authentication

When we began this work in late 2010, we proposed a home grown protocol based on
public key cryptography to establish mutual authentication between client and server
[74]. We first assumed that the MDC application had been configured and installed
properly on the mobile device. When the application opened for the first time, the
server URL would be entered to request and retrieve the server public key. However,
the user could type the URL incorrectly or a man in the middle could manipulate the
server response. Therefore, the protocol required the client to authenticate the server
public key. This is done by challenging the server to decrypt a secret key. To be able
to perform the decryption, the server must use a shared secret that was distributed in
advance to the users together with their user name and password. If the server can
decrypt the secret key, it will be able to encrypt its response consisting of a unique
application id to identify the specific device running the application in future requests,
and a seed to improve the quality of the keys generated by the random generator on
the mobile phone. The public key digest is used as a proof that the server sending the
response is the same one that initially supplied the public key.

However, since the public key is inside the application manifest file we can expand
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on this idea and calculate the digest of the whole Java ME JAD file (Java Application
Descriptor (JAD) as it is discussed in the chapter 2 under the section 2.4.1), containing
the public key and thus verify not only the key, but an arbitrary set of Application
manifest properties that we want to make sure are not tampered with. The digest is
computed on the server and sent as part of the server authentication response. The
client can then calculate the digest for the application manifest present on the device,
and compare this with the one from the server. The hashing is done by concatenating
a string consisting of the values we want to verify in a predefined order. The order
is the same on client and server. This alone however leaves the system vulnerable to
spoofing attacks, if we have the properties "a=1","b=2", and "c=3" and we concatenate
them in the same order, there is nothing stopping an attacker from leaving "b" and "c"
blank, and setting "a=123". To prevent this, we prefix the value with its length + ’;’.
Any empty values would have the length of 0. The previous example would then yield
the value "3;1230;0;" which would not be the same as "1;11;21;3". The concatenated
string is then hashed and the hash from the server compared to the hash from the client
values.

A drawback of the Pre-Shared secret approach, is the difficulty in distributing many
activation codes, especially if there are thousands of collectors, and the difficulty of
entering a complicated and long key on a mobile phone. So, a third option, which is
also used today, is to deliver the phones to the collectors pre-configured by someone
responsible for this specific task, so that installation can be done manually. In this way,
we can get a genuine public key that can be used for a mutual authentication together
with user’s authentication credential.

In some previous work [44, 73] we argued why HTTPS cannot always be considered
as the best solution for mutual authentication and secure communication in low-budget
data collection projects. The reasons were mainly three: bad support/implementation
in older phones, criticisms towards the Certificate Authority Trust Model (see for in-
stance [112]) and the cost of the certificates. A typical feature phone would, in fact,
have a limited list of root certificates which could not be modified by the user, and that
was not standardised across models and manufacturer. This would make it difficult for
a project to choose a CA from which to buy an SSL certificate that could be supported
by all the handsets deployed in the project. On the other hand, not being able to mod-
ify the list of root certificate would give a guarantee that self-signed certificates could
not be accepted, providing higher security. The result however was that most MDCSs
would simply not use HTTPS at all. With smart phones, the support for HTTPS im-
proved dramatically, but, especially in Android, self-signed certificates and CA signed
certificates are treated in the same way, with the consequences discussed in the previous
section on app distribution chapter 7.

We looked then for other protocols that are not dependent on certificates, and re-
alised that a password-based approach would be best. One of the most reliable such
algorithms is the Secure Remote Password Protocol (SRP), a Password Authenticated
Key Exchange (PAKE) protocol based on a pre-shared password for mutual authenti-
cation and key exchange, standardised in RFC 2945 18. It allows mutual authentication
and secure key exchange, while being resistant to on-line brute-force and Man-in-the-

18RFC 2945, [Last Accessed: December 2014], https://www.ietf.org/rfc/rfc2945.txt
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Middle attacks (MITM). In addition, it can be used in conjunction with TLS 19 to create
a secure transport layer without the need of certificates or new protocols. In previous
MDCSs this approach would have been ideal since every collector would get a pass-
word based account to access the server anyway, but they would lacked the necessary
APIs to support it. Besides, with new authentication technologies like OAuth, that can
be used to authorise access to some server resources without sharing the user’s creden-
tials, a password based approach might not be necessary. ODK for example is using
Gmail accounts to grant access to their servers, without having to issue a new user-name
and password for each collector, as long as they have a mail account with Google.

Thus, we started looking at another strategy called certificate pinning. With the
help of strict-host-key-checking feature, an OpenSSH client can be configured to grant
or reject a connection request by verifying incoming request key against known keys
list stored in the key store. This idea has been adopted in certificate or public key
pinning. Pinning is an emerging concept of associating a given client with a list of
known public keys or certificates. The client then verifies an incoming connection
request against the list and grant or reject accordingly. After Man-in-the-Middle attack
on Gmail’s SSL through a compromised DigiNotar certificate (DigiNotar was one of
well know CAs before bankrupting) [99], Google and other organisations have been
actively engaged on making pinning as a part of their products. As a result, there are
public APIs to implement pinning solution on mobile apps and web browsers. There is
one fundamental problem with pinning though. There is no secure way of distributing
the certificates or public keys to a client at the beginning of a project in a distributed
environment. Basically, there are two ways to distribute the certificate or public key to
the client. It can be incorporated with the application before distribution install or it can
be fetched after the application is installed. OWASP recommends the former - before
app is installed [99]. However, if we choose the second distribution scheme proposed
in the previous section, where no project specific configuration can be added to the
app, we have to go for the later approach. That is, to fetch the keys and certificates
after the application is installed. We found SRP protocol to be a potential candidate to
accomplish this task.

Assuming we downloaded a genuine app, we propose to use SRP based on a one-
time password delivered to the user by SMS or email, and use this protocol to authen-
ticate the server for the first time and download its certificate. Successively, we use the
certificate pinning strategy offered for example by openSSH and use HTTPS for future
communications and perform the chosen user authentication on this secure channel.

In general, given that the application has been correctly and securely installed and
configured, and the user has a unique identifier and a pre-shared secret, e.g. username
and password or a one time password, we want to achieve the following requirements:
Confidentiality; Mutual Authentication; Protection against reply and MITM attacks;
Data Integrity; Key generation and management; and Compatibility with the existing
applications.

SRP is currently resilient to many attacks and no vulnerability proof exist. SRP
was proposed by Thomas Wu and its latest version is SRP-6a. Due to the strength
and the simplicity of the protocol, we can use SRP to fulfill all security requirements
except data integrity, since it is used for authentication and not secure data transport.

19SRP-TLS, [Last Accessed: April 2015], http://tools.ietf.org/html/rfc5054
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Compatibility is an issue as there are surprisingly few APIs offering the complete SRP
protocol on both client and server side. We are working on this issue. The two SRP
round trips needed to perform mutual authentication are shown in Figure 4.12. The
final result is a shared symmetric key K, which can be later used in a TLS based session
for example, or to encrypt the server certificate. According to the project setup, SRP
might be used only once to download the server certificate, or every time in conjunction
with TLS and the user password. Whether user authentication is based on 20 user
certificates, passwords or one time codes is also open. In any case, when using TLS
based communication, all our requirements would be met.

The SRP scheme requires two request-response cycle to accomplish mutual authen-
tication and exchange keys. As shown in Figure 4.12, the client initiate the communi-
cation by sending a request with user’s unique identifier, I. Upon the request receives,
the server generates its public key, B, by using a verifier which is a result of g, Hash(I,
salt,password), a constant value k, and a random number b. The client uses the server
response B, g, n, and the user salt to compute its public key and a proof, M1, for mutual
authentication. After the server verify the proof, it perform a similar computation and
respond with its proof, M2, to client. Finally, the client and server generate the session
key, K, using the pre-master secret Hash(S).

Figure 4.12: SRP-6 Protocol

In our approach, the SRP scheme is used only once when the client side application

20The OAuth 2.0 Authorization Framework, [Last Accessed: June 2015], http://tools.ietf.org/html/

rfc6749
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is used for the first time. Once the two-way authentication is completed and shared a
session key is created, the client retrieves the server certificates/public keys through the
established secure channel and use the keys to create TLS link for later transactions.
For further interaction with the server, the client does not need to initiate SRP, instead it
uses the pinned certificate to establish a standard TLS channel and the OAuth protocol,
or a usual password based login, to achieve all requirements of a secure communication.

Step 5: Passing control back to the MDC Application

When the user authentication is completed, the secure framework returns control to
the MDC application together with the authentication result. If the authentication is
a success, the result may contain a token that the MDCS client uses to interact with
the secure storage module for form and data related activities. The token may have
a set of key/value pairs such as user identity, expiration time, token id, and so on.
The token may also have a signature field if the Authenticator Module signed it. One
may wonder what happens if the MDC app compromises the token. The Authenticator
module can then revoke it and furthermore, since we are assuming the MDC app and
the secure framework are signed by the same key, the secure framework always checks
the signature of the caller before it processes the request. Hence, we can protect the
user data even when the token is lost or compromised.

The Authenticator also creates the necessary credentials that is used to authenticate
the user during offline. If the authentication is successful, the Authenticator creates a
user keystore in platform protected area (further discussed in chapter 5). In the key-
store, a storage key to encrypt stored data (ST Key in figure 4.13) can be created for
the specific user, either by the server or the mobile phone itself, and the user may be
asked to choose a new mobile password to access the encrypted storage. A copy of
user master key is kept on the server in clear, since this is a private server we trust, and
allows for recovery. A solution for untrusted server such as a cloud-based server is dis-
cussed in chapter 6. A master key MK is created from the mobile password and used
to encrypt the ST Key. A Hash-based Message Authentication Code (HMAC) is gen-
erated by combining MK and the encrypted ST Key. Local authentication can now be
performed using this HMAC.

Step 6: Logout

The logout process is an important step in cleaning the data and any user related account
from memory. The Authenticator module expects the user to invoke this service and the
Authenticator takes the charge and cleanup the keys, invalidate token, and inform the
storage module to encrypt or re-encrypt available data in a user working area. The user
working area actually contains user requested forms or data in-memory. We can see the
scenario where the MDC app process is killed or the user forgot to invoke the logout
function. Since both MDC app and the secure framework are signed by the same key
and use the same process, the former one can easily be handled. However, for the latter,
the secure framework monitors the user’s activity and if the user does not communicate
for a certain period of time, the secure framework takes immediate actions such as
auto-logout. Internally, this is handled through the Android IPC framework.
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4.5.4 Local Authentication

Local authentication on mobile device is a gateway for accessing any data stored on
the device memory. Thus, when offline authentication is enabled, the Authenticator
module protects data encryption keys and other user related credential on the device.
Thus, when designing a solution for local authentication, we had to account for some
typical scenarios in mobile data collection as described in section 2.3.1 and 5.3. In
particular that multiple users should allowed to use the same phone and that Internet
access might not be always be available. This means that mobile devices can no longer
be considered private or personal to a user and that most of the data collection might
have to be done offline. From a security perspective this translates into the following
concerns:

1. Confidentiality (encryption)

2. Authorization (users can access only their own data)

3. (Off-line) authentication

4. Password and data recovery

5. Password changes should account for the possibility of using the same credentials
to authenticate on different phones

6. Data should be reasonably protected also if all information stored on the phone is
available to an attacker

7. Breaking the storage encryption should not compromise the rest of the system

In this section, we go through different possible solutions, discuss why they do not
meet all the requirements, and gradually improve them until we get to a satisfactory
one. Notice that, although at a high level we are guaranteed some security properties
because we use standard algorithms which are proven to be secure, the security of
actual implementations depends on the correct implementation of the crypto libraries
used, the correct usage of the algorithms and the security model of the platform. Such
libraries might be Bouncy Castle 21 for Java ME, Spongy Castle 22 for Android or
OpenSSL 23, just to mention some freely available APIs.

Here we assume that user credentials consist of a unique user name and a password,
and that to each user (on a given device) is assigned a different encryption key, so that
a successful authentication grants direct access to a token, the encryption key, and the
data encrypted with it, but nothing else.

• Straightforward solution: The user is authenticated by computing a hash of the
password and comparing it to the hash stored in clear on the phone. The same
hash is also used as the user’s encryption key (or to derive it). This allows separate
encryption for each user (requirements 1 and 2), off-line authentication (require-
ment 3), but the authorisation mechanism prevents unauthorised access only as

21Bouncy Castle, [Last Accessed: June 2014], http://www.bouncycastle.org/
22Spongy Castle, [Last Accessed: November 2014], http://rtyley.github.io/spongycastle/
23OpenSSL, [Last Accessed: May 2015], http://www.openssl.org/
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long as data are accessed through the application. If an attacker can copy the
phone memory, then the stored hash can be used to decrypt the data directly, just
as it can be used to recover the data if the password is lost (requirement 4).

• Slightly better solution: An easy improvement to the above solution is not to
store the hash of the password. Authentication is then performed by verifying
that the key derived from the password can correctly decrypt the data. This can
be done by employing some kind of integrity check on the data, like appending a
digest to the data before encryption, or adopting algorithm that can reliably detect
errors caused by the use of a wrong key. But the safest and the cleanest way is
to compute a keyed-hash message authentication code (HMAC). This approach
would satisfy also requirement 6 if the key is generated with a reasonable number
of iterations and therefore more time-consuming to break, but makes the recovery
of the password and the data impossible unless a copy of the derived key or the
password itself is stored somewhere and it is accessible through some other form
of authentication.

• Complete solution with a private server: Recovering the password or the derived
key is not a trivial problem. This information would have to be stored somewhere
and the user should have an alternative authentication mechanism to access it,
creating a circular problem. In any case, when the encryption key is derived
from the password, even though we had a way to recover the data, a password
change would require re-encrypting the whole storage since also the encryption
key must be changed. This problem can be solved by creating an encryption key
that is not directly derived from the password, but is instead encrypted separately
with a password based derived key. Combining the previous solutions we would
satisfy almost all our requirements, except for 4, 5 and 7, as long as the same
password is used both for accessing the phone and the server. In fact changing a
password on the server from one phone, would mean that the old password must
still be used to login locally on other phones, creating potential synchronisation
problems. Also, if one phone encryption is broken and the password recovered,
the attacker could impersonate the user to the server and gain access to the rest of
the system. One approach that could give a satisfactory solution from a security
perspective, is to separate completely the local authentication from the server
authentication. In this way, requirement 4 would be satisfied by storing a copy
of the encryption key on the server, and if the mobile password is forgotten, the
user could login on the server, retrieve the key and reset the mobile password.
Requirement 7 would be satisfied since no trace of the server password could
be found on the mobile phone, neither explicitly (the hash of the password), nor
implicitly (some keys are still derived from the password, so it is still possible
to guess the password, generate a key and verify whether it is correct just as the
authentication mechanism does).

Figure 4.13 shows a solution that satisfies all given requirements based on the pre-
vious discussion. During login procedure, a user passes username and password. The
login manager then computes the master key and the HMAC as it is shown in figure
4.13 and verifies against with the stored HMAC. If the authentication is successful, the
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login manager returns a token that the MDCS client uses to interact with the secure
storage module for form and data related activities.

Username

Password PBKDF2/scrypt

E(MK, PKuser )

Login Manager

Salt

E(STKey , MK)

1

2

3

4 HMAC(E(STKey, MK ), MK)

fail Compare HMAC
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Compute 
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SD Card

User Partition

Internal Memory
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File Encrypter

Encrypted
File I/O

Resource Manager

Figure 4.13: Local Authentication. The notation E(Data,Key) means that the Data is en-

crypted with Key.

If authentication fails enough number of times, the encryption key of the user will
be deleted from the phone, hence forcing a recovery procedure involving remote au-
thentication on the server. Also, keeping the keys in a store separate from the data
(a keystore), and different user stores separated from each other, would add flexibility
when implementing this solution.

4.6 Discussions and Conclusions

How difficult it is to break the data encryption depends on the strength of the user
password and the key derivation algorithms used. There is not much that can be done
to enforce a very strong password while keeping it secure. It is common knowledge
that users will just write it down somewhere or forget it. A good compromise could
be to require an alphanumerical password of a given minimum length, or a passphrase,
while using algorithms that could slow down as much as possible a brute force attack,
but without compromising usability. For this purpose, simple MD5 hashes or even a
salted SHA-1 hash might not be enough, so we recommend using a password-based
key derivation function such as PBKDF2 (Password-Based Key Derivation Function)
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24 and scrypt 25, with as many iterations as possible, based on the computation power
of the phone.

Initially, Android was designed for a single physical user in mind. This design
choice has been changed in favor of supporting multiple users per device in the later
versions. As we previously discussed, however, the multi-user approach introduced by
Android, and, therefore, its local authentication approach, does not meet the MDCS
security requirements we identified. It is also worth mentioning that this feature was
first introduced in Android 4.2 (Jelly Bean) for tablets and extended to smartphones
only in Android 4.4 (Kitkat). This means Android devices prior to this version, do not
provide any multi-user support.

As mentioned in [79], data exchange standard is one of among many factors that can
overcome the barriers to integration and interoperability between MDC systems. Even
though the good work of OpenRosa Consortium initiative to bring standardized data
exchange and API are halted (for unknown reason), we also believe standard solutions
are the only way to consolidate the fragmented MDC systems for better outcome. As of
this writing, we are not aware of any group who does a similar work as the OpenRosa
Consortium. We contributed this piece of work as starting point for a comprehensive
and all-inclusive standard authentication solution. We identified the common functional
and security requirements of most MDC systems and systematically addressed the local
and remote authentication. We followed a standard, a well-tested protocol for remote
authentication, namely SRP, and the local authentication is seamlessly integrated to two
of the partners project, i.e. openXdata and ODK. The solution in the openXdata system
is in production use, and we are extensively testing the authentication solution provided
to the ODK system.

24Password-Based Cryptography Specification Version 2.0, [Last Accessed: January 2015], http://www.

ietf.org/rfc/rfc2898.txt
25Scrypt, [Last Accessed: May 2015], http://www.tarsnap.com/scrypt.html
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5
SecureMDC SecureStorage: A Secure Data

Storage Module for MDCS

This Chapter is based on the candidate’s

previously published work at the

International ACM Conference on

Management of Emergent Digital

EcoSystems (MEDES). The full paper is

available at [46].

5.1 Introduction

Insecure data storage is probably the most concerning aspect of mobile devices, espe-
cially when a large amount of health related data is collected. The reason is that, unlike
desktop computers, mobile devices are much more likely to be lost or stolen, or to be
easily accessible in a short period of time if left unattended. It is enough that most ap-
plication data is stored unprotected on the memory card, which can easily be taken out
of the phone and read without problems on another device. This is why it is necessary
always to encrypt sensitive data before storing them locally on a mobile device. With
encryption, however, come also a lot of other unavoidable problems. How to generate
strong cryptographic keys? How to store them in a secure way? Which algorithm to
use? Does the device offer adequate support? Similar problems also arise on the server
side, at least when the server is not under direct control, like for example in the cloud
case.

It is not a surprise then that the Open Web Application Security Project (OWASP)
ranked insecure data storage at second place in the top 10 2014 mobile security risks
[94]. OWASP suggests to not to store data on mobile device as a cardinal rule to mini-
mize risks, but as offline capability is one of our main requirements, providing a secure
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local storage becomes a major challenge in Mobile Data Collection Systems (MDCS).
Besides, a secure storage is not only used to store and protect collected data, but also
authentication information, key material, downloaded form definitions, certificates and
more. This implies that a complete solution for secure storage must be very flexible
and offer a wide spectrum of services to both the user, the application and the other
modules of the framework. It must also provide means of recovering encrypted data if
passwords or keys are lost, or means to destroy sensitive content if the device is com-
promised or stolen. For this reason this chapter, which will discuss all these different
aspects of the secure storage solution can be considered the foundation of the frame-
work and stands for most of our research activity.

Again, we focus on low budget mobile phones with low hardware and software
specification and propose a solution that is flexible enough to be integrated into existing
mobile client applications. The Java ME based solution has been extensively tested and
incorprated into a production MDCS, namely openXdata. Thanks to its high-level and
flexible design, we also managed to port it to Android based MDCS clients like ODK
Collect, with a few minor adjustments.

Figure 5.1: Secure Storage Module for Data Protection on the Device

The chapter starts with an assessment of the storage security of existing MDCS.
What we found was that most basic security concerns had not been addressed in a
satisfactory manner or had been completely ignored. It continues with a list of require-
ments that a secure storage should satisfy and an extensive review of existing solutions
that can be used to provide a more secure storage. Finally, we present our solution.
First its design, then its implementation and integration with productions MDCS and at
the end its performance evaluation.

5.2 Review of Secure Storage Solutions in Existing MDCS

Our findings regarding the protection of the data while being stored on the mobile de-
vice, unlike the client-server communication, give reasons for serious concern. Among
all MDCS we analyzed, only one actually encrypted the data on the phone, and even in
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that case, we found some weaknesses in the solution that was used. From the answers
we got from DataDyne [26] and Mobenzi Researcher [85] customer support, we know
that they do not encrypt the data stored on the phone, and their security actually re-
lies mostly on two things. The first is that the Application Management System (AMS)
on the phone prevents unauthorized applications from reading from another application
memory store, and the other is that forms that are completely filled in, are automati-
cally uploaded whenever a connection to the server is available. The AMS can work in
some measure to sandbox applications on the phone, but the main problem with mobile
phones, is that it is quite easy and straightforward to get a copy of all the data stored
on the phone, and, once outside the phone, the data is completely unprotected [32]. In
this case, uploading frequently can mitigate the problem, but in remote data collection,
it is not unreasonable to assume that connection to the server might not be available
even for days. Also, if the phone is lost or other sensitive data like user credentials are
stored permanently on the phone, encryption should be in place to guarantee adequate
protection.

To test the other clients, we tried ourselves to extract the data stored on the phone
by means of a backup software, and analyzed the source code where available. We
found that most clients store their data in clear, but with different formats. OpenXdata
[17, 97] stores the serialized Java objects, but data elements are still recognizable, while
CommCareHQ [22] and Magpi (formerly known as EpiSurveyor) [72] store all data as
XML in clear text. Magpi, also, stores also passwords in clear text if one chooses to
have the login form pre-filled. The only notable exception is Nokia Data Gathering.
This client provides password-protected data encryption. However a quick look at the
implementation [82] revealed that the encryption key is a direct MD5 hash of the pass-
word, and it is stored in clear on the phone. Hence, one can retrieve both the key and
the encrypted data, hence rendering encryption useless.

Open Data Kit toolkit (ODK) has an optional security feature for storage and trans-
mission protection, but still has some problems to be solved. The claim of this solution
is to protect data while at rest on the device, during transmission and to protect data on
the cloud. What ODK offers, is to download a public key attached to the form defini-
tion, and then upload each single form to the cloud encrypted with a random symmetric
key, which is in turn encrypted with the aforementioned public key. This assures very
strong data security both at rest on the client and on the server. Secure communica-
tion might even be superfluous since data is already encrypted. The downside is the
overhead generated by all the encryption required for each form and the little flexi-
bility the collector has since forms cannot be edited after being encrypted. Besides
only the owner of the public key can decrypt and possibly redistribute the collected
data. Apart from the usability limitations described above, this technique has some
other disadvantages in terms of efficiency since it involves one expensive asymmet-
ric encryption/decryption for every submission. By maintaining compatibility with the
schema of ODK, we want to propose an encryption scheme that makes the system more
usable in terms of flexibility, allowing many viewers, and efficiency, reducing the num-
ber of heavy operations, without lowering security. Together with this, we should also
consider security problems since, as clearly stated on the ODK website [92]:

"There is nothing preventing a malicious adversary from the wholesale replacement
of a finalized form with falsified data or the synthesis and submission of extra data."
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5.3 Requirements and Risk Analysis

The main challenge is that, if multiple collectors share a device, it can no longer be
considered private or personal to a user. Besides, most of the data collection might
have to be done offline. From a security perspective, this translates into the following
concerns:

• Data Confidentiality (encryption)

• Authorization (users can access only their own data)

• Data Availability and recovery

• Data Integrity and quality

• Breaking the storage encryption should not compromise the rest of the system

The followings are some of the threat in MDCS.

• Lost or stolen device

• Malware / malicious application

• Unattended device

• Bypassing client restrictions

• Malicious user on network

5.4 Available Solutions

This section covers existing solutions to provide the building blocks needed to put to-
gether a secure storage solution. We give only a brief overview for the Java ME plat-
form as very little was available for it, while Android is the main focus of the section.
We look at key management solutions first and full disc encryption. Then we discuss
solutions to enforce security policies like data encryption, length and complexity of
passwords and remote data wipe at the device level (MDM solutions) or at the applica-
tion level (MAM solutions). Finally, we go through the available solutions that allow
single applications to encrypt their data locally like SQLChipher, Bouncy Castle and
Facebook Conceal APIs.

5.4.1 Java ME Storage Solution

With the exception of the optional JSR177 library [98] that provides cryptographic
support, but is implemented only on very few handsets, Java ME does not offer any kind
of storage/crypto library. Hence, any solution for encrypting stored data would have to
be implemented from scratch building on some external cryptographic API. Most of the
examples we found in the literature, and in the MDCS we reviewed at the beginning,
are very straightforward. For instance, a key is created from the user password (or
worse pin code as in [59, 118]) through some hash function, and it is used to directly
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or indirectly encrypt the data with symmetric encryption in the Java ME persistent
storage called the Record Management System (RMS). Although the user password
must be somehow involved in the process, we think that the storage scheme and the
algorithms used should be more advanced, in order to protect data more effectively
while allowing password recovery and multi-user management. Typical solutions for
password recovery, like using the collectors’ private email accounts or SMS to send
new temporary passwords or activation links, are also more suitable for Web services
than MDCS. An extensive review of possible solutions for secure storage in Java ME
application can be found in [32].

5.4.2 Android Key Storage Solutions

With the advance in the capability of mobile phones to handle various tasks of mobile
users in day to day activities, more sensitive information is being stored or transferred
over phones. Account passwords, personal information about users, financially sensi-
tive information like bank accounts or credit card numbers are some of the sensitive
pieces of information that needs secure handling during transaction as well as in stor-
age if the different applications store that on the device. Encryption of data is the
obvious solution to protect data, and its security depends on the way encryption keys
are handled. In Android phones, one can either use the Android key storage service
or the Bouncy Castle library for key storage. The security of mobile devices highly
depends on the mechanism to keep the integrity and confidentiality of keys. To that
end, due consideration of securing keys is required and in this section we make an in-
depth overview of the necessary security mechanisms and security solutions in use by
Android devices.

The major security mechanisms to protect cryptographic keys in Android are:

1. Android Access Control: conventional access control on files which gives access
to files per app.

2. Trusted Execution Environment (TEE) trusted zone technology provided for
ARM based hardware that separates the environment into the normal world and
secure world.

3. Password Protected Storage: a mechanism in which passwords are required to
protect keys and the password can be stored in the app, or the user can supply it.

These mechanisms are used by varies solutions to protect storage of cryptographic keys
in Android. The two commonly used Keystore types in Android are the Bouncy Castle
cryptographic library for Java and Android Keystore. Bouncy Castle for Android is a
limited version the standard library with the assumption that some of its functions are
not required for Android devices [23]. When it comes to the Android Keystore, there is
Keystore service that starts when the device boots moreover, it’s possible to implement
either hardware based secure storage, by communicating with device drivers directly
from the service, or software based secure storage.
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5.4.2.1 Android Keystore Implementation

The implementation of Android Keystore varies from device to device and even differs
from the version of Android running on similar devices as well. One major difference
between devices is the hardware support for trusted zone technology that is a spe-
cialization among devices based on ARM design. Before getting through the various
implementations, we briefly an describe overview of the TrustedZone Technology.

5.4.2.2 TrustedZone Technology

The Android service depends on the type of phone in use which determines the us-
age of ARM Trustzone [7] features [23] ARM Trustzone features apply only to those
devices whose processor is built as per processor design from ARM [23]. This is a
hardware-based feature that allows the processor cores to run in two execution environ-
ments - normal world execution environment and secure world execution environment.
The normal environment it refers to the devices’ OS and normal apps and the secure en-
vironment refers to apps that handle sensitive data. With ARM trustzone feature, there
is a clear boundary between processes from the normal world and secure world envi-
ronments. That is made possible by adding a security bit that tells peripherals to which
environment the application they are talking to belongs.
Such separation is also implemented by the NS-bit (Non-Secure-bit) in the Secure
Configuration Register of the processor that indicates the environment the processor
is working on. NS-bit can only get its value set by a trusted component called Trusted
Monitor. A value of "0" implies the processor is operating in the secure world and "1"
implies normal world [23].
The security features provided by TrustedZone Technology are hardware-based, but
that does not mean that it can address all security concerns. For instance context switch-
ing between the normal and secure world is implemented by the software running in
the secure world and data communication between the two worlds is implemented by
the software running in both worlds. This hardware-based separation feature somehow
creates a virtual environment that make running two OSs possible one normal world
OS and another secure world OS. The environment for the secure world is referred as
Trusted Execution Environment (TEE) [48] and applications running on it are called
trustlets. An important point to note about trustlets is that there is a possibility that they
might be used by untrusted user and the TEE has to make sure there won’t be any data
leak even among trustlets [23].

5.4.2.3 Keystore Implementation Types

The paper [23] identifies the below mentioned five Keystore implementation types in
Android and make a detailed analysis.

1. Bouncy Castle using a stored password without TEE

2. Bouncy Castle using a user provided password without TEE

3. AndroidKeyStore using the TEE on Qualcomm devices

4. AndroidKeyStore using the TEE on TI devices
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5. AndroidKeyStore using software fallback without TEE and user provided pass-
word

N.B: The types mentioned in 3 and 4 vary because of the devices which make the
implementation of the same solution differ as per the device. To analyze the above-
mentioned Keystore implementations, the research has taken two important parameters
into consideration:

1. Important security requirements

2. Attacker models

Security Requirements Three security requirements are identified that are found to be
important when analyzing key storage solutions:

1. App-binding: if the key can be shared among apps or a single app will solely use
it.

2. Device-binding: if the key can only be used on certain device

3. User-consent required: if the key can be used without the consent of the user or
there always have to be an explicit user consent

Attacker Models Knowing the possible attacks on a system helps to evaluate if a rec-
ommended security solution can address those issues or not and will also guide in the
design and implementation of new solutions. To that end, the paper identified three
major attack models on secure key storage.

1. Malicious app attacker - usage of an installed app to gain access to secure key
storage.

2. Root attacker - an attacker with root credentials which the attacker might get using
exploits or with the ability to run an application with root permissions.

3. Intercepting root attacker - a root attacker with an additional capability of inter-
cepting or capturing user input or inspecting the memory of the device.

After conducting some experiments, Cooijmans T. et. al [23] draws the following con-
clusions:

• If TEE is present on the device, the Keystore on Android device provides device
binding against root attacker. However, the combination of TEE and the Keystore
does not guarantee app binding in the presence of root attacker.

• Interestingly, the software backed Bouncy Castle key storage provides "stronger"
security guarantees than the hardware-backed Android KeyStore using the TEE.
This is because to unlock the key storage, the Bouncy Castle requires user-
provided password, but the Android Keystore does not.
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The software or hardware backed Keystore is a promising security feature for data
protection guarantee on the device. In our implementation, we leveraged Android pro-
vided Keystore in a hacky way. Since, the Android Keystore does not support user-
provided password, we created a secure layer that perform the encryption and decryp-
tion based on user-provided password at the application layer before it is written or read
to/from the Android Keystore file respectively.

5.4.3 Android Full Disk Encryption

Since Android 3.0 (aka Honeycomb), Android introduced Full Disk Encryption (FDE)
together with device administrator policies (a core component to Mobile Device Man-
agement, see section 5.4.4) to address security issues within Android platform. The
security enhancement is mainly motivated by pushing Android technology into the En-
terprise world. [33] FDE is a transparent encryption method based on dm-crypt, which
is a Linux kernel feature that works at the block device layer (block devices are hard-
ware devices distinguished by the random access of fixed-size chunks of data, called
blocks)1. According to the Android Compatibility Program Definition, Original equip-
ment manufacturer (OEMs) are obliged to support FDE if the device has lockscreen.
Consequently, all subsequent release of Android device provide FDE. The problem is
that even if FDE has been available in most devices, FDE has to be enabled by a user or
by device policy of managed devices. There was a recent effort from Google and pub-
lic announcement to enable FDE by default in all FDE supporting devices upon when
the device is booted the first time. However, later, Google made a statement saying that
due to FDE performance issue, OEMs are not required to make FDE default.2 It is also
worth mentioning that Google products like Nexus provides FDE by default.

FDE implementation may vary from one OEM to the others. For instance, some
device may support Hardware-backed key storage component such as TPM or others
rely on software-based key protection solution using pass-phrase. FDE is expected to
encrypt every piece of data writing to the disc transparently. If the key management is
based on the software, FDE key generation, and encryption method is shown in figure
5.2

The disk encryption key (a.k.a master key) is encrypted with another 128bit AES
key (aka Key Encryption Key, KEK) derived from a user-supplied password. In An-
droid 3.0 through 4.3, the key derivation function used was PBKDF2 with 2,000 itera-
tions and a 128bit random salt value. The resulting encrypted master key and the salt
are stored, along with other metadata like the number of failed decryption attempts,
in the footer structure occupying the last 16KB of the encrypted partition, called a
crypto footer. Storing an encrypted key on disk instead of using a key derived from the
user-supplied password directly allows for changing the decryption password quickly,
because the only things that need to be re-encrypted with the key derived from the new
password is the master key (16 bytes) [33].

In order to make it harder to brute-force disk encryption passwords, Android 4.4

1The Block I/O Layer, [Last Accessed: March 2015], http://www.makelinux.net/books/lkd2/ch13,

Android FDE, [Last Accessed: March 2015], https://source.android.com/devices/tech/security/

encryption/
2Engadget - Google will not force Android encryption by default,[Last Accessed: April 2015], http://www.

engadget.com/2015/03/02/android-lollipop-automatic-encryption/
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Figure 5.2: Android Full Disc Encryption Diagram

introduced support for a new key derivation function called scrypt [33, 101]. Scrypt
employs a key derivation algorithm specifically designed to require large amount of
memory, as well as multiple iterations (such an algorithm is called memory hard). This
makes it harder to mount brute-force attacks on specialized hardware such as ASICs or
GPUs, which typically operate with limited amount of memory. Android 4.4 devices
automatically update the key derivation algorithm in the crypto footer from PBKDF2
to scrypt and re-encrypt the master key using a scrypt -drived encryption key [33]. As it
is also stated in [33], brute-forcing PBKDF2 is almost 50 times cheaper (that is, faster)
compared to scrypt.

However, Android disk encryption only protects data at rest; that is when the de-
vice is turned off. It does not protect from a malicious application running on the
device.[33].

5.4.4 Mobile Device Management System (MDM)

Mobile Device Management (MDM) is software tool for managing mobile devices. It
is introduced to administer mobile devices used to access corporate services and data.
Several organizations have been using the popular Blackberry’s MDM enterprise solu-
tion3 for restricting and controlling corporate data access using mobile devices. Other
mobile platform providers including Apple and Google have joined and made their en-
terprise solution available to the MDM vendors. Unlike Blackberry, Apple works with

3Blackberry Enterprise Solution, [Last Accessed: May 2015], http://us.blackberry.com/enterprise/

solutions/emm.html
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third-party MDM providers such as Airwatch4, Good Technology5, XenMobile by Cit-
rix6, and so on. Apple also works with organizations who are interested to develop their
own MDM solution and distribute the application in-house. For this purpose, Apple re-
quires new Enterprise Account registration with a fee (upon writing this $299). Apple
made device administration API very flexible with several features.

On the other hand, Google provides a sort of device administration API through
Android with limited features compared to Apple MDM APIs. Android device ad-
ministration APIs are available freely for developers with a normal developer account
(which costs USD25 upon first-time registration). Even if the mainline Android plat-
form lacks a comprehensive MDM APIs, an OEMs (Original Equipment Manufacture)
like Samsung customized the mainline Android platform and built a secure enterprise
solution for organizations who are interested a device and application management so-
lution for their services. Samsung Knox [114] is an enterprise solution tailored for
Samsung Android devices and certified by NSA [113]. Samsung has proprietary API
for device administration and works with third party MDM vendors like Apple does.
Samsung security-related API have not been yet a part of the stock Android, and Sam-
sung charges for its API usage. Since there exist several Android device OEMs, focus-
ing on a solution that targets a specific brand, like Knox, does not work in the context of
MDCS. We focus on a solution that works for all Android devices. In the next section,
we explore how the MDM works and discuss its main components. Later, we discuss
its pros and cons compared with our security requirements.

Before we delve into the details, it is worth mentioning the challenges in understand-
ing how the MDM API works, its underlying protocol, and workflow. Apple MDM
does not provide public documentation how the system works unless we registered for
enterprise account that requires an existing company account and fee. Android, on the
other hand, provides little documentation on how to create MDM solution that is man-
aged remotely. This part of the work is inspired by "The iOS MDM Protocol" by David
Schuetz [27], who have done an outstanding work in unpacking the underlying iOS
MDM protocol.

5.4.4.1 Android MDM Components

In general, Android based MDM system consists of the following three components
(shown in figure 5.4):

1. MDM Agent: an application installed on a managed mobile device such as smart-
phones, and tablets.

2. MDM Server: Device and Policy Management Application running on the Server.

3. Message Delivery Channel: A downstream or upstream communication channel
by which the server and client reach each other in order to exchange messages and

4Airwatch Enterprise Mobility Management Platform, [Last Accessed: June 2015], http://www.air-

watch.com/
5Good Technology - The Secure Mobile Platform for Business, [Last Accessed: June 2015], https://www1.

good.com/
6Citrix XenMobile: Enterprise Mobility Management solution, [Last Accessed: April 2015], and https:

//no.citrix.com/products/xenmobile/overview.html
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Figure 5.3: Mobile Device Management (MDM) with Push Notification Services

execute commands (aka push notification service such as Google Cloud Messag-
ing (GCM))

Figure 5.4: Android based MDM Components
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5.4.4.2 MDM Agent

The Android MDM agent is based on a device administration API. It is introduced
in Android 2.2. The administration API is designed to enforces a set of policies on
organization or users owned mobile devices and restrict organization services access
using mobile devices according to the enforced policies. The followings are some of
the policies that administration API provides:

• Password related policies such as minimum length, alphanumeric, numeric, or
complex password, timeout, and maximum failed attempts which lead to device
wipe and factory reset

• Enable Storage Encryption (introduced on Android 3.0)

• Disable camera (introduced on Android 3.0)

• Password recovery through remote account reset

• Device locking remotely

• Device data wiping remotely (factory reset)

These policies are declared in a simple XML file as shown in Listing 5.1.

1 <device-admin
xmlns:android="http://schemas.android.com/apk/res/android">↪→

2 <uses-policies>
3 <limit-password />
4 <watch-login />
5 <reset-password />
6 <force-lock />
7 <wipe-data />
8 <expire-password />
9 <encrypted-storage />

10 <disable-camera />
11 </uses-policies>
12 </device-admin>

Listing 5.1: Example: Android Device Administration Policies

Once the user installed and activate the MDM agent, the Android system enforces the
policies listed in the XML file. The Device Policy Manager within Android platform
takes care of enforcing and managing the policies. For instance, listing 5.2 shows how
the Policy Manager enforces the policies.
Once policies are in place, the system manages the policy, allows policy changes at
runtime, and notifying the MDM agent when there are policy related events through a
set of callbacks. Accordingly, the MDM agent can be implemented to execute some
tasks based on the events from the system.
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1 //System Device Policy Manager class - responsible for managing the
policies↪→

2 DevicePolicyManager mDPM;
3 //The Device Administation component is responsible for listening

policies related events from the system↪→

4 ComponentName mDeviceAdminSample;
5 ...
6 //Maximum period of user inactivity that can occur before the device

locks↪→

7 long timeMs = 1000L*Long.parseLong(mTimeout.getText().toString());
8

9 mDPM.setMaximumTimeToLock(mDeviceAdminSample, timeMs);

Listing 5.2: Example: Policy enforcement using Android Device Policy Manager

5.4.4.3 Message/Command Exchanging Channel

Android device administration API works on local context, in other word, Android does
not provide remote MDM management or provisioning solution. Even if remote device
locking or data wiping requires remote command execution, Android does not provide
a protocol to execute those commands remotely. Instead, the responsibility for finding
a remote management solution is left to MDM implementers.

As a result, several MDM vendors are leveraging Google Cloud Messaging (GCM)
to synchronize policies and send commands data from the server to clients through
GCM infrastructure. Even if the GCM infrastructure is developed for notification mes-
sage delivery or send-to-sync messages, GCM can be utilized to exchange remote com-
mands as data and the client interprets the data and execute them accordingly. These
commands are very sensitive and critical and securing the exchanging channel is im-
perative.

The GCM infrastructure consists of GCM server and GCM agent (aka GCM framework
or client). The GCM server is a cloud based services which connect the MDM server
to the MDM agent via the GCM agent on the device. The GCM client is a system
level application running on the device that works as an agent to GCM server. The
GCM client manages to establish a secure tunnel with the GCM server and manages
bi-directional messages delivery from MDM agent to MDM server and vice versa.

Each MDM agent application instance installed on the device are required to register
with GCM server before sending or receiving messages via the GCM infrastructure.
This step requires getting a senderID (aka projectID) and API key from Google API
console manually and setting the senderID in MDM agent application. The API Key
saved on the MDM server that provides the MDM server authorized access to Google
services.

Since Google Cloud Messaging 3.0 (announced at Google I/O 20157), when the
user install the MDM agent on the device, it triggers the GCM connection server to

7Google I/O - 2015, [Last Accessed: June 2015], https://events.google.com/io2015/
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Figure 5.5: Example of MDM remote Command Execution using GCM

generate an instance ID of the installed MDM agent instance through GCM agent. This
step requires connectivity, and if the application is installed offline, the instance ID is
generated when the device comes online. We have not found public documentation
on how GCM agent and the GCM server authenticated each other or how the instance
ID is generated. However, on the Google Instance ID page 8, it is stated that there is
public/private key cryptography involved together with instance ID. The private key is
stored on the device while the public key is registered with the GCM connection server.
This may imply that during the instance ID generation, the GCM agent on the client
generates the public/private key pairs and forward the public key together with other
parameters such as AndroidID, MDM agent application package name, application ver-
sion, application signature, and so on. The GCM connection server returns the instance
ID that is related to the public key and the parameters sent from the GCM agent.

The instance ID consists of two parts: a unique identifier (username) and a security
token. Once the GCM agent gets hold of the instance ID from the GCM connection
server, it can return the unique identifier (ID) if the MDM agent requests. However,
the ID does not qualify for sending or receiving messages via GCM infrastructure.
Instead, the MDM agent needs a security token (hereafter called registration token)
which is the second part of the Instance ID. The security token is generated dynamically
upon request and registered on the GCM connection server. There is no indicative
documentation on where the security token is generated. However, we assumed that
the token generation is taking place on the device since the private key is stored locally
and the token is synced with the GCM connection server in order to allow third party
application to send messages to the MDM agent such as MDM server. The registration
token is compared as OAuth token except the fact that OAuth token and registration
token represent a delegation on behalf of a user and application respectively.

Next, the MDM agent forwards the security token to the MDM server in a secure
tunnel. The MDM server uses this token together with the API Key for sending mes-
saging to the MDM agent through GCM connection server. The message can carry
MDM related commands, data, or simple notification.

8GCM Instance ID, [Last Accessed: June 2015], developers.google.com/instance-id
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Figure 5.6: Enabling GCM for Android MDM through Registration

Figure 5.7 shows how the MDM server sends a query to the GCM connection server
and get a set of status information about the remote client. The MDM server can query
the following information using the registration token.

• Application name: the MDM agent name such as package name.

• Application version

• Connection status such as when is the last time the device has been seen online,
the type of connection the device is using such as WiFi or cellular network.

• Attestation Status: notify the server if the MDM agent instance is running on a
rooted device.

In summary, the MDM solution have the following pros and cons as we compared it
with our security requirements:

Pros

• Manage installed applications on the device remotely.

• Monitor the user activities on the phone.

• Enforce organization policies.

• Remote wipe, detect rooted device

Cons

• Very little control over how the device administration framework executes
the commands. Implementation is OS dependent.

• Multi-user support is not possible since the device is locked using a single
user account.
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Figure 5.7: MDM Server query the GCM Connection Server

• Privacy concerns: if users are using their device, they might not be interested
locking down their device and have a complete control.

• Selective encryption or wipe is not possible.

• MDM encryption is based on device disk encryption that may have perfor-
mance issue.

• Android disk encryption always requires passphrase to unlock the device
which has usability issues.

• There is no standard remote device management protocol or provisioning
solution.

• Android device administration API lacks features when it is compared with
another platform such as Apple MDM framework.

• Mostly used by corporates and MDM vendors does not provide documenta-
tion on how the MDM is developed or used APIs (mostly proprietary).

• some research have shown the weakness of Android disk encryption.

Some of these MDM drawbacks can be alleviated using Mobile Application Manage-
ment (MAM) which discussed in the next section.

5.4.5 Mobile Application Management System

Bring Your Own Device (BYOD) is one of the main factors for having Mobile Applica-
tion Management system as a solution. The idea behind BYOD is to allow employees
within an organization to use their mobile device to access organization restricted ser-
vices and resources on their device. Since most employees already have their own
mobile device, it is convenient to provide access through their phone without giving or-
ganization owned phones. MAM is designed to run organization applications within a
secure container of employee device. The secure container makes a partition between
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users private data and corporate data and works only within the context of corporate
applications and data. In theory, using secure container, users can practice whatever
they want on their device without being monitored or losing control over their device.
MAM is based on the concept of running applications in a contained and monitored
environment which is called secure container. The secure container is a crucial part of
MAM architecture and we described as follows.
These are some of the secure container features:

• Data storage protection performed at the application level

• Does not rely on OS security features being activated such as pass-phrase

• Allows security policies to be enforced at the application level

Airwatch, Good Technology, Maas3609, XenMobile by Citrix are some of the MAM
vendors in the market. We are not aware of any open source MAM solution or a public
research on MAM with the exception of a research conducted by by Ron Gutierrez
10. It is hard to get hands-on experience on how MAM works and do some concrete
research because it is difficult to get documentation or do research on MAM products.
Most of MAM vendors allows a trial period, but they require a lengthy sign-up process
with a corporate email address and other information. We had tried to get a trial version
using our academic email account, but they did not respond to us. With the help of Ron
Gutierrez talk and other publicly available related information, we briefly present the
secure container (a.k.a containerization) as follows.

The secure container is made through application wrapping as shown in figure 5.8.
Secure functionalities are injected into existing applications using wrapping utility. A
secure layer is enforced at the application layer and provides data at rest protection, au-
thentication before data access, and policy enforcement. The developer is not required
to make code changes in order secure the existing application if the wrapping toolkit
is applied. As an alternative, it is also possible to incorporate the secure container in
the application development lifecycle using SDK provided by MAM vendors such as
Good Technology. If the developer decided to use the SDK, it may require a great deal
of understanding of the API and underlying working principles before use. However,
the SDK approach provides more flexibility and features. In general, the use of wrap-
ping toolkit can be convenient to the developers with no understanding how the secure
container works or security API.
The application wrapping process may use method swizzling, a common method for
code injection in the iOS application, or code injection in Android using reverse en-
gineering tools. There are some open source tools used to manipulate Android APK
files such as ASMDEX Library11. It is possible to inject secure code into the main
application. Thus, data security components including secure storage, authentication,
secure communication or any other security components can be inserted smoothly into
the application. Here are some of the list of the secure container data at rest protection
principles [111]:

9Maas360 MAM Solution, [Last Accessed: May 2015], http://www.maas360.com/
10Contain Yourself: Building Secure Containers for Mobile Device, [Last Accessed: April 2015], https:

//www.youtube.com/watch?v=siVS2jmPABM
11ASMDEX: a bytecode manipulation library, [Last Accessed: April 2015], http://asm.ow2.org/asmdex-

index.html
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Figure 5.8: Mobile Application Management (MAM): Application Wrapping Processes

• All data stored by the application must be encrypted seamlessly.

• Strength of crypto cannot rely on any device policies.

• Crypto keys must be retrieved upon successful authentication.

In summary, even though MAM is intended for enterprises, it is worth looking into
since it has several advantages especially simplifying secure solution integration into
an existing app. It may require significant work and collaboration to develop MAM
solution to the open source community. However, the core functionalities such as se-
cure data storage, key management, and user authentication are designed in a similar
way as the MAM vendors. Therefore, these security components can be re-used to
build a comprehensive MAM solution. Many of the vendors use open source or custom
crypto library, IPC mechanisms, and wrapping a secure API around existing libraries
such as Java I/O API or Apache libraries. Often, security is an afterthought and MAM
understand that limitation and provides seamless integration and policy enforcement.
However, it is highly recommended to incorporate security in the application during
software development life cycle.

5.4.6 SQLCipher: Secure SQLite Database

SQLCipher is an elegant secure solution for data stored in the SQLite database. SQL-
Cipher is a security extension of the lightweight SQLite database with a transparent
data protection mechanism using symmetric key encryption. The default implementa-
tion uses OpenSSL libcrypto and provides of AES 256-bit block cipher encryption with
CBC mode. The SQLCipher team focuses on securing user data where part of the key
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material is provided by the user 12. Figure 5.9 shows how the SQLCipher changes the
insecure SQLite database into a secure database by introducing a transparent security
layer. The security layer basically intercepts the common SQLite write operation and
apply data encryption on the fly before it is written to the database and decrypt when
there is read SQLite operation. Apart from passing the encryption key material such as
passphrase, the mobile application does not know the underlying transparent security
layer and uses the same SQLite interfaces to interact with the database. However, under
the hood, the SQLCipher encrypts the entire database file. The data in the database are
divided into chunks called pages and encryption/decryption is applied on these pages.
The default SQLCipher page size is 1024bytes. When the database is created for the
first time, it is assigned a randomly generated database salt value with a 256bit size.
Each database file has single salt value assigned and its value is written into the first
256bit offset of the database file. A Message Authentication Code (MAC) and random
initialization vector (IV) are written at the end of each encrypted page as shown in the
figure.

Figure 5.9: SQLite vs SQLCipher

12SQLCipher, [Last Accessed: April 2015], https://www.zetetic.net/sqlcipher/
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SQLCipher uses PKCS #5 v2.0, PBKDF2 (Password-Based Key Derivation Func-
tion 2) to derive the master encryption key. A mobile application is responsible for
managing and passing the key material, such as a passphrase, to the key derivative
function. In addition to the passphrase, the key derivative function uses a 256 bits ran-
domly generated database salt and an iteration value (a default value of 64,000 for iOS
devices) and derive the master key. Next, the HMAC key is derived using the same
PBKDF2 algorithm using the master key, database salt, and an iteration value of 2.
This is done to get a different key for message integrity protection and data encryp-
tion/decryption key. Figure 5.10 shows how the data is encrypted and the MAC value
is computed afterwards.

Figure 5.10: SQLCipher Encryption Flow Diagram

When there is an SQLite read operation, data is decrypted page by page as shown in
figure 5.11. The MAC is computed using user input passphrase and checked with the
MAC value in the database. If these values are equal, it proceeds with decrypting that
specific page. This means that the MAC is used to check the integrity of the encrypted
data and also used to verify the input passphrase is correct.

To summarize, the SQLCipher has been customized for several platforms including
Android, iOS, Windows phone and many others. The SQLCipher community edition
is a free and open source segment of SQLCipher, which released under BSD-style
license with minimal restriction. The SQLCipher also released in commercial edition
and enterprise edition. A set of important features is missing from the free edition that
are incorporated in the commercial edition. Apart from these features and flexibility,
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Figure 5.11: SQLCipher Decryption Flow Diagram

all editions are designed based on the same principles. Therefore, we identified the
following pros and cons of SQLCipher:

Pros

• Requires few lines of code to integrate SQLCipher and provide full database
encryption.

• Perform well since SQLCipher is written at the native layer.

• Data is encrypted page by page and decryption also performed page by page
which means the entire database is not decrypted when some data is needed

Cons

• The master key derived from the key derivation function is used directly to
encrypt the actual database. If the passphrase is compromised, changing the
master key with a new one requires decrypting the entire database and re-
encrypt with a new key. This can be solved by decoupling the master key
with the actual data that need to be encrypted. The data is encrypted by a
randomly generated data encryption key (DEK) and the master key encrypt
the DEK. In that way, if a user wants to change a passphrase, the SQLCipher
changes re-encrypt the DEK with the new master key.

• Despite a key management is a critical component of a secure storage so-
lution, SQLCipher does not provide any. The application is, therefore, re-
sponsible for implementing any possible solution for managing the keys and
policy enforcement for passphrase selection if the application allows a user
to set a new passphrase on the device.

• A number of mobile data collection applications, do not store multimedia
data such as image, video, and audio in SQLite database. Instead, these types
files are stored in the file system and keep the pointer to these files location
in the SQLite database. Hence, with SQLCipher approach, these multimedia
are left unencrypted. The application needs to find another secure solution
to protect the multimedia files which is additional work for the application
provider, and the two solutions might have compatibility issues.
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• SQLCipher does not provide data or account recovery procedures. The ap-
plication should implement data and account recovery procedures on top of
the SQLCipher.

• SQLCipher a performance impact overhead of 5 to 35 percent of using the
standard SQLite database. The performance impact can be reduced through
the use of database indexing. If there is no index in place, a normal se-
lect statement needs to search the entire encrypted database. In other words,
every page needs to be decrypted and checked sequentially. However, the
data leakage when the indexing is used not addressed or researched well.
It is also mentioned that, if there are duplication in the database, the per-
formance impact might be higher due to the fact that reading or updating a
specific row data has to performed several times. Therefore, the data in the
database should be normalized well. Furthermore, the use of transactions is
also highly recommended to reduce the performance impact.

5.4.7 Conseal - Facebook Secure Storage API

Conseal a secure storage API is a great piece of contribution from Facebook to the open
source community. Taking old Android version mobile devices constraints such as low
memory, battery usage, and slow computing capability, Conseal API aims to encrypt
and decrypt large files on the disk in a fast and efficient manner. The API incorpo-
rates default implementation for encryption and decryption using the OpenSSL crypto
library. Since the OpenSSL crypto library that shipped with Android platform does not
include AES with GCM mode, Conceal ships with this and other selective crypto al-
gorithms from the standard OpenSSL library. Figure 5.12 benchmarks show how the
Conceal API outperform Android Java and Bouncy Castle on encryption, decryption
and MAC computation 13

Figure 5.12: Performace Comparison between Android Java, Bouncy Castle, and Conceal API

Since Android 4.4 (aka KitKat), OpenSSL has become the default crypto provider
for Android devices and several improvement has been made to the library. OpenSSL is
implemented at the native layer, and it is accessible from Java layer through Java Native
Interface (JNI). The fact that OpenSSL is native, it makes a significant performance
difference. However, devices prior to Android 4.4 ship their own crypto library with

13Conceal API, [Last Accessed: April 2015], https://facebook.github.io/conceal/
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applications such as Conceal API or they use Android Built-in Bouncy Castle library.
Therefore, Conceal API is still gain advantages on older devices. Since our focus is
also resource-constrained devices, and Conceal API is released under BSD license,
instead of re-inventing the wheel, the secure storage module leverages the Conceal API
for multimedia files protection. However, the secure storage module only loads the
Conceal API for devices prior to 4.4, otherwise, it uses the built-in OpenSSL library.

5.4.8 Android Internal Storage vs External Storage

Unless otherwise specified, when data stored in shared preferences, internal storage,
and SQLite database, the data is considered private, and Android platform provides
some level of protection. By default, when data is private to the application, other ap-
plication are not allowed to access it, and the data are removed when the user uninstalls
the application. Despite, system level protection is provided to the application data,
there are potential ways of getting into the application data and access it. Android plat-
form does not provide any level of data protection while data is stored in the external
storage. Sometimes it is confusing when some devices such as Nexus shipped with-
out removable or expandable external storage. Basically, the external storage can be
removable such as SD-card or non-removable (internal) storage. In conclusion, when
sensitive data stored internally or externally, a comprehensive data protection should
always be in place.

5.5 Proposed Solution

In this section, we discuss how our secure storage module provides a secure storage
to the MDCS client. First, we present the common services provided by MDCS appli-
cations without secure solution and discuss how we secure these services. When the
user authentication is a success, the user lands in a dashboard with a set of services as
showing in figure 5.13. These services include form downloading, form filling, data
editing, data or form deleting, searching, and last but not least data uploading or sub-
mission. In a typical MDCS client, form downloading, and data submission services
involve client-server communication whereas the others such as form filling, editing,
and deleting are local operations.

The MDCS Application and the Secure Storage module communicate via Android
IPC framework as shown in the figure 5.13. The secure storage module controls the
forms and data in a securely. Next, we present how the secure module handles each
operation and change them into secure operations.

As it is shown in figure 5.13, it is common that most MDCS provides services such
as form downloading, form filling, form data editing (locally), and uploading to the
server. Form downloading service is used to retrieve forms from the server and store it
locally. The "Fill Blank Form" service present the saved form, allow the data collector
to fill-in data, and save as complete which is ready for upload or as incomplete to edit it
when the time is convenient. The upload or submission service provides functionality
to upload completed forms to the server.
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Figure 5.13: MDC States After A User Logged In

5.5.1 Secure Form Downloading

Current MDCS applications are designed to initiate an HTTP request to the server and
gets a list of available forms. The user then chooses one or more forms and the forms
are downloaded in the form of xml, JSON, or in binary formats. As alternative, it
is also possible to load the forms manually via bluetooth or USB connections on the
phone without requiring connectivity to the server. However, the manual loading pro-
cesses is not suitable for a large scale project. Even in small scale project, it will be
cumbersome loading forms in every phone available and moreover, it is difficult to dis-
tribute updated or new forms for projects rolled out remotely. The former solution
provides flexibility to the users to choose a list of certain forms but this method re-
quires two round trip request-response and involves the user in order to accomplish the
task. This has impact on usability and power consumption. As a side note, we highly
recommend automating the form downloading process through push notification ser-
vices without involving the user and with minimum power consumption as possible.
The recommended method can further be utilized through workflow procedure on the
server. A workflow procedure for MDC has been conducted by our former colleague
and further reading is available at [102]. These are more of application optimization is-
sues and we left it to the application developers. Next, the candidate discusses how the
download services is secured through the Secure Storage Module.

The standard form download procedure shown on the left side of figure 5.15 is now
uses SecureMDC framework as shown on the right side of the figure. When there
is a form downloading request from MDCS client, the SecureMDC framework wraps
the request and send it through a secure tunnel provided by the secure communication
module (discussed in detail in secure communication Chapter 6). Once form download
protocol completed and forms start downloading, the secure storage module begins
encrypting the forms.
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Figure 5.14: MDC Client General State Diagram

Figure 5.15: Insecure vs Secure Forms Downloading Procedure

The overall interaction between the MDCS client and the secure storage component is
shown in fig 5.16. When the user authentication is completed, the MDCS application
gets a token that is used to communicate with other services such as secure storage.
The form downloading process is invoked through "Get Blank Form (aka Download
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Form)" service. Then, the secure storage component verify the caller identity and exe-
cutes the standard form downloading procedure in a secure manner. The secure storage
component uses the secure communication to establish a secure tunnel and download
the forms.

Figure 5.16: Secure Form Downloading Procedure

When the secure storage component receives the forms, it can store them in two
ways. The first option is to encrypt all received forms as it is and write them to the
storage as shown in the figure 5.17. The figure describes how the forms are downloaded
through the SecureMDC framework and encrypted with user key when the forms arrive
on the device. The pros to this approach is the secure storage component does not
require any knowledge about the forms to be encrypted, but this option also has a
drawback. When the user invoke "Fill Blank Form" as shown in the figure 5.14, the user
has to provide with a list forms to choose. If the secure storage component does not
have any information about the encrypted forms, the forms have to decrypted iteratively
and make the list for the user to choose. This can be translated into the user having
to wait until the form definitions are decrypted. Besides the process consumes more
battery power. As a result, the user might be dissatisfied with the product.

As an alternative, we can minimize the performance impact by adding some extra
information about the forms that need to be encrypted. Figure 5.18 shows how these
extra information is added on the fly when the forms are passed to the SecureMDC
server. If we pass over form description together with the actual forms, the secure
storage component can use the form descriptor to map with an actual form. The form
descriptor is a set of metadata with key value pairs that clearly describe a form definition
to the user. Once it is downloaded, this part of data is stored in the form descriptor
datastore of the secure storage component. The form descriptor is decrypted when a
user invokes "Fill Blank Form" without decrypting the actual form. As a result, this
approach is fast, flexible and consume less battery power than the former approach.

The form descriptor can be generated by MDCS client, or MDCS server or se-
cureMDC framework. Since making the secure framework agnostic to any MDCS is
the central objective of the work, we decided to generate the form descriptor on the
MDCS server. We considered the MDCS client, but the security framework needs to
rely on the MDCS client input which is hard to have control over using interprocess
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Figure 5.17: Secure Form Downloading Procedure without Optimization

Figure 5.18: Secure Form Downloading Procedure with Optimization

communication. We can also gain some performance by processing the form descrip-
tor on the server side. Moreover, we incorporated security related fields categorized
into the "securitySettings". This set fields can be used to distribute security related crit-
ical information such as the public keys of the main actors in MDCS including the form
manager and data viewer, public key algorithm types, a set of form fields that need to
be encrypted (when field level encryption is enabled - N.B.: field level encryption is
still research in progress). Some of these fields are shown in the Listing 5.3. The use
of these public keys and the importance of secure distribution are discussed in Chapter
6. Listing 5.3 shows how the sample fields inside the form descriptor and the security
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settings added into a normal form definition.

1 "form_definition_1":{
2 "form_descriptor":{
3 "meta_info": {
4 "form_id": "uuid",
5 "form_version":"string",
6 "desciption": "text",
7 "encryption":"enabled/disabled",
8 "encryptionType":["whole", "field_level"],
9 }

10 },
11 "securitySettings":{
12 "alg":"RSAES-PKCS1-V1_5"
13 "fields_to_be_encrypted":["givenName", "middleName", "familyName",

"gender", "birthdate", "address", "email"],↪→

14 "searchable_fields":["givenName", "middleName", "familyName"],
15 "data_viewer_public_key":"DEREncoded",
16 "form-manager_public_key":"DEREncoded",
17 "user_manager_public_key":"DEREncoded",
18 "project_admin_public_key":"DEREncoded",
19 },
20 "actual_form_defintion":{
21 //the actual form definition goes here.
22 }
23 }

Listing 5.3: An Example of a Form Definition with Form Descriptor and Security Settings

Once the secure storage component received the form descriptor with the actual
form definition and the security settings (the form definition can be in XML, JSON or
any other supported data exchange formats), it processes and stores it as follows. AES
block cipher encrypts the form definition with authenticated encryption mode, GCM
as shown in figure 5.19. The GCM encryption takes the form definition, an encryption
key (default 256bit), additional authentication data (aka. AAD), and an initialization
vector (IV).

A 96-bit IV and the AAD are generated by using secure random generator. Gener-
ating a good random binary values takes time, and we use the AAD as an input to the
hash algorithm to minimize the delay. A standard hash algorithm is used to generate
a unique encryption key using the user storage key which is unlocked during user au-
thentication process, and the AAD as inputs. Once the form definition is successfully
encrypted, our next step is to update the form descriptor with newly created attributes
and values. Therefore, the form definition encryption related values including AAD,

108



5.5. Proposed Solution

Figure 5.19: Form Definition Encryption with AES GCM Mode

IV, the authentication tag (Integrity Check Value) are stored in the form descriptor as
shown in listing 5.4. There are a couple of ways of storing the encrypted form def-
inition and form descriptor in a persistent storage. We can store them in the SQLite
database by putting the form descriptor attributes and values in a given row and the en-
crypted form definition as an additional column in that row. Alternatively, we can store
the form descriptor in a different table than the encrypted forms definition and keep-
ing the encrypted form id in the form descriptor as shown in listing 5.4. Since there is
already a logged in user who invokes form downloading service, the form descriptor
stays unencrypted until the user logged out. Perhaps, we can leave the form descrip-
tor in clear since it does not contain sensitive information that compromise the secure
framework. However, since the form descriptor is a small set of metadata, it is possible
to encrypt when the user logout and decrypt it when the user login.

For untrusted server such as a cloud-based server, we incorporate the public keys of
the admin, the form manager, and the data viewer into the downloaded forms. Then, the
master key of individual users on the device is encrypted with these public keys. The
encrypted values of the user’s master key with the public keys are stored in the form
descriptor as shown in figure 5.4. This approach enables data sharing with the different
actors in MDCS ecosystem. This part of the work is discussed more in depth in chapter
6. We have a different approach when a private MDCS server is used (private server is
a traditional non-cloud based server, which the MDCS provider have physical access
and complete control over the server). In the private server case, a data encryption key
to encrypt data on the device is created for an individual user, either by the server or the
mobile phone itself. A master key is created from the mobile password using strong
key derivative function and used to encrypt the data encryption key. A copy of user
master key is kept on the server in clear since this is a private server we trust and allows
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1 "form_descriptor": {

2 "meta_info": {

3 "form_id": "uuid",

4 "form_version":"string_text",

5 "desciption": "text",

6 "unique_fields":"[]",

7 "encrypted_form_def_id": "uuid"

8 },

9 "dataSecuritySettings": {

10 "encrypted_form_def_id": "uuid",

11 "additional_authenticated_data": "AAD",

12 "authentication_tag":"authTag",

13 "aes_key_size":"size_in_bits",

14 "iv_size":"iv size",

15 "iv_value":"iv value",

16 "hash_algorith":"sha-256",

17 "signature":"RSA/Ellptic/DSA Signature of the sender",

18 "time-stamp": "Date/Time",

19 "key-exchange-Alg":"SRP, RSA-OAEP",

20 "encryption-alg":"A256GCM",

21 "encrypted_field":["givenName", "middleName", "familyName",

22 "gender", "birthdate", "address", "email"],

23 "encrypted_searchable":["givenName", "middleName",

24 "familyName"],

25 "strict_searching":true,

26 "is_single_object":false,

27 "encryption_status":"enabled/disabled",

28 "encryption_type":["whole", "field_level"],

29 "data_viewer_key":"base_64_encoded",

30 "form-manager_key":"base_64_encoded",

31 "user_manager_key":"base_64_encoded",

32 "project_admin_key":"base_64_encoded"

33 },

34 "form_defintion":{

35 //encrypted form definition goes here.

36 }

37 }

Listing 5.4: Form Descriptor updated fields and values after the form definition is encrypted

for recovery. This approach is discussed in details in the chapter 4 under the section
4.5.4

The choice is made to use symmetric encryption. Every data-Collectors individual
user storage key, is generated on the server or a client during device activation. Pros
and cons of key generation on server and client are discussed later. This key is of course
not stored in clear on the mobile, but in turn encrypted, this time using the result of a
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password-based key derivation function. If there is a need for strong forward secrecy
using a symmetric key, we present a solution that is proposed by a security research
team in [76]. However, the symmetric key based strong forward secrecy comes with a
trade-off that could be a limiting factor for adopting such solution.

5.5.2 Secure Blank Form Filling

Form filling is one of the services that the MDCS client provides. A user access a blank
form and fill-in through a standard user interface designed to gather different types data
types such as multimedia files, text, multiple choices, single-select, and other question
types. At the end of the form filling process, data can be saved temporarily or marked
as finalized, meaning that they are ready to be sent to the server and do not require
modifications.

When the user requests to fill a form, the MDCS client display a list of available
forms on the device. The displayed information is coming from the field descriptor
part of the form definition persisted in the secure storage. The key value pairs in the
field descriptor are shown in Listing 5.4. These fields are descriptive and more impor-
tantly, it uniquely identify the encrypted form definition. Figure 5.20 shows how the
MDCS client accesses the encrypted form definition. The MDCS client passes the user
token that is obtained during user authentication, and the encrypted form id which is
passed to the application together with the form descriptor. The secure storage mod-
ule verifies the token and the caller ID by contacting the Authenticator module (as it
is discussed in chapter 4) before it begins decrypting the requested form definition.
The verification may include checking token expiry time, signature, user ID, and other
parameters. Then, a copy of the form definition is decrypted in-memory and made
available to the application that can thereafter access and manipulate it.

Figure 5.20: MDC Client Form Definition Request

When the client finishes filling the form, the secure storage module is triggered to
take action on the collected data. The secure storage module provides two options
before the data encryption process is invoked. The first is to store collected data in an
incomplete state, and the user can edit the form at a later time. The second one is to store
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collected data as a completed and ready to be submitted. The former one requires the
data to be accessible by the user when they need it. In case of later approach, the secure
storage can use perfect forward secrecy which limit any further data manipulation on
the data.

When the form data is stored as incomplete or finalized state, the secure storage
component generates a data descriptor that is equivalent to the form descriptor. The
form data and form definition are stored separately.

When the user needs to edit an incomplete form, the MDCS client passes the token
and the encrypted form data ID, an equivalent of the encrypted form definition ID.
When the user finishes editing the form data, the secure storage makes an update on the
saved encrypted form data only when there is a change on the form data.

Locally, form data can be loaded in SQLite database instances and saved as XML,
JSON or other formats that are ready to be sent. This also allows to transfer them
manually using the SD-Card. Multimedia files that are related to a specific form data
are treated separately and decrypted on demand which means when an encrypted form
data is decrypted, the secure storage component does not decrypt the media files unless
the user needs it.

The way the MDC client fills in a given form remains unchanged. The difference
when using the SecureMDC is that the client does not persist or have access to persisted
data directly, but it must go through the framework. On the other side, the secureMDC
framework does not have prior knowledge on how the MDC client treats the form defi-
nitions.

5.6 Perfect Forward Secrecy (PFS)

To our best knowledge, the concept of perfect "Forward Secrecy" was first introduced
in [54] and later it is used in [31] in the context of session key exchange protocols
during a transaction [12]. A formal definition for "Forward Secrecy" is not provided in
[31, 54]. However, in [31], the basic idea is that a compromise of the key protecting the
current session cannot lead to the compromise of previously communicated messages
or actions. In other words, with perfect forward secrecy, it guarantees that all past
communicated data are protected. The same concept can be applied to data stored on
the mobile device using symmetric key or public/private key approaches.

With public/private key approach, collected data are encrypted with a randomly
generated symmetric key and the symmetric key that encrypt the data is encrypted with
the public key of the server. The server public key is distributed to all clients in advance.

The SecourHealth framework [76] provides perfect forward secrecy (PFS) using
symmetric encryption as a novel feature. The downside of the PFS using symmetric
key is explained in chapter 8. The SecourHealth perfect forward secrecy approach
works as shown in figure 5.21.

When the user registers on the device for the first time, a hash function is used
to derive the first form encryption key, Ks f s0. The hash function takes a master key
derived from the user password and a random seed sent from the server. After the form
encryption key is derived, the application deletes the seed from the memory so that
only the server keeps the seed associated with the user. The first form data is encrypted
using the form encryption key. Then, the first form encryption key serves to calculate
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Figure 5.21: Perfect Forward Secrecy using Symmetric Key Encryption

the second form encryption key by passing through a hash function. Each subsequent
forms are encrypted using a form encryption key derived from the previous form key.
When the user log out, the next key is derived and stored in persistent storage ready
to be used when the user login again in a later time. This means that the current form
key found on the device has not been used to encrypt anything yet, and previous keys
cannot be derived directly from this one. The only way to do that would be to generate
the whole sequence of keys starting from the seed, but that is only available on the
server.

We liked the idea of using symmetric encryption due to overall performance gain as
every encryption/decryption is performed using symmetric algorithm both on the client
and the server. We considered of using the SecourHealth PFS feature when the forward
secrecy needs arise. However, currently, we are considering cloud-based MDCS, and
we believe that the use of cloud will continue to grow. The SecourHealth PFS on
the other hand requires storing of storage encryption key on the server database. This
contradict to the security requirements for cloud storage as it is discussed in chapter
6 and chapter 9 under section 9.1.1.4. So, we found the public/private key approach
acceptable for the time being.

5.7 Secure Storage Implementation and Experiences

In this section, the candidate experiences on the secure storage implementation for Java
ME and Android based MDCS are discussed.
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5.7.1 Secure Storage Implementation in openXdata (Java ME)

Although the solution proposed in the section 4.5.4 satisfies all the requirements we
identified, it does not mean that it is the best in practice. From a usability point of view,
it is very heavy for a user to remember two different passwords as we proposed in the
chapter 4 under section 4.5.4, and from an implementation perspective, it might mean to
re-design the whole application. Hence, in collaboration with openXdata, we designed
a simplified solution that uses only one password and still satisfies most requirements
except for the complete decoupling between client and server authentication. However,
this was a risk that they were willing to take in order not to compromise usability. The
details can be found in [46] and we will not report them here as they deal with many
technicalities specific to the Java ME platform, which is not the focus of this chapter.

5.7.2 Secure Storage Implementation experience on Android Platform

The solution sketched out for openXdata is general enough to be easily ported also to
the Android platform, but with different implementation challenges that we will discuss
here. The first and foremost task during secure storage implementation for Android
platform is to figure out what Android platform security model provides us to facilitate
smooth implementation. In this section, we cover the following issues and recommend
possible remedies.

1. Does Android platform package provides built-in Crypto APIs?

2. Can Android provide a truly random key generation tool on the device?

3. Is there a secure place to store keys and user credentials?

4. Are there any Android features to handle multi-user support per phone?

Android platform includes two major open source crypto library providers, OpenSSL
(C and Assembly implementation) and Bouncy Castle (Java implementation). Bouncy
Castle has been shipped with Android platform in a cut-down and crippled state due
to device memory constraints. As a result of this, the Bouncy Castle API has been
re-packaged and re-named as Spongycastle to avoid class loader conflicts with the old
built-in Bouncy Castle API. The Spongy Castle must be included with an Android
project as an external library while OpenSSL is supported and maintained as a native
library. OpenSSL is also available in iOS which make solution porting easier in the fu-
ture. Developers must, however, know how to use these libraries properly, or security
might be compromised14. According to the Android team [33], there was a plan to re-
move BouncyCastle and replace it with the OpenSSL, but after Android 4.0, i.e. API
level 15, Android has updated the Bouncycastle library from version 1.34 to version
1.46 and it is accessible through java.security.* APIs. In Android 4.2 and onwards, the
default Bouncy Castle based SecureRandom implementation is changed to OpenSSL-
based SecureRandom generation due to deterministic behavior of Bouncy Castle im-
plementation. Thus, we strongly recommended OpenSSL as a crypto provider to build
a secure solution in Android platform [33].

14http://android-developers.blogspot.com.au/2013/08/some-securerandom-thoughts.html

114



5.7. Secure Storage Implementation and Experiences

As of this writing, vulnerability on Android SecureRandom generator has been
identified, and Google officially acknowledged that and announced a short term fix
15. According Google’s report, due to improper initialization of the underlying PRNG,
both system-provided OpenSSL PRNG and Java Cryptography Architecture (JCA)
based key generation, signing, and random number generation may not receive crypto-
graphically strong values. The remedy is to explicitly initialize the PRNG with entropy
from /dev/urandom or /dev/random and re-evaluate if a user needs to use a new key or
random values when it uses JCA APIs including SecureRandom, KeyGenerator, Key-
PairGenerator, KeyAgreement, and Signature. It is also recommended to generate a
random AES key upon first application launch and store it somewhere secure such as
internal memory.

The other issue with Android is where to store keys and credentials in a secure
manner in the device. The SIM card (Subscriber Identity Module) is a type of smart
card and can be considered as a secure key store. Android provides APIs to access the
SIM element but, as of this writing, there is no Android crypro API exposed to per-
form cryptographic operations in the SIM. Basically, the SIM element is owned by the
network operator and they have all privilege and control over the SIM. An application
signed with operator signing key may have access to the SIM card and use it as secure
element. Another way to store keys and credentials in Android is through its built-in
Keystore daemon. Since Android 1.6 (Donut), the Keystore daemon was introduced
for maintaining cryptographic keys for system-level apps such as VPN and Wifi con-
nection. There was no public API for accessing the Keystore from third-party apps
until Android 4.0 (a.k.a Ice Cream Sandwich (ICS)). A KeyChain public API is added
in ICS for accessing the Keystore from third-party apps and store keys and certificates.
Every Keys and certificate added into the Keystore are associated with their owners
through the app user ID and stored in the /data/misc/keystore partition which is outside
the application user space. From the security perspective, this a good place to store cre-
dentials. However, there is only one Keystore instance exist per mobile phone and all
applications must share this Keystore instance. On ICS and later, the Keystore is un-
locked when the device is unlocked through a pattern, a Pincode, or a password, and
it is accessible to all apps. However, on pre-ICS devices, unlock screen was separated
from Keystore unlocking and the Keystore unlocking is performed through an intent.
Despite the fact that Keystore daemon provides a secure store, it does not maintain
multi-user credential. It is worth mentioning that third-party applications can leverage
system level protection for its credentials through Keystore and enhance application
usability by introducing a single login interface for accessing the device. A limited
built-in multi-user support per device was introduced in Android 4.2 tablets (a.k.a Jelly
Bean). Each user partition contains its own accounts, apps, files and other application
related data. Users are added in the shareable device manually following system pro-
vided wizard. Although application and user related data are separated, there is only
one installed application instance that exist between different users. For example, if
user A installed application x, user B are not allowed to install application with the
same package name as application x. User B is also not allowed to downgrade applica-
tion x, but it is possible upgrade it. Individual user Keystore values are separated under
/data/misc/keystore/user_0 and keystore access permission is enforced by the system

15http://android-developers.blogspot.com.au/2013/08/some-securerandom-thoughts.html
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using user ID. Therefore, as long as a multi-user environment is not fully supported,
our proposed solution is still a valid alternative to handle the phone sharing problem.
A secure ODK client based on this scheme is being implemented.

5.8 Evaluation

In the previous sections, we outlined the secure storage module for Android based
mobile data collection systems. In this section, we discuss the evaluation of the secure
solution using the following three metrics: security requirements, performance, and
usability.

5.8.1 Evaluation of Security Requirements

Summarizing the security requirements, MDCS Systems require data protection while
data is at rest on the device memory and while data is traversing across the network.
We classified the secure solution into three architectures: secure delivery, secure stor-
age, and secure communication. The secure delivery architecture makes sure that the
client application is installed in a secure manner (discussed in detail in chapter 7. This
includes code signing for application integrity and owner authenticity, establishing a se-
cure tunnel that protect the application and its manifest attributes from eavesdropping,
and verification steps which confirms the integrity of the setting attributes including the
service provider or tenant public-key. We also mentioned that one can achieve the same
level of secure distribution of service provider public-key and other attributes using the
challenge-response protocol as described in chapter 4. Both solutions are resistant to
possible eavesdropping, data tampering, and replay attack.

Secondly, The secure storage architecture is designed to ensure data protection from
possible attacks and unauthorized access while data is at rest on the device storage. The
storage is encrypted using a strong individual user key (randomly generated storage
key), and a key derived from user password protects the storage key. We minimized
the risk of data loss by separating local access from server access using a different
password. The most obvious benefit from this is that if the device should become
compromised, an attacker would gain nothing more than the information on the device.
Given they manage to crack the local storage, the password they would gain is used only
locally and thus the server is safe. The use of a storage key at individual users level
instead of a single key for all user creates a strict access control mechanism between
different users in a single device. We also make sure that only authenticated user has
access to the application. Finally, the secure architecture guarantees data availability
through data recovery mechanisms. Even if the user lost his/her password, we recover
the data and allow the user to set a new password.

Lastly, the secure communication architecture is responsible for secure data trans-
action from the client to the server. The secure transaction includes but is not lim-
ited to, confidentiality, integrity, reply attacks, sender and receiver authenticity, and
mutual authentication. Data confidentiality is guaranteed by a public-key/secret-key
cryptosystem. The public-key cryptosystem is used for key exchange and to securely
transfer user authentication credentials. HMAC is used for data authenticity and we
use different key for the HMAC than the session key. The reply attack are prevented by
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using a unique message identifier or a sequence number. Once the session key is ex-
changed, the secret-key cryptosystem provides data confidentiality and the session-key
is renewed within a certain time interval which make it harder for passive and active at-
tackers. The secure communication part of the SecureMDC framework is presented in
chapter 6. In the next subsection, we discuss the performance of the cryptosystems.

5.8.2 Performance Evaluation

The following performance evaluation is conducted on the Java ME based feature
phones. One of the cheapest feature phone with low device specification (both CPU and
memory) is used for the testing. The findings were acceptable as discussed below. The
performance evaluation for Android is underway. Since Android device outperforms
feature phones in terms of device specification, we are expecting a better performance
result.

Cryptographic algorithms are the most expensive operations and running them in
resource constrained devices consume computational resources and drain the battery. In
order to find a right balance between throughput speed and computation, we conducted
a test on the reference low-end mobile device. We used the openXdata model phone,
Nokia 2330c-2 [90] for benchmarks and testing. This phone has a fair performance
with a processor speed of 4.7MHz, 128KB non-volatile memory, and 4MB of RAM
while still being inexpensive (less than 50$). We performed the benchmarks on the
block ciphers and stream cipher algorithms. First, we measured the encryption and
decryption time for different size of data and we calculated the throughput speed of
both operations.
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Figure 5.22: A chart displaying the block cipher speed results

As we can see from the figure 5.22, cryptographic operations are very costly on
the slow processor. Blowfish and AES have better throughput speed than others with
42kb/s and 40kb/s respectively for the data size of 25KB. Figure 5.23 shows the stream
ciphers throughput speed against block ciphers. For a given data size, the stream cipher
algorithms outperform the block ciphers, for instance, RC4 with key size of 128 gain a
throughput of 90kb/s whereas AES only 40kb/s.

If these results are acceptable or not, depends on the context in which the API would
be used. How large are the data sets that are stored? What connectivity conditions will
the application operate under? In the end it comes down to the individual project to de-
termine if these results are acceptable. One thing we can however conclude is that the
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Figure 5.23: A chart displaying the block ciphers vs stream ciphers speed results

throughput speeds on the used device (Nokia 2330c) are reasonably high. Under op-
timal conditions a GPRS/EDGE [38] as of 2007 speeds up to 22 kb/s can be reached
for upload. We are conducting an intensive testing on SecureMDC framework perfor-
mance on the Android devices and the result will be presented in the future. However,
from the preliminary testing result shows that the SecureMDC framework performs
well.

5.8.3 Usability Evaluation

Here, we would like to emphasize that the usability evaluation is conducted from the
developer point of view when Java ME based MDCS is used. However, from users
perspective, we made the following statement.

We evaluate the secure solution from two usability aspects: developers and users.
Users are data collectors. The introduction of the secure solution in the existing MDCS
system requires nothing from the users except remembering their password and keep
it safe. All security logics and services are hidden from the users in the transparent
way. If we look at it from the developers point of view, in order to incorporate the
secure solution the programmer needs no knowledge of the underlying security logics
and cryptographic. For instance, the secure storage integration with the existing client
requires only basic understanding of standard Java ME record store operations, and
this is also true for secure communication integration. We finished integrating our
secure storage solution into the existing openXdata and ODK clients smoothly without
requiring significant changes on the client code base.

5.9 Conclusions

Our primary aim in designing these solutions, besides fulfilling the security require-
ments we identified, has been that they should be easy to integrate with existing sys-
tems, without requiring substantial retrofitting. The secure storage scheme is therefore
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quite modular.
We first implemented our design for Java ME and then adapted it to work also

on Android based MDCS. Switching to smartphones brought us both flexibility and
challenges at the same time. The attack surfaces, the security model, and built-in se-
curity features vary from considerably from feature phones to smartphones. Because
of the lack of default security in Android based smartphones, different secure storage
solutions have been developed such as SQLCipher, Facebook Conseal API, and other
third party solutions. However, none of them could completely solve all our problems,
mostly because they assume a single user per device and usually do not provide key
management solutions. Another advantage of smartphones over feature phones is the
availability of mobile application management solutions (MAM), which allows one to
wrap insecure application and make them secure. The wrapping process incorporates
many services including secure storage and remote data management. Even if such
MAM solutions are close to our approach, they outperform us in terms of simplicity of
integration. The drawback is that most MAMs are provided by big corporation such as
IBM and Citrix, are not open-source and usually are developed in collaboration with
device manufacturers and are therefore granted platform privileges that normal appli-
cation or API cannot leverage. Should such a solution be developed as an open and free
to use or even incorporated into the standard Android platform, it could be a valid al-
ternative to our framework. Until then, we believe the solution we have developed has
fulfilled the goals we had set.

We have developed our own prototype MDCS using the secure storage module and
other Secure framework components, and tested it on various Java ME based feature
phones with different settings in order to collect experimental data. The results are
encouraging, since the performance with the default security settings was acceptable
also on very low-end phones, and the openXdata integration proceeded smoothly. The
secure solution has been integrated into a production openXdata code base. We are
conducting intense test on ODK with the secure storage solution.

119



120



6
SecureMDC: Secure Transmission and

Cloud Storage

This Chapter is based on the candidate’s

previously published work at the Nordic

Symposium on Cloud Computing and

Internet Technologies (NordiCloud ’13).

The full paper is available at [44].

Secure cloud storage is a hot topic nowadays. However, most solutions are user-
centric, i.e., they focus on private data owned by a single individual. In the case of
Remote Mobile Data Collection, we have many collectors continuously uploading data
to a central cloud storage on one hand, and several data analysts or decision makers that
require this data in real time on the other. In this chapter we investigate the challenges
related to this model and discuss possible solutions.

6.1 Introduction

As already described at the beginning of this thesis, the general architecture of these
systems consists mainly of two components: a server where data forms can be created,
distributed and later collected; and a mobile client where forms can be downloaded,
filled in and uploaded back to the server when connectivity is available. The server
application, thanks to cloud based platform services like Google App Engine [51] and
Amazon EC2 [2], can run an open source server on a third party infrastructure with
minimum effort and cost. However, despite the advantages of these new technologies,
there is a natural concern for the security of the data while at rest on these third party
servers and the mobile devices themselves. The data collected is often of sensitive na-
ture and its confidentiality needs to be guaranteed during all the stages of the collection
process. As we discussed in the previous chapters, security has never been a priority
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in the development of data collection applications, and although some solutions have
been proposed for the protection of data stored on the client side [73], the use of cloud
storage poses new threats to data security that have not been adequately addressed yet.

The aim of this chapter is to present an analysis of the challenges in securing data
in the cloud from the point of view of a MDC project, identify critical problem areas
and discuss the pros and cons of different solutions that might solve or mitigate some
of the issues.

The remainder of this chapter is organised as follows. In Section 6.2, we discuss the
processes related to a data collection project and its structure. Section 6.3 describes the
security and functional requirements of MDC. Section 6.4 provides an overview of the
threat model we have adopted. In Section 6.5, we discuss some existing secure cloud
storage solutions. Section 6.6 explains thoroughly the proposed solution in the context
of RMDC. Finally, we conclude in Section 6.8 with some discussion and future work.

We assume the reader is familiar with basic cryptographic and security concepts as
symmetric and asymmetric encryption, key derivation, authentication protocols, access
control and confidentiality and algorithms like RSA and AES.

6.2 Typical MDC System Organisation

To understand the challenges in securing cloud data in a MDC project, it is essential to
analyse the data flow in various stages of the collection process and define precise user
roles in the system. Some of this has already been covered in the previous Chapters,
but we further formalize it here.

Projects typically consist of form creators and data collectors. The former create
the form definitions to be used to collect data in the field and have access to the col-
lected data. The latter download the form definitions in the field and actually collect
and upload the data. However, other roles might exist on the actual system like site
administrators and data viewers, which also have the right to edit, delete or read all
data. This role overlapping creates problems when trying to define a security architec-
ture where it must be clear who has the right to do what. Thus, we begin by defining
a semi-hierarchical structure, where we decouple data access from system administra-
tion.

• The site administrator : is in charge of server maintenance, user management
and data recovery. This administrator does not need to be a physical person,
but just a role in the system, that does not need to access form definitions and
collected data.

• The form managers : are in charge of creating form definitions and have access
to the data collected using such forms. In practice, form managers are the data
owners.

• The data collectors : are trained specifically for a specific project and sent into
the field to actually collect the data at different locations. They usually do not
have access to the collected data after upload to the server.

• The local administrators : provide technical support on site. Data collectors
might forget their password or lose their phone. Since we are talking about remote
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data collection, in places where network connectivity is scarce and unreliable,
each location might then have a local supervisor with some administrator rights
on the system, that can provide this type of support while coordinating the data
collection process locally. They do not have direct access to any form definition
or collected data.

• The data viewers : are usually analysts that are only interested in reading the
collected data for analysis purposes.

The collection process itself starts by setting up the server with the list of predefined
collectors, form managers, local administrators and data viewers, which all receive a
username and password to get access to the server. The project organisation remains
pretty much unchanged over time.

The form managers design the form definitions to be used with each project, and the
collectors can download these definitions on their mobile client to start collecting data.
When data collectors register to the server for the first time, they are presented with the
list of possible form definitions they can download. A predetermined work-flow might
decide in which order the forms should be downloaded. The form definitions are then
downloaded and the data collection starts. Once the forms are filled, they are regularly
uploaded to the server and deleted from the phone. At this point the form managers and
data viewers can synchronise with this central repository to download the most recent
data to their personal machines for further analysis.

Some access control should be in place to be able to define which form definitions
and collected data is accessible by different form manager and data viewers. Finally,
we assume that the collected data are static after upload, i.e. editing is restricted on
uploaded data.

6.3 Security and functional requirements

Requirements for secure MDC systems have already been discussed elsewhere [73, 74]
and in the previous chapters. Here we want to focus on the cloud storage, and the
main functional requirement we take into consideration is data availability. In this
context with availability we mean the ability to share collected data with predefined
data viewers and form managers and the guarantee that added security will not result in
potential data loss, i.e., that a recovery alternative always is available even if the data
owner loses access to the system. Also, although being able to update already collected
data is not a functional requirement just yet, a collector should be able to edit data as
long as it resides on the phone.

In terms of plain security the requirements are mostly standard ones:

• Strong data protection both on the mobile device and on the central storage

• Access control to allow only authorised user to upload and download data

• Mutual authentication between server and clients

• Secure communication channel
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The challenge is to satisfy these requirements while allowing for sharing and recov-
ery, with the constraint that a potential solution should use ready available technology
and be easily compatible with existing MDC systems, and should not dramatically in-
crease power and memory consumption.

6.4 The Threat Model

In our discussion, we consider the adversary model of the "honest but curious server".
That is, the cloud platform where our server is running might monitor our input and
outputs, both from network and the local memory, but it will not compromise our ap-
plication code or change the data stored in our database.

In other words, assuming that what is stored on the cloud might be exposed to an
attacker, we want to minimise the potential damage that such a leakage could cause.

In particular, what happens if the database with the collected data is stolen, or ac-
counts compromised?

6.5 Available Solutions

6.5.1 Secure Cloud Storage

In a report from the Fraunhofer Institute for Secure Technology [14] a series of cloud
storage services are analysed from the point of view of their security. Of all the security
features they look at, we are most interested in confidentiality and recovery i.e., data
protection on the cloud and data recovery process when a user loses credentials. It is
clear that the safest solution when it comes to confidentiality is to encrypt the data
locally before upload with a key which is not shared with the storage provider, as
offered in TeamDrive, Wuala, Mozy and CrashPlan (to which we can add Mega [80]
and nCrypted [88]). The main drawback of this approach is that if the user loses the
encryption keys stored locally, also the data is lost. A compromise is to derive the
encryption keys from the user password, so that, even if the password is never sent to the
provider, users can re-generate the keys as long as they remember the password. This
however can compromise confidentiality itself if the password is not strong enough.

The problem is that all these storage services are based on a user-centric model,
and if users do not trust the provider enough to share a recovery key with it, then it is
ultimately their responsibility to think of a recovery strategy and back-up their keys.
Also the idea adopted by nCrypted of having an additional user public/private key pair
and storing the encryption keys encrypted with the public key on the cloud, plus a back-
up copy of the private key encrypted with the user password , does not help much. If
the computer where the private key is stored crashes and the user forgets the password,
the data is lost. Besides, if the password is weak, the private key copy on the cloud
might be compromised.

Another problem in using existing cloud storage services in a remote data collection
project, is that each collector and form manager would have to have two accounts: one
to the server where form definitions can be created and downloaded, that might run
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on Google App Engine or Amazon EC2, and the second account on the secure cloud
storage provider where data would be collected and shared.

Finally, group keys are typically used when multiple users have to write in a shared
folder. However, when using hundreds of mobile phones that can easily be stolen or
lost, combined with likelihood of weak passwords that are easy to remember and type
in handheld devices, shared group keys might easily be compromised, and with them
all collected data.

Among the current MDC systems, only OpenDataKit (ODK) [16] and its deriva-
tions [93] provide some secure cloud storage, but it is very limited. The mobile client
encrypts each form to be submitted to the server with a unique symmetric key gener-
ated locally. This key is in turn encrypted with the form manager public key that was
attached to the corresponding form definition used to collect the data.

The main advantage of this solution is that strong encryption is used, and data is pro-
tected both on the cloud and on the phone. The form manager will have to download
the encrypted data on their personal machine, where dedicated software called Brief-
case will decrypt the data with the corresponding private key. The big disadvantages
are that: only one person can decrypt the data, once a form is saved for upload on the
phone it cannot be modified, and losing the private key on the form manager computer
would mean to lose all data on the cloud. This approach also generates a lot of extra
data to be uploaded and uses up phone resources to perform heavy encryption. Related
problems are the lack of server authentication when the form definition is downloaded,
and no protection of the keys stored on the phone is guaranteed. All data is, in fact,
stored on the SD card where anyone with physical access to the phone can read it and
modify it.

6.5.2 Secure Communication

In some previous work [44, 73] we argued why HTTPS cannot always be considered as
the best solution for secure communication in low-budget data collection projects. The
reasons were mainly three: bad support/implementation in older phones, criticisms to-
wards the Certificate Authority Trust Model (see for instance [112]) and the cost of the
certificates. A typical feature phone would, in fact, have a limited list of root certificates
which could not be modified by the user, and that was not standardised across models
and manufacturer. This would make it difficult for a project to choose a CA from which
to buy an SSL certificate that could be supported by all the handsets deployed in the
project. On the other hand, not being able to modify the list of root certificate would
give a guarantee that self-signed certificates could not be accepted, providing higher
security. The result however was that most MDCSs would simply not use HTTPS at
all. With smart phones, the support for HTTPS improved dramatically, but, especially
in Android, self-signed certificates and CA signed certificates are treated in the same
way, with the consequences discussed in the previous section on app distribution.

In the next section we will propose a way to leverage the characteristic organisation
model of MDC projects in order to eliminate some of the weaknesses in the existing
solutions for secure cloud storage services in our settings.

As long as HTTPS is used to protect data transmission, only a valid certificate rec-
ognized by the mobile device is needed. Rest of the key management is taken care of
by the SSL/TLS protocol on which HTTPS is based.
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The Hypertext Transfer Protocol Secure (HTTPS) is a protocol designed to send
HTTP requests and responses in a secure manner through the SSL/TLS [58] protocol
and it is a standard way of securing client-server transactions. In fact, all MDCS we
reviewed can actually use it. However, we have also mentioned that HTTPS might not
be the best solution given all the constraints discussed in the previous section. Here we
explain why. The security of HTTPS depends mostly on two things: valid certificates
signed by a trusted Certificate Authority (CA), and a correct implementation of the
protocol. Both of these conditions are not equally easy to satisfy on all mobile phones.

The first problem is the certificates. While MDC systems that offer both software
and service, have a centralized server and can secure the traffic to and from all the
clients by using a single certificate, each project that wants to set up its own server will
have to buy its own certificate. This is not cheap, especially for certificates signed by
the most well-know and well-supported CAs (Certificate Authorities). Besides, the list
of supported CAs pre-installed on each phone is controlled by the Original Equipment
Manufacturer (OEMs) and it is not standardized. Thus, in order to guarantee compati-
bility, certificates signed by different CAs might be necessary, thus adding to the cost.
A cheaper alternative might be to use self-signed certificates, but they do not provide
the same security level as CA signed certificates, and not all mobile platform accept
them except Android. See also [137] for a discussion on this subject.

Secondly, even assuming that the project is willing to take on the burden of using CA
signed certificates, there is no guarantee that the implementation of the secure protocol
using them will be equally secure on all devices they deploy [122].

Another source of concern about the use of HTTPS for remote data collection, is
the long handshake needed to establish a secure connection. Although we do not have
conclusive evidence from field data, a quick test showed that such a handshake can take
up to 12 seconds to be performed on a 3G network, and it does not seem like this would
be optimal for a working environment with scarce and intermittent connectivity. We
should also think that the HTTPS protocol was designed to be used on the World Wide
Web where clients need secure communication for transactions with various unknown
servers. In our case we know both who the server and the users are in advance, hence we
could establish in advance how client and server should authenticate each other and how
information should be exchanged. This would eliminate the need for the handshake and
a secure communication could be achieved with a lighter and faster protocol.

Such lighter protocols have been proposed previously [59, 118]. They are based
solely on symmetric cryptography and are built on different assumptions than those
discussed here, but some of the underlying ideas are still valid for our purposes.

6.6 Proposed Solution

In a typical use case with an organization model as mentioned in Section 6.2, data
collectors are the source of data and they are required to share the collected data with
the form managers who created the form definitions, and possibly the data viewers. The
main idea for sharing is the same as many cloud storage provider and ODK: encrypt
the master key used to encrypt the submitted data with the public keys of those who
can read the data. However, unlike user-centric models, in a MDC project we know in
advance who are the data consumers are. This allows to distribute the public keys before
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data collection even starts, and therefore to enable sharing for multiple data readers in
an asynchronous way. In addition we will use the same approach to publish securely
other information that will allow for data recovery, and discuss some variations on this
model to increase efficiency.

The details of the overall process are explained in the next sections, while an exam-
ple is shown in Figure 6.1.

Figure 6.1: Proposed Solution for Secure Cloud Storage for MDC Systems.

But, before we delve into the details of the secure communication and cloud storage
sections, we present first the custom secure communication protocol developed for Java
ME application and described on our earlier publication [73]. We believe this gives an
insight to the read on the history and road map since we began this research and how
we ended up with a new and standard way of secure communication which is discussed
in section 6.6.2.

6.6.1 Custom Secure Communication Protocol for Java ME Apps

Given that the application has been installed and configured, and we have some key to
start encrypting our traffic as it is presented in section 7.1.1, the next step to consider is
how the communication should be conducted from this point onwards. What we want
to achieve, given that we do not use HTTPS, is:

1. Confidentiality
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2. Mutual authentication

3. Minimal traffic time and amount

4. Protection against replay and man in the middle (MITM) attacks

5. Data integrity

6. Less computation key management

7. Compatibility with existing applications

We mentioned that in previous works only symmetric keys were used to secure commu-
nication, but this can be problematic when we have multiple users on different phones,
where each uses a different key. The server must then store all possible keys, and re-
trieve the correct key from the Keystore every time a request arrives, based on the pair
user-device. Besides, on the client side, these user specific keys are stored encrypted
on the phone until the user logs in. What if the user has not registered yet or has lost
the password and needs to perform a recovery procedure? Which key should then be
used? There should be a device key that any user can use, but how do we encrypt it on
the phone to keep it secure and at the same time available? All these problems would
be solved if we could use a public key to initiate all communications with the server,
and this is indeed our recommendation. We said that certificates are not good for our
purpose, but if we managed to obtain the server public key securely as described in the
previous section, then we can use it without the need for certificates.

This server public key based approach would mean that the server can decrypt all
requests coming to it just using a single private key, without knowing whom they are
from or what they are about beforehand. This has multiple advantages, besides a sim-
plified key management from the server side and the fact that practically no sensitive
information needs to be communicated in clear (like the user name and application-id
to identify the key to use). Since it is always the client that initiates the communication
with the server, we can send directly the user credentials to achieve mutual authentica-
tion (the server authentication based on the fact that, if the private key is not compro-
mised, only the genuine server can decrypt and answer a request). So we do not need
to run a dedicated authentication protocol, and also the risk of MITM attacks are mini-
mized, since we do not receive the public key each time from the server, but we use the
one stored on the phone.

Hence, requirements (1), (2), (5), (6) and (7) would be satisfied and the format of a
client request and server response could then look like the one shown in Figure 6.2.

The TYPE field is used to identify the type of secure service request to the proxy
server. The request could be user registration, or a password recovery, a data transfer
(upload or download) or a session establishment. By knowing this, in most cases the
server could complete the request operation directly, without requiring further exchange
of messages, thus satisfying (3). Also, having the type of the request been encrypted as
well, an attacker cannot distinguish different requests just by eavesdropping the traffic.

The MASTER-KEY and the NONCE are used to derive the encryption and authen-
tication keys used in the server response, in the same way as the session and authenti-
cation keys were generated from the PSK in the previous section. Although a session
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 SESSION-KEY ( SERVER-RESPONSE ) + HMAC

SECURE CLIENT 
APPLICATION

S SECURE SERVER 
APPLICATION

PK ( TYPE | USER | PASS | APPID |  SESSION-KEY | AVAILABLE | NONCE )

Figure 6.2: Example of a generic secure service request/response

key could be sent directly, deriving it from a master secret gives us more flexibility, as
we explain in the next section 6.6.1.1.

The AVAILABLE FIELD is used for parameters that are specific for each request
TYPE. For example, a User Registration request might contain a back-up copy of the
key used to encrypt the users’ data on the phone.

We should point out that the public key of the server is not secret and the parameters
in the HTTP request are not negotiated, but retrieved from runtime memory after login
and directly sent by the client. Hence the user’s credentials must always be included to
guarantee the authenticity of the client request or anyone could try to forge a request and
obtain services or information from the server. The fields USERNAME, PASSWORD
and APPLICATION-ID are there for exactly this purpose. The APPLICATION-ID is
an identifier unique for each instance of the client application, i.e., for each mobile
phone. This is needed to identify the specific user account, since the same user might
have activated an account on different phones. It should be among the security settings
sent to the client at initialization time, so that the server can guarantee the uniqueness of
each Id. In fact, if we were to use the IMEI of the phone, like some existing MDCS, we
would limit the range of phones that can be used, as this identifier cannot be extracted
by a J2ME application on many lower-end phones.

When it comes to the possibility of replay attacks (requirement (4)), they should
be neutralized by sending only requests that do not trigger changes on the server if
idempotent, or expose more information than that sent in the first response. In fact, a
client might have to re-send the same request again if the server response never arrived,
and this request should be identical to the previous one, because it require resources
to create and re-encrypt a new request just to change a sequence number or a nonce.
Hence, a replay attack would be indistinguishable from an actual client request, but
by sending exactly the same (possibly buffered) response every time, without doing
anything else on the server, one would limit the damages this attack can do.

Notice that we use a public key only for the server, not for the clients. We do
this because it would be problematic to distribute user specific private keys, and very
difficult to keep them secure on the mobile phone, given the means at our disposal and
the problems discussed in section 2.3.1. This excludes the possibility of signing the
user’s messages for integrity and accountability purposes, and for the server to initiate
a secure communication with a specific user or device. Besides, although public key
operations are still feasible on lower-end phones, given reasonable key sizes, private

129



Chapter 6. SecureMDC: Secure Transmission and Cloud Storage

key operation would probably be beyond these phones capabilities.
Finally, the public key approach is used only to initiate the communication with the

server, and perform simple tasks like user registration, password recovery and session
establishment, that require only a single request and response, and minimal data. In
fact, the amount of information that can be encrypted with a public key, at least in RSA
iwth PKCS#1 padding, is the length of the key minus 11 bytes, and we would like
to keep the key as short as possible to minimize the computational power required to
perform encryption. For instance, a 128 byte RSA key would be enough to encrypt
most types of requests, assuming that each field could contain 16 bytes.

Dealing with the transfer of large amounts of data, like upload or download of forms,
is discussed in the next subsection.

6.6.1.1 HTTP Sessions and Data Transfer

A public key encrypted request can be used to establish a session, and obtain a HTTP
session-Id from the server. The server maps HTTP session object to a user session key
and send HTTP session ID to a client. A client uses a session-Id for further interaction
to the server. The session-id will then be included in a cookie with each new request as
it is normally done with HTTP sessions. However, unlike HTTPS, we are encrypting
the traffic at the application layer, and the cookie will have to travel in clear. Still,
hijacking the session would require the attacker to know both the encryption-key and
the authentication-key currently used by both client and server, and replay attacks can
be prevented by adding a unique sequential number to each request.

In order to minimize the need for establishing new sessions, we could renegotiate
the session key periodically, without changing the session-Id. This should be done as
a separate operation, since if either the server does not receive the request or the client
the response, the two parties might end up using different session-keys. The operation
would consist in sending a new session key encrypted with the current session key, and
waiting for a confirmation from the server that the request was successful. The client
will not send new data until it gets this confirmation, and if necessary, will re-send the
same request. The server should not delete the old key until the first time the client
sends data encrypted with the new one. The new keys will be derived from the original
master key sent with the public encrypted request that established the session, and the
new nonce. This solution, shown in step 6 of Figure 6.4, will give more protection even
if the current session key is compromised and the attacker knows the new nonce.

SECURE HTTP HEADER

SESSION-KEY (CLIENT HTTP REQUEST) + HMAC

Figure 6.3: Secure HTTP request

Since a client using our encryption strategy might already have its own (unen-
crypted) communication protocol and use some particular HTTP request to transfer
information, we encapsulate the whole HTTP request and send it through a secure tun-
nel, and possibly add a standard secure HTTP header in a fashion similar to that of
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  NONCE + SECRET( NONCE ) + HMAC

 SESSION-KEY ( SEED | APPLICATION-ID | PUBLIC-KEY ) + HMAC

PK ( «UR» | USER | PASS | APPID |  STKEY | MASTER-KEY | NONCE )

SESSION-KEY ( USERID |  SEED ) + HMAC

SECURE-HEADER (COOKIE) [ CLIENT-SESS-KEY( HTTP-REQUEST) + HMAC ]

 SESSION-KEY( STKEY )  + HMAC 

PK ( «PR» | USER | (NEW) PASS | APPID |  MASTER-KEY | NONCE )

SERVER-SESS- KEY( SESSION-ID | DURATION ) + HMAC

PK ( «S» |  USERID | (PASS) | MASTER-KEY | NONCE )  

SECURE-HEADER (COOKIE) [SERVER-SESS-KEY( HTTP-RESPONSE ) + HMAC ]

SECURE-HTTP-HEADER (COOKIE) [ CLIENT-SESSION-KEY( NEW NONCE ) + HMAC ]

NEW-SERVER-SESS- KEY( CONFIRMATION  ) + HMAC

SECURE CLIENT 
APPLICATION

Client Application Secure API

1

2

3

6

Username + ServerPass

HTTP Request

HTTP Response

4

5

DATA IN CLEARDATA IN CLEAR

SECURE SERVER APPLICATION

PROXY
Server 

Application

HTTP Request

HTTP Response

DATA IN CLEAR

SECURE TUNNEL

Username + ServerPass

Username + ServerPass

Figure 6.4: Example of protocol using the methods suggested in this section. The notation

key(data) indicates that data is encrypted with key, in particular PK stands for (server) Public

Key, while Header[body] indicates an HTTP request.

S-HTTP [110]. Both the secure header and the encrypted data integrity (requirement
(5)) is protected by Hash-based Message Authentication Code (HMAC) which is used
to verify both the data integrity and the authenticity of a message, as shown in Figure
6.3. Since the HMAC protects also the secure HTTP header, the sequence number used
to avoid replay attacks could be part of this header, rather than the encrypted body, that
could be therefore buffer for possible retransmission. Notice that using a time stamp
like in [110] is unfeasible unless mobile phone and server clocks are synchronized. In
figure 6.4 we show an example of how the protocol we propose could work in practice.

This approach satisfies also requirement (7), since it allows a separation between the
application request format and the cryptographic solution adopted, although the price
to pay for this flexibility is an extra HTTP header. More efficient protocols could surely
be designed if taylored for a specific application, but that would be more prone to error
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and not interesting for securing other existing MDCS.

6.6.2 Secure Channel

The primary choice in the definition of the architecture was the one related to the core
responsibility of the system: how do we secure the communication channel? Depend-
ing on the choices made here, the other components of the system are defined. While
we already decided to use SRP, it is still unclear how exactly this protocol will be used
to provide a secure channel.

6.6.2.1 SRP vs TLS-SRP

SRP itself does not provide encryption, but a mutually authenticated and strong sym-
metric key that can be used directly or indirectly for that. The encryption, once we have
a key, can be done for example with AES. This whole process of key exchange and en-
cryption is not as trivial as it seems, because many other issues must be addressed, such
as a mechanism of key rotation, nonces, integrity checks, message authentication and
so on. Since these issues, not easy to deal with, are far from being new, existing so-
lutions should be preferred to "re-inventing the wheel", and accordingly a SSL/TLS
protocol is a very good candidate. The standard SRP key agreement process can even
be optimised when coupled with the encryption, since evidence messages (M1 and M2)
can be replaced by the encrypted payload itself. For these and other reasons, TLS-SRP
should be preferred to any other custom solution.

It is important here to understand that the secure channel can be protected acting at
different levels of the communication stack. The alternatives from this point of view
are mainly two:

1. Application-level

2. Transport-level

In the first case the application-level logic is directly involved in encrypting/decrypting
the channel, performing authentication and running the security protocols above of
other other layers of unprotected communications. In the second case security is man-
aged outside the application logic, offered by the layers underneath, in a completely
transparent way. For example, what often happens on the server-side is that we use
container-managed security. When the application requests an HTTPS resource, the
container will manage the procedure of establishing, maintaining and destroying a se-
cure session. The two levels have each one advantages and disadvantages. While,
for instance, using application-level techniques implies an increase in the needed im-
plementation work, it can reduce the configuration and deployment burden which is
typical of the other kind of solutions. In this case for example we want a product which
is easy to deploy for organizational staff without high technical skills, so the first solu-
tion seems better. On the other hand keeping the authentication at a lower level makes
integration considerably easier, reason why this is the approach used by almost all prod-
ucts nowadays. Usually the encrypted channel is built on SSL/TLS libraries, relying
on certificates for server authentication, and where necessary keeping only client au-
thentication at applicaion-level. With SRP we achieve mutual trust, but at a cost: the
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encryption of the channel is based on user credentials, which have to be somehow sub-
mitted through a user interface. This, as long as there is no native support, means that
we still have to make changes in the app logic. Also on server side there must be the
possibility to register users and store their verifiers, often integrated with other forms of
access control related to data and functions, depending on the identity of the currently
logged user. In the end, even if we choose a transport-level solution such as TLS-SRP,
we still have to modify a considerable part of the higher level tiers. In addition to this
we should consider also the support for SRP and TLS-SRP protocols. If the first one
counts a certain number of implementations, the second is still not widely supported.

The main problem in this case is that Google App Engine (GAE) does not support
SRP cipher suites for TLS. This means that, despite on the client we could have im-
plemented them ourselves, the server solution would still not be compatible with this
platform. In other settings we could simply choose a different cloud solution, offer-
ing IaaS (Infrastructure-as-a-Service) instead of PaaS (Platform-as-a-Service), but for
this case the requirements strictly impose the compatibility with GAE. For the gen-
eral case, in which this requirement could be not so important, we studied a possible
system setup to enable the secure channel over TLS-SRP. This solution, not elsewhere
detailed, is shortly described in section 5.2.1.2, since it can represent a valuable alterna-
tive to the main one discussed in this thesis. The chosen solution, instead, is to work at
application-level. The focus of the prototype is then to show SRP mutual authentication
and key agreement. The specific technique for encryption, once the key is available, is
not going to be detailed in the prototype. We can assume that every message sent after
the authentication is encrypted using AES and sent together with a digest to check its
integrity.

Also in this case we propose an alternative solution, in section 6.6.2.2.

6.6.2.2 Alternative solution using TLS-SRP

According to the current support status for TLS-SRP cipersuites, OpenSSL and
GnuTLS are the two most mature providers. The proposed architecture involves the use
of Apache HTTP Server as a front-end for the Application Server, using mod proxy.
This allows to use either the module mod ssl or mod gnutls, respectively belonging to
each one of the two providers. We briefly see an example showing how to configure
and run an TLS-SRP session using OpenSSL 1.0.1e. As a first step the SRP verifier file
must be created and a user registered, using the OpenSSL command-line tool:

> touch passwd.srpv > openssl srp -srpvfile passwd.srpv -add johnsmith@mdc.org
Enter pass phrase for johnsmith@mdc.org: Verifying - Enter pass phrase for john-
smith@mdc.org:

Then, in the SSL configuration file we have to set the directive SSLSRPVerifierFile
to point to this file. Additionally, to force the use of non-certificate TLS-SRP cipher
suites:

SSLSRPVerifierFile /thepath/passwd.srpv SSLCipherSuite "!DSS:!aRSA:SRP"
We can also show a TLS-SRP session on localhost, using two terminal instances

(client and server) and the OpenSSL command line tools. First we start the server
component:

> sudo openssl s server -nocert -cipher SRP -srpvfile passwd.srpv -accept 443 Using
default temp DH parameters Using default temp ECDH parameters ACCEPT
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Then we connect the previously registered user from the client component:
> openssl s client -srpuser johnsmith@mdc.org -cipher SRP -connect localhost:443

CONNECTED(00000003) Enter pass phrase for SRP user:
If the password is correct both server and client will show details on the session,

and allow the two terminal instances to communicate over the secure channel. The
conclusion is that TLS-SRP is already there, and even if most of the servers and cloud
platforms still do not offer its cipher suites, it is only a matter of time until it will
be generally available. While websites and browsers would probably be less prone to
adopt it, mobile apps backed by cloud services with pre-registered users are the perfect
adopters.

6.6.3 Setup and Key Distribution

First, we need to assume that there is some kind of protection mechanism in place on
the mobile client, so that encryption keys can be stored securely. For this, we adopt the
security solution presented in chapter 4. That is, there exists a local authentication pro-
cess on the mobile client where the user password is used to securely generate a key
that encrypts what we call a storage key. This symmetric key is in turn used to encrypt
other key material of the user on the mobile device. Successful decryption of the stor-
age key, results in a successful local authentication and access to the encrypted user
data. Second,there must be a way to build trust between client and server. Even though
platforms like App Engine offer a SSL/TLS based secure connection, this only guaran-
tees that we are connecting to an application running on App Engine, not specifically
our server application. Therefore, we propose to adopt a communication protocol that
provides mutual authentication, preferably without the use of SSL certificates. Reasons
not to use SSL certificates are the cost of these certificates (for some discussion on this
topic in the context of MDC, see [73]) and criticism towards the Certificate Authority
Trust Model (see for instance [112]). Since all users already have a password-based ac-
count, the Secure Remote Password Protocol (SRP), standardised in RFC 2945 [139],
would be a reasonable solution. This protocol allows mutual authentication and se-
cure key exchange, while being resistant to on-line brute-force and Man-in-the-Middle
attacks.

Once the mutual authentication is successful and a symmetric shared key is cre-
ated through SRP, it can be used to encrypt or sign the public keys and form definitions
downloaded from the server, so that their authenticity is verified also without certifi-
cates. Such keys can then be securely stored on the phone encrypted with the user
storage key. The public keys can subsequently be used also to verify the integrity of
form definitions or other data loaded on the phone through other channels, but signed
by their source.

Finally, at set-up time, a special public/private key pair is created and published on
the server: the back-up key. This key pair is used solely for back-up purposes. All
the data encryption keys used in the collection process will always be encrypted with
the back-up public key, while the private back-up key will be encrypted with a strong
symmetric key and stored on the cloud. This symmetric key will then be split up and
distributed to a number of participants in the project (most likely the project organisers),
according to the Shamir’s Secret Sharing algorithm [120]. The reason is explained in
Section 6.6.5.4.
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6.6.4 Form Upload and Sharing

Once the public keys and local authentication are in place on the mobile client, we can
define a different approach to the encryption of filled forms than that used by ODK.
As already mentioned, their current solution generates a new symmetric key per form;
encrypt the form with this key and the symmetric key with the (single) public key that
was attached to the form definition. Since we want to allow for more than one public
key per form definition, in order to enable sharing with multiple data viewers and back-
up, this approach would incur a huge overhead both in terms of transferred data and
processing power. The most straightforward solution is to introduce a symmetric master
key to replace the public key encryption and reduce this overhead. We have mainly two
alternatives for that:

1. Form Definition Master Key: For each downloaded form definition, one master
key is created.

2. User Master Key : A master key is created once at user registration time and
used to encrypt all form submissions.

In both cases the master key(s) are encrypted with all public keys attached to each
downloaded form definition (hence all data viewers and form managers allowed to see
the form submissions) and the back-up key, and uploaded to the cloud. Locally the
master key(s) will be protected with the user storage key and the local authentication
scheme.

Compared to the ODK solution, we lose some security on the mobile client, because
a copy of the master key will be encrypted with a password based key chain locally.
On the other hand, we gain a lot of flexibility and efficiency. The collector can, in
fact, decrypt and edit the form before upload, and much fewer public key encryption
operations need to be performed. Stealing the phone and brute forcing the password
would gain an attacker only the data encrypted on the phone and not yet uploaded.

The main difference between the two types of master keys is the flexibility of de-
ciding who can see data collected with different form definitions. In the first case, the
form manager can decide with whom to share the data related to a particular form defi-
nition, since different master keys are used for different form definitions. In the second,
anyone having a public key attached to some form definition downloaded by a collec-
tor, will in principle be able to decrypt all the data collected by that collector. In terms
of efficiency, the first case has clearly a bigger overhead in the worst case, both in terms
of public key encryption performed on the mobile device and extra storage used on the
server. Still, in both cases, a much smaller overhead than the ODK solution.

Once the master key solution is in place, we have in turn at least two options for the
key encrypting a specific submission:

1. Dedicated Submission Key: a filled-in form instance is encrypted with a ran-
domly generated key and the key is encrypted with a master key as defined previ-
ously.

2. Derived Submission Key: a filled-in form instance is encrypted with a new key
derived from a randomly generated salt and a master key. The encrypted form is
uploaded concatenated with the salt in clear.
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In this case, the second solution is clearly more efficient on the phone since only
one symmetric encryption is performed, while the extra storage used on the server is
the same when a salt is as long as a key. The security is equivalent, since recovering
the master key would grant access to all data in either case.

Note that all keys used to encrypt data stored on the cloud are not derived from the
user password. Hence, brute forcing a user password, would not compromise directly
data stored on the cloud.

Figure 6.1 shows an overview of our approach when a Form definition Master key
is used, with a Derived Submission Key. For each different user and form definition,
a different master key would be used. For details on the secure phone storage, we
refer to [46]. We consider this solution the one with the best balance of efficiency and
flexibility.

6.6.5 Recovery

The main problem with the claim that the cloud server is not able to decrypt the data
stored on it, is that no back-up of the password or private key is available in case the user
loses everything. However, in our proposed solution we do not have a single user and
its data, but rather an organisation. We can leverage on this to meet the requirement
of data availability with a recovery process, in most cases. Note that once a key or
password is lost, it should be considered as compromised, and therefore not re-used a
second time. However, if the cause of the loss is a malfunctioning of a mobile phone
or computer, one might consider it still safe and re-use it rather than issuing a new one,
with all the resulting problems.

6.6.5.1 Lost Mobile Password

If a user loses the mobile client password, data on the cloud is still accessible by the
form managers and data viewers because the data encryption is not dependent on the
password. To allow the data collector to log-in again in the application and continue
the collecting process, a password recovery procedure is needed. Following the idea
in [46], we save a copy of the storage key on the server. If the user can recover it,
then the data on the phone is not lost, and it is enough to choose a new password
to encrypt the storage key with on the mobile device, to re-enable the user account.
Here is where the local administrators come into play. The system can detect the local
administrator automatically through GPS location, or by pre-setting it on the server, and
back up the storage key at registration time, with the local administrator public key. The
user can then personally contact the local administrator to recover the account on the
mobile phone. The process will most likely be a manual one, because any automatic
solution would risk exposing sensitive information to the cloud server, and we have the
advantage of personally verifying that it is the actual data collector that needs help, and
not an attacker trying to gain access to the phone.

6.6.5.2 Lost Phone

In this case, the local administrator resets the password of the user on the server, who
can then register with a new phone. However the registration process must be repeated:
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all form definitions and public keys downloaded again, and new master keys created
and uploaded. The old master key is considered compromised if a phone is lost. If not,
a form manager might be contacted to try and retrieve the master keys. However this
process might be so complicated and could introduce so many issues, that it might not
be worth the effort.

6.6.5.3 Lost Form Manager/Local Administrator Credentials

If the password is lost or forgotten, an authentication protocol based on the pub-
lic/private key pair can be performed, that grants access to the blocked account and
a new password can be set. This implies that once a public key is published, it can-
not be changed without contacting the site administrator. Otherwise an attacker who
stole the password could also change the public/private key pair, making the recovery
process impossible, thereby compromising the system.

If the private key is lost, the site admin should be contacted immediately so that
the account can be locked and the password reset. The new password should then
be sent via a side channel to the form manager that can generate and publish a new
public/private key. Collectors should be warned of the public key change, and renew
the master keys associated to the form definitions of this form manager.

6.6.5.4 Lost Site Admin Credentials

If the site administrator account is compromised, usually we would have a disaster sit-
uation similar to that of a user of a secure cloud storage provider losing both password
and private key. Someone impersonating the site administrator might delete users and
lock out form managers and data viewer. However, the data is not lost or compromised
because the site admin does not have access to it to begin with, and we still have a re-
covery option: the back-up key pair. The private back-up key is encrypted on the server
with a secret key shared among project managers, and it is therefore necessary for a
given number of people involved in the project to collaborate in order to recover it. In
fact, Shamir’s algorithm allows to split a secret key in n parts, while deciding a thresh-
old of at least t ≤ n participants needed to reconstruct the secret. Once the secret key
is reassembled, the decrypted back-up key pair can be used to reset and recover the
site admin account. The security of this key pair is therefore proportional to how many
people are needed to reconstruct the secret, and the bigger the project, the greater effort
might be necessary to severely compromise the data and the server.

6.6.5.5 Data Recovery

In all the situations mentioned above, there is always a way to recover all the encrypted
data stored on the cloud. In fact, in the worst case scenario, a copy of all the master
keys used for data encryption is always stored encrypted with the back-up public key,
that can be recovered only with the collaboration of a finite number of person involved
in the project. The only data that can be lost is that stored on the mobile phones that
was not yet uploaded on the server, if the phone is compromised or lost.
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6.7 Discussion

In this section we discuss whether the approach we describe actually satisfies the re-
quirements in Section 2 and we compare it mostly with the ODK solution, since we
target specifically RMDC systems.

6.7.1 Data Protection and Security

The encryption scheme we have presented in Section 6 provides strong security in the
cloud, while still allowing for data recovery in most situations. We have seen how the
collectors’ password is not linked in any way to the data encrypted in the cloud, and no
cryptographic operations are performed on-line, but only locally on mobile devices or
users’ private machines.

This means that having only the encrypted data from the cloud does not allow a sim-
ple brute force attack to succeed easily, since no password derived keys are used, and
the cloud provider does not learn any sensitive information useful for decryption. In or-
der to access (in clear) even only the data collected by a single collector, a considerable
effort is required: the phone should be stolen, the collector password guessed, the mas-
ter keys recovered from the phone; and the correct encrypted forms retrieved from the
cloud. A local administrator might be able to carry out the first steps easily, but they
would still have to gain access to the data on the server, which they do not have the
permission to read, nor do the collectors. We consider the flexibility and efficiency one
gains by using symmetric master keys rather than only public keys to encrypt submitted
forms, worth this risk.

User accounts might be compromised if the user database with password verifier is
stolen, and a successful brute force attack exposes the passwords used to generate the
verifiers. If care is used when generating the verifiers, this should not be easy, but it is
a possibility.

Hence, if the site administrator account is compromised, changes to the user per-
missions and accounts can be performed, but the site administrator does not have access
to any master key, so data are still safe. This is the main reason to split the key to the
back-up private key among many project participants, so that we do not have a single
point of failure.

An elaborate attack would consist in compromising the site admin and a form man-
ager account, and replace the form manager public key on the server with the attacker
public key, although this should not be so easy as mentioned in Section 6.6.5.3. The
collector would then encrypt the data they collect with the attacker’s public key, who
would now be able to decrypt it. However, this would also trigger an heavy process
of key rotation for all collectors using form definitions coming from the compromised
form manager, and this should not go easily unnoticed.

Finally, compromising a collector account, which is probably easiest since the pass-
word is often typed and implicitly stored in a mobile device, would not accomplish
much. Data collectors do not have permissions to download data, although their master
keys are stored on the phone. The worst that can happen in this case, is either that data
might be forged by an attacker before upload or that data still not uploaded and stored
locally is compromised. If encrypted data from the cloud are also available to an at-
tacker, however, all data the collector has uploaded might be exposed, but this sensibly
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increases the difficulty of the attack.

Notice that compromising the data viewers or form managers machines where their
private key are stored, would indeed compromise most of the collected data, but the
protection of those keys is outside the scope of this chapter.

6.7.2 Availability

In Section 6.6.5 we analysed different situations where data recovery might be neces-
sary and showed how, in most cases, data can actually be recovered.

By using the same sharing technique as most existing cloud providers, data can
also be shared with data viewers and form managers, as long as their number does not
increase too much. We have not tested this in practice, but it is clear that a limit of our
approach is the number of public keys that can be attached to a form definition.

On the mobile side, collectors are now able to read and edit the form they filled in
before uploading, even though encryption is performed on the data stored locally.

6.7.3 Efficiency

The difference in processing resources used on a mobile phone with a Form Definition
Master Key and a User Master Key based approach, as discussed in Section 6.6.4, is
not that big. The amount of public key encryption operations performed in the first case
is roughly equal to the amount of operations performed in the second case, times the
number of downloaded form definitions. This number is fairly small, considering also
that form definition downloads are not frequent operations. However, in the first case
we also gain greater flexibility to control with whom we share the data, providing a
better and more secure sharing mechanism. In any case, the total amount of public key
operations is significantly lower than it would be by adopting the ODK strategy, where
we have one such operation per submission. Also, using a Derived Submission Key
reduces the number of encryption operations per form submission to one symmetric
encryption, again a much lighter solution than ODK.

The extra storage space needed on the server side is also drastically reduced com-
pared to the ODK solution. Assuming that RSA keys are used, and one was to follow
the current recommendations for minimum key size [128], ODK would use at least
1024 bits to encrypt the symmetric key of each form submission. By using symmetric
encryption instead, we would need at most 256 extra bits per submission when using
the AES with the maximum key size available, both when encrypting with a Dedicated
and a Derived Submission Key. Besides, only the master keys will be encrypted with
public keys, and their number is negligible when compared to the number of total sub-
missions. On the mobile side the storage overhead is more significant, since also the
master keys have to be stored, and more public keys are used than in the solution ODK
offers. New keys are added to the user storage at each form definition download.

6.7.4 Integration

By using only standard cryptography primitives, the implementation of our proposed
solution should be compatible with most smart phones and application servers. Some
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changes might be necessary to existing systems on the server side to accommodate a
new authentication protocol that provides mutual authentication, like SRP, and a more
advanced access control solution. On the client side, previous experience [46] showed
that it is possible to integrate security with minimum changes to the application code,
but in the case of smart phones, different technical solutions might have to be consid-
ered.

6.8 Conclusions and Future Work

We analysed the problem of secure cloud storage in the context of remote mobile data
collection and proposed an approach that could provide a relatively straightforward so-
lution to data protection, sharing and recovery. Standard symmetric and asymmetric
cryptographic techniques are employed, which makes it feasible to implement in prac-
tice and compatible with most existing systems and technologies. At the same time
we tried to minimise heavy resource consumption on the mobile devices and additional
storage use on the server. Finally, leveraging on the hierarchical nature of a project or-
ganisation we can enable data recovery also in cases where in a user-centric model data
would be lost because of the lack of a secure root of trust.

Future work will be directed toward an actual implementation of this system and
other problems not discussed in detail in this chapter. The main goal of a prototype
implementation will be to test how easy it would be to integrate our approach in existing
systems like ODK, and to test the maximum number of public keys that can efficiently
be handled in the system, before more advanced solutions like a cryptographic file
system as in [53] should be considered.

Research challenges abound. An efficient work-flow to change all master keys of
the collectors after a form manager lost the private key should be defined. Bi-directional
data flow might also be a requirement in future RMDC systems. Right now they are
aimed at simple data collection, where the data is mostly static and flows in one direc-
tion: from collectors to data viewers, who download the data on their private machine
and analyse it separately. Later there might be the need to analyse and use collected
data in real time on the field, so that the data flow will have to be bi-directional, and data
collectors might also be data viewers. With our current approach collectors might actu-
ally be able to download only their own data, since they store the master keys on their
phone. In addition, a more advanced book-keeping of encrypted data will be neces-
sary. Efficient sender authenticity, accountability and data de-duplication mechanisms
for low-resources setting projects are also needed in RMDC. These problems still need
to be further investigated.
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This Chapter is based on the candidate’s

previously published work as a book

chapter in the "mHealth: A Technology

Road Map" book and a paper published

at at the International Conference on

Availability, Reliability and Security

(ARES 2012). The book and the paper

are available at [1, 73] respectively.

7.1 Secure Application Distribution

In this section, we present some secure methods for preserving application integrity
during distribution and installation. This step is critical in order to guarantee the in-
tegrity of the security mechanisms implemented in the application and therefore their
correct operation. We discuss first the secure distribution and verification of a Java ME
client application and later the secure provisioning of an Android client application.

7.1.1 Secure Application Distribution for Java ME Based MDC Systems

A secure channel for an application delivery is a critical step towards building a secure
architecture for MDC Systems. Without this security feature, there is no guarantee that
the application being downloaded is genuine. Someone might have tampered with it,
turned off its security features, or added a malware in it, and we do not have any way
of detecting that. Moreover, since we decided not to use the Public-key infrastructure
(PKI) for server public-key distribution and verification (as it is discussed in the Chap-
ter 6 under the section 6.6.1), we need an alternative light-weight secure distribution
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method. We first briefly review how Java ME applications are organized and installed
on a mobile phone.

The Java ME platform provides a digital signature verification feature against with
installed certificate authority (CA) root certificates. Typically, Java ME applications
consist of two important file: a Java Archive (JAR) file and a Java Application Descrip-
tor (JAD). The JAR file contains the main application, and the JAD file describes JAR
file using a set of attributes. The application can be installed by sending the JAR file di-
rectly to the mobile phone, through over-the-air (OTA), Bluetooth, WiFi or cable, or it
can be installed through the JAD file. In the last case, the JAD file will have to contain
some mandatory attributes that must match with those in the manifest file contained in
the JAR, plus optional and custom attributes. Among the required attributes is the URL
of the JAR, so that the phone can download it automatically by generating a request and
sending it to the specified URL in the JAD. The application owner can sign the JAR
file with a code signing certificate, and add the signature as an attribute in the JAD file.
This allows to verify that the Java Archive (JAR) file downloaded is indeed the same
indicated in the JAD file, and that the entity distributing it, is a trusted one. Moreover,
code signing protects the application by allowing only signed software to update in-
stalled application, so that it cannot be tampered with after installation. Thus, signing
the JAR file containing the client application, is a necessary condition to guarantee any
kind of security. Therefore, code signing is an important element of the secure soft-
ware delivery model but it is not a complete solution. The lack of JAD file attributes
integrity checking method on the client side gives an attacker an opportunity to manip-
ulate the attributes during installation process. Therefore, in addition to code signing,
we need a secure software delivery architecture which also provides a secure way for
server public-key distribution. In order to achieve this, we followed a concept similar
to that of the software delivery model of Software as a Service (SaaS). Unlike SaaS
data architecture, the application vendor does not store tenants specific data except the
customized JAD file with tenant public-key and other security attributes. The appli-
cation vendor does not control any data flow from client to the tenant server after the
client application installation is over. As shown the in figure 7.1, the secure software
and key delivery process starts with the tenant application server. The tenant creates
its own private and public key using simple key generator and add the public key into
openXdata client JAD file attributes. Once the tenant finish customizing the JAD file, it
submits it to the openXdata server. The openXdata server verify the JAD file attributes
and make it ready for installation over OTA. The sequence diagram for software and
key distribution is shown in 7.2.

The tenant could register a project specific URL for download on the Application
Vendor server and define some custom attributes that the Application Vendor should
generate and put in the JAD file for each download. Thus, both JAD and JAR file can
be downloaded securely from the Application Vendor server. After a successful instal-
lation, the client will have enough information to establish a secure connection with the
project server directly. The drawback with this approach is that the Application Vendor
must be trusted with potentially sensitive information, and the URL of the JAD must
be sent to the client securely, or an attacker could redirect the download to a different
JAD file with different settings that could compromise security. One way to mitigate
this type of threat can be to add a generic URL like https://m.openxdata.com/ in
the signed manifest file, while the JAD contains only one non-signed attribute, i.e, the
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Figure 7.1: Centralized Secure Software Delivery and Key Distribution Architecture
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Figure 7.2: Sequence Diagram for Secure Software Delivery and Key Distribution

project name. At this point the settings can be downloaded by the application directly
after the installation at the URL https://m.openxdata.com/project_name, after the
user manually verified the project name.

If the centralized distribution architecture is not available, one might use a
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challenge-response protocol using pre-shared secret (PSK) that allows to authenticate
simultaneously both client and service provider server. A one-time activation code
could be distributed to the collectors and used to verify the service provider specific
attributes including cryptographic public-key after client installation. In this case the
keys and settings could be downloaded directly from the service provider server instead
of the application vendor. A drawback of the challenge-response approach is that it re-
quires one time activation code distribution to data collectors in advance especially if
there are thousands of collectors, it might be cumbersome. So, a third option, which
is also used today, is to deliver the phones to the collectors pre-configured by someone
responsible for this specific task, so that installation can be done manually.

7.1.2 Secure Application Distribution Android Based MDCS Systems

Keeping the integrity of an application during installation with its pre-set contents in a
distributed environment is imperative to the rest of proposed secure solution. The major
mobile OS providers enforce integrity checking through signature based system. How-
ever, application provisioning is one of the areas that the two rival platforms Andorid
and iOS differ. The iOS built-in security model enabled Apple to distribute applica-
tions through a single channel [6]. The integrated security architecture of hardware and
software within iOS devices relies on the public key infrastructure (PKI) with Apple as
a top Certificate Authority (CA). Figure 7.3 shows the bottom-up signature based chain
validation technique from initial boot-up to iOS Kernel loading which takes care of ver-
ifying third-party app signature before installing. This makes application distribution
safer than most other solutions.

The iOS kernel make sure that apps signed with Apple issued certificate can run on
iOS device and prevents unsigned apps or apps signed with self-signed certificate from
installing. Apple issues a code signing certificate to an individual or organization after
verifying their identity through different ways. Then, application can be signed with
issued certificate and distributed through the iTunes app store. There is an additional
app checking process that the Apple store enforces before the app is shown to the pub-
lic. The app passes through an automatic rigorous test following some check list. As
of this writing, the check list and how it is enforced is not public, but through cumu-
lative experiences from several developers, there are app performance, memory leak,
malware, and signature checking. The overall built-in security and permission enforce-
ment allows to build a trusted relationship between developers, distribution channel,
and consumers.

The provisioning of Java ME applications reminds in part of iOS, where code must
be signed by a valid CA in order to be installed on the phone. Actually, apps can
still be unsigned, but then they would not get access to critical system APIs. In fact,
different levels of code signing certificates are needed to allow an application to use
different APIs offered by the mobile platform. However, no single distribution channel
or appstore exists and applications can be provisioned freely Over The Air (OTA).

Android completely depart from the idea of bottom-up built-in security model, con-
trolling, and validating app distribution channel. The main principle for departing from
this idea is that with less restriction developers can build apps faster and put them into
market in a shorter period of time. On similar history, code signing is also often been
reported as the main reason for the the limited success of Java ME applications. Prac-
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tically, this principle does not seem to be working as expected. If we look at some
statistics, by March 2009, Android Market started with hosting 2300 Android apps and
on May 2013, the number of apps on Google Play was estimated to 1,000,000 with 48
billion downloaded to Android devices 1. On the other hand, Apple started with hosting
500 apps in July 2008. As of July 2013, it was hosting 900,000+ apps with 50 billion
download which is close to the number in Android 2. In conclusion, Apple submis-
sion criteria and checking procedures did not affect the number of apps. Therefore, the
premise from Android team’s security trade off for faster app development principle,
does not seem to be justified.

The Android security model spurred other app stores to host Android apps. At
the beginning, Android departed from PKI based code signing architecture with a top
CA and introduces a self-signed code signing mechanisms for application testing and
release. The departure from PKI based architecture helped others to host Android apps
in their store. As of this writing, there are more than thirty Android app stores. Some
of them are Google play, Amazon App Store 3, Mikandi Adult App store4, Samsung
App Store 5, Android App Online 6, Aptoide 7, and Opera App Store 8.

Android app distribution starts with by digitally signing the application with a self-
signed certificate (no CA required). The only requirement is that the code signing
certificate should be valid for more than 25 years. The Android security model uses the
application signature to ensure the authenticity of the app author at installation time and
during app update, and to establish a trust between different apps that are signed with
the same key. Applications signed with the same key share the same Linux kernel User

1Google IO, [Last Accessed: May 2013],http://www.youtube.com/watch?v=9pmPa_KxsAM
2Apple’s App Store Reaches 50 Billion Downloads, [Last Accessed: May 2013], http://www.apple.com/

itunes/50-billion-app-countdown/
3Amazon App Store, [Last Accessed: April 2014], https://developer.amazon.com/welcome.html
4Mikandi Adult App store, [Last Accessed: April 2015], https://mikandi.com/
5Samsung App Store, [Last Accessed: May 2013], http://apps.samsung.com/
6 Android App Online, [Last Accessed: May 2013],http://www.appsgeyser.com/
7Aptoide, [Last Accessed: April 2013],http://www.aptoide.com/
8Opera App Store,[Last Accessed: April 2014], http://apps.opera.com/
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Id, which helps to share resource, permissions, and processes. David et al. [10] per-
form thorough analysis on collective Android apps from different app stores and have
shown Android’s current signing architecture does not encourage best security prac-
tices and propose some platform level mitigation methods. The Android Development
Tool (ADT) is shipped with a default debug code signing key to facilitate code devel-
opment and testing. Once the code is ready for production, the code must be signed
with a release key which needs to be kept in a secure place. The class files, native
libraries, resources, and AndroidManifest file pass through a hashing algorithm for in-
stance SHA-1. The output from the hash algorithm is signed with signing algorithm
such as RSA or DSA. The signature is packaged together with the class files and re-
sources and an APK file ready for deployment is generated and sent to the Android app
store. In order to upload the app to Google Play, Google requires an initial registration
through a Google account and a payment of $25 paid through an individual credit card.
Some of the third-party app stores are free or require an annual developer membership
fee for uploading apps.

Reverse engineering has never been easier when we come to Android apps. There
are a number of tools available that make it very easy for an attacker to get into the
source code and resource files of the application. Once the installed app is extracted
from the mobile device we can unzip the application file and all class files. Generally,
it is recommended to obfuscate apps, but even then it is not so hard to get the source
code. Traditionally, an attacker can manipulate the source files, add malware into it, re-
package it, and sign it with his/her own key and finally publish to the app store. Rahul
et al. [104] demonstrated this type of attack and proposed a three detection system level
scheme that relies on syntactic fingerprinting to detect plagiarised applications under
different levels of obfuscation used by the attacker. This kind of practice has been
overwhelmingly high in Google Play before Google introduced the Google Bouncer 9

in 2011. The purpose of the bouncer is to scan apps for known malware, spyware, Tro-
jans, and hidden and malicious behaviour (comparing it with previously analysed apps,
and checking new developer accounts against previously known offenders) by using
a simulated area inside Google’s cloud. Google also introduced a remote kill-switch
mechanisms to remove already installed apps remotely. As a result of the bouncer, the
number of potential malicious apps has been reduced by 40% 10. To further strengthen
the application validation, Google introduced a client verification mechanism in An-
droid 4.2 (Jelly bean), but later incorporated it into Google play service app (which
already exists from Android 2.3, a.k.a Gingerbread). In the end, there is no guarantee
that the application being downloaded is genuine. Someone might have tempered with
it, turned off its security features, or added a malware in it, and we do not have any
way of detecting that for sure. A more recent attack of this type has also been demon-
strated, where a legitimately signed file could be arbitrarily altered without invalidating
the original signature, and could therefore be distributed as the original genuine one
[60].

We propose four possible ways to alleviate this problem without having to change
the whole system:

9Google Bouncer, [Last Accessed: May 2014], http://jon.oberheide.org/files/summercon12-

bouncer.pdf
10Potential Malicious Apps at Google Play Store, [Last Accessed April 2013], http://googlemobile.

blogspot.no/2012/02/android-and-security.html
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1. As a first option, we can adopt the standard approach and distribute the applica-
tion through the platform vendor infrastructure, for instance, Google Play Store.
Even if this approach comes with security challenges related to storing apps in
the play store, it provides an excellent opportunity to distribute apps at scale, and
it does guarantee the application integrity to a reasonable degree. The advan-
tage for the users is particularly significant as standard channels and procedures
are used. Besides it does not require to enable the "Unknown Sources" option
for installing apps from third-party application distributors, which could consti-
tute a potential entry point for other malwares. The inherent security challenges
that come with the Play Store can be minimized by uploading a generic mobile
data collection app on the Play Store and once the application is installed on the
device, we can establish a secure channel with the application server and sync
all important credentials and keys onto the device. The security framework fits
well for establishing a secure tunnel and sync the credentials. The problem with
this approach is clear when we consider that most projects require a customized
MDCS. In this case, each customization should have to be packaged, resigned
and uploaded on the Play Store, with all the problems we have already discussed.
In addition, having many customized versions of the same MDCS on the Play
Store would actually make it easier for a purposely compromised version to be
confused with the genuine one and be downloaded by mistake. In this case, other
approaches may be more appropriate.

2. Manual installation is the ideal choice of customized secure app distribution.
Apps delta update (aka a patch) can be pushed to client by the project server in
coordination with Google Cloud Messaging system (GCM) 11. The Android plat-
form enforces the proper signature checking procedure during update. The main
drawback of this approach is that it will be cumbersome installing the app at the
initial stage of a large scale project. An alternative solution might be necessary
for this type of scenario.

3. Bypassing the app stores altogether and distributing apps through the vendor web-
sites can also be an option. Application vendors such as ODK, mUzima, or
openXdata would act like a trusted central CA. The application is going to be
signed, even self-signed, for integrity checking, but we are not relying on this
signature to trust its authenticity. Rather we are relying on the fact that we down-
load the app from the developer site in a secure manner, and that we are actually
connecting to the correct download site. The download link can be sent through a
secure side channel as SMS or mail, and now the root of trust becomes the combi-
nation of this secure link and the SSL certificate of the application vendor signed
by a trusted CA pre-installed on the device. The downside is that the application
cannot be customized, and no project specific configuration added to it, because
then it would have to be signed again and downloaded possibly from another site
we might not trust. The same problem as the appstore would arise again. How-
ever, the advantage is that the application is not compromised and it will behave
as expected, which is the fundamental requirement to be able to enforce any other

11Google Cloud Messaging, [Last Accessed: May 2015], https://developers.google.com/cloud-

messaging/
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security mechanism later on.

4. A fourth option might be to have some MDCS System vendors become special-
ized app stores, where they guarantee for all customized versions of their systems.
This requires to set up a model similar to that of the iTunes, but the chances of
achieving this within the foreseeable future are slim. Tenants who are customers
to the application vendor customize the app based on their needs and sign it with
their own public/private key pairs. The tenant submits the custom app to appli-
cation vendor hosting server and give the download link to the collectors/users
through a trusted side-channel (SMS or mail).The app can then be downloaded
through a secure connection from the Application Vendor server and contain for
instance the project server certificate. After a successful installation, the client
will have enough information to establish a secure connection to the actual project
server directly. The application vendor does not store tenants specific data except
the customized app and also does not involve in client-tenant interaction after the
client application installation is over.If the centralized distribution architecture is
not available, one might setup their own secure channel.

7.2 Conclusion

Our experience with partners projects including ODK and openXdata, is that an MDC
system is designed to be generic on purpose, so that any organization interested in using
the system is required to customize the application, particularly the client application,
in order to meet their requirements. This model helps the application vendors such
as ODK and openXdata to focus on the common functionalities of the system that is
needed by all organizations. As a result, ODK and openXdata can continue the devel-
opment with low resources and funding. From this, we learn that each organization
who customizes the main application like ODK is expected to package, sign, and dis-
tribute their application to the remote clients. In this scenario, manual installation fits
well if it is a small scale project. However, for rolling out at scale for instance nation-
wide, a comprehensive distribution channel is needed. The first approach in the list
7.1.2 may fit with this scenario which is using the normal distribution channel such as
Play Store. At the same time, the organization may need to make the application in the
Play Store uniquely identifiable so that the users can download the correct app easily.
The organization also must pay and acquire Google developer account for uploading
the customized application. If no customization is involved, the organization can use an
existing MDC app provided the app vendor. This may cause problems especially when
the organization needs an immediate fix because of a bug or a security flaws. In that
case, since the app vendor is the app signer which means they are the only one who can
push an update, they must respond in timely manner. However, since the app vendor
usually has few resources, the response time may be long or even they may even not re-
spond at all. The pros of this approach are that the user is not required to enable settings
such as download apps from "Unknown Source" for installing applications. Once the
app is installed, all important credentials and keys are securely downloaded through our
security framework. As an alternative approach, the main application vendor can host
the customized applications and provide a distribution channel as described in third

148



7.2. Conclusion

place of section 7.1.2, but this still requires user involvement on enabling the settings.
Concluding, there is no best alternative, but a set of viable solutions that fulfill different
needs and project types.
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8
Discussions and Future Works

8.1 Discussions

In this chapter, we try to summarize the experiences we had while working with MDC
Systems, and discuss the most critical security concerns around these systems. We
have followed their development from the first Java ME based systems until the latest
cloud-based solutions. Unfortunately, security was and still is a major issue in many
of these systems. We have designed our solutions in close collaboration with the main
players in this field including the openXdata and ODK, and have tried to develop a
framework that was both secure and user-friendly, and that could easily be integrated in
a transparent way in MDC systems. The secure client storage has been the area where
we were able to make most progress, and now openXdata has a secure client version in
production and secure version of ODK is under testing.

Most of the problems we discussed in this dissertation are general security issues
that can easily be applied to most mobile client-server applications. However, we had
to look at them from a different perspective, due to the specific constraints and re-
quirements mobile data collection is subject to. This meant that standard solutions not
always were applicable and we had to find an acceptable alternative. Here we discuss
more in detail some of the problems we faced and how we tackled them.

Most of the challenges we faced during the implementation required finding the
right balance between flexibility, efficiency and usability, while not compromising se-
curity. In general, we decided to give more emphasis to flexibility, in order to create
an API that is easy to use and integrate with different clients, at the cost of some effi-
ciency. In the following sections, we discuss some of issues we consider to be highly
relevant.
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8.1.1 Cryptography API Providers

8.1.1.1 Java ME

Early versions of Java ME did not support a cryptography API. However, since the
introduction of MIDP 2.0, the Security and Trust Services API (SATSA) has been de-
veloped and added to the Java ME platform as an optional package that provides some
basic cryptographic primitives. Besides, since it is implemented as part of the phone li-
braries, its use does not affect the memory footprint of the application. Unfortunately,
very few low-end mobile phones actually support it. On the other hand, Bouncy Castle
(BC)[70] provides a flexible lightweight cryptography API which is extensively used
in Java ME applications. Since it is an external API, it allows us to develop device in-
dependent solutions, but its libraries can add a significant memory overhead. In order
to allow for future compatibility, we opted for an hybrid solution. The security frame-
work provides an interface that defines the required cryptographic operations, but leave
the actual implementation open, with BC as default provider. However, if the phone
supports the SATSA package, the security framework can automatically switch to that
implementation. So, even though memory footprint is not reduced (BC is always loaded
anyway), one can gain in performance by using the phone built-in libraries. Using two
different implementations, means also that we are forced to use only algorithms sup-
ported by both libraries. In particular: RSA for public key encryption, AES in padded
CBC mode with initializing vector (IV) for symmetric cryptography, SHA1 digest,
Hash-based Message Authentication Code (HMAC) based on SHA1 digest. Only BC
provides an adequate Pseudo Random Number Generator (PNRG) and Password Based
Encryption based on PKCS#5.

8.1.1.2 Android

Android platform includes two major open source crypto library providers, OpenSSL
(C and Assembly implementation) and Bouncy Castle (Java implementation). Bouncy
Castle has been shipped with Android platform in a cut-down and crippled state due
to device memory constraints. As a result of this, the external Bouncy Castle API for
Android has been re-packaged and re-named as Spongy Castle to avoid class loader
conflicts with the old built-in Bouncycastle API. The Spongy Castle must be included
with Android project as external library, while OpenSSL is supported and maintained as
a native library. OpenSSL is also available in iOS which make solution porting easier.
Developers must however know how to use these libraries properly, or security might
be compromised1. As it is noted in [33], there was a plan to remove Bouncy Castle
and replace it with the OpenSSL, but after Android 4.0, i.e. API level 15, Android has
updated the Bouncy Castle library from version 1.34 to version 1.46 and it is accessible
through java.security.* APIs. In Android 4.2 and onwards, the default Bouncy Castle-
based SecureRandom implementation is changed to OpenSSL-based SecureRandom
generation due to deterministic behavior of Bouncy Castle implementation. Therefore,
we strongly recommended OpenSSL as a crypto provider to build a secure solution in
Android platform.

1Java Cryptography Architecture (JCA), [Last Accessed: May 2015], http://android-developers.

blogspot.com.au/2013/08/some-securerandom-thoughts.html
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8.1.2 Key Generation

8.1.2.1 Java ME

A critical issue when using cryptography on a mobile phone is the generation of good
random keys, since mobile phones do not have good sources of entropy [24], and even
if they have, Java ME might lack the necessary libraries to access them. In the security
framework, we generate a strong seed on the server and send it securely to the client
whenever possible, so that strong cryptographic keys can be generated. Every user will
have their personal set of seeds stored encrypted in their key store, so that the PNRG
can be seeded also at boot time, and in a different way for each user. This solution
avoids putting the burden of generating the seed on the user by pressing random keys
or playing a game, or turning on the camera or the microphone to collect entropy, as it
has been suggested in the literature.

8.1.2.2 Android

As of writing, vulnerability on Android SecureRandom generator has been identi-
fied and Google officially acknowledged it and posted a short term fix 2. According
Google’s report, due to improper initialization of the underlying PRNG, both system-
provided OpenSSL PRNG and Java Cryptography Architecture (JCA) based key gen-
eration, signing, and random number generation may not receive cryptographically
strong values. The remedy is to explicitly initialize the PRNG with entropy from
/dev/urandom or /dev/random and re-evaluate if a user needs to use a new key or random
values when it uses JCA APIs including SecureRandom, KeyGenerator, KeyPairGen-
erator, KeyAgreement, and Singature. It is also recommended to generate a random
AES key upon first application launch and store it somewhere secure such as internal
memory. The security framework further enhance the randomness of the key by using
a seed generated on the server side.

8.1.3 Secure Communication

The security framework is designed to be flexible and support both HTTPS and the
SRP protocol for authentication and key exchange proposed in chapter 4.4.2.2. If the
application is setup to use HTTPS, the security framework will behave as normal and let
the HTTPS connection handle the transaction. If however it is not HTTPS, any request
headers or data written to the connections output stream will be encrypted prior to
being sent to the server by using the secure communication module presented in chapter
6. The secure communication module is designed to hide the underlying complexity
from the programmer and allow to communicate with the module transparently without
requiring security knowledge and security API experience. This makes for easy and
transparent integration into existing systems. We are able to create a secure tunnel by
changing only two lines of code in the existing openXdata and ODK clients.

Initially we had thought of exploiting the fact that data is encrypted on the phone,
and send it as it was, to avoid further encryption and decryption operations. However,

2Java Cryptography Architecture (JCA), [Last Accessed: April 2015], http://android-developers.

blogspot.com.au/2013/08/some-securerandom-thoughts.html
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that could not be done without significant changes to the existing client code, and with-
out exposing many cryptographic operations to the developers. Not to mention that the
same key used for the storage would be re-used for transmission, raising security con-
cerns and key management issues. Hence, even if this could give better performance, it
could also affect the security of the API and its usability. We chose, therefore, to sim-
ply wrap the data sent from the client in a secure connection, which, despite some extra
traffic, allows also for a complete decoupling between the secure layer and the client
requests.

The secure communication module of the security framework uses TLS for data pro-
tection and SRP for authentication and key exchange in combination as standardized in
[25]. One of the drawback with this approach the two round trips for user authentica-
tion and key exchange required for SRP protocol and even more, the SRP needs user
credentials every time when the user authenticate to the server. This means either we
always ask the user to put in user credentials or cache for later use on the device. The
former one has significant impact on usability and the later may compromise security.
We have work in progress for solving this challenge using Certificate Pinning and it
further discussed under future work in Section 8.2.1.

8.1.4 Secure Storage

The storage has been designed to accommodate typical scenarios in mobile data collec-
tion. In particular that multiple users should be allowed to use the same mobile device,
that the same user can use multiple mobile devices and that Internet access might al-
ways not be available. This means that mobile devices can no longer be considered
private or personal to a user and that most of the data collection might have to be done
off-line. These requirements are very specific to mobile data collection systems and the
secure solution is devised to address these requirements in satisfactory manner. From a
security perspective this translates into the following concerns:

1. A mobile device must store some identification token to authenticate users off-
line.

2. If a user loses the password, other users on the same device and their data should
not be affected.

3. If users change their password on the server, possibly from a web application, the
access to the mobile device should not be compromised.

4. Even if the password is lost, it should always be possible to recover the encrypted
data stored on the mobile phone by some authorized entity.

A secure scheme that satisfies all the storage requirements is described in 5 and imple-
mented in the secure framework as secure storage module, which offers tools to secure
individual users data in personalized secure storage. register a new user so that a new
personal secure storage is initialized according to such scheme. The data is encrypted
with symmetric encryption, and the encryption key is protected by a password-based
key. This means that losing the password does not prevent access to the data if the data
encryption key has been saved, for example, on the server. Notice, however, that the
overall security of the data still depends on the strength of the password, and as long as
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off-line local authentication is required on the mobile phone, and smart cards are not
supported by the phone, this is a problem that cannot be solved. But, with Android, the
risks can be minimized by storing the keys in the keystore of the device which some
devices provides hardware support and some implement the keystore using software,
but the keys are stored at the system level storage which means any third-party appli-
cations do not have access to the storage except the one who store it. We can’t depend
on this feature for rooted device, but the device can be protected from rooting using
appropriate measures.

The keystore is one of an interesting area to work on and we further discussed it
under the future work in section 8.2.3

Every write/read operation will, respectively, encrypt the input data before writing
it in the actual storage, and decrypt it before returning it to the . The secure storage
module also takes care of dynamic checking whether the current user has permissions
to write/read in that storage and handles the corresponding keys. All of this happens
completely transparent way for the client.

The drawback of this approach is that the user has no control over the data encryp-
tion, so, every time something is read or written from the secure storage, a crypto-
graphic operation is performed. This can be a computational overhead if a search must
be done across the stored data, since several decryption operations are required. This
happens, for instance, when a menu must be generated to show the users which form
values have been saved in the record store. To mitigate this problem, we offer to store
the data with a label that describes it. All the labels are stored as meta-data in a sepa-
rate storage or database table, so that only this list needs to be decrypted to generate a
menu, rather than all the records. One advantage, instead, is that the client is not forced
to pre-process the data and store it in a specific format or in a dedicated record store.
The only assumption we make, is that each user has a dedicated record store, so that
a unique key can be assigned to it. This makes the key and permission management
much easier for the secure framework.

An alternative solution we tested was to offer methods that took a byte stream and
returned an object containing the encrypted stream plus a set of fields to manipulate
it, so that the developer could have direct control over the encrypted data. However
this idea was discarded because it would have required substantial refactoring in the
existing client, and it could have potentially introduced security issues if the data were
manipulated incorrectly.

There is a lot more efficient way of making the encrypted data search query friendly,
increase performance, and visualize encrypted form data in a cloud through field-level
encryption, discussed in the future works.

8.1.5 Modularity of the Secure Framework

When designing the framework, we followed a modular and centralized design ap-
proach to fulfill the design criteria that are listed in the section 3.1. We tried to make
the modules that constitutes the secure framework as independent as possible, so that
a client using only the secure communication, would not import the secure storage
module and vice-versa or the authentication module can be used alone without having
the storage or communication module, thus minimizing the final size of the application.
The messages between MDC client and server are securely wrapped. The encapsulation
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or wrapping process help us to make a transparent integration and no prior knowledge
is required to interact with the security framework.

8.1.6 User Authentication Protocol

We adopted the latest version of the Secure Remote Password protocol (SRP-6a) [132]
which allows user authentication and key exchange. The SRP protocol allows client and
server to mutually authenticate each other without requiring a trusted third party. The
protocol is resistant to several attacks as it is discussed in 4.4.2.2. We have a working
prototype for remote authentication based on the SRP protocol and the preliminary
performance test looks very promising. We leverage the SRP protocol to provide an
acceptable guarantee even when a user chooses weak password. This would not have
been possible on low-end phone running Java ME applications, with limited or non-
existing crypto APIs and low CPU power.

The Authenticator module of the secure framework provides local authentication.
We use a password or PIN code for local authentication but we have seen interests
from the MDC communities such as mUzima to use FingerPrint technology as local
authentication. As of this writing, Fingerprint is at infant stage on mobile devices,
not all platform providers or device manufacturer ships the fingerprint technology with
the device. There are encouraging signs from Android that the new release Android
M may incorporate the Fingerprint sensors in Android device by default. Even we
assume that all mobile devices embedded the fingerprint sensors, it actually requires
in depth research on whether the technology fits the MDC systems need. Currently,
the server authenticate the user using normal username and password, replacing this
with fingerprint requires an investigation. This is because the user should use the same
credentials for local and remote authentication. Furthermore, is it possible to revoke
users when they are not allowed to the access the system, or how can we deal with
a compromised fingerprint, is it possible to change it? Fingerprint is one of a unique
component that characterize the user and any activity can be uniquely traced back to
user. So user privacy is a major issue. Also, how can multiple users register multiple
fingerprints on the same device to access their own application data? These and other
issues must be addressed before adopting fingerprint technology.

8.1.7 Phone Sharing

Phone sharing is among the functional requirements list mentioned in section 2.3.1 and
the security framework has provided a secure solution to share single device among
many users. Mobile devices are evolving continuously and we have already mentioned
that Android has recently introduced a multi-user environment. So, many challenges
we have today might be solved by the natural evolution of mobile devices. But as of this
writing, Android multi-user support is a manual process and the setup process requires
user involvement. Furthermore, user management is performed on the device and not
remotely. There is no public APIs available to access this feature, but if it will be made
available in the future, our framework will probably naturally leverage it.
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8.2 Future Works

In this section we discuss the work in progress and the future work that we envision will
be needed to further develop our framework and meet the future security requirements
that naturally will arise from the adoption of new emerging technologies in mobile data
collection.

8.2.1 Certificate Pinning

To reduce the overhead of performing the two SRP round trips every time, and as-
suming that we can store securely certificates on a mobile client, we started looking
at another strategy called certificate pinning. With the help of strict-host-key-checking
feature, an OpenSSH client can be configured to grant or reject a connection request
by verifying incoming request key against known keys list stored in the key store. This
idea has been adopted in a certificate or public key pinning. Pinning is an emerging con-
cept of associating a given client with a list of known public keys or certificates. The
client then verifies an incoming connection request against the list and grant or reject
accordingly. After Man-in-the-Middle attack on Gmail’s SSL through a compromised
DigiNotar certificate (DigiNotar was one of well know Certificate Authority (CAs) be-
fore bankrupting) [87], Google and other organisations have been actively engaged on
making pinning as a part of their products. As a result, there are public APIs to im-
plement pinning solution on mobile apps and web browsers. There is one fundamental
problem with pinning though. There is no secure way of distributing the certificates or
public keys to a client at the beginning of a project in a distributed environment. Basi-
cally, there are two ways to distribute the certificate or public key to the client. It can
be incorporated into the application before application distribution or it can be fetched
after the application is installed. OWASP recommends the former i.e. before the ap-
plication is installed. However, if we choose the second distribution scheme proposed
in the previous section, where no project specific configuration can be added to the
app, we have to go for the later approach. That is, to fetch the keys and certificates af-
ter the application is installed. We found SRP protocol to be a potential candidate to
accomplish this task.

The idea of pinning is a good starting point for future works, especially in the case
of mobile applications which are supposed to interact with a certain number of servers.

8.2.2 Secure Cloud Storage

Cloud is becoming popular for systems deployment and among all systems, MDC Sys-
tems are one of them. MDC Systems can benefit from fast deployment, minimized
cost, and less maintenance, etc. Public cloud is an ideal solution for MDC Systems
from a cost perspective, but it comes with trade-offs such as data security. User man-
agement and data protection are some of the challenges. Compliance with regulatory
requirements such as HIPAA in a cloud-based mobile health solution is another inter-
esting area to look into. As of today, there are some cloud providers such as Amazon
that claims the Amazon cloud provide a HIPAA compliant deployment and running en-
vironment, but there is very little information publicly available to validate the claim
or how Amazon meets the requirements. Furthermore, there is no information on the
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list of responsibilities that MDC Systems need to address at when they signed up for
HIPAA compliant infrastructure.

In the future, we see more and more online collaboration between collectors and
data viewers, and scenarios where health personnel will need to access collected data on
a real-time basis. Cloud resources will be used to analyse the huge amounts of data on a
centrally accessible server, so that anyone who needs it will be able to simply query the
server without having to download all the data on some local machine and perform the
analysis locally. This implies that our current solution for encryption of the data is not
portable for big collaborative projects, and new solutions must be devised. A possible
compromise we are thinking about, is to leverage the form definition structure to define
which information is sensitive and which can be processed without privacy concerns,
so that a selective encryption can be performed and only privacy-critical fields will be
protected with strong cryptography. Authentication mechanisms to access the on-line
data without having to maintain huge user databases with passwords and access control
lists are starting to get mature and widely used. OAuth authorization framework 3

is an example which is already being adopted by ODK. Usernames and passwords
might soon become obsolete, and one single account might be enough for a variety
of services. This entails some challenges when mobile devices are involved, and even
shared as in Mobile Data Collection. Having the device, might be enough to access a
service without further authentication.

8.2.3 Secure Key Store

The SIM card (Subscriber Identity Module) is a type of smart card and can be consid-
ered as a secure key store. Android provides APIs to access the SIM element but, as of
this writing, there is no Android Crypro API exposed to perform cryptographic opera-
tions on the SIM card. The network operator owns the SIM element and they have all
privileges and control over the SIM. An application signed with the operator signing
key may have access to the SIM card and use it as secure element. Another way to store
keys and credentials in Android is through its built-in Keystore daemon. Since Android
1.6 (Donut), the Keystore daemon was introduced for maintaining cryptographic keys
for system-level apps such as VPN and Wifi connection. There was no public API for
accessing the Keystore from third-party apps until Android 4.0 (a.k.a Ice Cream Sand-
wich (ICS)). A KeyChain public API is added in ICS for accessing the Keystore from
third-party apps and store keys and certificates. All Keys and certificates added into
the Keystore are associated with their owners through the app user ID and stored in the
/data/misc/keystore partition which is outside the application user space. From the se-
curity perspective, this a good place to store credentials. However, there is only one
Keystore instance exist per mobile phone and all applications must share this instance.
On ICS and later, the Keystore is unlocked when the device is unlocked through a pat-
tern, a Pincode or username and password, and it is accessible to all apps. However, on
pre-ICS devices, unlock screen was separated from Keystore unlocking and Keystore
unlocking is performed through an intent [23, 33]. Despite the fact that Keystore dea-
mon provides a secure store, it does not maintain multi-user credentials. As a result, we
leverage the keystore by enforcing access control at the application layer, particularly

3OpenID Connect Framework: http://openid.net/
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when a project is looking for multi-user support per device. It is worth mentioning that
third-party application can leverage system level protection for its credentials through
keystore and enhance application usability by introducing a single login interface for
accessing the device.

With the introduction of Android Pay [50], credentials storage solutions such as
secure elements may be easily accessible for third-party applications as well. Even
smart card elements such as the SIM card might be accessible for storage purposes.
Since secure key storage on the device is a critical component of the security archi-
tecture, the future work needs to investigate closely the progress and come up with a
better solution. Furthermore, hardware backed or software based Android Keystore in
combination with trusted execution environment technology (TEE) [48] such as ARM
TrustZone [7] [48] may provide data protection guarantee as it is discussed in section
5.4.2. However, as of this writing, there are few OEMs that incorporates TEE technol-
ogy on newly released devices and older devices do not have it. Therefore, for MDCS,
in particular, the TEE may not be a feasible solution if most devices support it particu-
larly cheap Android devices.

8.2.4 Native vs Hybrid vs HTML5/JavaScript

On the client side, we are observing a specific trend, where many MDC Systems
are being implemented as a Hybrid application that is built from the best of both
HTML5/CSS/JavaScript and native API. Native apps are still proven to be the best in
terms of performance and security, but they are specific to a given platform and requires
multiple code bases to run on multiple platforms. HTML5/CSS/JavaScript is promis-
ing to bridge the gap and run on cross-platform with a better user interface, but still has
limitations on accessing device hardware such as camera and geo-location. Therefore,
the Hybrid solution leverages native functionality by embedding HTML5/JavaScript
within the web-browser container such as Webkit. This architecture is known to be
vulnerable to a range attacks such as Cross-Site-Scripting and needs in-depth security
analysis before adopting it as a solution.

Hybrid MDC applications (best of Native & best of HTML5/Javascript/CSS) are
getting the momentum and are expected to continue at the same pace in the future.
Addressing standard security properties are still challenging particularly in fast chang-
ing, dynamic, and fragmented web browser technologies. JavaScript is becoming more
popular than ever been before, and most MDCS have started leaning towards heavily
use of JavaScript. However, JavaScript by nature is thought to be an insecure program-
ming language, and it has proven weakness. Finding a balanced, secure solution is still
a challenging task. We have seen an outstanding works from W3C Web Crypto Group4,
Crypto-JS5, Node.js Crypto6, and End-to-End JS Security Library from Google secu-
rity team7. However, it still requires tremendous effort and an insightful thinking from
the research community to investigate a given MDC System from performance, secu-
rity and usability perspectives. It requires a depth in research on how data is stored,
accessed and disseminated in browser based MDC.

4Web Crypto Group, [Last Accessed: May 2015], http://www.w3.org/TR/WebCryptoAPI/
5Crypto-JS, [Last Accessed: May 2015], https://code.google.com/p/crypto-js/
6Node.js Crypto, [Last Accessed: May 2015], https://nodejs.org/api/crypto.html
7End-to-End from Google, [Last Accessed: May 2015], https://github.com/google/end-to-end
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8.2.5 Field Level Encryption

An answer to each question in the form definition has a different level of importance and
sensitivity than the others. For instance, as HIPAA specifies a list of attributes called
protected health identifiable information (PHI) and requires all electronic transaction
and storage to guarantee that those attributes are protected using all security measures.
With field level encryption, it will possible only to secure those attributes and leave the
rest unprotected. In return, we can easily make a search on encrypted data, visualize the
data on the cloud without exposing sensitive data, and gain performance through partial
encryption. This is work in progress and requires further investigation on security
issues. For instance, how do we label fields protected or non-protected during form
design? How do we develop a generic solution that identifies fields in the form and
apply field level encryption without prior knowledge of how the form is organized?
These issues require a depth in research and we highly recommended as future work.

8.2.6 Privacy in MDC Systems

In general, mobile data collection might evolve in order to make the collected data
available automatically available to other services in real time, so that decision might
be taken based on the latest information collected also in remote locations, which would
therefore be as precise and updated as possible. Privacy issues might then become even
more pressing, and privacy preserving and secure data retrieval techniques developed
for other areas of eHealth and mHealth might become relevant for data collection as
well.
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Related Work, Conclusions, and

Contributions

9.1 Related Work

When it comes to related work, with the exception of one work that resembles our
research very closely, we are not aware of any security initiative specifically aimed at
developing a comprehensive secure solution for remote mobile data collection systems.
There is, however, a vast literature about the many individual problems we have dis-
cussed throughout the thesis. The most relevant ones have already been discussed in
the chapters dedicated to the framework modules, which consider individual security
aspects separately. We will therefore not repeat them here. Let us also point out again
that we considered mHealth systems where data is entered by human collectors, and
we are not considering the situation where a sensor is feeding data to a remote server
or device, or a monitoring program is installed on the mobile device and their correct
operation must be guaranteed at all times as in [124]. The collected data is also not
thought to be readily accessible to health-care providers, or in general to be offered as a
service. These are different areas of mHealth where much research is ongoing, but not
directly applicable to our case. For instance, in [136] a solution for secure data storage
is suggested, and they also propose to encrypt the data when it is not in use. How-
ever, this solution is designed to protect patient records that are retrieved to be read and
should not be edited or distributed. Clearly this cannot be adopted in a data collection
scenario. The same applies to solutions like those proposed in [84, 123] or in [135] for
secure patient’s record retrieval.

9.1.1 Comparison with the SecourHealth Framework: a Similar Work from Brazil

On the other hand, we have the SecourHealth Framework[76] which is a security frame-
work proposed by a group of security researchers from the University of São Paulo,
Brazil. The SecourHealth framework main objective was to secure MDC project that
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was deployed in a national family health program in Brazil from 2011-2013. Hence, the
scope of the security research focused only on mHealth solutions in Brazil. We found
their first publication (which is published on April 2014) completely by chance and
found that the underlying approach, the motivations and the requirements (both func-
tional and non-functional) coincided with our first published work [74], which they
also refer to as a term of comparison. Unfortunately they did not seem to be aware of
our more recent work and did not take that into consideration when writing their pa-
per. This led to some inaccurate statements on their part and results that resembles
ours very closely. Since then, we reached out the group and had a constructive conver-
sation on our concerns about the overlapping work which led to the following, more
accurate, comparison between the two works. First, we see how the client applications
with security configuration are distributed and installed. Second, we compare user au-
thentication methods in these systems. Next, we present how the systems manage data
uploading and session handling. Finally, we discuss the SecourHealth framework novel
contribution that is perfect forward secrecy using symmetric encryption and compared
it with our approach.

9.1.1.1 Secure Application Provisioning

Secure application provisioning is about the method used to guarantee the integrity of
the application and its data by making sure that the correct application with the right
configuration is downloaded and installed. Having a mechanism to securely distribute
the application is an important component of the entire security architecture of MDC
systems. This security aspect is not addressed or discussed at all in the SecourHealth
Framework. We, on the other hand, have spent considerable time and effort to look for
viable solutions both for J2ME and Android based MDCS, as presented in Chapter 7.

9.1.1.2 User Authentication

The SecourHealth framework assumes that the project using their solution can leverage
an authentication protocol called Generic Bootstrapping Architecture (GBA). The GBA
technology is a 3GPP standard, its specification defined in [127]. This authentication
protocol is designed for cellular network and it requires users to register at the network
provider and get a valid account. Then, the network provider issues a SIM card which
holds user identity information. Therefore, the network provider uses the SIM card as
user token and user authentication is performed between the SIM card and the network.
This approach has the following drawbacks:

• GBA is designed to work on cellular networks, which means that the user authen-
tication requires strict collaboration with mobile operator for pre-user registration
and the issuing of SIM cards specific to the users. Based on our experiences, this
approach is virtually impossible for several projects deployed in the field, and
therefore only applicable to the specific MDCS they were targeting.

• The user identity and credentials are stored in the HLR (Home Location Register)
or on HSS (Home Subscriber Server) of the operator network. These storage is
also a place for storing millions of subscribers and customers data. The operator
might not allow to access the service remotely and they may get involved in daily
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maintenance or update of the system. Furthermore, in normal circumstance oper-
ators are profit oriented and they might not be willing to support all GBA related
activity for free for longer period.

• Each SIM card supports only one user, hence there is no possibility for device
sharing which is one of our most critical functional requirements.

With our security framework, we offer one of the most reliable authentication methods,
namely Secure Remote Password Protocol (SRP), a Password Authenticated Key Ex-
change (PAKE) protocol based on a pre-shared password for mutual authentication and
key exchange, standardised in RFC 2945 [139]. It allows mutual authentication and se-
cure key exchange, while being resistant to on-line brute-force and Man-in-the-Middle
attacks (MITM). In addition, it can be used in conjunction with TLS [25] to create a
secure transport layer without the need of certificates or new protocols [44, 52]. IT can
be implemented independently from both the network operator can be used to support
multiple users per application instance.

The user registration procedure they use to establish a shared secret for a newly in-
stalled application is also very similar to the one used by SRP. The difference is that
while they designed their own protocol, with all the risks that entails, SRP is a recog-
nized and reviewed standard which gives much better security guarantees. One novelty
they introduce, however, is that the secret material negotiated during this registration
process is used to create keys that can guarantee strong forward secrecy to the data
stored locally on the device. We will discuss this in detail in Section 5.6.

9.1.1.3 Secure Data Upload and Session Handling

Our earlier work designed for Java ME based MDC systems and the SecourHealth
framework share also a common way of uploading encrypted data directly to the server,
without establishing an extra layer of security with TLS. However, we differ in how
sessions are handled. Our approach used a public key encrypted request to establish
a session, and obtain a HTTP session-Id from the server. The server maps the HTTP
session object to a user session key sent by the client and sends an HTTP session-id to
the client. The client uses this session-id for further interaction with the server. How-
ever, unlike HTTPS, we encrypt the traffic at the application layer, and the session-id
will have to travel in clear. Still, hijacking the session would require the attacker to
know both the encryption-key and the authentication-key currently used by both client
and server, and replay attacks can be prevented by adding a unique sequential num-
ber to each request. Furthermore, in order to minimize the need for establishing new
sessions, we renegotiate the session key periodically, without changing the session-Id.
This should be done as a separate operation, since if either the server does not receive
the request or the client the response, the two parties might end up using different
session-keys.

SecourHealth session handling depends on the default TCP protocol. If some data is
lost during transmission, the TCP may handle it transparently. Despite the fact that
TCP has delivery guarantee, we still think that a solution at application layer is needed
to handle the case of double or partial submissions at least on the server side, as TCP
can tell us that something went wrong, but not exactly how many and which forms were
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delivered and which not (well, according to how we organize the upload data structure
we can make some guesses).

9.1.1.4 Perfect Forward Secrecy

The SecourHealth framework provides perfect forward secrecy using symmetric en-
cryption as novel feature. As we briefly discussed in Section 5.6, the idea behind per-
fect forward secrecy is that a compromised encryption key does not compromise data
encrypted in the past. In other word, it is virtually impossible to reveal keys used to
encrypt previous data based on a currently compromised key.

Their approach works as follows. When the user registers on the device for the first
time, a hash function is used to derive the first form encryption key. The hash function
takes a master key derived from the user password and a random seed sent from the
server. After the form encryption is derived, the application deletes the seed from the
memory, so that only the server keeps the seed associated with the user. The first form
data is encrypted using the derived encryption key. Afterwards, the form encryption
serves to derive the next form key by passing through a hash function. Each subsequent
forms are encrypted using a form key derived from the previous key. When the user
logs out, the next key is derived and stored in persistent storage ready to be used when
the user logs in once again. This means that the current key found on the device has not
been used to encrypt anything yet, and previous keys cannot be derived directly from
this one. The only way to do that would be to generate the whole sequence of keys
starting from the seed, but that is only available on the server.

Next, we discuss the pros and cons of this approach:

Pros:

• Performance gain since every encryption/decryption is performed using
symmetric algorithm both on client and server

• Even the device is physically lost, the attacker cannot reveal encrypted data.
Furthermore, a compromised user’s password does not help the attacker to
access the encrypted data unless (s)he intercept the seed sent from the server
during user registration.

Cons:

• Once the form is encrypted, there is no way to decrypt it and make a change
or update. Many of the use cases we reviewed and worked with do not like
the idea of making this approach. Instead, they need some flexibility of
making changes on the form. For instance, when the field of a household
form, members of the the house may not be present at the same time. So,
the data collector stores partial information on the device and wait until all
questions on the form answered.

• The server must persist and track of each seed associated with the user, re-
quiring additional book keeping on the server. This may also require changes
on server code base and database scheme, since the addition of new field in-
troduce changes in the server database table which is already deployed.
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• Since the solution requires storing encryption key on the server database,
it may not fit for cloud based MDC systems. We discuss why in the next
paragraphs.

It is worth mentioning that the team behind SecourHealth framework created the so-
lution based on the assumption that their server is running on privately own server
and the organization have a complete control over the physical network, application
or any other level access. However, cloud computing is changing the demography of
application deployment. When it comes to the first drawback listed above, we should
also mention that SecourHealth does offer alternative solutions to allow editing, but of
course at the cost of security since if the user must be able to decrypt the forms locally,
an attacker may also be able to do so.

Although the solution for strong forward secrecy presented in [76] is very elegant
and definitely something that also our framework should include, it is not a completely
new concept. We also proposed a similar approach in our first paper [74] to distinguish
between partially filled forms that could be edited locally at a later moment, and com-
pleted forms that could be encrypted so that only the server could read them, hence
guaranteeing also a form for forward secrecy. The difference is that we used asymmet-
ric cryptography to achieve this, since we were concerned also with secure provision-
ing, while in [76] this is done by leveraging only symmetric cryptography, in a very
elegant and lightweight way. Currently, ODK offers also perfect forward secrecy by
downloading a public key attached to the form definition, and then upload each single
form to the cloud encrypted with a random symmetric key, which is in turn encrypted
with the aforementioned public key. This assure very strong data security both at rest
on the client and on cloud based server since the private key is stored on a third party
machine and neither on the device nor the cloud server. The downside is the overhead
generated by all the encryption required for each form and the little flexibility the col-
lector has, since forms cannot be edited after being encrypted. Besides only the owner
of the public key can decrypt and possibly redistribute the collected data. It is clear that
the safest solution when it comes to confidentiality is to encrypt the data locally before
upload with a key which is not shared with the cloud storage provider.

satisfying all requirements including the perfect forward secrecy, secure cloud stor-
age, data recovery, and data sharing among many actors is not a trivial task. At the
end, we made some compromise on the perfect forward secrecy and came up with a
decent solution that satisfies all the above requirements. For further details on the solu-
tion, we refer the readers to our publications [44, 45]. A downside of this approach is
that the heavy cryptography limits the possibilities to collaborate on-line and the num-
ber of possible data viewers, but it might be an appropriate solution for small research
projects that place a premium on privacy. When we say "heavy cryptography", we
are referring to the computation needed for single search query in entirely encrypted
cloud storage. The public/private key operation is performed only once on the device
and does not have any performance impact on the device. In fact, even if symmetric
encryption outperform the heavy public/private key encryption, it had an acceptable
performance even on old Java ME devices. Therefore, this is not an issue on advanced
device like Android.
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9.2 Conclusions

In this dissertation, the candidate have presented an assessment of the security of sys-
tems for remote data collection on Java enabled low-end mobile phones and Android
enabled smartphones, and have identified the specific challenges for their deployment
and how these affect their security needs. Based on these observations we have out-
lined and discussed some possible solutions that are particularly appropriate to secure
these systems. Our primary aim in designing these solutions has been that it should be
easy to integrate with existing systems, without requiring substantial retrofitting. The
secure authentication, storage, and communication schemes are quite modular, they are
independent and single requirements might be dropped to achieve solutions better tai-
lored for a specific client, while our analysis can be used as starting point to assess the
security risks involved, and weigh them against the benefits.

The SecureMDC framework confirmed also that the schemes we proposed are fea-
sible in practice and quite flexible, and they can be tailored for clients with specific
additional constraints by possibly dropping some of the requirements we identified.
For instance, if one already uses HTTPS and it works well for the purpose, then only
the storage or the authentication scheme can be adopted. If a risk analysis, instead,
shows that it is an acceptable risk to use the same password both for the server and the
mobile phone, or we can assume that each mobile phone is personal, then it is possible
to adapt the protocol to use only one password. The candidate does not claim that these
are the best or the only possible solutions, but the candidate think that they are general
and flexible enough to derive implementations that can be adapted to MDC Systems
with a wide range of requirements.

We have not mentioned any particular cryptographic algorithms to use either, leav-
ing each implementation to choose what is most appropriate. For public key cryptog-
raphy one could use either RSA or EC (Elliptic Curve), but the point is that it is much
easier to generate a pair of public and private key pairs and use them, rather than having
to go through the expensive and complicated process of obtaining a signed certificate.

In our implementation we used RSA with a 2048 bits key, and for symmetric cryp-
tography we chose AES in CBC mode with a unique initialization vector per encryp-
tion, associated with a HMAC based on the SHA-1 hash scheme. We also offer an
alternative that could use an authentication mode like CCM [41] or GCM [78], which
takes care of both encryption and authentication at the same time, thus not having to
generate a separate HMAC.

Secure provisioning and cloud storage remain the most challenging parts, and the
candidate still does not have a working solution in these areas. The idea the candidate
proposed here for the secure cloud storage is probably good enough for small projects,
but would probably prevent good usability in large scale projects.

The solution we implemented was based on both a custom and standard protocol de-
veloped by considering the specific constraints of MDC Systems, but it makes almost
no assumptions about how or where data is stored, or how the communication layer of
an existing application is implemented. This guarantees wide compatibility. Besides,
the different secure solutions that it offers are very modular, and can be used indepen-
dently to fit the needs of MDCS Systems with different security requirements. Most of
the secure framework interfaces that are exposed to the programmer are very similar to
the Java ME and Android counterparts in terms of methods and behavior. This means
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that any programmer who knows how to use the normal Java ME or Android APIs will
also know how to use the secure ones.

We analyzed the problem of secure cloud storage in the context of remote mobile
data collection and proposed an approach that could provide a relatively straightforward
solution to data protection, sharing and recovery. Standard symmetric and asymmetric
cryptographic techniques are employed, which makes it feasible to implement in prac-
tice and compatible with most existing systems and technologies. At the same time,
we tried to minimize heavy resource consumption on the mobile devices and additional
storage use on the server. Finally, leveraging on the hierarchical nature of a project or-
ganization we can enable data recovery also in cases wherein a user-centric model data
would be lost because of the lack of a secure root of trust.

9.2.1 Contributions

In this dissertation, the candidate has looked at security challenges in resources-
constrained, low-budget mobile data collection systems. We systematically identified
and addressed most of the functional and security requirements in MDC systems. In
collaboration with partners project, the candidate designed a secure framework that can
be integrated in existing systems and provides:

• an Authenticator module that handles user authentication on a mobile device and a
remotely located server. The Authententicator module is presented in the chapter
4.

• a Secure Storage module that provides data protection while data is at rest on the
mobile device. The Secure Storage module is described in the chapter 5

• a Secure Communication module that handles establishing a secure tunnel be-
tween client and server without relying on third-party certificates. The Secure
Communication module is presented in the chapter 6

• secure cloud storage solution particularly tailored for mobile data collection sys-
tems in healthcare domain. The secure communication storage is discussed in the
chapter 6

• account and data recovery mechanism as it is presented in the chapters 6, 4, and
6.

Furthermore, the candidate together with the MDCS security team at the University of
Bergen promoted the research in order to gain data protection awareness within system
developers, system users, organizations, and academia.
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These list of publications are the result of candidate’s work during the doctoral program
period.

1. Biblography: Gejibo, Samson and Mancini, Federico and Mughal, Khalid, Mo-
bile Data Collection: a Security Perspective, A Book Chapter in Mobile Health
(mHealth): A Technology Road Map, pp. 1015-1042, Springer Series in Bio-
/Neuroinformatics, Springer International Publishing, March 2015.

Synopsis: This is a book chapter that focuses on the latest technologies and the se-
curity challenges faced by MDCS specifically when Android-based smart phones
and cloud based servers are employed. The chapter also discusses the solutions
designed for older Java ME based devices.

2. Bibliography: S. Gejibo, D. Grasso, F. Mancini, and K. A. Mughal, Secure cloud
storage for remote mobile data collection, In Proceedings of the Second Nordic
Symposium on Cloud Computing and Internet Technologies, NordiCloud ’13,
pages 8–14. ACM, 2013.

Synopsis: This paper analyzed the problem of secure cloud storage in the context
of remote mobile data collection and proposed an approach that could provide a
relatively straightforward solution to data protection, sharing and recovery.

3. Bibliography: S. H. Gejibo, F. Mancini, K. A. Mughal, R. A. B. Valvik, J. I.
Klungsyr, Secure Data Storage for Mobile Data Collection Systems, Proceedings
of International ACM Conference on Management of Emergent Digital EcoSys-
tems (MEDES ’12), October, 2012, Addis Ababa, Ethiopia, p. 131–144, ACM.

Synopsis: This paper focuses on low budget mobile phones with low hardware
and software specification, and proposes adequate secure solutions for data stor-
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age protection. The solution has been extensively tested and integrated into a
production MDCS.
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Klungsøyr, Secure Data Storage for Java ME-Based Mobile Data Collection Sys-
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I. Klungsøyr, Secure Mobile Data Collection Systems for Low-Budget Settings,
Proceedings of the 7th International Conference on Availability, Reliability and
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Synopsis: This paper analyzed the challenges in securing Mobile Data Collection
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one can provide an adequate security solution for such systems.
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Valvik, Challenges in Implementing End-to-End Secure Protocol for Java ME-
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Synopsis: In this paper we analyze implementation challenges of a proposed se-
curity protocol based on the Java ME platform. The protocol presents a flexible
secure solution that encapsulates data for storage and transmission without re-
quiring significant changes in the existing mobile client application.
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lenges in Mobile Bio-Sensor Based mHealth Development, 2011 IEEE 13th In-
ternational Conference on e-Health Networking, Applications and Services, June
2011, Columbia, MO USA, p. 21-27.

Synopsis: The paper addresses bio-sensor signal processing and secure commu-
nication of sensor signals based on next generation mobile technology and bio
sensors, with the aim to facilitate the development of secure and innovative mo-
bile health services.
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Security to Mobile Data Collection, Proceedings of 13th IEEE International
Conference on e-Health Networking Applications and Services, Healthcom2011,
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