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Abstract

In this thesis we present a new implicit scheme for the numerical simulation of two-

phase flow in porous media. Linear finite elements are considered for the spatial dis-

cretization. The scheme is based on the iterative IMPES approach and treats the

capillary pressure term implicitly to ensure stability. Under assumption of smoothness

of the capillary pressure and the phase mobility curves, we were able to prove con-

vergence theorem for the scheme. Two dimensional numerical simulations furthermore

verify the convergence.

To illustrate the potential of the new scheme we compare its computational effi-

ciency to our implementation of two other common approaches to the problem: IMPES

and the fully implicit formulation solved by Newton’s method. The advantage of our

scheme over IMPES is improved stability for larger time-step. At the same time, it is

cheaper in terms of computational costs and memory requirements compared to the

Newton method.
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Chapter 1

Introduction

Multiphase flow in porous media is a problem that appears in many fields of knowledge

and has numerous applications. Whether you study enhanced oil recovery, CO2 stor-

age, groundwater flows or nuclear waste management you have to deal with multiphase

systems. That is why industries are interested in efficient methods for modeling mul-

tiphase flow. The numerical methods come into focus as in most cases the analytical

solution cannot be obtained without making significant simplifications that may lead

to an unphysical behavior of the model.

From the mathematical point of view, multiphase flow in porous media can be

represented as a system of coupled nonlinear partial differential equations (PDEs). The

nonlinearity of the system makes development and implementation of robust numerical

schemes a challenging task. Moreover, this kind of problems usually are formulated for

a big and complex structured domain which also brings difficulties.

One way to deal with the complex domain geometry is to use the Finite Elements

Method (FEM) [5] for space discretization. FEM is a commonly used powerful tech-

nique for solving systems of PDEs in complex domains as it naturally can be extended

to flexible discretizations. Another advantage of FEM is a relatively easy handling of

boundary conditions and a solid theoretical base that gives it high reliability. Therefore,

in this thesis we are using FEM as a basis for the considered numerical schemes.

The numerical approaches that help to handle nonlinearities in a multiphase flow

system have been developed and improved over the last decades [3, 7]. In this thesis we

study two of the most frequently used classes of numerical schemes for time integration

of the two-phase flow model. The most popular one is called the IMplicit Pressure

Explicit Saturation method, or IMPES [2, 16, 9]. The main feature of this method is

elimination of nonlinearities by taking advantage of the form of the equations. However,

the explicit treatment of the saturation equation results in the restrictions on the time-

step [10, 11] which makes the scheme relatively slow. The alternative to IMPES is

the fully implicit scheme [13, 22, 14, 23] which does not have any restrictions on the

time step. The system arising from applying the fully implicit scheme is nonlinear
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and one needs an efficient algorithm for solving it. A common approach is Newton’s

method [18, 21] which has quadratic convergence. This comes at a price of a costly

computation of derivatives at each iteration. Additionally, the mentioned convergence

properties demand that the initial guess is sufficiently close to the true solution which,

in its turn, may imply additional requirements on the step size.

In this thesis we present a new implicit scheme specially tailored for the two-phase

flow model and compare it with the two approaches mentioned above. We base it on

the iterative IMPES approach which is a straightforward way to make a solver for the

implicit scheme. However, our early numerical studies showed that using the naive

iterative IMPES without stabilization as a solver does not bring any improvements

over using IMPES as a semi-explicit scheme. The difficulties arise from nonlinear

coefficients, especially the capillary pressure term. In order to approximate the gradient

of the capillary pressure function which appears in the saturation equation we use a

linear expression involving the saturation at the current and the previous iterations.

This made the scheme stable and more efficient compared with the standard IMPES.

In [20] the authors independently developed a similar approximation for the capillary

pressure function for the two-phase flow model written for the pressure potentials and

also rigorously proved the convergence. In contrast with our approach, they use the

cell-centered finite difference method for the space discretization. Another approach

is presented in [28], where the authors developed a new linearization scheme for the

nonlinear system arising after the finite volume discretization of the two-phase flow

model.

The new scheme developed in this thesis preserves efficiency in treatment of nonlin-

earities and implementation simplicity of IMPES while relaxing the time step condition

common for explicit methods. At the same time, it does not involve computation of

derivatives, which brings it advantages over Newton’s method. What is more, the

linear systems to be solved at each iteration step for the new scheme are much bet-

ter conditioned compared with the one resulting for Newton’s method. The rigorous

convergence proof for the proposed scheme is also presented.

The rest of the thesis is organized as follows. In Chapter 2 we provide an overview

of the equations that govern the two-phase flow and derive the mathematical model

for the averaged pressure formulation. Chapter 3 is devoted to an overview of nu-

merical methods for the introduced model. We give a short overview of the Finite

Elements Method, derive the weak form of the problem and discuss different types of

time discretization, both explicit and implicit. The new implicit scheme is presented

in Section 3.3.2 and its convergence is rigorously proven in Section 3.3.3. In Chapter

4 we illustrate the convergence of the new method with several numerical simulations.

The comparison of the new scheme with IMPES and Newton’s iteration for implicit

scheme is demonstrated in Section 4.2. The conclusion and final remarks are made
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in Chapter 5.



12 Introduction



Chapter 2

Mathematical Model

In order to derive a good mathematical model one should study in depth the physics

behind the modelled process. Porous media has been a subject of research for a quite

a long time now and main constitutive relations were developed in many works [3, 26,

7]. In this chapter we present derivations inspired by the book [26] and follow their

notation.

The aim of this chapter is to construct a mathematical model of two-phase flow. In

this thesis we work with the averaged pressure formulation of the two-phase flow model

and develop various numerical methods for it. This valuable formulation is widely used

in practice.

We start with the fundamental equations that govern single-phase flow in porous

media and basic physical properties of the flow and porous media itself. Then we

introduce a general mathematical model for two-phase flow, from which after some

algebraic manipulations and a change of the primary variables we obtain the averaged

pressure formulation.

2.1 Mass Conservation

The principle of mass conservation is a basic concept in many fields, including fluid

dynamics. This statement is crucial for deriving a mathematical model that describes

fluid flow in porous media. The idea is to consider an arbitrary domain Ω with a

boundary Γ (see Fig. 2.1) and observe how mass changes inside this volume over time.

The change of mass in a particular region is equal to the amount of mass that goes in

or out of Ω trough the boundary Γ, plus any mass added or subtracted with possible

sink or source term. However, in order to write this principal in mathematical equation

we first need to introduce various physical quantities that would be used in our model.
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Figure 2.1: Example of an arbitrary domain Ω.

2.1.1 Physical Properties of Porous Media

A porous medium is a common name for a large group of materials and domains.

Groundwater aquifers, oil reservoirs, human skin and wood, are examples of porous

media. A common property of all these materials is a special structure where part of

the domain is covered by a solid skeleton, also refereed to as the matrix, and the rest

consists of pores filled with fluids. When space is filled with one or several fluids, we

call it single-phase or multi-phase flow respectively. The fluids can be gases or liquids,

or both. In this thesis we consider porous media filled with oil and water.

A porous medium has a complex geometry and cannot be described point-wise

because each single point in space may contain only solid or only fluid. That is why in

this work we use the common approach where instead of a single point we consider the

Representative Elementary Volume (REV). The REV is the smallest possible volume

which contains a representative amount of void and solid such that we can define the

mean (macro) properties with it. The size of the REV should be restricted so that

properties of the medium are still local. Figure (2.2) shows one way of choosing the

size of REV by examining the void fraction. If the size of REV is too small there will

be random oscillations in the void fraction function, however with growth of REV’s size

an equilibrium is reached which means that the best size of REV (V1 on the Figure

2.2) is found.

The volume of voids in REV divided by its total volume is called porosity. Porosity

can be a function of time or space.

2.1.2 Mass Conservation Equation for Single-Phase Flow

We can now derive the equation of mass conservation for an arbitrary domain Ω (Figure

2.1).

The change of the mass in the domain can only be caused by the mass flux through

the boundaries and by mass sources or sinks within the domain. In mathematical terms
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Figure 2.2: Schematic representation of the relationship between the void fraction and
the REV volume (modified after [3]).

we can write this statement as:

∂

∂t

∫
Ω

ηdV = −
∫
∂Ω

f · nds+

∫
Ω

rdV, (2.1)

where η is mass per volume, f represents the mass flux vector, n - the outer normal

vector and r is any source or sink term within the volume. The units of r are mass per

volume per time.

If there are no sources or sinks (r = 0), or if r represents the external forces, then

m is locally preserved and we call equation (2.1) a conservation law. Otherwise, if

r includes internal changes (like chemical reactions) then it is called mass balance or

transport equation.

In the case of single-phase flow, the following relations hold:

η = ρφ, f = ρu, r = F, (2.2)

where ρ is the density of the fluid, φ is the porosity, u is the volumetric flux vector and

F represents the source or sink of mass term. The volumetric flux is a volumetric flow

rate per area, its dimension is [LT−1]. The volumetric flux represents the fluid volume

going through a column in a unit time.

For all time-invariant domains Ω the Leibniz integral rule and the Gauss theorem

yield ∫
Ω

(∂φρ
∂t

+5 · ρu− F
)
dV = 0. (2.3)

Under the conditions of sufficient smoothness of the functions in (2.3) one can
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obtain the differential form of the mass conservation equation:

∂φρ

∂t
+5 · ρu = F. (2.4)

If the fluid density depends on time, pressure, temperature etc. the fluid is called

compressible. Otherwise, it is called incompressible. In this thesis we assume that the

fluids we work with are incompressible. Therefore we rewrite the equation (2.4) as

follows:
∂φ

∂t
+5 · u =

F

ρ
. (2.5)

2.1.3 Mass Conservation Equation for Two-Phase Flow

In order to derive two-phase flow extension of the mass conservation equation we first

have to introduce new quantities.

The modeling reservoir contains two fluids: oil and water, which brings us to the

fluid property called the fluid phase saturation, Sα. It is a dimensionless quantity

defined as the fraction of pore space occupied by fluid α in REV. It is clear that

0 ≤ Sα ≤ 1, and the sum of all fluid saturations in multi-phase flow will be equal to 1,∑
α Sα = 1.

We will also use the common assumption that our fluids are immiscible (there is

no mass exchange between the fluids) which is usually the case for oil and water.

In that case, the equation (2.4) should hold for each fluid phase α:

∂ραφSα
∂t

+5 · ραuα = Fα. (2.6)

Here ρα is the density and uα is the volumetric flux of the fluid α. Note that the

flux of each fluid is different. In the next section we present the equations for the fluxes

uα.

In the case of incompressible flow and solid (porosity φ does not change with time)

we can write the equation above as follows,

φ
∂Sα
∂t

+5 · uα =
Fα
ρα
. (2.7)

Having considered mass conservation equations let us take a look at how the flux

can be approximated.

2.2 Darcy’s Law

Darcy’s law is a fundamental constitutive equation that describes the fluid flow through

porous media. It was experimentally derived by the French engineer Henric Darcy in
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the middle of the 19th century, and to this day it forms the basis of the mathematical

modeling of flow in porous media. Darcy’s law has many extensions. In this section

we present the original formulation for the hydraulic head, as well as two extensions -

Darcy’s law for single-phase and two-phase flow models.

2.2.1 Darcy’s Law for the Hydraulic Head

To formulate Darcy’s law we first have to introduce some quantities. One important

quantity that we have already mentioned is a hydraulic head h, its dimension is length,

or [L]. It shows the direction of the flow: ground water flows from regions with higher

hydraulic conductivity to regions with lower values of h. The hydraulic head represents

the total energy of the water. In this thesis we consider laminar flow meaning that

the velocity of the flow is sufficiently small and we can neglect the kinetic energy.

This means that the total energy, which in general is the sum of kinetic and potential

energy, is represented only by the potential energy. The potential energy itself is a

sum of pressure potential and gravitational potential inside the aquifer which can be

expressed as follows:

mρh = pV +mgz. (2.8)

As a consequence, we obtain a useful expression for the hydraulic head in terms of

the pressure:

h =
p

ρg
+ z. (2.9)

The second quantity is hydraulic conductivity κ. In general case, the hydraulic

conductivity is a tensor with dimension [LT−1]. It is a function of both the porous

medium and the fluid, and it indicates how easily the fluid flows through the material.

It can be expressed as

κ =
kρg

µ
, (2.10)

where µ is viscosity, ρ fluid density, g gravitational acceleration and k is a very im-

portant property of the porous medium called intrinsic permeability, or just perme-

ability. It measures the ability of fluid to flow through porous media. It has di-

mension [L2], however, the derived units called Darcy or milliDarcy are usually used,

(1Darcy ∼ 10−12m2). In general case permeability is a space dependent tensorial quan-

titiy. In certain cases there can be simplifications.

Darcy’s law presents a relation between all these quantities. In the differential form

it says:

u = −κ5 h, (2.11)

where u is the volumetric flow rate, κ is the hydraulic conductivity and h is the

hydraulic head.
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2.2.2 Darcy’s Law for Single-Phase Flow

In our work we use the pressure formulation of Darcy’s law which can be easily obtained

from (2.11) using the expression for the hydraulic conductivity (2.10) and the hydraulic

head (2.9):

u = −k
µ

(5p+ ρg5 z) = −k
µ

(5p− ρg), (2.12)

where g = −gez = (0, 0, −g)T is the gravitational acceleration vector.

2.2.3 Darcy’s Law for Two-Phase Flow

Darcy’s law in the form (2.12) is used to model single-phase flow when all the pores

are filled with one fluid and the whole pore space in available for this fluid to flow. To

model two-phase flow we need to deal with a system where part of the pores is already

occupied with one fluid, which obstructs the flow of the second fluid. This implies lower

permeability for both fluids. That is why we need to introduce the relative permeability,

kr,α = kr,α(Sα), which is different for each phase α. In the general case it is anisotropic.

There exists various models based on experimental data that parameterize the relative

permeability. It is most commonly approximated as a scalar nonlinear function of the

saturation. In this thesis we used van Genuchten parametrization, see Appendix A,

(5).

We can now formulate Darcy’s law for the multi-phase flow as an extension of

equation (2.12) as follows:

uα = −kr,αk
µα

(5pα − ραg). (2.13)

We will now introduce a new function, called the phase mobility, λα, which is defined

as the ratio of the relative permeability function to the phase viscosity, λα =
kr,α
µα

. With

this definition Darcy’s law may be written as follows:

uα = −λαk(5pα − ραg). (2.14)

Later on we will refer to the equation (2.14) as Darcy’s law for two-phase flow.

2.3 Governing Equations and Common Simplifica-

tions of the Two-Phase Flow Model

The two main equations on which our model is based are Darcy’s law for two-phase flow

and the mass conservation equations for each fluid phase. We have already introduced

both of them, so we can write the mass conservation law (2.4) and Darcy’s law for
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two-phase flow (2.14) for each phase:

uw = −λwk(5pw − ρwg),

un = −λnk(5pn − ρng),

φ
∂Sw
∂t

+5 · uw =
Fw
ρw
,

φ
∂Sn
∂t

+5 · un =
Fn
ρn
.

(2.15)

To derive this system of equation we made a simplifying assumption of: we assumed

incompressibility of fluids and solid matrix (φ, ρw, ρn are constants). Also, as before,

we assumed immiscible and non-diffusive fluids.

Let us mention that even under the assumptions above, system (2.15) is not closed.

For example, in 2D case we have six equations with eight unknowns (uiw, uin, pw, pn,

Sw, Sn). After adding the equation for the sum of two saturations Sw +Sn = 1 we still

miss one equation.

To close the system we have to investigate carefully the relation between pressures pn

and pw. Note that the pressure on each side of the fluid-fluid interface may be different

because of the inter-facial tension between the two phases. The fluid acts differently

in contact with the solid part of the reservoir. Figure (2.3) shows the differences in

the contact angle of water and oil with the surface. The fluid that is preferentially

attracted by the solid is called the wetting fluid. The contact angle of such fluid with

the solid is less then 90°, θ < 90°. The other fluid is referred to as the non-wetting

fluid. In this thesis we model the reservoir that contains oil and water, and water in

this situation is a wetting fluid, while oil is non-wetting.

Oil Water

Oil

Watter

Solid

θ Water

Solid

θ
Oil

Figure 2.3: The contact angle between the wetting fluid (water) and a solid (a), and
between the non-wetting fluid (oil) and a solid.

We define the difference between the phase pressures as the capillary pressure:

pc = pn − pw. (2.16)

Generally, the function pc is chosen based on laboratory experiments. As laboratory

measurements can be taken only when an equilibrium is reached, it is usually parame-

terized as an algebraic function of the phase saturation, pc = pc(Sw) [3]. Including the
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capillary pressure makes the model more realistic, even though the parametrization of

the capillary function is a complicated problem itself and requires deep studying. There

are several types of parametrization, for example the van Genuchten parametrization,

see Appendix 5.

After adding appropriate boundary and initial conditions we get a closed system of

equations that describe two-phase flow:

uw = −λwk(5pw − ρwg),

un = −λnk(5pn − ρng),

φ
∂Sw
∂t

+5 · uw =
Fw
ρw
,

φ
∂Sn
∂t

+5 · un =
Fn
ρn
,

Sw + Sn = 1,

pn − pw = pc(Sw),

S0
w = Sw(x, t0), p0 = p(x, t0),

Sw|∂Ω = SΓ
w, p|∂Ω = pΓ.

(2.17)

2.4 Two-Phase Flow Model in Averaged Pressure

Formulation

There are different ways to rewrite the system (2.17). In this thesis we work with the

averaged pressure formulation which is a commonly used practical reformulation of the

equations (2.17), where the averaged pressure and the saturation of the wetting fluid

phase are used as the primary variables.

We consider a new function called the averaged pressure, which we define as

p =
pn + pw

2
. (2.18)

In order to express pn and pw in terms of the averaged pressure and the capillary

pressure we can use (2.16) and (2.18):

pw = p− 1

2
pc, pn = p+

1

2
pc. (2.19)

Summing up two mass conservation equations from the system (2.15) results in

following equation:

φ
∂(Sw + Sn)

∂t
+5 · (uw + un) =

Fw
ρw

+
Fn
ρn
. (2.20)
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Since the sum of the saturations is equal to one, Sw + Sn = 1, the first term in the

equation above is zero.

Substituting (2.19) into (2.15) and summing up the first two equations of the fluxes,

we get the following expression for the total flux uΣ = uw + un

uΣ = uw + un = −λwk5 (p− 1

2
pc − ρwg)− λnk5 (p+

1

2
pc − ρng)

= −k(λw + λn)5 p− kλn − λw
2

5 pc + (λwρw + λnρn)k5 g.
(2.21)

Let us now introduce the total mobility function, λΣ:

λΣ = λw + λn. (2.22)

Combining equations (2.22), (2.21) and (2.20) and neglecting the gravity term (as

we will model these equations in a 2D domain), we get a new equation which we will

later refer to as the pressure equation:

−5 · k(λΣ5 p+
λn − λw

2
5 pc) =

∑
α=n,w

Fα
ρα

(2.23)

In this work we use a common approach to identify unknown parameter functions

as functions of Sw. Therefore in our model we combine the pressure equation with the

mass conservation equation for the water phase and later on refer to it as saturation

equation:

φ
∂Sw
∂t
−5 ·

(
λwk5 (p− 1

2
pc)
)

=
Fw
ρw
. (2.24)

To ensure that the solution of our final system of equations is unique and that the

problem is well-posed, we add initial conditions, appropriate boundary conditions and

a parametrization for the functions λn, λw and pc.

Finally, the two-phase flow model in the averaged pressure formulation takes the

form:

−5 · k(λΣ5 p+
λn − λw

2
5 pc) =

∑
α=n,w

Fα
ρα
,

φ
∂Sw
∂t
−5 ·

(
λwk5 (p− 1

2
pc)
)

=
Fw
ρw
,

S0
w = Sw(x, t0), p0 = p(x, t0),

Sw|∂Ω = SΓ
w, p|∂Ω = pΓ.

(2.25)
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Chapter 3

Numerical Modeling

The system (2.25) derived in the previous chapter cannot be solved analytically for

general cases. Moreover, nonlinearities make numerical simulation extra challenging.

In this chapter we present the numerical schemes we use to solve the system (2.25).

First, we give a short overview of the finite element method. Second, we examine when

implicit and explicit methods can be applied, whether we can combine them, and

how one can treat nonlinearities in implicit solutions. We briefly present the standard

approaches (IMPES (Section 3.2) and Newton’s method (Section 3.3.1)) and propose

a new implicit scheme (see Section 3.3.2). In Section 3.3.3 we prove rigorously that the

new scheme is global convergent. Only a relatively mild constraint on the time step

size is required.

3.1 The Finite Element Method

The finite element method (FEM) is a powerful and commonly used technique for

finding numerical solutions of partial differential equations. While it is difficult to

give a specific date when FEM was invented, it is clear that this method was derived

from the finite differences method in the 1950’s [30]. As a computational method it

originated in the engineering literature and the name of the finite element method

appeared first in [8].

The finite element method has a solid theoretical foundation based on Sobolev space

theory which brings it several advantages. The theoretical base gives it reliability,

makes it easier to work with general boundary conditions, complex domain geometry,

variable material properties, etc. In many cases exact error estimates for finite element

solutions can be obtained [5].

First we discuss the space discretization, examine the model problem and then show

how we applied the FEM technique to our model problem.
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3.1.1 Discretization in Space

Oil reservoirs are 3D structures with highly complex geometry. However, most perme-

able formations have a horizontal extent that is much greater then the vertical extent.

As a consequence, the flow is mostly horizontal and it is usually the case that the

number of dimensions can be reduced to two.

In this thesis we solve the system (2.25) in a 2D domain. The domain is divided into

a finite number of small sub-domains, also called elements. One can choose different

types of elements. In this thesis we work with triangles. We cover Ω with a set

Th = T1, ..., Tm of non-overlapping triangles Ti, such that Ω = ∪T
T∈Th

= T1 ∪ T2 ∪ ...∪ Tm
and no vertex of one triangle lies on the edge of another triangle. This process is

called triangulation. Figure (3.1) presents an example of triangulation of a domain

with complex structure.
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Figure 3.1: Example of a triangular mesh on a complex structured domain.

3.1.2 Variational Formulation of the Model Problem

Let us start by considering a model problem where we solve an elliptic PDE with

zero boundary conditions. This model problem corresponds to the pressure equation

(2.23) in a simpler form (as if we have no capillary pressure). We derive a variational

formulation of this problem and provide guidance on applying the finite element method

to solving this problem numerically. For the case of the variational formulation we

search for a weak solution. This solution and its derivative should be square integrable

[5]. The space of such functions is called H1.
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Model problem. Find u ∈ H1 such that

−5 · (a5 u(x)) = f(x), ∀x ∈ Ω, (3.1)

u(x)|∂Ω = 0, (3.2)

where Ω is a bounded open domain in R2 with a boundary ∂Ω, a is a given weight

function (a symmetric positive definite matrix), and f(x) is also a known function.

In order to derive the variational formulation we multiply both sides of (3.1) by a

test function υ(x) ∈ H1 and integrate them over the whole domain Ω. From now on,

we write a, u, f, υ instead of a(x), u(x), f(x), υ(x) for conciseness:

−
∫

Ω

5 · (a5 u) υ dx =

∫
Ω

fυ dx.

Integrating by parts and using the zero boundary condition (3.2) we arrive at∫
Ω

a5 u · 5υ dx =

∫
Ω

fυ dx.

This is the variational formulation of the model problem.

It is easy to see that
∫

Ω
a5 u · 5υ dx is a bilinear form. Let us introduce a new

notation for it

a(u, υ) ≡
∫

Ω

a5 u · 5υ dx, (3.3)

and a linear functional

l(υ) ≡ 〈f, υ〉L2 ≡
∫

Ω

f υ dx, (3.4)

where 〈. , . 〉L2 is the L2-inner product.

Now we can construct the finite element method (FEM) for (3.1)-(3.2).

At the first step of FEM we define a finite-dimensional space Vh ∈ H1 of piecewise

linear continuous functions Vh = {υ : υ is continuous on Ω, linear on each Ti, υ = 0

on Γ}. The basis functions φj ∈ Vh, j = 1, . . . ,M then are defined for each node

Ni, i = 1, . . . ,M of Th, excluding nodes on the boundary:

φj(Ni) =

{
1 if i = j,

0 if i 6= j,
i, i = 1, . . . ,M.

Any function v ∈ Vh now has a representation through these basis functions

v(x) =
M∑
i=1

αiφi(x), αi = v(Ni), for x ∈ Ω ∪ Γ.

We can now formulate the finite element method as follows.
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FEM Formulation. Find uh ∈ Vh such that

a(uh, υh) = l(υh) υh ∈ Vh. (3.5)

The unknown function is represented as a combination of basis functions:

uh(x) =
M∑
i=1

αiφi(x), αi = uh(Ni). (3.6)

Then we substitute this representation into (3.5), use the basis function φi as the test

function υh and get:

M∑
j=1

αj a(φj, φi) = l(φi), i = 1, . . . ,M. (3.7)

This can be written as a system of linear equations

Aξ = b, (3.8)

where ξ = (α1, . . . , αM)T , b = (l(φ1), . . . , l(φM))T and the matrix

A =
∑
K∈Th

∫
K

a5 φi · 5φj dx (3.9)

is called the weighted stiffness matrix. To calculate this matrix we only need to compute

the gradient of the linear basis functions that are non-zero on the triangle. Each basis

function is equal to one in one node of the triangular K and zero in two others. There

are numerous books dedicated to the finite element method, where one can find a

detailed description of the matrix assembling, see e.g. [5].

By solving the system (3.8) we can easily find the unknown function uh. There

are various works where the existence and uniqueness solution is proven, for example

[18]. Here we will only mention that the Lax-Milgram theorem provides the list of

requirements that must be satisfied for existence and uniqueness of the solution and

the book [18] contains a prove that our model problem satisfies this theorem conditions.

3.2 The IMPES method

Note that the equation (2.24) depends on time and space. It means that we need not

only space discretization, but also discretization in time.

We begin with the most common solution procedure the IMplicit Pressure Explicit

Saturation method (IMPES)[26]. As it says in the name of the scheme, we solve the
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saturation equation explicitly. In other words, we use the standard finite-differences

approximation for the time derivative

∂Sw
∂t

=
Sn+1
w − Snw

∆t
, (3.10)

where ∆t = tn+1 − tn and 0 = t0 ≤ t1 ≤ · · · ≤ tN = T . The initial information is

available from the initial conditions.

All other coefficients depending on Sw are computed using the value of the satu-

ration found at the previous time step. This scheme is a well-known fixed step solver

called the forward or the explicit Euler method. Now we can write the finite element

approximation of the equations (2.25) in terms of solving it with the IMPES method.

Find pn+1
h , Sn+1

h ∈ Vh ∀υh ∈ Vh such that

− 〈5 ·
(
λΣ(Snh )5 pn+1

h +
λn(Snh )− λw(Snh )

2
5 pc(S

n
h )

)
, υh〉 = 〈Fpr, υh〉, (3.11)

〈φS
n+1
h − Snh

∆t
−5 ·

(
λw(Snh )5 (pn+1 − 1

2
pc(S

n
h ))

)
, υh〉 = 〈Fsat, υh〉, (3.12)

where Fpr =
∑

α=n,w

Fα
ρα

and Fsat =
Fw
ρw

.

First of all, we need to write the variational formulation for our system (2.25) in

the same way as we did for the model problem.

We again multiply the equations in the system by the test function, integrate them

over the domain Ω and apply the divergence theorem. Hence, for the pressure equation

we obtain

∫
Ω

(
λΣ(Snh )5 pn+1

h +
λn(Snh )− λw(Snh )

2
5 pc(S

n
h )

)
· 5υh dx =

∫
Ω

Fprυh dx.

Let us denote λdif = λn − λw, then

∫
Ω

λΣ(Snh )5 pn+1
h · 5υh dx =

∫
Ω

Fprυh dx−
∫

Ω

λdif (S
n
h )

2
5 pc(S

n
h ) · 5υh. (3.13)

The same procedure should be applied to the saturation equation. Note that the

test function for the saturation equation may belong to a different space than the

test function for the pressure equation. And what is more important, the saturation

function itself may not belong to the same class as the pressure function.

Nevertheless, we used the same approximation for the saturation equation:
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∫
Ω

φ
Sn+1
h − Snh

∆t
υh dx+

∫
Ω

(
λw(Snh )5 (pn+1

h − 1

2
pc(S

n
h ))

)
· 5υh dx =

∫
Ω

Fsatυh dx,

φ

∆t

∫
Ω

Sn+1
h υh dx−

φ

∆t

∫
Ω

Snhυh dx+

∫
Ω

λw(Snh )5 pn+1
h · 5υh dx

−
∫

Ω

1

2
λw(Snh )5 Pc(S

n
h ) · 5υh dx =

∫
Ω

Fsatυh dx,

φ

∆t

∫
Ω

Sn+1
h υh dx =

φ

∆t

∫
Ω

Snhυh dx−
∫

Ω

λw(Snh )5 pn+1
h · 5υh dx

+

∫
Ω

1

2
λw(Snh )5 Pc(S

n
h ) · 5υh dx+

∫
Ω

Fsatυh dx. (3.14)

Let us represent the unknown functions as combinations of the basis functions:

pn+1
h (x) =

M∑
i=1

ξiφi(x), ξi = pn+1
h (xi), (3.15)

Sn+1
h (x) =

M∑
i=1

ηiφi(x), ηi = Sn+1
h (xi). (3.16)

We use the corresponding basis function φi as the test function υh.

The phase mobility and the capillary pressure functions are approximated by their

average values on each triangle.

In the numerical implementation we work with the equations (3.13)-(3.14) element-

wise. It means that all the values are first calculated over each triangle and then

combined together to get a linear system similar to the one we obtained for the model

problem.

Let us write the equations (3.13)-(3.14) for each element K ∈ Th:∫
K

ξiλ
0
Σ5 φi · 5φj dx =

∫
K

Fprφi dx−
∫
K

λ0
dif

2
pc,i5 φi · 5φj, (3.17)

φ

∫
K

ηn+1
i φiφj dx = φ

∫
K

ηni φiφj dx−∆t

∫
K

λ0
wxiiλ

0
Σ5 φi · 5φj dx

+ ∆t

∫
K

1

2
λ0
wpc,i5 φi · 5φj + ∆t

∫
K

Fsatφi dx.

(3.18)

In spite of the complicated form, the equations above represent a system of linear
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equations. The last step in obtaining the system is to compute the stiffness matrix

A =
∑
K∈Th

∫
K

5φi5 φj dx (3.19)

and the matrix

B =
∑
K∈Th

∫
K

φiφj dx. (3.20)

We already know how to deal with the stiffness matrix (3.9) from the model problem,

and in order to calculate the matrix B we use the following formula [12]:∫∫
A

N i
1N

j
2N

k
3 dA =

i!j!k!(2A)

(i+ j + k + 2)!
. (3.21)

The boundary conditions (BCs) are another important aspect. There are several

types of boundary conditions and of their combinations. In this thesis we consider two

types of BCs, Dirichlet’s:

u(x) = uD(x) on Γ, (3.22)

and Neumann’s
∂u

∂n
on Γ. We implemented both types of boundary conditions, however,

this is not the main part of our research, so we just mention that we used well known

techniques for treating boundary conditions, see e.g. [18].

3.3 Fully Implicit Scheme

We work with the two-phase flow model (2.25) that consists of two coupled nonlinear

partial differential equations. The nonlinearity causes numerical difficulties for solving

them.

One common approach to solve the system (2.25), IMPES, was already presented in

the previous section. This type of time discretization provides a good tool for finding

the numerical solution of the system as it eliminates nonlinearities in the equations.

However, an explicit solving of the saturation equation causes stability problems and

imposes restrictions on the size of the time-step.

Another approach is the fully implicit scheme. In this scheme the equations are

coupled and simultaneously solved at each time step; all the terms are treated implicitly,

including the capillary pressure. An advantage of this method is the unconditional

stability, but it cannot help in dealing with nonlinearities.

The nonlinear fully discrete variational formulation of our system (2.25) at the time

tn is written as follows.
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Find pn+1
h , Sn+1

h ∈ Vh such that the following equations are satisfied ∀υh ∈ Vh:

− 〈5 ·
(
λΣ(Sn+1

h )5 pn+1
h +

λn(Sn+1
h )− λw(Sn+1

h )

2
5 pc(S

n+1
h )

)
, υh〉 = 〈Fpr, υh〉,

(3.23)

〈φS
n+1
h − Snh

∆t
−5 ·

(
λw(Sn+1

h )5 (pn+1 − 1

2
pc(S

n+1
h ))

)
, υh〉 = 〈Fsat, υh〉. (3.24)

As υh ∈ Vh it means that υh is equal to zero on a boundary of the domain, which

means that after applying the divergence theorem the equations above become:

〈
(
λΣ(Sn+1

h )5 pn+1
h +

λn(Sn+1
h )− λw(Sn+1

h )

2
5 pc(S

n+1
h )

)
,5υh〉 = 〈Fpr, υh〉, (3.25)

〈φS
n+1
h − Snh

∆t
, υh〉+ 〈

(
λw(Sn+1

h )5 (pn+1
h − 1

2
pc(S

n+1
h ))

)
,5υh〉 = 〈Fsat, υh〉. (3.26)

The equations (3.25)-(3.26) are still coupled nonlinear equations and in order to

solve them numerically one should think about a method that is suitable for solving

such equations. One of the possibilities is Newton method (see Section 3.3.1) where

the pressure and the saturation equations are coupled and solved as one at each itera-

tion. The benefit of this method is the stability and the second order of convergence.

However, in terms of the computational cost and the memory requirements it is an

expensive method because it requires Jacobian matrix computation at each iteration.

Another concern is how close the initial guess is to the true solution, which results in

the restrictions on the time-step.

Thus, it is natural to come up with an IMPES-based solver that would maintain

cheap computational costs of IMPES while relaxing its stability constraints. Such

improved versions of the classical IMPES scheme were presented in several works,

see [19, 20, 25, 6]. One of them is the iterative IMPES where equations are split

and solved at each iteration using the IMPES method. This approach has a serious

disadvantage. Decoupling the pressure and the saturation equations implies an explicit

treatment of the capillary pressure which results in additional restrictions on the time

step. The authors of [20] developed a new iterative IMPES scheme where they use a

linear approximation of the capillary pressure function at the current iteration. The

authors proved that such scheme applied to two-phase incompressible flow written for

the pressure potentials is stable. For the spacial discretization they used the cell-

centered finite difference method.

We also gain an understanding of implicit treatment of the capillary pressure func-

tion as with explicit solving we cannot guarantee the convergence of the method. That

is why we developed a new implicit scheme that is based on the iterative IMPES scheme

but handles the capillary pressure implicitly. A detailed explanation of the new implicit
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scheme is provided in Section 3.3.2 and Section 3.3.3 presents a rigorous proof of its

convergence.

3.3.1 Newton’s Method

Newton’s method (also called the Newton–Raphson method) is one of the most common

and powerful techniques to find a numerical approximation for the roots (or zeros) for

systems of nonlinear equations. The method has the second order of convergence, see

[29].

We want to apply Newton’s method for finding the numerical solution of the dis-

cretized nonlinear system resulting from (3.25)-(3.26) and compare its performance

with IMPES and our new implicit scheme.

First, we introduce Newton’s method for multiple variables. Assume we are looking

for the solution of the system

K(u) = f . (3.27)

For this system we define the residual as

r(u) = K(u)− f . (3.28)

In other words, we are solving the equation r(u) = 0. In order to obtain the classical

Newton’s method for this equation we follow derivation from [29]. Let ξ be a zero of

the function r which is differentiable in the neighbourhood N(ξ). Then the Taylor

expansion of r about u0 ∈ N(ξ) is

r(ξ) = 0 = r(u0+(ξ−u0)) = r(u0)+Dr(u0)(ξ−u0)+D2r(u0)
(ξ − u0)2

2!
+. . . (3.29)

If we neglect terms with the second order derivative and higher, we get an estimation

for the root of the equation (3.28):

ξ ≈ u0 − J−1r(u0)r(u0), (3.30)

where J is the Jacobian matrix of the residual and can be computed as:

Jr(u0) =
∂ri
∂uj

=



∂r1(u)

∂u1

∂r1(u)

∂u2

. . .
∂r1(u)

∂un
∂r2(u)

∂u1

∂r2(u)

∂u2

. . .
∂r2(u)

∂un
...

. . .
...

∂rn(u)

∂u1

∂rn(u)

∂u2

. . .
∂rn(u)

∂un


u=u0

. (3.31)
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The approximation ξ should be close to the unknown root, however, it still needs

corrections. This brings us to the iteration process:

un+1 = un − J−1r(un)r(un). (3.32)

The equation (3.32) is the Newton iteration formula.

In order to apply Newton’s method to the problem (3.25)-(3.26) we first need to

write it in the matrix form (3.27). As we want to solve the system (3.25)-(3.26) with

the help of the FEM, we need to derive FEM formulation similarly as we get it for

IMPES in section (3.2). The matrix form of the problem (3.25)-(3.26) then can be

written as: λΣ(Sn+1
h )A 0

λdif (S
n+1
h )

2
A

∆tλw(Sn+1
h )A φB −∆t

2
λw(Sn+1

h )A

×

pn+1

Sn+1
h

pc(S
n+1
h )

 =

[
〈Fpr, υh〉

〈Fsat, υh〉+ φBSnh

]
,

(3.33)

where A and B are the same as is (3.19)-(3.20).

Thus, in our case K, u and f from (3.32) are written as follows:

K =

 λΣ(Sn+1
h )A 0

λdif (S
n+1
h )

2
A

∆tλw(Sn+1
h )A φB −∆t

2
λw(Sn+1

h )A

 , (3.34)

u =


pn+1

Sn+1
h

pc(S
n+1
h )

 , (3.35)

f =

[
〈Fpr, υh〉

〈Fsat, υh〉+ φBSnh

]
. (3.36)

To compute the Jacobian matrix J(un) we first write the system (3.33) for each

triangle K. When computing the derivatives we exploit the sparsity of the system.

It means that we compute the derivative on each triangle separately and then add

the computed values to the proper positions in the final Jacobian matrix. We use the

following approximation for the derivatives:

J =


∂ri1
∂pj

∂ri1
∂Sjw

∂ri2
∂pj

∂ri2
∂Sjw

 , (3.37)
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∂ril
∂pj

=
ril(p+ εej, Sw)− ril(p, Sw)

ε
, ∀i, j, l (3.38)

where ej is a vector with zeros in all components except of j’s which is equal to one ej =

(0, 0, . . . , 1, 0, . . . 0)T . The length of this vector is six which corresponds to the number

of unknowns on each triangle (three unknown pressure values and three saturation

values). This approximation looks like the standard finite-difference approximation for

the derivatives, however it represents a discrete functional derivative with respect to

model variables. The stopping criteria for the Newton iteration process is ||un+1 −
un||L2 ≤ δ.

Later in this thesis we will refer to the Newton’s implementation of the implicit

method as simply Newton’s method.

3.3.2 The New Implicit Scheme

In the averaged pressure formulation of the two-phase flow model (2.25) the capillary

pressure appears under the gradient, but it still depends on the unknown Sn+1,i+1
h . We

approximate it as follows:

5 pc(S
n+1,i+1
h ) ∼ p′c(S

n+1,i
h )5 Sn+1,i+1

h . (3.39)

Assume that we know the discrete solution at the fixed time tn. Then in order to

find a solution at the next time step we start the iteration process. The iterations start

with the solution at the previous time step, i.e. Sn+1,0
h = Snh .

Then the new iteration scheme to solve (2.25) reads as follows.

Let Snh and Sn+1,i
h be given. Find pn+1,i+1

h , Sn+1,i+1
h such that

〈

(
λΣ(Sn+1,i

h )5 pn+1,i+1
h +

λn(Sn+1,i
h )− λw(Sn+1,i

h )

2
5 pc(S

n+1,i
h )

)
,5υh〉 = 〈Fpr, υh〉,

(3.40)

〈φS
n+1,i+1
h − Snh

∆t
, υh〉+ 〈

(
λw(Sn+1,i

h )5 (pn+1,i+1
h − 1

2
pc(S

n+1,i+1
h ))

)
,5υh〉 = 〈Fsat, υh〉.

(3.41)

The stopping criterion is ||(Sn+1,i
h − Sn+1,i+1

h )|| ≤ ε, ||(pn+1,i
h − pn+1,i+1

h )|| ≤ ε.

3.3.3 Proof of Convergence of the New Implicit Iteration Scheme

In this section we present the convergence proof that was inspired by [24, 27]

In order to prove that the scheme above converges, we need to make the following

assumptions.

(A1) The functions λw, λn, λΣ = λw + λn, λdif = λw − λn, pn+1
h , pc, p

′
c =

dpc(Sw)

dSw
and 5pc are Lipschitz continuous in the domain Ω (which also means that all of them
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are bounded in this domain).

(A2) pc is a decreasing function, and, as a consequence, p′c ≤ 0.

From now on we will use the following notation:

ei+1
p = pn+1

h − pn+1,i+1
h , ei+1

s = Sn+1
h − Sn+1,i+1

h . (3.42)

Theorem 3.3.1. Under the assumptions (A1)-(A2) the scheme (3.40)-(3.41) con-

verges linearly when the time step satisfies (3.51).

Proof. Subtracting (3.40) from (3.25), and (3.41) from (3.26) we get

〈λΣ(Sn+1
h )5 pn+1

h − λΣ(Sn+1,i
h )5 pn+1,i+1

h ,5υh〉+
〈λn(Sn+1

h )− λw(Sn+1
h )

2
5 pc(S

n+1
h )

−λn(Sn+1,i
h )− λw(Sn+1,i

h )

2
5 pc(S

n+1,i
h ),5υh

〉
= 0,

φ

∆t
〈ei+1
s , υh〉+ 〈

(
λw(Sn+1

h )5 pn+1
h − λw(Sn+1,i

h )5 pn+1,i+1
h

)
,5υh〉

+
1

2
〈λw(Sn+1,i

h )5 pc(S
n+1,i+1
h )− λw(Sn+1

h )5 pc(S
n+1
h ),5υh〉 = 0.

We can rewrite the first equation as

〈λΣ(Sn+1
h )5 pn+1

h ∓ λΣ(Sn+1,i
h )5 pn+1

h − λΣ(Sn+1,i
h )5 pn+1,i+1

h ,5υh〉

+
〈λn(Sn+1

h )− λw(Sn+1
h )

2
5 pc(S

n+1
h )∓ λn(Sn+1,i

h )− λw(Sn+1,i
h )

2
5 pc(S

n+1
h )

− λn(Sn+1,i
h )− λw(Sn+1,i

h )

2
5 pc(S

n+1,i
h ),5υh

〉
= 0,

which is further equivalent to

〈(λΣ(Sn+1
h )− λΣ(Sn+1,i

h ))5 pn+1
h ,5υh〉+ 〈λΣ(Sn+1,i

h )5 ei+1
p ,5υh〉

+
〈(λn(Sn+1

h )− λw(Sn+1
h )

2
− λn(Sn+1,i

h )− λw(Sn+1,i
h )

2

)
5 pc(S

n+1
h ),5υh

〉
+
〈λn(Sn+1,i

h )− λw(Sn+1,i
h )

2
5 (pc(S

n+1
h )− pc(Sn+1,i

h )),5υh
〉

= 0.

Let us test the equation above with υh = ei+1
p .

λ0
Σ|| 5 ei+1

p ||2 ≤ 〈(λΣ(Sn+1,i
h )− λΣ(Sn+1

h ))5 pn+1
h ,5ei+1

p 〉

+
〈λn(Sn+1,i

h )− λn(Sn+1
h )

2
5 pc(S

n+1
h ),5ei+1

p

〉
+
〈λw(Sn+1,i

h )− λw(Sn+1
h )

2
5 pc(S

n+1
h ),5ei+1

p

〉
+
〈λn(Sn+1,i

h )− λw(Sn+1,i
h )

2
5 (pc(S

n+1,i
h )− pc(Sn+1

h )),5ei+1
p

〉
.
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As the functions λw, λn, λΣ, λdif , p
n+1
h , 5pc are Lipschitz continuous by (A1) we can

use the Lipschitz inequality for them. From Lipschitz continuity it follows that these

functions are also bounded in the domain Ω which means that we can replace them

with the largest value of each function in the domain.

λ0
Σ|| 5 ei+1

p ||2 ≤ LλΣ
Mp||eis|||| 5 ei+1

p ||+
1

2
LλnMpc ||eis|||| 5 ei+1

p ||

+
1

2
LλwMpc ||eis|||| 5 ei+1

p ||+
1

2
λ0
difLpc ||eis|||| 5 ei+1

p ||.

After additional algebraic manipulations, we can get the following estimation for the

error of the pressure function:

|| 5 ei+1
p || ≤

(
LλΣ

Mp

λ0
Σ

+
Lλn + Lλw

2λ0
Σ

Mpc +
λ0
difLpc
2λ0

Σ

)
||eis||. (3.43)

Let us return to the second equation.

φ〈ei+1
s , υh〉+ ∆t〈λw(Sn+1

h )5 (pn+1
h − pn+1,i+1

h ),5υh〉 (3.44)

+ ∆t〈(λw(Sn+1
h )− λw(Sn+1,i

h ))5 pn+1
h ,5υh〉 (3.45)

+
∆t

2
〈λw(Sn+1,i

h )5 pc(S
n+1,i+1
h )− λw(Sn+1

h )5 pc(S
n+1
h ),5υh〉 = 0. (3.46)

We have to compute the gradient of the capillary pressure function, which depends on

the unknown Sn+1,i+1
h . To do it, we use the following approximation

5pc(Sn+1,i+1
h ) ∼ p′c(S

n+1,i
h )5 Sn+1,i+1

h .

By substituting this approximation in (3.44) we obtain:

φ〈ei+1
s , υh〉+ ∆t〈λw(Sn+1

h )5 ei+1
p ,5υh〉+ ∆t〈(λw(Sn+1

h )− λw(Sn+1,i
h ))5 pn+1

h ,5υh〉

− ∆t

2
〈λw(Sn+1,i

h )p′c(S
n+1,i
h )5 (Sn+1

h − Sn+1,i+1
h ),5υh〉

+
∆t

2
〈(λw(Sn+1,i

h )p′c(S
n+1,i
h )− λw(Sn+1

h )p′c(S
n+1
h ))5 Sn+1

h ,5υh〉 = 0.

Let us test the equation above with υh = en+1
s . At this point we also use the

assumption (A2). As the function p′c is negative, its smallest value is also negative and

we denote it as min(p′c) = −Mp′c , where Mp′c ≥ 0.

φ||ei+1
s ||2 +

∆t

2
MλwMp′c || 5 ei+1

s ||2

≤ ∆tMλw || 5 ei+1
p |||| 5 ei+1

s ||+ ∆tLλwMp||eis|||| 5 ei+1
s ||

+
∆t

2
(Mp′cLλw +MλwLp′c)MS||eis|||| 5 ei+1

s ||.
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Using the knowledge about the gradient of the pressure function error (3.43) we can

estimate the error for the saturation function.

φ||ei+1
s ||2 +

∆t

2
MλwMp′c || 5 ei+1

s ||2 ≤ ∆tMλw

(LλΣ
Mp

λ0
Σ

+
Lλn + Lλw

2λ0
Σ

Mpc

+
λ0
difLpc
2λ0

Σ

+ LλwMp +
1

2
(Mp′cLλw +MλwLp′c)MS

)
||eis|||| 5 ei+1

s ||.

Let us say that

C(∆t) = ∆tMλw

(
LλΣ

Mp

λ0
Σ

+
Lλn + Lλw

2λ0
Σ

Mpc +
λ0
difLpc
2λ0

Σ

(3.47)

+ LλwMp +
1

2
(Mp′cLλw +MλwLp′c)MS

)
, (3.48)

where C(∆t) ≥ 0.

Further we use Young’s inequality

ab ≤ a2

2ε
+
εb2

2
for all ε > 0 (3.49)

and Poincaré inequality

||u||L2(Ω) ≤ C|| 5 u||L2(Ω). (3.50)

The last holds for any u ∈ H1
0 (Ω). Using the inequalities we finally get the following

estimate:

φ||ei+1
s ||2 +

(
∆t

2
MλwMp′c −

C(∆t)

2ε

)
|| 5 ei+1

s ||2 ≤
C(∆t)ε

2
||eis||2,

(
φ+ CΩ

(
∆t

2
MλwMp′c −

C(∆t)

2ε

))
||ei+1

s ||2 ≤
C(∆t)ε

2
||eis||2,

which further implies

||ei+1
s ||2 ≤

C(∆t)ε

2

(
φ+ CΩ

(
∆t

2
MλwMp′c −

C(∆t)

2ε

)) ||eis||2.

This proves that our scheme (3.40)-(3.41) linearly converges under the following

mild restriction on the time step:

C(∆t)ε

2

(
φ+ CΩ

(
∆t

2
MλwMp′c −

C(∆t)

2ε

)) ≤ 1.
(3.51)



3.3 Fully Implicit Scheme 37

To verify the applicability of the scheme to realistic scenarios we test and compare

it with the other schemes in the next Chapter.
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Chapter 4

Numerical Results

In this chapter we present a verification of convergence of the new implicit scheme

developed in Section 3.3.2. We look at a few numerical tests with different levels of

complexity and study the convergence rate of the iterative process. We also compare

the new scheme with IMPES and Newton’s implementation of the implicit method

(referred to as Newton’s method for conciseness). In Section 4.2 we highlight the

advantages of the new scheme by comparing it with IMPES and Newton’s scheme in

terms of the CPU time and stability with respect to time-step.

4.1 Verification of Convergence

In this section we demonstrate the convergence of the new iterative scheme applied to

the model problem developed in Chapter 2:

−5 · k(λΣ5 p+
λn − λw

2
5 pc) = Fpr,

φ
∂Sw
∂t
−5 ·

(
λwk5 (p− 1

2
pc)
)

= Fsat,

S0
w = Sw(x, t0), p0 = p(x, t0),

Sw|∂Ω = SΓ
w, p|∂Ω = pΓ.

(4.1)

In all the following test cases we choose the right-hand side functions such that the

analytical solution of the system above in the domain Ω = (0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1) is

defined as follows:

p(x, t) = tx1(1− x1)x2(1− x2), (4.2)

S(x, t) =
1

2
+ tx1(1− x1)x2(1− x2). (4.3)

All computations are done on the time interval t ∈ [0.0, 1.0].
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4.1.1 Test case 1 (λn = λw = 1, pc = 0)

In this test case we consider the system (4.1) where λn = λw = φ = ρ = 1 and there is

no capillary pressure pc = 0. Thus, we get the following simplified system:

−5 · (25 p) = Fpr,

∂S

∂t
−5 · (5p) = Fsat,

P0 = 0, p∂Ω = 0,

S0 =
1

2
, S∂Ω =

1

2
.

(4.4)

Let us choose the right-hand side functions such that the analytical solution of the

system (4.4) is provided by the formulas (4.2)-(4.3). For the analytical solution we

present the following relations:

4p = −2t(x1 − x2
1 + x2 − x2

2), (4.5)

∂S

∂t
= (x1 − x2

1)(x2 − x2
2). (4.6)

Then the right-hand side functions can be easily computed as:

Fpr = −24p,

Fsat =
∂S

∂t
−4p.

(4.7)

In Figure 4.1 we present the numerical solution, the true solution and the error

(the difference between the solutions at each point) for the pressure function at time

Tfinal = 1.0, h = 0.05 after 20 time steps with dt = 0.05. Figure 4.2 presents the same

plots for the saturation function.

Figure 4.1: Test case 1. Numerical solution, true solution and error for the pressure
function at time Tfinal = 1.0, h = 0.05, dt = 0.05 .

To verify the correctness of the implementation we look at the convergence rates

with respect to time and space discretization. Table 4.1 presents the results of our

implicit scheme applied to the system (4.4) at different mesh and time-step sizes.

The computations are performed on the time interval t ∈ [0.0, 1.0], each consequent

computation is done on the refined by the factor of two mesh and with twice smaller
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Figure 4.2: Test case 1. Numerical solution, true solution and error for the saturation
function at time Tfinal = 1.0, h = 0.05, dt = 0.05 .

h dt Pressure Error Saturation Error Ep
i /E

p
i+1 Es

i /E
s
i+1

1 0.1 0.1 1.3026e-04 0.0036
2 0.05 0.05 2.9646e-05 7.6252e-04 4.3939 4.7737
3 2.5e-02 2.5e-02 7.4590e-06 1.9600e-04 3.9746 3.8903
4 1.25e-02 1.25e-02 1.8976e-06 5.4108e-05 3.9308 3.6224
5 6.25e-03 6.25e-03 4.7244e-07 1.5277e-05 4.0166 3.5418

Table 4.1: Test case 1. L2-norm errors of pressure and saturation functions for different
time steps and mesh sizes, Tfinal = 1.0.

time-step. The errors from Table 4.1 are visualized in Figure 4.3.
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Figure 4.3: Test case 1. Discrete error L2-norm for the solution of pressure (blue) and
saturation (green) equations for different space and time steps. Both space and time
steps are refined with the factor of two each time.

We used the finite element discretization in space and backward Euler in time.

Then the expected order of the error is O(dt + h2) for the saturation equation and

O(h2) for the pressure [5, 17]. From Table 4.1 we see that the error of the pressure

equation became four times smaller as h decreased twice. This perfectly agrees with

theory. For the saturation equation we see that with a decrease in dt and h the error

also became nearly four times smaller. However, we also see a downward trend in the
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h dt Pressure Error Saturation Error Ep
i /E

p
i+1 Es

i /E
s
i+1

1 0.1 0.1 1.1842e-04 2.9392e-04
2 0.05 0.05 2.6503e-05 1.2223e-04 4.4682 2.4047
3 2.5e-02 2.5e-02 6.6447e-06 6.3125e-05 3.9886 1.9363
4 1.25e-02 1.25e-02 1.7059e-06 3.3779e-05 3.8952 1.8687
5 6.25e-03 6.25e-03 4.1680e-07 1.6321e-05 4.0928 2.0697

Table 4.2: Test case 2. L2-norm errors of the pressure and the saturation functions for
different time steps and mesh sizes, Tfinal = 1.0.

last column in Table 4.1. Thus, we can expect the order O(dt+ h2) as dt, h→ 0.

4.1.2 Test case 2 (λn = λw = 1, pc = 1)

In this test case we consider the system (4.1) with λn = λw = φ = ρ = 1. However

this time we have a constant capillary pressure pc = 1. Thus, we get the following

simplified system:

−5 · (25 p) = Fpr,

∂S

∂t
−5 · 5(p− 1

2
pc) = Fsat,

P0 = 0, p∂Ω = 0,

S0 =
1

2
, S∂Ω =

1

2
.

(4.8)

As before, we choose the right-hand side functions such that the analytical solution

of the system above in the domain Ω is still the same (4.2) - (4.3). Then the right-hand

side functions can be easily computed:

Fpr = −24p,

Fsat =
∂S

∂t
−4p.

(4.9)

Let us look at how the error changes at different time and space steps, like we

did in the previous test case. Table 4.2 shows that the error decreasing ratio for the

saturation equation differs from the previous test case and it tends to the value of two.

This indicates that the error is dominated by the Euler approximation for the time

derivative. In Figure 4.4 the errors from Table 4.2 are plotted, so that it is easier to

see that in this test case we have convergence of order two for the pressure equation

and only first order convergence for the saturation equation.



4.1 Verification of Convergence 43

10
1

10
2

10
−7

10
−6

10
−5

10
−4

10
−3

Logarithm of the inverse mesh size log(1/h)

L
o
g
a
ri
th

m
 o

f 
th

e
 d

is
c
re

te
 L

2
−

n
o
rm

 o
f 
te

h
 e

rr
o
r

 

 

Pressure

Saturation

quadratic

linear

Figure 4.4: Test case 2. Discrete error L2-norm for the solution of the pressure (blue)
and the saturation (green) equations for different space and time steps. Both space
and time steps are decreased twice for every next simulation.

4.1.3 Test case 3 (λn =
1

4
, λw =

3

4
, pc = 1− S2

w)

In this test case we simplify the system (4.1) in sense of parameters λn =
1

4
, λw =

3

4
, φ = ρ = 1. However, this time we include the capillary pressure as smooth Lipschitz

continuous function of the saturation pc = 1− S2
w. Then our new system looks like:

−5 · (5p+
1

4
5 pc) = Fpr,

∂S

∂t
−5 · (3

4
5 (p− 1

2
pc)) = Fsat,

P0 = 0, p∂Ω = 0,

S0 =
1

2
, S∂Ω =

1

2
.

(4.10)

We want the analytical solution of the system to maintain the same form (4.2)-(4.3).

Let us first compute the Laplacian of the capillary pressure function:

4pc = 2t(x2−x2
2 +x1−x2

1)−2t2((x2−x2
2)2(1−6x1 + 6x2

1) + (x1−x2
1)2(1−6x2 + 6x2

2)).

(4.11)

Then the right-hand side functions should be chosen as:

Fpr = −4p+
1

4
4pc, Fsat =

∂S

∂t
− 3

4
4p+

3

8
4pc, (4.12)

where 4p and
∂S

∂t
are as in the test case 1 (4.5)-(4.6).
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h dt Pressure Error Saturation Error Ep
i /E

p
i+1 Es

i /E
s
i+1

1 0.1 0.1 2.2958e-04 0.0012
2 0.05 0.05 4.9383e-05 2.6342e-04 4.6491 4.4626
3 2.5e-02 2.5e-02 1.2223e-05 6.5993e-05 4.0401 3.9917
4 1.25e-02 1.25e-02 3.0972e-06 1.6763e-05 3.9465 3.9367
5 6.25e-03 6.25e-03 7.6654e-07 4.1586e-06 4.0405 4.0309

Table 4.3: Test case 3. L2-norm errors of pressure and saturation functions for different
time steps and mesh sizes, Tfinal = 1.0.

As before, we examine the convergence of the scheme by comparing the errors for

different discretizations. The results are presented in Table (4.3) and Figure (4.5).
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Figure 4.5: Test case 3. Discrete error L2-norm for the solution of the pressure (blue)
and the saturation (green) equations for different space and time steps. Both space
and time steps are decreased twice for every next simulation.

In this test case we also examine the errors at each iteration of the scheme. In

Section 3.3.3 we proved that our scheme converges at least linearly and here we want

to study the real error change and analyze whether it agrees with the theoretical proof.

We did not consider the errors in the previous test cases as due to the parameteriza-

tion choice the scheme converged too quickly and we were not able to catch the real

behaviour of the error.

Figures 4.6 and 4.7 show the difference between numerical solutions at each iteration

||pi+1 − pi||L2 and ||Si+1 − Si||L2 during one time step. The stopping criteria for the

iteration is ||pi+1−pi||L2 ≤ ε and ||Si+1−Si||L2 ≤ ε, where ε = 10−9, therefore, the lines

does not go down further than the level of 10−9. Figures 4.8 - 4.9 presents the error of

the numerical solution at each iteration with the analytical solution, ||pi+1−pan||L2 and

||Si+1−San||L2 . First of all, we see that for this test case the scheme shows convergence

faster than linear. Second, in Figures 4.8 - 4.9 the error first goes down quickly and
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then stabilizes at some level. This level shows how big numerical error we have for

this particular mesh and time-step. With the change of mesh and time-step size this

numerical error becomes smaller, which also agrees with the numbers in Table 4.3.

Figure 4.6: The difference between nu-
merical solutions at each iteration of
one time-step ||pi+1 − pi||L2 for various
mesh and time-step sizes.

Figure 4.7: The difference between nu-
merical solutions at each iteration of
one time-step ||Si+1−Si||L2 for various
mesh and time-step sizes.
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Figure 4.8: The difference between nu-
merical and analytical solutions at each
iteration of one time-step ||pi+1−pan||L2

for various mesh and time-step sizes.
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Figure 4.9: The difference between
numerical and analytical solutions at
each iteration of one time-step ||Si+1−
San||L2 for various mesh and time-step
sizes.

Let us also take a look at the number of iterations that the new implicit scheme

requires at each time step. Figure (4.10) presents this number at different mesh sizes

with fixed time step. The plots indicate that the number of iterations does not depend

on the mesh size at all and changes with the size of time step only. However, the

parametrization used here is relatively simple and in the next test case we will look at
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the number of iterations again.
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Figure 4.10: Numbers of iterations for several mesh and step sizes.

4.1.4 Test case 4 (λn, λw from van Genuchten parametrization,

pc = 1− S2
w)

Now we use van Genuchten parametrization, described in detailed in the appendix A, 5,

for the phase mobility functions λn =
kr,n
µn

, λw =
kr,w
µw

, while the capillary pressure stays

the same: pc = 1−S2
w. The values of other parameters are k = 1, φ = 1, µn = 1, µw = 1.

Then our new system is written as follows:

−5 · (λΣ5 p+
λdif

2
5 pc) = Fpr,

∂S

∂t
−5 · (λw 5 (p− 1

2
pc)) = Fsat,

p0 = 0, p∂Ω = 0,

S0 =
1

2
, S∂Ω =

1

2
,

λΣ = λn + λw,

λdif = λn − λw.

(4.13)

We choose Fpr and Fsat such that the analytical solution (4.2)-(4.3) stays the same:

Fpr = −5 λΣ · 5p− λΣ4p−
1

2
5 λdif · 5pc −

1

2
λdif4pc,

Fsat =
∂S

∂t
−5λw · 5p− λw4p+

1

2
5 λw · 5pc +

1

2
λw4pc,

(4.14)
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h dt Pressure Error Saturation Error Ep
i /E

p
i+1 Es

i /E
s
i+1

1 0.1 0.1 9.9101e-05 1.5739e-04
2 0.05 0.05 2.2000e-05 3.8927e-05 4.5046 4.0433
3 2.5e-02 2.5e-02 5.5877e-06 9.9906e-06 3.9372 3.8964
4 1.25e-02 1.25e-02 1.4325e-06 2.5480e-06 3.9007 3.9210
5 6.25e-03 6.25e-03 3.5866e-07 6.3823e-07 3.9940 3.9923

Table 4.4: Test case 4. L2-norm errors of pressure and saturation functions for different
time steps and mesh sizes, Tfinal = 1.0.

where 4p, ∂S
∂t

and 5pc are the same as before. The gradients are computed as:

5 p =

(
t(1− 2x1)(x2 − x2

2)

t(1− 2x2)(x1 − x2
1)

)
, (4.15)

5 pc =

(
− 2t(1− 2x1)(x2 − x2

2)S

− 2t(1− 2x2)(x1 − x2
1)S

)
, (4.16)

∂λn
∂x1

= (tx1x2(1− x2)− tx2(1− x1)(1− x2))(
1− S2

2
√

1− S
+ 2S

√
1− S),

∂λn
∂x2

= (tx1x2(1− x1)− tx1(1− x1)(1− x2))(
1− S2

2
√

1− S
+ 2S

√
1− S),

(4.17)

∂λw
∂x1

= (tx2(1− x1)(1− x2)− tx1x2(1− x2))(
2S3/2(1−

√
1− S2)√

1− S2
+

(1−
√

1− S2)2)

2
√
S

),

∂λw
∂x2

= (tx1(1− x1)(1− x2)− tx1x2(1− x1))(
2S3/2(1−

√
1− S2)√

1− S2
+

(1−
√

1− S2)2)

2
√
S

),

5 λn =

(
∂λn
∂x1

,
∂λn
∂x2

)T
, 5λw =

(
∂λw
∂x1

,
∂λw
∂x2

)T
.

(4.18)

Table (4.4) shows how the error changes with the refinement of the mesh by the

factor of two and a simultaneous decrease in the time step. As in the previous test

case, we observe the second order of convergence. Figure 4.11 presents the errors from

Table 4.4.

Let us look at the number of iterations for this test case and compare it with

what we get in the test case 4.1.3. Here, the phase mobility function is not constant

anymore and becomes a function of the water saturation. For this test case we see that

the number of iterations vary a little with the change of space step, but these changes

are relatively small and the number tends to stabilize at some level. Thus, we can say

that the new scheme shows independence of the mesh size in terms of needed number

of iterations.
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Figure 4.11: Test case 4. Discrete error L2-norm for the solution of the pressure (blue)
and the saturation (green) equations for different space and time steps. Both space
and time steps are decreased twice for every next simulation.

4.1.5 Test case 5 (λn, λw, pc from van Genuchten parametriza-

tion)

In this test case we use van Genuchten parametrization not only for the phase mobility

functions but also for the capillary pressure, see Appendix 5. The values of other

parameters are k = 1, φ = 1, µn = 1, µw = 1. The system of equations is the same

as in the previous test case. We also want the analytical solution (4.2-4.3) to stay the

same. The formulas for the right-hand side functions Fpr and Fsat are the same as in

the previous test case (4.14), however, the gradient and the Laplacian of the capillary

pressure function are different.

5 pc =


−2(t(1− x1)(1− x2)x2 − tx1(1− x2)x2)

s3
√

1/s2 − 1

−2(t(1− x1)x1(1− x2)− t(1− x1)x1x2)

s3
√

1/s2 − 1

 , (4.19)

4pc =
6(t(1− x1)(1− x2)x2 − tx1(1− x2)x2)2

s4
√

1/s2 − 1
− 2(t(1− x1)(1− x2)x2 − tx1(1− x2)x2)2

s6(1/s2 − 1)3/2

+
4t(1− x2)x2

s3
√

1/s2 − 1
+

6(t(1− x1)x1(1− x2)− t(1− x1)x1x2)2

s4
√

1/s2 − 1

−2(t(1− x1)x1(1− x2)− t(1− x1)x1x2)2

s6(1/s2 − 1)3/2
+

4t(1− x1)x1

s3
√

1/s2 − 1
.

(4.20)

We compute the errors on different time and space steps and examine the error
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dt = 0.1

dt = 0.05

dt = 2.5e−2

dt = 1.25e−2

dt = 6.25e−3

Figure 4.12: Numbers of iterations for several mesh and step sizes when van Genuchten
parametrization for λn and λw is used.

h dt Pressure Error Saturation Error Ep
i /E

p
i+1 Es

i /E
s
i+1

1 0.1 0.1 1.2577e-04 9.3802e-05
2 0.05 0.05 3.7186e-05 2.2608e-05 3.3823 4.1491
3 2.5e-02 2.5e-02 1.0848e-05 5.9607e-06 3.4280 3.7928
4 1.25e-02 1.25e-02 2.7961e-06 1.5611e-06 3.8796 3.8183

Table 4.5: Test case 5. L2-norm errors of pressure and saturation functions for different
time steps and mesh sizes, Tfinal = 1.0.

change. The results are presented in Table (4.5) and in Figure (4.13)

Let us look at the difference between numerical solutions at each iteration ||pi+1 −
pi||L2 and ||Si+1 − Si||L2 . As in the test case 3, the stopping criterion for the iteration

is ||pi+1− pi||L2 ≤ ε and ||Si+1−Si||L2 ≤ ε, where ε = 10−9, that is why the lines does

not go down further then the level of 10−9. The corresponding errors are presented in

Figures 4.14 and 4.15. Figures 4.16 - 4.17 show the difference between the numerical

solution and the analytical solution at each iteration, ||pi+1−pan||L2 and ||Si+1−San||L2 .

As for the test case 4.1.3, we observe convergence which is faster than linear. The error

does not decrease beyond some level which corresponds to mismatch between analytical

and numerical solutions for the particular discretization. All the errors are computed

for just one time-step which is different for each line and on meshes with different levels

of refinement.
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Figure 4.13: Test case 5. Discrete error L2-norm for the solution of the pressure (blue)
and the saturation (green) equations for different space and time steps. Both space
and time steps are decreased twice for every next simulation.

4.2 Comparison of the stabilized iterative approach

with IMPES and Newton’s scheme

In Chapter 3 we presented a new stabilized iterative implementation of the fully implicit

scheme for two-phase flow in porous media. In the previous section we studied different

test cases to prove its convergence. In this section we compare the new scheme with

our implementation of IMPES and Newtons’s solver for the fully implicit scheme.

4.2.1 Robustness

First of all, we look at the improvement of the size of time-step compared with IMPES.

In the IMPES scheme the saturation equation is solved explicitly. While it simplifies

implementation and reduces the computational time, it results in the condition on

a time step which is common to all explicit schemes. This problem was studied in

several works, for example the authors of [10] examined the stability of IMPES and

derived a criterion on the time-step for multidimensional three-phase flow. It is clear

that IMPES provides accurate and stable solutions only if the time step is relatively

small. Therefore we introduced an implicit scheme which to certain degree maintains

the simplicity of IMPES, while having better convergence properties. In Table 4.6 we

see the improvement in a time step of the new iteration scheme comparing to IMPES

for the mesh size h = 0.1. We also included Newton’s scheme here. Table 4.7 present

the same comparison but for the mesh size h = 0.05. The different mesh size does not

influence the two implicit schemes, but requires a smaller time step for IMPES.



4.2 Comparison of the stabilized iterative approach with IMPES and
Newton’s scheme 51

10
0

10
1

10
2

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

log(1/h)

||
p

i+
1
 −

 p
i  |

| L
2

 

 

dt = 0.1; h = 0.1

dt = 0.05; h = 0.05

dt = 2.5e−2; h = 2.5e−2

dt = 1.25e−2; h = 1.25e−2

dt = 6.25e−3; h = 6.25e−3

Figure 4.14: The difference between
numerical solutions at each iteration of
one time-step ||pi+1 − pi||L2 for various
mesh and time-step sizes.

10
0

10
1

10
2

10
−10

10
−8

10
−6

10
−4

10
−2

log(1/h)

||
S

i+
1
 −

 S
i  |

| L
2

 

 

dt = 0.1; h = 0.1

dt = 0.05; h = 0.05
dt = 2.5e−2; h = 2.5e−2
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Figure 4.15: The difference between
numerical solutions at each iteration of
one time-step ||Si+1−Si||L2 for various
mesh and time-step sizes.

Numerical method dt = 0.2 dt = 0.1 dt = 1e-2 dt = 1e-3 dt = 1e-4 dt = 1e-5

IMPES No No No Yes Yes Yes
Implicit Scheme No Yes Yes Yes Yes Yes

Newton’s Scheme Yes Yes Yes Yes Yes Yes

Table 4.6: Comparison of IMPES and the implicit scheme in terms of convergence with
different time steps, Tfinal = 1.0, h = 0.1.

4.2.2 CPU time

Let us now compare the schemes in terms of the required CPU time. In Figure 4.18 the

CPU times of the schemes are presented. All computations are done in Matlab with

the processor Intel(R) Core(TM)2 Duo E6850 @ 3.00GHz. The numerical solution,

the true solution and the error for the last space discretization h = 0.02 for the new

scheme are presented in Figures 4.19 - 4.20. The time step for IMPES was chosen so

that the scheme converges for the smallest mesh size. While it is not optimal for all

the simulations, an optimal choice of the step size is a complicated problem in itself

[10, 11] and was not in the scope of the thesis.

Numerical method dt = 0.2 dt = 0.1 dt = 1e-2 dt = 1e-3 dt = 1e-4 dt = 1e-5

IMPES No No No No Yes Yes
Implicit Scheme No Yes Yes Yes Yes Yes

Newton’s Scheme Yes Yes Yes Yes Yes Yes

Table 4.7: Comparison of IMPES and the implicit scheme in terms of convergence with
different time steps, Tfinal = 1.0, h = 0.05.
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Figure 4.16: The difference between
numerical and analytical solutions at
each iteration of one time-step ||pi+1 −
pan||L2 for various mesh and time-step
sizes.
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dt = 0.1; h = 0.1
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Figure 4.17: The difference between
numerical and analytical solutions at
each iteration of one time-step ||Si+1−
San||L2 for various mesh and time-step
sizes.

It is not surprising that with the implicit scheme we get an improvement in the CPU

time. Despite the fact that the implicit scheme needs to complete a few iterations at

each time step, the improvement in the size of the time step made it more efficient

compare to the IMPES scheme. Even more interesting is the fact that we have a

smaller computational time even comparing with Newton’s method that needs fewer

iteration due to the second order of convergence. In order to understand why we have

better time performance of the new scheme comparing with Newton’s iteration scheme

we devote next section to examination of the condition number.

4.2.3 Condition Number

In terms of computational complexity, an important indicator is the condition number

of the matrices of the corresponding linear systems at each iteration of the method. As

we use finite elements for the space discretization in all schemes, it results in solving

a similar system of linear equations at each iteration. An important characteristic

of numerical schemes for linear systems is the condition number of the left-hand side

matrices. In case of Newton’s scheme we calculate the condition number of the Jacobian

matrix. The condition number estimates for both schemes were computed using the

MATLAB function condest() and are presented in Figure (4.21). The numbers for

the implicit scheme are averaged over all iterations. In Newton’s method we have

one matrix for the whole implicit system and in new implicit scheme two (one for the

pressure and one for the saturation equations). Therefore we plotted the same numbers

for Newton’s method and compared them with the numbers for the pressure and the

saturation matrices separately.
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Figure 4.19: The numerical solution, the true solution and the error for the pressure
equation at time Tfinal = 1.0, h = 0.02, dt = 0.1 .

Figure (4.21) shows that the condition number for Newton’s method is much higher

then the condition number of our implicit scheme. This can explain why Newton’s

method is slower then the new iterative scheme. In spite of the fact that Newton’s

method needs fewer iterations to complete one time step, each iteration takes more

time because the Jacobian matrix is relatively massive and it takes quite a long time

to compute it. Also, as the condition number of the Jacobian matrix is relatively large,

it takes more time for the linear solver to reach the needed accuracy for each iteration.
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Figure 4.20: The numerical solution, the true solution and the error for the saturation
equation at time Tfinal = 1.0, h = 0.02, dt = 0.1 .
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Chapter 5

Conclusion

In this thesis we presented a new implicit iterative scheme for the two-phase flow model

in the averaged pressure formulation. Its main feature is the implicit treatment of the

capillary pressure function which makes the scheme stable. This is accomplished by the

linear approximation for the capillary pressure gradient which involves the saturation

function on both current and previous iterations. Under these assumptions we proved

the convergence theorem.

Our numerical experiments contain comparison of the new scheme with the two

most often used methods for the two-phase flow problem: IMPES and the fully im-

plicit scheme with Newton’s method as a tool for solving the arising nonlinear system.

IMPES and the new scheme share the idea of exploiting the structure of the equation.

However, the standard IMPES scheme converges only with relatively small time-steps.

The new scheme has only a mild condition on the time step size and for the mesh

size h = 0.05 shows convergence with a three order of magnitude greater time step.

Therefore we saw a huge improvement in the CPU time of the new scheme compared

with IMPES.

We also compared the new scheme with the fully implicit scheme that uses New-

ton’s method to deal with nonlinearities. Newton’s method is widely used for solving

nonlinear systems of equations because it can handle general problems and has the sec-

ond order of convergence. However, comparing with our new scheme it still used more

CPU time even though it needed a fewer number of iterations at each time step. This

can be explained by the necessity of computing the Jacobian matrix at each iteration,

as well as the worse condition number of the resulting Jacobian matrices.

All this makes our new scheme an attractive alternative to the existing methods.

Nevertheless, the scheme’s advantages comes from its limitations: it uses the specific

structure of the problem. While the scheme cannot be used for more complex systems,

the methodologies described in this thesis can be applied to extend the scheme to

other applications, such that compressible fluid flow and three-phase flow models, other

types of problem formulations or for the models where the hysteresis is included in the
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capillary pressure function.



Appendices

A Van Genuchten Parametrization

In this thesis we use the van Genuchten parametrization [32] for the dependence of the

relative permeability and capillary pressure functions on the fluid saturation:

kr,n(S) =
√

1− S[1− S1/m]2m,

kr,w =
√
S[1− (1− S1/m)m]2,

(5.1)

where m = 1− 1/n and n, pe are the van Genuchten parameters equal to n = 2, pe =

2MPa. Curves for the van Genuchten relative permeabilities are presented in Figure

5.1 and for the capillary pressure in Figure 5.2

In most cases, this type of parametrization is enough to capture the real processes

well enough [1]. However, it is important to mention that the relation between the

capillary pressure and the wetting fluid saturation is not unique in general. The exper-

imental data suggests that capillary pressure curve shows history-dependent behaviour

[15], [31], [4]. One way to improve the capillary pressure parametrization is to include

time-dependence in the capillary pressure function pc = pc(Sw, ∂tSw).

Nevertheless, in this thesis we consider algebraic relation for the van Genuchten

parametrization as the capillary pressure function and the relative permeabilities func-

tions.
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Figure 5.1: An example of the static
van Genuchten relative permeabilities
curves.
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