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Abstract
We assessed if the relative importance of biotic and abiotic factors for plant community com-

position differs along environmental gradients and between functional groups, and asked

which implications this may have in a warmer and wetter future. The study location is a

unique grid of sites spanning regional-scale temperature and precipitation gradients in bore-

al and alpine grasslands in southern Norway. Within each site we sampled vegetation and

associated biotic and abiotic factors, and combined broad- and fine-scale ordination analy-

ses to assess the relative explanatory power of these factors for species composition. Al-

though the community responses to biotic and abiotic factors did not consistently change as

predicted along the bioclimatic gradients, abiotic variables tended to explain a larger propor-

tion of the variation in species composition towards colder sites, whereas biotic variables

explained more towards warmer sites, supporting the stress gradient hypothesis. Significant

interactions with precipitation suggest that biotic variables explained more towards wetter

climates in the sub alpine and boreal sites, but more towards drier climates in the colder al-

pine. Thus, we predict that biotic interactions may become more important in alpine and bo-

real grasslands in a warmer future, although more winter precipitation may counteract this

trend in oceanic alpine climates. Our results show that both local and regional scales analy-

ses are needed to disentangle the local vegetation-environment relationships and their re-

gional-scale drivers, and biotic interactions and precipitation must be included when

predicting future species assemblages.

Introduction
Consequences of climate change for species assemblages and biodiversity may depend on how
the relative importance of biotic and abiotic interactions shifts with the environment. Thus,
disentangling the relative impact of biotic and abiotic factors on species composition, and
how these vary with environmental conditions, are urgently needed to understand how
climate change affects ecological processes and biodiversity across regions [1]. This is a recent

PLOSONE | DOI:10.1371/journal.pone.0130205 June 19, 2015 1 / 14

OPEN ACCESS

Citation: Klanderud K, Vandvik V, Goldberg D (2015)
The Importance of Biotic vs. Abiotic Drivers of Local
Plant Community Composition Along Regional
Bioclimatic Gradients. PLoS ONE 10(6): e0130205.
doi:10.1371/journal.pone.0130205

Academic Editor: Cristina Armas, Institute of
Ecology and Biodiversity, CHILE

Received: February 16, 2015

Accepted: May 17, 2015

Published: June 19, 2015

Copyright: © 2015 Klanderud et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: All vegetation data are
available from the Nordic vegetation database (NVD,
http://www.givd.info/ID/EU-00-018). All other relevant
data are within the paper.

Funding: This study was funded by the Norwegian
Research Council (http://www.forskningsradet.no/)
through the programme NORKLIMA and the
SeedClim project, grant number 184912/S30 to VV.
The funders had no role in study design, data
collection and analysis, decision to publish, or
preparation of the manuscript.

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0130205&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://www.givd.info/ID/EU-00-018
http://www.forskningsradet.no/


restatement of the classical debate within ecological theory about the determinants of plant
community species composition [2, 3]: Abiotic factors, such as soil moisture, nutrients and pH
are traditionally predicted to more directly affect species establishment and survival under
stressful environmental conditions, such as in the alpine [4]. Biotic interactions, on the other
hand, such as competition from denser and higher vegetation and a larger amount of litter, are
often predicted to play a more important role for species coexistence in more productive habi-
tats [5, 3, 6, 7, 8], but see [9, 10, 11]. Negative biotic interactions are also found in stressful envi-
ronments (e.g. [12]), whereas more recently, a number of studies have documented significant
impacts of positive biotic interactions for plants in cold, dry, or infertile unproductive habitats
[13, 14, 15, 16, 17, 18]. Thus, biotic interactions may be equally important in stressful and
more productive habitats, although the relative importance of different types of biotic interac-
tions (positive vs. negative) may shift [19].

Empirical assessment of trends in the impact of species interactions, whether negative or
positive, along broad-scale productivity or stress gradients are typically based on meta-analyses
of experimental manipulation of neighbours and quantification of responses in terms of plant
growth, or less commonly, survival [20, 16]. However, such individual-level data cannot neces-
sarily be scaled up to consequences of these interactions at community-level. To take an ex-
treme (and unlikely) example: if all species were strongly reduced in growth and survival by
competition, but suffered similar reductions, their relative abundance would not be affected
[21]. Thus, approaches to assess effects of biotic interactions on entire communities
are needed.

In this paper we take a non-experimental approach disentangling the relative importance of
interactions among plants vs. the abiotic environment for structure of entire communities. We
first assess the variation in fine-scale vegetation accounted for by local biotic vs. abiotic vari-
ables, where the biotic variables are proxies for the intensity of interactions, such as the cover
or the height of vegetation. We then compare the relative variation accounted for by local biotic
vs. abiotic variables across sites that differs substantially in environmental stress and productiv-
ity. While this observational approach cannot unambiguously isolate cause and effect, it does
avoid experimental artefacts and can more easily focus on the entire community rather than
simple measures of individual growth for one or a few component species. The use of observa-
tional, rather than experimental data also facilitates comparison across different sites
and scales.

Hierarchical multivariate variation partitioning approaches [22], see also [23] are often used
to assess the relative importance of different local- and regional-scale environmental factors for
community composition (e.g. [24, 25, 26, 27]). However, these approaches estimate variation
without taking into account differences in responses across environmental gradients, i.e. all
local communities may not respond to the same underlying environmental factors, and they
may not respond in the same way to those factors. We hypothesize that the relative importance
of biotic and abiotic factors, and possibly the direction of biotic effects (positive vs. negative),
differs between local communities. Thus, we supplement the variation partitioning approach
with replicated local-scale ordination analyses to allow assessment of the relative importance of
different environmental factors within each local community along broader-scale climate gra-
dients. In our study, we thus combine broad- and fine-scale ordination analyses of vegetation
data from local sites within a regional-scale grid of sites to compare the effect of biotic vs. abiot-
ic factors along environmental gradients.

The impacts of biotic and abiotic factors on plant communities along elevation gradients
have primarily been studied, or interpreted, as temperature gradients [16], but see [28]. Tem-
perature and precipitation are, however, often correlated along elevation gradients, and recent
studies have pointed at the importance of precipitation, soil moisture, and their interactions
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with temperature and local environmental factors as drivers of community dynamics [29, 30,
31]. Both temperature and precipitation regimes have changed worldwide during the last cen-
tury, and are predicted to increase by 2.3–4.6°C and 5–30%, respectively, in Northern Europe
towards 2100 [32]. Towards higher elevations, there is also an increasing harshness and de-
creasing productivity. Higher temperatures and precipitation rates may increase productivity
in these areas and thereby alter the relative role of biotic and abiotic interactions. In accordance
with this, vegetation canopy height and litter cover have increased in alpine and arctic plant
communities during the last 20–30 years, both in climate warming experiments [33, 29] and in
unmanipulated monitoring plots [30]. These studies and others (e.g. [34]), also show that gra-
minoids have increased more in absolute abundance than forbs, especially in sites with high
ambient site temperature and soil moisture [30], and forbs decrease in absolute abundance in
the warmest sites [30]. Graminoids are better competitors for nutrients and light than most
forbs [35], and consequently, the decline of forbs may be due to biotic interactions rather than
a direct climate effect. This suggests that climate warming and/or increased precipitation may
directly benefit graminoids, whereas biotic interactions caused by graminoid dominance, may
decrease forb abundance.

To separate the effects of temperature and moisture on the relative importance of biotic and
abiotic factors, we established twelve study sites along natural temperature and precipitation
gradients in southern Norway, such that these two main climate variables varied independently
(Table 1) and all factors other than climate were as identical as possible; including vegetation
type, bedrock, aspect, slope, and land use [36]. Within each site in this regional ‘climate grid’,
we sampled vegetation and associated biotic and abiotic environmental conditions on a fine-
scale.

We used these data to test the following hypotheses: 1) The community response to local-
scale variation in biotic and abiotic variables is not consistent across broad-scale bioclimatic
gradients. 2) The local abiotic environment accounts for more variation in species composition
in stressful and unproductive alpine and dry sites than in the more benign and productive bo-
real and mesic sites. 3) Biotic variables account for more variation in species composition in
warmer and wetter sites. 4) Forbs are more strongly affected by biotic interactions than grami-
noids. We conclude by discussing the implications of these results for grassland species compo-
sition under warmer and wetter future climates. Our results show that the importance of
abiotic vs biotic variables for species composition shift along the broad scale temperature and
precipitation gradients and we propose that both local and regional scales analyses is crucial to
be able to detect and disentangle the different drivers of local vegetation-
environment relationships.

Materials and Methods
The study was conducted at twelve sites situated from the continental east to the oceanic west
and from the alpine to the boreal climatic zones in the fjord landscape of southern Norway.
The sites are distributed across a unique climate grid with three levels of summer temperature
(mean of four warmest months) replicated at four levels of mean annual precipitation (Fig 1,
Table 1). The climate data are interpolated with 100 m resolution [37] from the normal period
1961–1990 [38]. The sites were selected to be as similar as possible with respect to all factors
other than climate to facilitate comparisons between sites. The sites are all grasslands associated
with calcareous bedrock. Most of the sites are south-west exposed slopes of ca twenty degrees
inclination, except one (Boreal 3) that is east exposed. All sites are moderately grazed. Geo-
graphical distance between sites is on average 15 km and ranges from 175 km (Boreal 1 and Bo-
real 4) to 650 m (Boreal 2 and Sub alpine 2; these are also 400 m a.s.l. apart). Within sites, all
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Table 1. Altitude, annual precipitation, summer temperature, number of plots sampled andmean ± standard deviations of predictor variables at al-
pine, sub alpine, and boreal grassland sites along precipitation gradients (low [1] to high [4]) in southern Norway.

Site Site name Altitude
(m a.s.l.)

Precip
(mm)

Temp
(°C)

No
plots

pH LOI
(%)

Moisture
(%)

Vegetation
height (cm)

Litter
cover
(%)

Bryophyte
cover (%)

ALPINE 1 Ulvhaugen 1208 596 6.17 20 5.7
±0.2

7.9
±2.4

37.5±5.7 3.6±1.1 17.6±7.1 13.0±13.7

ALPINE 2 Låvisdalen 1097 1321 6.45 20 5.9
±0.2

8.2
±2.7

40.0±5.4 3.5±1.3 12.4±3.4 17.1±8.5

ALPINE 3 Gudmesdalen 1213 1925 5.87 19 6.1
±0.2

15.3
±4.3

50.8±6.9 4.6±2.2 15.0±5.5 20.4±25.4

ALPINE 4 Skjellingahaugen 1088 2725 6.58 10 6.1
±0.6

7.1
±3.8

47.6±6.6 4.1±0.9 12.4±6.9 28.0±16.9

SUB-ALPINE
1

Ålrust 815 789 9.14 20 5.4
±0.2

9.1
±3.1

33.1±5.2 3.3±1.2 11.3±4.1 17.1±17.1

SUB-ALPINE
2

Høgsete 700 1356 9.17 20 5.2
±0.2

12.9
±0.8

36.5±1.5 8.9±2.8 13.2±6.2 34.9±14.5

SUB-ALPINE
3

Rambæra 769 1848 8.77 18 5.4
±0.3

10.0
±3.2

37.5±7.4 5.3±2.5 11.4±4.0 29.9±17.8

SUB-ALPINE
4

Veskre 797 3029 8.67 10 5.8
±0.2

13.4
±2.5

50.2±3.8 4.1±1.2 8.2±3.2 25.4±17.2

BOREAL1 Fauske 589 600 10.3 10 5.3
±0.1

10.7
±1.4

34.8±3.0 9.4±2.6 15.3±5.5 9.7±6.9

BOREAL 2 Vikesland 474 1161 10.55 10 5.2
±0.2

14.7
±2.1

35.0±2.8 8.6±4.1 16.1±7.5 50.1±20.1

BOREAL 3 Arhelleren 431 2044 10.60 10 5.2
±0.1

10.1
±1.3

43.8±2.0 15.9±5.2 10.2±2.8 41.9±22.9

BOREAL 4 Øvstedal 346 2923 10.78 5 5.3
±0.2

10.1
±3.7

31.5±5.7 11.9±2.8 9.1±4.1 40.7±22.8

LOI refers to Loss-On-Ignition, a measure of soil organic matter.

doi:10.1371/journal.pone.0130205.t001

Fig 1. Map and study design. Location of the twelve study sites along temperature and precipitation
gradients in the fjord landscape of southern Norway.

doi:10.1371/journal.pone.0130205.g001
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plots were situated in the selected grassland within 5 blocks with a total area of ca. 75–200 m2.
All the plant communities are within the plant sociological association Potentillo-Festucetum
ovinae [39]. In the alpine, this type tends towards Potentillo-Poligonium vivipari, and in some
of the lowland sites, they tend towards Nardo-Agrostion tenuis [39].

Vegetation sampling was conducted in 25 x 25 cm plots randomly positioned within five
blocks at each site. The number of plots differs between sites due to the design of a transplant
experiment conducted between the sites (Table 1). We estimated percentage cover of all vascu-
lar species, and the total cover of bryophytes, litter, and bare soil in each plot. We used a ruler
at four fixed points in each plot to measure the mean height of the vegetation. All of these vari-
ables are important proxies for the intensity of positive as well as negative biotic interactions
among plants in boreal and alpine grasslands. Height of the vascular vegetation may indicate
the intensity of competition for light. Increasing vascular cover may also indicate increasing
competition (for light or belowground), but under harsh environmental conditions increasing
cover has also been shown to facilitate recruitment [40, 41] and plant growth [35]. Bryophytes
may limit seedling emergence and growth by limiting access to soil, shading or allelopathic in-
teractions [15, 42], limit growth of the vascular vegetation [43], or facilitate other species due
to their water holding capacities [44]. Similarly, litter cover may limit plant recruitment by
shading, act as a physical barrier to seedlings and shoots (e.g. [45, 46], or facilitate plant growth
by providing nutrients through decomposition or by ameliorating drought or temperature ex-
tremes [47]. All the sites are on non-protected privately owned land, and permits for doing
field sampling has been given from the twelve landowners. No protected species were sampled.
The sampled vegetation data are deposited in the Nordic vegetation database (NVD, http://
www.givd.info/ID/EU-00-018) [48].

To quantify the local abiotic environment, we measured soil pH, moisture, and organic con-
tent (proxy for nutrient availability) in each plot. These are important determining factors for
plant species composition and diversity in this system [24, 40]. We were able to take the soil
samples from directly underneath the sampled vegetation in each of the plots, because, after
the vegetation was sampled, all plots were dug up and transplanted to a new site for another ex-
periment. The soil samples were stored cold and brought to the freezer directly after sampling.
Before analyses the soil was thawed and put through a two mm sieve. Soil pH was measured
after adding 50 ml distilled water to 25 g soil and mixing for two hours. To measure water con-
tent, the soil was weighed, and then dried at 105°C for 24 hours and left one hour in a desicca-
tor before weighing again. Loss-on-ignition (LOI) was used to estimate soil organic matter; the
soil was burnt for another six hours at 550°C and then left one hour in the desiccator before
weighing. We also measured soil moisture in the field by using a SM 200 Soil moisture sensor
(Delta-T Devices Ltd, UK) at four fixed points per plot and calculated the average. Soil mois-
ture was positively correlated between the soil sampled from the field and the direct field mea-
surements, and to obtain more sampling points on a time scale, we used the average of the soil
sample and field measurements in the analyses.

Statistical analyses
To determine whether the design of the grid with orthogonal temperature and precipitation
gradients corresponded to clear vegetation patterns with respect to these two factors, we first
examined the regional-scale pattern in vegetation-environment relationships by means of a ca-
nonical correspondence analysis (CCA; [49]) with all sites, climate variables, and local environ-
mental variables included. Unimodal-based methods were chosen because the gradients in the
overall compositional data were relatively strong (gradient length axis 1 = 3.69, axis 2 = 2.5,
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axis 3 = 3.32, axis 4 = 2.30 SD, assessed by detrended correspondence analysis with default
options).

We then partitioned the community data into graminoid and forb species composition and
conducted a series of analyses on these two datasets to determine the relative importance of the
biotic and abiotic variables for local community composition within each dataset along the
bioclimatic gradients.

First, a standard hierarchical variation partitioning [22], see also [23] was used to assess the
overall importance of the different groups of explanatory variables on regional (among-site)
and local (within-site) scales. This was done in three steps: (1) We assessed the total variation
accounted for by each local abiotic (soil moisture, pH, LOI) or biotic (vegetation height and
cover, bryophyte cover, litter cover, bare soil) variable. For the variable ‘vegetation cover’, the
sum of all forb species’ covers was used as a predictor for the graminoid dataset, and the sum of
all graminoid species’ covers was used as a predictor for the forb dataset. Similarly, we quanti-
fied the variation explained by each of the the two groups (abiotic, biotic) where only signifi-
cant (p< 0.05) variables, as assessed by forward selection, were retained. (2) For each of the
analyses above, variation at the within-site or local scale was quantified by running the analyses
described above with dummy variables representing all the twelve sites as co-variables in partial
CCAs. (3) Variation at the among-site or regional scale was calculated by subtracting this
local-scale variation (calculated in step 2) from the total variation explained by that variable or
group (calculated in step 1).

Second, to test whether variation explained by biotic and abiotic variables differed among the
12 local sites (i.e., hypothesis 1) we conducted a series of site-wise ordination analyses. As it could
be easier to pick up biotic or abiotic driven variability in more heterogeneous datasets, we used
multivariate dispersion to statistically compare the magnitude of within-site heterogeneity in
species composition among sites for multivariate species compositional data [50]. This analysis
shows that the within-site compositional variability is comparable in magnitude among sites
(multivariate dispersion: 0.37±0.04), and any differences were unrelated to the broad-scale
temperature and precipitation gradients (temperature; r2 = 0.05; precipitation: r2 = 0.02). The
species composition within each site was relatively homogenous (gradients< 2.5 SD, assessed by
detrended correspondence analyses), and we therefore used redundancy analysis (RDA; [51]) to
assess the proportion of variation in graminoid and forb species composition explained by abiotic
and biotic factors for each of the sites. Site Boreal 4 was removed from the data before analyses
due to low sample size. For each of the 11 remaining sites, we then estimated the variation in the
graminoid and forb species composition explained by each explanatory variable both separately
(8 variables, graminoids and forb community, 11 sites; total of 176 ordination analyses) and
jointly for the two groups of explanatory variables (biotic vs abiotic; two communities, 11 sites
for a total of 44 ordination analyses). In the group-wise ordination analyses we used forward se-
lection within each dataset, and included only significant variables (p< 0.1) in each of the two
groups, or, if none were significant, the best predictor in each group, in the final analyses. We
used presence/absence data and downscaling of rare species in all ordinations, which, along with
the forward selections, were conducted in Canoco 5 [52].

We analysed the output from these site-wise ordination analyses to test whether the relative
importance of biotic vs. abiotic variables in determining species composition changes in consis-
tent ways along temperature and precipitation gradients (hypothesis 2, 3), or varies between
the functional groups (graminoids, forbs; hypothesis 4). We first fitted simple linear regressions
to assess if the variation in forb or graminoid species composition explained by each of the
local environmental variables (individual biotic and abiotic variables, quantified in the site-
wise analyses described above) varied systematically along the regional-scale temperature and
precipitation gradients. We then tested the relative explanatory power of biotic and abiotic
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factors for local community patterns more formally in an analysis where the proportion of the
total explained variation accounted for by the biotic variables in the RDA analyses were used as
response variable in an ANOVA with temperature (alpine, sub alpine, boreal), precipitation
(levels1-4), or functional group (forb or graminoid), and their interactions as explanatory vari-
ables. Proportional data were used in these overall models to avoid biases due to methodologi-
cal artefacts causing different fractions of the total variation explained among datasets [53].
These analyses were performed in R version 2.15.3 [54] using RStudio version 0.96.331 (RStu-
dio, Inc., Boston, Massachusetts, USA) and the car package [55].

Results
The canonical correspondence analysis (CCA) shows that the main patterns in plant commu-
nity composition in the full dataset reflect the temperature (axis 1) and precipitation (axis 2) of
the sites distributed within the climate grid in southern Norway (Fig 2). The site mean biotic
and abiotic environmental variables are also related to these major gradients. As expected, veg-
etation height increases towards warmer climates, soil moisture increases with precipitation,
whereas pH is higher in alpine sites. Interestingly, graminoid cover and richness increase with
precipitation and soil moisture, whereas forb cover is negatively correlated with these variables
and with the graminoids (Fig 2). Bare soil, indicating disturbance or bad conditions for plant
growth, is most common in dry alpine sites, and highly correlated with forb species richness.
Bryophyte cover on the other hand, is negatively correlated with forb species richness, and, to-
gether with soil organic content (LOI), highest towards warmer and wetter sites.

Fig 2. Overall ordination of the grid. Canonical correspondence analysis (CCA) of measured biotic (green)
and abiotic (black) environmental variables and alpine (▲), sub-alpine (●) and boreal (▼) sites along a
precipitation gradient (1–4 from light to dark blue, see Fig 1) in southern Norway. LOI refers to Loss-On-
Ignition, a measure of soil organic matter. Eigenvalues axis 1 = 0.472, axis 2 = 0.248, axis 3 = 0.182, axis
4 = 0.137. Only the two first axes are shown.

doi:10.1371/journal.pone.0130205.g002
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These regional-scale patterns are reflected in the among-site variation components in both
the graminoid and the forb species composition (Fig 3A). Vegetation height, soil moisture and
pH are the most important variables for both functional groups, with soil moisture somewhat
more important for graminoids, and pH more important for forbs. The low explanatory power
of all environmental variables at the local scale (Fig 3B; abiotic variables average 3.17% ± 1.38
for graminoids, 2.82 ± 0.66 for forbs; biotic average 1.20% ± 0.38 for graminoids, 1.69 ± 0.42
for forbs) suggests that either the measured variables are not important for species composition
within sites, or that the community responses to these variables differ between sites.

To distinguish between these possibilities, vegetation-environment relationships were ana-
lysed separately for each site. The explanatory power of both biotic and abiotic variables for
local compositional patterns increases substantially in the site-wise analyses relative to the
analyses on the entire dataset (Fig 3C; abiotic variables average 13.83% ± 0.93 for graminoids,
11.69 ± 1.00 for forbs; biotic average 8.85% ± 2.58 for graminoids, 9.78 ± 1.96 for forbs, across
sites). The regression slopes of the linear models indicate that this local explanatory power var-
ies systematically between biotic and abiotic variables, along the climate gradients, and between
forbs and graminoids (Table 2). The explanatory power of individual local biotic variables
changes more consistently in response to temperature than the abiotic variables: All biotic vari-
ables have consistently positive (if rarely statistically significant) regression slopes and thus
likely explain more of the variation in both forb and graminoid species composition towards
warmer sites (Table 2). As expected, forbs have steeper regression slopes for the biotic variables
than graminoids. The patterns along the precipitation gradient are less clear, but soil pH ex-
plains more of graminoid species composition towards wetter sites (Table 2). The ANOVA re-
sults confirm these patterns–the proportion of the total explained variation in the site-wise
RDAs explained by the biotic variables (relative to the abiotic) increases systematically with in-
creasing temperature, and a significant interaction with precipitation suggests that the relative
role of local biotic and abiotic environmental variables shifts along the broad scale climate gra-
dients (Table 3, Fig 4). Moreover, biotic variables seem to explain more towards wetter sub al-
pine and boreal sites, but more towards dryer sites in the alpine (Table 3, Fig 4).

Fig 3. Variation explained at broad and fine geographical scales.Compositional variation in graminoid and forb species (% of total deviance [CCA] or
variation [RDA]) explained by abiotic and biotic environmental variables, grouped and separately, at the a) regional/among site scale and b) local/within site
scale when all sites are part of the same canonical correspondence analysis (CCA). Part c) shows parallel results for separate site-wise redundancy
analyses (RDA) analyses for each of eleven grassland sites in southern Norway. LOI refers to Loss-On-Ignition, a measure of soil organic matter.

doi:10.1371/journal.pone.0130205.g003
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Discussion
Vegetation and environmental analyses of alpine and boreal grasslands of southern Norway
show that the abiotic and biotic drivers of local-scale variation in plant community composi-
tion shift along the regional-scale temperature and precipitation gradients. Although the pat-
terns are not strong, our results to some extent support the predictions of a decreasing role of
abiotic and an increasing role of biotic environmental variables for species composition to-
wards warmer climates (e.g. [4, 5, 3]). Interactions between temperature and precipitation indi-
cate, however, that the importance (as measured by variation explained) of biotic vs. abiotic
variables varies in complex ways, in some cases driven by the specific biotic or abiotic variable.

The shift between local abiotic and biotic determinants of species composition towards
warmer sites reflects the productivity gradient in the region, with plant community biomass

Table 2. Regression slopes and associated p-values (* p < 0.05, · p < 0.1, no symbol = not significant) of relationships between variation in forb
and graminoid species composition explained by local abiotic and biotic environmental variables in redundancy analyses (RDA) of local grass-
land species composition along broad scale temperature and precipitation gradients in southern Norway.

Temperature Precipitation

Forbs Graminoids Forbs Graminoids

Abiotic variables - 3.153* - 1.852 + 0.339 + 0.596

pH - 0.067 - 0.859 + 0.323 + 0.521*

LOI + 0.072 + 0.857 + 0.078 + 0.095

Moisture + 0.411 - 0.898 - 0.136 + 0.347

Biotic variables + 0.254 + 1.191 + 0.215 - 0.056

Vegetation height + 1.318 + 1.227 + 0.196 + 0.109

Litter cover + 1.222· + 0.978 + 0.164 - 0.107

Bryophyte cover + 1.040· + 1.025 + 0.099 + 0.029

LOI refers to Loss-On-Ignition, a measure of soil organic matter. n = 11.

doi:10.1371/journal.pone.0130205.t002

Table 3. ANOVA estimates, F- and P-values of the relative proportion of the explained variation accounted for by biotic (vs abiotic) variables in re-
dundancy analyses (RDA) of graminoid and forb species composition in grassland sites along temperature and precipitation gradients in south-
ern Norway.

Predictors df Estimates F P

Intercept 43.45

Temperature 2 6.91 0.011

Sub-alpine -4.99

Boreal 17.54

Precipitation 3 2.71 0.096

2 4.05

3 -5.44

4 -19.55

Temperature × Precipitation 5 3.57 0.037

Sub-alpine × 2 -7.75

Boreal × 2 -10.73

Sub-alpine × 3 43.12

Boreal × 3 5.56

Sub-alpine × 4 29.94

Temperature and precipitation are expressed factorial variables (three temperature levels: alpine, sub-alpine, boreal, and four precipitation levels 1–4).

Functional type (graminoid vs forb) and its interactions were not significant and therefore not included in the final model. n = 22.

doi:10.1371/journal.pone.0130205.t003
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increasing from alpine to boreal sites [56]. Thus, our results are in line with the predictions
that in the alpine, where vegetation cover is sparser, the impacts of the abiotic environment is
most important for species composition, whereas in the lowlands where plant biomass is
higher, effects of the biotic environment are more prevalent. Nevertheless, although the role of
local biotic environmental variables slightly increased towards warmer and more productive
sites in our study area, precipitation gradients showed no consistent trend and even the tem-
perature pattern was relatively weak and noisy. We suggest that this is because biotic interac-
tions represent the net effects of both facilitative and competitive processes, with the role of
competition predicted to decrease, and facilitation to increase, towards stressful environments
(the stress gradient hypothesis; [57, 13, 16]). Although our study cannot distinguish between
competitive and facilitative processes, our results suggest that biotic interactions are important
for plant community structure also in cold, low-productivity systems. Competitive interactions
have been shown to affect recruitment also in alpine [58, 59, 41] and arctic [15] plant commu-
nities. In line with these findings, other studies in our climate grid have also shown that the
vegetation canopy limits seedling recruitment both in alpine and boreal sites, although less pro-
nounced in the alpine [60]. On the other hand, an intact vegetation canopy, and a dense litter
and bryophyte cover, may also facilitate plant recruitment and growth in the climatically severe
alpine sites by providing, shelter, nutrients or moisture [13, 16, 18].

The biotic variables tended to explain a higher proportion of the variation in forb than of
graminoid species composition towards warmer sites in the study area. Forbs may be more sus-
ceptible to biotic interactions than graminoids, and the negative correlation in the overall ordi-
nation in Fig 1 between forb cover and graminoids also indicates a competitive relationship
between the two functional groups, which is in line with results from a graminoid removal ex-
periment performed in the same grid of sites. This may suggest that the presence of graminoids
in the community can decrease forb cover, in particular when precipitation and soil moisture
increase [56]. Increased abundance of graminoids at the expense of forbs is found in experi-
ments where warming and nutrient addition generally benefit graminoids more than forbs [61,
62, 63, 36]. This is likely because graminoids respond faster than most of the forbs to the nutri-
ents added [62], and thereby out-compete the low-stature forbs for space and light by their
higher standing biomass. In addition to the height of the vegetation, litter and bryophyte cover

Fig 4. Variation explained by abiotic vs. biotic variables.Relative variation in species composition explained by abiotic (black) and biotic (grey)
environmental variables in site-wise redundancy analyses (RDA) performed across eleven grassland sites in alpine, sub alpine and boreal sites along a
precipitation gradient from low (1) to high (4) in southern Norway. LOI refers to Loss-On-Ignition, a measure of soil organic matter.

doi:10.1371/journal.pone.0130205.g004
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also seemed to be more important determinants of forb than of graminoid composition towards
warmer sites. Both litter [46] and bryophytes [15, 58, 42] may limit seedling recruitment, and
could therefore act more as limiting factors for forbs than for graminoids, as forbs generally de-
pend more on seedling recruitment for population persistence than the more clonal graminoids.
Moreover, a thick moss cover, as found in the warmest sites in our study, may have negative ef-
fects on low-stature forbs through overgrowth of stems and leaves [64, 65, 43] or through allelo-
pathic interactions [42]. Decay processes may also be faster and more prevalent in warm sites,
and nutrients made available from decomposing litter may benefit graminoids more than forbs.
Thus, these local biotic variables may have different effects on forbs and graminoids, respectively,
due to differences in recruitment and growth traits between these functional groups.

The patterns along the precipitation gradient were generally complex, with precipitation effects
on the relative role of local biotic and abiotic variables depending on temperature (i.e., differing be-
tween alpine, sub alpine and boreal sites). The relationship between plant community biomass and
precipitation is unimodal throughout the study area, with highest productivity at intermediate pre-
cipitation levels [56]. The role of the local biotic environmental variables for species composition
slightly followed this pattern, whereas abiotic variables explained, as expected, a lesser proportion
of the variation in species composition towards wetter and more productive sub alpine and boreal
sites. In the alpine on the other hand, abiotic variables explained more towards wetter sites even
though productivity is higher here than in the dryer alpine sites. This might be explained by the
large amounts of the precipitation falling as snow in the wet alpine sites, resulting in shorter grow-
ing seasons and consequently a more stressful environment for the plants. Hence, snow cover like-
ly overrules the effects of biotic interactions for plant species composition in snow rich areas.

Our results from analyses of local-scale vegetation patterns across a climate grid in southern
Norway strongly support recent studies that call for vegetation-environment analyses per-
formed across different spatial scales [18, 66, 67]. As the importance of different variables for
species composition shift along the bioclimatic gradients in our study system, analyses on both
local and regional scales are needed to detect and disentangle the local vegetation-environment
relationships and their regional-scale drivers. Surrogates of biotic interactions, in particular the
height of the vegetation, explained a substantial proportion of both alpine, sub alpine, and bo-
real species composition, with an increasing role towards warmer sites. This suggests that biotic
interactions may become more important for alpine and boreal grassland community structure
and composition in the future. In oceanic alpine regions, this trend may be counteracted by in-
creased winter precipitation, resulting in stronger abiotic environmental control. Based on our
results we also hypothesise that graminoids might benefit more from warmer and wetter future
climates than forbs, and that forbs might decline due to competition from increasing abun-
dances of graminoids in the future [61, 62, 35, 34]. Our results highlight the importance of in-
cluding biotic interactions in models predicting future distribution of species assemblages [66],
and that precipitation needs to be taken into account in climate change effects studies.
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