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Abstract

This thesis describes a method for generating semantically motivated antecedent candidates for use in pronom-
inal anaphora resolution. Predicate-argument structures are extracted from a large corpus of text parsed by
the NorGram grammar and used as the basis for a fuzzy classification model. Given a pronominal anaphor,
the model generates antecedent candidates ranked by the frequency by which they co-occur in the same lex-
ical context as the anaphor. This set of candidates is intersected with the set of nouns gathered from the
anaphor’s recent context. A selection basic heuristics are then introduced to the model in a permutational
fashion to gauge their individual and combined effect on the model’s accuracy. The model reached an ac-
curacy of 56.22% correct predictions. Additionally, in a slightly modified model the correct antecedent was
found within the antecedent candidate list for 87.12% of the anaphora.
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Sammendrag

I denne oppgaven beskriver jeg en metode for å generere semantisk motiverte antesedentkandidater til bruk
i anaforoppløsning. Predikat-argument strukturer blir ekstrahert fra et stort korpus med tekst tagget med
NorGram-grammatikken og brukt som basis i en “fuzzy” klassifikasjonsmodell. Modellen genererer antese-
dentkandidater for pronominelle anaforer rangert etter hvilken frekvens de forekommer i samme leksikale
kontekst som anaforen. Et snitt blir foretatt mellom dette settet av kandidater og settet av substantiver i ana-
forens foregående kontekst. Et utvalg enkle heuristikker blir tilført modellen i forskjellige permutasjoner for
å måle deres samlede og individuelle effekt på modellens treffsikkerhet. Modellen nådde en treffsikkerhet på
56.22% korrekte klassifiserte antesedenter. For en delvis modifisert versjon av modellen finnes den korrekte
antesedenten blant antesedentkandidatene i 87.12% av tilfellene.
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Chapter 1

Introduction

1.1 Introduction

A central problem in many Natural Language Processing tasks is that of reference resolution: “determining
what entities are referred to by which linguistic expressions” [Jurafsky and Martin, 2009, p. 729]. Some kind
of reference resolution is vital to any Natural Language Processing task that interprets discourse, examples
of which include machine translation, automatic abstracting and information extraction.

For a concrete example in machine translation, consider translating the sentence in example (2) below to
French. The third person plural pronoun They translates to either Ils or Elles depending on the gender of what
They refers to. The referent in the sentence in example (1) translates to anaphores, a feminine word, yielding
the the correct translation Elles.

(1) In natural language discourse the most common type of anaphors are pronomial.
(2) They take a noun phrase as antecedent.

Reference resolution is equally important for abstraction and abbreviation tasks. A hypothetical system that
extracts all information pertaining to the word anaphors would need reference resolution to consider the
information in the sentence in example (2) as relevant information.

1.2 Selectional constraints

The linguistic expressions that are performing reference are called referring expressions, and the entities they
are referring to are called referents. There are several types of referring expressions available in natural lan-
guage and five of them are presented in Jurafsky and Martin [2009]: Indefinite Noun Phrases, Definite Noun
Phrases, Pronouns, Demonstratives and Names, and among these types the pronouns requires the strongest
constraints on the possible referents.

Referring expressions that refer to an entity that has already been introduced in the text are denoted as
anaphors, while their referents are called antecedents. The most common type of anaphors are pronomi-
nal, where the anaphor consists of a pronoun and the antecedent is a noun phrase. These anaphors place
several constraints on the selection of their antecedent and some examples of these include: Number agree-
ment, Person agreement, Gender agreement and Recency [Jurafsky and Martin, 2009]. Again, consider the
sentences in examples (1) and (2).

The anaphora is highlighted in the sentence in example (2) and its antecedent is highlighted in the sentence
in example (1). Note, however, that the sentence in example (1) contains two noun phrases, both possible
candidates for being the antecedent. This is an example where number agreement can help you pick out the
right noun phrase: They and anaphors are both plural, while natural language discourse is singular. In addi-
tion to the syntactical and morphological constraints mentioned above, collectively called morphosyntactic
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2 CHAPTER 1. INTRODUCTION

constraints, Jurafsky and Martin [2009] propose constraints that make use of semantic information through
Verb semantics.

1.3 Algorithms for anaphora resolution

There are three common algorithms for pronominal anaphora resolution presented in [Jurafsky and Martin,
2009, pp. 738-734]: the Hobbs algorithm, a Centering algorithm and a log-linear algorithm. All of these
algorithms take as input a pronoun and the current and preceding sentences.

The Hobbs algorithm searches through a syntactic parse of the sentences to find noun phrases to propose as
candidates for the antecedent. Starting at the pronominal anaphora, the algorithm uses a left-to-right breadth
first traversal of the all the nodes marked as NP and checks to see if they are in agreement with regards to
gender, person and number. The order in which the trees are traversed implicitly approximate the binding
theory, recency and grammatical role constraints.

The Centering algorithm also requires a syntactic parse of the sentences containing the references to be re-
solved. Given two adjacent sentences this algorithm keeps track of all the entities mentioned in the first
sentence in an ordered list based on a grammatical role hierarchy. For any pronoun encountered in the second
sentence, all possible pairings of the pronoun and the entities from the first sentence are created. These pairs
are then filtered by the constraints discussed in section 1.2 and ranked by the relation between the members
of the pairs. The highest ranked pair is chosen as the resolution for the pronominal anaphora. By keeping
track of all the entities and the relationships between them, the Centering algorithm achieves an explicit
representation of a discourse model, something the Hobbs algorithm is incapable of.

The log-linear algorithm is a supervised machine learning approach that uses a training set consisting of a
corpus where each pronoun has been linked to the proper antecedent. During the training phase the clas-
sifier classifies each preceding noun phrase according to different features. These features can include the
constraints discussed in the previous section in addition to semantic constraints. The main advantage of this
approach to anaphora resolution is that it does not require full syntactic parses of the sentences, unlike the
Hobbs and Centering algorithms.

1.4 Real-world knowledge

In her master’s thesis, Eiken [2005] presents the sentences in examples (3) and (4) where real-world semantic
knowledge is needed to resolve the antecedents.

(3) The policeman shot at the murderer and he fell.
(4) The policeman shot at the murderer and he missed.

The sentences are morphologically and syntactically identical, and the only difference is the last verb. How-
ever, he refers tomurderer in the first sentence, andThe policeman in the second sentence. She then goes on
to demonstrate that knowledge-free algorithms that does not incorporate real-world semantic knowledge are
unable to correctly resolve these examples. The Hobbs and Centering algorithms discussed in the previous
section both rely heavily on syntactic and morphological constraints, but have no way of representing seman-
tic constraints. A supervised machine learning approach, however, can incorporate semantic knowledge as a
classifying feature.

To be able to use semantic knowledge as a classifying feature a way to extract and represent the knowledge
is needed. Lech and De Smedt [2005] argues that semantic classes can be extracted using noun phrase/verb
co-occurrences. This is based on the distributional hypothesis that nouns that occur in similar contexts share
a semantic similarity. Predicate-argument structures are derived from the verb-object-subject relation and the
similarity of two noun phrases can be measured based on how many such structures they co-occur in.
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Both Eiken [2005] and Lech and De Smedt [2005] have shown that ontologies extracted this way can aid in
correctly classifying the antecedents for the type of sentences show in examples (3) and (4).

1.5 Parsing Norwegian

Mitkov identifies the low accuracy of the pre-processing tools that processes the input before feeding it to
the anaphora resolution algorithms as one of the main problems facing anaphora resolution [Mitkov, 2001].
While this is a general problem for the whole field of anaphora resolution, the problem is compounded for
resolving anaphora in the Norwegian language. Tools for parsing text are generally very language specific,
and the Norwegian parsing tools have not been very reliable. Eiken’s use of the NorGram grammar to extract
predicate-argument structures proved to require a lot of manual work due to the poor accuracy of it’s XLE
implementation [Eiken, 2005]. Likewise, the poor accuracy of this deep parser spurred Lech and De Smedt to
use the shallow Oslo-Bergen PoS Tagger for extracting their ontology [Lech and De Smedt, 2005]. Luckily,
recent work done at the INESS project [Rosén et al., 2012] has greatly increased the accuracy of the XLE
implementation of the NorGram lexical functional grammar.

1.6 Semantically motivated antecedent candidates

An integral part of anaphora resolution is to locate antecedent candidates for the anaphor. These candidates are
then ranked according to morphosyntactic features, either intrinsicly as in Hobbs’ algorithm [Hobbs, 1978],
or by salience factors as described by Lappin and Leass [1994]. Recent work done in anaphora resolution
algorithms for Norwegian by Nøklestad [2009] also focus on morphosyntactic features in a machine learning
approach to the problem.

Recognizing the need for a semantic approach to anaphora resolution, Eiken [2005] explored a method for
classifying antecedents based on 223 predicate-argument structures extracted from a small dataset. However,
due to the fairly small number of predicate-argument structures and the amount of manual intervention re-
quired to construct it, Eiken concluded that a larger scale study was needed to conclude on the feasibility of
the method.

Given the improvements to the NorGram grammar and the large collection of parsed texts in INESS, the time
is opportune to do perform a larger scale study based on the exploratory work done by Eiken. In this thesis
I will study how predicate-argument structures extracted from a large corpus parsed by a deep parser can
aid in generating semantically motivated antecedent candidates for use in pronominal anaphora resolution.
Additionally, I will design a system for automating all the necessary steps in the process.

1.7 Thesis outline

The thesis is structured as follows: In chapter 2 different approaches to anaphora resolution are discussed and
the theoretical background for Eiken’s work is presented. In chapter 3, the process of extracting the predicate-
argument structures is described, as well as the process of creating an ontology model and a classification
model. The results of the modelling is shown at the end of the chapter, in section 3.12. In chapter 4, there is
a concluding discussion as well as some suggestions for future work.
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Chapter 2

Theory and method

2.1 Anaphora resolution

Anaphora resolution is part of the larger problem of reference resolution. Within all natural language dis-
course there will be expressions that refer to other expressions or concepts. We call these types of expressions
referring expressions and the entity they refer to referents. Anaphora are the subset of referring expressions
where the referent has already been used in the discourse. In these cases the referent is called the antecedent.

There exists several types referring expression: indefinite noun phrases, definite noun phrases, pronouns,
demonstratives, and one-anaphora [Jurafsky and Martin, 2009, p. 673]. Among these, the pronoun is the most
common referring expression, and it is usually anaphoric in that it refers to an entity that has been previously
introduced in the discourse. In some cases, however, pronouns can refer to entities introduced after them in
the discourse, making them cataphoric. Pronominal anaphora are easy to locate in texts by simply marking
any pronoun as an anaphor, though there are examples where pronouns are used non-anaphorically in fiction
material [Nøklestad, 2009, p. 238].

The combination of these characteristics means that pronominal anaphora are more easily studied than other
types of referring expressions, and are often used to prototype systems that can tackle a wider range of
co-reference phenomena. As this thesis is meant as an exploratory study on the feasibility of using co-
occurrence frequencies as a representation of real-world-knowledge, this project is no exception and will
focus on pronominal anaphora resolution.

2.1.1 Morphosyntactic anaphora resolution algorithms

Traditionally, anaphora resolution systems have focused on examining the syntactic and morphological fea-
tures of the anaphor and its antecedent. Once the anaphora have been located, the process of anaphora reso-
lution typically consists of three steps:

1. Parsing the text. This is typically done with a syntactic parser.

2. Finding antecedent candidates. This is done by extracting noun phrases in the sentences leading up to
and including the sentence where the anaphora occurs.

3. Ranking antecedent candidates based on different factors, either explicitly stated or implicitly repre-
sented in a model.

The factors in the third step can be reached through morphological and syntactic features, collectively called
morphosyntactic features, and through semantic considerations. These features can include morphological
features such as number, gender, person and case and syntactical features such as recency and syntactic
category.

Like to the Hobbs’ algorithm [Hobbs, 1978] outlined in section 1.3, the Lappin and Leass’ algorithm Lappin
and Leass [1994] is an algorithm that uses syntactic features. The algorithm builds a discourse model where

5
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each noun phrase in the sentence with the anaphor and the preceding sentences are added. For each of these
noun phrases, a salience score is calculated based on the salience factors shown in table 2.1 [Jurafsky and
Martin, 2009, p. 685].

Table 2.1: Salience factors in Lappin and Leass’s system

Sentence recency 100
Subject emphasis 80
Existential emphasis 70
Accusative (direct object) emphasis 50
Indirect object and oblique complement emphasis 40
Non-adverbial emphasis 50
Head noun emphasis 80

All the salience factors are based on the syntactic features of the noun phrase, and each factor that applies to
the noun phrase is counted towards the total salience score. Additionally, selectional restrictions based on the
morphological features gender and number are applied to disqualify unfit noun phrases from the discourse
model.

2.1.2 Morphological limitations

Despite abundant use of morphosyntactic methods for anaphora resolution, there are several cases where they
fall short. Consider the sentences in example (5).

(5) a. En
A

filosof
philosopher

er
is

klar
clear

over
over

at
that

hun
she

i grunnen
basically

vet
knows

svært
very

lite.
little.

‘A philosopher is aware that she basically knows very little.’
b. Nettopp

Exactly
derfor
therefore

prøver
tries

hun
she

igjen
again

og
and

igjen
again

å
to

oppnå
attain

virkelig
real

innsikt.
insight.

‘That’s exactly why she again and again tries to attain real insight.’

Norwegian nouns have, as opposed to English nouns, a grammatical gender, and the grammatical gender of
filosof is masculine. An algorithm that relies on the gender agreement selectional constraint would fail to
select filosof as the antecedent of hun because they disagree on gender. Likewise, the number agreement
selectional constraint can fail. Consider the sentence in example (6) where the antecedent for the plural pro-
noun they is the singular noun team. This violates the number agreement constraint and excludes the correct
antecedent from the list of antecedent candidates.

(6) The team won the match because they scored many goals.

2.2 Real-world knowledge

Eiken [2005] demonstrated that both the Lappin and Leass and Hobbs algorithms applied to the sentences in
example (7) will decide upon Lensmannen as the antecedent for both examples. This is in disagreement with
an intuitive reading of the sentences which interprets gjerningsmannen as the antecedent in example (7b).

(7) a. Lensmannen som leder etterforskningen, sier at gjerningsmannen trolig kommer til å drepe ig-
jen. Han etterlyser vitner som var i sentrum søndag kveld.
The sergeant leading the investigation says that the perpetrator probably will kill again.He puts
out a call for witnesses who were in the city centre Sunday evening.
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b. Lensmannen som leder etterforskningen, sier at gjerningsmannen trolig kommer til å drepe
igjen. Han er observert i sentrum.
The sergeant leading the investigation says that the perpetrator probably will kill again. He is
observed in the city centre.

The reason for the shortcomings of the algorithms is that there are no syntactical differences between the
anaphor in example (7a) and the anaphor in example (7b). The only way to distinguish between the two is to
consider real-world knowledge about their differences; Who is more likely to put out a call for witnesses and
who is more likely to be observed in the city centre? We can reach the conclusion that the police sergeant
is more likely to call for witnesses based on previous experience with police sergeants. Likewise, we can
conclude that a perpetrator is more likely to be observed based on prior knowledge. As language users, this
sort of real-world knowledge comes naturally, but for a computational system such knowledge poses a dual
problem:

1. How can real-world knowledge be collected?

2. How can real-world knowledge be represented?

Traditional approaches to these questions have often included manual hand-coded knowledge bases that
strives to represent general semantic concepts. Such efforts include the Precondition/Postcondition constraints
proposed by Carbonell and Brown [1988] which for example can determine that after an act of giving has
been carried out, the object that was given can no longer be in the possession of the one who carried out the
act. The limitations of such a technique, however, is noted by the ones who proposed the technique them-
selves: “The strategy is simple, but requires a fairly large amount of knowledge to be useful for a broad range
of cases”.

An alternative approach that has seen traction in recent years is the use of big data sets in combination with
machine learning algorithms. For example, Modjeska et al. [2003] use search queries in Google to gather
semantic knowledge about other-anaphora, type of referential noun phrases with the modifiers other or an-
other. The representation is handled by a Naive Bayes classifier. Ponzetto and Strube [2006] extracted data
from Wikipedia to be used as semantic relatedness measures between words. These measures were used as
features in a Maximum Entropy learning model. These efforts suggest that a collection of large amounts of
data can serve as a representation of real-world knowledge.

A similar method can be used to gather intuitions about whether the police sergeant or perpetrator from
example (7) took part in a certain action. The Distributional Hypothesis as proposed by Harris [1968], suggests
that the semantic meaning of words can be inferred from the context in which they occur. Building on this
hypothesis, Hindle [1990] showed that predicate-argument structures extracted from a corpus can be used to
classify the semantic similarity of nouns. This is based on the idea that there is a restricted set of verbs that a
noun can appear as a subject or object to. Going back to our sentences in example (7), there is a restricted set
of verbs that the perpetrator from example (7b) can appear as a subject to, and the Norwegian verb etterlyse is
likely not among them. Similarly, it is more likely that a perpetrator appears as an object to the verb observed
than that a police sergeant does.

This is the basis for the method that Eiken [2005] used to represent real-world knowledge about the similarity
between anaphora and antecedents. By extracting predicate-argument structures from the corpus, the semantic
similarity between the noun and a pronoun can be quantified using a supervised machine learning algorithm.
The same approach I will be used in this project.

2.2.1 Elementary Predicate Argument Structures

The predicate-argument structures used by Eiken [2005] differ from the structures used by Hindle [1990] in
one respect. While Hindle extracted his structures from the subjects and objects of verbs, Eiken extracted
verbal predicates. The difference between the two is that a verb-subject-object structures are syntactically
defined, while verbal predicates are semantically defined. This has the advantage that different linguistic
constructs that give rise to the same meaning are represented alike. Active and passive constructs, while
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syntactically different, can have the same semantic content, and the verbal predicate preserves this equality
in the semantic representation. To emphasize the difference between the two structures, Eiken coined the
term Elementary Predicate-Argument Structure or EPAS.

The extraction of EPAS is made possible by the f-structures produced by the NorGram-grammar as provided
by INESS, as discussed in the following section.

2.3 INESS

INESS, the Norwegian Infrastructure for the Exploration of Syntax and Semantics, is a collection of tree-
banks of syntactically and semantically parsed corpora. The project is partially devoted to developing a large
treebank for Norwegian using the computational NorGram-grammar [Rosén et al., 2012]. The NorGram-
grammar is part of the international Parallel Grammar Project (ParGram), based on the Lexical Functional
Grammar formalism. The grammar is implemented using the XLE parser which allows fragmented parses
for anomalous input [Rosén et al., 2005]. This last feature is of significance to this project. While traditional
anaphora resolution algorithms typically require full syntactic tree parses to work, fragmented trees should
be sufficient for extracting EPAS as long as the predicates are represented. Furthermore, the XLE parser also
supports a stochastic disambiguator that returns the top ranked parse based on previously parsed sentences.
The combination of these two features makes the Norwegian treebanks in INESS suitable for extracting a
large number of EPAS.

Each sentence parsed using the NorGram-grammar in INESS has representations in a c-structure (a phrase
structure tree) and a f-structure (an attribute-value graph). The features in the f-structure are based on the
naming conventions in the ParGram-grammar [Butt et al., 2002], thus making the extraction process described
in chapter 3 suitable for texts parsed with other ParGram-grammars as well.

The INESS web interface allows you to visualize both the c-structure and f-structure of the parsed sentences.
Consider the sentence in example (8).

(8) Det
The

første
first

stykket
part

hadde
had

hun
she

gått
walked

sammen
together

med
with

Jorunn.
Jorunn.

‘The first part she had walked together with Jorunn’

The corresponding f-structure as seen on the web interface is presented in figure 2.1. We can clearly see two
binary predicates in the f-structure: ha-perf and, gå. Both of them have corresponding arguments: gå and
hun, and hun and stykke respectively. This gives us the EPAS in examples (9) and (10).

(9) ha-perf,
have-perfectum,

gå,
go,

hun
she

(10) gå,
go,

hun,
she,

stykke
part

2.4 Classification

In order to use the extracted EPAS to model the similarities between anaphora and antecedents, a classification
using machine learning has to be performed. Given the large corpus used in this project, I will only classify
anaphora that appear as argument 1 in the EPAS, but the same method is equally valid for classifying anaphora
that appear as argument 2 as well.
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Figure 2.1: F-structure of sentence in example (8)

2.4.1 Machine learning

Tom M. Mitchell [2006] describes the machine learning as computer systems that automatically improves
with experience:

To be more precise, we say that a machine learns with respect to a particular task T, performance
metric P, and type of experience E, if the system reliably improves its performance P at task T,
following experience E. Depending on how we specify T, P, and E, the learning task might also
be called by names such as data mining, autonomous discovery, database updating, programming
by example, etc.
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A common way to specify T, P and E is that of a supervised classification algorithm where T is the task of
classification, P is how accurate the classification is and E is a set of labelled examples. More specifically,
the task is to approximate an unknown function f : X → Y where the labelled examples is the set {⟨xi, yi⟩}
of inputs xi and outputs yi = f(xi). Anaphora resolution can be seen as a such a classification task, where
the function f has to classify an antecedent Y based on the anaphor and its context X .

The labelled examples in this case will be the list of extracted EPAS. As we are interested in classifying the
correct noun for a given anaphor, the label for each example will be the noun that appears as argument 1 in
the EPAS, while the rest of the elementary predicate-argument structure, the verb and argument 2, will form
the example.



Chapter 3

Data extraction and modelling

3.1 Material

One key requirement identified by Eiken [2005] when selecting texts from which the EPAS are to be extracted,
is that they belong to the same thematic domain. In addition to this, Eiken proposed a set of criteria for text
selection:

• Relatively long chains of discourse

• Fairly high occurrence of anaphora, pronouns in particular

• Several paragraphs where the same phenomenon is discussed

• Low occurrence of tables and illustrations, ideally all the information in the texts should be expressed
in complete and grammatical sentences

Eiken found that while prose texts were easy to confine to one thematic domain, they failed to fulfil the other
criteria. For the purposes of this project, I propose two additional criteria: The text collection should be fairly
large as to produce a big data set of EPAS, and it should be easily parsed by the INESS parser. Looking at
the collection of parsed texts in INESS, one corpus stands out:

Sofies Verden [Gaarder, 1991] is a famous Norwegian novel by Jostein Gaarder that follows the protagonist,
Sofie, on a journey to explore the history of philosophy. This provides for a fairly confined thematic domain
concerning philosophy, and given that it is a full novel, the other criteria are also fulfilled with long chains of
discourse with discussions of coherent phenomena. The number of personal pronouns occurring in the novel
is shown in table 3.1.

Table 3.1: Occurrences of personal pronouns

hun henne han ham Total

1780 278 1940 189 4187

The novel was generously provided by Gaarder to the INESS project for use in language technology research
and development [Gaarder and Rosén, 2011]. The first chapter is manually disambiguated and serves as a gold
standard corpus, while the rest of the novel is automatically disambiguated by the stochastic disambiguator.
The full novel consists of 14 526 sentences out of which 13 529 of them were subject to a full parsing.

3.2 The Prolog file format

Each of the selected sentences in INESS can be exported as a Prolog file, a plain text file with utf-8 encoding
the format of which is described in the XLE documentation [Crouch et al., 2008]. An extract of the f-structure
from figure 2.1 can be seen represented in Prolog in listing 3.1 (the whole file can be seen in listing A.1).

11
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Listing 3.1: Extract of a Prolog file format from INESS
cf(1,eq(attr(var(0),'PRED'),var(15))),
cf(1,eq(attr(var(0),'SUBJ'),var(26))),
cf(1,eq(attr(var(0),'XCOMP'),var(32))),
cf(1,eq(attr(var(0),'TOPIC'),var(2))),
cf(1,eq(attr(var(0),'CHECK'),var(13))),
cf(1,eq(attr(var(0),'TNS-ASP'),var(30))),
cf(1,eq(attr(var(0),'VTYPE'),var(31))),
cf(1,eq(attr(var(0),'PERF'),'+')),
cf(1,eq(attr(var(0),'STMT-TYPE'),'decl')),
cf(1,eq(attr(var(0),'VFORM'),'fin')),
cf(1,eq(var(15),semform('ha-perf',55,[var(32)],[var(26)]))),
cf(1,eq(attr(var(26),'PRED'),semform('hun',60,[],[]))),
cf(1,eq(attr(var(26),'GEND'),var(27))),
cf(1,eq(attr(var(26),'NTYPE'),var(28))),
cf(1,eq(attr(var(26),'NUM'),var(29))),
cf(1,eq(attr(var(26),'CASE'),'nom')),
cf(1,eq(attr(var(26),'DEF'),'+')),
cf(1,eq(attr(var(26),'GEND-SEM'),'female')),
cf(1,eq(attr(var(26),'PERS'),'3')),
cf(1,eq(attr(var(26),'PRON-FORM'),'hun')),
cf(1,eq(attr(var(26),'PRON-TYPE'),'pers')),
cf(1,eq(attr(var(26),'REF'),'+')),
cf(1,eq(attr(var(27),'FEM'),'+')),
cf(1,eq(attr(var(27),'MASC'),'-')),
cf(1,eq(attr(var(27),'NEUT'),'-')),
cf(1,eq(attr(var(28),'NSYN'),'pronoun')),
cf(1,eq(var(29),'sg')),
cf(1,eq(attr(var(32),'PRED'),var(61))),
cf(1,eq(attr(var(32),'SUBJ'),var(26))),
cf(1,eq(attr(var(32),'OBJ'),var(2))),
cf(1,eq(attr(var(32),'ADJUNCT'),var(33))),
cf(1,eq(attr(var(32),'CHECK'),var(59))),
cf(1,eq(attr(var(32),'VFORM'),'sup')),
cf(1,eq(attr(var(32),'VTYPE'),'main')),
cf(1,eq(var(61),semform('gå',62,[var(64),var(77)],[]))),

This representation consists of a set of equivalences between variables and features distributed throughout
the whole file. Extracting the predicate in example (9) is not as straight forward as it seemed from the f-
structure in figure 2.1. For example, you have to traverse the equivalence between var(0) and var(15) to
get to the word representation of the predicate, while other relevant features, such as VFORM, are connected
to var(0). I have developed a method for extracting EPAS from the Prolog files using a program coded in
Perl, outlined in section 3.4. Note that the filename extension for both the Prolog files and the Perl scripts is
the same (*.pl).

3.3 Building a data structure

While the simple text-only structure of the EPAS is sufficient for training the machine learning algorithm in
section 3.6, there are several reasons to design a more complex data structure for this project:

• The f-structure contains part of speech information which is useful for sorting and organizing the EPAS
for the different experiments.

• It is important to be able to keep track of which sentences the EPAS were extracted from when evalu-
ating the classifications and when annotating antecedents.

• A way to represent sentences and the lemmas they contain.

• A way to represent antecedents in relation to their anaphora.

A robust data structure also has the benefit that the suite of programs programmed for this project are easy to
maintain and expand. Furthermore, it makes it easier to put the data gathered for this project to other uses.

There is no practical way to represent these complex requirements using just the list and hash data types
available in Perl. The programming language, however, also has Object Oriented capabilities, and using
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these I created three classes to represent the data. The source code for the classes is shown in appendix B.
For an overview of the classes and their attributes, see table 3.2.

Lemma.pm This class represents the lemmas that make up the predicates, sentences and antecedents. The
lemma itself is stored in the semform attribute and information about part of speech is stored in the
attribute attribute. A reference to the sentence that the lemma appeared in is stored in the sentenceID
attribute and the variable of the lemma from the f-structure is stored in the var attribute. The frequency,
distance and score attributes all store information pertaining to the selectional constraints used in sec-
tion 3.10. The similars attribute stores the similar words that are extracted in section 3.8.

Predicate.pm This class represents the EPAS. The lemma of the predicate is stored in the pred attribute
as plain text, while the arguments of the EPAS are stored as Lemma-objects in the arg1 and arg2
attributes. As with the Lemma-class, a reference to the sentence that the predicate appeared in is stored
in the sentenceID attribute. A reference to a possible antecedent can be stored as a Lemma in the
antecedent attribute. The index attribute is used in the annotation program described in section 3.5.

Sentence.pm This class represents a sentence. The surface form of the sentence is stored in the sentence
attribute and the sentence’s identity number is stored in the id attribute. A list of all the lemmas that
make up the sentence is stored in an array of Lemma objects in the lemmas attribute.

It is worth noting that both the arguments in the Predicate class, the similars in the Lemma class and the
lemmas in the Sentence class are stored as instances of the Lemma class, making this a recursive data structure.

Table 3.2: Overview of the data structure

Lemma Predicate Sentence

semform: string pred: string sentence: string
attribute: string arg1: Lemma id: int
var: int arg2: Lemma lemmas: array(Lemma)
sentenceID: int sentenceID: int
similars: array(Lemma) antecedent: Lemma
frequency: int index: int
distance: int
score: float

3.3.1 Serializing the data

Using a complex data structure necessitates the need to serialize the data before storing it. Serialization en-
ables persistence of the data structure used to represent the data by storing a reference to the classes together
with the data. One such example is the !!perl/hash:My::Predicate statement in listing 3.4. Perl offers several
options for saving the data in a native Perl data format such as Storable and Data::Dumper. Another option
is the YAML data format, a “human-friendly, cross language, Unicode based data serialization language de-
signed around the common native data types of agile programming languages” Ben-Kiki et al. [2009]. This
format has the major advantage that it is language independent and has implementations in many popular pro-
gramming languages, thus ensuring that the data from this project can be used for other projects. Additionally,
the human-friendly mark-up of this format serves to clearly illustrate instances of the objects presented in this
section. For examples of this, see listings 3.4 , 3.6 and 3.8.

3.4 Parsing the files

Extracting the data from the Prolog files is done in two steps using the two Perl scripts outlined in sec-
tions 3.4.1 and 3.4.2. The Prolog files, one file per sentence, are downloaded in bulk as a compressed archive
from the INESS web interface once a document is selected. Several download modes are available:
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• Sentence

• Bracketed sentence

• Labeled bracketed s.

• Prolog

• Prolog (disamb.)

• Prolog (highest ranked.)

• Tiger-XML

Among these modes, it is the Prolog modes that offer the full f-structure of the sentences. The Prolog and
Prolog (disamb.) modes gives you all the possible parses of the c- and f-structures, while the Prolog (highest
ranked.) mode only gives you the highest ranked parse according to the stochastic disambiguator. This last
mode was kindly added to the INESS interface upon my request, as this will provide the smallest file size
and consequently enable faster parsing. Using this last mode, an archive containing 13 529 Prolog files is
downloaded. Each of the files are labelled with a document identification code and a sentence number in the
file name. Both of the extraction scripts described in the following sections takes an entire folder as input and
parses each of the files in that folder, but I will use a single Prolog file as an example when describing the
process. This file can be seen in listing A.1.

A small note on terminology: When talking about variables in this section, I refer to the integers contained in
a var() structure. When referring to lemmas, I mean any string of text enclosed within apostrophes, as any
word in the f-structure is lemmatized.

The Perl language

The brunt of the work for this project involves interacting with a large number of files and an extensive use
of pattern matching within them. These are both areas at which Perl excels. Perl was first released in 1987
and built specifically to be a replacement for UNIX shell utilities such as awk. It offers powerful built-in
facilities for pattern matching in files on a line per line basis, and “it is unsurpassed at this” [Raymond, 2003,
Chapter 14]. These pattern matching facilities come in the form of excellent support for Regular Expressions.
Reading and writing files and directories is also fairly easy.

3.4.1 Extracting EPAS

Extraction of the EPAS is done using the script predicateExtractor.pl taking two input arguments and out-
putting one YAML file. The source code is shown in listing B.4. The first input argument is the path to the
folder containing the Prolog files discussed in section 3.2, and the second argument is the path to where you
want to save the output file. The output is in the form of a YAML file in addition to the diagnostic output
printed to the terminal. An example execution of the script is shown in listing 3.2.

Listing 3.2: Example execution of predicateExtractor.pl
$ perl predicateExtractor.pl nob-sofie-hele/ preds.yaml

First off, the script saves all the file names in the directory specified in the first argument in an array. For
each of the file names, the corresponding file is loaded and the sentence number is extracted. In our example
case, the file name is oai:bibsys.no:biblio:932407552-5-hr.pl which can be divided into three parts using the
dash as the delimiter. The first part is the document identification, the second part is the sentence number,
and the last part is the download mode, in this case hr for Prolog (Highest ranked.).

The basis for each EPAS is the verb, so the first order of business is to locate all the lines the file that
corresponds to a verb. To do this, the script searches for patterns that match the VFORM feature and returns
the corresponding variable. All the verbs correspond to a predicate in the f-structure and these can be found
by matching lines where the variables found in the previous step appear alongside the PRED feature. These
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lines will either contain a variable pointing to where the predicate and its arguments can be found, in which
case this variable is stored, or the predicate and corresponding arguments itself, in which case the variable
from the previous step is stored. Considering our example file in listing A.1, see table 3.3 for an overview of
the variables and the line numbers they were extracted from.

Table 3.3: Variables and their corresponding lines

Verbs Predicates

Variable: 0 32 73 15 61 61
Line: 34 57 164 25 52 159

For each of the variables found in the previous step the script finds the lemma and the variables for the
arguments. The lemma is found by matching the string contained in the semform feature, while the variables
representing the arguments are found by matching the following variables. Matching the variables can be a
bit tricky as their order can vary between lines and between files as you can see in the two predicates in the
example file in listing A.1. In the first predicate, the variables are contained within one set of brackets, while
in the second they are contained within separate brackets, as shown in listing 3.3.

Listing 3.3: Lines 35 and 59 from the file in A.1
cf(1,eq(var(15),semform('ha-perf',55,[var(32)],[var(26)]))),
cf(1,eq(var(61),semform('gå',62,[var(64),var(77)],[]))),

At this point an object of type Predicate is initiated, the sentence number passed as the sentenceID attribute
of the object, and the lemma is passed as the pred attribute of the object. Still following our example file, see
table 3.4 for an overview of the variables and line numbers.

Table 3.4: Variables and their corresponding lines

Line number Lemma arg1 arg2

35 ha-perf 32 26
59 gå 64 77

The next step is to find the lemmas and part-of-speech information for the arguments which requires a some-
what convoluted recursive subroutine that takes a variable as input. At first, a Lemma object is created and
each line in the file is checked to see if it matches the pattern of the given variable occurring alongside any
of the following features: PRON-FORM, VFORM and NTYPE, corresponding to a pronoun, verb and noun
respectively. Additionally, if the NTYPE is matched, the variable contained within this features is followed
to see if it is a normal noun or a personal noun. Upon matching any of these features, the attribute attribute of
the Lemma object is set accordingly. The lemma of the arguments can be reached through to three separate
structures:

1. A predicate containing the semform feature

2. A predicate only containing a variable

3. An equality statement between two variables

If the first structure is matched, the base case of the recursion is reached and a Lemma object is returned
where the semform attribute is set to the string matched in the semform feature. Additionally, if the lemma
equals any of the singular personal pronouns, the attribute attribute is updated to reflect this. If the second
or third structure is matched, the new variable is passed recursively as the argument to the same subroutine.
The part-of-speech information is also passed along as an argument in the next recursive run.

Still following our example file in listing A.1 we can see the results from running this step on the variables
from the ha-perf predicate. The result and the corresponding line numbers can be seen in table 3.5. Note that
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Table 3.5: Extracted lemmas for arguments

Argument 1 Argument 2

recursion 1 recursion 2 recursion 1

Evaluated variable 32 61 26
Extracted feature VERB PRON+
Extracted variable 61
Extracted lemma gå hun
Line number 52 59 36

the variable for the first argument matches the second type of structure which means that the variable found
here is passed on recursively.

Once the arguments are extracted, the Lemma instances are set as the arg1 and arg2 attributes in the Predicate
object. The predicates are then stored in the YAML file specified in the second input argument of the script.
The Predicate instance of the ha-perf predicate can be seen represented in the YAML format in listing 3.4.
The predicateExtractor.pl script ends up extracting 37 608 EPAS in total.

Listing 3.4: An instance of a Predicate in YAML
--- !!perl/hash:My::Predicate
arg1: !!perl/hash:My::Lemma

attribute: VERB
semform: gå

arg2: !!perl/hash:My::Lemma
attribute: PRON+
semform: hun

pred: ha-perf
sentenceID: 5

3.4.2 Extracting sentences

A representation of the sentences and the lemmas they contain is necessary when annotating the anaphora
in section 3.5 and when applying the selectional constraints in section 3.10. The method for extracting the
lemmas is a simplified version of the method used for predicate extraction in section 3.4.1. As with the
predicate extraction method, the sentenceExtractor.pl (listing B.5 script takes two input arguments: The folder
containing the files to be parsed and the name of the output file. The output is saved in a YAML formatted
file containing instances of Sentence objects. An example execution of the script is shown in listing 3.5.

Listing 3.5: Example execution of sentencesExtractor.pl
$ perl sentenceExtractor.pl nob-sofie-hele/ sentences.yaml

For each file in the folder specified in the first input argument, the sentence number is extracted from the file
name by the same process as described in section 3.4.1. A Sentence object is created and its id attribute is
set to the extracted sentence number. The surface form of the sentence is extracted by matching the contents
of the markup_free_sentence feature and added as the objects sentence attribute. We are only interested in
the lemmas of the words in the sentences, so we don’t have to use a recursive method as in the previous
section. The script simply matches any line with a semform feature and extracts the string contained within it
in addition to its variable. For each of these matches, a Lemma object is created and the extracted string and
variable are set as the semform and var attributes respectively. An array of the extracted lemmas are set as the
lemmas attribute in the sentence object. Finally, the sentence is stored in the YAML file defined in the second
input argument of the script. The sentence from our example file in listing A.1 can be seen in listing 3.6.
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Listing 3.6: An instance of a Sentence in YAML
--- !!perl/hash:My::Sentence
id: 5
lemmas:

- !!perl/hash:My::Lemma
semform: ha-perf
var: 15

- !!perl/hash:My::Lemma
semform: hun
var: 26

- !!perl/hash:My::Lemma
semform: gå
var: 61

- !!perl/hash:My::Lemma
semform: stykke
var: 2

- !!perl/hash:My::Lemma
semform: den
var: 11

- !!perl/hash:My::Lemma
semform: første
var: 12

- !!perl/hash:My::Lemma
semform: sammen-med
var: 51

- !!perl/hash:My::Lemma
semform: Jorunn
var: 45

- !!perl/hash:My::Lemma
semform: Jorunn
var: 55

- !!perl/hash:My::Lemma
semform: hun
var: 132

- !!perl/hash:My::Lemma
semform: Jorunn
var: 127

sentence: Det første stykket hadde hun gått sammen med Jorunn.

3.5 Annotating antecedents

In order to measure the accuracy of a model for anaphora resolution, a corpus where the the antecedents are
reliably annotated is needed. One such corpus exists for Norwegian, the BREDT corpus [Borthen et al., 2007],
and this was used by Nøklestad [2009]. This corpus, however, fail to meet the criteria provided in section 3.1
given that it consists of several fiction stories not confined to one thematic domain. The best course of action
then remains to manually annotate the anaphora in Sofies Verden with their antecedents.

Annotating anaphora is quite a tedious manual task, so I ventured to speed up the process by developing a
tool for antecedent annotation of the EPAS extracted in section 3.4.1. The goal is that a subset of the EPAS
containing a singular personal pronoun as its first argument is matched with its corresponding antecedent.
The program developed for this, guiAnnotator.pl, takes three input arguments: A YAML file containing the
EPAS extracted in section 3.4.1, a yaml file containing the sentences extracted in section 3.4.2 and file name
of where you want to store the annotated EPAS. The source code for the program is shown in listing B.7. An
example execution of the program is shown in listing 3.7.

Listing 3.7: Example execution of guiAnnotator.pl
$ perl guiAnnotator.pl preds.yaml sentences-hele.yaml annotated.yaml

The program works on the principle that the user is presented with an EPAS, the sentence it occurs in and a
context of the preceding sentences. The user then selects the sentence where the antecedent occurs, whereby
a list of the lemmas in the selected sentence is presented and the user selects one of them. The selected lemma
is then added as the antecedent for the EPAS and the process is repeated. In order to make the task of selecting
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antecedents as easy as possible for the user, I decided to make a graphical interface. Perl supports the popular
TK toolkit for graphical user interface widgets which allows you to easily display windows, buttons and lists.

The program starts by loading the EPAS and sentences into memory. If the output file specified in the third
input argument already exists, the index attribute of the last EPAS is extracted, enabling the program to keep
track of which EPAS have already been annotated between executions of the program. The main loop of the
program iterates through all the EPAS, and the iteration starts at the index extracted from the output file. If the
first attribute attribute of the arg1 attribute of the EPAS equals a personal pronoun (PRON+), the dialogue
window in figure 3.1a is shown. A textual representation of the EPAS is shown at the bottom of the window,
and the sentence the EPAS was extracted from is shown immediately above it. This sentence is extracted
by comparing the sentenceID attribute of the EPAS to the id attribute of the Sentence. Likewise, the context
of up to nine preceding sentences is found by subtracting one through nine from the EPAS sentenceID and
extracting the sentences with matching id attributes.

(a) A choice of sentences

(b) A choice of lemmas

Figure 3.1: The guiAnnotator.pl dialog boxes

Each of the sentences is a clickable button, and once the user clicks the sentence where the antecedent is
located, the dialogue window in figure 3.1b is shown. As this model only operates with single lemmas as
antecedents, the correct antecedent in this case is decided to be the lemma Sofie. Once this lemma is clicked,
the Lemma object is extracted from the sentence and set as the antecedent attribute of the EPAS. The resulting
Predicate object is shown in listing 3.8. There is also the option for the user to click the No match button if
the antecedent can’t be found in any of the context sentences, in which case the antecedent attribute of the
EPAS will be marked as not found with a dummy lemma. Using the guiAnnotator.pl script, 466 anaphora
were annotated with their antecedent.

3.6 Machine learning with TiMBL

In this section I will describe how to format the data for machine learning, and how to build a model for
anaphora resolution using TiMBL.
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Listing 3.8: An instance of an annotated Predicate in YAML
--- !!perl/hash:My::Predicate
antecedent: !!perl/hash:My::Lemma

semform: Sofie
sentenceID: 4
var: 126

arg1: !!perl/hash:My::Lemma
attribute: PRON+
semform: hun

arg2: !!perl/hash:My::Lemma
attribute: ''
semform: stykke

index: 5
pred: gå
sentenceID: 5

3.6.1 TiMBL

The Tilburg Memory Based Learner is a software package that implements a k-Nearest Neighbour (k-NN)
algorithm, but stores the representation of the training set as a decision-tree structure [Daelemans et al.,
2004]. This enables both basic k-NN modelling, decision-tree modelling and combinations of the two. In
the TiMBL software package, these algorithms are called IB1, IGTREE and TRIBL respectively. It has been
especially designed to be used in natural language processing tasks, as traditional machine learning algorithms
are generally optimized for numerical feature values instead of the string feature values that often appear in
NLP tasks. TiMBL achieves this by implementing similarity metrics like Levenshtein distance and the Dice
coefficient. This project, however, will not use the string-based similarity metrics, as the Predicate-Argument
pairs are symbolic features which are not to be interpreted as strings.

3.6.2 Formatting data

TiMBL requires that each instance to be learned in the training file is represented as a feature-vector. Several
input formats are supported, the simplest of which is a comma separated file (.csv) where each line represents
an instance with the features delimited by a comma. The last feature on each line is interpreted as the class
value.

The EPAS extracted in section 3.4.1 are used to make the training set. It will consist of two features and a
class assignment. Since we are interested in classifying the antecedent for pronouns occurring as the first
argument in the EPAS, all the EPAS that have a noun as the first argument and any lemma as the second
argument are extracted using the Perls script predicateExtractor.pl. This results in a training set with 4093
instances. The 10 most frequent lemmas occurring as predicates, argument 2 and class are shown in table 3.6.

In addition to these two features and the class, I am also including a couple of bookkeeping features that will
serve a purpose in the aggregation in section 3.9, but will be ignored by the classifier. These are the sentence
identifier and gender place holder features. This last feature is needed because TiMBL requires the exact
same amount of features in the training set and test set, and the gender of the pronoun will be included in the
test set. As such, the gender place holder will carry no information in the training set and an arbitrary value is
set for it, in this case the string gendPlaceholder. Note that this feature is in the same position as the pronoun
in listing 3.10. The comma separated file will now consist of 4 features, out of which two will be ignored by
the classifier, and one classification. A typical line in the training set is shown in listing 3.9. The training set
is stored in the file IdSubstArg1.csv.

Listing 3.9: An instance in the training set
7044,gendPlaceholder,fortsette,vandring,Alberto
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Table 3.6: The 10 most frequent lemmas for extracted EPAS

(a) Predicates

predicate freq. %

være 1152 28.14
root-kunne 240 5.86
ha 226 5.52
si 124 3.02
mene 95 2.32
bli 91 2.22
root-måtte 90 2.19
begynne 83 2.02
få 78 1.90
med 40 0.97

(b) Argument 2

argument 2 freq. %

være 195 4.76
ha 47 1.14
ha-perf 45 1.09
i 44 1.07
root-kunne 35 0.85
gå 34 0.83
som 33 0.80
menneske 29 0.70
verden 27 0.65
på 26 0.63

(c) Class

class freq. %

Sofie 450 10.99
menneske 235 5.74
Alberto 94 2.29
Hilde 78 1.90
filosof 75 1.83
Gud 71 1.73
mor 59 1.44
Aristoteles 37 0.90
tanke 36 0.87
far 36 0.87

The test set consist of the annotated EPAS from section 3.5 where the pronoun occurs as the first argument
of the EPAS. The annotated antecedent is set as the class feature and the predicate and argument 2 from the
EPAS is set as the remaining features. Like the training set, the sentence identifier from the EPAS is added
as a feature. The pronoun is added as a feature in the same place as the gender place holder feature in the
training set. A typical line in the test set is shown in listing 3.10. The test set is stored in the file testSet.csv.

Listing 3.10: An instance in the test set
827,han,se,spire,Thales

As for the training set, the 10 most frequent lemmas occurring as predicates, argument 2 and class are shown
in table 3.7. The predicate frequencies are fairly consistent with between the training set and the test set,
but the most frequent class, Sofie is much more frequent in the test set than in the training set (45.49% vs.
10.99%). This discrepancy is largely due to the fact that the classes in the training set are drawn from all the
EPAS that contain a noun as argument 1 while the classes in the test set are dependent on the pronouns from
a limited part of the whole text, mainly chapter 1 and 2. Having one class with such a dominant frequency
as Sofie makes the model prone to overemphasize the importance of this class and going as far as predicting
the class for all instances in the test set. This is related to the concept of overfitting in supervised learning
algorithms. A definition of overfitting is given as: “An induction algorithm overfits the dataset if it models
the given data too well and its predictions are poor.” by Kohavi and Sommerfield [1995]. If such overfitting
occurs, we will expect to see the classification accuracy on the test set increase until it reaches a peak of
45.49%, the same percentage as the frequency of the most frequent class in the test set.

3.6.3 Classification

Once you have prepared the training and test sets, building the model in TiMBL is quite a straight forward
task. TiMBL is operated through a command line interface by specifying the training file and the test file.
The command given in listing 3.11 will give us the default IB1 model.

Listing 3.11: Building the default IB1 model in TiMBL
$ timbl -f IdSubstArg1.csv -t testSet.csv

Recall, however, that the first two features are bookkeeping features that the model needs to ignore. The
command line argument -m determines the overlap metric to be used on the different features, and among
these is the ignore metric (I). We set the default metric to be the overlap metric (O) since the features are to
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Table 3.7: The 10 most frequent lemmas for annotated EPAS

(a) Predicates

predicate freq. %

være 45 9.66
si 19 4.08
mene 17 3.65
root-kunne 14 3.00
vite 14 3.00
se 13 2.79
lese 11 2.36
få 10 2.15
ha 10 2.15
gå 9 1.93

(b) Argument 2

argument 2 freq. %

pro 160 34.33
være 21 4.51
den 13 2.79
konvolutt 10 2.15
brev 7 1.50
ha-perf 6 1.29
epist-måtte 5 1.07
ark 4 0.86
filosof 4 0.86
øye 4 0.86

(c) Class

class freq. %

Sofie 212 45.49
Sokrates 64 13.73
mor 18 3.86
Anaxagoras 16 3.43
Thales 13 2.79
mann 12 2.58
Demokrit 11 2.36
Parmenides 11 2.36
Tor 10 2.15
far 8 1.72

be seen as atomic, not string based, and the first through second metric to be ignored using the command line
argument -mO:I1-2. In addition, we redirect the standard output to a file, as information about the operation
of the algorithm is sent here. The whole command is given in listing 3.12.

Listing 3.12: Building the default IB1 model with ignored features in TiMBL
$ timbl -f IdSubstArg1.csv -t testSet.csv -mO:I1-2 > IB1-exp1

In addition to the IB1 algorithm, TiMBL also implements a decision tree algorithm, the IGTREE algorithm.
This algorithm features faster computation times with an accuracy comparable to the IB1 algorithm, but
sometimes performs even better [Daelemans et al., 2004]. To select this algorithm the command line argument
-a is needed, and save the addition of this argument, the rest of the command given in listing 3.13 is equal.

Listing 3.13: Building IGTREE model TiMBL
$ timbl -f IdSubstArg1.csv -t testSet.csv -a 1 -mO:I1-2 > IGTREE-exp1

These models give us an accuracy of 34.97% and 39.69% correctly classified instances respectively. The
whole output of the algorithms are shown in listings A.2 and A.3. For each of the algorithms an output file
offered by TiMBL, in which each of the instances of the test set is displayed along with the predicted class,
enabling us to study the results more closely. One instance from one such file is given in listing 3.14. The
frequencies of the 10 most frequently predicted classes are displayed in table 3.8.

Listing 3.14: Classification of one instance in TiMBL
1785,han,mene,føre*til,Sokrates,Aristoteles

The very high frequencies of the Sofie class is clear evidence of overfitting by the model, and the IGTREE
algorithm fares worse in this respect. Indeed, if we raise the k-number in the k-NN algorithm the accuracy
approaches the 45.59% mark until it stops there and won’t go higher. Overfitting of the Sofie class aside,
the rest of the classes follow the frequencies of the training set in table 3.6c closely, showing that the model
still has merit. Consequently, we can use the IB1 k = 4 model as the baseline to which we compare the other
models, as it has the same accuracy as a ZeroR classification which always predicts the majority class. As
the IB1 algorithm has less problems with overfitting than the IGTREE algorithm, this algorithm will be used
going forward. The fairly low accuracy of the model on the other classes than Sofie is to be expected given
that the model does not take into account the context of where the anaphora were introduced. For this I will
make use of the ignored sentenceID feature.
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Table 3.8: The 10 most frequent predicted classes for the IB1 and IGTREE algorithms

(a) IB1

class freq. %

Sofie 290 62.23
menneske 57 12.23
Alberto 8 1.71
Hilde 7 1.50
Empedokles 5 1.07
Sokrates 4 0.85
filosof 4 0.85
far 4 0.85
Aristoteles 4 0.85
mål 3 0.64

(b) IGTREE

class freq. %

Sofie 337 72.31
menneske 16 3.43
Hilde 6 1.28
Gud 6 1.28
Empedokles 5 1.07
Alberto 5 1.07
Sokrates 4 0.85
mål 4 0.85
Jorunn 4 0.85
filosof 4 0.85

(c) IB1 k=4

class freq. %

Sofie 466 100

3.7 A fuzzy classification model

A typical classification algorithm will only provide you with the class with the highest probability, which
is sufficient for classification tasks where the classes are mutually exclusive or when there there are few
classes. Our training set, however, contains 1030 different classes. Given the high number of classes, the
highest probable class classified by the classifier has lower chances of being the correct one, but the second
or third most probable class might still be correct. For each instance in the test set, the IB1 algorithm in TiMBL
builds a set of its nearest neighbours and chooses the most frequent among these as the most probable class
[Daelemans and Van den Bosch, 2005, p. 28]. This whole set can be output by TiMBL in the output file, one
instance of which is shown in listing 3.15.

Listing 3.15: Fuzzy classification with TiMBL
1785,han,mene,føre*til,Sokrates,Aristoteles { Jorunn 2.00000, Sofie 1.00000, far 2.00000, 1

1.00000, filosof 2.00000, ord 1.00000, neger 1.00000, tanke 1.00000, Aristoteles
11.0000, Thales 1.00000, Anaximenes 1.00000, Heraklit 3.00000, Empedokles 5.00000,
Anaxagoras 1.00000, Demokrit 5.00000, sofist 1.00000, Sokrates 5.00000, Platon 6.00000,
kyniker 1.00000, stoiker 1.00000, Plotin 1.00000, Paulus 1.00000, Augustin 1.00000,

Thomas 2.00000, Aquinas 1.00000, astronom 1.00000, Darwin 2.00000, Spinoza 2.00000,
Descartes 3.00000, rasjonalist 2.00000, Berkeley 1.00000, empirist 1.00000, Locke
2.00000, gudsforestilling 1.00000, Hegel 2.00000, Rousseau 1.00000, Kant 5.00000, kant
2.00000, romantiker 1.00000, Kierkegaard 2.00000, Marx 3.00000, Freud 4.00000, rektor
1.00000, Lamarck 1.00000, Sartre 2.00000, Beauvoir 1.00000 }

We can see that the most frequent class, Aristoteles with a frequency of 11, is the wrongfully selected an-
tecedent. The correct antecedent, Sokrates, however, is among the third most frequent classes with a frequency
of 5. Furthermore, we can see, as the distributional hypothesis predicts, that the nouns are neatly grouped by
their semantics. Sokrates and Aristoteles are joined by their fellow philosophers in addition to more general
philosophic characterisations like stoic, cynic and empiricist.

3.7.1 Considering the context

A fuzzy machine learning algorithm is not very helpful without connecting it to the context of where the
anaphora appears. In his doctoral thesis, [Nøklestad, 2009, p. 242] observes that the proximity of the an-
tecedent to the anaphor is an important factor in earlier anaphora resolution work. Lappin and Leass’s algo-
rithm ranks sentence recency highly as a salience factor, and the Hobbs algorithm selects the closest available
antecedent. This preference was observed when annotating the antecedents in section 3.5. Antecedents were
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usually found within the same sentence as the anaphor or in the preceding sentence. Some antecedents, how-
ever, were found as far as 9 sentences before the anaphor, and some antecedents were even beyond this scope
and were not annotated. This observation is consistent with the observation from Nøklestad [2009] about
Norwegian fiction data, where anaphor-antecedent distances have a wider span.

Considering that the maximum anaphor-antecedent distance that was annotated in section 3.5 was 9, a method
for selecting antecedent candidates from the fuzzy classification obtained in section 3.7 emerges. For an
anaphor, given the set A of fuzzy classifications, and the set B of all lemmas from the 9 preceding sentences,
antecedent candidates (C) can be found by intersecting the two sets: C = A∩B. A Perl script that performs
this intersection, fuzzyModel.pl, is described in the following section 3.7.2.

3.7.2 Building the model

This Perl script fuzzyModel.pl takes two input arguments: The output file from the fuzzy classification from
section 3.7 and the extracted sentences from section 3.4.2. The output is a model that classifies antecedents
based on candidates that are selected from the intersection between the fuzzy classification and the sentence
context.

The output from the fuzzy classification consists of all of the instances in the test set where each instance
is formatted as in listing 3.15. Each line in the input file corresponds to one instance, so for each line the
following is extracted: Sentence number, pronoun (anaphor), predicate, argument 2, antecedent, predicted
antecedent and the set of fuzzy classification set. For each of the candidates in the fuzzy classification set, a
Lemma object is created where the semform attribute is set to the lemma and the frequency attribute is set to
the number listed next to the lemma. These lemmas will be the set A. The context of the anaphor is extracted
using the sentences from the sentence input file. Using the extracted sentence number, the sentence with
the corresponding sentence number and its nine preceding sentences are extracted, and from each of these
sentences the lemmas attribute is extracted. In order to evaluate this model, all the antecedents from the fuzzy
classification will be set aside and only consulted during the evaluation phase. In addition to the frequency of
the antecedent candidates, their distance to the anaphor is also calculated by subtracting the sentence number
of the antecedent candidate from the sentence number of the entity being analysed. This gives us a distance
metric that is equal to the number of sentences between the anaphor and the antecedent candidate.

The model starts with the assumption that any prediction from the fuzzy classification that is not found in
within the context of the nine preceding sentences is wrong and needs to be reassessed, while any predic-
tion that is found within the context is assumed to be valid. When a prediction needs to be reassessed, the
candidates from the fuzzy classification are consulted. Any of the candidates that appear in the context are
proposed as antecedent candidates. The resulting list is sorted by frequency, and the candidate with the high-
est frequency is proposed as the valid prediction. When the prediction is updated, this new prediction is
compared to the annotated antecedent. If the prediction is equal to the antecedent, it is counted as correctly
classified. If the prediction is not equal to the antecedent, but any of the following antecedent candidates are
equal to the antecedent, the prediction is counted as partially correct.

The output of the model is a text file where each instance is printed. If the original prediction was found
within the context, the instance is prefixed with “In context: ”. If original prediction was not found within
the context, the instance is prefixed with “Not in context: ”, and the sorted list of antecedent candidates is
presented. The instance presented in listing 3.15 in the previous model can be seen presented in this model
in listing 3.16, where the frequency of each antecedent candidate is followed by its distance to the anaphor.
Statistics on the model are printed at the end of the file: The total number of instances, the number of partially
correct predictions, the number of correct predictions, and the accuracy calculated as the number of correct
predictions divided by the total number of instances. At the end of the file, the 10 most frequent predictions
are printed along with their frequencies.

Listing 3.16: The updated instance from listing 3.15
Not in Context: 1785,han,mene,føre*til,Sokrates,Aristoteles: Correct!Sokrates(5.00000,2),

rasjonalist(2.00000,4),
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This model reaches an accuracy of 45.06%while drastically reducing the problem of overfitting. The number
of correct classifications is 210, while the number of partially correct classifications is 62. As shown in ta-
ble 3.9, the frequency of Sofie is considerably lower than the ones achieved by the IB1 algorithm in table 3.8a,
and on par with the actual frequency of Sofie in the test set in table 3.7c. If the partially correct predictions
are counted towards the number of correct predictions, an accuracy of 58.36% is reached.

Table 3.9: The 10 most frequent predicted classes for the IB1-fuzzy model

class freq. %

Sofie 204 43.78
menneske 55 11.80
filosof 20 4.29
Sokrates 14 3.00
pappa 8 1.72
fornuft 5 1.07
vann 4 0.86
mor 4 0.86
kvinne 3 0.64
natur 3 0.64

3.8 An ontology model

The k-NN algorithm discussed in the previous section categorizes antecedents based on a metric that em-
phasizes co-occurrences in an identical context as the anaphor, as the nearest neighbour is the one where all
the features are equal. Eiken [2005] argues that antecedents that co-occur in similar contexts as the anaphor
will also aid in the task of anaphora resolution, and describes a method for calculating this similarity in three
steps:

level 0: words which co-occur with the target predicate are returned

level 1: words which occur in the same context as the target argument are returned

level 2: words which occur in the same context as the words found in level 1 are returned

By examining which words occurred in each others context, Eiken compiled six associated concept classes
[Eiken, 2005, p. 73]. Given the small data set of 195 EPAS used in her experiment, manually compiling these
classes was a surmountable task, but doing the same with the 37 608 EPAS in my data set is not possible.
This necessitates the need for another method for representing the similarities between words.

3.8.1 Grouping words

As acquiring the necessary overview to group words in general association classes is not feasible on a big
data set, an alternative is to group the words at a word-level. Instead of constructing new overreaching data
structures to group words, each word can contain a set of words that it is similar to, as specified in the similars
attribute in the Lemma.pm class. To find the similar words, the associate.pl script is used, taking the extracted
EPAS from section 3.4.1 as input and outputting a list of Lemmas expanded with their similar lemmas. The
source code for the script is shown in listing B.6. The script is an adaptation of the algorithm specified by
[Eiken, 2005, p. 72]:

For each predicate:

1. Level 0:
What is ARG1 and ARG2 in the corpus/EPAS list?
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2. Level 1:
For each ARG1 = x that was found in 1:
In connection with which other predicates is ARG1 also=x?
For each of these predicates:
Which other words occur as ARG1

Produces a list of words which occur in the same contexts as x

3. Level 2:
For each word = y in the list from level 1:
Which other predicates does this word also co-occur with?
For each of these predicates:
Which other words occur as ARG1?

Produces a list of words which occur in the same contexts as y

My scripts starts by extracting all unique lemmas L that appear as arg1 in the EPAS list A and are marked as
a noun in the attribute attribute. This corresponds to Level 0 in Eiken’s algorithm. For each lemma x ∈ L, all
EPAS B where the lemma from its argument 1 is equal to x are extracted. For each EPAS z ∈ B, all arg1 that
appear in EPAS y ∈ A where pred(y) = pred(z)∧arg2(y) = arg2(z) are extracted. These lemmas x′ make
up the list of words that occur in the same context as x. One lemma x′ can appear in multiple equal contexts,
and if that is the case the total number of equal contexts where x′ appears are recorded in the frequency
attribute of x′. In that way, the frequency of lemma x′ is the number of times that lemma appears in the same
context as the lemma x. All the lemmas x′ are passed to the similars attribute of the lemma x.

For example: If the lemma x is the word father, all EPAS that have father as the first argument are extracted.
This could result in the set {(be,father,home), (make*it,father,cozy)}. For each of these EPAS the words that
appear in the same context as father are extracted. These contexts can for example be {(be,mother,home),
(be,Sofie,home), (make*it,Sofie,cozy)}. The lemmas x′ that would be extracted in this case would be mother
with a frequency of 1 and Sofie with a frequency of 2.

At this point in the algorithm a total of 2808 lemmas are processed, and 1 393 804 similar words are associated
with their respective lemmas. This took 5,8 hours of processing time on my personal computer, so processing
all the 1 393 804 words for Level 2 in Eiken’s algorithm would take approximately 165 days, making this
step highly impractical. In any case, an average of 496 similar words were associated with each lemma, with
a median value of 380. This should be a sufficient number of associated words, eliminating the need for the
taxing second level in Eiken’s algorithm. As an example of the similar words produced by this algorithm, see
listing 3.17 for an excerpt of the words similar to Platon sorted by frequency. Note that several philosophers
are represented, including Aristoteles, Marx, Sokrates, Kant, Alberto, Kierkegaard, Descartes and Hume. The
list is stored in a YAML file, args.yaml, containing 2808 Lemma.pm objects.

Listing 3.17: Similar words to Platon
menneske(95),Sofie(77),verden(76),filosof(72),hvor(67),være(61),Gud(58),fornuft(55),Libanon

(54),Aristoteles(53),ha-perf(50),vesen(48),eksempel(47),far(46),skyld(42),Hilde(42),liv
-life(41),dag(41),Marx(41),Sokrates(40),Kant(40),natur(38),filosofi(36),Alberto(33),dyr
(32),mor(32),Kierkegaard(32),spørsmål(30),år(26),øye(26),Descartes(26),mann(25),Hume
(25),rettighet(25),ord(24),tall(23),tilværelse(23),erkjennelse(22),tid(22),bord-table
(22),gang-time(21),pappa(21),skole(21),idé(21),frelse(21),renessanse(21),barn(20),Hegel
(20),kanin(19),root-kunne(19),slik(19),Jesus(18),filosofilærer(18),tanke(18),person(18)
,Plotin(18),klokke(18),hest(17),kristendom(17),vann(17),forandring(17),del(17),
vitenskap(17),Demokrit(17),tro(17),drøm(17),Sartre(17),brev(16),ting-thing(16),hjelp
(16),lov-law(16),død(15),bilde(15),stund(15),forhold(15),øyeblikk(15),bevissthet(15),
Kristus(14),kvinne(14),skje(14),virkelighet(14),prosess(14),major(14),i(14),for(14),
side(13),mat(13),middelalder(13),stol(13),Buddha(13),romantikk(13),gang-corridor(12),
flosshatt(12),si(12),vinter(12),sol(12),metode(12),teater(12),bål(12),betydning(12),
kirke(12),ånd(12),Berkeley(12),hvordan(12),Freud(12),hytte(11),time(11),_date_(11)
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3.9 Aggregating the two models

The ontology model made in section 3.8 bears some similarities to the way the IB1 classifier finds the nearest
neighbour to a set of features, mainly in the way the similarity metric works. However, while the IB1 classifier
requires a set of features as input to return similar words, the ontology model can return similar words based
on a single word input. This ability can be put to use in the fuzzy classification model described in section 3.7.
For several of the instances classified by the fuzzy classifier, the set of nearest neighbours contains very few
candidates, some examples of which can be seen in listing 3.18.

Listing 3.18: Instances with few nearest neighbours
871,han,velge,epist-ville,Parmenides,far { Sofie 1.00000, far 2.00000, mor 1.00000,

Aristoteles 1.00000, Alberto 1.00000, utvalg 1.00000 }
897,han,bruke,ord,Heraklit,Spinoza { Jesus 1.00000, Spinoza 2.00000 }
903,han,si,root-kunne,Heraklit,Alberto { Alberto 1.00000 }
1723,han,være,oppta,Sokrates,Platon { Platon 2.00000, estetiker 1.00000, Marx 1.00000 }

This poses a problem for the model, as fewer candidates means that the probability that a candidate appears in
the context is lower. In these cases, the similar words from the ontology model can be used. Consider the last
instance in listing 3.18 where Platon is the predicted antecedent, while Sokrates is the correct antecedent. The
set of nearest neighbours only contain two other candidates than Platon, and none of them is Sokrates. Recall,
however, that Sokrates is marked as a similar word to Platon in the ontology model, as shown in listing 3.17.
By expanding the set of classification candidates with the words that are similar to Platon, estetiker and Marx,
Sokrates is added to the set. This is done for any instance where the number of nearest neighbours is below a
cutoff value. The fuzzyModel.pl script is modified to include this method and saved as the aggregateModel.pl
script.

With a cutoff value of 5, an accuracy of 45.49% is reached, where there are 212 correct classifications and
115 partially correct classifications. If the partially correct classifications are counted towards the number of
correct classifications, an accuracy of 70.17% is reached.

With a cutoff value of 10, an accuracy of 44.42% is reached, where there are 207 correct classifications
and 144 partially correct classifications. If the partially correct classifications are counted towards the num-
ber of correct classifications, an accuracy of 75.32% is reached. The distribution of the frequencies of the
classifications can be seen in table 3.10.

Table 3.10: The 10 most frequent predicted classes for the aggregated models

(a) With a cutoff value of 5

class freq. %

Sofie 245 52.58
menneske 58 12.45
filosof 27 5.79
Sokrates 14 3.00
verden 6 1.29
fornuft 6 1.29
liv-life 5 1.07
flosshatt 4 0.86
vann 4 0.86
natur 4 0.86

(b) With a cutoff value of 10

class freq. %

Sofie 237 50.86
menneske 67 14.38
filosof 24 5.15
Sokrates 14 3.00
verden 9 1.93
fornuft 8 1.72
natur 7 1.50
liv-life 6 1.29
vann 5 1.07
gang-time 4 0.86

As we can see, the frequency of Sofie is higher than with the fuzzy model in table 3.9, but it is still lower
than the IB1 algorithm in table 3.8a. This rise in frequency can be attributed to the ontology model having the
same bias towards Sofie as the IB1 model. The accuracy of the model is not affected much compared to the
fuzzy model, but the number of partially correct classifications is considerably higher. This is promising, but
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the mismatch between the number of correct and partially correct predictions indicates that the frequencies
of the candidates alone are not sufficient in selecting the correct antecedent.

3.10 Applying some heuristics

Having produced a list of semantically probable antecedent candidates for many of the instances in the test
set, the challenge now lies in selecting the correct antecedent among them. Most anaphora resolution systems
use morphosyntactic features to restrict the selection of antecedent candidates, as discussed in section 2.1.1.
These featured are extracted by parsing the text with one or more parsers that tag the text with part-of-speech,
morphological and syntactic information. The f-structure in INESS contains many such features, and using
the data structure described in section 3.3 these features can be maintained throughout the anaphora resolution
process. Using these features, a number of selectional constraints can be applied to help selecting the correct
antecedent candidate. This is done by adjusting the frequency score for each antecedent candidate based on
it’s morphosyntacitc features. Some of the methods provided in this section are a bit crude, but serves to
demonstrate a proof of concept for further development of this anaphora resolution model.

With the exception of the recency weighting, the selectional constraints used in this section are minimal re-
quirements for any pronominal antecedent candidate. They will in principle only disqualify clearly unsuitable
antecedent candidates without changing the internal ordering of the candidates’ semantic probability.

3.10.1 Recency weighting

According to [Jurafsky and Martin, 2009, p. 682], most theories of reference ranks recently introduced entities
higher than those introduced further back. Our model already incorporates a notion of this by restricting the
choice of antecedent candidates to a context of 9 sentences, but the ranking of the resulting candidates can
still be adjusted with the distance metric. The aggregateModel.pl script is modified to apply a modified score
s to the frequency score f of the antecedent candidates based on its distance d to the anaphor so that the
candidates with a closer distance to the anaphor receive a higher score. Two experiments were run, where s
was calculated by a quadratic function 3.1 and a linear function 3.2.

s =
f

(d+ 1)2
(3.1)

s =
f

(d+ 1) ∗ 20
(3.2)

These experiments does not affect the accuracy of the model much, with an accuracy of 45.06% for the
quadratic function and 45.49% for the linear function, but they alter the distribution of which antecedents
were correctly predicted compared to the basic aggregated model, as seen in table 3.11. In a model where
there is considerable bias towards the most frequent class, Sofie, this can improve the accuracy for classifying
antecedents other than Sofie, resulting in an improved accuracy when combined with other constraints, as seen
in section 3.10.4.

3.10.2 Gender agreement

While the grammatical gender of the anaphor does not need to be congruent with the gender of the antecedent,
the semantic gender of the antecedent can have an effect. The noun far (father) has a masculine grammatical
gender in Norwegian, but it also has a clear semantic masculine gender and will typically co-refer with han
(he). This is unlike the masculine noun hund (dog) which can co-refer with both han (he) and hun (her). Nand
[2008] used this notion of a semantic gender to pre-process the nouns to group them by semantic gender based
on structures such as Mr. and Mrs. and whether they are members of a set of masculine or feminine terms.
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Table 3.11: The 10 most frequent correctly predicted classes for the distance weighted model

(a) For equation 3.1

class freq.

Sofie 181
Sokrates 14
mor 2
filosof 2
Tor 2
pappa 1
Hermes 1
Heraklit 1
Thales 1
Anaxagoras 1

(b) For equation 3.2

class freq.

Sofie 185
Sokrates 10
filosof 3
Demokrit 2
mor 2
Heraklit 1
Thales 1
mamma 1
Hermes 1
mann 1

(c) Fuzzy model with cutoff = 5

class freq.

Sofie 187
Sokrates 13
filosof 3
mor 2
Thales 1
Demokrit 1
mann 1
Hermes 1
Anaxagoras 1
Heraklit 1

Unfortunately, no comprehensive resource of nouns marked with semantic gender exists for Norwegian save
for a particular class of nouns, proper nouns.

INESS provides a list1 of 16 345 first names marked with gender. Granted, some names can be used by
both genders, such as Kim and Chris, but this applies to only 711 of the names in the list. The names of the
philosophers figuring as antecedent candidates were added to the list together with their gender.

The first letter of any proper noun in the f-structure in INESS is capitalized, unlike all regular nouns where
all the letters are lowercase. This lets us identify any proper nouns that appear as antecedent candidates and
we can consult the list of first names to see if they are congruent with the anaphor. The anaphor is included
as the second feature in the test set, and its gender is masculine for han and feminine for hun.

The aggregateModel.pl script is updated with a new definition of when the predicted class is correct: If the
predicted class is a proper noun where the gender is not congruent with the anaphor, the instance is marked
with “Gender doesn’t match: ”, and the prediction is reassessed in the same manner as in section 3.7.2. If the
gender of any of the antecedent candidates are incongruent with the anaphor, the candidate is discarded. A
proper noun is only counted as incongruent if the name can be located in the list of first names.

Implementing the selectional restraint of gender agreement on proper nouns increased the accuracy consid-
erably with an accuracy of 47.42%, 221 correctly classified candidates and 106 partially correct candidates.
The frequency distribution of predicted and correctly classified classes is shown in table 3.12. Note that the
number of partially correct has decreased by 9 and the number of correctly classified candidates have in-
creased by 9 in comparison to the aggregate model with a cutoff of 5 in section 3.9. This shows that the
increase in accuracy is due to a better ranking of the antecedent candidates.

3.10.3 Animacy

As shown by Nøklestad [2009], one of the most valuable features for pronominal anaphora resolution is ani-
macy information. Information on the animacy of English nouns is usually extracted from WordNet, but no
such readily available resource exists for the Norwegian language. Nøklestad described a method for auto-
matically extracting animacy information from the World Wide Web which achieved a good performance,
but it is beyond the scope of this project to implement that. I can, however, use a proxy for animate nouns
which will serve as a proof of concept. Recall from section 3.10.2 that proper nouns among the antecedent
candidates can be located by seeing if the first letter of the lemma is capitalized. Proper nouns are used to

1http://clarino.uib.no/iness/resources/morphology/names/no-first-names.txt
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Table 3.12: The 10 most frequent classes for the gender agreement model

(a) Predicted classes

class freq. %

Sofie 221 47.42
menneske 67 14.38
filosof 28 6.01
Sokrates 15 3.22
pappa 8 1.72
fornuft 6 1.29
verden 6 1.29
liv-life 5 1.07
mor 5 1.07
vann 4 0.86

(b) Correct classes

class freq.

Sofie 187
Sokrates 14
pappa 4
mann 3
filosof 3
hund 2
mor 2
Anaxagoras 1
Heraklit 1
Hermes 1

denote several entities like countries, places and companies, but the most common type of proper noun in
this material is the personal name, and any personal name is by definition animate.

The aggreagateModel.pl script is modified to increase the score of any antecedent candidate identified as
a proper noun. Three experiments are run where the score is increased by a factor of 5, 10 and 20. The
experiments reached an accuracy of 49.57%, 53.00% and 53.21% respectively. The effect of increasing
the factor seems to have diminishing returns after a factor of 10. The frequencies of the correct predictions
are shown in table 3.13. Note that the increase in overall accuracy comes at the expense of lowering the
accuracy for nouns like mor, far and hund that, while being animate nouns, are not considered as such by this
approximate method.

Table 3.13: The 10 most frequent correctly predicted classes for the animacity model

(a) With a factor of 5

class freq.

Sofie 195
Sokrates 21
Demokrit 3
Tor 2
Empedokles 2
mor 1
Thales 1
Aristoteles 1
Heraklit 1
Hermes 1

(b) With a factor of 10

class freq.

Sofie 197
Sokrates 31
Tor 3
Parmenides 3
Demokrit 3
Empedokles 2
Heraklit 1
mor 1
Anaxagoras 1
Hermes 1

(c) With a factor of 20

class freq.

Sofie 198
Sokrates 31
Demokrit 3
Tor 3
Parmenides 3
Empedokles 2
Hermes 1
Anaxagoras 1
Heraklit 1
Anaximenes 1

3.10.4 Combining the constraints

The different selectional constraints have up till now been tested in isolation with, different factors for ad-
justing the score of the antecedent candidates for each constraint. In this section I will try a few different
permutations of these constraints and factors to see how they affect the accuracy and the distribution of the
predictions. I will use a cutoff value of 5 as defined in section 3.9 for all of the experiments save the last one.
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Gender and animacy agreement

Because of the diminishing returns when increasing the factor for the animacy concurrence beyond 10, only a
factor of 5 and 10 is considered when adding the gender agreement constraint. For the factor of 5, an accuracy
of 51.07% is observed, an increase from the accuracy of 49.57% without the gender agreement model. For
the factor of 10, an accuracy of 54.93% is observed, also an increase from the accuracy of 53.00% without
the gender agreement model. The frequencies of the correct predictions is shown i table 3.14.

Table 3.14: The 10 most frequent classes for the gender and animacy agreement model

(a) With a factor of 5

class freq.

Sofie 195
Sokrates 22
Demokrit 3
Tor 2
hund 2
Empedokles 2
mann 2
mor 1
Hermes 1
Thales 1

(b) With a factor of 10

class freq.

Sofie 197
Sokrates 34
Parmenides 3
Tor 3
Demokrit 3
hund 2
mann 2
Empedokles 2
Thomas 1
filosof 1

Gender and animacy agreement with recency weighting

The addition of recency weighting of the antecedent candidate scores can potentially serve to mitigate some of
the bias from the animacy agreement constraint where proper nouns are preferred over other animate nouns.
This is apparent for an animacy factor of 5 where an accuracy of 52.57% when the linear distance weighting
is used, an increase from the accuracy of 51.07% without the weighting. The effect disappears, however,
when using an animacy factor of 10 where an accuracy of 53.86% is reached, a lower accuracy than the
accuracy of 54.93% without the weighting. The distribution of correct predictions is shown in table 3.15.

Table 3.15: The 10 most frequent classes for the gender and animacy agreement model with recency weighting

(a) With a factor of 5

class freq.

Sofie 195
Sokrates 28
Tor 3
Demokrit 3
Empedokles 2
mann 2
hund 2
Jesus 1
Hermes 1
mor 1

(b) With a factor of 10

class freq.

Sofie 197
Sokrates 31
Tor 3
Demokrit 3
mann 2
Empedokles 2
hund 2
Thales 1
Hermes 1
Jesus 1
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3.11 Adjusting the model

Given the increase in accuracy provided by the selectional constraints in section 3.10 increasing the number
antecedent candidates should produce an even higher accuracy. One way of doing that is by increasing the
cutoff value described in section 3.9, as this will increase the number of instances in the test set that will be
infused with similar words from the ontology model.

With all the selectional constraints from section 3.10 active, an animacy factor of 10 and a cutoff value of
10, an accuracy of 55.57% is reached. Increasing the cutoff value to 30 does not affect the accuracy, but
the number of partially correct classifications is increased from 92 to 104. This suggests that given a more
accurate selectional constraints model, the accuracy could be increased by increasing the cutoff value.

The recency weighting proved to be inconsistent in affecting the accuracy of the model. When excluding that
from the model, an accuracy of 56.22% is reached for the cutoff value of 30. The distribution of the predicted
and correct classifications is shown in table 3.16.

The number of partially correct candidates can be raised even further if we ignore the assumption that pre-
dictions from the IB1 model that are found within the context are the most probable predictions. Doing this
comes at the cost of lowering the accuracy of correct predictions to 41.63%, but the number of partially
correct candidates sees a heavy increase to 212 candidates. A combination of the correct and partially correct
candidates yields a potential accuracy of 87.12%.

The source code for the final model is shown in listing B.8.

Table 3.16: The 10 most frequent classes for the most accurate model

(a) Predicted classes

class freq. %

Sofie 241 51.72
menneske 45 9.66
Sokrates 45 9.66
Athen 15 3.22
Thomas 11 2.36
Aristoteles 8 1.72
filosof 7 1.50
Gud 6 1.29
vann 5 1.07
Tor 5 1.07

(b) Correct classes

class freq.

Sofie 199
Sokrates 41
Demokrit 4
Parmenides 4
Tor 3
Empedokles 2
Thomas 2
mann 1
Heraklit 1
Aristoteles 1

3.12 Summary of the results

Several different models and combinations of models were presented in the previous sections. A summary of
their accuracy will be presented here along with an abbreviated identification for each model. All the statistics
for the models were extracted from their output file. An extract from the output file for the AG30+GEND+ANI10
model is shown in listing A.4.

IGTREE The decision tree algorithm from TiMBL yields an accuracy of 39.69%, but suffers from overfit-
ting of Sofie. It is described in section 3.6.3.

IB1 The TiMBL implementation for the k-NN algorithm yields an accuracy of 34.97%. The model sufferes
a bit from overfitting of Sofie, but not as much as IGTREE. All following models build on this model.
It is described in section 3.6.3.
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FUZZY The fuzzy model is based on the IB1 model where the whole set of nearest neighbours is used
to form antecedent candidates. The model reaches an accuracy of 45.06% with 62 partially correct
classifications while reducing the overfitting problem. It is described in section 3.7

AG5 and AG10 In the aggreagate model, the ontology model from section 3.8 is used to increase the number
of antecedent candidates. This results in an accuracy of 45.49% with 115 partially correct candidates
when the cutoff value is 5, and an accuracy of 44.42% with 144 partially correct candidates when the
cutoff value is 10. It is described in section 3.9.

AG5+REC-S and AG5+REC-L The recency model is presented in two forms: A square function and a
linear function for weighting the antecedent candidates. The square function yields an accuracy of
45.06% and the linear function yields an accuracy of 45.49%. It is described in section 3.10.1.

AG5+GEND The gender agreement model increases the accuracy to 47.42%. It is described in section 3.10.2.

AG5+ANI5 and AG5+ANI10 and AG5+ANI20 The animacy model comes with three different factors: A
factor of 5 yields an accuracy of 49.57%, a factor of 10 gets 53.00%, and a factor of 20 gets 53.21%.
The model is described in section 3.10.3.

AG5+GEND+ANI5 and AG5+GEND+ANI10 The gender agreement model was added to the animacy
model for the factors of 5 and 10. This yields an accuracy of 51.07% and 54.93% respectively. This
is described in section 3.10.4.

AG5+REC-L+GEND+ANI5 and AG5+REC-L+GEND+ANI10 When the recency weighting is added to
the combination the gender and animacy models, an improved accuracy of 52.57% is reached for the
animacy factor of 5. However, when the animacy factor is 10, the accuracy is decreased to 53.86%
compared to the model without the recency weighting. This is described in section 3.10.4.

AG10+REC-L+GEND+ANI10 and AG30+REC-L+GEND+ANI10 and AG30+GEND+ANI10 Increasing
the cutoff value for the aggregate motel increases the accuracy when all the other models are active.
For a cutoff value of 10, an accuracy of 55.57% is reached, and the accuracy is the same for the cutoff
value of 30. However, the number of partially correct classifications is increased for this cutoff value.
When removing the recency weighting from the model, an accuracy of 56.22% is reached. This is
described in section 3.11.

-CA+AG30+GEND+ANI10 Ignoring the context assumption lowers the accuracy of the model drastically
to an accuracy of 41.63%, but an increase in the number of partially correct candidates increases the
potential accuracy of the model to 87.12%.

A simplified overview of all the results is presented in table 3.17. Note that the number of partially correct
classifications decreases as the accuracy increases until a larger cutoff value is introduced in the last three
models. The introduction of more antecedent candidates has no effect until simple heuristics like gender
agreement for proper nouns and and a bias towards proper nouns is introduced. With more advanced heuristics
for ranking the antecedent candidates, like the improvements for the gender and animacy models discussed
in sections 3.10.2 and 3.10.3, it is anticipated that more of the antecedent candidates will be ranked correctly,
thus improving the accuracy further. This is made plausible by the fact that a clearly inanimate noun, Athen
(Athens), is among the top ranked antecedent candidates in table 3.16a because of the crude animacy model
applied in section 3.10.3.
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Table 3.17: Table over the accuracy of the different models

Model Partially correct Correct Potential accuracy % Accuracy %

IB1 NA 163 NA 34.97
IGTREE NA 185 NA 39.69
-CA+AG30+GEND+ANI10 212 194 87.12 41.63
AG10 144 207 75.32 44.42
FUZZY 62 210 58.37 45.06
AG5+REC-S 117 210 70.17 45.06
AG5 115 212 70.17 45.49
AG5+REC-L 115 212 70.17 45.49
AG5+GEND 106 221 70.17 47.42
AG5+ANI5 96 231 70.17 49.57
AG5+GEND+ANI5 89 238 70.17 51.07
AG5+REC-L+GEND+ANI5 82 245 70.17 52.58
AG5+ANI10 80 247 70.17 53.00
AG5+ANI120 79 248 70.17 53.22
AG5+REC-L+GEND+ANI10 76 251 70.17 53.86
AG5+GEND+ANI10 71 256 70.17 54.94
AG10+REC-L+GEND+ANI10 92 259 75.32 55.58
AG30+REC-L+GEND+ANI10 104 259 77.90 55.58
AG30+GEND+ANI10 101 262 77.90 56.22
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Chapter 4

Final remarks

4.1 Conclusion

In this thesis I have described a method for generating semantically motivated antecedent candidates for use
in pronominal anaphora resolution. While traditional anaphora resolution algorithms both locate and rank
antecedent candidates based on morphosyntactic features, my method takes a novel approach. The fuzzy
classification model in conjunction with the ontology model generates a set of semantically motivated an-
tecedent candidates that are ranked based on the frequency by which they co-occur with the anaphor. After
filtering out the candidates which does not occur within a defined distance from the anaphor, this ordered
set serves as a starting point for different heuristics that can either disqualify candidates from the set, like
the gender agreement heuristic, or give certain features a higher ranking by applying a salience function to
the frequency, as with the animacy heuristic. The fact that these fairly unsophisticated heuristics managed to
reach an accuracy of 56.22% in correctly predicting the antecedent indicates that the co-occurence frequency
scores of the antecedent candidates shows promise as a representation of real-world-knowledge.

As discussed in section 3.1, the material for this project was chosen because it displayed a confined thematic
domain. Being a novel with a protagonist, Sofie, the protagonist was naturally overrepresented in both the
training set and the test set. This created some problems with overfitting in the model, as discussed in sec-
tion 3.6, which may have affected the results. However, the final accuracy of the model is far higher than the
maximum accuracy that overfitting alone can account for.

The semantically ranked antecedent candidates could also see use in other anaphora resolution systems. One
of my models in section 3.11 sacrificed prediction accuracy in favour of providing more antecedent candidates
for the anaphora, ensuring that 87.12% of the anaphora had its antecedent represented in the antecedent
candidate list. In the machine learning system developed by Nøklestad [2009], the co-occurence frequencies
of these antecedent candidates could be used as a numerical feature, thereby adding a semantic representation
to the system.

My method also has the advantage of being fully automatic, provided that an interface to the NorGram parser
in INESS is made. Given a directory of parsed sentences (prolog-files/ ) and a set of anaphora (testSet.csv), a
full anaphora resolution model can be built using the simple shell script shown in listing 4.1.

Listing 4.1: Shell script for executing the model
1 $ perl predicateExtractor.pl prolog-files/ preds.yaml
2 $ perl sentenceExtractor.pl prolog-files/ sentences.yaml
3 $ perl associate.pl preds.yaml similars.yaml
4 $ perl printPreds.pl preds.yaml IdSubstArg1.csv
5 $ timbl -f IdSubstArg1.csv -t testSet.csv -mO:I1-2 > IB1-exp1
6 $ perl fullModel.pl testSet.csv.IB1.O:I1-2.gr.k1.out similars.yaml sentences.yaml 30 | tee

AG30+GEND+ANI10

In addition to constituting an automatic anaphora resolution model, the scripts also form a useful tool set
that can be applied to any text parsed with a ParGram-grammar, as semantic modelling can serve a purpose

35
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in other natural language processing tasks. The script for annotating anaphora may also find use in further
annotation efforts.

4.2 Future work

Given that the material studied in this project only exhibits one thematic domain, material which exhibits
different thematic domains needs to be studied to validate the model’s validity across domains. For the same
reason, material from other genres should also be studied.

Furthermore, as the heuristics applied in section 3.10 only served as a proof of concept to gauge the quality of
the antecedent candidates, improving the heuristics could potentially lead to an accuracy near the 87% mark.
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Appendix A

Listings

Listing A.1: Prolog file format from INESS
1 % -*- coding: utf-8 -*-
2
3 fstructure('Det første stykket hadde hun gått sammen med Jorunn.',
4 % Properties:
5 [
6 'markup_free_sentence'('Det første stykket hadde hun gått sammen med Jorunn.'),
7 'xle_version'('XLE release of Apr 25, 2012 09:37.'),
8 'grammar'('/home/iness/local/xledir/pargram/norwegian/bokmal/bokmal-mrs.lfg'),
9 'grammar_date'('Oct 28, 2013 15:28'),

10 'word_count'('9'),
11 'statistics'('31 solutions, 0.570 CPU seconds, 64.773MB max mem, 1317 subtrees unified'),
12 'rootcategory'('ROOT'),
13 'max_medial_constituent_weight'('25'),
14 'max_medial2_constituent_weight'('20'),
15 'hostname'('node-9')
16 ],
17 % Choices:
18 [
19 ],
20 % Equivalences:
21 [
22 ],
23 % Constraints:
24 [
25 cf(1,eq(attr(var(0),'PRED'),var(15))),
26 cf(1,eq(attr(var(0),'SUBJ'),var(26))),
27 cf(1,eq(attr(var(0),'XCOMP'),var(32))),
28 cf(1,eq(attr(var(0),'TOPIC'),var(2))),
29 cf(1,eq(attr(var(0),'CHECK'),var(13))),
30 cf(1,eq(attr(var(0),'TNS-ASP'),var(30))),
31 cf(1,eq(attr(var(0),'VTYPE'),var(31))),
32 cf(1,eq(attr(var(0),'PERF'),'+')),
33 cf(1,eq(attr(var(0),'STMT-TYPE'),'decl')),
34 cf(1,eq(attr(var(0),'VFORM'),'fin')),
35 cf(1,eq(var(15),semform('ha-perf',55,[var(32)],[var(26)]))),
36 cf(1,eq(attr(var(26),'PRED'),semform('hun',60,[],[]))),
37 cf(1,eq(attr(var(26),'GEND'),var(27))),
38 cf(1,eq(attr(var(26),'NTYPE'),var(28))),
39 cf(1,eq(attr(var(26),'NUM'),var(29))),
40 cf(1,eq(attr(var(26),'CASE'),'nom')),
41 cf(1,eq(attr(var(26),'DEF'),'+')),
42 cf(1,eq(attr(var(26),'GEND-SEM'),'female')),
43 cf(1,eq(attr(var(26),'PERS'),'3')),
44 cf(1,eq(attr(var(26),'PRON-FORM'),'hun')),
45 cf(1,eq(attr(var(26),'PRON-TYPE'),'pers')),
46 cf(1,eq(attr(var(26),'REF'),'+')),
47 cf(1,eq(attr(var(27),'FEM'),'+')),
48 cf(1,eq(attr(var(27),'MASC'),'-')),
49 cf(1,eq(attr(var(27),'NEUT'),'-')),
50 cf(1,eq(attr(var(28),'NSYN'),'pronoun')),
51 cf(1,eq(var(29),'sg')),
52 cf(1,eq(attr(var(32),'PRED'),var(61))),
53 cf(1,eq(attr(var(32),'SUBJ'),var(26))),

39
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54 cf(1,eq(attr(var(32),'OBJ'),var(2))),
55 cf(1,eq(attr(var(32),'ADJUNCT'),var(33))),
56 cf(1,eq(attr(var(32),'CHECK'),var(59))),
57 cf(1,eq(attr(var(32),'VFORM'),'sup')),
58 cf(1,eq(attr(var(32),'VTYPE'),'main')),
59 cf(1,eq(var(61),semform('gå',62,[var(64),var(77)],[]))),
60 cf(1,eq(attr(var(2),'PRED'),semform('stykke',39,[],[]))),
61 cf(1,eq(attr(var(2),'CHECK'),var(4))),
62 cf(1,eq(attr(var(2),'GEND'),var(6))),
63 cf(1,eq(attr(var(2),'NTYPE'),var(7))),
64 cf(1,eq(attr(var(2),'SPEC'),var(10))),
65 cf(1,eq(attr(var(2),'DEF'),'+')),
66 cf(1,eq(attr(var(2),'NUM'),'sg')),
67 cf(1,eq(attr(var(2),'PERS'),'3')),
68 cf(1,eq(attr(var(2),'REF'),'+')),
69 cf(1,eq(attr(var(2),'SEM-TYPE'),'temp')),
70 cf(1,eq(attr(var(4),'_ANTECED'),var(5))),
71 cf(1,eq(attr(var(4),'_DEF-MORPH'),'+')),
72 cf(1,eq(attr(var(4),'_NOUN'),'+')),
73 cf(1,eq(attr(var(4),'_PREDEF'),'+')),
74 cf(1,eq(attr(var(4),'_PREDET'),'+')),
75 cf(1,eq(attr(var(6),'FEM'),'-')),
76 cf(1,eq(attr(var(6),'MASC'),'-')),
77 cf(1,eq(attr(var(6),'NEUT'),'+')),
78 cf(1,eq(attr(var(7),'NSEM'),var(8))),
79 cf(1,eq(attr(var(7),'NSYN'),'common')),
80 cf(1,eq(attr(var(8),'TIME'),var(9))),
81 cf(1,eq(attr(var(8),'COMMON'),'count')),
82 cf(1,eq(attr(var(9),'TEMPNOUN'),'+')),
83 cf(1,eq(attr(var(10),'DET'),var(11))),
84 cf(1,eq(attr(var(10),'ORD'),var(12))),
85 cf(1,eq(attr(var(11),'PRED'),semform('den',2,[],[]))),
86 cf(1,eq(attr(var(11),'DET-TYPE'),'demORart')),
87 cf(1,eq(attr(var(12),'PRED'),semform('første',21,[],[]))),
88 cf(1,eq(attr(var(12),'NUMBER-TYPE'),'ord')),
89 cf(1,in_set(var(53),var(33))),
90 cf(1,eq(var(34),var(53))),
91 cf(1,eq(attr(var(34),'PRED'),var(51))),
92 cf(1,eq(attr(var(34),'OBJ'),var(45))),
93 cf(1,eq(attr(var(34),'CHECK'),var(37))),
94 cf(1,eq(attr(var(34),'PFORM'),'sammen-med')),
95 cf(1,eq(attr(var(34),'PTYPE'),'sem')),
96 cf(1,eq(var(51),semform('sammen-med',86,[var(45)],[]))),
97 cf(1,eq(var(45),var(55))),
98 cf(1,eq(attr(var(45),'PRED'),semform('Jorunn',95,[],[]))),
99 cf(1,eq(attr(var(45),'CHECK'),var(46))),

100 cf(1,eq(attr(var(45),'GEND'),var(47))),
101 cf(1,eq(attr(var(45),'NTYPE'),var(48))),
102 cf(1,eq(attr(var(45),'CASE'),'obl')),
103 cf(1,eq(attr(var(45),'DEF'),'+')),
104 cf(1,eq(attr(var(45),'NUM'),'sg')),
105 cf(1,eq(attr(var(45),'PERS'),'3')),
106 cf(1,eq(attr(var(45),'REF'),'+')),
107 cf(1,eq(attr(var(46),'_ANTECED'),var(39))),
108 cf(1,eq(attr(var(46),'_NE'),'+')),
109 cf(1,eq(attr(var(39),'NUM'),var(40))),
110 cf(1,eq(attr(var(39),'PERS'),var(41))),
111 cf(1,eq(var(40),var(65))),
112 cf(1,eq(var(41),var(66))),
113 cf(1,eq(attr(var(47),'NEUT'),'-')),
114 cf(1,eq(attr(var(48),'NSEM'),var(49))),
115 cf(1,eq(attr(var(48),'NSYN'),'proper')),
116 cf(1,eq(attr(var(49),'PROPER'),var(50))),
117 cf(1,eq(attr(var(50),'PROPER-TYPE'),'name')),
118 cf(1,eq(attr(var(37),'_ANTECED'),var(39))),
119 cf(1,eq(attr(var(53),'PRED'),var(58))),
120 cf(1,eq(attr(var(53),'OBJ'),var(55))),
121 cf(1,eq(attr(var(53),'CHECK'),var(54))),
122 cf(1,eq(attr(var(53),'PFORM'),var(57))),
123 cf(1,eq(attr(var(53),'PTYPE'),'sem')),
124 cf(1,eq(var(58),var(51))),
125 cf(1,eq(attr(var(55),'PRED'),semform('Jorunn',95,[],[]))),
126 cf(1,eq(attr(var(55),'CHECK'),var(56))),
127 cf(1,eq(attr(var(55),'GEND'),var(47))),
128 cf(1,eq(attr(var(55),'NTYPE'),var(48))),
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129 cf(1,eq(attr(var(55),'CASE'),'obl')),
130 cf(1,eq(attr(var(55),'DEF'),'+')),
131 cf(1,eq(attr(var(55),'NUM'),'sg')),
132 cf(1,eq(attr(var(55),'PERS'),'3')),
133 cf(1,eq(attr(var(55),'REF'),'+')),
134 cf(1,eq(var(56),var(46))),
135 cf(1,eq(var(297),var(290))),
136 cf(1,eq(var(54),var(37))),
137 cf(1,eq(var(299),var(301))),
138 cf(1,eq(var(57),'sammen-med')),
139 cf(1,eq(var(302),var(304))),
140 cf(1,eq(attr(var(59),'_AUX1COMP'),'+')),
141 cf(1,eq(attr(var(59),'_SUPINE'),'+')),
142 cf(1,eq(attr(var(59),'_TOPVP'),'-')),
143 cf(1,eq(var(64),var(26))),
144 cf(1,eq(attr(var(64),'NUM'),var(65))),
145 cf(1,eq(attr(var(64),'PERS'),var(66))),
146 cf(1,eq(var(65),var(29))),
147 cf(1,eq(var(66),'3')),
148 cf(1,eq(attr(var(13),'_ANTECED'),var(5))),
149 cf(1,eq(attr(var(13),'_MAIN-CL'),'+')),
150 cf(1,eq(attr(var(30),'MOOD'),'indicative')),
151 cf(1,eq(attr(var(30),'TENSE'),'past')),
152 cf(1,eq(var(31),'aux')),
153 cf(1,eq(attr(var(69),'LEFT_SISTER'),var(70))),
154 cf(1,eq(attr(var(70),'LEFT_SISTER'),var(71))),
155 cf(1,eq(attr(var(70),'RIGHT_SISTER'),var(69))),
156 cf(1,eq(attr(var(71),'RIGHT_DAUGHTER'),var(72))),
157 cf(1,eq(attr(var(71),'RIGHT_SISTER'),var(70))),
158 cf(1,eq(var(73),var(32))),
159 cf(1,eq(attr(var(73),'PRED'),var(61))),
160 cf(1,eq(attr(var(73),'SUBJ'),var(64))),
161 cf(1,eq(attr(var(73),'OBJ'),var(77))),
162 cf(1,eq(attr(var(73),'ADJUNCT'),var(74))),
163 cf(1,eq(attr(var(73),'CHECK'),var(75))),
164 cf(1,eq(attr(var(73),'VFORM'),var(79))),
165 cf(1,eq(attr(var(73),'VTYPE'),'main')),
166 cf(1,eq(var(77),var(2))),
167 cf(1,eq(var(311),var(312))),
168 cf(1,eq(var(313),var(314))),
169 cf(1,eq(var(74),var(33))),
170 cf(1,eq(var(75),var(59))),
171 cf(1,eq(attr(var(75),'_SUPINE'),var(76))),
172 cf(1,eq(attr(var(75),'_TOPVP'),'-')),
173 cf(1,eq(var(76),'+')),
174 cf(1,eq(var(79),'sup')),
175 cf(1,eq(attr(var(86),'LEFT_SISTER'),var(87))),
176 cf(1,eq(attr(var(86),'RIGHT_DAUGHTER'),var(88))),
177 cf(1,eq(var(87),var(230))),
178 cf(1,eq(attr(var(88),'RIGHT_DAUGHTER'),var(89))),
179 cf(1,eq(attr(var(89),'LEFT_SISTER'),var(90))),
180 cf(1,eq(attr(var(90),'LEFT_SISTER'),var(91))),
181 cf(1,eq(attr(var(90),'RIGHT_SISTER'),var(89))),
182 cf(1,eq(attr(var(91),'LEFT_SISTER'),var(92))),
183 cf(1,eq(attr(var(91),'RIGHT_SISTER'),var(90))),
184 cf(1,eq(attr(var(92),'RIGHT_SISTER'),var(91))),
185 cf(1,eq(attr(var(98),'RIGHT_DAUGHTER'),var(69))),
186 cf(1,eq(attr(var(98),'RIGHT_SISTER'),var(99))),
187 cf(1,eq(proj(var(98),'f::'),var(73))),
188 cf(1,eq(attr(var(99),'LEFT_SISTER'),var(100))),
189 cf(1,eq(attr(var(99),'RIGHT_DAUGHTER'),var(86))),
190 cf(1,eq(var(100),var(98))),
191 cf(1,eq(var(106),var(98))),
192 cf(1,eq(attr(var(106),'RIGHT_DAUGHTER'),var(69))),
193 cf(1,eq(proj(var(106),'f::'),var(73))),
194 cf(1,eq(attr(var(163),'RIGHT_DAUGHTER'),var(164))),
195 cf(1,eq(attr(var(163),'RIGHT_SISTER'),var(165))),
196 cf(1,eq(var(164),var(186))),
197 cf(1,eq(attr(var(165),'LEFT_SISTER'),var(163))),
198 cf(1,eq(attr(var(165),'RIGHT_DAUGHTER'),var(166))),
199 cf(1,eq(attr(var(166),'LEFT_SISTER'),var(167))),
200 cf(1,eq(attr(var(166),'RIGHT_DAUGHTER'),var(169))),
201 cf(1,eq(attr(var(167),'RIGHT_DAUGHTER'),var(168))),
202 cf(1,eq(attr(var(167),'RIGHT_SISTER'),var(166))),
203 cf(1,eq(attr(var(171),'RIGHT_DAUGHTER'),var(172))),
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204 cf(1,eq(attr(var(171),'RIGHT_SISTER'),var(174))),
205 cf(1,eq(attr(var(172),'LEFT_SISTER'),var(173))),
206 cf(1,eq(var(173),var(210))),
207 cf(1,eq(attr(var(174),'LEFT_SISTER'),var(171))),
208 cf(1,eq(attr(var(174),'RIGHT_DAUGHTER'),var(175))),
209 cf(1,eq(attr(var(175),'LEFT_SISTER'),var(176))),
210 cf(1,eq(attr(var(175),'RIGHT_DAUGHTER'),var(184))),
211 cf(1,eq(attr(var(176),'RIGHT_DAUGHTER'),var(177))),
212 cf(1,eq(attr(var(176),'RIGHT_SISTER'),var(175))),
213 cf(1,eq(attr(var(177),'RIGHT_DAUGHTER'),var(178))),
214 cf(1,eq(attr(var(178),'LEFT_SISTER'),var(179))),
215 cf(1,eq(attr(var(179),'LEFT_SISTER'),var(180))),
216 cf(1,eq(attr(var(179),'RIGHT_SISTER'),var(178))),
217 cf(1,eq(attr(var(180),'LEFT_SISTER'),var(181))),
218 cf(1,eq(attr(var(180),'RIGHT_SISTER'),var(179))),
219 cf(1,eq(attr(var(181),'LEFT_SISTER'),var(182))),
220 cf(1,eq(attr(var(181),'RIGHT_DAUGHTER'),var(183))),
221 cf(1,eq(attr(var(181),'RIGHT_SISTER'),var(180))),
222 cf(1,eq(attr(var(182),'RIGHT_SISTER'),var(181))),
223 cf(1,eq(attr(var(184),'RIGHT_DAUGHTER'),var(185))),
224 cf(1,eq(var(185),var(99))),
225 cf(1,eq(attr(var(185),'LEFT_SISTER'),var(98))),
226 cf(1,eq(attr(var(186),'LEFT_SISTER'),var(187))),
227 cf(1,eq(attr(var(186),'RIGHT_DAUGHTER'),var(174))),
228 cf(1,eq(attr(var(187),'RIGHT_DAUGHTER'),var(188))),
229 cf(1,eq(attr(var(187),'RIGHT_SISTER'),var(186))),
230 cf(1,eq(attr(var(188),'LEFT_SISTER'),var(189))),
231 cf(1,eq(attr(var(188),'RIGHT_DAUGHTER'),var(194))),
232 cf(1,eq(attr(var(189),'RIGHT_DAUGHTER'),var(190))),
233 cf(1,eq(attr(var(189),'RIGHT_SISTER'),var(188))),
234 cf(1,eq(attr(var(190),'LEFT_SISTER'),var(191))),
235 cf(1,eq(attr(var(191),'LEFT_SISTER'),var(192))),
236 cf(1,eq(attr(var(191),'RIGHT_SISTER'),var(190))),
237 cf(1,eq(attr(var(192),'LEFT_SISTER'),var(193))),
238 cf(1,eq(attr(var(192),'RIGHT_SISTER'),var(191))),
239 cf(1,eq(attr(var(193),'RIGHT_SISTER'),var(192))),
240 cf(1,eq(attr(var(194),'LEFT_SISTER'),var(195))),
241 cf(1,eq(attr(var(194),'RIGHT_DAUGHTER'),var(204))),
242 cf(1,eq(attr(var(195),'RIGHT_DAUGHTER'),var(196))),
243 cf(1,eq(attr(var(195),'RIGHT_SISTER'),var(194))),
244 cf(1,eq(attr(var(196),'LEFT_SISTER'),var(197))),
245 cf(1,eq(attr(var(196),'RIGHT_DAUGHTER'),var(203))),
246 cf(1,eq(attr(var(197),'LEFT_SISTER'),var(198))),
247 cf(1,eq(attr(var(197),'RIGHT_SISTER'),var(196))),
248 cf(1,eq(attr(var(198),'LEFT_SISTER'),var(199))),
249 cf(1,eq(attr(var(198),'RIGHT_DAUGHTER'),var(202))),
250 cf(1,eq(attr(var(198),'RIGHT_SISTER'),var(197))),
251 cf(1,eq(attr(var(199),'LEFT_SISTER'),var(200))),
252 cf(1,eq(attr(var(199),'RIGHT_SISTER'),var(198))),
253 cf(1,eq(attr(var(200),'LEFT_SISTER'),var(201))),
254 cf(1,eq(attr(var(200),'RIGHT_SISTER'),var(199))),
255 cf(1,eq(attr(var(201),'RIGHT_SISTER'),var(200))),
256 cf(1,eq(attr(var(204),'RIGHT_DAUGHTER'),var(205))),
257 cf(1,eq(attr(var(205),'LEFT_SISTER'),var(206))),
258 cf(1,eq(attr(var(206),'LEFT_SISTER'),var(207))),
259 cf(1,eq(attr(var(206),'RIGHT_SISTER'),var(205))),
260 cf(1,eq(attr(var(207),'LEFT_SISTER'),var(208))),
261 cf(1,eq(attr(var(207),'RIGHT_SISTER'),var(206))),
262 cf(1,eq(attr(var(208),'LEFT_SISTER'),var(209))),
263 cf(1,eq(attr(var(208),'RIGHT_SISTER'),var(207))),
264 cf(1,eq(attr(var(209),'RIGHT_SISTER'),var(208))),
265 cf(1,eq(attr(var(210),'LEFT_SISTER'),var(211))),
266 cf(1,eq(attr(var(210),'RIGHT_SISTER'),var(172))),
267 cf(1,eq(attr(var(211),'RIGHT_DAUGHTER'),var(212))),
268 cf(1,eq(attr(var(211),'RIGHT_SISTER'),var(210))),
269 cf(1,eq(var(219),var(187))),
270 cf(1,eq(attr(var(219),'RIGHT_DAUGHTER'),var(188))),
271 cf(1,eq(attr(var(230),'RIGHT_DAUGHTER'),var(231))),
272 cf(1,eq(attr(var(230),'RIGHT_SISTER'),var(86))),
273 cf(1,eq(attr(var(231),'LEFT_SISTER'),var(232))),
274 cf(1,eq(attr(var(231),'RIGHT_DAUGHTER'),var(236))),
275 cf(1,eq(attr(var(232),'RIGHT_DAUGHTER'),var(233))),
276 cf(1,eq(attr(var(232),'RIGHT_SISTER'),var(231))),
277 cf(1,eq(attr(var(233),'LEFT_SISTER'),var(234))),
278 cf(1,eq(attr(var(233),'RIGHT_DAUGHTER'),var(235))),
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279 cf(1,eq(attr(var(234),'RIGHT_SISTER'),var(233))),
280 cf(1,eq(var(132),var(26))),
281 cf(1,eq(attr(var(132),'PRED'),semform('hun',60,[],[]))),
282 cf(1,eq(attr(var(132),'GEND'),var(133))),
283 cf(1,eq(attr(var(132),'NTYPE'),var(28))),
284 cf(1,eq(attr(var(132),'CASE'),'nom')),
285 cf(1,eq(attr(var(132),'DEF'),'+')),
286 cf(1,eq(attr(var(132),'GEND-SEM'),'female')),
287 cf(1,eq(attr(var(132),'NUM'),'sg')),
288 cf(1,eq(attr(var(132),'PERS'),'3')),
289 cf(1,eq(attr(var(132),'PRON-FORM'),'hun')),
290 cf(1,eq(attr(var(132),'PRON-TYPE'),'pers')),
291 cf(1,eq(attr(var(132),'REF'),'+')),
292 cf(1,eq(var(133),var(27))),
293 cf(1,eq(attr(var(133),'FEM'),'+')),
294 cf(1,eq(attr(var(133),'MASC'),'-')),
295 cf(1,eq(attr(var(133),'NEUT'),'-')),
296 cf(1,eq(var(319),var(292))),
297 cf(1,eq(var(320),var(294))),
298 cf(1,eq(var(127),var(45))),
299 cf(1,eq(attr(var(127),'PRED'),semform('Jorunn',95,[],[]))),
300 cf(1,eq(attr(var(127),'CHECK'),var(128))),
301 cf(1,eq(attr(var(127),'GEND'),var(47))),
302 cf(1,eq(attr(var(127),'NTYPE'),var(48))),
303 cf(1,eq(attr(var(127),'DEF'),'+')),
304 cf(1,eq(attr(var(127),'NUM'),'sg')),
305 cf(1,eq(attr(var(127),'PERS'),'3')),
306 cf(1,eq(attr(var(127),'REF'),'+')),
307 cf(1,eq(var(322),'obl')),
308 cf(1,eq(var(128),var(46))),
309 cf(1,eq(attr(var(128),'_ANTECED'),var(129))),
310 cf(1,eq(attr(var(128),'_NE'),'+')),
311 cf(1,eq(var(129),var(39))),
312 cf(1,eq(attr(var(129),'NUM'),var(130))),
313 cf(1,eq(attr(var(129),'PERS'),var(131))),
314 cf(1,eq(var(130),var(40))),
315 cf(1,eq(var(131),var(41))),
316 cf(1,eq(var(323),var(325))),
317 cf(1,eq(var(326),var(290)))
318 ],
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Listing A.2: Results of IB1 model in TiMBL
Examine datafile 'IdSubstArg1.csv' gave the following results:
Number of Features: 4
InputFormat : C4.5

Phase 1: Reading Datafile: IdSubstArg1.csv
Start: 0 @ Tue Nov 10 19:09:30 2015
Finished: 4093 @ Tue Nov 10 19:09:30 2015
Calculating Entropy Tue Nov 10 19:09:30 2015
Lines of data : 4093
DB Entropy : 8.1733532
Number of Classes : 1030

Feats Vals InfoGain GainRatio
1 (ignored)
2 (ignored)
3 595 3.3810489 0.55539440
4 1796 6.4095428 0.64932533

Preparation took 0 seconds, 24 milliseconds and 202 microseconds
Feature Permutation based on GainRatio/Values :
< 3, 4, 1, 2 >
Phase 2: Building multi index on Datafile: IdSubstArg1.csv
Start: 0 @ Tue Nov 10 19:09:30 2015
Finished: 4093 @ Tue Nov 10 19:09:30 2015

Phase 3: Learning from Datafile: IdSubstArg1.csv
Start: 0 @ Tue Nov 10 19:09:30 2015
Finished: 4093 @ Tue Nov 10 19:09:30 2015

Size of InstanceBase = 6409 Nodes, (256360 bytes), 26.51 % compression
Learning took 0 seconds, 45 milliseconds and 134 microseconds
Examine datafile 'testSet.csv' gave the following results:
Number of Features: 4
InputFormat : C4.5

Starting to test, Testfile: testSet.csv
Writing output in: testSet.csv.IB1.O:I1-2.gr.k1.out
Algorithm : IB1
Global metric : Overlap
Deviant Feature Metrics:(none)
Ignored features : { 1, 2 }
Weighting : GainRatio
Feature 1 : 0.000000000000000
Feature 2 : 0.000000000000000
Feature 3 : 0.555394399348072
Feature 4 : 0.649325325756339

Tested: 1 @ Tue Nov 10 19:09:30 2015
Tested: 2 @ Tue Nov 10 19:09:30 2015
Tested: 3 @ Tue Nov 10 19:09:30 2015
Tested: 4 @ Tue Nov 10 19:09:30 2015
Tested: 5 @ Tue Nov 10 19:09:30 2015
Tested: 6 @ Tue Nov 10 19:09:30 2015
Tested: 7 @ Tue Nov 10 19:09:30 2015
Tested: 8 @ Tue Nov 10 19:09:30 2015
Tested: 9 @ Tue Nov 10 19:09:30 2015
Tested: 10 @ Tue Nov 10 19:09:30 2015
Tested: 100 @ Tue Nov 10 19:09:30 2015
Ready: 466 @ Tue Nov 10 19:09:30 2015
Seconds taken: 0.4703 (990.87 p/s)

overall accuracy: 0.349785 (163/466), of which 89 exact matches
There were 107 ties of which 39 (36.45%) were correctly resolved
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Listing A.3: Results of IGTREE model in TiMBL
Examine datafile 'IdSubstArg1.csv' gave the following results:
Number of Features: 4
InputFormat : C4.5

Phase 1: Reading Datafile: IdSubstArg1.csv
Start: 0 @ Tue Nov 10 23:18:10 2015
Finished: 4093 @ Tue Nov 10 23:18:10 2015
Calculating Entropy Tue Nov 10 23:18:10 2015
Lines of data : 4093
DB Entropy : 8.1733532
Number of Classes : 1030

Feats Vals InfoGain GainRatio
1 (ignored)
2 (ignored)
3 595 3.3810489 0.55539440
4 1796 6.4095428 0.64932533

Preparation took 0 seconds, 23 milliseconds and 231 microseconds
Feature Permutation based on GainRatio :
< 4, 3, 1, 2 >
Phase 2: Building multi index on Datafile: IdSubstArg1.csv
Start: 0 @ Tue Nov 10 23:18:10 2015
Finished: 4093 @ Tue Nov 10 23:18:10 2015

Phase 3: Learning from Datafile: IdSubstArg1.csv
Start: 0 @ Tue Nov 10 23:18:10 2015
Finished: 4093 @ Tue Nov 10 23:18:10 2015

Size of InstanceBase = 2606 Nodes, (104240 bytes), 70.12 % compression
Learning took 0 seconds, 46 milliseconds and 78 microseconds
Examine datafile 'testSet.csv' gave the following results:
Number of Features: 4
InputFormat : C4.5

Starting to test, Testfile: testSet.csv
Writing output in: testSet.csv.IGTree.gr.out
Algorithm : IGTree
Ignored features : { 1, 2 }
Weighting : GainRatio
Feature 1 : 0.000000000000000
Feature 2 : 0.000000000000000
Feature 3 : 0.555394399348072
Feature 4 : 0.649325325756339

Tested: 1 @ Tue Nov 10 23:18:10 2015
Tested: 2 @ Tue Nov 10 23:18:10 2015
Tested: 3 @ Tue Nov 10 23:18:10 2015
Tested: 4 @ Tue Nov 10 23:18:10 2015
Tested: 5 @ Tue Nov 10 23:18:10 2015
Tested: 6 @ Tue Nov 10 23:18:10 2015
Tested: 7 @ Tue Nov 10 23:18:10 2015
Tested: 8 @ Tue Nov 10 23:18:10 2015
Tested: 9 @ Tue Nov 10 23:18:10 2015
Tested: 10 @ Tue Nov 10 23:18:10 2015
Tested: 100 @ Tue Nov 10 23:18:10 2015
Ready: 466 @ Tue Nov 10 23:18:10 2015
Seconds taken: 0.0048 (96440.40 p/s)

overall accuracy: 0.396996 (185/466)
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Listing A.4: Extract from the output of the AG30+GEND+ANI10 model
Gender doesn't match: 1777,han,oppsøke,pro,Sokrates,Sofie: Correct!Sokrates(290,2),menneske

(235.000,4),Athen(80,4),filosof(75.0000,5),by(11.0000,0),ingen(4.00000,6),orakel
(2.00000,3),øye(1.00000,0),

Gender doesn't match: 1778,han,stille,pro,Sokrates,Sofie: Correct!Sokrates(290,0),menneske
(235.000,0),Athen(80,5),filosof(75.0000,6),spørsmål(26.0000,0),by(11.0000,1),noen
(5.00000,0),ingen(4.00000,7),orakel(2.00000,0),øye(1.00000,1),

Gender doesn't match: 1780,han,mene,finne,Sokrates,Sofie: Correct!Sokrates(1620,1),Athen
(790,7),menneske(286,0),filosof(263,8),fornuft(225,0),erkjennelse(81,1),by(61,3),Delfi
(40,7),rett-right(27,2),ingen(25,9),noen(23,2),athener(12,7),viten(11,8),orakel(4,2),

Gender doesn't match: 1780,han,finne,fundament,Sokrates,Sofie: Athen(2810,7),Sokrates
(1620,1),fornuft(324,0),filosof(286,8),menneske(286,0),Delfi(280,7),by(131,3),
erkjennelse(111,1),noen(51,2),rett-right(32,2),ingen(25,9),viten(23,8),athener(13,7),
orakel(11,2),

In Context: 1781,han,være,rasjonalist,Sokrates,menneske

Not in Context: 1784,han,si,epist-ville,Sokrates,Alberto: menneske(169,3),Sokrates(70,1),by
(43,7),samvittighet(15,1),erkjennelse(13,5),tro(13,3),innsikt(12,2),rett-right(11,6),
rasjonalist(9,3),handling(7,2),fornuft(6,3),noen(5,6),orakel(1,6),

Not in Context: 1785,han,mene,føre*til,Sokrates,Aristoteles: Correct!Sokrates(50,2),
rasjonalist(2.00000,4),

Number of preds: 466
Correct antecedent in candidates: 101
Correctly classified: 262
0.562231759656652

Frequency of predictions:
Sofie, 241
menneske, 45
Sokrates, 45
Athen, 15
Thomas, 11
Aristoteles, 8
filosof, 7
Gud, 6
vann, 5
Tor, 5

Frequency of correct predictions:
Sofie, 199
Sokrates, 41
Demokrit, 4
Parmenides, 4
Tor, 3
Empedokles, 2
Thomas, 2
mann, 1
Heraklit, 1
Aristoteles, 1
Hermes, 1



Appendix B

Source code

Listing B.1: Lemma.pm
1 use utf8;
2
3 package My::Lemma;
4 use base qw(Class::Accessor);
5 __PACKAGE__->mk_accessors(qw(semform attribute var sentenceID similars frequency distance

score));
6
7 sub print_info {
8 my $self = shift;
9 print $self->semform ."(" . $self->attribute . ")\n";

10 }
11
12 1;

Listing B.2: Predicate.pm
1 use utf8;
2 use Lemma;
3
4 package My::Predicate;
5 use base qw(Class::Accessor);
6 __PACKAGE__->mk_accessors(qw(pred arg1 arg2 sentenceID antecedent index));
7 sub print_info {
8 my $self = shift;
9 my $arg1 = $self->arg1->semform;

10 my $arg2 = $self->arg2->semform;
11 if ($self->arg1->attribute) {
12 $arg1 = $self->arg1->semform . "(" . $self->arg1->attribute . ")";
13 }
14 if ($self->arg2->attribute) {
15 $arg2 = $self->arg2->semform . "(" . $self->arg2->attribute . ")";
16 }
17 print $self->sentenceID . ": " . $self->pred . "," . $arg1 . "," . $arg2 . "\n";
18 }
19
20 sub get_pred {
21 my $self = shift;
22 return $self->pred . "," . $self->arg1->semform . "," . $self->arg2->semform;
23 }
24
25 sub get_ant {
26 my $self = shift;
27 return $self->pred . "," . $self->arg1->semform . "," . $self->arg2->semform . "," .

$self->antecedent;
28 }
29
30 sub TO_JSON { return { %{ shift() } }; }
31
32 1;

Listing B.3: Sentence.pm

47
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1 use utf8;
2 use Lemma;
3
4 package My::Sentence;
5 use base qw(Class::Accessor);
6 __PACKAGE__->mk_accessors(qw(sentence id lemmas));
7 sub print_info {
8 my $self = shift;
9 print "setningsnr " . $self->id .": " . $self->sentence ."\n";

10 }
11
12 sub get_lemmas {
13 my $self = shift;
14 return $self->lemmas;
15 }
16 1;

Listing B.4: predicateExtractor.pl
1 use strict;
2 use warnings;
3 use Tie::File;
4 use utf8;
5 use Data::Dumper;
6 use YAML qw(Bless DumpFile);
7 use List::MoreUtils qw(uniq);
8 use Predicate;
9 use Sentence;

10 use Lemma;
11
12 $Data::Dumper::Purity = 1;
13
14 my @allPreds;
15 my $dummyArg = My::Lemma->new();
16 $dummyArg->semform("?");
17
18 my $dir = $ARGV[0];
19 my $dumpfile = $ARGV[1];
20
21 opendir DIR, $dir or die "cannot open dir $dir: $!";
22
23
24 while( defined (my $file = readdir DIR)) {
25 if ($file =~ m/\d/) {
26 my @preds = extract_predicates("$dir/$file");
27 if ($preds[0]) {
28 foreach my $pred (@preds) {
29 print $pred->get_pred . "\n";
30 push (@allPreds, $pred);
31 }
32 }
33 }
34
35 }
36
37 closedir DIR;
38
39
40 sub extract_predicates {
41
42 my $sentenceID;
43 my @predVars;
44 our @vforms;
45 my $find_semform;
46 my @preds;
47 our @evaluatedVars;
48
49 my $file = shift;
50
51 if ($file =~ m/.*-(\d+)-hr\.pl/) {
52 $sentenceID = $1;
53 #print "ID: " . $sentenceID . "\n";
54 }
55
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56 print $file . "\n";
57
58 open my $filehandle, $file
59 or die "Could not open input file!";
60
61 our @lines = <$filehandle >;
62
63
64
65 # Find verbs.
66 foreach my $line (@lines) {
67
68 if ($line =~ m/.*var\(([0-9]+)\).*'VFORM'.*/) {
69 my $predLine = $line . "\n";
70 my $verbVar = $1;
71 push (@vforms, $verbVar);
72 }
73 }
74
75 @vforms = uniq(@vforms);
76
77
78 # Find predicates
79 foreach my $var (@vforms) {
80 foreach my $line (@lines) {
81 if ($line =~ m/var\($var\).*'PRED'\),var\(([0-9]+)\)/) {
82 my $predVar = $1;
83 push (@predVars, $predVar);
84 }
85 if ($line =~ m/var\($var\),'PRED'\),semform/) {
86 push (@predVars, $var);
87 }
88 }
89 }
90
91 @predVars = uniq(@predVars);
92
93
94 # Iterate through predicates and locate semforms
95 foreach my $var (@predVars) {
96 #print "predvar: " . $var . "\n";
97 if (find_pred($var, $sentenceID)) {
98 #print find_pred($var, $sentenceID)->get_pred . "\n";
99 push (@preds, find_pred($var, $sentenceID));

100 }
101 }
102
103 close $filehandle;
104
105
106 sub find_word {
107 my $var = shift;
108 my $word = My::Lemma->new();
109
110 if ($var =~ m/[a-zæøåA-ZÆØÅ]+/) {
111 $word->semform($var);
112 } else {
113 $word = find_semform($var, 0, "");
114 }
115 if (!$word->semform) {
116 return $dummyArg;
117 }
118 return $word;
119 }
120
121 sub find_pred {
122 my $var = shift;
123 my $sentenceID = shift;
124 #print "predvar: " . $var . "\n";
125 my $pred = My::Predicate->new;
126 $pred->sentenceID($sentenceID);
127 foreach my $line (@lines) {
128 if ( $line =~ m/.*var\($var\).*semform\('(.*?)',\d+,\[('NULL',|)var\(([0-9]+)\).*?var

\(([0-9]+)\)/){
129 #print "predvar: " . $var . ": ";
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130 #print "1: " . $line;
131 $pred->pred($1);
132 $pred->arg1(find_word($3));
133 $pred->arg2(find_word($4));
134 return $pred;
135 }
136 elsif ( $line =~ m/.*var\($var\).*semform\('(.*?)',\d+,\[('NULL',|)var\(([0-9]+)\)

\]/){
137 #print "predvar: " . $var . ": ";
138 #print "2: " . $line;
139 $pred->pred($1);
140 $pred->arg1(find_word($3));
141 $pred->arg2($dummyArg);
142 return $pred;
143 }
144 elsif ( $line =~ m/.*var\($var\).*semform\('(.*?)',\d+,\[\],\[('NULL',|)var\(([0-9]+)

\)\]/){
145 #print "predvar: " . $var . ": ";
146 #print "3: " . $line;
147 $pred->pred($1);
148 $pred->arg1($dummyArg);
149 $pred->arg2(find_word($3));
150 return $pred;
151 }
152 }
153 return 0;
154 }
155
156 # Recursive subroutine to find the semforms of argument variables.
157 sub find_semform {
158
159 my $var = shift;
160 my $recursions = shift;
161
162
163 my $attribute = shift;
164 my $word = My::Lemma->new();
165 my $semform = "?";
166 #print "semformvar: " . $var . "\n";
167 foreach my $line (@lines) {
168 if ($line =~ m/.*var\($var\).*'PRON-FORM'.*/) {
169 $attribute = "PRON";
170 } elsif ($line =~ m/.*var\($var\).*'VFORM'.*/) {
171 $attribute = "VERB";
172 } elsif ($line =~ m/.*var\($var\).*'NTYPE'.*var\((\d+)\).*/) {
173 $attribute = "SUBST";
174 my $ntypeVar = $1;
175 if (is_proper($ntypeVar)) {
176 $attribute = "PROPER";
177 }
178 }
179 }
180 foreach my $line (@lines) {
181 if ($recursions > 7) {
182 return $dummyArg;
183 }
184
185 if ( $line =~ m/.*var\($var\).*semform.*\('(.*?)',\d.*/) {
186 #print $line;
187 #print $1 . "\n";
188 $word->semform($1);
189 $word->attribute($attribute);
190 if ($1 eq "pro") {
191 #return find_pro_sem($var);
192 $word->attribute("PRON-");
193 }
194 if ($1 eq "hun" || $1 eq "han" || $1 eq "henne" || $1 eq "ham" ) {
195 $word->attribute("PRON+")
196 }
197 } elsif ($line =~ m/.*eq\(var\($var\),var\(([0-9]+)\).*,/) {
198 #print $var . "nopred: " . $1 . "\n";
199 #print $line;
200 #print $1 . "\n";
201 $word = find_semform($1, ++$recursions, $attribute);
202 } elsif ($line =~ m/.*attr\(var\($var\),'PRED'\),var\(([0-9]+)\).*,/) {
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203 #print $var . "pred: " . $1 . "\n";
204 #print $line;
205 #print $1 . "\n";
206 $word = find_semform($1, ++$recursions, $attribute);
207 } elsif ($line =~ m/.*in_set\(var\((\d+)\),var\($var\).*/) {
208 $word = find_semform($1, ++$recursions, $attribute);
209 }
210 }
211 return $word;
212 }
213
214 sub is_proper {
215 my $var = shift;
216 foreach my $line (@lines) {
217 if ($line =~ m/.*var\($var\).*NSYN.*proper.*/) {
218 return 1;
219 }
220 }
221 return 0;
222 }
223
224 sub find_pro_sem {
225 my $var = shift;
226 my $word = My::Lemma->new();
227 $word->semform("lol");
228 my $var2;
229 my $var3;
230 my $spec;
231 my $specpred;
232
233 print "$var\n";
234
235 foreach my $line (@lines) {
236 if ($line =~ m/.*var\(([0-9]+)\).*var\($var\).*/) {
237 print "var: $1\n";
238 $var2 = $1;
239 foreach my $line (@lines) {
240 if ($line =~ m/.*var\($var2\).*NTYPE.*var\(([0-9]+)\).*/) {
241 #print $1 . "\n";
242 } elsif ($line =~ m/.*var\($var2\).*SPEC.*var\(([0-9]+)\).*/) {
243 #print "spec: $1\n";
244 $spec = $1;
245 foreach my $line (@lines) {
246 if ($line =~ m/.*eq.*var\($spec\).*var\(([0-9]+)\).*/) {
247 #print "spec2: $1\n";
248 $specpred = $1;
249 } elsif ($specpred && $line =~ m/.*eq.*var\($specpred\).*semform.*\('(.*?)'

.*/) {
250 #print "$1\n";
251 $word->semform($1);
252 }
253 }
254 }
255 }
256 }
257 }
258 return $word;
259 }
260
261 # remove duplicate preds
262 my @uniquePreds;
263 my $equal = 0;
264 foreach my $candidate (@preds) {
265 foreach my $current (@uniquePreds) {
266 if (equal_preds($candidate, $current)) {
267 $equal = 1;
268 }
269 }
270 if (!$equal) {
271 push (@uniquePreds, $candidate);
272 }
273 }
274 return @uniquePreds;
275
276 } #end extract_predicates
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277
278 sub equal_preds {
279 $a = shift;
280 $b = shift;
281 if ($a->pred eq $b->pred && $a->arg1->semform eq $b->arg1->semform && $a->arg2->semform

eq $b->arg2->semform) {
282 return 1;
283 }
284 return 0;
285 }
286
287
288
289 @allPreds = sort { $a->sentenceID <=> $b->sentenceID } @allPreds;
290
291 foreach my $pred (@allPreds) {
292 $pred->print_info;
293 #print Dumper ($pred);
294 }
295
296 DumpFile($dumpfile, @allPreds);

Listing B.5: sentenceExtractor.pl
1 use strict;
2 use warnings;
3 use Sentence;
4 use Lemma;
5 use utf8;
6 use Data::Dumper;
7 use YAML qw(Bless DumpFile);
8
9

10 my @sentences;
11 my $dir = $ARGV[0];
12 my $dumpfile = $ARGV[1];
13
14 opendir DIR, $dir or die "cannot open dir $dir: $!";
15
16 while( defined (my $file = readdir DIR)) {
17 if ($file =~ m/\d/) {
18 extract_sentences("$dir/$file");
19 }
20 }
21
22 sub extract_sentences {
23 my $sentenceID;
24 my $sentence = My::Sentence->new();
25 my @lemmas;
26
27 my $file = shift;
28
29 if ($file =~ m/.*-(\d+)-hr\.pl/) {
30 $sentenceID = $1;
31 }
32
33 open my $filehandle, $file
34 or die "Could not open input file!";
35
36 our @lines = <$filehandle >;
37
38 foreach my $line (@lines) {
39 # Extract sentece
40 if ($line =~ m/.*markup_free_sentence'\('(.*).\)/i) {
41 $sentence->sentence($1);
42 $sentence->id($sentenceID);
43 }
44 # Extract lemmas
45 if ($line =~ m/var\((\d+)\).*semform\('(.*?)'/) {
46 my $lemma = My::Lemma->new();
47 $lemma->var($1);
48 $lemma->semform($2);
49 $lemma->sentenceID($sentenceID);
50 push (@lemmas, $lemma);
51 }
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52 }
53
54 $sentence->lemmas(@lemmas);
55 if (!$sentence->id) {
56 print "fil: " . $file . "\n";
57 }
58
59 push (@sentences, $sentence);
60 $sentence->print_info;
61 }
62
63 @sentences = sort { $a->id <=> $b->id } @sentences;
64
65 DumpFile($dumpfile, @sentences);

Listing B.6: associate.pl
1 use strict;
2 use warnings;
3 use Tie::File;
4 use utf8;
5 use Predicate;
6 use YAML qw(DumpFile Dump Bless LoadFile);
7 use List::MoreUtils qw(uniq);
8 use Lemma;
9 use Data::Dumper;

10
11 # Variables
12 my $file = $ARGV[0];
13 my $dumpfile = $ARGV[1];
14 warn "Loading preds";
15 my @epas = LoadFile($file);
16 warn "Preds loaded";
17 my %args1;
18 my @args1;
19 my @expandedArg1s;
20
21 my $counter = 1;
22 my $currentArgNumber = 0;
23 if ($ARGV[2]) {
24 $currentArgNumber = $ARGV[2];
25 }
26 $counter = $currentArgNumber +1;
27
28 # Extract unique first arguments
29 foreach my $epa (@epas) {
30 if (!exists($args1{$epa->arg1->semform})) {
31 push @args1, $epa->arg1;
32 }
33 $args1{$epa->arg1->semform}++;
34 }
35
36 my $numberOfArgs = scalar(@args1);
37
38
39 for (my $i = $currentArgNumber; $i < scalar(@args1); $i++) {
40 my $arg1 = $args1[$i];
41 warn "\n";
42 warn "evaluating arg $counter of $numberOfArgs";
43 if (($arg1->attribute eq "SUBST" || $arg1->attribute eq "PROPER") && $arg1->attribute ne

"PRON+" && $arg1->attribute ne "PRON") {
44
45 #print "arg1: " . $arg1->semform . "\n";
46 my $argstring = "arg1: " . $arg1->semform . "\n";
47 my $result = "";
48 my $expandedArg = My::Lemma->new();
49
50 # Find all epas with arg1
51 my @epas_l1;
52 my %epas_l1;
53 foreach my $epa (@epas) {
54 if ($epa->arg1->semform eq $arg1->semform) {
55 push @epas_l1, $epa;
56 $epas_l1{$epa->pred}++;
57 }
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58 }
59
60 # Find other words that are in the same position as arg1
61 my @similar_arg1;
62 my %similar_arg1;
63 foreach my $epa (@epas) {
64 foreach my $epa_l1 (@epas_l1) {
65 if ($epa->pred eq $epa_l1->pred &&
66 $epa->arg2->semform eq $epa_l1->arg2->semform &&
67 $epa->arg1->semform ne $arg1->semform &&
68 $epa_l1->arg2->semform ne "?") {
69 my $semform = $epa->arg1->semform;
70 if ($semform ne "pro" && $semform ne "DUMMY" && $epa->arg1->attribute ne "PRON"

&& $epa->arg1->attribute ne "PRON+") {
71 $similar_arg1{$semform}++;
72 push @similar_arg1, $epa->arg1;
73 }
74 #print "\t\t: " . $epa->print_info . "\n";
75 }
76 }
77 }
78
79 foreach (keys %similar_arg1) {
80 foreach my $similar (@similar_arg1) {
81 if ($similar->semform eq $_) {
82 $similar->frequency($similar_arg1{$_})
83 }
84 }
85 }
86
87 @similar_arg1 = remove_duplicates(\@similar_arg1);
88 #@similar_arg1 = remove_pronouns(\@similar_arg1);
89
90 @similar_arg1 = sort { $b->frequency <=> $a->frequency } @similar_arg1;
91
92 foreach my $similar (@similar_arg1) {
93 if ($similar->frequency > 3) {
94 $result.= $similar->semform . "(" . $similar->frequency . "),";
95 }
96 }
97 if ($similar_arg1[0]) {
98 my $semformToCopy = $arg1->semform;
99 my $attributeToCopy = $arg1->attribute;

100 $expandedArg->semform($semformToCopy);
101 $expandedArg->similars(@similar_arg1);
102 $expandedArg->attribute($attributeToCopy);
103 #push @expandedArg1s, $expandedArg;
104 open my $output, '>>', $dumpfile
105 or die "Could not open $dumpfile";
106 print $output Dump($expandedArg);
107
108 close $output;
109 }
110
111 if ($result) {
112 $result .= "\n\n";
113 print $argstring . $result;
114 }
115
116 }
117 $counter ++;
118 }
119
120
121
122 sub get_lemmas {
123 my $lemmas_string = Dumper(shift);
124 $lemmas_string =~ s/\[/\(/ig;
125 $lemmas_string =~ s/\]/\)/ig;
126 $lemmas_string =~ s/\$VAR1 = //ig;
127 return eval $lemmas_string;
128 }
129
130
131 sub remove_duplicates {
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132 my @candidates = @{$_[0]};
133 my @uniques;
134
135 foreach my $candidate (@candidates) {
136 my $candidateIsUnique = 1;
137 foreach my $unique (@uniques) {
138 if ($candidate->semform eq $unique->semform && $candidate->frequency == $unique->

frequency) {
139 $candidateIsUnique = 0;
140 last;
141 }
142 }
143 if ($candidateIsUnique) {
144 push @uniques, $candidate;
145 }
146 }
147 return @uniques;
148 }
149
150 sub remove_pronouns {
151 my @candidates = @{$_[0]};
152 my @uniques;
153
154 foreach my $candidate (@candidates) {
155 if ($candidate->attribute eq "PRON" && $candidate->attribute eq "PRON+") {
156 warn "Pronomen!";
157 }
158 else {
159 push @uniques, $candidate;
160 }
161 }
162 return @uniques;
163 }

Listing B.7: guiAnnotator.pl
1 use strict;
2 use warnings;
3 use Predicate;
4 use Sentence;
5 use Lemma;
6 use Data::Dumper;
7 use YAML qw(DumpFile Bless LoadFile);
8 use Tk;
9 use utf8;

10 use Switch;
11 use Encode qw(decode encode);
12 use Text::Unidecode;
13
14 my $predfile = $ARGV[0];
15 my $sentencefile = $ARGV[1];
16 my $dumpfile = $ARGV[2];
17 my $lastPredPos = 0;
18
19
20 my @annotatedPreds;
21 print "Loading predicates...\n";
22 my @preds = LoadFile($predfile);
23 print "Predicates loaded\nLoading Sentences...\n";
24 my @sentences = LoadFile($sentencefile);
25 print "Sentences loaded\n";
26 my $dummyLemma = My::Lemma->new();
27 $dummyLemma->semform("NA");
28
29 print "Total number of predicates: " . scalar(@preds) . "\n";
30
31 if (-e $dumpfile) {
32 @annotatedPreds = LoadFile($dumpfile);
33 $lastPredPos = $annotatedPreds[-1]->index;
34 print "Current predicate number: $lastPredPos \n"
35 }
36 if ($ARGV[3]) {
37 # $lastPredPos = $ARGV[3];
38 }
39
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40
41
42 my $index = $lastPredPos;
43 for (my $i = $lastPredPos+1; $i < scalar(@preds); $i++) {
44 my $pred = $preds[$i];
45 if ($lastPredPos > 0) {
46 @annotatedPreds = LoadFile($dumpfile);
47 }
48 annotate ($pred, $i);
49
50 }
51
52 sub annotate {
53 my $pred = shift;
54 my $i = shift;
55 if (is_pron($pred)) {
56 my $sentenceID = $pred->sentenceID;
57 our $antecedent;
58 print "\n\n\n\n\n\n\n\n\n" . $pred->get_pred . "\n\n";
59 my $predSem = $pred->get_pred;
60 my @contextSentences;
61
62 $predSem = format_characters($predSem);
63
64 our $window = MainWindow->new;
65 $window->title("Antecedent Annotator");
66
67 my $predFrame = $window->Frame(-borderwidth => 2, -relief => 'groove');
68 my $sentencesFrame = $window->Frame(-borderwidth => 2, -relief => 'groove');
69 my $predLab = $predFrame->Label(-text => "Current predicate: $predSem")->pack();
70 $sentencesFrame -> grid(-row=>1,-column=>1,-columnspan=>2);
71 $predFrame -> grid(-row=>2,-column=>1,-columnspan=>2);
72
73 foreach my $sentence (@sentences) {
74 if ($sentenceID -9 == $sentence->id) {
75 push (@contextSentences, $sentence);
76 }
77 if ($sentenceID -8 == $sentence->id) {
78 push (@contextSentences, $sentence);
79 }
80 if ($sentenceID -7 == $sentence->id) {
81 push (@contextSentences, $sentence);
82 }
83 if ($sentenceID -6 == $sentence->id) {
84 push (@contextSentences, $sentence);
85 }
86 if ($sentenceID -5 == $sentence->id) {
87 push (@contextSentences, $sentence);
88 }
89 if ($sentenceID -4 == $sentence->id) {
90 push (@contextSentences, $sentence);
91 }
92 if ($sentenceID -3 == $sentence->id) {
93 push (@contextSentences, $sentence);
94 }
95 if ($sentenceID -2 == $sentence->id) {
96 push (@contextSentences, $sentence);
97 }
98 if ($sentenceID -1 == $sentence->id) {
99 push (@contextSentences, $sentence);

100 }
101 if ($sentenceID == $sentence->id) {
102 push (@contextSentences, $sentence);
103 }
104 }
105
106 @contextSentences = reverse @contextSentences;
107 my $counter = 0;
108 foreach my $contextSentence (@contextSentences) {
109 switch ($counter) {
110 case 0 {
111 my $button9 = $sentencesFrame->Button(-text => format_characters($contextSentence

->sentence),
112 -command => sub { list_lemmas($contextSentence); })->pack(-side => "bottom"

);
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113 }
114 case 1 {
115 my $button8 = $sentencesFrame->Button(-text => format_characters($contextSentence

->sentence),
116 -command => sub { list_lemmas($contextSentence); })->pack(-side => "bottom"

);
117 }
118 case 2 {
119 my $button7 = $sentencesFrame->Button(-text => format_characters($contextSentence

->sentence),
120 -command => sub { list_lemmas($contextSentence); })->pack(-side => "bottom"

);
121 }
122 case 3 {
123 my $button6 = $sentencesFrame->Button(-text => format_characters($contextSentence

->sentence),
124 -command => sub { list_lemmas($contextSentence); })->pack(-side => "bottom"

);
125 }
126 case 4 {
127 my $button5 = $sentencesFrame->Button(-text => format_characters($contextSentence

->sentence),
128 -command => sub { list_lemmas($contextSentence); })->pack(-side => "bottom"

);
129 }
130 case 5 {
131 my $button4 = $sentencesFrame->Button(-text => format_characters($contextSentence

->sentence),
132 -command => sub { list_lemmas($contextSentence); })->pack(-side => "bottom"

);
133 }
134 case 6 {
135 my $button3 = $sentencesFrame->Button(-text => format_characters($contextSentence

->sentence),
136 -command => sub { list_lemmas($contextSentence); })->pack(-side => "bottom"

);
137 }
138 case 7 {
139 my $button2 = $sentencesFrame->Button(-text => format_characters($contextSentence

->sentence),
140 -command => sub { list_lemmas($contextSentence); })->pack(-side => "bottom"

);
141 }
142 case 8 {
143 my $button1 = $sentencesFrame->Button(-text => format_characters($contextSentence

->sentence),
144 -command => sub { list_lemmas($contextSentence); })->pack(-side => "bottom"

);
145 }
146 case 9 {
147 my $button0 = $sentencesFrame->Button(-text => format_characters($contextSentence

->sentence),
148 -command => sub { list_lemmas($contextSentence); })->pack(-side => "bottom"

);
149 }
150 }
151 $counter++;
152 }
153 my $button = $sentencesFrame -> Button(-text => "No match", -command => sub {
154 $antecedent = $dummyLemma;
155 $window->destroy;
156
157
158 }) -> pack();
159
160 MainLoop;
161
162 sub list_lemmas {
163 my $sentence = shift;
164 warn $sentence->sentence;
165
166 my @lemmas = get_lemmas($sentence->lemmas);
167 my @lemmaSems;
168 my $selectedLemma;
169 foreach my $lemma (@lemmas) {
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170 push (@lemmaSems, format_characters($lemma->semform));
171 print $lemma->semform . ",";
172 }
173
174 print "\n";
175
176 my $lemmasFrame = $window->Frame();
177 $lemmasFrame -> grid(-row=>4,-column=>1,-columnspan=>2);
178 my $lemmaLab = $lemmasFrame->Label(-text => "Select antecedent")->pack();
179
180 warn "frame created";
181
182 # Create Listbox and insert the list of choices into it
183 my $lb = $lemmasFrame->Listbox(-selectmode => "browse")->pack(-side => "left");
184 warn "listbox created";
185 $lb->insert("end", @lemmaSems);
186 warn "lemmas inserted";
187
188 $lb -> bind('<<ListboxSelect>>'=> sub {
189 my $selected_lemma = $_[0]->get($_[0]->curselection);
190 warn "lemma selected";
191 foreach my $lemma (@lemmas) {
192 if (format_characters($lemma->semform) eq $selected_lemma) {
193 $selectedLemma = $lemma;
194 }
195 }
196 print $selectedLemma->semform . "\n\n";
197 $antecedent = $selectedLemma;
198 $lemmasFrame->destroy;
199 $window->destroy;
200 },
201 );
202
203 my $button = $lemmasFrame -> Button(-text => "No match", -command => sub {
204 $antecedent = $dummyLemma;
205 $lemmasFrame->destroy;
206 $window->destroy;
207
208
209 }) -> pack();
210
211 }
212
213
214 $pred->index($i);
215 my @antecedents;
216 push (@antecedents, $antecedent);
217 $pred->antecedent(@antecedents);
218 #print $pred->get_pred . Dumper $pred->antecedent . "\n\n\n\n\n";
219 print $pred->get_ant;
220 push (@annotatedPreds, $pred);
221 DumpFile($dumpfile, @annotatedPreds);
222 }
223 }
224
225
226
227
228
229 sub is_pron {
230 my $pred = shift;
231 if ($pred->arg1->attribute) {
232 if ($pred->arg1->attribute eq "PRON+") {
233 return 1;
234 }
235 }
236 if ($pred->arg2->attribute) {
237 if ($pred->arg2->attribute eq "PRON+") {
238 return 1;
239 }
240 }
241 return 0;
242 }
243
244 sub get_lemmas {
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245 my $lemmas_string = Dumper(shift);
246 $lemmas_string =~ s/\[/\(/ig;
247 $lemmas_string =~ s/\]/\)/ig;
248 $lemmas_string =~ s/\$VAR1 = //ig;
249 return eval $lemmas_string;
250 }
251
252 sub split_input {
253 my $input = shift;
254 chomp $input;
255 my @numbers;
256 if ($input =~ m/([0-9]+) ,([0-9]+)*/){
257 push (@numbers, $1,$2);
258 } elsif ($input =~ m/\d+/) {
259 push (@numbers, $input);
260 } else {
261 return 0;
262 }
263 return @numbers;
264 }
265
266 sub format_characters {
267 my $string = shift;
268 $string = unidecode($string);
269 $string =~ s/A\|/æ/g;
270 $string =~ s/AY=/å/g;
271 $string =~ s/A,/ø/g;
272 $string =~ s/a\|/\.\.\./g;
273 $string =~ s/A<</«/g;
274 $string =~ s/A>>/»/g;
275 return $string;
276 }

Listing B.8: fullModel.pl
1 use strict;
2 use warnings;
3 use utf8;
4 use YAML qw(DumpFile Bless LoadFile);
5 use List::MoreUtils qw(uniq);
6 use Predicate;
7 use Lemma;
8 use Data::Dumper;
9 use Sentence;

10
11 # Import result from IB1 algorithm
12 my $classifiedFile = $ARGV[0];
13 open my $classifiedfilehandle , $classifiedFile
14 or die "Could not open input file!";
15 my @classifiedLines = <$classifiedfilehandle >;
16
17 # Import gender tagged names
18 open my $namesfilehandle, 'no-first-names.txt'
19 or die "Could not open input file!";
20 my @names = <$namesfilehandle >;
21 my %names;
22 foreach my $nameLine (@names) {
23 my @nameSplit = split " ", $nameLine;
24 my $isMale = 1;
25 if ($nameSplit[1] eq "+Fem" ) {
26 $isMale = 0;
27 }
28 $names{$nameSplit[0]} = $isMale;
29 }
30
31 # Import ontology model
32 warn "loading args";
33 my $argsFile = $ARGV[1];
34 my @arg1s = LoadFile($argsFile);
35 warn "args loaded";
36
37 # Import sentences
38 warn "loading sentences";
39 my $sentencesFile = $ARGV[2];
40 my @sentences = LoadFile($sentencesFile);
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41 warn "sentences loaded";
42
43 # Import cutoff value
44 my $cutoff = $ARGV[3];
45
46 # Field variables
47 my $correctlyClassified = 0;
48 my $classInCandidates = 0;
49 my @classifications;
50 my %classifications;
51 my %correctClassifications;
52
53
54 # Main loop. Evaluates all instances in the test set
55 foreach my $line (@classifiedLines) {
56
57 # Extract nearest neighbour distribution and probability for predicted class
58 my @argsAndDistribution = split " {", $line;
59 my @distribution = get_distribution($argsAndDistribution[1]);
60 my $probability = pop @distribution;
61 @distribution = sort { $b->frequency <=> $a->frequency } @distribution;
62
63 # Extract predicate, actual class and predicted class.
64 my @args = split ",", $argsAndDistribution[0];
65 my $id = $args[0];
66 my $pred = $args[2];
67 my $arg2 = $args[3];
68 my $class = $args[4];
69 my $predicted = $args[5];
70 my $genderString = $args[1];
71 my $isMale = 1;
72 if ($genderString eq "hun" || $genderString eq "henne" ) {
73 $isMale = 0;
74 }
75
76 # Load anaphor context
77 my @contextLemmas = get_context($id, 9);
78 my @minimalContextLemmas = get_context($id, 9);
79
80 my @candidates;
81 my @distCandidates;
82
83 # If predicted class is not in context, iterate through the distribution
84 if (!in_context($predicted, \@minimalContextLemmas) || !gender_matches($predicted,

$isMale)) {
85
86 my $genderNotMatching = 0;
87 if (!gender_matches($predicted, $isMale)) {
88 $genderNotMatching = 1;
89 print "Gender doesn't match: $id,$genderString,$pred,$arg2,$class,$predicted: ";
90 } else {
91 print "Not in Context: $id,$genderString,$pred,$arg2,$class,$predicted: ";
92 }
93
94 # If number of nearest neighbours is below cutoff value, add similar words as

candidates
95 @distCandidates = @distribution;
96 if (scalar(@distribution) < $cutoff ) {
97 my @similars = search_args($predicted);
98 if ($distribution[0]) {
99 foreach my $dist (@distribution) {

100 push @similars, search_args($dist->semform);
101 }
102 }
103 foreach my $sim (@similars) {
104 if ($sim) {
105 my $attribute = $sim->attribute;
106 if (($attribute eq "SUBST" || $attribute eq "PROPER") && $sim->semform ne

$predicted) {
107 push @distCandidates, $sim;
108 }
109 }
110 }
111 }
112
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113
114 # Located candidates that are in the context
115 if ($distCandidates[0]) {
116 my $numberOfCandidates = 5;
117 my $counter = 0;
118 foreach my $distCandidate (@distCandidates) {
119 foreach my $contextLemma (@contextLemmas) {
120 if ($contextLemma && $distCandidate) {
121 if ($contextLemma->semform eq $distCandidate->semform) {
122 $distCandidate->sentenceID($contextLemma->sentenceID);
123 $distCandidate->attribute($contextLemma->attribute);
124 push @candidates, $distCandidate;
125 }
126 }
127 }
128 }
129 }
130
131
132 if ($candidates[0]) {
133
134 # Update the score of each candidate according the distance and animacy heuristic
135 foreach my $candidate (@candidates) {
136 my $distance = $id - $candidate->sentenceID;
137 $candidate->distance($distance);
138 my $score = $candidate->frequency;
139 #my $score = $candidate->frequency / (($distance + 1)*20);
140 if ($candidate->semform =~ /^[A-ZÆØÅ].+/) {
141 $score = $score*10;
142 }
143 $candidate->score($score);
144 }
145
146 # Sort the candidates by score, descending
147 @candidates = sort { $b->score <=> $a->score } @candidates;
148
149 # Best candidate is the one with the highest score
150 my $bestCandidate = $candidates[0];
151
152 # If gender of anaphor is incongruent with candidate, select the next candidate.
153 if ($genderNotMatching && !gender_matches($bestCandidate->semform, $isMale)) {
154 foreach my $candidate (@candidates) {
155 if (gender_matches($candidate->semform,$isMale)) {
156 $bestCandidate = $candidate;
157 last;
158 }
159 }
160 }
161
162 # Add candidate to hash of classifications
163 $classifications{$bestCandidate->semform}++;
164
165 # If the best candidate is identical to the annotated antecedent, it is counted as a

correct classification
166 my $correct = 0;
167 if ($bestCandidate->semform eq $class) {
168 $correctlyClassified ++;
169 print "Correct!";
170 $correct = 1;
171 $correctClassifications{$bestCandidate->semform}++
172 }
173
174 # If the annotated candidate is found in the context, the classification is counted

as a partially correct classification
175 my @uniqueCandidates = remove_duplicates(\@candidates);
176 foreach my $candidate (@uniqueCandidates) {
177 print $candidate->semform . "(" . $candidate->score . "," . $candidate->distance ."

),";
178 if ($candidate->semform eq $class && !$correct) {
179 $classInCandidates ++;
180 }
181 }
182 }
183
184
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185 }
186
187 # If predicted class was found in context, compare it to the annotated antecedent to see

if it is correct.
188 else {
189 print "In Context: $id,$genderString,$pred,$arg2,$class,$predicted";
190 if ($predicted eq $class) {
191 $correctlyClassified ++ ;
192 $correctClassifications{$predicted}++
193 }
194 $classifications{$predicted}++;
195 }
196
197 print "\n\n";
198
199 }
200
201 # Calculate and print statistics
202 print "Number of preds: " . scalar(@classifiedLines) . "\n";
203 print "Correct antecedent in candidates: $classInCandidates\n";
204 print "Correctly classified: $correctlyClassified\n";
205 print $correctlyClassified / scalar(@classifiedLines) . "\n";
206 print "\n";
207
208 print "Frequency of predictions: \n";
209 my @classes = sort { $classifications{$b} <=> $classifications{$a} } keys(%classifications)

;
210 my $counter = 0;
211 foreach my $key (@classes) {
212 print $key . ", " . $classifications{$key} . "\n";
213 if ($counter >=9) {last;}
214 $counter ++;
215 }
216
217 print "\nFrequency of correct predictions: \n";
218 my @corrects = sort { $correctClassifications{$b} <=> $correctClassifications{$a} } keys(%

correctClassifications);
219 $counter = 0;
220 foreach my $key (@corrects) {
221 print $key . ", " . $correctClassifications{$key} . "\n";
222 if ($counter >9) {last;}
223 $counter ++;
224 }
225
226 # Submethod for finding similar words in ontology model
227 sub search_args {
228 my $predicted = shift;
229 foreach my $arg1 (@arg1s) {
230 if ($predicted eq $arg1->semform) {
231 my @similars = get_lemmas($arg1->similars);
232 @similars = sort { $b->frequency <=> $a->frequency } @similars;
233 return @similars
234 }
235 }
236 return 0;
237 }
238
239 # Submethod for finding the context of a given instance
240 sub get_context {
241 my $sentenceID = shift;
242 my $size = shift;
243 my @contextSentences;
244 my @contextLemmas;
245
246 foreach my $sentence (@sentences) {
247 for (my $i = $size; $i >=0; $i--){
248 if ($sentenceID-$i == $sentence->id) {
249 push (@contextSentences, $sentence);
250 }
251 }
252 }
253
254 my $counter = 0;
255 foreach my $sentence (@contextSentences) {
256 my @lemmas = get_lemmas($sentence->lemmas);
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257 my @uniqueLemmas;
258 my $duplicate = 0;
259 foreach my $lemma (@lemmas) {
260 $lemma->sentenceID($sentence->id);
261 foreach my $uniqueLemma (@uniqueLemmas) {
262 if ($uniqueLemma->semform eq $lemma->semform) {
263 $duplicate = 1;
264 }
265 }
266 do push @uniqueLemmas, $lemma if (!$duplicate);
267 $duplicate = 0;
268 }
269 push @contextLemmas, @uniqueLemmas;
270 }
271
272 return @contextLemmas
273 }
274
275 # Submethod returns true if a lemma is found within a given context
276 sub in_context {
277 my $semform = shift;
278 my @context = @{$_[0]};
279 foreach my $contextLemma (@context) {
280 if ($contextLemma) {
281 if ($contextLemma->semform eq $semform) {
282 return 1
283 }
284 }
285 }
286 return 0;
287 }
288
289 # Submethod for extracting lemmas from the Sentence.pm class
290 sub get_lemmas {
291 my $lemmas_string = Dumper(shift);
292 $lemmas_string =~ s/\[/\(/ig;
293 $lemmas_string =~ s/\]/\)/ig;
294 $lemmas_string =~ s/\$VAR1 = //ig;
295 return eval $lemmas_string;
296 }
297
298 # Submethod for parsing output from the IB1 model
299 sub get_distribution {
300 my $line = shift;
301 my @candidates;
302 my $probability;
303 my @distribution = split ", ", $line;
304 my @candidateAndProbability = split " }", pop @distribution;
305
306 # Extract the probability for the predicted class
307 if ($candidateAndProbability[1] =~ /.*(\d+\.\d+)/m) {
308 $probability = $1;
309 }
310
311 push @distribution, $candidateAndProbability[0];
312
313 foreach my $candidateString (@distribution) {
314 my @candidateAndScore = split " ", $candidateString;
315 my $candidate = My::Lemma->new();
316 $candidate->semform($candidateAndScore[0]);
317 $candidate->frequency($candidateAndScore[1]);
318 if ($candidate->semform =~ /[a-zæøåA-ZÆØÅ]+/m) {
319 push @candidates, $candidate;
320 }
321 }
322
323 # put probability for predicted class at end of @candidates array.
324 push @candidates, $probability;
325
326 return @candidates;
327 }
328
329 # Submethod for removing duplicate candidates
330 sub remove_duplicates {
331 my @candidates = @{$_[0]};
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332 my @uniques;
333
334 foreach my $candidate (@candidates) {
335 my $candidateIsUnique = 1;
336 foreach my $unique (@uniques) {
337 if ($candidate->semform eq $unique->semform && $candidate->sentenceID == $unique->

sentenceID) {
338 $candidateIsUnique = 0;
339 last;
340 }
341 }
342 if ($candidateIsUnique) {
343 push @uniques, $candidate;
344 }
345 }
346 return @uniques;
347 }
348
349 # Submethod returns false if the given lemma matches a name in the names list, but not the

gender. True otherwise
350 sub gender_matches {
351 my $semform = shift;
352 my $isMale = shift;
353
354 # Return true if semform is not a proper name
355 if ($semform =~ /^[a-zæøå].+/) {
356 return 1;
357 }
358
359 # Return false if gender doesn't match
360 if (exists $names{$semform} ) {
361 if ($names{$semform} != $isMale) {
362 return 0;
363 }
364 }
365 return 1;
366 }



Appendix C

Additional data

The training set, test set as well as outputs from all the models described in section 3.12 can be downloaded
via the following url:

https://www.dropbox.com/sh/0hnus89vnf3fjr9/AADd8dutvwze3dlg8JT02RfCa?dl=0
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https://www.dropbox.com/sh/0hnus89vnf3fjr9/AADd8dutvwze3dlg8JT02RfCa?dl=0
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