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Abstract

We consider two different approaches to model growth of CO2 hydrate, phase field theory and a model based

on cellular automata. The two approaches are applied to simulations of hydrate growth from supersaturated

aqueous solution of CO2. The thermodynamic models for the solution properties are derived from experimental

solubility data while the hydrate thermodynamics is based on adsorption theory with reference properties derived

from molecular simulations. We show that the cellular automata approach has the benefit of being much more

computationally efficient, and are still giving results which are consistent with results from the phase field theory.
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1. Introduction

Gas hydrates are crystalline structures of wa-
ter with cavities filled by small non-polar “guest”
molecules, e.g. CO2 or methane. The presence
of these guest molecules can stabilise the ice-like
structure at temperatures well above the melting
point of pure ice. The kinetics of hydrate forma-
tion, as well as the macroscopic structure and
surface properties of the formed hydrate, depends
on the kinetics of mass transport, heat transport
and the free energy changes related to the phase
transition. Small free energy differences between
hydrate and the original phase will typically lead
to spherical-like hydrate particles and slurry-like
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hydrate floating in the aqueous phase. Large free
energy differences will give rice to different types
of branched crystals and typically less tendencies
to agglomeration of individual crystals, which in-
volves smaller risk for hydrate plugging in flowing
systems.
In order to be able to model these phenomena

we need theoretical approaches that are able to de-
scribe the kinetic progress in time and space as well
as the corresponding crystal structures and surface
properties. Using molecular dynamics simulations,
microscopic properties of the growth processes can
be investigated. But to learn about the structure
at larger scales other tools, such as mean field the-
ories, are required.
Mesoscopic modelling of hydrate growth has up

to now mainly been done using phase field the-
ory [1,2]. Although phase field theory primarily
has been developed for modelling solidification of
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metallic melts, it also has potential for providing
insight into the kinetics of hydrate growth.
Unfortunately, calculations based on phase field

theory are generally very computationally inten-
sive. This places strong restrictions on the system
sizes and time spans which are feasible to simu-
late within this framework. As an attempt to over-
come this challenge, we presented in [3] a sim-
plified framework for simulating hydrate kinetics.
This model will be referred to as cellular automata
model.
In this work we investigate these two mean field

approaches for this. The cellular automata model
uses a Monte Carlo approach to evaluate the most
probable growth paths. The phase field theory is
based on the free energy functional related to the
phase transition and involves the integration of a
coupled set of differential equations in time and
space. Both theories are outlined and calculated
results for CO2 hydrate growth from aqueous solu-
tion using two different geometries are compared.

2. Phase Field Theory

We employ a version of phase field theory which
includes three fields; the phase, φ, molar CO2 con-
centration, c, and microscopic orientation, θ. All
fields are varying with time as well as position.
φ appears as an order parameter, and can take

values on the interval [0, 1]. Note that for histori-
cal reasons φ = 0 corresponds to solid and φ = 1
to liquid in the scope of phase field theory. Inter-
mediate values of φ applies to the interface region
between solid and liquid. In the case of CO2 hy-
drate the thickness of this interface region has been
measured in MD simulations to be 0.85± 0.07nm.
The concentration field, c, is defined to be

c =
xCO2

xCO2
+ xH2O

, (1)

where xCO2
and xH2O is the number of CO2

molecules and H2O molecules, respectively, in the
cell in question.
The orientation field θ is included to model the

effect of differences in orientations of molecules in
the solid phase. The inclusion of this field facilitates

simulation of phenomena such as polycrystalline
growth and anisotropies.
The basis of the model is the free energy func-

tional,

F =

∫

d3r

(

ε2φT

2
|∇φ|2 +

ε2cT

2
|∇c|2 + f

)

, (2)

where

f =w(c)Tg(φ) + p(φ)fL(c, T )

+ [1− p(φ)][fS(c, T ) + fori(|∇θ|)].
(3)

subject to conservation of the field c, the equa-
tions of motion are derived [4]:

φ̇ =Mφ

δF

δφ
+ ζφ,

ċ = −∇

(

Mc

δF

δc

)

+ ζc,

θ̇ =Mθ

δF

δθ
+ ζθ.

(4)

where δF/δx indicates functional differentiation of
the free energy functional (2) with respect to the
fields. εθ, εc and w(c) are related to the interface
free energy, interface thickness and melting tem-
perature [5], and can be obtained from experiments
or molecular dynamics simulations.
The functions g(φ) and p(φ) are not completely

fixed, but their form is constrained by the require-
ment of thermodynamical consistency [6]. fL and
fS are the free energy densities of the aqueous so-
lution and solid hydrate, respectively, and fori is an
extra contribution added to take into account ori-
entational differences in the solid phase. The terms
ζi are Langevin noise terms added to model ther-
mal fluctuations in the system.
The factors MX are the mobilities of the fields.

The phase field mobility, Mφ, dictates the rate of
crystallisation. According to experiments[7–9] the
crystallisation rate in highly under-cooled liquids
is proportional to the transverse diffusion rate,Dtr,
which is related to the viscosity, η, asDtr ∝ η−0.74.
Since the crystallisation rate in this model is pro-
portional to Mφ, this implies Mφ ∝ Dtr. The con-
centration field mobility, Mc is directly propor-
tional to the classical inter-diffusion coefficient for
a binary mixture.
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3. Monte Carlo Cellular Automata

In [3] we proposed a model based on cellular
automata combined with Monte Carlo for simu-
lations of CO2 hydrate growth. This approach is
much simpler than phase field theory, and the pri-
mary goal is to have a more computationally effi-
cient tool enabling us to study larger systems and
longer time spans.
The basis of our model is Metropolis tests where

the change in free energy as response to change of
phase, or change in CO2 concentration or temper-
ature is considered. As input we use the free en-
ergy parametrised with respect to phase, ϕ, (ϕ =
1 corresponds to solid hydrate, and ϕ = 0 corre-
sponds to liquid water with dissolved CO2), CO2
molar fraction, xCO2

, and temperature T . In spe-
cific, each time step consist of three steps: solidi-
fication, CO2 diffusion and temperature diffusion.
The criteria for solidification is that a cell should
have at least one solid neighbour, and that

r < e−β∆f(xCO2
,T )
[

1−λ(Φn−6)
]

, (5)

where 0 ≤ r ≤ 1 is a random number with a flat
distribution, β is the characteristic energy for the
solidification process, ∆f(xCO2

, T ) is the change
in free energy if the cell with molar CO2 concen-
tration xCO2

and temperature T changes its phase
from liquid to solid, Φn =

∑

n ωnϕn is a weighted
sum over solid neighbours with weights ωn = 2 for
nearest neighbours, ωn = 1 for next nearest neigh-
bours and ωn = 0 otherwise. The Φn-term is in-
cluded to take surface energy effects into account,
and its strength is parametrised with λ. The dif-
fusion of CO2 is done using a Monte Carlo imple-
mentation of Fick’s law. At each time step one of
the nearest neighbours are drawn at random for
each cell. The current

jc = −Dc∆nCO2
(1 + δc), (6)

where nCO2
is proportional to the number density

of CO2 molecules and δc is a random number with
a Gaussian distribution centred at 0, runs if

r < e−β∆f(jc), (7)

where 0 ≤ r ≤ 1 is a random number with a flat
distribution, β is the characteristic energy for the
diffusion,Dc is the diffusion coefficient, and∆f(jc)

is the change in free energy due to the current
jc. The temperature diffusion is done in the same
way 4 , but with β = 0, such that the current

jT = −DT∆T (1 + δT ), (8)

where DT is the thermal diffusion coefficient and
δT is a random number with a Gaussian distribu-
tion centred at 0, is exchanged. In our system the
heat transport is much faster than the mass trans-
port. Since equation 8 require DT < 0 to be con-
sistent, we must apparently choose Dc very small.
But this would slow down the simulation consider-
ably. To circumvent this we replace DT → DT /m
and run the temperature diffusion m times.
In addition we also need to establish length and

time scales since these are not inherently defined in
this model. Since the phase can only take the values
0 (liquid) and 1 (solid), but nothing in between,
we interpret the size of a cell to be of the same
magnitude as the interface thickness between solid
hydrate and an aqueous solution. The time scale is
connected to the length scale by the diffusion rate.

4. Thermodynamics

The thermodynamical functions describing the
system are common for both models. The free en-
ergy density is parametrised as a function of phase,
CO2 concentration, temperature and pressure. The
dependence on pressure is not made explicit since
we do our simulations at constant pressure.

4.1. Liquid thermodynamics

The free energy density of the liquid is obtained
by taking the contributions from pure water and
from CO2 in infinite dilution, and adding to them
a contribution to account for the mixing.
We do our simulations with a pressure of 150

bars and initial temperature in the liquid of 274K.
Under these conditions the aqueous solution is sat-
urated at 3.3%CO2 (obtained by extrapolating rel-

4 This is justified by starting with ∆Q/A∆t = −κ∆T/∆x.

The diffusion coefficient, DT , is related to the thermal

conductivity, κ, as DT = κ/ρC, where ρ is the density, and
C is the heat capacity.
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evant data by Teng and Yamasaki [10]). Since we
also want to do simulations with supersaturated
solutions the liquid free energy density is extrap-
olated into the supersaturated region under the
approximation that the activity coefficients follow
the same concentration dependence as that fitted
from saturated solutions.

4.2. Hydrate thermodynamics

The hydrate thermodynamics is based on a
model by Kvamme and Tanaka [11] and van der
Waals and Platteeuw [12]. The free energy density
is given by

vmfS = xCO2
gCO2

+ (1− xCO2
)gw, (9)

where vm is the molar volume of the hydrate, and
gw and gCO2

are partial molar free energies for wa-
ter and CO2 in the hydrate, respectively, given by

gw = g0w +RTν log(1− θ), (10)

gCO2
=∆ginc +RT log

(

θ

1− θ

)

. (11)

Here g0w is the free energy density of water in empty
hydrate, ∆ginc is the free energy of inclusion of gas
molecules in the hydrate, θ = xCO2

/ν(1− xCO2
) is

the filling fraction of the cavities accessible to the
CO2 molecules, and ν is the number of accessible
cavities per water molecule.

5. Simulation setup

We do simulations on a two dimensional system
of size 128×128 nm. Since we are presently not
able to handle nucleation we start with some hy-
drate present. The rest of the simulation window
is filled with an aqueous solution with 3.3% CO2.
We use periodic boundary conditions on the simu-
lation window.
We consider two different geometries:
(i) A small nucleus in the centre of the simula-
tion window. Since the system is isotropic,
this is expected to grow to a circular piece of
hydrate.

(ii) A thin strip of hydrate passing vertically
through the centre of the simulation window.

This system aims to simulate the growth of
a hydrate film.

A more interesting version of the latter system
would be the growth of a hydrate film on the inter-
face between liquid CO2 and liquid water with dis-
solved CO2. We can do simulations on this setup
using phase field theory, but at present we are not
able to do this with the cellular automaton model.
The phase field simulations shows, however, that
almost all growth takes place on the water side,
whereas the CO2 side is almost static. Therefore,
the setup with aqueous solution on both sides of
the film gives relevant information also for themore
interesting system with liquid CO2 on of the side.

6. Results

In the first setup both models produce compact
hydrate particles, but the cellular automaton ap-
proach gives rise to a slightly less regular particle
than the perfect circular particle produced by the
phase field theory, see Figure 1. As shown in [3] the
morphology of the hydrate particle produced by
the cellular automaton approach is strongly depen-
dent on the driving forces, large driving forces giv-
ing rice to branched structures. With a small modi-
fication of |∇φ|2-part of the free energy functional,
equation 2, branching can also be seen within the
scope of phase field theory [13].
Monitoring the growth rate, measured in terms

of fraction of the system converted into hydrate,
we find that the models are in good agreement at
short times as shown in Figure 2. However, the
phase field simulation approaches a lower asymp-
totic value than the cellular automaton simulation.
The reason for this is that the hydrate grown in the
cellular automaton simulation has a little smaller
CO2 concentration than that of the phase field sim-
ulation. This difference becomes increasingly im-
portant as the CO2 from the aqueous solution is
consumed by the growing hydrate particle.
The hydrate film simulation shows the same gen-

eral appearance as the hydrate ball; in both models
the film thickness grows with approximately uni-
form thickness, see Figure 3. Again, the cellular
automaton model produces a slightly less regular
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Fig. 1. Hydrate particle after 5.6µs. The system is

128×128 nm. Left : Phase field theory simulation.Right :

Cellular automaton simulation.
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Fig. 2. Fraction of total system converted into hydrate

as a function of time (system(i)). Dashed line: Phase
field theory simulation. Solid line: Cellular automaton
simulation.

growth than the phase field model. Comparing the
growth rate we find that also using this geometry
the rates are similar at small times. At larger times
the same deficiency as for the hydrate ball geome-
try appears, and the growth rates starts to differ.
Considering the computational efficiency of the

two approaches, we find that the cellular automa-
ton simulations is nearly a factor 75 faster than
the phase field simulation. This is mainly due to
the fact that in the cellular automata we can use
larger grid spacing and longer time steps. In simu-
lations where temperature effects can be neglected,
the speed-up of the cellular automaton approach
will be even larger.

7. Conclusion

We have considered simulations of CO2 hydrate
growth using a phase field theory and a model
based on cellular automata. The cellular automa-

Fig. 3. Hydrate film after 1.7µs. The system is 128×128

nm. Left : Phase field theory simulation. Right : Cellular

automaton simulation.
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Fig. 4. Fraction of total system converted into hydrate

as a function of time (system (ii)). Dashed line: Phase
field theory simulation. Solid line: Cellular automaton
simulation.

ton approach is certainly less rigorous than the
phase field theory. The main problem is that there
are several parameters which are hard to find cor-
rect values for from experiments or from more fun-
damental considerations. In particular, the charac-
teristic energies used in the Metropolis tests, and
the noise terms added to the diffusion currents are
hard to quantify. But the simplicity of the model
is also its strength; we have seen that using the
cellular automaton approach simulations are done
much more efficiently and thus allows for larger
systems and longer time spans.
We have demonstrated that for two different ge-

ometries the evolutions of the systems are similar
using both models, but there are some discrepan-
cies at late times, probably due to finite size effects.
Presently the phase field theory is by far the

most mature of the two approaches, but the com-
putational efficiency of the cellular automata
makes this model an interesting supplement to the
more rigorous calculations of the phase field the-
ory. Thus doing simulations on small systems the
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phase phield theory can be used to calibrate the
free parameters of the cellular automata model.
Then the latter model can be used to perform sim-
ulations of larger systems, which are not feasable
to do using phase field theory due to the compu-
tational demands.
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