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Abbreviations and important terms 

alpha rarefaction 
resampling of data at stepped sampling depths to 
glean information about within-sample diversity 
(species richness and evenness). 
alpha diversity 
term used in this thesis to express within-sample 
diversity 
ANOSIM 
a non-parametric method to compare two or more 
groups of samples to test whether there are 
significant differences between those groups. 
ANOSIM uses permutations of the data to determine 
significance. 
BBDuk 
a fast and flexible opens source tool for adapter, 
quality, and contaminant trimming of sequence data, 
developed by Brian Bushnell (Joint Genome Institute) 
beta diversity  
term used in this thesis to express between-sample 
diversity (compositional dissimilarity of samples) 
Chao1 
an alpha diversity estimate of total species numbers 
within a sample 
chimera 
an artifact that occurs in sequence data as a result of 
two parent sequences from different sources fuse to 
one another during the amplification step. This 
artifact can artificially increase species diversity 
measures, especially in amplicon libraries when 
closely-related sequences are being amplified. 
civil polar night 
the condition, restricted to latitudes within the polar 
circle (above 72° 34’), when night lasts for more than 
24 hours. In the territory of Svalbard, Norway civil 
polar night lasts from around 11 November to 30 
January. 
classical food chain 
a term used by microbial ecologists to describe the 
complex higher trophic level food web that includes 
species whose interactions in the oceanic food web 
have been described previous to the advent of 
modern understanding of microbial input into the 
system. 
CTD 
acronym for conductivity/temperature/depth meter 
DNA  
acronym for deoxyribonucleic acid 
dNTP 
acronym for deoxynucleoside triphosphate. 
DOC 
acronym for “dissolved organic carbon”. 

DOM 
acronym for “dissolved organic matter”. 
ds 
double-stranded, in reference to DNA 
g23  
“gene product 23”, referring to a major capsid protein 
gene of the double-stranded DNA viral family 
Myoviridae, which determines the form of the capsid 
head 
grazer 
term used microbial ecology to describe protistan or 
zooplanktonic species that prey upon prokaryotes. 
Illumina 
High throughput sequencing platform that utilizes the 
bridge amplification method and detects nucleotide 
addition using four fluorescent light signals 
Ion Torrent 
High throughput sequencing platform that detects 
nucleotide addition by changes in pH 
phoH  
an auxiliary gene with unknown function found in 
genomes across a diversity of double-stranded DNA 
viral families. Homologous gene in Escherichia coli is 
known to assist in phosphate uptake. 
MCP 
 the major capsid protein gene of the algal viral family 
Phycodnaviridae and in the Mimiviridae. 
HTS  
acronym for high throughput sequencing, referring to 
massively parallel sequencing techniques. 
Kill the Winner  
A model for the population dynamics of phage–
bacteria interactions where increase in a host 
population followed by an increase in its phage 
predator results in a more rapid rate at which the 
winner population is destroyed. 
kmer 
describes all possible substrings of a designated length 
(k) that are within a string 
lateral gene transfer 
describes transfer of genetic material within or 
between species through methods other than sexual 
or asexual reproduction. 
lytic 
a mode of viral lifestyle in which infection of a host 
results directly in cell lysis 
lysogeny 
 a mode of viral lifestyle in which the genome of a 
virus integrates into the host genome or exists 
intracellularly as a plasmid. 
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metagenome 
genomics of an entire environmental sample which 
includes the genetic material from many different 
organisms present. 
microbial loop  
a concept used to describe the significant contribution 
of marine microorganisms in the transport of carbon 
and other nutrients through the marine food web. 
Mimiviridae 
a viral family within the nucleocytoplasmic DNA 
viruses, which have amoebae hosts 
mixotrophy  
the ability some organisms have to use a combination 
autotrophic and heterotrophic modes of energy 
consumption 
Myoviridae 
a family of tailed dsDNA bacteriophages in the order 
Caudovirales that have prokaryotic hosts 
NCLDV 
nucleocytoplasmic large DNA viruses which include 
the Phycodnaviridae and Mimiviridae groups. 
oligotrophic  
a nutrient deplete environment. 
omics 
overarching term used to describe large-scale data-
rich biology methods , such as metagenomics or 
proteomics 
OTU  
“operational taxonomic unit”. Sequences are binned 
into the same OTU if sharing an indicated percent 
similarity at or above a threshold value (97% or 90% in 
this thesis). Commonly used in microbiology in place 
of a species definition. 
paired-end sequencing 
method of sequencing that analyzes both ends of a 
DNA fragment. Merging of paired-end reads created 
on the Illumina platform allows more coverage and 
accuracy by using forward and reverse reads for the 
same time and effort it takes to make a non-paired 
library preparation. 
PCoA 
acronym for principle coordinate analysis. PCoA is a 
multi-dimensional scaling method that with a given 
input distance matrix, will output a coordinate matrix 
that minimizes stress  ultimately approximating the 
input distance matrix by reduction into only a few 
dimensions. This coordinate matrix can then be used 
in visualizations. 
PCR 
acronym for polymerase chain reaction 
phage 
shortened term used in place of bacteriophage or 
cyanophage, a term used to describe a virus that 
preys upon prokaryotes 

phiX 
control adapter-ligated library used by the Illumina 
platform that consists of fragments originating from 
the small and well-characterized genome of the phiX 
viral strain. 
PHRED 
a base-calling program that reads a DNA signal file 
(such as a chromatogram) and assigns a quality score 
based on its analysis of the peaks in the signal file. 
Phycodnaviridae 
A class of icosahedral algal dsDNA viruses, a group 
within the nucleocytoplasmic large DNA virsues 
plasmid 
a piece of intracellular DNA that is separate from the 
genomic DNA of the cell that can replicate 
independently. 
POC 
acronym for particulate organic carbon 
prophage 
temperate viral DNA integrated into the host genome 
proteome 
the entire set of proteins expressed by an organism, a 
cell, a group of organisms or a group of cells at any 
one time. 
QIIME 
“quantitative insights into microbial ecology” 
(pronounced “chime”). QIIME is an open-source 
bioinformatics pipeline designed for processing of raw 
prokaryotic sequence data from sequencing platform 
output files to a final statistical analysis and graphics. 
rarefaction 
method used to randomly resample a community to a 
common sequencing depth. This is used as a 
normalization technique within the QIIME pipeline. 
RNA 
acronym for ribonucleic acid 
Roche/454 
a HTS platform that performs sequencing by synthesis 
through which a light signal produced by a luciferin-
luciferase reaction is detected upon nucleotide 
addition 
R/V 
acronym for research vessel 
ss 
single-stranded, in reference to DNA or RNA. 
Unifrac 
a method for comparing microbial communities that 
uses phylogenetic distance as a metric, which can be 
used to determine if communities are significantly 
different, and also in clustering and ordination 
techniques  
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UPARSE  
a clustering algorithm designed by Dr. Robert Edgar to 
bin reads from microbial amplicon libraries into 
operational taxonomic units. 
UPGMA 
acronym for “unweighted pair group method with 
arithmetic mean”; a bottom-up hierarchical clustering 
method that defines dissimilarity between clusters as 
their average similarity. Used in this thesis to classify 
samples based on OTU composition. 
temperate virus 
a virus with a lysogenic replication cycle.  
viral shunt 
a process within the microbial loop in which the 
destruction of cells makes dissolved organic matter 
available for uptake only by microorganisms, thereby 

diverting energy that would have otherwise been 
passed up the classical food chain through predation 
on whole cells. 
virion 
the complete free living viral particle consisting of a 
protein capsid with the enclosed viral genome. 
virulent virus 
virus only capable of a lytic cycle. 
virus  
small acellular pathogenic agents (usually from 20 to 
200 nm in size) that influence their hosts 
intracellularly via infection as obligate parasites. 
WSC 
acronym for the West Spitsbergen Current, which 
carries warm Atlantic-derived water north through 
Fram Strait. 
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Summary 

Extreme changes in light and cold water temperatures throughout the annual cycle in the Arctic Ocean create a 

unique habitat that selects for particular microorganisms - including marine viruses. This study investigated diversity 

of ecologically significant viral groups at two marine sampling stations during the dark period in the Arctic Ocean 

north of the Svalbard archipelago through pyrosequencing of signature genes. Sequence data for three viral 

signature genes (g23, phoH, and MCP) were examined within the context of physical and biological environmental 

parameters to characterize the viral communities within several Arctic Ocean water masses of differing origin. 

Genotypic fingerprinting information from previous T4-like virus diversity investigations was used to explore 

phylogenetic relationships between Arctic Ocean g23 genotypes examined in this thesis to a global diversity of T4-

like viruses isolated from various environments. Our findings show that marine viral communities exhibit dominant 

and rare types that vary proportionally in abundance between water masses, and that the available prokaryotic host 

communities vary similarly. The biogeographic examination showed that many of the dominant Arctic Ocean T4-like 

genotypes from this study are possibly endemic to the arctic, while others show similarity to globally distributed 

types, supporting the paradigm that local viral diversity may be high while also being low globally.  

 

Additionally, this study compared sequenced datasets of g23 amplicons from the same water samples generated 

using three widely-implemented sequencing platforms (Roche/454, Illumina, and Ion Torrent) in order to assess 

comparability of data from newer platforms for viral diversity investigations to pyrosequencing data. The platform 

comparison revealed that clustering of signature gene sequences into OTUs based on 90% similarity resulted in 

preservation of broad patterns in between-sample diversity, and also that sequence read data generated using 

Illumina appear most similar to Roche/454. The author therefore recommends the Illumina platform for continued 

use of primers for amplification of viral signature genes developed for pyrosequencing. 
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1 Introduction 

Viruses were historically thought of as relatively unimportant players in natural systems. In the late 1980s, however, 

Bergh et al. (1989) found that viruses of microorganisms are the most abundant biological entities in aquatic 

ecosystems. This discovery laid the foundation for today’s rapidly evolving field of environmental virology. Viruses of 

microbial life are now known as vastly abundant, diverse, and universal agents that exert significant influence on 

host community structure and genetic composition. Through a wide array of interactions with hosts, viral infection 

of marine microbial communities ultimately affects biogeochemical cycling in the world oceans. 

 

As global climate change continues to progress, questions arise about the consequences for ecosystems. Unique 

environments such as the Arctic Ocean are especially sensitive to climate change (IPCC 2001). Due to their high 

responsiveness to environmental conditions, shifts in the microbial populations of the ocean  may be the most 

dramatically seen ecosystem  variations as a result of climate change (Danovaro et al. 2011). As the base of the 

classical food chain, changes in the Arctic marine microbial community may therefore serve as a reliable signal to 

changes to come at higher trophic levels in the ecosystem. Few investigations of viruses within the microbial 

community in the Arctic Ocean exist to date; fewer studies still have examined marine viruses at high latitudes 

during the dark winter period. This study aims to assess the diversity of dsDNA viruses present at two sites in the 

Arctic Ocean north of Svalbard during the civil polar night.  

 

Culture-free methodologies are necessary tools for environmental virologists:  the majority of environmental marine 

microbes are not culturable and this issue is more accentuated in the case of marine viruses. Although developments 

in HTS technologies have produced the incredible capability to sequence all nucleic acids within an environment, 

gene fingerprinting tools remain useful to examine certain questions in marine microbial ecology. In this thesis, 

targeted gene (or tag amplicon) sequencing was used to characterize dsDNA virus groups known to infect hosts that 

play significant roles in the marine microbial community; namely the T4-like bacteriophage family Myoviridae (using 

a capsid protein gene g23), the unclassified algal virus family Phycodnaviridae (using the major capsid protein gene 

MCP), and a putative auxiliary metabolic gene of unknown function shared among a diversity of dsDNA 

bacteriophages called phoH. 

 

As HTS has progressed as a technology, newer sequencing methods have surpassed one of the earliest HTS 

technologies, pyrosequencing, resulting in discontinuation of the pyrosequencing platform Roche/454 kit production 

in 2014. This transition requires testing of results obtained from current platforms against pyrosequencing results.  

Although platform comparisons exist for amplified prokaryotic (Claesson et al. 2010) and eukaryotic genes (Smith 

and Peay 2014), no comparison of environmental viral signature gene data exists. In this thesis identical samples of 

the Myoviridae capsid protein gene g23 were used on three HTS platforms (Roche/454, Illumina MiSeq, and Ion 
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Torrent PGM) to investigate comparability between viral targeted gene amplification data outputs produced on the 

different sequencing platforms. 

1.1 Viral characterization 

Viruses are small acellular pathogenic agents (usually from 20 to 200 nm in size) that influence their hosts 

intracellularly via infection as obligate parasites (Suttle 2007). It is thought that every form of cellular life on Earth 

has at least one virus to which it is susceptible (Koonin and Dolja 2013). Even viruses infecting larger so-called “giant 

viruses” have been found in nature (Fischer and Suttle 2011; La Scola et al. 2008; Yau et al. 2011; Sun et al. 2010). 

The host range of a particular virus is often specific: for instance, a virus may only be able to infect few strains within 

a microbial species (Suttle and Chan 1994; Cottrell and Suttle 1995). In other cases, cells of related species may be 

susceptible to a virus with a broader host range (Wichels et al. 1998; Sullivan et al. 2003). One cellular species can be 

susceptible to infection by multiple viral types from phylogenetically distant viral families, which implies that viruses 

are the most diverse biological agents on Earth (Fuhrman 1999).  

 

While genomes of cellular organisms are composed of DNA, viral genomes can be composed of DNA or RNA. Some 

viruses include both nucleic acid types during different life stages. Genomes of DNA and RNA viruses can be double-

stranded (ds), single-stranded (ss), or a mixture of strand forms. The diversity of viral genomes includes linear, 

circular, or segmented arrangements.  A virus existing outside of a cell (known as a virion) consists of a protein shell 

called the capsid which contains the viral genome.  The structures of virions (Figure 1) are diverse in size, shape, and 

composition (Madigan 2012). Viral genomes mainly contain structural genes encoding capsids, tail proteins, insertion 

sites in the host genome or enzymes to lyse host cells (Weinbauer and Rassoulzadegan 2004). Most viral genes found 

through metagenomic studies do not originate from host cells but rather are unique to specific viral families and 

have no homology to any genes known within cellular life (Villarreal 2001). 

 

Viruses rely on host cell machinery for their reproduction, which they accomplish via infection. Virus infection 

strategies includes the lytic and lysogenic phases (Figure 2). While some viruses are only capable of the lytic life cycle 

which leads to lysis of the host cell once infection begins (virulent viruses), others have the ability to enter an 

alternative phase called lysogeny. Viruses that can enter lysogeny are known as temperate viruses. Lysogeny is 

characterized by either integration of the virus genetic material into the host genome or existence of the viral 

genome in the cell cytoplasm as a plasmid (Lwoff 1953). Temperate viral DNA integrated into the host genome is 

termed a prophage, and can thus be passed on through generations of host cells before its eventual induction back 

to the lytic phase (Madigan 2012). 
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Figure 2. Graphic of lytic and lysogenic phases, both cycles are possible in temperate viruses while virulent viruses 
have only the lytic phase (Madigan 2012). 

 

Whether or not virus particles qualify as living organisms has been debated for nearly a century. Distinguished 

pathologist and naturalist Professor Arthur Edwin Boycott’s 1928 viewpoint about the nature of viruses may indeed 

be accurate:  

 

“In this case ‘live or dead’ is a stupid question because it does not exhaust the possibilities. Our general notion of the 

structure of the universe leads us to expect that we shall meet with things that are not so live as a sunflower and not 

so dead as a brick, and a consideration of what we know about ‘filterable viruses’ and similar ‘agents’ brings us to 

the conclusion that they represent part of this intermediate group (Boycott 1928)”.   

 

The scientific community still has not come to a clear resolution of the placement of viruses in the context of 

evolution and the origin of life. Discoveries of new viral types continue to blur the lines between cellular life and 

viruses. Some workers have proposed that giant viruses may occupy a fourth branch of the tree of life (Boyer et al. 

2010). Discovery of viral particles larger than many prokaryotes and larger even than some eukaryotes with 

translation machinery in their proteomes perpetuate this argument (Claverie and Abergel 2013). Other researchers 

have found phylogenetic evidence in contradiction to the fourth branch of life theory (Yutin et al. 2014). A recent 

deep and broad investigation of proteomes across the known spectrum of viral types and cellular life points to a 

common origin for modern cells and their viruses, and implies both viruses and cells have evolved commonly from 
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multiple ancient “protovirocell” types (Nasir and Caetano-Anolles 2015). The authors suggest that modern viruses 

were reduced to non-cellular entities over the course of their evolution. The proteomic data from the study strongly 

suggest that viruses are phylogenetically placed in the universal tree of life as entities constituting a fourth group 

(Nasir and Caetano-Anolles 2015). 

1.2 Ecological impact of marine viruses 

The estimated global abundance of viruses is approximately 1031 particles (Suttle 2005). In surface seawater viral 

particle abundances can be upwards of 108 viruses mL-1 (Bergh et al. 1989). They are ubiquitous in the ocean, from 

the sea surface to deep marine sediments. Around 94% of total nucleic acid containing particles in the ocean are 

virus particles (Suttle 2007). The inconceivably high abundance and diversity of viruses in the ocean allows viral 

activity to significantly impact the marine ecosystem (Wilhelm and Suttle 1999).  Marine viral activity influences 

microbial community structure (Longnecker et al. 2010; Thingstad et al. 2015; Thingstad et al. 2010), can terminate 

blooms of planktonic species (Bratbak et al. 1993; Larsen et al. 2001), and allow transfer of genetic material within 

and between both viruses  and hosts (Sobecky and Hazen 2009). Through their predation on microbes, marine 

viruses ultimately affect evolution of organisms in the oceans and global biogeochemical cycling. 

Viruses rely on the presence of a host for reproduction in their environment and the frequency of interaction 

between virus and host is a limiting factor to that reproduction. In fact, infection via diffusion would likely be 

improbable in the ocean without a high density of viruses and available microbial host cells, and without the water 

currents allowing movement of particles (Dennehy 2013). It is therefore not surprising that the majority of the virus 

particles in the natural environment infect the most consistently available hosts; prokaryotes (Fuhrman 1999; 

Wilhelm and Suttle 1999; Wommack and Colwell 2000). This is reflected in the fact that marine viral particles are 

often found in ratios of 5-10 particles per bacterial cell. Viruses that prokaryotes are susceptible to are known as 

bacteriophages or cyanophages (often abbreviated to “phages”). The microbial species best-adapted to the current 

environmental conditions have a strong selective pressure due to marine viral predation. In this way, marine viruses 

adjust not only microbial cell abundance and production but also affect the representation of microbial species 

within the local environment by suppressing dominant ecotypes, as described in the Killing the winner hypothesis 

(Thingstad 2000). This effect has been experimentally tested, confirming that bacterial community assemblages  

differ in the presence and absence of viral predation (Fuhrman and Schwalbach 2003; Bouvier and del Giorgio 2007). 

 

Viruses contribute to the recycling of nutrients within the context of the microbial food web, also known as the 

“microbial loop” (Azam et al. 1983). In basic terms, the microbial loop concept describes cycling of dissolved organic 

matter (DOM) (mainly released from phytoplankton) within a microbial food chain consisting of a complex web of 

energy transfer between viruses, prokaryotes, diatoms, dinoflagellates and other micro-sized phytoplankton, and 

microzooplankton (Figure 3a). About half of the organic carbon fixed by phytoplankton in the world ocean passes 

through the microbial loop. The importance of the microbial loop on the overall food web varies between differing 
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local environmental conditions. The  most marked influence of microbial processes is thought to occur in 

consistently oligotrophic waters (Munn 2011).   

Viral lysis creates a majority of the DOM cycling through the microbial loop, though some DOM is also contributed 

through messy eating by grazers (Munn 2011).  Viral infection of the plentiful bacteria, archaea, algae and protists is 

responsible for massive cell lysis in the ocean. This lysing influence is referred to in microbial ecology as the “viral 

shunt”(Wilhelm and Suttle 1999) (Figure 3b).  The level of bacterial mortality due to the viral shunt is at least as large 

as that due to predation by grazers (Fuhrman 1999; Wommack and Colwell 2000). Phage alone are responsible for 

10-50% of daily bacterial mortality through infection (Fuhrman 1999), and have been shown to consistently destroy 

bacteria on this scale across different environments (Suttle 1994). 

 

Virus-host interactions drive an antagonistic co-evolution of predator and prey. Selection of resistance to viral 

infection in the host population requires evolution of a virus to maintain its virulence. This biodiversity-promoting 

“arms race” between viruses and their microbial hosts has been underway for billions of years (Buckling and Rainey 

2002). Viruses also facilitate genetic exchange between and within host populations by horizontal and vertical gene 

transfer. Lateral gene transfer via viruses influences competitiveness between microbial host populations in the 

environment. For example, if a virus forms a mutualistic relationship with the host by conferring new metabolic 

traits to the host, this new trait may increase host fitness and the virus’ chance of survival (Weinbauer and 

Rassoulzadegan 2004). Inter-species genetic exchange via viruses has been proposed to metaphorically “shake the 

tree of life” (Pennisi 1998), likely making a universal classification of organisms based on phylogenies impossible 

(Weinbauer and Rassoulzadegan 2004). 
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Figure 3a. Energy is transported to different trophic levels via the marine microbial food web, the players in 
which are comprised of prokaryotes, single-celled eukaryotes, and viruses. Red arrows indicate the viral lysis-
mediated transformations of energy,  black arrows refer to transport of dissolved and particulate organic carbon 
(DOC/POC), grey dotted arrows indicate the cycling pathways of CO2, blue arrows refer to transport of mineral 
nutrients, and outlined grey arrows indicate net contributions to large scale ecosystem function  (figure courtesy 
of Ruth-Anne Sandaa).  
Figure 3b. The consequences of lysis through viral infection of autotrophic and heterotrophic prokaryotes are 
also known as the “viral shunt”   (Jover et al. 2014).  
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1.3 Microbial communities in the Arctic  

The famous 1934 hypothesis of Lourens Baas-Becking (Baas-Becking 1934) stating “Everything is everywhere, but the 

environment selects” has been a topic of heated debate regarding distribution of microbial species in the natural 

environment, including marine viruses. Studies of prokaryotic biogeography conclude that differences in species 

assemblage are influenced both by regional factors such as historical events in the environment, and also by local 

physical and biological aspects of the environment (reviewed in Lindström and Langenheder 2012). In the Arctic 

Ocean, studies of prokaryotes find abundant phylotypes remain abundant and rare phylotypes remain rare with 

changing season (Kirchman et al. 2010) and depth (Galand et al. 2009), contrary to Baas-Becking’s hypothesis. If the 

rare biosphere serves as a “seed bank” in wait for conditions that favor these rare types, these observed patterns 

showing rare types remain rare and abundant types remain abundant would be unexpected. Instead, differences in 

the makeup of the microbial community assemblage appear to coincide with barriers within the marine environment 

which limit their dispersal (e.g. density gradients) (Galand et al. 2009; Gómez-Pereira et al. 2010; Varela et al. 2008).  

1.3.1 The Arctic viral community 

A paucity of information still exists regarding marine viral genomics to confirm or refute Baas-Becking’s hypothesis 

for viruses in the ocean, and even less is known about Arctic Ocean viral community species identities and ecological 

functions. Studies of the microbial community in the Arctic Ocean are few in number due to the logistical challenges 

associated with sampling in the polar regions. Numerous studies including several in temperate and subarctic 

regions find that viral community assemblages follow biogeographic patterns (e.g. Pagarete et al. 2013; Needham et 

al. 2013; Sandaa and Larsen 2006; Goldsmith et al. 2015; Payet and Suttle 2014; Winter et al. 2013) while other 

studies find  no such relationships, possibly due to broad passive viral dispersal (Snyder et al. 2007; Breitbart, 

Miyake, and Rohwer 2004; Short and Suttle 2005). 

 

Bacteriophage virions are generally produced in greater numbers under environmental conditions favoring fast 

bacterial growth and productivity (Chibani-Chennoufi et al. 2004), which is generally not the case in the open Arctic 

Ocean. In a study of sea ice microbial communities, however, 10 to 100-fold higher viral abundances were observed 

within the ice than within the water column beneath during the spring ice algal bloom (Maranger et al. 1994).  A 

majority of the viruses observed in the study were likely bacteriophages, based on their small capsid diameters. 

 

The lysogenic phase is typically more common during times of low host abundance and productivity and in 

oligotrophic waters (McDaniel et al 2006). A metagenomic study of the marine viral community in the Arctic found a 

high abundance of temperate DNA bacteriophages (Angly et al. 2006). The indication of this finding is that viruses 

integrate into the genomes of their bacterial hosts as prophages to a greater degree in the Arctic than in warmer 

lower latitude waters. This conclusion has been further supported by studies examining the prevalence of prophage 

genes in low productivity environments such as Antarctic lakes (Laybourn-Parry et al. 2007) and also in mesopelagic 
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and deep waters (Weinbauer et al. 2003). When a virus is intracellular and integrated into the genome or exists as a 

plasmid, this lysogenic state provides advantages of UV protection and avoidance of destruction via enzymatic 

activity (Madigan 2012). 

1.3.2 Arctic Bacteria and Archaea communities 

The Arctic Ocean is dominated by bacteria although it is important to note that archaea are more abundant in cold, 

high latitude waters than in more temperate or tropical oceans (Wells et al. 2006). In the western Arctic Ocean, 

archaea are more abundant in layers near the seafloor containing suspended material from bottom sediments (Wells 

and Deming 2003). Crenarchaeota group Marine Group I (recently reclassified as Thaumarcheota (Brochier-Armanet 

et al. 2008)) has been observed as the most abundant archaeal group in the Canadian Arctic Ocean. Phylotypes 

within this group have also been shown to dominate the archaeal assemblages within sea ice and ice-influenced 

surface waters in the western Arctic Ocean (Collins et al. 2010). 

 

The most abundant members of the prokaryotic community are thought to be well-adapted to the local 

environment and to contribute a majority of the biomass production (Cottrell and Kirchman 2003; Zhang et al. 2006). 

At high latitudes these species are adapted to low temperatures (Connelly et al. 2006). Arctic Ocean bacterial 

production was previously thought to be low in respect to that of other oceans (Rich et al. 1997). Evidence now 

indicates that production can be quite high depending on local environmental conditions (Wheeler et al. 1996) and 

that much of this activity is heterotrophic (Rich et al. 1997). This affects the carbon cycling and the food web 

structure of the Arctic Ocean (Kirchman et al. 2009). In a study near the Canadian Arctic (Arctic Ocean) it was shown 

that  53%  of the bacterial species belonged to Gammaproteobacteria, and nearly all other clones were either from 

the Bacteroidetes or the Alphaproteobacteria (mainly SAR11) (Collins et al. 2010). SAR11 clade Alphaproteobacteria 

have also been observed to dominate bacterial assemblages of winter sea ice in the western Arctic Ocean (Collins et 

al. 2010). 

1.3.3 The Arctic phytoplankton community 

In temperate oceans, the key phototrophic organisms are usually Synecococcus sp. and Prochlorococcus sp. In the 

high Arctic, however, small pico- and nano- eukaryotes dominate as the baseline phototrophs. In particular, the 

single-celled algal species, Micromonas pusilla (Butcher) Manton and Parke 1960 (Prasinophyceae  (Chlorophyta )), is 

a key phototroph in the Arctic Ocean (Lovejoy et al. 2006). A cold and low-light adapted M. pusilla ecotype has been 

found in the Canadian Arctic (Connie Lovejoy et al. 2007). The over-wintering strategies of the pico- and 

nanoflagellar autotrophs are as yet unknown, though live cells of M. pusilla have been detected in surface waters 

down to 1,000 m in the middle of the civil polar night. It has been suggested that M. pusilla could be capable of 

alternate life strategies such as phagotrophy to maintain cell functions in the absence of light (Vader et al. 2015).  



 
Olesin 19 

 

 

Although prokaryotic photosynthetic organisms dominate the world oceans, nanoplanktonic non-calcifying 

haptophytes are the most abundant and diverse group of picophototrophs in modern oceans, representing the 

“background” light harvesters of the world ocean (H. Liu et al. 2009). Their success in the marine environment may 

be due to their ability to prey upon bacteria as well as photosynthesize, known as a mixotrophic lifestyle. 

Noncalcifying haptopytes are closely related to the coccolithophores, the most well characterized group of 

haptophytes. Haptophyte populations appear to show geographic specificity of genotypes; a study found that certain 

lineages appear limited to the colder mixed waters of the subarctic (H. Liu et al. 2009). A small, bloom-forming 

haptophyte endemic to the Arctic, Phaeocystis pouchetii (Hariot) Lagerheim 1893 (Prymnesiophyceae), is an 

important player in biogeochemical cycles, especially sulphur cycling. A class of icosahedral algal dsDNA viruses 

known as the Phycodnaviridae includes previously isolated viruses able to infect M. pusilla (Cottrell and Suttle 1991) 

and P. pouchetii (Jacobsen et al. 1996) .This family of morphologically similar viruses is covered in greater detail 

below in section 1.7.2. 

 

Ice algae are another component of the primary production in the Arctic. A study of sea ice in a subarctic fjord off 

Greenland including information on the winter season found the dominant algal groups within the ice to be 

cryptophytes, prasinophytes, and unidentified small flagellates in January and February, whereas later in the spring 

the microalgal community is dominated by pennate diatoms (Mikkelsen et al. 2008). Algal blooms form along the ice 

edge as a result of freshwater input from ice melt, and can sometimes extend for hundreds of kilometers behind the 

retreating ice (Perrette et al. 2011). It has long been questioned whether sea ice algal assemblages might inoculate 

these ice-edge phytoplankton blooms (Syvertsen 1991). Additionally, findings that diatom spores and dinoflagellate 

cysts are more abundant in sea ice than surface waters indicate that sea ice entrapment may serve as an 

overwintering strategy for some algal species (Różańska et al. 2008). 

1.4 The Arctic environment 

Research aimed at clarifying the relationships between physical oceanography and the marine microbes indicate that 

community structure of microorganisms in the oceans is highly determined by the mass of water in which the 

community resides (Galand et al. 2010). As microbes are highly sensitive to local environmental conditions (e.g. 

salinity, temperature, nutrient availability), it is important to consider the physical oceanography of the Arctic 

marine system to understand its microbial community.  

 

The Arctic Ocean is essentially landlocked by the surrounding continents and as a consequence there are physical 

limitations on the entry of southern water masses to the Arctic basin. The Gulf Stream carries warmer Atlantic water 

north (red arrow in Figure 4), continuing as the West Spitsbergen Current (WSC) through the only deep gateway to 

the Arctic, the narrow 500 km wide Fram Strait, along the western coast of the Svalbard archipelago to either 

ultimately reach the Arctic Ocean or recirculate through Fram Strait. On its journey through the North Atlantic this 
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highly saline warmer water cools and sinks while also introducing energy into the Arctic Ocean. Fresher Arctic Ocean 

water and sea ice are exported south along the Greenland shelf through Fram Strait as the East Greenland Current. 

These two currents represent the main exchange of Arctic Ocean water with the rest of the world’s oceans (Arctic 

Council 2013).   

 

According to Rudels et al. (1991), the water masses formed or transformed in the Arctic Ocean are: 1) The 50 m deep 

Polar Mixed Layer, with freezing temperature and salinity of about 32.7 psu close to the Fram Strait. 2) The halocline 

found between 50 m and 250 m depth, with a salinity range from 33 to 34.4 psu and temperatures mostly close to 

freezing but increase at the lower boundary to 0°C. 3) The 400-600 m thick Atlantic Water layer with temperatures 

above 0°C and increasingly saline (34.4 to 34.9 PSU) with depth. 4) Deep Waters below 800-1000 m with salinities of 

34.93-34.95 PSU and potential temperatures ranging from 0°C to -0.95°C at the bottom. The differing characteristics 

of these water masses may act as boundaries and serve as selective environments for certain groups of microbes 

(Galand et al. 2010). 

 

Figure 4. Illustration showing Arctic Ocean currents and those of surrounding seas (sourced from Cook (2015)). 

 

While the Arctic Circle is completely devoid of sunlight during winter, for the rest of the annual cycle mixing 

influences light penetration through the water column. Another unique characteristic of polar oceans is the presence 

of sea ice. Wind-mixing of surface waters is constrained in parts of the Arctic Ocean where sea ice is perennial, 

creating conditions which would not otherwise exist in the open Arctic Ocean.  Per volume production is higher 

within sea ice than in the pelagic zone beneath (K. R. Arrigo 1997) making it an ecologically important habitat in the 

Arctic Ocean.  
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The formation and subsequent melting of sea ice contribute to significant and continuous water-column 

stratification due to the salinity gradient. A cold, low density water layer forms from sea ice melt on top of warmer 

Atlantic water layer at the frontal zone north of Svalbard where ice meets the open ocean, creating a stark density 

gradient (Rudels et al. 1991) which could also create a niche environment selecting for certain microbes.   

1.4.1 Climate change 

Global climate change is expected to cause shifts in the unique Arctic Ocean ecosystem, including the structure and 

function of the marine microbial community. Changes in the microbial community are expected to be the most 

dramatic of all biological assemblage shifts in the ocean (Danovaro et al. 2011). Many components of global climate 

change could impact Arctic marine microbial ecology including sea ice melt, carbon cycle changes, and temperature 

fluctuations. Moreover, in terms of changes in microbial food web dynamics, changes in host communities will affect 

the structure and function of viral communities. 

 

Increased annual sea ice melt could result in greater transport of Atlantic water masses, adjusting the currently 

restricted entry of lower-latitude waters into the Arctic. Species abundance and diversity in the microbial community 

may change from the present state if greater influence from warmer southern waters becomes the new norm and 

the availability of nutrients is altered. Stronger winds in areas where sea ice is no longer present year-round could 

result in greater mixing in the upper the water column, eradicating environmental niches for some microbes 

(Danovaro et al. 2011). Changes in the length of the ice melt season could also alter the extent and nature of ice-

edge algal blooms (Arrigo 2013), and increase the incidence of timing mismatches that already occur between life 

cycles of microbial species and the higher trophic groups that prey upon them (Conover and Huntley 1991).  

 

The global oceans contain ~95% of the mobile carbon reservoirs on the planet, most of which is stored inorganically 

in the form of HCO3.  Carbon dioxide is more soluble in colder water, thus the cold bottom water at the Poles is 

enriched with CO2. As temperatures at the Poles increase, solubility of CO2 decreases,  resulting in CO2 release into 

the atmosphere as water is upwelled from the deep ocean.  The amount of dissolved inorganic and organic carbon in 

the ocean is high relative to the CO2 in the atmosphere, therefore small changes in the oceans carbon cycling can 

result in an enormous disruption of annual CO2 exchange with the atmosphere(Raven et al. 2005).  It is currently 

unknown how the microbial community will influence and respond to the changing carbon cycling, as microbes of 

the world ocean heterogeneously provide a carbon source in some areas and act as a carbon sink in others, and this 

varies over time (Iversen and Seuthe 2011). Ocean acidification (resulting from anthropogenic input of CO2 into the 

atmosphere and its subsequent absorption into the ocean) presents a problem for calcifying organisms, especially 

for important primary producers such as the calcifying phytoplankton group known as the coccolithophorids, as 

calcification rates are expected to lower under ocean acidified conditions (Beaufort et al. 2011). 
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Although there are conflicting reports about the levels of bacterial production in the Arctic Ocean, observations of 

lower levels of bacterial biomass production relative to primary production have been made in the Arctic Ocean and 

other polar environments compared with those of lower-latitude marine environments (Kirchman et al. 2009) (the 

reasons for such observations have been subject to debate (Brum et al. 2015)). Many biological processes may shift 

if lower-latitude waters bring more internal heat to the Arctic Ocean in the future, though heterotrophic processes 

are thought to be more sensitive to temperature than autotrophic processes (Wohlers et al. 2009). Some 

researchers have put forward the possibility of functional food web shifts at different trophic levels in response to 

rising temperature in the Arctic (e.g. Rose and Caron 2007; Pomeroy and Deibel 1986), though this inference is not 

agreed upon within the scientific community. For instance, a study based on mesocosm experiments in 

Kongsfjorden, Svalbard found the Arctic microbial system was predicted as adaptable to temperature increase when 

a mathematical model previously shown to reflect observations in the marine system was applied (Larsen et al. 

2015). 

1.5 Viral diversity through the lens of targeted gene sequencing 

Metagenomic studies have indicated that thousands of dsDNA virus genotypes can be found within 10 -100 liters of 

seawater and that even the most abundant types comprise very little of the entire assemblage (Angly et al. 2006; 

Breitbart et al. 2004). While metagenomics are an excellent tool for analyzing overall biodiversity of a microbial 

population (Weinbauer 2004), species diversity may be examined using other tools at hand to the microbial 

ecologist.  Although signature genes are an insufficient basis for in-depth viral identification, they provide a means to 

determine the number of phylotypes in an environment (Weinbauer and Rassoulzadegan 2004). Despite the 

challenges associated with characterizing such exceptionally diverse viral phylogenies, conserved marker genes have 

been identified to describe species diversity within groups of viruses considered to be dominant in marine systems. 

These include three genes capturing different viral groups, namely,  a major capsid protein gene from the Myoviridae 

family (gene product 23 a.k.a. g23) (Tétart et al. 2001), a widely distributed auxiliary gene encoding a product with 

unknown function found within a diversity of phage families (phoH) (Goldsmith et al. 2011), and a gene encoding the 

major capsid protein from the Phycodnaviridae and Mimiviridae (MCP) (Larsen et al. 2008). 

1.5.1 Myoviridae 

Around 95% of dsDNA bacteriophage isolates from the marine environment have an icosahedral capsid and a 

filamentous tail attached at one of the icosahedron vertices (Wommack and Colwell 2000; Ackermann 2007). Tailed 

phages belong to the viral taxonomic order Caudovirales, which is further divided into three families based on their 

tail morphologies: the Siphoviridae (long non-contractile tailed), the Podoviridae (short tailed) and the Myoviridae 

(long contractile-tailed). The type species of the Myoviridae, simply called T4 (short for type 4) was first isolated from 

Escherichia coli around 1945. Although the origin of the discovery remains ambiguous, the isolate is likely sourced 

from feces or sewage (Abedon 2000). Metagenomic studies indicate that T4-like phages comprise a significant 

portion of the marine virus community (Breitbart et al. 2002; Angly et al. 2006). Myophage are known to have 
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broader host ranges than other tailed viral types. An example of this has been shown for a myophage that broadens 

its host range under low –light conditions (Chibani-Chennoufi et al. 2004). The g23 major capsid protein gene is one 

of the more widely used genetic markers in environmental studies of virus communities (e.g. Filée et al. 2005; Bellas 

and Anesio 2013; Liu et al. 2012; Zheng et al. 2013; Fujihara et al. 2010; Wang et al. 2009; Wanget al. 2009; 

Needham et al. 2013; Chow and Fuhrman 2012; Pagarete et al. 2013; Butina et al. 2013, Chow et al. 2014). By using 

primers designed to amplify a conserved region of g23, diversity of T4-like bacteriophages within an environmental 

sample may be distinguished (Filée et al. 2005).   

1.5.2 Phycodnaviridae and Mimiviridae 

Viruses of eukaryotic algae have ecological significance as predators of one of the major groups of global primary 

producers. Two  groups of dsDNA algae viruses known as the Phycodnaviridae  and Mimiviridae includes members 

which have extraordinarily large genomes and a wide range of particle sizes. Phycodnaviruses are known to infect 

prasinophytes, chlorophytes, raphidophytes, phaeophytes, and haptophytes (Wilson et al.2009). The Mimiviridae 

family formally contains viruses isolated from heterotrophic protists (Mimivirus and Cafeteria roenbergensis virus) 

(Fischer et al. 2010; La Scola et al. 2003). Some viruses that infect prasinophytes and haptophytes, as well as some 

uncharacterized viruses with unknown hosts are also phylogenetically assigned to this family (Larsen et al. 2008; 

Sandaa et al. 2001; Johannessen et al. 2015). The Phycodnaviridae include members known to infect harmful algal 

bloom species such as the fish-killing raphidophyte alga Heterosigma akashiwo. Based on gathered evidence in 

microbial ecology, the activity of viruses within the Phycodnaviridae infecting bloom-forming species can be a 

determining factor in the initiation and termination of blooms, such as in the case of the coccolithophorid Emiliania 

huxleyi. Although these algae viruses may contribute to the boom and bust of phytoplankton blooms, perhaps their 

most important contribution is their role in maintenance of microbial community diversity and prevention of bloom 

formation (Wommack and Colwell 2000; Brussaard 2004). There are relatively few characterized members of the 

Phycodnaviridae to date, making them a challenging group to investigate for phylogenetic relationships. Additionally, 

the nucleocytoplasmic large DNA viruses (NCLDV) which include the Phycodnaviridae and Mimiviridae have been 

found to share only nine genes in common (Wilson et al. 2005; Van Etten et al. 2014; Iyer et al. 2006). Among these 

shared genes, the major capsid protein gene contains interspaced conserved regions used to fingerprint this family 

of viruses for investigations of their phylogenetic relationships and community diversity (Larsen et al. 2008). 

1.5.3 Auxiliary metabolic genes 

Auxiliary metabolic genes (AMGs) were once thought to be restricted to cellular life but have since been identified in 

many viral genomes through molecular methods. Groups of marine phages have been found to contain AMGs 

involved in nutrient limitation, carbon metabolism, nucleotide metabolism, and photosynthesis (Chenard and Suttle 

2008; Sullivan et al. 2006; Lindell et al. 2005; Millard et al. 2004; Sullivan et al. 2005; Rohwer et al. 2000; Sullivan et 

al. 2009; Weigele et al. 2007). One AMG used in studies examining viral diversity is phoH, a gene of unknown 

function in viruses found in multiple families of dsDNA tailed phage. The phoH gene has been found in a diversity of 
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virus groups infecting a phylogenetically wide host range including groups of autotrophic and heterotrophic bacteria, 

and some autotrophic eukaryotes (Figure 5). The across-family diversity capture of phoH makes it a valuable 

signature gene for studies of marine viral community diversity, and studies have shown that the gene is widely 

spread in the viral fraction in marine environments (Goldsmith et al. 2011; Goldsmith et al. 2015). The primer set 

developed for phoH in viruses captures cyano and bacteriophages genes, and does not amplify known homologous 

bacterial PhoH genes (Goldsmith et al. 2011). 

 

 

Figure 5. Phylogenetic tree showing the relationships of available phoH sequences within the NCBI database (as of 2011) 
found in a diversity of viruses and those of prokaryotes and some eukaryotes (figure from Goldsmith et al. 2011). 

 

Some believe phoH interacts with the host Pho regulon in the uptake and metabolism of phosphate during 

phosphate-starved conditions, as the homologous gene in E. coli does (Hsieh et al. 2010, Wanner 1996), though 

homologs of the E. coli PhoH within different bacterial species have other possible functions (Kazakov et al. 2003), 

thus this putative function of the phoH gene in viruses has been contested. 

1.6 HTS for viral diversity investigations 

In the mid 2000’s, HTS technologies forever changed standard operating procedures in genetic microbial ecology. 

The largest difference between traditional Sanger sequencing and HTS is throughput: a single Sanger sequencing run 
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generates in the region of 100s of sequences of 600- 900 bp length, while HTS technologies such as Roche/454 and 

Illumina can produce from 106 to 109 sequences of 100- 700 bp lengths per run (Table 1) (Logares et al. 2012). Each 

HTS technology platform available to date has advantages, drawbacks, and preferable applications (Table 2). Three 

platforms currently widely in use by microbial ecologists are the Roche/454 FLX Titanium, Illumina MiSeq, and Ion 

Torrent PGM platforms (hereon referred to as Roche/454, Illumina, and Ion Torrent). Comparing these platforms, 

Illumina has the highest throughput per run and the lowest error rates. The Roche/454 platform has the advantage 

of sequencing longer reads of up to 600 bases and is able to generate more contiguous assemblies. If Ion Torrent is 

run in 100 bp mode, it has higher throughput than the Illumina platform and boasts a very short run time.  Some 

drawbacks of these platforms may guide a user’s choice in which platform to choose for their research. The 

Roche/454 has the lowest throughput of the three, thus if sequence coverage is of high priority another platform 

may be more appropriate. The Illumina and Ion Torrent platforms do not handle longer reads as well as Roche/454, 

though this is changing as the chemistries of these two platforms are improving (Loman et al. 2012).  

 

The sequencing chemistries behind Roche/454 (454 Life Sciences 1996), Illumina (Illumina 2010)and Ion Torrent 

(ThermoFischer Scientific 2012)sequencing are all different forms of massively parallel sequencing by synthesis. 

Roche/454 technology amplifies target DNA by emulsion PCR (emPCR) before flowing in dNTPs of one type at a time 

(T, A, C, or G) in a predefined order into the reaction wells. The reaction mixture is such that when one or more 

nucleotides concordant with complementary bases are incorporated, a luciferase-catalyzed reaction emits light 

(giving it the name pyrosequencing). The amount of light emitted (and the signal detected from the light) is 

proportional to the number of added nucleotides. Ion Torrent sequencing uses similar procedures to Roche/454, but 

instead of a light signal, the number of protons released upon addition acts as the detection signal for the 

incorporation of nucleotides (Logares et al. 2012). Inherent sources of error in both technologies include 

homopolymer errors. Homopolymer errors refer to the incidences when several of the same base must be 

incorporated into the synthesizing DNA strand during a single flow of dNTPs within Roche/454 or Ion Torrent 

platforms, which sometimes results in intermittent under- or over-calls the strength of the signal (Balzer et al. 2011). 

Homopolymer-associated errors are produced at 1.5 and 0.38 errors per 100 bases on the Roche/454 and Ion 

Torrent platforms, respectively (Loman et al. 2012).  

 

 Illumina sequencing uses the “bridge amplification” method instead of emPCR, creating amplified clusters of the 

target DNA on a glass flow cell. Instead of a single-wavelength light signal as in Roche/454, Illumina sequencing uses 

four differently colored fluorophore labeled dNTPs. The sequencer images the fluorescently labeled terminator of an 

incorporated nucleotide. Following each nucleotide addition, the terminator cleavage allows for incorporation of the 

next nucleotide, ensuring that each nucleotide addition is a unique event. Illumina sequencing can also obtain both 

ends of a template molecule through “paired-end” sequencing (Logares et al. 2012). 

 

Much of the sequencing platform comparison work to date has focused on performance of each technology in terms 
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of error rates of assembled genomes or metagenomes (Loman et al. 2012; Jünemann et al. 2013; Li et al. 2014; 

Solonenko et al. 2013; Frey et al. 2014; Bolotin et al. 2012), with few studies comparing amplified gene datasets 

(Fuellgrabe et al. 2015; Salipante et al. 2014) or relating performance to the resulting captured microbial diversity 

(Claesson et al. 2010; Luo et al. 2012).  A metagenomic comparison of a complex freshwater microbial sample found 

that data produced on Illumina and Roche/454 platforms captured the same fraction of total diversity in the system, 

and with comparable abundances of each contig (Luo et al. 2012). A similar assessment  of viral signature gene data 

has not been done, though comparison of Roche/454, Illumina, and Ion Torrent platforms on a metagenomic  

sample of ocean viruses  (that required amplification steps to have enough DNA for the work) found that the 

sequencing platforms produced comparable datasets (Solonenko et al. 2013). 

Table 1. Prices and capabilities of high-throughput sequencing on platforms Roche/454, Illumina MiSeq, and Ion 
Torrent as of 2012 (table sourced from Loman et al. 2012). 

Platform 
Cost  

per run 
Min throughput  

(read length) 
Run time Cost/MB Mb/h 

454 GS FLX $1,100 600 Mb (750–800 bases) 8 h $31 4.4 

Ion Torrent PGM (314 
chip) 

$225 10 Mb (100 bases) 3 h $22.5 3.3 

(316 chip) $425 100 Mb (100 bases) 3 h $4.25 33.3 

(318 chip) $625 1,000 Mb (100 bases) 3 h $0.63 333.3 

MiSeq $750 1,500 Mb (2 × 150 bases) 27 h $0.5 55.5 

 

Table 2. Descriptions of the leading 2
nd

 and 3
rd

 generation HTS technologies in order of commercial availability 
(table modified from Glenn 2011). 
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1.7 Project aims 

 

The main objective of this study was to investigate the hitherto unstudied diversity of ecologically significant viral 

groups during the dark period in the Arctic Ocean north of the Svalbard archipelago. The present study is a 

contribution to the RCN project entitled “MicroPolar (225956/E10)” headed by the University of Bergen. The 

MicroPolar project aims to characterize the microbial populations in the Arctic Ocean at all trophic levels, including 

the viral community, over the course of an annual cycle. 

 

In this study, we aimed to answer the following questions: 

 Is the diversity of the Arctic Ocean viral community distinct from that of other geographic locations sampled 

to date?  

 Is viral community composition distinguishable between water masses or other physical/chemical 

environmental factors, and does it reflect host community diversity? 

 Does use of different sequencing platforms produce comparable diversity capture for the same 

environmental viral assemblages? 

 

To answer these questions, three viral marker genes were sequenced (g23, phoH and MCP) from eastern Arctic 

Ocean samples to capture a broad diversity within fingerprinted viral groups. Bioinformatic analyses were used to 

group sequences into OTUs to investigate the biodiversity of samples through measures of OTU richness, evenness 

and phylogenetic distance. These results were examined in the context of environmental data (physical parameters, 

flow cytometry counts, nutrients, and bacterial diversity).  Additionally, amplified signature gene g23 sourced from 

identical aliquots of viral concentrates sequenced on three HTS platforms (Roche/454, Illumina, and Ion Torrent) 

compared the effects of sequencing method on viral diversity capture. 
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2 Materials and methods 

2.1 Sampling locations, collection, and preparation 

2.1.1 Sampling 

Samples were collected on a joint cruise initiated by the related CarbonBridge project aboard the R/V Helmer Hansen 

between January 6th and 14th, 2014.  The Helmer Hansen transited north from Longyearbyen, Svalbard to the Arctic 

Ocean north of the archipelago where water samples were taken at sites spanning the Atlantic water inflow to the 

Arctic Ocean. Samples assessed in this thesis were sourced from two sample sites, known as B16 and B8 (Figure 6). 

Sites were located along the northernmost transect of the cruise (designated Transect B) at 81° 46.04’ N 19° 06.59’ E 

and 81° 25.52’ N 17° 49.60’ E, respectively. 

 

Figure 6. Map of cruise transects with seafloor topography.  Stations B16 and B8 are noted in white 
along the northernmost transect. All stations are labeled with red triangles(sourced from 
CarbonBridge cruise report, January 2014). 
 

Depth of collection and other physical and chemical parameters (salinity, temperature, density, fluorescence, and 

oxygen concentrations) were measured using a CTD mounted on a Niskin bottle rosette. The Niskin bottle rosette 

held 10 bottles of 5 L each to capture 50 L of water per cast. All bottles were fired at a single depth for each cast of 

the rosette. Water samples were taken at four depths at each site, in the order of 1000 m, 500 m, 20 m, and surface 

(Table 3). Colleagues at the University of Tromsø (CarbonBridge project) analyzed water samples from each site for 
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nutrient content. Oceanographer Arild Sundfjord of the Norwegian Polar Institute in Tromsø, Norway made 

determinations of water masses based on the physical parameters measured by the CTD (personal communication). 

Table 3. Description of the locations (sample stations and depths) of the eight samples used in this thesis. 

Station Name Station Lat. Station Long. Depth at Station Depth of collection 

B16 81° 46.04’ N 19° 06.59’ E 3,165 m 

surface 

20 m 

500 m 

1000 m 

B8 81° 25.52’ N 17° 49.60’ E 943 m 

surface 

20 m 

500 m 

1000 m 

 

2.1.2 Viral sample filtration 

The 50 L seawater samples from each depth were prefiltered through a 0.45 μm filter for phytoplankton capture. 

Due to possible low yield with increasing depth, the 50 L 0.45 μm filtered volume from 1000 m was combined with a 

50 L volume prefiltered for bacteria at 1000 m using a 0.2 μm Sterivex filter (SVGPL10RC, Merk Millipore, Germany). 

 

To capture the viral fraction, prefiltered water was concentrated by tangential flow filtration (Quickstand benchtop 

system, GE Healthcare Life Sciences) through a Polysulfone membrane with 100,000 NMWC pore size (UFP-100-C-

4X2MA, GE Healthcare Life Sciences) connected to a peristaltic pump (Figure 7). The water samples were 

concentrated to a target volume of 50 mL for each sample. The filter was sanitized and rinsed according to the 

manufacturer's instructions before processing a new sample. Concentrated samples were divided into forty 1 mL 

aliquots, transferred into 2 mL cryotubes, and immediately frozen in liquid nitrogen. 
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Figure 7. Tangential flow filtration system used to concentrate viral particles from seawater. The sample flows through the 
filter, resulting in retention of particles above the nanoscale filter matrix size (figure courtesy of Sven Le Moine Bauer). 

 

2.2 Environmental parameter visualization 

Data collected by sensors were visualized using the software program Ocean Data View (ODV). Density 

measurements extrapolated out from each CTD cast created a full view of water density along Transect B. 

2.3 Flow cytometry 

One 1 mL aliquot of each sample was preserved in glutaraldehyde (final concentration 0.5%) overnight in an 

unheated shipping container on deck then frozen in liquid nitrogen until required for viral particle enumeration by 

flow cytometry. Fixed samples were thawed to RT then serially diluted using 0.2 μm filtered 1xTE (10 mM Tris HCl 

with 1 mM EDTA, pH 8.0) to make 10-1, 10-2, 10-3 and 10-4 dilutions. The sample dilutions (final volumes 500 μL each) 

were then stained using 5 μL of 100 x working solution of SYBR Green I (10,000x in DMSO, Sigma Aldrich) for 10 min 

in the dark at 80°C. 

Flow cytometry (FACSCalibur, Becton Dickinson) was carried out using a medium flow rate for 60 s. The flow 

cytometer setup is described in Marie et al. (1999). Viral particle groupings were discerned using plots of particles 

clustering based on side scatter versus the green DNA stain fluorescence using the CellQuest Pro software (BD 

Biosciences). 
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2.4 DNA extraction 

A rapid virus DNA extraction method (Pagarete et al. 2013a) was implemented to isolate genomic DNA template 

material from viral concentrates for amplification of g23 and phoH. For viral particle lysis, samples were thawed on a 

heat block at 90°C for 2 min, split into two 500 μL volumes, then further subjected to 2 cycles of alternately freezing 

at -20°C then thawing at 90°C for 2 min. Lysed samples were treated with 20 μL sterile filtered 0.5M EDTA of pH 8.0 

and 5 μL of freshly made Proteinase K (10 mg mL-1) before incubation for 10 min at 55°C. Samples were incubated on 

ice and 25 μL of 10% SDS added then gently inverted before further incubation at 55°C for 1 h. The lysate was 

cleaned using the Zymo DNA Cleanup and Concentration Kit (Zymo Genetics) (see Appendix A.2), then eluted in 20 

μL of sterile filtered TE buffer heated to 70°C (10 mM Tris HCl, 0.1mM EDTA, pH 8.0) and stored at 4°C until use in 

PCR. 

In preparation for amplification of MCP, template DNA material was taken directly from viral concentrates that were 

subjected to 2 cycles of alternately thawing at 90°C for 2 min then freezing at -20°C as per Larsen et al. 2008. 

2.5 Amplifications for sequencing 

The general workflow used to create all amplicon libraries for Roche/454, Illumina and Ion Torrent samples is 

outlined in Figure 8. The overall process of extraction, initial amplification without adapters, cleaning, secondary 

amplification with adapters, cleaning, and pooling was similar for all samples. The specific steps for each preparation 

varied in the extraction method, primers used, number of cycles, cleaning kits used, and adapter sequences as 

detailed below. 

2.5.1 Amplification of g23 and phoH for Roche/454 sequencing 

The PCR reactions and preparation protocols for g23 and phoH were modified from those specified in Filée et al. 

2005 and Goldsmith et al. 2011, respectively. Six replicate 50 μL reaction mixtures for PCR were prepared per 

sample. The reaction mixtures are summarized in Table 4. Each 50 μL reaction contained 1U Ex Taq polymerase 

(Takara Bio), 1X Ex Taq buffer (Takara Bio), a 0.25 mM concentration of each primer (see Table 7), 0.2 mM 

deoxynucleoside triphosphates, 0.06% bovine serum albumin, 3% DMSO, and 1-10ng template DNA. Sterile milliQ 

H₂O was added to volume. The reaction conditions for g23 and phoH amplification are summarized in Table 5. 
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Table 4. The reaction mixture components for amplification of the genes 
g23  and phoH, totaling a reaction volume of 50 μL 

PCR reaction mixture for  
g23/phoH amplification 

Taq polymerase    1U  
Ex Taq buffer    1X  
f-primer   0.25 M  
r-primer   0.25 M  
dNTPs   0.2 mM  
BSA   0.06% of vol  
DMSO   3% of vol  
template DNA   1-10 ng  
sterile milliQ H₂O   to volume  

total   50 μL  

 

Replicate PCR reactions from each respective sample were combined and cleaned using the Zymo DNA Cleanup and 

Concentration Kit (Appendix A.2). Amplification and cleaning steps were checked on 1% (w/v) agar electrophoresis 

gels (Appendix A.4). Successful amplicons were stored at 4°C until use. 

 

 

Table 5. A summary of all PCR reactions performed for amplification of g23, phoH and MCP.  

Gene Amplified Reaction Step Time Temperature °C 

# Cycles 

PCR 1 

# Cycles 

PCR 2 

g23 initial denaturation 5 min 95 1 1 

 
denaturation 45 s 95 20 10 

 
annealing 45 s 50 

 
 

 
extension 1 min 72 

 
 

 
final extension 7 min 72 1 1 

 
end ∞ 4 

 
 

phoH initial denaturation 5 min 95 1 1 

 
denaturation 45 s 95 20 15 

 
annealing 45 s 53 

 
 

 
extension 1 min 72 

 
 

 
final extension 7 min 72 1 1 

 
end ∞ 4 

 
 

MCP initial denaturation 15 min 95 1 1 

 
denaturation 30 s 95 20 N/A 

 
annealing 30 s 60 50 

 
 

 
extension 30 s 72 

 
 

 denaturation 30 s 95 35 25 

 annealing 30 s 45   

 extension 30 s 72   

 
final extension 7 min 72 1 1 

 
end ∞ 4 
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Two replicate reactions were made for each sample in a secondary amplification step. The reverse primer (see Table 

7) contained an added adapter sequence for one-directional Roche/454 sequencing (Lib-L-adapter A sequence: 

CCTATCCCCTGTGTGCCTTGGCAGTCTCAG). The forward primer contained barcode sequences (also known as 

multiplex identifiers, or MIDs) which were unique to each of the eight samples (see Table 8). Each 50 μL reaction 

contained 1U Ex Taq polymerase (Takara Bio), 1X Ex Taq buffer (Takara Bio), a 0.1 mM concentration each of the 

barcoded forward primer and the adapter-containing reverse primer, 0.2 mM deoxynucleoside triphosphates, 0.06 

% bovine serum albumin, 3% dimethyl sulfoxide, and a 10 μL volume of product of the first amplification as template 

DNA. Sterile milliQ H₂O was added to volume. The reaction conditions for each gene are summarized in Table 5. 

Success of amplifications was checked on 1% (w/v) agar electrophoresis gels (Appendix A.4). Samples were frozen at 

-20°C until ready to prepare for sequencing. 

2.5.2 Amplification of MCP 

The PCR preparation and thermocycling for MCP were identical to procedures published in Larsen et al. 2008. PCR 

template DNA material was taken directly from viral concentrates that were subjected to 2 cycles of alternately 

thawing at 90°C for 2 minutes then freezing to -20°C.  

 

The reaction mixture for amplifications of MCP (Table 6) contained 1-10ng of template DNA, 10 μL of HotStar master 

mix (Qiagen, Germany), a 0.5M concentration of each primer (Table 7), and was adjusted final volume (20 μL) with 

sterile milliQ H₂O. The PCR reaction conditions (Table 5) consisted of a 15 min hot start before a 20 cycle touchdown 

PCR with a decrease of 0.5°C in the annealing step per cycle followed by a PCR with a consistent temperature in the 

annealing step for an additional 35 cycles. 

 

Products were cleaned using an Agencourt AMPure XP magnetic bead kit (Beckman Coulter, USA) and a 6-Tube 

magnetic separation rack (New England Biolabs, USA)(Appendix A.3). Amplification and cleaning steps were checked 

on 1% (w/v) agar electrophoresis gels (Appendix A.4). Samples were frozen at -20°C until further use. 

 

Table 6. The reaction mixture components for amplification of the MCP gene of the 
Phycodnaviridae are combined to make a total reaction volume of 20 μL. 

PCR reaction mixture for MCP amplification 

HotStar master mix   10 μL 

f-primer  0.5M 

r-primer  0.5M 

template DNA  1-10 ng 

sterile milliQ H₂O  to volume 

total  20 μL 
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Primers used in the second amplification step contain added adapter sequences identical to those described above 

in section 2.5.1. Six replicate reactions were made for each sample using the product of the first amplification as 

template DNA.  Identical reaction mixtures to those for the initial amplification were made, as summarized in Table 

6. The reaction conditions are summarized in Table 5. Products were cleaned using an Agencourt AMPure XP 

magnetic bead kit and a 6-Tube magnetic separation rack (Appendix A.3). Amplification and cleaning steps were 

checked on 1% (w/v) agar electrophoresis gels (Appendix A.4). Samples were frozen at -20°C until ready to prepare 

for sequencing. 

Table 7. Sequences in the 5 to 3 direction of degenerate primers used to amplify 
each marker gene. 

Gene Primers 

g23 f: 5'- GATATTTGNGGNGTTCAGCCNATGA -3' 

 

r: 5'- CGCGGTTGAATTTCCAGCATGATTTC -3' 

phoH f: 5'- TGCRGGWACAGGTAARACAT -3' 

 

r: 5'- TCRCCRCAGAAAAYMATTTT -3' 

MCP f:  5'- GGYGGYCARCGYATTGA -3' 

 

r: 5'- TGIARYTGYTCRAYIAGGTA -3' 

 

Table 8. Barcodes added during the second amplification step (PCR 2) to distinguish 
each sample within a pooled product sent for sequencing. 

Sample Barcodes 

B16, surface ATCAGACACG 

B16, 20 m ATATCGCGAG 

B16, 500 m CGTGTCTCTA 

B16, 1000 m CTCGCGTGTC 

B8, surface ACGAGTGCGT 

B8, 20 m ACGCTCGACA 

B8, 500 m AGACGCACTC 

B8, 1000 m AGCACTGTAG 

 

2.5.3 DNA measurements 

Reactions from each barcoded amplicon sample were thawed before combining replicate reactions and cleaning as 

described in section 2.5.1. DNA concentrations were measured for each cleaned sample using a Qubit 2.0 

fluorometer (Invitrogen) and a Qubit HS dsDNA assay kit (Invitrogen) according to the manufacturer's instructions.  

 

All eight samples were subsequently combined into a g23 amplicon pool and a phoH amplicon pool so that 

nanogram amounts from each sample were contributed equally. The sample pool was measured again to confirm 

the DNA concentration on the Qubit fluorometer. Pooled g23 samples were sent to the Norwegian Sequencing 
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Centre (NSC) in Oslo, Norway (http://www.sequencing.uio.no/) for Roche/454 pyrosequencing. The pooled phoH 

samples remained frozen at -20°C until ready to send for sequencing in combination with MCP. 

All phoH samples were combined into a mixture containing equal nanogram amounts of all samples, then cleaned 

using the Zymo DNA Cleanup and Concentration kit (Appendix A.2)  as described above. An identical process was 

performed for MCP samples. Sample pools were measured again for confirmation of DNA concentration on the 

Qubit fluorometer. The pools of MCP and phoH were then combined into one volume containing equal nanogram 

amounts of each pool.  The MCP/phoH pooled samples were sent to Microsynth AG, Zurich, Switzerland 

(http://www.microsynth.ch/ ) for pyrosequencing on the Roche/454 GS FLX Titanium platform. 

2.6 Illumina sequencing of g23 

A preparation identical to the g23 amplification for 454 sequencing (see sections 2.5.1 and 2.5.3) was sent for 

Illumina sequencing to the NSC in Oslo, Norway.  The g23 primer set used in this study was constructed for use on 

the Roche/454 platform, therefore additional adapters were added to the fragments at the NSC in order for the 

sample to be run using an Illumina MiSeq sequencer.  Additionally, sample material for Illumina sequencing was 

spiked with a concentration of control DNA from the virus PhiX (Illumina, FC-110-3001) by a technician at the NRC 

before sequencing. 

2.7 Ion Torrent sequencing of g23 

A preparation similar to the g23 amplification for Roche/454 sequencing (see sections 2.5.1 and 2.5.3) was sent for 

Ion Torrent sequencing at the University of Bergen, Norway. A larger number of replicates (6 from each sample) was 

required in the second amplification step (PCR 2 in Table 5) to get maximum yield of DNA as one microgram of total 

DNA was required by the Ion Torrent sequencer before a technician could prepare the library for sequencing. One 

other change was made for Ion Torrent sequencing preparation of g23 from that described in section 2.4.1; the Lib-L 

adapter sequence located on the reverse primer used in Roche/454 and Illumina sequencing was replaced by the 

appropriate adapter sequence used in Ion Torrent sequencing (Adapter B sequence: CCTCTCTATGGGCAGTCGGTGAT) 

in order to obtain comparable results to Roche/454. The Ion Torrent sequencing facility at the University of Bergen, 

Norway performed the final sample dilution and the sequencing reaction. 
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Figure 8. Amplification workflow for all samples in the study from extraction of viral concentrates isolated from seawater 
(step 1) to a final pooling of all eight samples with equal ng amounts of DNA (step 6). 
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2.8 Post-sequencing processing 

A majority of the post-sequencing processing was accomplished on a 2-core personal computer with 8 GB memory 

using the specialty Ubuntu build BioLinux (Field et al. 2006). An annotated text file containing the pipeline providing 

all commands used to process and analyze all sequence data is provided in Appendix A.5. Below is an outline of the 

processing. 

2.8.1 Illumina specific post-processing 

The first two steps of post-sequencing processing were used only for the g23 Illumina sequencing dataset because of 

the specific protocol necessary to post-process the data after the return of raw reads. Control phiX sequences were 

removed from Illumina data before downstream analysis, which was accomplished using the multi-functional script 

bbduk.sh within BBMap (Bushnell 2014). The script used the reference database of phiX genes from bowtie2-2.2.4 

and a kmer length cutoff of 31 to scan the Illumina reads for contaminants with homology to phiX of at least 31 bp in 

length, allowing for one mismatch. This kmer length choice and allowed mismatches were identical to those given in 

an example by the script developer (Bushnell 2014) (See script commands in Appendix A.5). Subsequently, Illumina 

adapters were removed from the sequences using bbduk.sh. Specified parameters in this script looked for shorter 

kmers at the read ends down to a length of 12, and allowed one mismatch. Following this step, bbduk.sh was used to 

merge paired Illumina reads. 

2.8.2 Ion Torrent specific post-processing 

The output file delivered from the Ion Torrent sequencing facility was eight BAM format files (one for each sample) 

which had been demultiplexed by Ion Torrent software at the sequencing facility. BamTools (Barnett et al. 2011) 

script bam-to-fastq was used to convert files between BAM and FASTQ formats. The degenerate primer sequence 

was removed using the BBMap script bbduk.sh. This script was also used to quality trim sequences from both the left 

and right to exclude base calls with PHRED scores under 27.  This step proved to create a systematic error and only 

eliminated primer sequence for some of the sequences because of the lack of the barcodes in the Ion Torrent 

sequences. Centre for Geobiology colleague Dr. Håkon Dahle added placeholder barcodes and successfully 

eliminated the primer sequence from all reads, while simultaneously trimming sequences based on expected error 

rather than PHRED score, according to the UPARSE processing pipeline (Edgar 2011).  FASTA files resulting from the 

UPARSE primer and quality trimming steps were concatenated into a single FASTA file for further downstream 

analysis (2.8.2.2 onwards) the remainder of which was identical to all other dataset processing pipelines. 

2.8.3 Post-sequencing processing of all datasets 

The following protocol was generally used to process all datasets from Illumina, Roche/454, and Ion Torrent 

sequencing used in this study. Several sections are specific only to the three platform comparison of g23 datasets, 

however these have been indicated as such with asterisks. 
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2.8.3.1 Sequence data quality checking and trimming 

An initial check of the quality of pyrosequencing reads was visualized using the program FastQC (Andrews 2010). The 

raw SFF formatted files were converted to QUAL, FASTQ and FASTA files using the QIIME script process_sff.py. The 

BBMap script bbduk.sh was used to quality trim sequences from both the left and right to exclude base calls with 

PHRED scores under 27.  Quality trimmed sequences were subsequently demultiplexed according to a manually-

generated mapping file containing barcodes and the forward primer sequence using the QIIME script 

split_libraries.py. Demultiplexing removed bases corresponding to adapter A at the beginning of the read along with 

the barcode sequence and Linker/Primer sequence, leaving only the desired sequence of biological origin (Figure 9) 

for further analyses. The length of sequencing reads is not expected to extend into the reverse primer, and therefore 

no step was included for its removal. 

 

 

Figure 9. Layout of a 454 Roche sequence amplicon. This scheme describes the layout used for target gene amplifications. 

 

2.8.3.2 OTU picking and elimination of sequencing artifacts 

Chimera checking and OTU picking were performed via the QIIME script pick_OTUs.py using 97% similarity for OTU 

picking and utilizing de novo chimera detection provided by USEARCH (R. C. Edgar 2010). The script generated an 

OTU table BIOM file in HDF5 format. The OTU table was then split by sample using QIIME script 

filter_samples_from_otu_table.py. Each sample-specific OTU table was filtered for singletons using QIIME script 

filter_otus_from_otu_table.py. The sample-specific OTU tables were merged back into a single OTU table using 

QIIME script merge_otu_tables.py.   

 

Before OTU picking steps for the comparison of Roche/454, Illumina, and Ion Torrent g23 datasets, all three quality 

filtered datasets were sub sampled to even sequencing depth for improved comparability and globally trimmed to 

200 bp per sequence to minimize gaps in the downstream sequence alignment. OTU picking was performed using 

90% sequence similarity rather than 97% to account for the global trimming step, which results in a requirement of 

20 bp differences rather than 6 differences to distinguish OTUs from one another. The platform comparison did not 

filter singletons. 

2.8.3.3 Diversity analyses and heatmaps 

OTU tables were converted from .BIOM format to tab-delimited .TXT file format to be used in the R environment 

version 3.2.0 (R Development Core Team 2011) for diversity analyses and were transposed to meet requirements for 
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scripts within the R package Vegan version 2.2-1 (Oksanen et al. 2013). Within-sample diversity measures, known as 

alpha diversity, were calculated using QIIME script alpha_diversity.py, with Chao1 (Chao 1984) species richness 

estimates, PD (phylogenetic distance) (Walker and Faith 1994), and observed OTUs as the user-chosen outputs. 

Alpha rarefaction curves were generated in R using the Vegan script rarecurve to create plots of estimates of species 

richness at different sampling depths within each sample. Pielou’s evenness (Pielou 1977) values were calculated by: 

       E=D/log(S) 

Where D is the Shannon diversity index value of the sample, and S is the number of observed OTUs for the sample. 

The diversity between sample datasets, known as beta diversity, was analyzed using QIIME script 

jackknifed_beta_diversity.py. This script resampled the data at even sequencing depth per sample at the minimum 

sequencing depth of all samples in each dataset, then used Unifrac distances (Lozupone and Knight 2005) to create 

weighted UPGMA cluster dendrograms. Bootstrapping of the UPGMA dendrograms was accomplished using the 

QIIME script make_bootstrapped_tree.py, which created a PDF file of the dendrogram with colored branches 

indicating level of bootstrap support. The script also created principal coordinate analysis (PCoA) plots based on 

Unifrac distance matrices. Statistical comparison of categories using ANOSIM was accomplished using the script 

compare_categories.py.  

 

Heatmaps were generated describing normalized relative abundances of the most abundant OTUs representing ≥1% 

of the total sequence datasets using QIIME script make_otu_heatmap.py.  

2.8.3.4 Phylogenetic analyses 

A list of representative sequences from each OTU was generated using the QIIME script ref_seqs.py. Only OTUs that 

represented ≥ 1% of the total sequence datasets were included in the final phylogenetic identity analyses. Each OTU 

representative sequence was queried against NCBI BLAST (Altschul et al. 1997). The top hits were examined for 

percent sequence identity and query coverage. Sequence identities ≥ 70% were reported, and listed as no BLAST hit 

if no identity ≥ 70% was found or if in addition the query coverage was ≤ 50%. Only the g23 Roche/454 dataset 

contained enough information to create a phylogeny, therefore the following steps were only performed for that 

dataset. Dereplicated BLAST hits and the representative sequences from all OTUs were aligned using the alignment 

tool Muscle (Edgar 2004) through the QIIME script align_seqs.py. Phylogenies were made using this alignment file as 

input to the QIIME script make_phylogeny.py (which uses FastTree (Price et al. 2009) by default for tree 

construction). Trees were visualized and annotated using the tree editing software FigTree (Rambaut 2008).  
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3 Results 

3.1 Environmental parameters 

Visualization of transect B physical data revealed a cold, fresher water layer at the surface at station B16 (Figure 10, 

far left vertical profile; Figure 11, top panel) not seen at station B8 (Figure 10, right vertical profile; Figure 11, bottom 

panel). The density range of the water column (low at surface, high at depth) was between 27.6 and 28.1 σT at 

station B16 and between 27.9 and 28.1 σT at station B8.  

 

Figure 10. Density of the water column extrapolated from data collected at CTD sample sites along transect B from 
northernmost (left) to southernmost (right).  White vertical lines represent B16 and B8, and short horizontal white lines 
represent sampling depths. 

 

Each genomic sample was determined as sourced from a mass of water as described in Table 9 (and as graphed in 

Figure 11). Genomic samples at station B16 are sourced from Surface Water (B16.surface and B16.20m) and Polar 

Water (B16.500m and B16.1000m), while samples at station B8 are sourced from Atlantic Water above (B8.surface 

and B8.20m) and below the pycnocline (B8.500m) or from Arctic Intermediate Water (B8.1000m). 
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Figure 11. Physical characterization of depth profiles at B16 (top chart) and B8 (bottom chart) collected using the CTD and 
auxiliary sensors, annotated with water mass assignments. 

 

 

 

B8 

B16 
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Table 9. Sample names and the associated water mass within which the source water was 
taken as determined by physical parameters. 

Genomic Sample ID Assigned Water Mass 

B16.surface 
Surface Water 

B16.20m 

B16.500m 
Polar Water 

B16.1000m 

B8.surface 
Atlantic Water (above pycnocline) 

B8.20m 

B8.500m Atlantic Water (below pycnocline) 

B8.1000m Arctic Intermediate Water 

 

Nutrient data (Figure 12) indicate that station B8 surface water was higher in nitrate/nitrite (10 µM) and phosphate 

(0.69 µM) than station B16 surface water (5 µM and 0.43 µM, respectively). Nitrate/nitrite and phosphate increased 

with increasing depth at both sites, though 20 m depth at station B8 had slightly lower values (1-2 µM difference) for 

both nutrients. 

 

Figure 12. Concentrations of nitrate/nitrite (dotted black lines) and phosphate (solid black lines) profiles at stations B16 and 
B8 with the y-axis as depth in meters presented in log2 scale. Standard deviations are represented by error bars. Colored 
horizontal lines refer to genomic sampling depths. Colleagues at the University of Tromsø analyzed nutrient data. 

 

Flow cytometry counts of microbial particles (Figure 13) reveal virus, bacteria, and eukaryotes were generally 

present at both stations at relative abundances on the order of 1 x 106 particles mL-1, 1 x 105 cells mL-1, and 1 x 102 

cells mL-1, respectively. All particle counts generally decreased with increasing depth. The virus to bacteria ratio 
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(VBR) increased with depth at both sites, ranging from 14 to 37 at station B16 and from 12 to 18 at station B8 (not 

shown). Viral and bacterial counts correlated tightly at both stations throughout the water column.  At station B16 

maximum bacteria (1.61 x 105 mL-1) and maximum virus (2.22 x 106 mL-1) enumerations were measured at 30 m 

depth while at station B8 maximum bacteria counts (1.36 x 105 mL-1) and maximum viral counts (1.7 x 106 mL-1) were 

measured at 200 m depth.  The range between the minimum and maximum viral counts was 1.22 x 106 mL-1 at 

station B16 and 7.5 x 105 mL-1 at station B8. The range between the minimum and maximum bacterial cell counts 

was 6.72 x 104 mL-1 at station B16 and 7.73 x 104 mL-1 at station B8. The range between minimum and maximum 

eukaryotic cell enumerations was 1.48 x 102 mL-1 at station B16 and 8.6 x 101 mL-1 at station B8. 

 

Figure 13. Flow cytometry enumerations at stations B16 and B8 of microbial cells and virus particles per milliliter of seawater. 
Colored horizontal lines refer to depths of tagged sequencing samples at either station B16 (turquoise) or B8 (blue). Particle 
counts courtesy of Maria Lund Paulsen, UiB. 
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3.2 Verification of amplification 

Amplification of the viral signature genes following the second PCR and cleaning steps resulted in purified products 

of varying concentrations as summarized in Table 10. Agarose gels confirmed that barcoded product sizes ranged 

from 300 – 600 bp sequence length (Appendix B.1, Figures B-1 to B-5). Total nanogram amounts in DNA mixtures 

sent for pyrosequencing of each marker gene were 160 ng of g23 (20 ng from each sample), 240 ng of phoH (30 ng 

from each sample), and 222 ng of MCP (~ 28 ng from each sample). The total ng amounts in g23 samples sent for 

Illumina MiSeq and Ion Torrent sequencing were 240 ng (30 ng from each sample) and 4800 ng (600 ng from each 

sample), respectively. It should be noted, however, that technicians made dilutions of these libraries before 

sequencing was accomplished, therefore the sent DNA material does not reflect the amount of sample ultimately 

used in any of the sequencing reactions. 

Table 10. DNA concentrations of each of 8 samples of g23, phoH and MCP amplicons as measured on the Qubit 2.0 
Fluorometer. Products were later pooled in equal ng amounts before sending to the Norwegian Sequencing Centre 
for Roche/454 sequencing. 

Sample ID 

Concentration of g23 
PCR product (ng/µL) 

Concentration of phoH PCR 
product (ng/µL) 

Concentration of MCP 
PCR product (ng/µL) 

B16.surface 15 10.4 9.83 
B16.20m 3.39 10.9 9.04 
B16.500m 12.3 3.24 5.85 
B16.1000m 6.9 3.26 8.32 

B8.surface 18.7 6.29 19.6 
B8.20m 15.8 31.2 13.2 
B8.500m 14.6 6.35 13.4 
B8.1000m 19.5 3.25 11.1 

 

3.3 Sequencing run diagnostics 

Generated FastQC reports (http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc/) of raw pyrosequencing data 

received from NSC  (Appendix B.2.1) and Microsynth (Appendix B.2.2) show the g23 Roche/454 run resulted in a 

total of 1,171,251 reads with an average length of 450 bp and an average per read PHRED score of 38 (Figure B-7).  

The combined phoH and MCP sequencing run resulted in a total of 232,305 reads with an average length of 411 bp 

(Figure B-11) and an average per read PHRED score of 38 (Figure B-10). 

 

FASTQC reports of Illumina paired-end data received from NSC show g23 sequencing runs 1 and 2 both resulted in a 

total of ~22 million reads each with length 301 bp and an average per read PHRED score of 37.  The numbers of 

reads were significantly reduced to 5,872,874 sequences following contamination cleaning and paired read merging 

steps (Appendix B.2.3), after which sequences ranged from 35 – 590 bp in length (Figure B-14). 

 

Ion Torrent data received from the UiB Ion Torrent PGM facility resulted in a total of 2,688,165 reads (Appendix 
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B.2.4) with a majority of sequences having 420 – 439 bp (Figure B-17) and a majority of per read PHRED scores at 28 

(Figure B-16), with a second, less abundant peak at 18. 

3.4  Characterization of OTU tables from Roche/454 data 

De novo picking of OTUs at 97% similarity level and exclusion of singletons resulted in 1,696 OTUs of g23, 140 OTUs 

of phoH, and 233 OTUs of MCP.  Of these OTUs, 396 (23%) were shared between all 8 samples in the g23 dataset 

(Appendix B.6, Figure B-20), 33 (24%) OTUs were shared between all samples in the phoH dataset, and none of the 

OTUs were shared between all samples in the MCP dataset. Among the 10 OTUs (4%) shared by either 6 to 7 of the 

MCP samples, all OTUs except one did not include sequences from sample B8.1000m. Almost 52% of all OTUs in the 

MCP dataset are unique to any one sample. Of those, 59% contain from 3-10 sequences and 30% contain 20-850 

sequences. 

 

Rank abundance plots (Appendix B.5, Figures B-18 and B-19) show 31% of g23 OTU assignments are extremely rare 

(arbitrarily defined as 10 or fewer reads). Including those extremely rare OTUs, 70% of the OTUs in the dataset 

belong to OTUs containing 100 reads or less. g23 OTUs containing 100 – 1,000 reads comprised 20.5% of the total 

OTUs, and OTUs containing 1,000 – 65,000 reads comprised 9.5% of the dataset. OTUs with 100 reads or fewer 

comprised 74% of the phoH dataset and 77.2% of the MCP dataset. OTUs with 100 – 1,000 reads comprised 18.6% of 

the phoH dataset and 17.6% of the MCP dataset. OTUs with 1,000 – 10,000 reads comprised 7.4% of the phoH 

dataset and 5.2% of the MCP dataset. 

3.5 Diversity analyses 

Pyrosequenced samples of g23, phoH and MCP were sequenced to between 86 -96%, 85-97%, and 77-95.8% of the 

Chao1 species richness estimates, respectively (Tables 11, 12, and 13). The indication that sequencing had not 

reached full saturation for most samples is reflected in alpha rarefaction curves (Figure 14). Richness was especially 

elevated in station B16 samples sourced from the cold Surface Water layer: the highest OTU richness in the g23 

dataset was from B16.20m (1126 OTUs). This sample has a 3-fold higher sequencing depth than the other g23 

samples. B16.1000m represents the second highest OTU richness value in the g23 dataset (1025 OTUs).  

 

For the MCP dataset, evenness (Appendix B.3, Table B-2) is generally greater at 1,000 m depth than at 20 m or 

surface. The range of Pielou’s evenness index values for the rarefied g23 (0.729-0.82) and phoH (0.589 – 0.665) 

samples are narrower than for the MCP samples (0.339 – 0.771). 
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Table 11. Alpha diversity indices of pyrosequenced g23 samples. Metrics included are the Chao1 
species richness estimate, the total phylogenetic distance (PD), and observed numbers of OTUs. 

 
Sample Name Chao1 PD Whole Tree Observed OTUs 

g23 

B16.surface 1056 193 949 

B16.20m 1297 252 1233 

B16.500m 1007 179 921 

B16.1000m 1126 213 1091 

B8.surface 1044 178 900 

B8.20m 1098 186 945 

B8.500m 1184 203 1050 

B8.1000m 1085 186 972 

 

  

 

Table 12. Alpha diversity indices of pyrosequenced phoH samples. Metrics included are the 
Chao1 species richness estimate, the total phylogenetic distance (PD), and observed numbers of 
OTUs. 

 
Sample Name Chao1 PD Whole Tree Observed OTUs 

phoH 

B16.surface 117 13 106 

B16.20m 100 12 97 

B16.500m 97 11 86 

B16.1000m 76 8 70 

B8.surface 119 10 102 

B8.20m 95 12 85 

B8.500m 98 10 88 

B8.1000m 71 8 66 

 

 

Table 13. Alpha diversity indices of pyrosequenced MCP samples. Metrics included are the Chao1 
species richness estimate, the total phylogenetic distance (PD), and observed numbers of OTUs. 

 
Sample Name        Chao1 PD Whole Tree Observed OTUs 

MCP 

B16.surface 97 24 90 

B16.20m 107 30 99 

B16.500m 80 22 69 

B16.1000m 62 20 48 

B8.surface 60 14 49 

B8.20m 79 22 71 

B8.500m 89 21 69 

B8.1000m 48 19 46 
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Figure 14. Alpha rarefaction curves of g23, phoH and MCP samples on the Roche/454 platform. Black vertical lines 
refer to maximum rarefaction depth sampled for each dataset. Turquoise lines represent B16 samples and blue lines 
represent B8 samples. 
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Jackknife support of the weighted UPGMA dendrograms based on the three pyrosequenced genes (Figures 15, 16, 

and 17) resulted in 75-100% confidence for all nodes in all three datasets. Within the g23 and phoH datasets, 

weighted UPGMA dendrograms show a cluster of all station B8 samples, a cluster comprised of B16.surface and 

B16.20m samples, and a cluster comprised of B16.500m and B16.1000m samples. Within the g23 station B8 cluster, 

samples at B8.surface and B8.20m are the most closely associated. In the phoH B8 cluster, samples B8.500m and 

B8.1000m are the most closely associated. Samples B16.500m and B16.1000m samples clustered equidistantly from 

all other samples within the g23 dataset. In the phoH dataset, B16.500m occupies the furthest distance and 

B16.1000m is secondarily distant from all other samples. The dendrogram of MCP samples B8.surface, B8.20m, and 

B8.500m form a cluster which is most similar to the cluster comprised of samples B16.surface and B16.20m. 

B16.500m is more similar to each of the aforementioned clusters than to either of the samples sourced from 1,000 

m depth, which cluster together as most dissimilar to all other MCP samples. 

 

Categorical comparison of samples by water mass using ANOSIM on weighted Unifrac distance matrices (Appendix 

B.7) revealed that the grouping of samples by water mass is statistically significant for the g23 dataset (Table B-8) 

with an R value of 0.913 (closer to +1 indicates stronger grouping) and a p-value of 0.003. ANOSIM on the phoH and 

MCP datasets (Tables B-9 and B-10) did not result in statistically significant grouping by water mass, with R values of 

0.096 and 0.304, and p-values of 0.313 and 0.144, respectively. 

 

Figure 15. Weighted UPGMA dendrogram of g23 Roche/454 samples with even sequence depth of all samples (64K 
sequences) and singleton OTUs removed. Blue labels are B16 samples and turquoise labels are B8 samples. Water 
masses of origin are noted in italics. 
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Figure 16. Weighted UPGMA dendrogram of phoH Roche/454 samples with even sequence depth of all samples (4K 
sequences) and singleton OTUs removed. Blue labels are B16 samples and turquoise labels are B8 samples. 

 

 

Figure 17. Weighted UPGMA dendrogram of MCP Roche/454 samples with even sequence depth of all 
samples (4K sequences) and singleton OTUs removed. Blue labels are B16 samples and turquoise labels are 
B8 samples. 
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3.6  OTU heatmaps and homologous sequences in NCBI BLAST 

The heatmap of the twenty-six OTUs representing ≥ 1% of the g23 dataset (Figure 18) shows that samples which 

cluster according to the weighted UPGMA have varying proportions of certain OTUs. The g23 B16.surface/B16.20m 

cluster shares high proportions (a range of 19 – 68% abundance) of sequence reads belonging to seven OTUs that 

have closest sequence similarity to samples deposited in the NCBI BLAST database sourced from either the Arctic 

Ocean or marine waters in Norway. All station B8 samples contained high abundances (11 – 27%) of sequences 

belonging to twelve OTUs with similarity to BLAST entries from one of the following: the Arctic (1 OTU), Norway (3 

OTUs), coastal California during winter (3 OTUs) or summer (1 OTU), Gulf of Mexico (1 OTU), a Chinese lake (1 OTU, 

low homology) or no BLAST hit (2 OTUs). Sample B16.500m contained 73% of sequence abundance from OTU 23, 

which had no BLAST hit. Sample B16.1000m contained a similarly high abundance (71%) of sequences from OTU 21, 

which also had no BLAST hit. Both B16.500m and B16.1000m contained high abundance of sequences belonging to 

four OTUs with BLAST hits from SPOT in winter (2 OTUs) and summer (1 OTU), and Norway (1 OTU). 

 

The heatmap of the fourteen OTUs representing ≥ 1% of the phoH dataset (Figure 19) shows fewer clear 

relationships associating to the weighted UPGMA clusters than the g23 dataset. The UPGMA cluster comprising all 

station B8 samples contains sequences for all the OTUs representing ≥ 1% of the dataset except OTUs 11 and 5. OTU 

11 was only found in high proportions within ice-influenced Surface Water samples, with a 42% abundance of reads 

from B16.surface and 37% from B16.20m. OTU 5 reads are disproportionately abundant in sample B16.500m, which 

contains 76% of reads for this OTU. Within the B8 cluster, samples sourced from Atlantic Water (B8.surface, B8.20m, 

and B8.500m) contain the largest proportions of sequences belonging to OTU 7 (24%, 21%, and 16% abundance, 

respectively). OTU 7 reads are present in lower abundances in all other samples in the dataset, except in samples 

sources from Polar Water (B16.500m and B16.1000m), in which it is absent. The closest BLAST hit matching the 

entire length of the representative sequence for OTU 7 (with only 85% identity) is a phoH sample from Raunefjorden, 

Norway. The highest percentage of reads clustering to OTU 9 (23% abundance) are sourced from sample B16.1000m, 

and are also present in all other samples in the dataset (from 6 - 14% abundance of OTU 9).  

 

The heatmap of the twelve OTUs representing ≥ 1% of the MCP dataset (Figure 20) shows the differing percent 

abundances of the OTUs reflecting the UPGMA clusters. UPGMA clustered samples B8.surface, B8.20m and B8.500m 

share high proportions (a range from 14 – 29% abundance) of reads from OTUs 0, 1, 3, and 10. The B16.surface/20m 

UPGMA cluster also had high proportions of the same four OTUs (13 – 24% abundance) but also has large 

proportions of OTU 2 (33% abundance in B16.20m, 40% in B16.surface) and OTU 9 (69% abundance in B16.20m, 39% 

in B16.surface). The B8.1000m/B16.1000m cluster shares a large proportion of OTU 7 (45% abundance in B8.1000m, 

55% in B16.1000m), which is not present in any of the other samples. The B16.500m sample has a high proportion of 

sequences from OTU 4 (86% abundance), which is only present in one other sample (B8.1000m, with 11% 
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abundance). Sample B8.500m and B8.1000m are the only two samples containing OTU 5 sequences, and the 

proportion of these is very high for B8.1000m (71% abundance).  Five of the OTUs included in the MCP heatmap had 

only poor homology to previously cultured algal viral species from Norway.OTU 9 had 72% sequence similarity to a 

Pyramimonas orientalis virus (76% query cover), OTUs 1 and 6 had 86% and 83% similarity to Prymnesium kappa 

virus, respectively (19% and 36% query cover), and OTUs 2 and 4 were 84 and 86% sequence similarity to Haptolina 

ericina virus, respectively (40% and 35% query cover). No OTU matched to Micromonas pusilla virus sequences in the 

BLAST database. 
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Figure 18.  OTU heatmap of ≥1% OTUs in the g23 Roche/454 dataset rarefied to even depth (28K sequences each). Open turquoise and 
blue rectangles indicate weighted UPGMA clusters of samples using the entire dataset. OTU names are numbers along the top of the 
heatmap in parentheses. Colors associated with OTUs indicate the origin of the top BLAST hit to the OTU representative sequence. 
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Figure 19.  OTU heatmap of ≥1% OTUs in the phoH Roche/454 dataset rarefied to even depth (3. 7K sequences each). 
Open turquoise and blue rectangles indicate weighted UPGMA clusters of samples using the entire dataset. OTU 
names are numbers along the top of the heatmap in parentheses. Colors associated with OTUs indicate the origin of 
the top BLAST hit to the OTU representative sequence. 
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Figure 20.  OTU heatmap of ≥1% OTUs in the MCP Roche/454 dataset rarefied to even depth (1.8K sequences each). Open 
turquoise and blue rectangles indicate weighted UPGMA clusters of samples using the entire dataset. OTU names are 
numbers along the top of the heatmap in parentheses. Colors associated with OTUs indicate the origin of the top BLAST hit to 
the OTU representative sequence. 
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3.7 g23 OTU diversity 

The phylogeny produced using the Muscle alignment of g23 OTU representative sequences and the top BLAST hits of 

the 369 OTUs present in all eight samples reveals four large clusters (Figure 21). Clusters 2 and 4 contain few (3 and 

4, respectively) of the OTUs representing ≥ 1% of the dataset. These clusters also contain BLAST hits to sequences 

originating from a variety of environments around the world. Cluster 3 contains 11 out of the 33 OTUs representing 

≥ 1% of the g23 dataset mainly contains BLAST sequences from Norway, the Arctic, or San Pedro Ocean Time Series 

station during winter (defined here as November to February). Subcluster 1a contains the most abundant OTU in the 

dataset, and only aligned BLAST sequences sourced from Norwegian, Arctic, or SPOT station samples (winter only) 

group to this subcluster. Subcluster 1a is adjacent to other branches within Cluster 1 that contain BLAST hit 

sequences that are less geographically limited. 

 

Figure 21. Phylogeny based on alignment of g23 OTU representative sequences and non-redundant sequences sourced from top 
BLAST hits of the 369 OTUs present in all 8 samples. OTUs representing ≥ 1% of the dataset are labeled in black (at least 7,000 
sequences per OTU). The 5 OTUs with the largest number of reads in the dataset are OTUs 1 (65,454 reads), 0 (51,147 reads), 2 
(36,500 reads), 3 (23,808 reads), and 4 (19,433). 
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3.8 Comparison of Roche/454, Illumina, and Ion Torrent platforms 

The three-platform comparison of g23 data generated on Roche/454, Illumina, and Ion Torrent platforms resulted in 

2,634 total OTUs when compared at 90% sequence similarity. The rank abundance curve of the OTUs (Figure 22) 

showed an agreement of abundances for a majority of the OTUs in the dataset. Exclusively Ion Torrent data 

exhibited divergences in abundances above the curve, especially for the OTUs that were least abundant across all 

three datasets. 

 

Figure 22. Rank abundance curves of Roche/454, Illumina, and Ion Torrent datasets of g23 OTUs (based on 90% sequence 
similarity) from datasets randomly sub sampled to equal depth (913K sequences each). 

 

Alpha rarefaction curves of g23 samples showing within-sample diversity for each sample amongst the three 

datasets (Figure 23) indicate that Ion Torrent sequencing resulted in the highest numbers of OTUs (indicated by 

“Species” on y-axis) in all samples. A majority of samples show that Roche/454 and Illumina datasets have similar 

richness and evenness, indicated by their well-matched curvatures. 
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Figure 23. Alpha rarefaction curves of each g23 sample from sequencing runs performed on the Roche/454 (blue), Illumina 
(red), and Ion Torrent (IT, green) platforms. Sample names are indicated in the upper right corner of each plot, and labels are 
colored by station. Datasets were normalized to the number of sequences of the smallest dataset (913K sequences). Black 
vertical lines represent the maximum sampling depth in the rarefaction curve, and black horizontal lines indicate the species 
number at maximum rarefaction depth. 
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Figure 24. Plot in three-dimensional space using PCoA of the weighted UniFrac distance matrix of g23 samples 
analyzed on the Roche/454 (top panel), Illumina (middle panel), and Ion Torrent (lower panel) platforms. The same 
plot is shown in each panel, highlighting samples from each platform separately for clarity. Transparent points within 
each panel are the g23 samples from the other two platforms. Each point has a different color, designating each 
water sample.  Sequencing platforms are labeled along with sample names. Tightly clustered red, orange and dark 
blue points to the left side of the figure are station B8 surface, 20 m, and 500 m samples from all platforms. 
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The PCoA plot (Figure 24) based on weighted Unifrac distance matrix (a phylogeny-based method) of the three g23 

datasets reveals that PC1 describes 91.17% of the variation, whereas PC2 and PC3 describe 5.41% and 1.06% of the 

variation, respectively. Atlantic Water samples from station B8 at surface (red sphere), 20 m (blue sphere) and 500 m 

(orange sphere) cluster together tightly within all three datasets. Station B16 samples originating from the ice-

influenced Surface Water are more closely related to one another than to any other sample, though the position of 

these samples in the PCoA plot appear to vary by platform rather than by depth. The same is true for all B16.1000m 

samples, which originate from Polar Water.  The clustering of Polar Water samples B16.500m and B16.1000m in the 

UPGMA dendrogram of Roche/454 data only is not preserved in this PCoA of the platform comparison: instead, 

sample B16.500m appears to cluster as most similar to station B8 Atlantic Water samples for all three platform 

datasets. Arctic Intermediate Water sample B8.1000m clusters with station B8 samples from Atlantic Water for the 

Roche/454 dataset, but is separated from Atlantic Water samples in the Illumina and Ion Torrent datasets. 

 

Comparison of categories using the weighted Unifrac distance matrix of all samples in the platform comparison  

tested using ANOSIM (Appendix B.7) revealed that grouping of samples by sequencing platform was not statistically 

significant, with an R value of -0.027 and a p-value of 0.55 (Table B-6). A second ANOSIM (Table B-7) on samples 

grouped by water mass showed categorical grouping with statistical significance, with an R value of 0.688 and a p-

value of 0.001.  
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4 Discussion 

4.1  Is diversity within the Arctic Ocean viral community distinct from that of other 

geographic locations sampled to date? 

Our results of the viral diversity in these Arctic Ocean samples during the polar night were explored to determine the 

phylogenetic relationships of viral sequences in this study to other viral samples globally. The connectivity and 

physical mixing of oceans allows for transport of viruses and their hosts within and between marine ecosystems 

globally, suggesting that everything might actually be everywhere, as in Baas-Becking’s hypothesis. At the same time, 

available nutrient heterogeneity, light, temperature and salinity gradients, and bottom depth differences are known 

to create limitations to marine microbial dispersal and act simultaneously as the forces with which the environment 

selects for certain types, contributing to beta diversity of microbial communities across spatial and temporal scales 

(Zinger et al. 2011). 

 

The use of the g23 gene in numerous and globally disparate previous studies of Myoviridae diversity (Filée et al. 

2005; Pagarete et al. 2013; Chow and Fuhrman 2012; Short and Suttle 2005; Butina et al. 2013;  Liu et al. 2012; Bellas 

and Anesio 2013; Zheng et al. 2013; Bench et al. 2007) provides pre-existing information to make some inferences 

about the geographic novelty of g23 genotypes found during a single sampling effort in the Arctic Ocean.  This is not 

the case for phoH  (Goldsmith et al. 2011; Goldsmith et al. 2015) and MCP (Larsen et al. 2008; Zhong and Jacquet 

2014): relatively few prior studies have used these markers to investigate viral diversity , therefore the following 

discussion regarding geographic ecology of the Arctic viral assemblage is limited to information based on the g23 

dataset only. 

 

Our data appear in accordance with findings from numerous previous studies that find viral community assemblages 

are composed of a mixture of globally distributed and geographically constrained types (reviewed in Breitbart and 

Rohwer 2005)). Within the g23 tree based on FastTree phylogeny assignments (Figure 21) Clusters 2 and 4 contain 

fewer of the OTUs with abundances >1% of the dataset, and the sampling origin of BLAST hit sequences are widely 

distributed across ecosystems and regions. The origins of BLAST hits in Clusters 2 and 4 are sourced from globally 

distributed terrestrial, freshwater, and marine sampling sites, of which very few are either Arctic or recorded as 

collected during winter. Our hypothesis is that the distribution of genotypes within these clusters is not endemic to a 

particular locale or environmental condition, but rather that genotypes in these clusters originate from viral types 

that are successful across a wide range of environments. 

 

 It is possible that these cosmopolitan viruses are able to infect globally distributed host species, though the 

presence of commonly available host cells is not the only possible explanation for the wide distribution of these viral 
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types. Previous studies have indicated that identical viruses are found in vastly different ecosystems, implying 

mobility between environments e.g. between soil, marine, and freshwater habitats (Breitbart et al. 2004; Short and 

Suttle 2005, Sano et al. 2004). The demonstrated ability of some viruses to broaden their host range upon exposure 

to new hosts (Chibani-Chennoufi et al. 2004)enhances the aptitude of a virus to successfully move between 

environments, and does not require presence of the same host species across environments. As mentioned earlier, 

Chibani-Chennoufi and colleagues (2004) found a myophage type able to broaden its host range during low-light 

conditions. Myophage under polar night conditions may also be able to achieve this feat in situ. Until virus – host 

interactions are explored further with these globally distributed types, however, it is impossible to know the reason 

for their ubiquity.  

 

BLAST hit sequences falling within two phylogenetically distinct clusters in the g23 tree containing the majority of 

the most numerically abundant OTUs (Subcluster 1a and Cluster 3) belong to samples previously collected in Arctic 

or marine waters off of Norway, or else they are from surface samples collected during winter at a coastal California 

sampling station known as SPOT (defined as November to February). The genotypes in Cluster 3 and Subcluster 1a 

appear to represent two groups of myophage mainly found in the Arctic environment, but are less phylogenetically 

distant from the two globally distributed clusters than from one another. Member genotypes within Cluster 3 and 

Subcluster1a may therefore represent two myophage types selected for in the high Arctic. The eight most abundant 

OTUs in the ice-influenced Surface Water samples at station B16 all fall within these Arctic-specific clusters, whereas 

only half of the most abundant OTUs in the deep Polar Water samples at station B16 and the Atlantic Water samples 

at B8 fall within these clusters. It is possible that these Arctic OTUs are specific to ice-associated communities 

(Borriss et al. 2003), and that vertical transport of viruses via sinking particles (Fuhrman 1999) has contributed to the 

dispersal of these viral types to deep water masses.  

 

Although query sequence coverage and percent identity to BLAST hits were generally lower for queries matching 

coastal California samples than for queries matching Arctic or marine samples from Norway, it is interesting that 

sequences from the eastern Pacific Ocean taken in winter cluster as similar to both Arctic BLAST sequences and the 

majority of high abundance OTUs found in the present study taken during the polar night. Unfortunately logistical 

issues often prevent polar scientists from winter sampling due to sea ice cover, harsh sea conditions, and constant 

darkness, which has resulted in datasets mainly collected in summer in this region. Thus, clustering of samples from 

the temperate Pacific and the Arctic Ocean with no obvious relationship except season of sampling may reflect 

insufficient resolution due to sparsely sampled g23 data across locations and seasons, but could also suggest the 

success of these myophage genotypes across marine environments during the lower production winter season.   

 

Alternatively, the clustering of Arctic OTUs with Pacific Ocean samples could be due to the significant transport of 

biota between the Pacific, Atlantic, and Arctic Oceans. Although the gateways to the Arctic are limited by 

surrounding continents,  persistent and strong transport of water and biota to the Arctic Ocean occurs via advective 
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processes from both the Pacific Ocean and, to a greater extent, the Atlantic Ocean (Wassmann et al. 2015). Microbial 

species will inevitably be transported along these currents, which could explain the presence of viruses (and likely 

host species) previously collected in Pacific Ocean water samples. If indeed this is the case, the presence of  free-

living Pacific Ocean originated viruses in such a high percentage within the viral community would require their 

successful reproduction upon entry into Arctic Ocean environment (Wassmann et al. 2015) rather than an inactive 

contribution to the total diversity. The rate of spread of these viral types is an aspect to consider: high mobility of 

herpes viruses alongshore have been reported, with dispersal rates of about 10,000 km per year (Lawrence 2008). 

Once passing into the Arctic Circle during the polar night, the obstacle of degradation due to solar radiation would 

not exist, though the longevity of virus particles under these conditions remains untested. It is possible that viruses 

with extended longevity that are transported along such currents do not have many barriers to their dispersal 

(McCallum et al. 2003).  

 

Viral community assemblages in these Arctic Ocean samples are made up of both globally distributed and local 

types, as has been shown not only in other viral diversity investigations (Short and Suttle 2005; Breitbart et al. 2004; 

Huang et al. 2015), but also for prokaryotic (Zinger et al. 2011; Ghiglione et al. 2012; Pommier et al.2005; Massana et 

al.2000)and eukaryotic (Montresor et al. 2003; Darling et al. 2000) species investigations. Huang et al. 2015 also 

found closely related phage types with either habitat-specific relative abundances or globally consistent abundances 

across viral communities within open ocean, coastal marine, estuarine, and coral reef viral communities. Habitat-

specific and globally consistent types formed separate phylogenetic clusters (Huang et al. 2015) similar to the 

patterns exhibited by myophages examined in the present study. These results imply heterogeneity of distribution of 

viral types within and between environments, indicating presence of rare and abundant viral taxa. The presence of 

global and local types supports that viral diversity is high locally but perhaps low globally, and that these patterns 

occur simultaneously within individual viral assemblages (Breitbart et al. 2005).  

4.2 Is viral community composition distinguishable between water masses or other 

physical/chemical environmental factors, and does it reflect host community diversity? 

4.2.1 Viral communities within different water masses 

The sampling accomplished in this work captured viral concentrates originating from ice-influenced Surface Water, 

deep Polar Water, warm Atlantic Water carried north by the WSC, and deep Arctic Intermediate Water. Viral 

assemblages originating from different water masses investigated in this thesis are for the most part distinguishable 

from one another, with the exception of the Atlantic and Arctic Intermediate Waters.  Water mass assignments were 

based on density gradients throughout the water column, though the density differences at station B8 are less 

dramatic between surface and deep samples compared to station B16 (Figures 10 and 11) and therefore a lack of 

physical barriers may exist between the water masses at station B8. Repeated sampling is required to characterize 

the viral assemblages within these water masses, however, this pilot investigation of the notoriously less stratified 
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winter Arctic Ocean water column is a promising step towards this end. 

 

The viral assemblages in our study also support viral transport via water mass as shown in UPGMA clustering of both 

g23 (Figure 15) and phoH samples (Figure16), which group station B16 samples based on water mass (either Surface 

Water or Polar Water), though only the grouping of g23 samples by water mass had statistical support when using 

ANOSIM. The relationship between water masses is less apparent in station B8 samples originating from Atlantic 

Water and Arctic Intermediate Water. The dominant dispersal method for microbes in the ocean is by movement of 

water masses (Winter et al. 2013), and other studies have found planktonic eukaryote, prokaryote, and viral 

community assemblages to vary in relation to the  water masses samples are sourced from ((Winter et al. 2013; 

Agogué et al. 2011; Gómez-Pereira et al. 2010; Varela et al. 2008; Galand et al. 2010; Fu et al. 2013; Monier et al. 

2014).  The formation of Arctic Intermediate Water is in fact complex, as it is sourced from cooling Atlantic Water 

mixed with Arctic bottom waters and, to a lesser degree, Polar Water (Blindheim 1990). The very nature of 

intermediate water masses adds complexity, and it is therefore not surprising that distinguishing between viral 

communities in this layer and the water masses contributing to its formation is less concrete than between other, 

more distinct water masses.  

 

In addition to the physical bounds created and transport mediated by water masses, viral production represents 

another facet of viral diversity within the context of these water masses. The abundance of viruses in aquatic 

systems is affected by viral production and loss rates, which  in turn can vary with burst size, frequency of host 

infection, host diversity, and rate of viral decay (Clasen et al. 2008). Viral infection rate estimates in the pelagic Arctic 

Ocean are extremely low compared to other oceans due to low virus concentrations and elevated viscosity of cold 

arctic waters (Steward et al. 2007) such as the Polar Water and Arctic Intermediate Water masses. As mentioned 

earlier, infection rate in the marine environment is density-dependent (Dennehy 2013), and host-virus contact rates 

have been shown to be ten times lower in the Arctic Ocean than in temperate waters (Steward et al. 2007). From the 

results of their study and several previous investigations of Arctic Ocean virus abundance, Steward et al. 2007 

hypothesize that because infections persist despite less frequent contact with hosts, Arctic Ocean viruses may have 

reduced decay rates, which partially compensate for density-dependent limitations. Decay rates are known to vary 

widely between algal viral species or even between strains of a single algal viral species (Tomaru et al. 2005), and 

rates of decay or deactivation are sometimes temperature sensitive (Baudoux and Brussaard 2005). Thus it should be 

considered that reduced host contact rates and longevity of free-living viral particles due to the environmental 

conditions within these water masses may play a role in the relative abundance of viral OTUs in our study. 

 

The clear distinction between viral communities in the fresher Surface Water and the more saline deep Polar Water 

samples at station B16 is probably linked to sea ice influence in the subfreezing surface layer and lack thereof at 500 

- 1000 meters depth. Sea ice harbors many microbial cells and creates a niche environment that is a biomass and 

production hotspot even during the polar night (Bachy et al. 2011). It should be noted that OTU richness was also 
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highest in samples originating from sea-ice influenced Surface Water in both the g23 (Table 11) and MCP (Table 13) 

datasets. The most abundant g23 OTUs in the ice-influenced Surface Water samples at station B16 all have high 

homology to other myophage only previously found in the Arctic or in marine sampling sites off of Norway and are 

rare or absent from all other samples in this study (Figure 18). This indicates that genotypes within the Surface 

Water myophage assemblage may be endemic to the Arctic. Borriss et al. 2003 found tailed bacteriophages 

(including myophages) infecting psychrophilic bacteria isolated from sea ice appear even more severely cold-adapted 

than their bacterial hosts, with growth maxima below 14°C and successful plaque formation at 0°C (Borriss et al. 

2003). Phages of psychrophilic bacteria have also been isolated from marine waters (Delisle and Levin 1969), though 

no direct in-depth study has yet been done to characterize the differences in phage genotypes between sea ice and 

surface water communities. 

 

Polar Water samples contained extremely high abundances of reads from two g23 OTUs (23 and 21), neither of 

which had any significant BLAST hit (no hits >70% sequence ID and over 50% query coverage) and group to Clusters 1 

and 2 respectively in the g23 phylogeny (Figure 21).  Deep ocean sampling is less common in studies of marine 

microbial ecology: much of the work done to date is limited to the highly productive euphotic zone of the water 

column (Zinger et al. 2011). While viral data in the deep sea is still extremely sparse, it is also possible that this lack 

of genotype identity to sequences in the BLAST database may signify the novelty of these OTUs within deep arctic-

derived Polar Water.  

 

The relative similarity of all g23 and phoH samples at station B8 to Surface Water samples of sea ice origin at station 

B16 may be a result of deep winter mixing and lack of a density gradient at station B8. Winter convection in the 

Arctic Ocean can homogenize the water column down to 200 m depth in some places, and possibly to the bottom 

along the shelf (Rudels et al. 1991). The relatively small density gradient at station B8 may reflect this winter 

convection, which could explain the absence of a cold Surface Water layer at station B8 and create homogeneity of 

the water column, allowing greater vertical particle movement and resulting in homogeneity of the viral population 

between the Atlantic Water and Arctic Intermediate Water below.  Unfortunately, no sample in this study captured a 

cross-section of the Atlantic Water layer at station B16, which may have clarified the relationship between the 

Atlantic Water samples at station B8 and the Surface Water samples at station B16.  

 

The difference between the range of viral families captured by g23 and phoH using Roche/454 sequencing may 

explain UPGMA clustering variations between these datasets. The closest relationship in the g23 dataset among the 

station B8 samples is between samples from Atlantic Water above the pycnocline (Figure 15), whereas the closest 

relationship between station B8 samples in the phoH dataset is that of Atlantic Water below the pycnocline and 

Arctic Intermediate Water samples (Figure 16). The g23 primers used in this thesis target a wide diversity of the 

Myoviridae assemblage while phoH primers target viral types originating from an assortment of phylogenetically 

unrelated viral families. As a result, the two datasets may not necessarily share the same relationships between 
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closely related samples. It is likely that the phoH and g23 datasets contain only some of the same viruses, as phoH 

can be found within Myoviridae genomes but not all (Goldsmith et al. 2011).  

 

The phoH dataset is dominated by only fourteen OTUs: 85.5% of the total phoH reads are members of these OTUs, 

making this a highly uneven dataset. Of these OTUs, the three most numerically abundant phoH OTUs contribute 

more than half of the sequences in the dataset. In contrast, nearly twice as many highly abundant OTUs (26) account 

for 49% of the total g23 reads, and no single OTU contributes more than 6% of sequences in the dataset. Such large 

representation of only a few phoH OTUs may account for the difficulty in relating the phoH UPGMA clusters directly 

to relative abundances in the OTU phoH heatmap of these fourteen OTUs (Figure 19).  A 2015 study by Goldsmith 

and colleagues showed that deep sequencing of phoH at the Bermuda Atlantic Time Series (BATS) station also 

resulted in dominance of few (only five) OTUs comprising more than half of the sequences in their dataset which 

spanned over multiple seasons and years. These abundant OTUs were found across a majority of the samples, while 

all remaining OTUs had fewer member sequences and were rarely found in individual samples. The proportional 

representation of these dominant OTUs in each sample, however, exhibited considerable variation spatially and 

temporally. With this largely uneven dataset, the authors introduced a median rank parameter to glean sufficient 

resolution of the community dynamics of OTUs within the top half of each sample community (Goldsmith et al. 

2015). By analyzing more than just the between-sample abundances of the OTUs with the most reads, an 

investigation of the top half of the phoH community may further inform the distinction between water masses 

evidenced by the UPGMA clustering of samples in our severely uneven dataset.  

 

MCP samples originating from Polar Water (B16.1000m) and Arctic Intermediate Water (B8.1000m) form a cluster 

within the MCP UPGMA dendrogram (Figure 17). Similarities between these Phycodnaviridae and Mimiviridae 

assemblages may be more dependent on depth of sampling rather than resident water mass.  It is plausible that 

viruses associated with sinking particles have contributed to this effect. Non-growing or dying cultures of flagellated 

cells and diatoms demonstrably sink at more rapid rates than growing cultures, and different species of algae sink at 

different rates depending on cell density and aggregate formation (Eppley et al. 1967). Sunken algal cells or 

aggregates may therefore influence the algal virus communities found in the deepest samples in this thesis, whereas 

algal viruses predating on active members of the algal community may dominate surface water samples. The Pielou’s 

evenness values for the MCP dataset (Appendix B.3, Table B-2), which generally increase with increasing depth 

(possibly due to dominance of fewer actively growing types at surface than in the lower water column), may support 

this inference. 

 

Throughout the water column at both sample stations, chlorophyll a levels were below the detection limit (Figure 

11). The polar night is a challenging period for autotrophs: density of autotrophic cells may be reduced during this 

time due to cell death and grazing pressure (Bachy et al. 2011). Mixotrophy has been shown to be an ecologically 
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important mode of energy production among marine pico and nanoplankton globally (including in Arctic waters) and 

has been implicated from other investigations as an important survival mechanism for a diversity of protists during 

the polar night (Bachy et al. 2011; Baldisserotto et al. 2005; Bell and Laybourn-Parry 2003; Gradinger 2015).  In the 

absence of light under polar night conditions, the dominant algal virus types in all of these samples are likely 

infecting active cells capable of mixotrophic means of energy production. 

 

The only abundant OTU in the ice-influenced Surface Water samples in the MCP dataset with a species-identified 

BLAST hit was OTU 9, with 72% sequence similarity to a nanoflagellate Pyramimonas orientalis virus (Figure 20), 

previously isolated in Norway (Sandaa et al. 2001). While sequences clustering to this OTU were highly abundant in 

the ice-influenced samples, they were entirely absent in all other water masses. Pyramimonas species are frequently 

present in polar waters, and some have been reported to be capable of mixotrophy (Gast et al. 2014). Previous 

findings show that  Pyramimonas can be found both in the Bering Sea water column and trapped in Arctic sea ice 

(Różańska et al. 2008). Although 72% identity represents a very limited homology to any of these viral sequences and 

any such interpretation is highly speculative, BLAST identities to putative viruses of mixotrophs in the cold Surface 

Water layer may indicate the presence of active mixotrophic cells within this water mass or otherwise may be 

sourced from nearby sea ice. 

4.2.2  Trends in viral community and host community diversity 

While the relationships between phages and their bacterial hosts remain unknown for the environmental samples 

assessed in this thesis, it is evident upon examination of the 16S rRNA gene assemblages (which describes a very 

broad diversity of prokaryotes) within the same water samples that diversity of both myophages and their potential 

host cells vary similarly.  Of the two genes assessed in this thesis for fingerprinting of prokaryotic viruses (g23 and 

phoH), the UPGMA dendrogram of g23 appears to have greatest similarity to the UPGMA dendrogram based on 16S 

data at these sampling sites (Figure 25, 16S data courtesy of Oliver Müller, UiB) , suggesting a relationship exists 

between myophage and prokaryotic communities in these samples. This is an interesting result, as Payet and Suttle's 

study in the Canadian Arctic Ocean (2014) did not find correlations between T4-like bacteriophage assemblages and 

their prokaryotic host communities when tested using ANOSIM on Bray-Curtis distance matrices of their datasets. 

The UPGMA dendrograms in the present study are based on weighted UniFrac distance matrices from 16S and g23, 

however, use of the Mantel Test (generally a more powerful method than ANOSIM (Anderson and Walsh 2013)) on 

the Bray-Curtis distance matrices for these datasets also did not yield a significant relationship (see Appendix B.7). 

Further investigation of associations between 16S and g23 data should be performed based on UniFrac distance 

(which is phylogenetically based) to ascertain whether statistical support exists for the similarities in the UPGMA 

topologies shown above. 

 

It is also interesting that our work shows virus assemblages  varying similarly to their potential prokaryotic host 

assemblage,  as patterns of co-variation of marine viral and host populations are observed more often over time 
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rather than spatially (reviewed in Huang et al. 2015). For instance, multi-seasonal time series investigations of 

cyanomyophage assemblages in the Red Sea and in Raunefjorden, Norway found that the dominant 

cyanomyophages co-varied with the Synechococcus  population (Mühling et al. 2005; R.-A. Sandaa and Larsen 2006; 

Pagarete et al. 2013b), while a different study of cyanomyophage assemblages along a transect did not find any 

significant relationship to host cyanobacterial abundance or diversity (Jameson et al. 2011). As another example, 

Needham et al. 2013 found g23 and 16S OTUs correlated only when they varied in their relative abundances over 

time and were also abundant in the overall dataset (Needham et al. 2013). 

 

Previous investigations find that myophage contribute to a majority of  marine dsDNA viral populations infecting a 

broad range of hosts belonging to bacteria, archaea and cyanobacteria (Breitbart et al. 2002; Angly et al. 2006; Brum 

et al. 2015) although new metagenomic methods allowing for amplification of single-stranded DNA and RNA viruses 

have led to evidence that tailed dsDNA bacteriophages may not dominate viral communities (reviewed in Kim et al. 

2013).  The dynamics between virus and host cannot yet be known due to lack of information about which 

myophages infect which prokaryotes, however, it is hypothesized that bacteria-virus pairs may exhibit a time-lagged 

association (Needham et al. 2013): abundant viral particles may be associated with host cells that were previously 

dominant but have since been destroyed as a result of a Kill the Winner dynamic (Thingstad and Lignell 1997) and 

are therefore more rare at time of sampling.  

 

Figure 25. Weighted UPGMA dendrogram of prokaryotic 16S data (left dendrogram) with mirrored g23 data (right 
dendrogram) from water samples at the same sites (both based on Unifrac distance matrices). Station B16 samples 
are labeled in turquoise and station B8 samples are labeled in blue. The 16S dataset was collected by colleagues on 
the MicroPolar project and analyzed by Oliver Müller. 

 

This thesis did not examine whether algal host communities were reflected by their potential viruses, though the 

algal virus BLAST hits in the present study may provide some insight to the ecologically important algal groups 

present in the environment during the polar night, with the knowledge that entries in the BLAST database for algal 

MCP are extremely underrepresented. Several of the putatively identifiable virus types in the MCP dataset included 
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OTUs with limited sequence similarity to Haptolina ericina and Prymnesium kappa viruses. The two isolates these 

BLAST hits originate from are haptophyte viruses sampled in the fjords of Norway. Haptophyte species of the 

Haptolina and Prymnesium groups often occur in low abundances in the marine environment but can form blooms 

(Edvardsen and Paasche 1998). Johannessen et al. 2015 investigated the host ranges for haptophyte viruses from 

two Norwegian fjords, and found several H. ericina virus isolates and a P. kappa virus isolate that were able to infect 

the same hosts, including several strains of H. ericina and one P. kappa strain, while other viral isolates had more 

specific host ranges (Johannessen et al. 2015). As the percent identities to any of the isolated viruses in the study by 

Johannessen and colleagues were very poor, the host range of these arctic algal viruses remains unknown. Thus the 

possibilities for haptophyte viral host range for the viruses isolated in the present study could be broad or narrow, 

and further investigation of these arctic types should be investigated to understand the host-viral relationships for 

this ecologically important microalgal group. 

 

It was unexpected that none of the MCP OTUs exhibited homology to a BLAST entry for MCP from viruses known to 

infect Micromonas pusilla (full batch BLAST results not shown). This phototrophic prasinophyte has been previously 

observed as the most abundant and active photosynthetic cell type in western Arctic Ocean waters (Lovejoy et al. 

2007), persisting and growing even throughout the polar night in both the western Arctic Ocean and in the waters 

north of the Svalbard archipelago (Lovejoy et al. 2007; Vader et al. 2014), possibly through the ability to carry out 

phagotrophy (McKie-Krisberg and Sanders 2014). The absence of MCP OTUs with homology to M. pusilla viral 

predators may simply reflect the paucity of information in the NCBI BLAST database, as algal viruses have not yet 

been deeply sequenced at this high latitude. 

 

4.3  Does use of different sequencing platforms produce comparable diversity capture for the 

same environmental viral assemblages? 

As found in several recent platform comparisons of different types of amplicon libraries (Luo et al. 2012; N. J. Loman 

et al. 2012), the Roche/454 and Illumina platforms are comparable in diversity metrics, though the Illumina dataset 

yielded higher alpha diversity estimates of g23 in some cases (Figure 23). All three platforms yielded similar broad 

patterns in beta diversity, despite the Ion Torrent dataset reporting higher overall alpha diversity of samples. 

Although Roche/454 sequencing of the g23 samples clustered the Atlantic Water and Arctic Intermediate Water 

samples both in the UPGMA dendrogram of Roche/454 data alone (Figure 15) and in the PCoA of the platform 

comparison (Figure 24), greater Unifrac distances were observed between Atlantic Water and Arctic Intermediate 

Water samples sequenced on the Illumina and Ion Torrent platforms. All other between-sample relationships were 

similar for all three datasets, thus this discrepancy is unexpected (especially because the phoH dataset also does not 

differentiate these water masses). If it were possible, Roche/454 sequencing of g23 amplicons should be repeated to 

confirm this result. 
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Additionally, the clustering of Polar Water samples B16.500m and B16.1000m seen in the weighted UniFrac matrix 

described in the UPGMA dendrogram of the g23 Roche/454 dataset (Figure 15) is not preserved in the PCoA based 

on the weighted Unifrac matrix of the platform comparison (Figure 24). Instead, sample B16.500m appears to cluster 

as most similar to station B8 Atlantic Water samples for all three platforms. The B16.500m water sample was 

collected at the interface between the Cold Atlantic Water and Polar Water masses (Figure 11, top panel). Further, 

the phoH and MCP UPGMA dendrograms (Figures 16 and 17, respectively) also indicate similarity of station B8 

Atlantic Water samples to B16.500m. Therefore the hierarchical clustering based on the eight samples in the 

Roche/454 g23 dataset alone is likely insufficient basis on which to characterize this viral community, and inclusion 

within a broader dataset (as with our 24-sample platform comparison) clarifies its grouping. 

 

From the rank-abundance curve of the three platform data (Figure 22), the Ion Torrent reads are visibly more 

numerous for OTUs that are less abundant in the other two datasets, with Ion Torrent being the only dataset 

straying above the curve. Several necessary differences in sample preparation and/or in the post-processing likely 

contributed to these disparities. Two notable differences were made in the preparation of the Ion Torrent sample, as 

well as one important difference in the post-processing: 1) six replicates of each initial PCR reaction (without 

adapters) were combined as template material for second PCR (with adapters) rather than two replicates as in the 

preparations for Roche/454 and Illumina platforms. This was necessary because such a high yield (1µg) of DNA was 

required by the UiB Ion Torrent PGM facility. Normally high total sample DNA is achieved by pooling many samples 

together before running them, but the present study incorporated only eight samples. A recent study using fungal 

ITS region templates found that pooling of greater numbers of PCR reaction replicates did not change the diversity 

metrics of samples; only greater sequencing depth had a clear effect on beta diversity (Smith and Peay 2014). 

Therefore we expect that the number of pooled PCR replicates to have had minimal effect on the results. 2) The 

adapter sequence was exchanged on the reverse primer to integrate the adapter specific to the Ion Torrent 

platform. This was done to make the sequencing reaction was as comparable as possible to pyrosequencing, which 

also uses emPCR. The use of two adjacent adapters on the reverse primer rather than just one is impractical and not 

as comparable.  One oversight in the Illumina dataset was use of Roche/454 adapters adjacent to Illumina adapters. 

For more comparable performance, Illumina adapters would have ideally replaced Roche/454 adapters. 3) Use of an 

effective post-processing pipeline (UPARSE) step to successfully trim the primer from the reads necessitated cleaning 

of sequence data based on expected error rather than on a PHRED score cutoff. It is possible that this method of 

data cleaning altered the proportions of kept sequences in the Ion Torrent dataset differently from that of the other 

two platforms. We find this scenario is unlikely as disparities seen in the Ion Torrent dataset are preserved from the 

author’s earlier attempts of relating the data even without the primer sequence cleaning (data not shown). 
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4.4 Discussion of methods 

4.4.1  DNA sample collection and extraction 

A major limiting factor in data collection was time taken to perform the tangential flow filtration of 50 liters of 

seawater for a single viral concentrate. Each filtration, which can take upwards of six hours for each sample, must be 

done on site before the community assemblage has time to alter. Time and equipment dedicated to this processing 

were limited resources, which led to the collection of only eight total samples for viral community fingerprinting.  

Such limited sample size restricts the statistical evaluations possible with respect to the environmental parameters.  

Instead, the power of these datasets is in the sequencing depth achieved and community diversity.  

 

The tangential flow filtration method itself is biased, variably capturing between 2 – 98% of viruses (John et al. 

2011). In a study examining isolation methods of viral DNA, an iron flocculate method used to treat freshwater for 

virus removal was found to capture 94% of the virus particles present, while tangential flow filtration methods 

captured 23% of virus particles (John et al. 2011). Additionally, as half of the source water for the deepest samples in 

this work was prefiltered through 0.2 µM filters rather than 0.45 µM as for all the other samples, it is possible that 

the relative abundance of virus particles larger than 0.2 µM in the viral community could be non-representative of 

the actual relative abundance in the assemblage. Thus, the efficacy of the viral particle concentration method limited 

the sample number and may have contributed to sample bias in the present work. 

4.4.2 PCR bias and quality trimming 

The author is aware of the inherent biases of PCR amplification which have been reviewed thoroughly in many 

publications and their importance in microbial community investigations (e.g. Pinto and Raskin 2012; Polz and 

Cavanaugh 1998; Sipos et al. 2010). The consistently low yield of viral DNA in seawater samples presents limitations 

that cannot be avoided: e.g. in this work, the MCP gene required 80 total cycles of PCR for the amplification to 

produce any significant product. This cycle number is well above the recommended maximum of 35 cycles (New 

England BioLabs 2015), however, six different reactions were pooled for each sample to mitigate this bias and all 

samples were all treated equally throughout the amplicon library preparation, and are therefore still considered 

comparable.  The excess cycles of PCR may explain the lack of any OTUs found universally in the MCP dataset, 

especially at the later cycles in the reaction, when templates are known to anneal to one another and prevent 

template-primer annealing (Suzuki and Giovannoni 1996).  

 

In addition to PCR bias, the degenerate primers used in this study were developed based on known viral examples of 

the genes of interest, and therefore will amplify known subsets of genes previously seen in marine viruses but may 

not amplify the full assemblage of present types within the viral groups studied. Primer design is a balance between 

specificity/efficacy and product yield (Sipos et al. 2010), and although proportions of OTUs may not represent the 

true relative abundances of the microbial community in these samples due to amplification biases, without PCR 
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steps viral DNA fingerprinting would not be possible. 

 

Quality trimming of both sequence ends by eliminating ambiguous bases, homopolymers, and PHRED score calls 

below a threshold value were done in tandem within the BBMap package created by Brian Bushnell. From the per 

base quality scores in the FastQC reports for each dataset (Appendix B.2, Figures B-6, B-9, and B-12) and also based 

on evidence presented in previous studies (reviewed in Del Fabbro 2013) quality trimming of ends is a superior 

method to averaging quality scores over the length of a read as the quality score tapers sharply only at the 3’ end of 

sequences. 

4.4.3 OTU picking and chimera checking 

Use of a 97% sequence similarity threshold for defining an OTU is a well-established method for defining “species” 

from molecular sequence data from prokaryotes (Stackerbrandt and Goebel 1994). It might be argued that 3% 

dissimilarity might be too stringent for viral diversity, and some workers have used thresholds of 5% or 10% 

dissimilarity. The rate of mutation in dsDNA phage genomes is 10-7 – 10-8 changes per base pair per generation 

(Drake et al. 1998; Drake and Holland 1999), which is orders of magnitude higher than microbial host mutation rates, 

but not as high as for other viral types such those with RNA genomes. Until a threshold value for such viral datasets 

can be agreed upon within the scientific community, divergence from standard operating procedures  and other 

bioinformatic tools designed for prokaryotic data is risky business for the average user without full examination of 

the consequences for such choices. In the case of this thesis, because no large databases of viral sequence 

information are centrally curated as are tools like GreenGenes (DeSantis et al. 2006) or SILVA (Pruesse et al. 2007), 

this work relied on de novo picking of OTUs and chimera checking. The algorithm for de novo OTU picking available 

within QIIME is Robert Edgar’s algorithm known as USEARCH (Edgar 2010). Edgar recommends against expansion of 

the OTU radius of dissimilarity greater than 3% because doing so discards more true biological sequences that will 

not contribute to de novo chimera checking, which relies on the most common sequences as a reference 

(http://www.drive5.com/usearch/manual/uparse_otu_radius.html).  

4.4.4 Rarefaction choices 

Some contention in the scientific community exists about the most useful  application of rarefaction for statistical 

comparison of samples to assess diversity (Hughes and Hellmann 2005). To be able to quickly and easily assess all the 

samples in a dataset, most molecular ecologists have chosen to rarefy all samples to the depth of sequencing 

corresponding to the sample with the least number of reads, or to another equally arbitrary level which also results 

in loss of data (reviewed in Cárcer et al. 2011). Some workers propose a mixed model approach rather than the 

minimum sequenced depth. They argue that the rarefaction of data to even sequencing depth is inadmissible 

because it overlooks biologically valid data, though they comment that datasets with large enough sampling size that 

can withstand the loss of data may not necessarily apply to this disadvantage (McMurdie and Holmes 2014). Instead, 

McMurdie and Holmes promote analyzing microbiome data using differential abundances: “like differentially 
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expressed genes, a species/OTU is considered differentially abundant if its mean proportion is significantly different 

between two or more sample classes in the experimental design”.  Although future works should consider 

incorporating different methods to correct for sampling depth disparities in microbiome datasets, the industry 

standard remains rarefaction to even sequencing depth, though adherence to typical statistical procedures may be 

an advantage to microbial ecologists moving forward. 
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5 Conclusion 

This single sampling effort informs us that Arctic Ocean viral communities are extremely diverse, and are 

distinguishable by water mass or depth, though more samples would allow for further characterization of these 

water masses to validate environmental factors determining these viral community differences. The abundant 

genotypes within these communities are composed of a mixture of types geographically constrained to the Arctic 

Ocean and some that are globally distributed, the assemblage of which may be determined by the properties and 

history of the resident water mass (Galand et al. 2010). Although the prokaryotic communities and viral communities 

cluster with similar dendrogram topologies within each respective dataset, little can be said about the interactions 

between these populations without repeated sampling over time and co-culture of host isolates and their viruses.  

It would appear that Illumina Miseq paired-end data is more comparable to results from the Roche/454 than the Ion 

Torrent PGM for our g23 amplicon datasets, although broad patterns of beta diversity are for the most part 

conserved between platforms. Therefore, we recommend that future studies using viral fingerprinting to employ the 

Illumina platform for comparable results, with the knowledge that platform biases most likely exist (Bolotin et al. 

2012; Frey et al. 2014). 

 

The tools used in this study have the potential to aid in unraveling the ecological role of Arctic marine viruses in a 

changing climate. Because of the integral role of viruses in marine systems, knowledge about viruses in the Arctic 

Ocean may be vital to current monitoring and future mitigation efforts in the light of the inevitable changes the 

Arctic Ocean will experience in years to come. While this addition to basic science is valuable in itself as so little is 

known about Arctic Ocean viruses, it is hoped that the characterization of microbial biodiversity in polar water 

masses may act as a signal for downstream effects resulting from microbial community shifts. 
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6 Future work 

The long-term intention of this work is to serve as a method development test for the MicroPolar project yearlong 

viral dataset taken in 2014, to which this information will be added for a broader future multi-seasonal investigation. 

Additional information on diversity of Arctic Ocean virus communities throughout the yearlong sampling period of 

the MicroPolar project will add to our knowledge of the marine viral community seasonal dynamics. Several previous 

examinations of viral diversity have shown that certain OTUs are more abundant in winter than in summer at the 

same location, and vice versa (Pagarete et al. 2013; Chow and Fuhrman 2012; Sandaa and Larsen 2006; Brum et al. 

2015; Zhong and Jacquet 2014). Repeated sampling of this area may allow us to make characterizations of the 

current viral populations within Arctic Ocean water masses, which in turn may serve as a monitoring tool for the 

microbial communities that live there. 

 

Future analyses of viral data collected throughout the annual cycle during the MicroPolar Project may also add to 

our knowledge about global diversity of microbes, and will inform further on the significance of dominant viral 

groups during winter in the Arctic Ocean. A recent study examining global biodiversity of marine bacteria found that 

species richness was highest during the winter months in temperate regions, with richness rising with increasing 

latitude in the Northern Hemisphere (Ladau et al. 2013). Shorter photoperiods also associated with higher bacterial 

richness globally in the model (Ladau et al. 2013). If host specificity of viruses is high, the viral community richness 

could also be elevated during winter.  

 

Without a widely-used and curated viral signature gene database, taxonomic assignments of environmental viral 

sequences will remain difficult if not impossible. Although taxonomy of viruses may be a self-defeating endeavor, 

detailed metadata associated with sequence entries may prove helpful in the quest to understand viral 

biogeography. 

 

Viromics has potential to be a more descriptive and higher resolution methodology to use when examining viral 

communities (Sullivan 2014). Together with transcriptomics, whole-sample sequencing could reveal more complete 

answers to the main questions posed by microbial ecologists; “who is there?” and “what are they doing?”. The viral 

research group within the MicroPolar project intends to use environmental sample metagenomic sequencing data in 

parallel with the gene fingerprinting techniques featured in this study to examine the broader viral population within 

samples collected throughout the annual cycle. In addition to molecular methods, culturing of more novel viruses 

from Arctic Ocean samples can also improve our current understanding of host-viral interactions and complement 

the information gleaned through omics. 
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Appendix A: Protocols 

A.1 Rapid Protocol for DNA Isolation 

LYSIS 
1. Incubate 500 µL viral concentrate at 90 °C for 2 x 2 minutes, on ice in between. 
2. Add 20 µL 0.5M EDTA (pH 8.0) 
3. Add 5 µL Proteinase K (freshly made 10 mg/mL), incubate 10 minutes at 55 °C. 
4. Add 25 µL 10% SDS, incubate further for 1 h at 55 °C. 

PURIFICATION 
1. Clean the lysate using ZYMO DNA clean up and concentration kit (Appendix 1.2) 
2. Eluate in sterile destilled water (20 µL). 

 

A.2 ZYMO DNA Cleanup and ConcentratorTM -5 (D4003, Zymo Research) Protocol 

 
1. In a 1.5 mL microcentrifuge tube, add 2-7 volumes of DNA Binding Buffer to each volume of DNA 

sample. Mix briefly by vortexing. 
2. Transfer mixture to a provided Zymo-SpinTM Column in a Collection Tube.  
3. Centrifuge for 30 seconds. Discard the flow-through.  
4. Add 200 µL DNA Wash Buffer to the column. Centrifuge for 30 seconds. Repeat the wash step. 
5. Add ≥ 6 µL DNA Elution Buffer or water directly to the column matrix and incubate at room 

temperature for one minute.  
6. Transfer the column to a 1.5 mL microcentrifuge tube and centrifuge for 30 seconds to elute the 

DNA.  
 

A.3 Agencourt AMPure XP magnetic bead kit (Beckman Coulter, USA) 

 
1. Shake the Agencourt AMPure XP bottle to resuspend any magnetic particles that may have settled. 

Then add 1.8 x the sample reaction volume of Agencourt AMPure XP. 
2. Pipette mix reagent and sample 10 times. Let the mixed sample incubate for 5 minutes at RT for 

maximum recovery.  
3. Place the reaction tubes onto the Agencourt Super Magnet Rack for 2 minutes to separate beads 

from the solution. Wait for the solution to clear before proceeding to the next step. 
4. Aspirate the cleared solution from the reaction tubes and discard. Leave 5 µL of supernatant 

behind, otherwise beads are drawn out with the supernatant. 
5. Dispense 200 µL of 70% ethanol to each reaction tube and incubate for 30 seconds at RT. Aspirate 

out the ethanol and discard. Repeat for a total of two washes. 
6. Remove the reaction tubes from the magnetic rack, and then add 40 µL of elution buffer to each 

reaction tube and pipette mix 10 times. Incubate for 2 minutes. 
7. Place the reaction tubes onto the Agencourt Super Magnet Rack for 1 minute to separate beads 

from the solution.  
8. Transfer the eluate to a new reaction tube. 
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A.4 DNA Electrophoresis Preparation and Protocol 

1. Add 60 mg of SeaKem® LE Agarose (50004, Lonza) to a glass container filled with 60 mL of TAE 
(consisting of 40mM Tris, 20mM acetic acid, and 1mM EDTA). 

2. Loosely cap the container and microwave the mixture for 30 seconds then swirl for 20 seconds, 
repeating this step until the agarose is completely dissolved in the TAE. 

3. Add 2 µL of 10 000X Gel RedTM stain (41003, Biotium, USA) to gel and mix until transparent. 
4. Allow gel to cool at least 20 minutes (must be cool enough to touch), then pour gel into gel rack on 

flat surface and insert well combs. 
5. Allow 25 minutes for the gel to solidify and fill electrophoresis chamber with TAE. 
6. Insert the solidified gel into the electrophoresis chamber so that the gel surface is submerged in 

TAE. 
7. Mix sample on a sterile parafilm surface with 1 µL DNA stain and load into gel. Load the Mass DNA 

Ladder (10496-016, Life Technologies) and positive and negative controls. 
8. Run the electrophoresis reaction at 300 Volts for 10 minutes.  
9. Load the completed gel into BIO RAD Molecular Imager® (ChemiDoc XRSTM) and obtain a 

fluorescent image using Image LabTM Software. 
 

A.5 Annotated bioinformatics pipeline 

Formatting and Evaluation of the sequencing run 
#The output from the sequencing run preferably arrives in SFF or in FASTQ format (for the QIIME pipeline). 
#This file type includes not only the base pair information, but also the quality scores (PHRED scores).  
# Convert SFF to QUAL, FASTA files (in QIIME) 
> process_sff.py  -i infile.sff 
#Convert FASTA and QUAL files to FASTQ (in QIIME) 
>convert_fastaqual_fastq.py  -f infile.fasta  -q infile.qual  
# 
# Some sequencing facilities will instead provide a BAM file, instead convert to a FASTQ file using bamtools.  
# This is was the format the Ion Torrent dataset arrived in. All other runs were in SFF format. 
#BAM is a sequence alignment file type, but conversion to FASTQ is also possible 
>bedtools  bamToFastq  -i  infile.BAM  -fq  seqfile.fastq 
# 
#Once in FASTQ format, the dataset is run through the program FASTQC (author used interface-based 
version) 
#This is a good program for assessing the success of the sequencing run. 
 
Illumina-specific contamination cleaning, adapter removal, and merging of paired reads 
#BBduk is used to remove the control phiX sequences from the dataset 
#each of the two runs are simultaneously cleaned for phiX. The script looks for kmers of length 31 to match 
#phiX sequence. The script creates files containing reads matching to phiX and the remainder of the clean 
data 
>sh  /filepath/bbduk.sh  -Xmx1g  in1=R1.fastq  in2=R2.fastq  out1=unmatched1.fastq  
out2=unmatched2.fastq  outm1=matched1.fastq  outm2=matched2.fastq  ref=/filepath/bowtie2-
2.2.4/indexes/phiX.fasta  k=31  hdist=1  stats=stats.txt 
# 
#BBduk is used to remove the adapters. This run had not only Illumina adapters, but also Roche/454 
adapters 
#inside of Illumina adapters on the amplicon ends. This required this removal step from left end of 
sequences. 



 
Olesin 91 

 

>sh  /filepath/bbduk.sh  -Xmx1g in1=unmatched1.fastq   in2=unmatched2.fastq  out1=lclean1.fastq  
out2=lclean2.fastq  literal=CCATCTCATCCCTGCGTGTCTCCGACTCAG  ktrim=l  k=30  mink=12  hdist=1 
# 
#BBduk is then used to merge paired cleaned reads  
>sh  /filepath/bbduk.sh in1= lclean1.fastq  in2= lclean2.fastq  out=merged.fastq 
# 
#From this point Illumina sequences were processed exactly the same as all other datasets. 
 
Quality trimming with BBduk 
#quality trimming was accomplished using a package BBMaps developed by Brian Bushnell 
#both ends of sequence were trimmed to exclude sequence which had PHRED scores of 27 or less 
#Xmx1g is passed to Java to set the memory usage, in this case it specifies 1 gig of RAM 
#This method retains more generally good quality information that can sometimes be lost when  
 #trimming sequences based on average whole-sequence PHRED scoring. 
>/filepath/bbduk.sh  -Xmx1g  in=seqfile.fastq  out=seqfile_trim.fastq  qtrim=rl  trimq=27 
# 
# the remainder of the QIIME pipeline does not utilize quality scores, so we convert to FASTA format 
>python  /filepath/fastq_to_fasta.py  -n  seqfile_trim.fastq  -o seqfile_trim.fasta 
 
Demultiplexing in QIIME 
#our barcoded samples must be separated out from one another. We use QIIME for this. 
#The script requires a mapping file about sequence dataset, including barcode and primer sequences. 
#Helpful example Map file @ http://qiime.org/_static/Examples/File_Formats/Example_Mapping_File.txt 
#requires user to tell the script how many base pairs our barcodes have (10 in this case) 
>split_libraries.py   -m MapFile.txt  - f  seqfile_trim.fasta  -b  10  -o Split_library_output/ 
 
Pick OTUs based on sequence similarity with USEARCH in QIIME 
#Cluster based on the USEARCH algorithm as it has a de novo chimera checking function.  
#The reason for algorithm choice is that open source viral databases are sparsely populated for targeted 
#amplicon data compared to 16S or other prokaryotic genes. 
#USEARCH author Robert Edgar does not recommend expanding the dissimiliarity radius beyond 3%. 
#Choose to suppress chimera detection based on a reference file. The script instead does de novo 
#chimera checking. Chimeras occur when two parent sequences fuse to one another during the  
#PCR amplification process. The most numerous sequences in the dataset become the “reference” for this 
check. 
>pick_otus.py  -i  Split_library_output/seqs.fna  -s  0.97  -m usearch  --
suppress_reference_chimera_detection  -o  picked_otus_97/ 
 
Elimination of singletons 
#Although QIIME does not produce OTUs with fewer than 2 member reads, any one sample may only 
#contribute one read to that OTU. In this case, it is considered by some to be a singleton.  
# To take care of this, the OTU table split by sample  
>filter_samples_from_otu_table.py -i  otu_table.biom  -o  otu_table_samp1.biom  -e  samp1_otus.txt 
# Each sample-specific OTU table was then filtered for singletons.   
> filter_otus_from_otu_table.py  -i  otu_table_samp1.biom  -o  otu_table_samp1_nosing.biom  -n  2 
# The sample-specific OTU tables were merged back into a single OTU table  
> merge_otu_tables.py  -i otu_table_samp1.biom, otu_table_samp2.biom  -o  merged_otu_table.biom 
 
Pick representative sequences in QIIME 
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#Take a representative sequence of each created OTU to cut down on the sequences to align for 
#phylogenetic interpretation. Default chooses the first encountered sequence from each OTU. 
>pick_rep_set.py  -i  picked_otus_97/seqs_otus.txt  -f  Split_library_output/seqs.fna  -o  rep_set_97.fna 
 
Align representative sequences in QIIME 
#Uses algorithm MUSCLE to align sequences 
#Alignment of representative sequences and sequences pulled from the NCBI BLAST database that 
matched as 
#top hits to all OTUs shared between all samples in a dataset. 
>align_seqs.py  -m  muscle  -i  rep_set_with_BLAST 
 
Create a phylogeny of representative sequences  in QIIME 
#this script uses the default tree building method, FastTree, to build a phylogeny from the alignment 
#this script is also used to create a tree with NCBI BLAST sequences included 
>make_phylogeny.py  -i  /filepath/muscle_aligned_rep_set.fna -o  rep_set.tre 
 
Make OTU table in QIIME 
#this script creates an HDF5 BIOM formatted otu table 
>make_otu_table.py  -i  picked_otus_97/seqs_otus.txt  -o  otu_table_97.biom 
 
Alpha diversity measures 

1. Estimated species richness indices: made in QIIME 
# for this command, use the biom formatted OTU table(s) and the phylogenetic tree to run multiple 
metrics 
# select chosen richness indices. Here we have chosen Chao1 and PD whole tree. 
>alpha_diversity.py –i  otu_tables/tables.biom –m chao1, PD_whole_tree  -t rep_set.tre  -o 
adiv_output/ 

2. Alpha rarefaction curves: made in R using package “vegan” 
# load the package 
>lib(vegan) 
#import the OTU table as a csv formatted text file and transpose for use in vegan 
>SampleName <- read.csv(“~/Filepath/Filename.csv”, header=T, row.names=1) 
>SampleName <- t(SampleName) 
# 
#define parameters of line color, the rarefaction maximum, and line weight 
>col <- c(“blue”,”darkred”,”forestgreen”) 
>lwd <- c(2,2) 
>raremax <-min(rowSums(SampleName) 
# 
#run the rarefaction, tell the script to rarefy in steps of 100 reads, from 100 reads to the (raremax).  
#Define labels and axes limits as desired. 
>rarecurve(SampleName, step=100, xlab=”Sample Size”, ylab= “Species”, col=col, lwd=lwd, 
xlim=c(0,350000), ylim=c(0,1400)) 

 
Beta-diversity measures 

1. Beta-diversity measures with jackknife support.  
#This script rarefies all samples to specified sequence depth  
# calculates Unifrac distance matrices, and also creates a diversity of plots including 
#UPGMA dendrograms and PCoA based on Unifrac distance matrices 
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#jackknifing (repeated resampling of data) is performed to test robustness of UPGMA clustering 
#and compares UPGMA trees to the full or consensus trees to generate jackknife support for nodes 
>jackknifed_beta_diversity.py  -i  otu_table.biom  -o  bdiv_raredepth/  -e  25000  -m  MapFile.txt  -t 
rep_set.tre   

2. ANOSIM 
#run ANOSIM on groups of samples categorized by water mass, as indicated in the mapping file 
>compare_categories.py  --method  anosim  -i  /filepath/weighted_unifrac_distmatrix.txt  -m  
MapFile.txt  -c  Treatment  -o  ANOSIM_out/ 

 
Comparison of 16S and g23 datasets using Mantel Test in R package “vegan” 
#the Mantel statistic tests the correlation between two dissimilarity matrices. Permutations of the 
observed rows 
#and columns are used to assess significance. 
# 
#load the package 
>library(vegan) 
#read the distance matrices into R 
>bact <- read.table(“~/filepath/otu_table_16S.txt”, header=T, row.names=1) 
>g23 <-read.table(“~/filepath/otu_table_g23.txt”, header=T, row.names=1) 
#transpose the data for using in vegan 
>bact <- t(bact) 
>g23 <- t(g23) 
#create Bray-Curtis distance matrices 
>bact.dist <- vegdist(bact) 
>g23.dist <- vegdist(g23) 
#run the Mantel test  
>mantel(bact.dist, g23.dist, method=”spear”) 
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Appendix B: Results 

B.1 Electrophoresis gels 

 

Figure B-1. Images of g23 amplicons with barcodes added sent for sequencing (image is before purification step to remove 
primer), run on a 1% (w/v) agarose gel with DNA Mass Ladder for size reference. 
 

 

Figure B-2. Images of phoH amplicons from station B16 with barcodes added sent for sequencing, run on 1% (w/v)  agarose 
gels with DNA Mass Ladder for size reference. Unlabeled lanes with weak bands are the initial amplification products without 
barcodes, labeled lanes are the final products sent for sequencing (image is before purification step to remove primer). 

 

Figure B-3. Images of phoH amplicons from station B8 with barcodes added sent for sequencing, run on 1% (w/v) agarose gels 
with DNA Mass Ladder for size reference. Unlabeled lanes with weak or absent bands are the initial amplification products 
without barcodes, labeled lanes are the final products sent for sequencing (image is before purification step to remove 
primer). 
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Figure B-4. Images of MCP amplicons from station B16 (duplicates from each depth) with barcodes added, run on 1% (w/v) 
agarose gels with DNA Mass Ladder for size reference. Unlabelled lanes with weak bands are the initial amplification products 
without barcodes, labelled lanes are the final products sent for sequencing (image is before purification step to remove 
primer). 
 

 

 

Figure B-5. Images of MCP amplicons from station B8 (duplicates from each depth) with barcodes added, run on 1% (w/v) 
agarose gels with DNA Mass Ladder for size reference. Unlabelled lanes with weak bands are the initial amplification products 
without barcodes, labelled lanes are the final products sent for sequencing (image is before purification step to remove 
primer). 
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B.2 Quality control reports 

B.2.1 FASTQC report on raw sequencing run of g23 on Roche/454 

Filename Emily_G23.fastq 

File type Conventional base calls 

Encoding Sanger/Illumina 1.9 

Total Sequences 1,171,251 

Filtered Sequences 0 

Sequence length 41 - 986 

%GC 47 

 

 
Figure B-6. PHRED scores per base position of reads in the Roche/454 g23 sequencing run. 
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Figure B-7. Abundance of average per read PHRED scores for the Roche/454 g23 dataset. 

 
 

 
Figure B-8. Distribution of lengths from the Roche/454 g23 dataset. 
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B.2.2 FASTQC Report on combined sequencing run including phoH and MCP on Roche/454 

Filename pooledReads.fastq 

File type Conventional base calls 

Encoding Sanger/Illumina 1.9 

Total Sequences 232,305 

Filtered Sequences 0 

Sequence length 43 - 1625 

%GC 45 

 

 
Figure B-9. PHRED scores per base position from the pooled phoH and MCP Roche/454 sequencing run 
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Figure B-10. Abundance of average per read PHRED scores for the pooled phoH and MCP Roche/454 sequencing run 

 
 

 
Figure B-11. Distribution of lengths in the pooled phoH and MCP Roche/454 sequencing run 
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B.2.3 FASTQC Report on merged paired reads of g23 data on Illumina MiSeq 

Filename Merged.fastq 

File type Conventional base calls 

Encoding Sanger/Illumina 1.9 

Total Sequences 22,372,496 

Filtered Sequences 0 

Sequence length 35 - 590 

%GC 48 

 

 
Figure B-12. PHRED scores per base position of the merged paired reads from the Illumina g23 sequencing runs 
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Figure B-13. Abundance of average per read PHRED scores for the merged paired reads from Illumina g23 dataset. 

 

 
Figure B-14. Distribution of lengths in the merged paired reads from the Illumina g23 dataset. 
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B.2.4 FASTQC Report on raw sequencing run of g23 on Ion Torrent PGM 

Filename IT_all.fastq 

File type Conventional base calls 

Encoding Sanger/Illumina 1.9 

Total Sequences 2,688,165 

Filtered Sequences 0 

Sequence length 8 - 747 

%GC 46 

 

 
Figure B-15. PHRED scores per base position in the raw data from the Ion Torrent g23 sequencing run. 
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Figure B-16. Abundance of average per read PHRED scores in the raw Ion Torrent g23 dataset. 

 

 
Figure B-17. Distribution of lengths in the raw Ion Torrent g23 dataset. A large number of short reads (under 50 bp) is 

revealed by the distribution. Likely this owed to primer that was not entirely cleaned from the sample. 
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B.3 Alpha diversity measures 

 
Table B-1. Numbers of total observed OTUs (richness) from each sample at 97% sequence identity after removal of singleton 
OTUs from the Roche/454 sequencing runs. Coloration of rows indicate samples within each water mass. 

Sample Name Number of g23 OTUs Number of phoH OTUs Number of  MCP OTUs 

B16.surface 792 94 79 
B16.20m 1126 85 84 
B16.500m 805 67 59 
B16.1000m 1025 59 40 

B8.surface 730 84 39 
B8.20m 766 70 60 
B8.500m 869 72 53 
B8.1000m 812 57 42 

 
Table B-2. Pielou’s evenness for rarefied g23, phoH, and MCP samples from Roche/454 datasets, expressed as a fraction of 1 
(1 being the greatest evenness possible). 

Sample  Pielou’sEvenness 
g23 

Pielou’sEvenness 
phoH 

Pielou’sEvenness 
MCP 

B16. surface 0.735 0.621 0.437 
B16. 20m 0.749 0.620 0.449 
B16.500m 0.752 0.573 0.608 
B16.1000m 0.820 0.606 0.659 

B8.surface 0.729 0.589 0.339 
B8.20m 0.732 0.593 0.446 
B8.500m 0.731 0.611 0.381 
B8.1000m 0.742 0.665 0.771 

B.4  Bray-Curtis distance matrices  

Table B-3. Bray-Curtis distance matrix of g23 (Roche/454) samples derived from OTU table 

B8.surface B8.20m B8.500m B8.1000m B16.surfaceB16.20m B16.500mB16.1000m

B8.surface 0 0.07 0.11 0.13 0.51 0.51 0.6 0.69

B8.20m 0.07 0 0.11 0.13 0.49 0.49 0.61 0.69

B8.500m 0.11 0.11 0 0.14 0.53 0.51 0.59 0.68

B8.1000m 0.13 0.13 0.14 0 0.5 0.48 0.55 0.65

B16.surface 0.51 0.49 0.53 0.5 0 0.11 0.66 0.7

B16.20m 0.51 0.49 0.51 0.48 0.11 0 0.61 0.64

B16.500m 0.6 0.61 0.59 0.55 0.66 0.61 0 0.43

B16.1000m 0.69 0.69 0.68 0.65 0.7 0.64 0.43 0  
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Table B-4. Bray-Curtis distance matrix of phoH samples. 

B8.surface B8.20m B8.500m B8.1000m B16.surfaceB16.20mB16.500mB16.1000m

B8.surface 0 0.1 0.16 0.18 0.22 0.27 0.37 0.22

B8.20m 0.1 0 0.1 0.16 0.23 0.24 0.37 0.24

B8.500m 0.16 0.1 0 0.14 0.25 0.2 0.37 0.26

B8.1000m 0.18 0.16 0.14 0 0.23 0.2 0.32 0.21

B16.surface 0.22 0.23 0.25 0.23 0 0.18 0.4 0.32

B16.20m 0.27 0.24 0.2 0.2 0.18 0 0.38 0.33

B16.500m 0.37 0.37 0.37 0.32 0.4 0.38 0 0.33

B16.1000m 0.22 0.24 0.26 0.21 0.32 0.33 0.33 0  

 

Table B-5. Bray-Curtis distance matrix of MCP samples. 

B8.surface B8.20m B8.500m B8.1000m B16.surfaceB16.20mB16.500mB16.1000m

B8.surface 0 0.2 0.13 0.92 0.41 0.39 0.91 1

B8.20m 0.2 0 0.19 0.87 0.38 0.35 0.87 1

B8.500m 0.13 0.19 0 0.85 0.42 0.4 0.87 1

B8.1000m 0.92 0.87 0.85 0 0.92 0.88 0.78 0.74

B16.surface 0.41 0.38 0.42 0.92 0 0.11 0.85 1

B16.20m 0.39 0.35 0.4 0.88 0.11 0 0.84 1

B16.500m 0.91 0.87 0.87 0.78 0.85 0.84 0 0.78

B16.1000m 1 1 1 0.74 1 1 0.78 0  

B.5   Rank-abundance curves 

 

Figure B-18. Rank (x-axis) abundance (y-axis) of g23 
OTUs based on number of sequences per OTU prior to 
removal of singletons. 
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Figure B-19. Rank (x-axis) abundance (y-axis) of phoH 
(black) and MCP (blue) OTUs based on number of 
sequences per OTU prior to removal of singletons. 

 

B.6  OTU distribution among samples and abundance 

 
 

 

Figure B-20. Distribution of frequencies of sequences (y-axis) 
within g23 OTUs which occur within all (8), several (7-2), or are 
unique to a sample (1) (x-axis). 

Figure B-21. Distribution of frequencies of sequences (y-
axis) within phoH OTUs which occur within all (8), several 
(7-2), or are unique to a sample (1) (x-axis). 
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B.7.  ANOSIM outputs from QIIME script compare_categories.py 

Table B-6. Test of platform comparison data based on grouping by sequencing platform 

method name ANOSIM 
test statistic name R 
sample size 24 
number of groups 3 
test statistic -0.026909722222222359 
p-value 0.55300000000000005 
number of permutations 999 

Table B-7. Test of platform comparison datasets based on grouping by water masses 

method name ANOSIM 
test statistic name R 
sample size 24 
number of groups 4 
test statistic 0.68788069733249313 
p-value 0.001 
number of permutations 999 

Table B-8. Test of Roche/454 g23 dataset based on grouping by water masses 

method name ANOSIM 
test statistic name R 
sample size 8 
number of groups 4 
test statistic 0.91304347826086973 
p-value 0.0030000000000000001 
number of permutations 999 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure B-22. (to the left) Distribution of frequencies of 
sequences (y-axis) within MCP OTUs which occur within 
several (7-2), or are unique to a sample (1) (x-axis). 
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Table B-9. Test of Roche/454 phoH dataset based on grouping by water masses 

method name ANOSIM 
test statistic name R 
sample size 8 
number of groups 4 
test statistic 0.095652173913043495 
p-value 0.313 
number of permutations 999 

Table B-10. Test of Roche/454 MCP dataset based on grouping by water masses 

method name ANOSIM 
test statistic name R 
sample size 8 
number of groups 4 
test statistic 0.30434782608695649 
p-value 0.14499999999999999 
number of permutations 999 
 

B.8.  Mantel Test output of correlation between g23 and 16S datasets 

Table B-11. Mantel statistic based on Pearson’s product-moment correlation 

Call: 
mantel(xdis =bact.dist, ydis= g23.dist) 
 
Mantel statistic r: 0.2744 
Significance: 0.155 
 
Upper quantiles of permutations (null model): 

90% 95% 97.5% 99% 
0.343 0.479 0.571 0.599 
Permutation: free 
Number of permutations: 999 


