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1 1 Introduction

1 Introduction

One of the first things a man will notice when looking at the ocean is the presence

of waves. More than 2.000 years ago, Aristotle knew already that the interaction be-

tween the air and and sea surface was playing an important role in the formation of

ocean waves. However, very little progress had been made from the ancient Greeks

to the 19th century. Airy (1801-1892), Stokes (1819-1903) and Rayleigh(1842-1919)

are among the scientists who gave important contributions to the knowledge of ocean

waves. Generally, ocean surface waves are the result of forces acting on the ocean.

Starting from a physical point of view, we will build a classification of ocean waves

by their wave period and their physical mechanism. In nature, several types of ocean

waves can be observed. In space, a wave can be high, short, long, small, symmetric,

asymmetric, periodic ... In time, a wave can be fast, slow, ... The presence of waves in

the oceans can be explained by different physical mechanisms :

• Water compressibility which leads to the creation of sound waves that are of no

interest in this present thesis.

• Pressure or stress from the atmosphere (particularly through the wind) create

capillary and gravity waves.

• Submarine earthquake creating very long surface gravity waves. The last ex-

ample the whole world has in mind is the tsunami that took place in Asia the

26th of December. More than 100.000 people died. The earthquake created a

long wave of small amplitude travelling very fast in the deep ocean. While the

wave approached shallow areas on the continental shelves, it slowed down and

increased in amplitude. This wave even killed some hundred people at the east

African coast, thousands of kilometers away from the earthquake.

• Gravitational attraction from the moon and rotation (Coriolis force) of the earth

generate tidal waves.

Wave type Wave Period Physical mechanism

Capillary wave 0-0.1s Surface shear

Gravity capillary wave 0.1-1s Surface shear, wind

Gravity wave 1-min Wind, gravity

Seiche 5-40 min Wind variation

Tsunami 30 min - 12 h earthquake

Tidal waves 12-24 h Action of the moon

and the sun and the Coriolis force
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Non natural physical event can also produce waves in the ocean. One can take the

example of a boat cruising in a fjord. Depending of its speed and the depth of the fjord,

the boat can generate waves which become high enough to cause some damages along

the coast.

Ocean surface waves have been a subject of study with increasing interest the last

50 years. Shipping companies, offshore industries (especially the oil and gas produc-

ers), fish industries (fish farms, ...), harbours (transport of sediments), tourist industry

(ships, waves breaking on beaches, ...) and environmentalists are more and more con-

cerned about the role of the waves on the ocean. A better understanding of the waves

can play a major role in the economy, the safety of populations and the protection of

the world. A wave hitting an oil platform and stopping the production of oil means

several millions of U.S. dollars lost per day for the company. When a tsunami reaches

a coast without warning, thousands of human lives may be lost. We can increase the

list of examples where waves play a major role in the daily world. In the present thesis,

we shall focus on the so-called freak wave, also named rogue wave or extreme wave.

These waves are storm waves with extreme heights compared to the average. In this

short introduction, we focus on waves in general and a more precise definition of a

freak wave will be given later.

Before entering more into details on waves, we need to make some basic assump-

tions about the ocean :

• The water is incompressible.

• The water has an inviscid nature meaning friction is neglected. Only gravity and

pressure forces are taken into account.

• The fluid is irrotational.

Observing the ocean from a beach, during calm weather, we can notice the pres-

ence of nearly sinusoidal, long-crested and progressive waves (see Figure 1). These

waves will become higher and shorter when reaching the coast and will finally break.

This phenomenon is well-known for the surfers. The wave repeats itself, has a nearly

sinusoidal shape and is moving at a constant speed with a direction perpendicular to

the crests. The wave is a long series of crests with same heights at the same distance

from each other.

Let us give some definitions in wave theory referring to Fig.(2):

• The surface elevation η(x, t) is the vertical deviation from the equilibrium sur-

face η = 0.

• An upcrossing wave is a wave between two successive mean level upcrossings

(X2 and X4 on the figure).
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Figure 1: View from a beach of sinusoidal waves. Copyright www.tim-mckenna.com

• A downcrossing wave is a wave between two successive mean level downcross-

ings (X1 and X3).

• The wave crest Ac is the maximum value (C2) between a mean level upcrossing

(X2) and the next downcrossing (X3).

• The wave trough At is the minimum value (T1) between a mean level down-

crossing (X1) and the next upcrossing (X2).

• The wave height H is the crest-to-trough vertical distance.

For periodic waves :

• The wavelength λ is the length between two successive wave crests.

• The period T is the time between two successive wave crests pass a fixed point.

• The phase speed c is the speed of the wave crests.

• The wavenumber k is the number of crests per unit distance and is equal to 2π/λ.

• The angular frequency ω is the number of radians per second and is equal to

2π/T .

• The wave profile of a sinusoidal wave is therefore

η(x, t) = a sin(kx− ωt) (1)

where a is the amplitude and θ = kx− ωt is called the phase.
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Figure 2: Description of some wave parameters.

The water depth h plays a major role in ocean physics. When a wave propagates,

both surface and underwater particles are in motion. The phase speed and the fre-

quency of the waves depends on depths. Simple classifications using the water depth

and the wavelength to characterize the ocean have been made (see for example [1])

• Shallow water h < λ/25;

• Transitional depth λ/25 < h < λ/4;

• Deep water λ/4 < h.

In the present thesis, we will work under the assumption of deep water. It’s now

time to introduce a fundamental relationship between the wavenumber k and the wave

frequency ω which is called the dispersion relation. From linearized theory, this rela-

tion can be easily derived :

ω2 = gk tan(kh) (2)

where g is the gravitational acceleration equal to 9.81m.s−2. For deep water, tan(kh) ≈
1 and the dispersion relation reduces to ω2 = gk.

It’s obvious when watching the ocean that the sea is not a single sinusoidal wave.

Looking at the sea, it’s not easy to get a general description or law of the surface eleva-

tion. The sea surface looks pretty confused. Waves have different speeds, amplitudes,

directions, wavelengths, ... Short waves ride on top of the long waves and small waves

are overtaken by longer waves. It seems that the sea surface evolves almost randomly if
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Figure 3: a) Surface elevation at one point of the ocean. Here it’s the so-called "New

Year wave" which hit the Draupner offshore platform the 1st of January 1995. b) Sea

surface from a satellite - SAR image.

you look at one particular point of the ocean (see Figure 3a). Looking at a larger piece

of the ocean from a satellite, one can see the influence of the wind and the pattern of

the waves looks more regular due to the filtering that a finite resolution produces even

though the randomness is still there. (see Figure 3b).

However, the ocean can be simulated as the sum of simple sinusoidal waves with

different lengths, heights and directions. We start explaining this construction of the

ocean with two simple waves. We make the assumption that the two waves have the

same height but differ slightly in wavelength. Adding these two waves, we get a wave

with non uniform waveheigths and distances between the wave crests. Figure 4 shows

the construction of such a wave. In our example, we choose the sine wave (Fig 4a)

and a slightly modified sine wave, sin(1.1x) (Fig 4b). On Fig 4c they are plotted

together. Comparing the resulting wave (Fig 4d) with Fig 4c shows that the resulting

wave has a local maximum when the two sinusoidal waves are in phase while it’s a

minimum when they are out of phase. It’s interesting to notice that in adding two

simple sinusoidal waves, we already get a more complicated wave.

Keeping the same idea, we can superpose a large number of simple sinusoidal

waves to build the sea surface. Figure 4 shows the case of two 1D waves added to-

gether. Therefore it should not surprise us anymore than adding 2D waves with differ-

ent heights, wavelengths and directions will result in an ocean where no general laws
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seem to be observed. Lord Rayleigh said : "The basic law of the seaway is the apparent

lack of any law".

From a general result established by Fourier it follows that the sea surface at a given

instant can be obtained from the superposition of many simple sinusoidal waves. It’s

quite fascinating to realise that something very complicated can be gotten by adding

very simple elements.

In linear theory, one can simulate the sea surface at any time by adding many sinus

waves like

η =
∑

an sin(kn · x − ωnt+ φn) (3)

with random phases φn where in deep water ωn =
√

g|kn|. Each sine-wave in the sum

is an elementary wave sometimes called a Fourier mode.

Taking non linear effects into account, however, means that the individual Fourier

modes are coupled. Thus the amplitudes an and phases φn are changing with time and

have to be computed at any time step.
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2 Freak waves

We will present in this section some accounts and stories about freak waves which

have been related in scientific papers, popular science magazines and even news from

press agencies. Waves with hight exceeding 30 meters are reported.

Freak waves in shallow and deep water have been observed all around the world, along

the South African Coast, in the Gulf of Mexico, in the North Sea or Japan Sea. Kharif

et al. [2] give a small survey of the different explanations of the generations of such

abnormal waves. In linear theory, one can cite Lavrenov [3] (amplification due to

opposing current), White and Fornberg [4] (wave focusing due in a random current)

and Pelinovksy and Kharif [5] (wave focusing in arbitrary depth). In nonlinear theory,

one can mention Dysthe and Trulsen (see for example [6]) using the Modified Non

Linear Schrödinger Equations or Onorato et al. [7] using the Zakharov Equations.

1. US Navy steamship Ramapo

Reported by Lawton [8]

In February 1933, the US Navy steamship Ramapo ploughed into a Pacific storm

en route to Manila from San Diego. The wind howled at an unremitting 60

knots-force 11-for seven days, lifting the sea into huge 15-metre swells. On the

morning of 7 February, the ship encountered a monster. It came from behind,

tossing her into a deep trough then lifting her stern-first over a mountain of foamy

brine. As the stern of the 146-metre ship hit the bottom of the trough, the officer

on watch triangulated the wave against the crow’s nest. The figure he came up

with was 34 meters-about as tall as an 11-storey building. It remains the biggest

wave ever reliably measured.

2. Cruiser Line Queen Elizabeth II

Reported by E.S.A. (European Space Agency) [9]

In February 1995 the Cruiser Line Queen Elizabeth II met a 30-meter high rogue

wave during a hurricane in the North Atlantic that Captain Ronald Warwick

described as "a great wall of water... it looked as if we were going into the White

Cliffs of Dover."

3. The Bremen and the Caledonian Star

Reported by E.S.A. (European Space Agency) [9]

The week between February and March 2001 two hardened tourist cruisers - The

Bremen and the Caledonian Star - had their bridge and windows smashed by

30-meter waves in the South Atlantic, the former ship was left drifting without

navigation or propulsion for a period of two hours.
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Wolfgang Rosenthal (senior scientist - Germany) : "All the electronics were

switched off on the Bremen as they drifted parallel to the waves, and until they

were turned on again the crew were thinking it could have been their last day

alive. The same phenomenon could have sunk many less lucky vessels: two

large ships sink every week on average, but the cause is never studied to the

same detail as an air crash. It simply gets put down to ’bad weather’."

4. Statoil rig

The 1st of January 1995, the Draupner oil rig owned by Statoil in the North Sea

has registered a 25.6 meters wave (see Figure 3a). The same year, in the North

Sea, Statoil floating rig Veslefrikk B is severely damaged by a rogue wave. One

crew member describes a "wall of water" visible for several minutes before it

strikes.

5. Yachtswoman Isabelle Autissier

In 1994, the yachtswoman Isabelle Autissier capsized off the coast of New

Zealand when she hit one of these monsters which she estimated to be 35 metres

high.Isabelle Autissier recounts her Southern Ocean scare : "It went right over

through 360 degrees. I fell on the bulkhead, then on the ceiling, and back on the

other bulkhead. When I opened my eyes the boat was full of water."

Dan Dickison [10] has reported : "Huddled in the cold, dark confines of her

wrecked Ecureuil Poitou-Charentes 2, the 39-year-old mariner was helplessly

adrift after an enormous wave on the storm-frothed Indian Ocean sent the 60-

foot yacht into a 360-degree roll. Autissier, who had avoided injury by wedging

herself into a small passageway, emerged to find her masts broken and the cabin

top shorn away, leaving a Renault-size hole in the deck that flooded part of the

boat with icy seawater."

John Vigor [11] wrote : "When Isabelle Autissier’s 60-foot racer capsized in the

Southern Ocean, it sent a chill of fear through the sailing community. Sailors

don’t like to think of capsize. But here was a big, well-found boat, a Finot-

designed Open 60 Class flier, wallowing upside down in huge frigid swells, with

her long thin keel jutting toward heaven. It was a bizarre and frightening sight.

Autissier was lucky. She was taking part in the Around Alone race, so her

million-dollar boat was equipped with emergency satellite transmitters, posi-

tion recorders, and lots of other equipment that no normal cruiser is likely to be
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able to afford or fit on board. She was eventually rescued in a wonderful feat of

seamanship by Giovanni Soldini, a fellow competitor."

6. Oil tankers damaged by giant waves off the south-east coast of South Africa

Ronald Smith [12] has collected several ship accident due to freak waves :

"During the closure of the Suez Canal a number of ships, particularly oil tankers,

have reported extensive damage caused by giant waves off the south-east coast

of South Africa (Mallory 1974; Sturm 1974; Sanderson 1974). Two particularly

unfortunate vessels are the World Glory, which broke in two and sank in June

1968, and the Neptune Sapphire, which lost 60 m of its bow section in August

1973. we can only speculate that giant waves may account for many of the ships

which have been lost without trace off this coast."

7. Oil tanker Esso Languedoc

The story is reported by Graham Lawton [8].

"We were in a storm and the tanker was running before the sea. This amazing

wave came from the aft and broke over the deck. I didn’t see it until it was

alongside the vessel but it was special, much bigger than the others. It took us

by surprise. I never saw one again." Philippe Lijour, first mate of the oil tanker

Esso Languedoc, describing the huge wave that slammed into the ship off the

east coast of South Africa in 1980.

Lijour and his shipmates are lucky to be alive. They were struck by a rogue

wave-a monstrous wall of water that rose out of nowhere and slammed onto the

deck like the fist of god. Ships often don’t survive an onslaught like that. Many

sink before anyone on board knows what’s hit them. Lijour had another stroke

of luck that day. As the wave crashed into the ship, he managed to grab his

camera. The photograph he took, is one of the few images we have of a rogue

wave (see Fig.5). It shows a monstrous wall of foam-flecked water, much bigger

that anything else on the sea at the time, smashing into the ship’s starboard bow.

By comparing it to the ship’s masts, Lijour estimates that the wave was around

20 meters high. In truth it was probably bigger. Rogue waves are often preceded

by a deep trough, so viewed from the sea surface shortly before it struck, the

wave could have towered 30 meters or more. It would have been like being hit

by a department store.

8. M/S "Norse Variant" and M/S "Anita"

These two events have been reported by Kjeldsen [13].

"Loss of a large Norwegian ship with entire crew in the middle of the North
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Figure 5: Picture of a Rogue wave taken by Philippe Lijour on board of the oil tanker

Esso Languedoc in 1980.



13 2 Freak waves

Atlantic is not a common event. However at a special occasion two large Nor-

wegian bulk ships M/S "NORSE VARIANT" and M/S "ANITA" disappeared at

the same time and in the same area. Both ships passed Cape Henry with only

one-hour interval in time on voyages from the U.S.A to Europe. Both ships came

right into the centre of a very extreme weather event with a strong low pressure

giving 15 m significant wave heights and mean wave periods close to 10 sec-

onds and strong northerly winds with wind velocities near 60 knots. "NORSE

VARIANT" had deck cargo that was damaged and moved by water on deck with

the result that a hatch cover was broken and left-open. The ship took in large

amounts of water and sank before an organised evacuation was finished. Only

one member of the crew was rescued on a float.

"ANITA" disappeared completely at sea with the whole crew and no emergency

call was ever given. The Court of Inquiry then concluded that the loss can be

explained by an event in which a very large wave suddenly broke several hatch

cover on deck, and the ship was filled with water and sank before any emergency

call was given.

The wave that caused the loss of "ANITA" was probably a freak or rogue wave.

9. Tanker World Glory and some references.

Lavrenov in [3] reports that : "On 13 June 1968 the tanker World Glory (built

in the U.S.A. in 1954) under the Liberian flag while travelling along the South

African coast, encountered a freak wave, which broke the tanker into two parts

and led to the death of 22 of its crew members."

He also gives a list of interesting authors describing the same kind of events,

especially Mallory [14] who describes 11 cases of vessels who had encountered

abnormal waves along the South African coast. However, it seems that some of

the cases given by Mallory are not really due to freak waves.

10. SS Spray

Captain G. Anderson Chase was on board the SS Spray (ex-Gulf Spray) in Febru-

ary of 1986, in the Gulf Stream, off of Charleston when the picture (see Fig. 6)

was taken.

He wrote [15]: "A substantial gale was moving across Long Island, sending a

very long swell down our way, meeting the Gulf Stream. We saw several rogue

waves during the late morning on the horizon, but thought they were whales

jumping. It was actually a nice day with light breezes and no significant sea.

Only the very long swell, of about 15 feet high and probably 600 to 1000 feet

long. This one hit us at the change of the watch at about noon. The photographer

was an engineer (name forgotten), and this was the last photo on his roll of film.
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Figure 6: Picture of a big wave taken on board of the SS Spray in 1986.
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We were on the wing of the bridge, with a height of eye of 56 feet, and this wave

broke over our heads. This shot was taken as we were diving down off the face

of the second of a set of three waves, so the ship just kept falling into the trough,

which just kept opening up under us. It bent the foremast (shown) back about

20 degrees, tore the foreword firefighting station (also shown) off the deck (rails,

monitor, platform and all) and threw it against the face of the house. It also bent

all the catwalks back severely. Later that night, about 19.30, another wave hit

the after house, hitting the stack and sending solid water down into the engine

room through the forced draft blower intakes."

11. Taganrogsky Zaliv

In 1985, the Russian ship Taganrogsky Zaliv (164.5 meters long) was cruising

along the South African Coast. The ship encountered a freak waves and a sea-

man was killed. Lavrenov in [3] gives us the weather details and what happened

on the foredeck.

"Near the Cape of Good Hope, the possibility of encountering a weather storm is

high enough, so the ship was prepared for sailing in stormy weather. The north-

north east wind was blowing at a speed of 7 m/s. At 5 a.m., it changed direction

to south-south west with the same force. From the previous day the atmospheric

pressure was diminishing until the wind change direction, after that it began to

increase. At 8.00 a.m., the wind became stronger and at 11 a.m it reached 15

m/s. By the noon of the day everybody felt the wave impact of the ship, which

tore off a lifeboat, loosend two mooring-line reels and washed them into water.

After 12.00, the wind speed diminished to 12 m/s. Wind sea became calmer as

well. The wind force didn’t change during the next three hours. Wave height

didn’t exceed 5 m and the length was 40-45 m. To overcome the results of the

wave impact, the boatswain and three seamen were sent out to the foredeck. The

speed of the ship was diminished to a minimum that was enough for safe control

of the ship’s motion. The ship rode well on the waves. The foredeck and main

deck were not flooded with water.

By one o’clock, the job was almost done on the foredeck. At the moment, the

front part of the ship suddenly dipped, and the crest of a very large wave ap-

peared close to the foredeck. It was 5-6 m higher than the foredeck. The wave

crest fell down on the ship. One of the seamen was killed and washed overboard.

It was impossible to save him.

Nobody was able to foresee the appearance of the wave as the weather was nor-

mal for ocean conditions. When the ship went down, riding on the wave, and

burrowed into its frontal part, nobody felt the impact of the wave. The wave
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easily rolled over the foredeck, covering it with more than two meters of water.

The length of the wave crest was no more than 20 m."

12. Norwegian Dawn

NEW YORK (AP) [16] – A cruise ship struck by a freak seven-story-high wave

that smashed windows and sent furniture flying returned to New York Harbor on

Monday and docked at its berth on the Hudson River.

The 965-foot white ocean liner was sailing back to New York from the Bahamas

when it was struck by a storm Saturday, the 16th of April 2005, that pounded the

vessel with heavy seas and the rogue 70-foot wave.

The wave sent furniture sailing through the air and knocked Jacuzzis overboard.

Some passengers slept in hallways in life jackets.

"The ship was hit by a freak wave that caused two windows to break in two dif-

ferent cabins," Norwegian Cruise Line said in a statement. It said 62 cabins were

flooded and four passengers had cuts and bruises. The wave reached as high as

deck 10 on the ship, company spokeswoman Susan Robison said Sunday.

The Norwegian Dawn docked at Charleston for repairs and a Coast Guard in-

spection before continuing its voyage to New York early Sunday.

Bill and Ellen Tesauro of Wayne, New Jersey, said they went to the ship’s casino

when the storm started slamming the vessel.

"We figured it would take our minds off this (and) that’s when the captain an-

nounced that drinks are free all night," Bill Tesauro told the Daily News of New

York. "But then there was another horrendous slap on the water."

The panicked couple returned to their suite.

"A desk went flying across the room," Ellen Tesauro said. "And a glass table

toppled down, with glasses and food on it."

Stacy Maryland of Hamilton, New Jersey, woke up to find shoes and magazines

floating in a foot of water.

"I thought I heard water sloshing around, and then I woke up and saw it, and it

was surreal," she told the newspaper.

The cruise line said passengers whose cabins were flooded were flown home

from Charleston and the safety of the ship "was in no way compromised by this

incident."



17 3 Equations

3 Equations

Freak waves have been associated with some well-known equations as the Schrödinger

equation or the Zakharov equations. Our work uses mainly the modified form of the

Schrödinger Equation developed by Dysthe [17]. In this part, we will show how these

equations are obtained.

A fluid can be described by its velocity v(x, y, z, t) and its surface displacement

η(x, y, z, t). We have introduced the Cartesian coordinates (x, y, z) where x = (x, y)

and z are respectively the horizontal and vertical coordinates. We use two different op-

erators. ∇ is the gradient defined by i ∂
∂x

+ j ∂
∂y

+ k ∂
∂z

and 4 is the Laplacian defined

by ∇2. (i, j and k) are unit vectors.

We first assume that our fluid is incompressible and of homogeneous density ρ.

Using the mass conservation

dρ

dt
+ ρ∇ · v = 0, (4)

we deduce that (∇ · v = 0). The flow is assumed to be irrotational (∇ × v = 0)

Therefore we can write that the Laplacian of the velocity potential φ is equal to zero

everywhere where v = ∇φ. No flux is imposed at the bottom. On the free surface

both kinematic and dynamic conditions must be satisfied. The kinematic condition

states that the mass flux through the surface is zero. The dynamic condition expresses

the continuity of pressure across the free surface. Therefore we obtain the following

system of equations in the Cartesian coordinates (x, y, z):

4φ = 0 for −h < z < η(x, y, t), (5)

φt +
1

2
(∇φ)2 + gη = p(t) at z = η(x, y, t), (6)

ηt + φxηx + φyηy − φz = 0 at z = η(x, y, t), (7)

φz = 0 at z = −h (8)

g is the acceleration of gravity and p(t) is the atmospheric pressure. We assume a

definition of φ such as p(t) will be included in φt.

Taking the total derivative of 7 and using the dynamic condition, we then get the

new system of equations for describing the surface waves :
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4φ = 0 for −∞ < z < η(x, y, t), (9)

φtt + gφz + (∇φ)2t +
1

2
∇φ · ∇(∇φ)2 = 0 at z = η(x, y, t), (10)

ηt + φxηx + φyηy − φz = 0 at z = η(x, y, t), (11)

φz = 0 at z = −h (12)

We introduce the harmonic series expansions for the potential φ and the surface

elevation η for a slow evolution of the wavetrain :

φ = φ̄+
1

2

j=∞
∑

j=1

(

Aje
j(k0z+iθ) + c.c.

)

, (13)

η = η̄ +
1

2

j=∞
∑

j=1

(

Bje
jiθ + c.c.

)

(14)

where c.c. means the complex conjugate. φ̄ and η̄ are real function, representing the

mean flow and surface elevation brought about by the radiation stress. θ is the phase

equal to k0 · x − ω0t where (k0, ω0) is the location where the spectrum is centred.

k0 = |k0|

We work under the following assumptions :

• k0a = O(ε).

• The bandwith restriction | 4 k|/k0 = O(ε).

• We work on deep water meaning that the depth is large in comparison to the

wavelength (k0h)
−1 = O(ε).

where ε is the wave steepness defined by ε = k0a, k0 = |k0| and a is a characteristic

amplitude. Due to bandwith restrictions, the coefficients Aj and Bj are complex and

have rates of change O(ε) in space and time. It implies that the first harmonic of the

velocity potential A1 and the surface elevation B1, here after denoted A and B, are of

order ε, the second harmonics, A2 and B2, are of order ε2,... In a general rule, An and

Bn are of order εn.

By developing 10 and 11 in Taylor series around z = 0, we get to the fourth order

in ε :
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Lφ+ ηLφz +
1

2
η2Lφzz +

1

6
η3Lφzzz + (∇φ)2

t + η (∇φ)2
tz +

1

2
η2 (∇φ)2

tzz +

+
1

2
∇φ · ∇(∇φ)2 + η

(

∇φ · ∇(∇φ)2
)2

= 0, (15)

ηt + φz + ∇z · (η∇zφ) + ∇z ·
(

1

2
η2∇zφz

)

+ ∇z ·
(

1

6
η3∇zφzz

)

= 0 (16)

where L and ∇z are the linear operator L(f) = ftt + gfz and the horizontal gradient

operator ∇zf = (fx, fy) respectively.

We substitute 13 and 14 into 9, 12, 15 and 16 up to fourth order in ε. Note that φ̄

is a second order quantity and η̄ is a third order quantity. We also use the following

transformations to make the results dimensionless. Note that the parameter ε will not

appear explicitely in our new set of equations.

• ωt −→ t,

• k(x, z) −→ (x, z),

• k(B,Bn, η̄) −→ (B,Bn, η̄),

• k2ω−1(A,An, φ̄) −→ (A,An, φ̄).

To the fourth order in ε, we get the following evolution equations :

Bt +
1

2
Bx +

i

8
Bxx −

i

4
Byy +

i

2
|B|2B =

1

16
Bxxx

−3

8
Bxyy −

5

4
|B|2Bx −

1

4
B|B|2x − iBφ̄x at z = 0 (17)

∇2φ̄ = 0 for −h < z < 0 (18)

φ̄z =
1

2
|B|2x at z = 0 (19)

φ̄z = 0 at z = −h (20)

Equations 17-19 is called the Modified Nonlinear Schrödinger (MNLS) Equation.

It was first developed by Dysthe [17] and therefore the equation is also called the Dys-

the Equation. Dysthe took the perturbation analysis originally used for the derivation

of the cubic Schrödinger equation one step further, i.e. to fourth order in the wave
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steepness, to derive the MNLS equation. Note that in the original paper of Dysthe, the

MNLS equation was expressed in terms of A. If we drop out all the nonlinear terms on

the right side of the Equation (17), we get the conventional form of the cubic Nonlinear

Schrödinger (NLS) Equation. Another type of deterministic wave propagation model

is the Zakharov Integral Equation developed by Zakharov [18]. It’s a perturbation ex-

pansion of the Euler Equations for small steepness but without any restriction of the

bandwith. The MNLS Equation is a particular case of the third order Zakharov Inte-

gral Equation. This result has been showed by Stiassnie [19] who emphasizes that it is

not a surprise since all the fourth order terms emerge as a result of the narrow spectral

width, and none of them is fourth order in the wave amplitude itself. Trulsen [20] gives

a non exhaustive survey of deterministic waves propagation models. Models have the

following properties : time and space evolution, weakly or exact nonlinear and slowly

(narrow-banded) or fast (arbitrary bandwith) modulated.

In this present thesis, we haven’t used two other types of equations, which are

extensions from the MNLS equation.

• The broader band (BMNLS) equation was obtained by Trulsen & Dysthe [21]

by expanding the linear part of the equation to higher order in the spectral width.

The bandwith of the BMNLS is assumed to be of order ε1/2.

• The exact linear (ELMNLS) was obtained by Trulsen et al. [22]. It extends the

MNLS equation with exact linear dispersion.

Working first on the evolution of a Gaussian spectrum, we didn’t notice any differences

between the MNLS equation and these two extended MNLS equations. However, it

has not been checked for a JONSWAP spectrum and for the statistics of the surface

elevation.
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4 The numerical scheme

Our main interest is to find the value of the complex amplitude B in the MNLS

equation. The numerical scheme implemented by Trulsen and Dysthe (see [23] for

example) to solve this problem has been developed by Lo and Mei [24]. There are

two main ideas behind this numerical scheme. The first one is to take advantage of the

Fast Fourier Transform (FFT) to calculate the value of φ̄x at z = 0 at any time step.

Then, a split-step technique introduced by Tappert [25] in conjunction with the FFT is

used to obtain the value of B(x, y, z, t). In this method, the integration of the linear

and nonlinear parts of the governing Equation are done successively. The linear part

is integrated exactly while the nonlinear part is integrated with a second order explicit

scheme.

4.1 The Fast Fourier Transform

The fast Fourier transform (FFT) is a discrete Fourier transform algorithm which

reduces the number of computations needed for N points from N 2 to Nlg(N), where

lg is the base-2 logarithm.

The discrete Fourier transform of length N (where N is even) can be rewritten as the

sum of two discrete Fourier transforms, each of length N
2

. One is formed from the

even-numbered points; the other from the odd-numbered points. Denote the nth point

of the discrete Fourier transform by Fn. Then

Fn =

N−1
∑

k=0

fke
−2πink/N (21)

Fn =

N/2−1
∑

k=0

f2ke
−2πink/(N/2) +W n

N/2−1
∑

k=0

f2k+1e
−2πink/(N/2) (22)

Fn = F even
n +W nF odd

n where W = e−2πi/N and n = 0,...,N (23)

This procedure can be applied recursively to break up the N/2 even and odd points

to their N/4 even and odd points. If N is a power of 2, this procedure breaks up the

original transform into lg(N) transforms of length 1.

4.2 More details about the numerical scheme

Looking at the Equation 17, we can observe that at any time step, the value of the

slow drift is required. Using the known value of B(x, y, t) from previous computa-

tions, we can solve φ̄ step by step in time by the pseudo spectral method developed by
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Fornberg and Whitham [26]. The first step is to express φ̄ and |B|2x with their inverse

Fourier Transforms. The slow drift is solved by substituting the Fourier Transform of

φ̄ and |B|2x into the Equations 18,19 and 20 and by taking advantage of the property of

the derivative of the Fourier Transform. We get an expression of φ̂mn as a function of

|B̂(x, t)|2mn (see for example [23] or [24]). It’s then easy to get an expression of φ̄x at

z = 0. Then, we are ready to solve 17.

The basic idea was given in [25]. Every time evolution equation can be written as

the sum of its linear and nonlinear terms :

Bt = L(B) +N(B) (24)

where L(.) and N(.) are respectively the linear and the nonlinear operators. This equa-

tion can be split into two equations :

Bt = L(B) (25)

Bt = N(B) (26)

At each time step both equations are solved successively, employing the solution of

the previous one as the initial condition for the next one. Lets having a solution B(t)

of 24 at t. We now want to have the solution at t + δt. The first step is to solve 26 by

an implicit finite difference approximation :

B̃(t+ δt) = B(t) − 0.5δt
[

N(B̃(t+ δt)) +N(B(t))
]

(27)

The second step is to advance the solution exactly using only the linear terms by

taking advantage of the Fourier Transform. Let’s note F (L(B)) = PF (B). We get :

B(t + δt) = F−1(eiP δtF (B̃)) (28)

where F−1 is the inverse Fourier Transform. Trulsen in [20] makes an interesting

comment about the order of solving the Equations 25 and 26. If they are solved al-

ternatively (LNLN), one achieves a first order integration scheme provided each linear

and nonlinear integration is at least first order. But if we reverse the order as followed

(NLLN), one achieves a second order integration scheme provided each linear and

nonlinear integration is at least second order.
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5 The simulations

We have only been used the MNLS equation of Dysthe, the simplest of the 4th

order Schrödinger equations. As stated in [paper 1], there is no significant difference

between the results using MNLS and the other types of 4th order Schrödinger Equa-

tions developed by [21], [22] & [23]. Simulations have always been performed in

deep water. The time range of validity of the MNLS equation, due to our model based

on a perturbation equation, is (ε3ω0)
−1 (see [21]). A confirmation of this result has

been given by Trulsen and Stansberg [27] who made comparisons between the MNLS

model and some wave tank experiments of long-crested waves.

5.1 The reconstruction formula

With our model, the surface displacement can be reconstructed up to third order

for the MNLS equation (see Figure 7). The reconstruction formulas of 17, 18, 19 and

20 given by Trulsen [20] are :

η̄ = −φ̄t (29)

B2 =
1

2

(

B2 − iBBx

)

(30)

B3 =
3

8
B3 (31)

where the reconstructed surface displacement is therefore :

η = η̄ +
1

2

[

Beiθ +
1

2
(B2 − iBBx)Be

2iθ +
3

8
B3e3iθ + c.c

]

(32)

5.2 An uniform grid

The number of points for reconstruction in both the longitudinal and transversal di-

rections can be freely chosen. However, the reconstruction of the surface displacement

requires a huge computational effort in time, limiting the number of points if we want

to get the simulation ready in a reasonable time.

The numerical method by Lo & Mei [24] requires periodic boundary conditions in

both horizontal directions. The computational domain has a length l in the longitudinal

direction and a breadth b in the transversal direction. A uniform grid with Nl and Nb

points in the physical and Fourier planes is employed. We construct an Nl × Nb grid

of collocation points in the physical domain (x, y) :
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Figure 7: Surface envelope. Dashed curve : first order reconstruction, full curve :

second order reconstruction and dotted curve : third order reconstruction.

(xi, yj) =

(

li

Nl
,
bj

Nb

)

for 0 ≤ i ≤ Nl and 0 ≤ j ≤ Nb (33)

The corresponding spectral components are

(kxp, kyq) =

(

2πp

l
,
2πq

b

)

for −1
2
Nl ≤ i ≤ 1

2
Nl and −1

2
Nb ≤ q ≤ 1

2
Nb (34)

The discretization of the Fourier space is 4kx = 2π
l

and 4ky = 2π
b

. One can note

that (kxp, kyq) = (4kxp,4kyq).

5.3 Two types of spectra

We have been working with two types of initial spectra, the Gaussian spectrum and

the JONSWAP spectrum. The spectrum is implemented in the program through the

Fourier Transform of the first harmonic at t = 0. The relation between an envelope

spectrum F (K, t) and the surface elevation η is :

∫

F (K, t)dK = η2 (35)

where the wave vector is k = k0 + k0K with k0 = (k0, 0) and K = (Kx, Ky)

1. The Gaussian shape spectrum

For two horizontal dimensions, one can write the Gaussian shape spectrum as

follows :
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G(K) =
η̄2

πσxσy
exp

[

−1

2

(

K2
x

σ2
x

+
K2

y

σ2
y

)]

(36)

From Equations 14 and 35, one can find the expression of the initialized Fourier

transform of the first harmonic amplitude B :

B̂(Kpq, 0) = B̂pq(0) =
√

2G(Kpq)4Kx4Kye
iθpq (37)

where θmn is the uniformly distributed phase on [0, 2π] andKpq = (p4Kx, q4Ky).

For two horizontal dimensions, the initial Fourier amplitude is :

B̂pq(0) = ε

√

4Kx4Ky

2πσxσy
exp

[

−1

4

(

(p4Kx)
2

σ2
x

+
(q4Ky)

2

σ2
y

)]

eiθpq (38)

where ε is the steepness equal to k0

√

2η2.

Note that for one horizontal dimension, the initial Fourier amplitude reduces to :

B̂r(0) = ε

√

4K√
2πσs

exp

[

−
(

r4K
2σs

)2
]

eiθr (39)

2. The directional spreading JONSWAP spectrum

The JONSWAP project (see Hasselman et al. [28]) proposed an analytical ex-

pression for the spectrum of evolving surface gravity waves with increasing wind

fetch. The sea state is characterized by a sharp spectral peak at a frequency ωp

that is decreasing with increasing fetch. For ω ≤ ωp, the JONSWAP spectrum

has a steep forward face and for high frequency its tail follows the ω−5 power

law. The analytical representation is

S(ω) = αg2ω−5 exp

[

−5

4

(

ω

ωp

)−4
]

γτ (40)

This spectrum differs from the Pierson-Moskowitz (see [29]) spectrum through

the presence of the peak enhancement factor γτ where γ is the ratio of the JON-

SWAP peak to the Pierson-Moskowitz peak. τ is given by

τ = exp[−(ω − ωp)
2/2σ2ω2

p] (41)
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σ =

{

σa for ω ≤ ωp

σb for ω ≥ ωp
(42)

The JONSWAP spectrum is thus described by five parameters ωp, α, γ, σa and

σb where σa = 0.07 and σb = 0.09. α is called the Phillips constant.

In order to take the directional spreading of the waves into account it is conve-

nient (see for example Onorato et al. [7]) to choose the directional spectrum as

F (ω, θ) = S(ω)Sp(θ) where Sp(θ) is taken to be

Sp(θ) =

{

1
β

cos2
(

πθ
2β

)

if −β ≤ θ ≤ β

0 else
(43)

where θ = arctan(ky/kx) with β a measure of the directional spreading.

To calculate the initial Fourier amplitude, we need to transform the frequency

JONSWAP spectrum F (ω, θ) into a wavenumber JONSWAP spectrum F (k) =

S(k)Sp(θ). With length and time scaled by k−1
p and ω−1

p , respectively, we get

S(k) =
α

2k4
exp

[

−5

4
k−2

]

γτ (44)

τ = exp






−

(√
k − 1

)2

2σ0






(45)

σ0 =

{

σa for k ≤ 1

σb for k ≥ 1
(46)

We now use the wave vector K given by k = (1, 0) + K, and write SK(K) =

S(k). The initial Fourier amplitude is then given by

B̂(Kpq, 0) = B̂pq(0) =
√

SK(Kpq)Sp(θ)4Kx4Kye
iθpq (47)

5.4 How some input parameters have been chosen

Some parameters as the type of the spectrum or the time simulation are very easy

to set up. Note that the spectra have some internal parameters which must be chosen

carefully. The question is even more tricky when we deal with the number of Fourier

Modes, collocation points, steepness, ...
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Figure 8: Scatter diagram from Haver et al. (2002) where the lines are of a constant

steepness.

1. The steepness

We remember the definition of the steepness parameter ε defined as k0a where

k0 is a central wavenumber and a is a characteristic amplitude. In the following

we take k0 −→ kp and a −→ (2η2)1/2 =
√

2σ and denote this mean steepness

by s thus

s = kp

√

2η2 (48)

Haver et al. [30] made a scatter diagram (see Figure 8) of peak period Tp and

significant wave heightHs with pooled data from the Northern North Sea (1973-

2001) (nearly 70.000 data points). Curves of constant mean steepness (called s

on the picture) are shown where s = kpā =
√

2π2

g
Hs

T 2
p

. Here ā is the rms value

of the amplitude. Observing that the curve for steepness equal to 0.1 is on the

border of the data points, we have decided to choose this value in most of our

simulations.

2. The different parameters of the JONSWAP spectrum

The JONSWAP spectrum is described by the set of Equations 40, 41 and 42.

Equation 43 is used to take into account the directional spreading.

The Philips constant α is chosen such that the steepness is equal to 0.1. The most

probable values for some of the JONSWAP parameters are γ = 3.3, σa = 0.07
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Figure 9: a) 2D spectra b) spreading function

and σb = 0.09 (see Torsethaugen and Haver [31]). However, Gunson and Mag-

nusson [32] estimated some peak enhancements from measured data on Ekofisk

(offshore platform in the North Sea) and WS Polarfront (Ocean Weather Station

in the Norwegian Sea) during extreme storms. They have reported different γ up

to 8.14. We shall use in the present thesis, the usual value γ = 3.3 reported by

[31] and the value γ = 5 (see figure 9). It has been emphasized by [32] that the

value γ = 2 is officially used by the Norwegian offshore industry.

Three different values of the spreading parameter β have been chosen (see Figure

9). In the Figure 10, one can see the effect of β on the waves. When β increases,

the crests become shorter.

3. Number of waves and Fourier Modes

We define our ocean as a rectangular of size Nx.λc and Ny.λc where Nx and

Ny are the number of characteristic wavelengths λc in the x and y direction. On

all our simulations, we have been chosen Nx = Ny = N . Therefore, we have

simulated a peace of ocean of size L2 where L = Nλc. For any given N we

assign 2N Fourier modes. It’s important to notice at we can increase the number

of Fourier Modes as much as we want but it will also increase quite a lot the

computation time and will not give any better results in our area of interests (for

example, the k-spectrum). However, as Figure 11 shows, the size of N does

really matter.
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Figure 10: Surfaces of small sections of the computational domain for β = 0.14,

β = 0.35 and β = 0.7.

The experience we got from our 1D simulations was the following :

• N must be higher than 32 in order to get a relatively good approximation

of the spectrum.

• N equal to 64 and 128 gives qualitatively a good result.

• There is almost no difference between N equal to 128 and 256, concluding

that it’s a waste of time and data resources to choose N too high.

If we don’t simulate an ocean large enough, we will lose information on the

spectrum. As we shall see later, the evolution of the spectrum may play an

important role concerning freak waves. It’s obvious that the larger the simulated

ocean is, the more data you get and the more accurate your statistical results will

be. This is very important as we are interested in the freak waves which are rare

events. It means that for a small N , we will need a lot of samples to get a good

statistical result on the free surface distribution.

Even if we have performed some experiments with a Gaussian shaped spectrum, we

spent most of our time on the JONSWAP spectrum. Results with a Gaussian spectrum

can be found in [paper 1] where we verify the criterion of Alber (see [33], [34]) for a

2D simulation with the NLS Equation. However, we dont verify this criterion for a 3D

simulation with the NLS. For the MNLS equation, we have found that the spectrum

reaches a quasi-stationary state on the Benjamin-Feir timescale (see [35]).

5.5 Simulation cases

In the future, we will refer to the simulation cases :
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Figure 11: Simulated spectrum at a given time for different number of Fourier modes.

−◦ 32 FM, −∗ 64 FM, −· 128 FM, ·· 256 FM, − 512 FM

Case γ β

A 3.3 0.7

B 5 0.35

C 5 0.14

D 5 0.7

E 3.3 0.35

F 3.3 0.14

Table 1: Initial directional and JONSWAP parameters for simulation cases. All spectra

are normalised to an initial steepness s= 0.1. Nx = Ny = 128. The cases A, B and C

are the same as in [Paper 2] and [Paper 3].
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6 Spectral evolution

6.1 Paper 1 : Evolution of a narrow-banded spectrum

Benjamin and Feir [35] showed that a uniform train of surface gravity waves is

unstable to the well-known Benjamin-Feir (BF) instability. Alber and Saffman [33]

and Alber [34], based on the Nonlinear Schrödinger (NLS) equation, demonstrated

theoretically that for deep water waves, a nearly Gaussian random wave fields is stable

only if spectral width σs is larger than twice the average steepness s.

σs > 2s (49)

An extended work by Crawford et al. [36] gives some important results on the

timescale where the spectral change should occur. According to their work, the spec-

trum should not change during the so-called BF timescale, (s2ω0)
−1 but during the

Hasselmann timescale, (s4ω0)
−1 (see also Hasselmann [37]). Here ω0 is the fre-

quency associated to the wavenumber k0 where the envelope spectrum is centred. Here

F (K, x, t) is taken to have a Gaussian shape at the beginning of our simulations :

F0(K) =
η̄2

πσxσy

exp

[−1

2

(

K2
x

σ2
x

+
K2

y

σ2
y

)]

(50)

In our paper, we have only investigated the case where σs = σx = σy as it’s a bit

difficult to interpret Alber’s result for the case of an asymmetric Gaussian spectrum.

As Alber’s result had never been verified with numerical simulations, we decided to

do it using the NLS and MNLS equations developed by Dysthe [17] for both one and

two horizontal dimensions.

1. NLS simulations

In one horizontal dimension, we find that our simulations only approximately

verify the Alber criterion for suppression of the modulational instability (σs >

2s). When σs < 2s, the spectrum widens symmetrically and reaches a quasi

steady state on the BF timescale.

In two horizontal dimensions, the NLS simulations do not support the Alber’s

result. Regardless the initial σs, we always observe that the spectrum widens. In

the case σs < 2s, the spectrum flattens out to a plateau shape while in the other
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case (σs > 2ε), the spectrum is particularly stretched in the directions Kx = +-√
2Ky of maximum BF growth rate

2. MNLS simulations

The MNLS simulation does not support Alber’s result neither in one nor in two

horizontal dimensions.

In one horizontal dimension, the spectrum evolves on the BF timescale, towards

a quasi steady state which has the following characteristics :

- an asymmetrical shape with a steepening of the low frequency side,

- a widening of the high frequency side,

- and therefore a downshift of the spectral peak.

In two horizontal dimensions, the same phenomena are observed :

- an asymmetric development,

- downshift of the spectral peak kp where kp < k0,

- and an angular widening, mainly for k > kp.

For the angularly integrated spectrum, one can see a power-law behaviour k−2.5

(that corresponds to ω−4 in the frequency spectrum) on the high frequency side

k > kp. Some steepening is observed on the low-frequency side. This occurs on

the BF timescale.

6.2 Paper 2 & 3 : Evolution of a JONSWAP spectrum

Choosing different β in the angular distribution associated with the JONSWAP

spectrum (see Onorato et al. [7]) in order to get simulations with short and long crested

waves, we get approximately the same trend as already observed in [paper 1] for the

Gaussian shape spectra. The spectra develop on the Benjamin-Feir timescale [35] and

follow the k−2.5 law for the integrated k-spectra even though it’s not as clear as one

can observed in [paper 1].

Spectral changes due to the modulational instability have been linked by theory

and simulations to enhanced occurence of large freak waves (see [38], [39] and [40].

According to Skourup et. al [41], a wave is said to be freak if A > 1.1Hs or H > 2Hs

where H is the waveheigth and Hs is the significant waveheigth equal to 4σ. For

long crested waves, we demonstrate that the occurence of freak waves is significally

increased while the main spectral change is taking place. This is in good agreement
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with the experiment of Onorato et al. [42]. For short crested waves, however, the

influence of spectral change seems rather insignificant.
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7 Probabilities

In the following, we consider the random variate η which we take to be the surface

elevation η(x, t). The mean is defined as the expected value of η(x, t) and can be

written as

µ = E[η(x, t)] (51)

where E denotes the expectation value of η(x, t). For deep water, which is assumed in

this thesis, µ = 0. The variance is therefore defined as

σ2 = E
[

η2(x, t)
]

(52)

The root-mean-square value of the process is called the standard deviation and is

denoted σ.

We shall be concerned with the situation where the random variable η is statistically

homogeneous. This implies that the autocorrelation function R is a function of the

difference x = x1 − x2 only. Its definition is

R(x, t) = E[η(x1, t)η(x2, t)] (53)

The power spectrum F (k) is defined as the spatial Fourier transform of R(x, t).

The cumulative probability function P (x) is the probability that the signal η(x, t)

takes a value less than or equal to x :

P (x) = Pr[η(x, t) ≤ x] (54)

When P (x) is a differentiable function, the probability density function (pdf) is

p(x) =
dP

dx
(55)

where p(x) is the probability density function. Thus p(x) is the rate of change of P (x).

The area between two values a and b under the pdf p(x) defines the probability that the

results of an event will lie between the values a and b, that is

Pr(a ≤ x(t) ≤ b) =

∫ b

a

p(x)dx (56)

The total probability of an event is unity thus

Pr(−∞ ≤ x(t) ≤ +∞) =

∫ +∞

−∞
p(x)dx = 1 (57)
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The mean value and variance expressed in Equation 51 and 52, respectively, may

be given in terms of the pdf p(x) by

µ = E[x(t)] =

∫ +∞

−∞
xp(x)dx (58)

σ2 = E
[

(x(t) − µ)2
]

=

∫ +∞

−∞
(x(t) − µ)2p(x)dx (59)

As an example, we choose the Gaussian distribution. The cumulative probability

of a Gaussian distribution is given by :

PG(x) =
1

σ
√

2π

∫ +x

−∞
exp

(

−(y − µ)2

2σ2

)

dy (60)

and its probability density function is

pG(x) =
dP (x)

dx
=

1

σ
√

2π
exp

(

−(x− µ)2

2σ2

)

. (61)

The Gaussian distribution is illustrated in Figure 12 with µ = 1.5 and σ = 1.
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Figure 12: Gaussian Cumulative density function cdf and probability density function

pdf

Other types of distributions are often used in water waves statistics. The most

well-know is probably the Rayleigh distribution which can be expressed as
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pR(x) =
2x

σ2
exp

(

−x
2

σ2

)

(62)

PR(x) = exp

(

−x
2

σ2

)

(63)

Another type of distribution which is very common in the literature of ocean waves

statistics is the Weibull distribution. It is written as

pW (x) =
αxα−1

θα
exp

[

−
(x

θ

)α]

x ≥ 0 (64)

where α and θ are the shape and scale parameters, respectively. The Weibull distri-

bution becomes a Rayleigh distribution when one sets α = 2 and θ = σ (see the

demonstration in Hu [43] for example).

The probability of exceedance Pe is defined as follow

Pe(x) = Pr(η(x, t) > x) = 1 − P (x) (65)

where P (x) is the cumulative probability function.

The skewness S(x) and kurtosis K(x) are related to nonlinearities in a wave field.

The skewness is a statistical measure of the vertical asymmetry of the sea surface

exemplified by the sharp crests and rounded troughs. The kurtosis represents a degree

of peakedness of the distribution when the normal distribution is taken as a reference.

The skewness of a random variable x with mean µ and variance σ2 is defined as

S(x) =
E[(x− µ)3]

σ3
. (66)

If the skewness is negative (positive) the distribution is skewed to the left (right).

Normally distributed random variables have a skewness of zero since the distribution

is symmetrical around the mean.

The kurtosis of a random variable x with mean µ and variance σ2 is defined as

K(x) =
E[(x− µ)4]

σ4
. (67)

Normally distributed random variables have a kurtosis of 3.
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8 Distribution of the surface elevation, wave crest and

wave height

Definitions of the wave crest and the wave height have already been given in a

previous section. For a linear ocean, Gaussian properties of the surface elevation have

been shown by Longuet-Higgins in 1952 [44] using the so-called Central Limit Theo-

rem. Tayfun [45] considers a second order modification of Longuet-Higgins’ results.

Longuet-Higgins [44] first introduced the Rayleigh distributions for prediction in wave

amplitude in a narrow-banded random sea. Cartwright and Longuet-Higgins [46] mod-

ified the Rayleigh distribution to account for a more broad-banded random sea by

including the spectral bandwith parameter. This broad-banded modification is not rel-

evant in the present thesis as the assumption of a narrow-banded spectrum is made in

the construction of the MNLS equations. Following Tayfun’s assumptions [45], devel-

opments of second order wave crest distribution and surface elevation are developed.

Considering wave heights, several authors have proposed different models to improve

the results of Longuet-Higgins [44]. Forristall [47] compared storm data from the Gulf

of Mexico and found a good agreement with a Weibull distribution. Longuet-Higgins

[48] and Naess [49] modified Longuet-Higgins previous result comparing with the

storm data of Forristall. Mori and Yasuda [50] compared the validity of the Edgeworth-

Rayleigh distribution with some experimental and field data.

More complete summaries of the wave crest and wave height models can be found in

Prevosto and Forristall [51] and in Vinje [52]. Some of our results have already been

published in [Paper 2] & [Paper 3].

8.1 Distribution of the surface elevation

In linear theory, Longuet-Higgins [44] showed that the complex amplitude B of

the surface elevation η has a normal distribution under the following assumption

• The wave is the sum of a large number of small and statistically independent

contributions.

The normal distribution of B is a direct consequence of the Central Limit Theorem.

For an ocean of small bandwith, the surface elevation can be written as :

η =
1

2
(Beiθ + c.c.) + o(ε) = a cos(θ + ψ) + o(ε) (68)

where a is the real amplitude, θ = k ·x−ωt and ψ is a random phase. The wave num-

ber k is related to its wave frequency ω by the linear dispersion relation. In Figures13,

14 and 15 the Gaussian pdf normalized by the standard deviation σ is compared to the
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first harmonic of some simulations of the MNLS equation with a JONSWAP initial

spectrum.

A second order modification of Longuet-Higgins’ result has been done by Tayfun

[45]. In Paper 2, we have developed more suitable form for his results. Extension of

Equation (68) to second order is the following :

η =
1

2
(Beiθ +B2e

2iθ + c.c.) + o(ε2) (69)

B2 is the second harmonic equal to σB2/2. Using the following notations x =

a cos(θ + ψ) and y = a sin(θ + ψ), we can write Equation (69) as :

η = x +
σ

2
(x2 − y2) + o(ε2) (70)

Keeping the assumption of Longuet-Higgins that the complex amplitude B of the

first harmonic is Gaussian implies that x and y, the real and imaginary parts are Gaus-

sian as well with the joint distribution

1

2π
exp

(

−x
2 + y2

2

)

(71)

Using Equation (70), one can find the cumulative distribution PT1(η) of the surface

elevation η :

PT1(η) =
1

2πσ2

∫ ∫

η≤x+ σ
2
(x2−y2)

exp

(

−x
2 + y2

2

)

dxdy (72)

The probability distribution pT1 equal to dPT1

dη
is given by

pT1(η) =
1

πσ

∫ +∞

0

exp

[−x2 + (1 − C)2

2σ2

]

dx

C
(73)

where C =
√

1 + 2ση + x2. pT1(η) was already found by Tayfun [45] in a more

complicated form. Since the variance σ2 is small, we can expand asymptotically the

Equation (73) using the Laplace method. The leading term of the pdf is then

pT1(η) ∼
1 − 7σ2/8

√

2π(1 + 3G+ 2G2)
exp

(

− G2

2σ2

)

(74)

where G =
√

1 + 2ση − 1.

In Figures13, 14 and 15 the Gaussian and Tayfun pdf normalized by the standard

deviation σ are compared to the first and second harmonics of some simulations of the

MNLS equation with a JONSWAP initial spectrum.
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Figure 13: Dashed curve : Gaussian distribution, dotted curve : Tayfun distribution

and full curve : simulation. a) and b) Simulated distributions of the first harmonic

for the case C compared to a Gaussian distribution at two different times. c) and d)

Simulated distributions of the first + second harmonics for the case C compared to the

Gaussian and Tayfun distributions.
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Figure 14: Same as Figure 13 but for the case B.
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Figure 15: Same as Figure 13 but for the case D.
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8.2 Distribution of the wave crests

We keep working under the assumption that the first harmonic complex amplitude

is Gaussian distributed. Then Longuet-Higgins [44] showed that the first order surface

envelope is Rayleigh distributed

pR(a) =
2a

ā2
exp

(

−a
2

ā2

)

(75)

where ā2 = 2η̄2 = 2σ2 = 2m0. [Paper 2] gives the reason why the distribution of

wave crests can be associated to the upper surface envelope. The explanation comes

from a property of invariance of the MNLS equations with respect to a phase shift. We

get the following expressions for the first and second order envelopes of the wave field :

{

a = |B| first order envelope

A = a+ σ
2
a2 second order upper envelope

(76)

Tayfun [45] takes second offer effects into account, still assuming that a is Rayleigh

distributed. Due to the Equation (76), we get the following relationship between the

pdf of the first order envelope pR(a) and the pdf of the second order envelope pT2(A)

pR(a)da = pT2(A)dA (77)

Using the relation a =
√

1 + 2σA− 1, one get easily da
dA

= σ√
(1+2σA)

. The pdf of

the second order envelope is finally obtained :

pT2(A) =
1

σ

(

1 − 1√
2σA+ 1

)

exp

[

− 1

σ2
(σA+ 1 −

√
2σA+ 1

]

(78)

Similar work has been done by Tung and Huang [53] and was corrected by Tucker

[54] as Warren et al. [55] pointed out.

Another possibility of deriving a pdf by taking into account the second order contribu-

tions is to assume that the Equation (75), with A substituted for a and Ā2 for ā2 Here

Ā2 ' ā2 + ā3 = 2σ2 + 3
√

πσ3

2
where we have used Equation (75) as follows

ā3 =

∫ ∞

0

a3pR(a)da =
3
√
πσ3

2
(79)

We have called this, the Modified Rayleigh distribution pMR . Here, we note that

the second order envelope we have discussed so far is only valid for the upper envelope.

The lower envelope to second order is A = a − σ
2
a2. It is easy to derive pT2 and pMR

associated with the lower envelope. The two distributions are quite closed for x < 3

but even here the Tayfun distribution gives the best fit to our simulated data. For
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Figure 16: a) Pdf of the Tayfun and Modified-Rayleigh distributions for second order.

b) Probability of exceedance of the Tayfun and Modified-Rayleigh distributions

lager waves (x > 3), the difference between the two distributions becomes much more

significant, as seen in the exceedance plot (see figure 16).

Figures 17 and 18 show that the Rayleigh and Tayfun distributions fit well with our

simulations. For the first order, ā2 = s2 = 0.01 where s is the steepness set to 0.1 in

all our simulations. We compute ā2 at any time of our simulations and find 0, 0100036

after averaging over space. At second order, Ā2 = 0.01132 for the upper envelope and

0.00867 for the lower envelope. We find respectively with our simulations 0.001126

and 0.00865.

Various authors as pointed out by Krunic and Winterstein [56] have used the Weibull

distribution pW (see Equation 64) to study the wave crest statistics. They claim that

the Weibull distribution doesnt approximate good enough the distribution of wave

crests and build another distribution based on the Weibull distribution called the Noisy-

Weibull distribution and named pNW :

pNW (x) =

[

1 +
1

2

( ᾱσ

θ̄

)2 (x

θ̄

)2ᾱ−2
]

exp

[

−
(x

θ̄

)ᾱ
]

(80)

where θ̄ = k1θ
k2 and ᾱ = α/k2 with k1 and k2 numerical values from data.
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Figure 17: Dotted curve : Rayleigh distribution and full curve : simulation. First order

surface envelope compared with the Rayleigh distribution for the cases A, E and F at

different times

8.3 Distribution of the wave height

In linear theory, for extremely narrow band waves,the wave height H is twice the

amplitude and is therefore Rayleigh distributed :

pR(h) =
2h

h̄2
exp

(

−h
2

h̄2

)

(81)

where h̄2 = 4ā2 = 8m0. Forristall [47] showed that this distribution failed to fit storm

data from the Gulf of Mexico. He showed that a Weibull distribution reduced to the

form αxα−1

β
exp(−xα/β) with parameters α = 2.126 and θ = 8.42 gives good agree-

ment with his storm data. Longuet-Higgins [48] showed that choosing h̄ = 2.62
√

2m0

in Equation (81) gives equally good fit to the storm data from the Gulf of Mexico

as that of Forristall’s empirical Weibull distribution. Longuet-Higgins pointed out that

his empirical Rayleigh distribution has only one estimated parameter instead of two for

Forristall. Naess [49] uses another approach to calculate the pdf of the wave heights.

Like Longuet-Higgins [48], he assumes that the process is Gaussian. He arrives at the

result for the exceedance probability

PN(H > h) = exp

(

− h2

4m0(1 − r′)

)

(82)

where r′ = R(T/2)/m0 where R(τ) is the autocorrelation function of the process and

T is chosen such as R′(T ) = 0. .

Looking at the rms value h̄ of the wave height H , we can compute Forristall,

Longuet-Higgins and Naess distributions given above. In Longuet-Higgins paper, we

find h̄ ' 2.62
√
m0. Naess calculates the autocorrelation function for the JONSWAP

spectrum for values of peakedness parameter γ in the range 1-7. For γ = 3.3, we get



47 8 Distribution of the surface elevation, wave crest and wave height

0 1 2 3 4 5
0

1

2

3

4

5

6

7

8

9
Case A, t = 50Tp

A

P
(A

)

0 1 2 3 4 5
0

1

2

3

4

5

6

7

8

9
Case A, t = 100Tp

A

P
(A

)

0 1 2 3 4 5
0

1

2

3

4

5

6

7

8

9
Case E, t = 50Tp

A

P
(A

)

0 1 2 3 4 5
0

1

2

3

4

5

6

7

8

9
Case E, t = 100Tp

A

P
(A

)

0 1 2 3 4 5
0

1

2

3

4

5

6

7

8

9
Case F, t = 50Tp

A

P
(A

)

0 1 2 3 4 5
0

1

2

3

4

5

6

7

8

9
Case F, t = 100Tp

A

P
(A

)

Figure 18: Dashed curve : Equation 78, dotted curve : Rayleigh distribution and full

curve : simulation. Second order surface envelope compared with the Rayleigh and

Tayfun distributions for the cases A, E and F at 50 and 100 Tp
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r′ ' −0.73 which gives h̄ ' 2.63
√
m0. Forristall gives an empirical relation between

the average largest third of the waves, H1/3 and the rms value of the surface elevation

such as H1/3 ' 3.77
√
m0. From the Rayleigh distribution, one can get an expression

of H1/3 as a function of h̄. We find H1/3 ' 1.416h̄. Combining the last two expres-

sions yields h̄ = 2.66
√
m0.

In a two-dimensional wave record, as a time series from a buoy or a laser instru-

ment, it’s easy to define the wave heights. It turns out that it becomes much more

difficult in three dimensions. We describe here two possible options for extracting the

waveheigths in a three dimensional data base.

1. Method 1 using the surface elevation. Using the reconstructed free surface, at a

given time, we can extract, along the main wave direction x for a given y, the

waveheigths. This way we can compute the successive minima and maxima.

Then we repeat the procedure for different y and t.

2. Method 2 using the upper and lower envelopes (respectively Au and Al. If all

waves had a period Tp, the waveheigth as measured at a given location would

be h = Au(t) − Al(t + Tp/2). From equation (76), we can deduce h = a(t) +

a(t + Tp/2) + o(ε2). The advantage of this method is that we can have all the

waveheigths at a particular time but on the other hand, all waves don’t have the

exact period Tp.

Figures 19, 20 and 21 compare the two methods for the cases A, E and F with

the Rayleigh, Naess and Edgeworth-Rayleigh distributions (see [50]). A first result is

that Method 1 doesn’t fit with any distributions. The same occurs for the long crested

waves (case F) using the Method 2. However, fairly good agreement between the Naess

distribution and the Case E can be observed for Method 2. For the short crested waves

(case A), very good agreement between the Naess distribution and our simulations has

been found. Method 1 failed to catch the higher waves of the distribution while Method

2 managed to do it for a directional spreading large enough.

8.4 Probability of exceedance for the wave crests

Using the Rayleigh and Tayfun probability density functions (see Equations 75 and

78), we find the respective probabilities of exceedance for the crest heightA to be given

as
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Figure 19: Probability of exceedance for the wave height. Case A, Methods 1 and

2. Full curve : simulation. Dash-dotted curve : Naess distribution. Dashed curve :

Rayleigh distribution. Dotted curve : Edgeworth-Rayleigh distribution.
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Figure 20: Same as Figure 19 for the case E.
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Figure 21: Same as Figure 19 for the case F.
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PrR(A > x) = exp

(

−x
2

2

)

(83)

PrT (A > x) = exp

[

− 1

σ2
(σx + 1 −

√
2σx + 1)

]

(84)

Equation (84) was also derived by Tucker [54]. Developing of
√

1 + x for small x,

Kriebel and Dawson [57] found an approximation of Equation (84) up to third order in

x :

PrT ' exp−
[

0.5(x2 − σx3)
]

(85)

Note that since the third order development of B includes some derivatives, it is not

possible to find an exact expression for the third order envelope distribution.
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9 Extreme value analysis

In a large number of situations, we are interested in only one part of the distribu-

tion. When one wants to study some dramatical situation (rogue waves for instance),

we focus on the distribution of the very high values. In the present thesis, one of our

main interest is the study of freak waves. Therefore we need to look closer at the

extreme value theory. Leder et al. [58] give a brief historical review of the theory

of extremes. According to Gumbel [59], the first principles of this theory had been

exposed by Bernoulli in 1709. Fisher and Tippet [60] gave an important step forward

by introducing the stability principle from which Gumbel derived one form of the dis-

tribution of extremes. Pioneer work in the analysis of extreme values of a stochastic

process had also been done by Rice [61]. He derived an important expression on the

mean number of level-crossings of a given level which is named the Rice formula.

Extension of his work for a Gaussian process of higher dimensions has been given by

Piterbarg [62]. It states that the asymptotic cumulative distribution of the maxima of a

Gaussian ocean containing N waves has a Gumbel law when N goes to infinity.

9.1 Generalized Extreme Value Distribution

Let F (x) be the probability that a sample of random variables has a value lower or

equal to x. Assume that F (x) can be written as

F (x) = 1 − e−h(x) (86)

where h(x) increases monotonously with x and has no upper limit. A distribution with

this property is said to be of the exponential type. The probability that the largest out

of n random samples has a value ≤ x is F n(x). For a distribution with the property 86

one can show that asymptotically when n −→ ∞

F n(x) ∼ exp (− exp[−αn(x− un)]) (87)

where the right hand side is the Gumbel distribution with parameters αn and un. For

the case that F (x) is a Rayleigh distribution we have αn = un =
√

2 lnn.

Generally the mean value and variance of the distribution 87 are

x̄n = un +
γ

αn

(88)

σ2
n =

π2

6α2
n

(89)
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Figure 22: Cumulative (dashed curve) and probability (full curve) density functions of

the Gumbel distribution Λ(2x)

where γ is the Euler-Macheroni constant.

A normalized version of the Gumbel distribution, Λ(x) = exp(− exp(−x)) is shown

in Figure 22.

9.2 The Rice formula

9.2.1 Its definition and a non-rigorous proof

We say that a process X(t) has an upcrossing of the level a at t0 if

X(t0) = a and Ẋ(t0) > 0 (90)

The Rice formula states that the expected number of upcrossing per time unit, that

is, the upcrossing frequency, may be expressed as :

ν+
X(a) =

∫ ∞

0

ẋfXẊ(a, ẋ)dẋ (91)

where fXẊ is the joint distribution of X and Ẋ . A non-rigorous proof can be made

by assumptions about the smoothness of the process. Then, the path of X(t) can be

approximated by a Taylor expansion X(t) ' X(t0) + Ẋ(t0)(t − t0). The probability

$ to have one crossing in a interval ∆t is
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$ = Pr
(

{X(t) < a} ∩ {(X(t) + Ẋ(t)∆t) > a}
)

(92)

$ =

∫ ∞

ẋ=0

∫ a

a−ẋ∆t

fXẊ(x, ẋ)dxdẋ (93)

$ ' ∆t

∫ ∞

ẋ=0

ẋ∆tfXẊ(x, ẋ)dẋ (94)

Since $ = ν+
X(a)∆t, Equation 91 follows.

9.2.2 Application to Gaussian Process

Let X be a smooth Gaussian process. Then also Ẋ is Gaussian, and X and Ẋ are

independant. The pdf of a Gaussian distribution has been given by the Equation (61).

The joint distribution is then

fXẊ(x, ẋ) =
1√

2πσX

exp

(

− x2

2σ2
X

)

1√
2πσẊ

exp

(

− ẋ2

2σ2
Ẋ

)

(95)

where σX and σẊ are the standard deviations corresponding to X and Ẋ respectively.

Then, we obtain

ν+
X(a) =

1

2π

σẊ

σX
exp

(

− a2

2σ2
X

)

(96)

Having in mind that the general definition of a moment of order n ismn =
∫∞
0
ωnS(ω)dω

where S(ω) is the frequency spectrum, it’s easy to get the mean zero upcrossing fre-

quency. σ2
X = m0 and σ2

Ẋ
= m2 so ν+

X(0) = 1
2π

√

m2

m0
. The mean zero upcrossing

period is equal to 1
ν+

X
(0)

which is usually denoted Tz.

9.3 The Piterbarg’s Theorem

The Pitebarg’s theorem [62] gives the expressions for the asymptotical distributions

for homogeneous Gaussian in fields in R
n. In the present thesis, we are only interesting

in the cases n = 1 and n = 2 (the cases of a times series and a random surface

respectively).

We begin with a somehow technical approach of the theorem. We start with an ocean

Gaussian field in R
n and define a system of closed subsets Tk, k = 1, · · · , n with

volumes τk = V (Tk). For the cases n = 1 and n = 2, the volumes reduce to a

line and a surface, respectively. The field is required to satisfy rather strong regularity
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conditions, like being three times differentiable. We denote xm the maximum of the

ocean Gaussian field. In R
1, Pitebarg’s theorem gives

P 1Dr(xm ≤ a) ∼ exp

(

−N exp

(

− a2

2σ2

))

, (97)

where N is the length of the time series divided by Tz and σ is the standard deviation.

It’s interesting to note that the correctN used in the previous equation is not necessarily

the natural number of waves. We therefore refer toN as a the number of “waves” (with

brackets).

In two dimensions, the analogue of the mean zero-crossing period turns out to be an

area connected with an average wave. The size of one “wave” as defined by Piterbarg

is S ′ = λ0λc/
√

2π where λ0 and λc are the mean wave length and the mean crest

length of the field, respectively, and are defined as follow :

λ0 =
2π

sqrt〈k2
x〉
, λc =

2π

sqrt〈k2
y〉

(98)

where

〈k2
x,y〉 =

∫

k2
x,yF (kx, ky)dkxdky
∫

F (kx, ky)dkxdky

(99)

where F (kx, ky) is the wave spectrum. The size of our computational domain, S, is

NxNyλ
2
p where Nx and Ny are the number of Fourier modes. Thus the number of

“waves”, N , is S/S ′. The Piterbarg theorem states the asymptotic result

P 2Dr(xm ≤ a) ∼ exp

[

− a

hNσ2
exp

(

−1

2

(a

σ

)2

− h2
N

)]

(100)

where hN is the solution of the equation Nh exp(−h2/2) = 1 that is

hN =
√

2 lnN + ln(2 lnN + ln(2 lnN + · · · )). When N −→ ∞, the distribution

P2 tends to a Gumbel distribution. The result 100 can be extended to the second order

surface by using the result of the Equation (76) and assuming that the first order surface

is Gaussian. If we denote η1 the elevation of the first order surface, we then find

that the second order maximum ηm is given by ηm = η1m + σX

2
η2

1m. The asymptotic

distribution of the second order surface is the obtained from (100) by applying the

transformation x → 1
σX

(
√

1 + 2σx − 1). We shall call this distribution the Piterbarg-

Tayfun distribution. The asymptotic Gumbel limit of the Piterbarg-Tayfun distribution,

ΛPT (x), is

ΛPT (x) = exp

[

− exp

(

−hN − 1/hN

1 + σhN

(x− (hN +
σ

2
h2

N))

)]

(101)
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Figure 23: The Piterbarg-Tayfun distribution (full curve) and its asymptotic Gumbel

limit (dotted curve) for N = 40 and σ = 0.071.

Figure 23 shows that the Piterbarg-Tayfun distribution and its asymptotic Gumbel

limit match almost perfectly.

The corresponding expectation value of ηm is then

E(ηm) ' hN +
σ

2
h2

N +
γ(1 + σhN)

hN − 1/hN
(102)

where γ is the Euler-Macheroni constant equal to 0.5772. In Figure 24, we compare the

result obtained in 102 with the simulations for the case A. A good agreement between

the theory and our simulations is observed.
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Figure 24: The average largest surface elevation of scenes containing N waves.

Full curve : Expected value of ηm according to the asymptotic Gumbel limit of the

Piterbarg-Tayfun distribution. Dashed curve : Expected value of ηm according to the

Gaussian distribution. Crosses : Simulations. The sizes of the scenes in term of the

number of "waves" go from 40 to 10.000.
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10 Concluding remarks

Numerical simulations of the evolution of gravity wave spectra of fairly narrow band-

with have been performed.

In two dimensions, the NLS equation support the Alber’s result. When it comes to

three dimensions, it’s no longer valid. Our simulations using the MNLS equation do

not support Alber’s result neither two or three dimensions.

We have noticed that our spectra evolve on the Benjamin-Feir timescale (s2ω0)
−1. In

two dimensions, the spectrum reaches a quasi steady state. In three dimensions, it can

be seen that the spectrum follow a power-law behaviour k−2.5.

Using a truncated initial JONSWAP spectrum (with different peak enhancements and

spreading angles), we have seen that the evolution of such a spectrum is linked to the

frequency of extreme waves for long-crested waves. Such a relation has not been ob-

served for short crested waves.

The probability distributions of surface elevation and crest height are seen to fit the

theoretical distributions found by Tayfun. Very good agreement between the theory

and our simulations has been found up to 4 standard deviations.

The wave height distributions only fit the distribution found by Naess for the long

crested simulations. This result is to take cautiously due to the ways we calculate the

wave height.

We have also verified that our simulations support surprisingly well the result estab-

lished by Piterbarg about the distribution of extremes.
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