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Abstract. This paper discusses the relative performance of
several climate models in providing reliable forcing for hy-
drological modeling in six representative catchments in the
Mediterranean region. We consider 14 Regional Climate
Models (RCMs), from the EU-FP6 ENSEMBLES project,
run for the A1B emission scenario on a common 0.22◦ (about
24 km) rotated grid over Europe and the Mediterranean re-
gion. In the validation period (1951 to 2010) we consider
daily precipitation and surface temperatures from the ob-
served data fields (E-OBS) data set, available from the EN-
SEMBLES project and the data providers in the ECA&D
project. Our primary objective is to rank the 14 RCMs for
each catchment and select the four best-performing ones
to use as common forcing for hydrological models in the
six Mediterranean basins considered in the EU-FP7 CLIMB
project. Using a common suite of four RCMs for all studied
catchments reduces the (epistemic) uncertainty when eval-
uating trends and climate change impacts in the 21st cen-
tury. We present and discuss the validation setting, as well
as the obtained results and, in some detail, the difficulties
we experienced when processing the data. In doing so we
also provide useful information and advice for researchers
not directly involved in climate modeling, but interested in
the use of climate model outputs for hydrological modeling
and, more generally, climate change impact studies in the
Mediterranean region.

1 Introduction

Climate Models (CMs) are numerical tools used to simulate
the past, present and future of Earth’s climate. Hence, eval-
uating the accuracy of CMs is a crucial scientific and ap-
plicative objective, not only for the role of models in recon-
structing the past and projecting the future state of the planet,
but also because of their increasing relevance in the process
of policymaking. For the latter purpose, it is necessary to
summarize and evaluate the results originating from an in-
creasing number of Global Climate Models (GCMs), provid-
ing climate projections over the whole planet. A common
practice is to build multi-model ensembles and study their
statistics (mainly ensemble mean and spread). Note, how-
ever, that a multi-model ensemble is not statistically homo-
geneous (i.e. formed by statistically equivalent realizations of
a process) and, therefore, using its mean to approximate the
truth and its standard deviation to describe the uncertainty
of the outputs, could be highly misleading (Lucarini, 2008;
Annan et al., 2011).

In general GCMs are suitable to provide large-scale cli-
mate predictions not directly relevant to hydrological evalu-
ations at a river-basin level, which can be of interest for local
policymaking. In order to refine GCM outputs, the most com-
mon approach is to use statistical and dynamical downscaling
tools. Regional Climate Models (RCMs) are high-resolution
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dynamical models that take advantage of detailed represen-
tations of natural processes at high spatial resolutions ca-
pable of resolving complex topographies and land-sea con-
trast. However, they are run on a limited domain and thus re-
quire boundary conditions from a driving GCM (e.g.Giorgi
and Mearns, 1999; Wang et al., 2004; Rummukainen, 2010).
Thus, the GCM-nested nature of regional climate modeling
implies that RCM climate reconstructions and projections
can critically depend on the driving GCM (e.g.Christensen
et al., 1997; Takle et al., 1999; Lucarini et al., 2007). More-
over, precipitation and other atmospheric quantities (like
temperature), although useful in improving climate modeling
by highlighting and explaining differences in GCM parame-
terization and representation of climate features, can hardly
be considered climate-state variables (Lucarini, 2008). The
definition of reasonable climate scenarios has been an issue
of major research efforts by the international scientific com-
munity (e.g.Lucarini, 2002; Fowler et al., 2007; Räisänen,
2007; Moss et al., 2010).

A key role in CMs is played by the atmospheric part of
the hydrological cycle, not only because of its strong impact
on the energy of atmospheric perturbations, but also because
of the contribution of hydrometeors to human activities and
the evolution of the environment. These contributions range
from space–time availability of water resources (which affect
land policy), to extreme events like mudslides, avalanches,
flash floods and droughts (e.g.Becker and Grünewald, 2003;
Roe, 2005; Tsanis et al., 2011; Koutroulis et al., 2013;
Muerth et al., 2013). The significant impact of the hydro-
logical cycle on human communities and the environment
is also reflected in the number of studies focused on the
use of CM results for hydrological evaluations and assess-
ments (e.g.Senatore et al., 2011; Sulis et al., 2011, 2012;
van Pelt et al., 2012; Guyennon et al., 2013; Cane et al., 2013;
Velázquez et al., 2013). The relevance of this subject has also
led many investigations towards ranking and validating CM
performances based on hydrological measures.

Intercomparison studies have shown that no particular
model is best for all variables and/or regions (e.g.Lambert
and Boer, 2001; Gleckler et al., 2008). Most intercompari-
son and validation studies focus on evaluating hydrologically
relevant parameters like temperature, precipitation, and sur-
face pressure (e.g.Perkins et al., 2007; Giorgi and Mearns,
2002). Taylor (2001) introduced a general method to sum-
marize the degree of correspondence between simulated and
observed fields.Murphy et al.(2004) evaluated the skill of a
53-model ensemble in simulating 32 variables (from precipi-
tation to cloud cover to upper-level pressures) to determine a
climate prediction index (CPI) that could provide an over-
all model weighting. Based onMurphy et al.(2004) CPI,
Wilby and Harris(2006) evaluated climate models used in
hydrological applications to create an impact-relevant CPI.
The latter was based on the average bias of effective summer
rainfall, which was found to be the most important predic-
tor of annual low flows in the basin studied.Perkins et al.

(2007) ranked 14 climate models based on their skill in si-
multaneously reproducing the probability density functions
of observed precipitation, and maximum and minimum tem-
peratures over 12 regions in Australia. Using results from the
Coupled Model Intercomparison Project (CMIP3),Gleckler
et al. (2008) ranked climate models by averaging the rela-
tive errors over 26 variables (precipitation, zonal and merid-
ional winds at the surface and different pressure levels, 2 m
temperature and humidity, top-of-the-atmosphere radiation
fields, total cloud cover, etc.). They also showed that defining
a single index of model performance can be misleading, since
it obscures a more complex picture of the relative merits of
different models.Johnson and Sharma(2009) derived the
VCS (Variable Convergence Score) skill score to compare
the relative performance of a total of 21 model runs from nine
GCMs and two different emission scenarios in Australia, to
their ensemble mean. They applied the VCS score to eight
different variables and found that pressure, temperature, and
humidity received the highest scores.

Nevertheless, it is worth mentioning that CM results are
currently tested only against observational (past) data, and
the choice of the observables of interest is crucial for deter-
mining robust metrics able to audit the models effectively
(Lucarini, 2008; Wilby, 2010). Unfortunately, data are of-
ten of nonuniform quality and quantity, due to e.g. the non-
stationarity and non-homogeneity caused by changes in the
network density, instrumentation, temporal sampling, and
data collection strategies over time.

Recently, the detailed investigation of the behavior of
CMs has been greatly facilitated by research initiatives
aimed at providing open-access outputs of simulations
through projects like PRUDENCE (Prediction of Regional
scenarios and Uncertainties for Defining EuropeaN Cli-
mate change risks and Effects,http://prudence.dmi.dk/, for
RCMs), PCMDI/CMIP3 (Program for Climate Model Di-
agnosis and Intercomparison/Coupled Model Intercompari-
son Project – Phase 3,http://www-pcmdi.llnl.gov, for GCMs
included in the IPCC4AR), ENSEMBLES (ENSEMBLE-
based Predictions of Climate Changes and their Im-
pacts, http://ensembles-eu.metoffice.com, for RCMs) and
STARDEX (STAtistical and Regional dynamical Downscal-
ing of EXtremes for European regions,http://www.cru.uea.
ac.uk/projects/stardex/, for RCMs).

In the framework of ENSEMBLES project, there has been
an effort to produce a reference set for some of the hydrolog-
ically relevant variables (i.e. precipitation, temperature and
sea level pressure), on a regular data grid, based on objec-
tive interpolation of the observational network. This initia-
tive has continued as a part of the URO4M (EU-FP7) project,
which made the observed data fields (E-OBS) available on
different grids for the 1950–2011 time frame (Haylock et al.,
2008; van den Besselaar et al., 2011). Recently, the E-OBS
fields were newly released on a rotated grid consistent with
that used by ENSEMBLES RCMs over western Europe. Al-
though limited (due to the non-uniform spatial density of the
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observations used to produce the gridded data), the E-OBS
fields constitute a reference for evaluating the performance
of different CMs in the European and Mediterranean areas;
from a technical point of view, they are built for direct com-
parisons with ENSEMBLES RCM outputs.

Following these recent initiatives, the European Union
has funded the Climate Induced Changes on the Hydrol-
ogy of Mediterranean Basins project (CLIMB;http://www.
climb-fp7.eu), with the aim of producing a future-scenario
assessment of climate change for significant hydrological
basins of the Mediterranean (Ludwig et al., 2010), includ-
ing the Noce and Riu Mannu river basins in Italy, the Thau
coastal lagoon in France, Izmit bay in the Kocaeli region
of Turkey, the Chiba river basin in Tunisia, and the Gaza
aquifer in Palestine. The Mediterranean countries constitute
an especially interesting area for hydrological investigation
by climate scientists, given the high risk predicted by climate
scenarios, and the pronounced susceptibility to droughts, ex-
treme flooding, salinization of coastal aquifers and deserti-
fication, predicted as a consequence of the expected reduc-
tion of yearly precipitation and increase of the mean annual
temperature.

The general goal of the CLIMB project is to reduce the un-
certainty of the process of assessing climate change impacts
in the considered catchments. Within the chain of models and
data leading to the evaluation of the hydrological response,
a major source of uncertainty is certainly related to the wide
spread of climate signals simulated by different climate mod-
els. That said, our work aims at reducing the uncertainty
component introduced by the different climate model repre-
sentations. To pursue this objective, we intercompare the per-
formances of different RCMs from the ENSEMBLES project
and select a common subset of four models to drive hydrolog-
ical model runs in the catchments. More precisely, this paper
uses the newly released E-OBS fields, to (a) evaluate the per-
formance of ENSEMBLES RCMs in dealing with hydrolog-
ically relevant parameters in six Mediterranean catchments,
and (b) provide validated data to be used for hydrological
modeling in successive steps of the CLIMB project.

Section 2 introduces the CLIMB project in the context
of the hydrological basins of interest, and Sect. 3 provides
detailed information on the RCM data sets used. Section 4
describes the methods applied to audit ENSEMBLES past-
climate simulations, and Sect. 5 presents the obtained re-
sults, setting them in the context of previous research. Fi-
nally, Sect. 6 summarizes the main conclusions of this study.

2 The CLIMB project and the target catchments

As noted in the Introduction, results presented in this pa-
per were produced in the framework of the CLIMB project
and are aimed at selecting the most accurate ENSEMBLES
Regional Climate Models (RCMs) to drive hydrological
model runs in six (6) significant Mediterranean catchments.

Fig. 1. Locations of representative Mediterranean catchments considered in this study (see also Table 1): 1 –
Thau (France), 2 – Riu Mannu (Italy), 3 – Noce (Italy), 4 – Kocaeli (Turkey), 5 – Gaza (Palestine), 6 – Chiba
(Tunisia). Model verification areas that correspond to the 4×4 stencil of ENSEMBLES grid-points centered in
each catchment appear as shaded; see main text for details.

Fig. 2. Combinations of Global Climate Models (GCMs) and Regional Climate Models (RCMs) considered in
this study. In all figures, we use the same color (symbol) to refer to the same GCM (RCM). Model acronyms
are introduced in Tables 2 and 3.
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Fig. 1. Locations of representative Mediterranean catchments con-
sidered in this study (see also Table1): 1 – Thau (France), 2 – Riu
Mannu (Italy), 3 – Noce (Italy), 4 – Kocaeli (Turkey), 5 – Gaza
(Palestine), 6 – Chiba (Tunisia). Model verification areas that corre-
spond to the 4× 4 stencil of ENSEMBLES grid points centered on
each catchment appear as shaded; see main text for details.

Figure1 shows the location of the catchments, and Ta-
ble 1 summarizes their main characteristics. The areas of
the catchments range from 250 to 3500 km2. Since the hor-
izontal resolution of all ENSEMBLES RCM outputs is ap-
proximately 24 km, all catchments can be embedded within
a 4× 4 stencil of model grid points. From Table1 one sees
that the catchments differ in terms of their overall climatic
characteristics, ranging from semi-arid (Gaza), to Mediter-
ranean (Chiba, Riu Mannu, Thau and Kocaeli), to humid con-
tinental (Noce) and, thus they can be considered representa-
tive of the Mediterranean area. For a given climate model,
the skill in accurately reproducing the local climatic features
can be quite inconsistent, and the relative (and absolute) skill
can vary considerably within the selected ensemble of cli-
mate model results (see Sect. 5). Since our goal is to ac-
count, as much as possible, for all uncertainties related to
the use of different climate models in different catchments,
the validation phase described in this paper aims at selecting
a common subset of four CMs to drive hydrological model
simulations in the considered catchments. In selecting the
four best-performing GCM–RCM combinations, we consid-
ered the additional constraint of maintaining at least two dif-
ferent RCMs nested in the same GCM, and two different
GCMs forcing the same RCM. While the added constraint
does not guarantee selection of the four best overall perform-
ing GCM–RCM combinations in each individual catchment,
it allows for diversity of the selected model results in a com-
mon setting for whole catchments. As a subsequent activ-
ity, not described in this manuscript, we studied the down-
scaled hydrologically relevant fields of the selected GCM–
RCM combinations (as discussed in Sect. 4). Those fields
account for the small-scale variability associated with local
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Table 1.Main topographic and 60 yr (1951–2010) climatological characteristics of the considered catchments: area (S), mean elevation (z),
mean annual precipitation (P ) and sea level temperature (T ), and minimum and maximum values of the monthly averages of precipitation
and sea level temperatures.

Catchment (Country) S z P T min/maxP min/maxT

(km2) (m) (mm yr−1) (K) (mm month−1) (K)

1 Thau (France) 250 150 616 288.4 20/87 280.3/297.3
2 Riu Mannu (Italy) 472 300 466 290.8 3/72 283.2/299.7
3 Noce (Italy) 1367 1600 851 288.6 40/99 275.7/299.7
4 Kocaeli (Turkey) 3505 400 545 288.3 13/88 278.7/298.2
5 Gaza (Palestine) 365 50 217 294.6 0/56 286.6/301.6
6 Chiba (Tunisia) 286 200 377 292.1 2/60 285.1/300.5

Table 2.Acronyms of the Global Climate Models (GCMs) used as drivers of ENSEMBLES Regional Climate Models (RCMs) considered
in this study.

Acronym Climatological center and model

HCH Hadley Centre for Climate Prediction, Met Office, UK
HadCM3 Model (high sensitivity)

HCS Hadley Centre for Climate Prediction, Met Office, UK
HadCM3 Model (standard sensitivity)

HCL Hadley Centre for Climate Prediction, Met Office, UK
HadCM3 Model (low sensitivity)

ARP National Centre for Meteorological Research, France
CM3 Model Arpege

ECH Max Planck Institute for Meteorology, Germany
ECHAM5/MPI OM

BCM Bjerknes Centre for Climate Research, Norway
BCM2.0 Model

topographic features and orographic constraints, crucial for
hydrological modeling. While the obtained results will form
the subject of an upcoming communication, for complete-
ness, in Sect. 4 we summarize those findings crucial in un-
derstanding the constraints imposed by our validation setting.

3 Climate models and reference data set

The intercomparison and validation of CM results were per-
formed for a subset of 14 Regional Climate Models (RCMs)
from the ENSEMBLES project, run for the A1B emission
scenario at 0.22◦ resolution.

The choice of ENSEMBLES RCMs is particularly appeal-
ing due to the available standardizations: (a) all simulations
were run on a common rotated grid of 0.22◦ (this corresponds
to a grid resolution of approximately 24 km at mid-latitudes),
assuring an almost perfect overlap of common grid points;
(b) almost all models cover the 150-yr time frame from 1951
to 2100 at a daily level. The ENSEMBLES high resolution
RCM runs are based on a standard portfolio of climate sce-
narios described in the Fourth Assessment Report of the In-
ternational Panel for Climate Change (IPCC4AR; see for in-
stanceSolomon et al., 2007). The most complete data set is

given for the A1B scenario, which is considered as the most
realistic.

In ENSEMBLES high resolution runs, each RCM is
nested into a larger-scale field. The latter may originate from
different GCMs, leading to different GCM–RCM combina-
tions. For simplicity, we defined an acronym for each GCM
and RCM considered in this study, listed in Tables2 and3,
respectively. In all figures, we use symbols to display results
from different RCMs, and colors to indicate runs forced by
different GCMs. Figure2 summarizes the combinations of
symbols and colors used to display results from the 14 GCM–
RCM combinations considered in this study.

Following the PCMDI/CMIP3 initiative, the ENSEM-
BLES project stimulated and guided several climatic cen-
ters towards standardization of model grids and outputs and,
thus, promoted synergies across different research areas and
interdisciplinary efforts. Nevertheless, when pre-processing
the ENSEMBLES RCM outputs (i.e. before the validation
phase), we experienced some minor discrepancies, requiring
ad hoc treatments. Although all issues were manageable, they
are worth mentioning, especially for scientists who are (or
foresee) using these outputs to run hydrological models and
perform impact studies:
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Table 3.Acronyms of the Regional Climate Models (RCMs) considered in this study.

Acronym Climatological center and model

RCA Swedish Meteorological and Hydrological Institute (SMHI), Sweden
RCA Model

HIR Danish Meteorological Institute (DMI), Denmark
HIRHAM5 Model

CLM Federal Institute of Technology of Zurich (ETHZ), Switzerland
CLM Model

HRM Hadley Centre for Climate Prediction, Met Office, UK
HadRM3Q3 Model

RMO Royal Netherlands Meteorological Institute (KNMI), Netherlands
RACMO2 Model

REM Max Planck Institute for Meteorology, Hamburg, Germany
REMO Model

Fig. 1. Locations of representative Mediterranean catchments considered in this study (see also Table 1): 1 –
Thau (France), 2 – Riu Mannu (Italy), 3 – Noce (Italy), 4 – Kocaeli (Turkey), 5 – Gaza (Palestine), 6 – Chiba
(Tunisia). Model verification areas that correspond to the 4×4 stencil of ENSEMBLES grid-points centered in
each catchment appear as shaded; see main text for details.

Fig. 2. Combinations of Global Climate Models (GCMs) and Regional Climate Models (RCMs) considered in
this study. In all figures, we use the same color (symbol) to refer to the same GCM (RCM). Model acronyms
are introduced in Tables 2 and 3.
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Fig. 2. Combinations of Global Climate Models (GCMs) and Re-
gional Climate Models (RCMs) considered in this study. In all fig-
ures, we use the same color (symbol) to refer to the same GCM
(RCM). Model acronyms are introduced in Tables2 and3.

– For most GCM–RCM combinations, the available time
frames cover the period from 1 January 1951 to 31 De-
cember 2100. However, some model outputs exhibit
missing data on the last days of 2100, whereas for
other models the missing values start at the end of
2099. In addition, two model simulations (i.e. BCM–
HIR, HCS–HIR) stop in year 2050, while the BCM–
RCA model run starts in 1961.

– Models HCH–RCA, HCS–CLM, HCS–HRM, HCL–
HRM, HCH–HRM, HCS–HIR, and HCL–RCA use
a simplified calendar with 12 months of 30 days each
(i.e. 360 days per year), whereas the remainder use a
standard Gregorian calendar with 365 days per regular
year, and 366 days in leap years. Additionally, some of
the last models mentioned do not account for the leap
year exception in 2100. We also detected some missing
or incomplete data. More precisely, in some models
the values for the last days of the simulation period are
simply set to zero, rather than to an unambiguous de-
fault flag for missing values. While this is not an issue
when working with temperature fields expressed in K,
it may create problems when considering precipitation

fields (expressed in kg m−2 s−1), since it is not appar-
ent how to distinguish between missing data and zero
precipitation (this is the case, e.g. for the last 390 days
of data in the HCL–RCA simulation).

– For some models (see below), dry conditions are
indicated by a very small positive or negative constant
value,Pmin, whereas the sea level elevation is set to
a constant value,zsea, different from zero. More pre-
cisely, zsea≈ 0.046 m for HCH–RCA;zsea≈ 0.300 m
for BCM–HIR and HCS–HIR;zsea≈ 0.732 m and
Pmin ≈ −9.0× 10−8 kg m−2 s−1 for ECH–RMO;
zsea≈ −0.002 m andPmin ≈ 1.7× 10−18 kg m−2 s−1

for ARP–HIR and ECH–HIR;zsea≈ −0.321 m and
Pmin ≈ −1.5× 10−11 kg m−2 s−1 for BCM–RCA,
ECH–RCA and HCL–RCA. Also, for the last three
models, missing temperature data at the end of the
simulation period are indicated by a minimum temper-
ature of 0 K, whereas HCL–HRM simulations exhibit
some temperature values on the order of 1025 K. While
the origin of the aforementioned discrepancies in the
data cannot be easily identified (e.g. numerical errors,
spurious effects of model parameterizations, routines
used to create the netCDF files in the ENSEMBLES
archive, etc.), one should properly treat them before
using CM outputs to perform climate change impact
studies. For example, unless properly identified, a
minimum precipitation threshold may bias rainfall
statistics (e.g. the annual fraction of dry periods) and,
from a practical point of view, influence hydrological
and meteorological analysis (e.g. drought analysis).

For each considered catchment, the selected set of cli-
mate model data was validated using the E-OBS data set
from the ENSEMBLES EU-FP6 project, made available by
the ECA&D project (http://www.ecad.eu) and hosted by the
Climate Research Unit (CRU) of the Hadley Centre. E-
OBS data files are gridded observational data sets of daily
precipitation and temperature, developed on the basis of a
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European network of high-quality historical measurements.
In particular, we used version 5.0 of the E-OBS data set
that covers the period from 1 January 1950 to 30 June 2011,
and is available at four different grid resolutions: 0.25 and
0.5◦ regular latitude–longitude grids, and 0.22 and 0.44◦ ro-
tated pole grids. In our analysis, we use the rotated grid at
0.22◦ resolution, which matches the grid of ENSEMBLES
RCMs exactly. Having an almost perfect point-to-point cor-
respondence between ENSEMBLES RCM results and E-
OBS reference data, greatly simplifies intercomparison, vali-
dation and calibration activities, since no interpolation or re-
gridding of the data is needed. Results from any validation
activity can be sensitive to the choice of the observational ref-
erence. It is also worth mentioning that in each of the consid-
ered countries where CLIMB catchments are located, there
are additional stations not considered for E-OBS. However,
access to and use of their data is often problematic, due to
administrative limitations of the local competent authorities
in distributing the data, long inactivity periods of the stations,
measuring errors, missing values etc. Thus, in a multi-faceted
project like CLIMB, E-OBS allows researchers to overcome
technical limitations, providing regular gridded data of the
same quality and standards for all areas of interest.

There are several additional reasons why the E-OBS data
set is considered to be the best available source for tempera-
ture and precipitation estimates in the considered catchments
to pursue model validation: (1) E-OBS data have been ob-
tained through kriging interpolation, which belongs to the
class of best linear unbiased estimators (BLUE); (2) the orig-
inal data (i.e. prior to interpolation) have been properly cor-
rected to minimize biases introduced by local effects and
orography; (3) the 95 % confidence intervals of the obtained
estimates are also distributed, shedding light on the accuracy
of the calculated areal averages, and (4) the surface-elevation
fields used for E-OBS interpolations are available as well.
The latter can be used to assess which counterpart of the ob-
served differences between ENSEMBLES RCM and E-OBS
climatologies can be attributed to different orographic repre-
sentations and, also, to remove biases introduced by eleva-
tion differences in the E-OBS and corresponding RCM grid
points. For example, to account for different surface eleva-
tion models used by ENSEMBLES RCMs and E-OBS, and
before calculating CM performance metrics, we used the cor-
responding model orographies and a monthly constant lapse
rate to translate surface temperatures at different elevations
to those observed at sea level, as discussed in Sect. 4 below.
For a more detailed description of the E-OBS data set, the
reader is referred toHaylock et al.(2008).

4 Metrics for validation

Several studies (see Introduction) have focused on metrics to
assess the accuracy of climate model results. Note, however,
that performance metrics should depend on the specific use

of climate data. In this study, we focus on providing reliable
climatic forcing for hydrological applications at a river-basin
level. For this purpose, one needs to downscale the CM fields
to resolutions suitable to run hydrological models and assess
climate change impacts. In the following, we summarize the
main aspects of the downscaling procedure in order to make
our validation setting clearer. A detailed description of the
downscaling procedures, together with the obtained results,
will form the subjects of an upcoming work.

Precipitation downscaling was performed using the mul-
tifractal approach described inDeidda (2000) and Badas
et al. (2006), starting from areal averages of daily precip-
itation. The latter were obtained by averaging rainfall val-
ues over a 4× 4 stencil of ENSEMBLES grid points cen-
tered on each catchment, covering an approximate area of
100 km× 100 km. This particular choice allowed for the em-
bedding of all catchments inside equally sized spatial do-
mains. The size of the latter is within the range of the space–
time scale invariance of rainfall indicated by several studies
(Schertzer and Lovejoy, 1987; Tessier et al., 1993; Perica and
Foufoula-Georgiou, 1996; Venugopal et al., 1999; Deidda,
2000; Kundu and Bell, 2003; Gebremichael and Krajewski,
2004; Deidda et al., 2004, 2006; Gebremichael et al., 2006;
Badas et al., 2006; Veneziano et al., 2006; Veneziano and
Langousis, 2005, 2010) and, thus it can be used to define the
integral volume of rainfall to be downscaled to higher reso-
lutions of a few square kilometers. That said, the validation
metrics of ENSEMBLES RCM simulations versus E-OBS
data are calculated based on areal rainfall averages over a
regular 4× 4 grid-point stencil.

Temperature fields from ENSEMBLES RCMs were
downscaled based on the procedure described inListon and
Elder(2006), which combines a spatial interpolation scheme
(Barnes, 1964, 1973) with orographic corrections. Although,
in the case of temperature, downscaling starts from the EN-
SEMBLES resolution (24 km× 24 km), we decided to adopt
the same validation setting as that for precipitation (i.e. calcu-
lated areal averages of daily temperatures over a regular 4× 4
grid-point stencil). Since temperature fields are particularly
sensitive to elevation, in order to make homogeneous com-
parisons, we first reduced surface temperatures at different
elevations to sea level, and then calculated areal averages of
daily temperatures over a regular 4× 4 grid-point stencil cen-
tered on each catchment. For the former, we used a standard
monthly lapse rate for the Northern Hemisphere (Kunkel,
1989) and the corresponding ENSEMBLES model and E-
OBS orographies. This appears to be a reasonable choice
since, after reduction to sea level, the temperature field be-
comes quite smooth.

In summary, all metrics defined below are used to validate
ENSEMBLES RCM simulations vs. E-OBS data, using spa-
tial averages of temperature and precipitation over a 4× 4
grid-point stencil. This choice allows one to better study cli-
matic forcing at a common catchment scale. An additional
advantage is that spatial averaging smooths and filters out
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some local biases present in E-OBS fields. These originate
from the low density of observations, which prevents the ef-
ficient capture of orographic effects on precipitation and tem-
perature and, also prevent the high spatial variability of daily
rainfall from being accounted for.

It is worth mentioning that the E-OBS data set is based on
observations obtained from a network of land-based stations.
Hence, all E-OBS data over sea were masked and set to de-
fault missing values. Nevertheless, missing values were also
found at some grid points over land where the network den-
sity is low. An analysis of the data density over time showed
that there are E-OBS grid points over land where the avail-
ability of interpolated data depends on the period studied.
This is due to changes in the observation network between
1950 and 2011. To account for this issue, when calculating
areal averages of daily values over the 4× 4 grid-point sten-
cil, we maintained those points with less than 6 yr of missing
data (i.e. 10 % of the 60 yr validation period from 1951 to
2010). To that extent, all validation metrics below were cal-
culated using those grid points available for both E-OBS data
and ENSEMBLES RCM simulations.

Following the discussion above, let us defineXm(s, y)

as the monthly spatial average of variableX (i.e. X =T ,
P for monthly temperatures and rainfall intensities, respec-
tively) over an area of approximately 100× 100 km (i.e. a
4× 4 stencil of ENSEMBLES climate model outputs), pro-
duced by climate modelm (m = 1, . . . , 14) for months

(s = 1, . . . , 12) in yeary (y = 1951, 1952, . . . , 2100). Accord-
ing to this notation, let us also denote the index for E-OBS
by m = 0. Thes-th monthly mean and standard deviation of
Xm(s, y) over aNy yr climatological period starting in year
y0 are given by

µX
m(s) =

1

Ny

y0+Ny−1∑
y=y0

Xm(s, y), (1)

σX
m (s) =

√√√√ 1

Ny − 1

y0+Ny−1∑
y=y0

[
Xm(s, y) − µX

m(s)
]2

. (2)

The time window for validation is set to 60 yr (from 1951
to 2010), entirely covered by E-OBS data. Validation of cli-
mate model outputs over that period requires comparing spe-
cific statistics ofXm (m = 1, . . . , 14) to those of E-OBS
(i.e. Xm=0). To do so we introduce average error measures
for the absolute differences between statistics of the observed
(m = 0) and modeled (m = 1, . . . , 14) time series. Setting
y0 = 1951 andNy = 60 in Eqs. (1) and (2), such error mea-
sures for the monthly climatological means and standard de-
viations ofXm, over the 60 yr period 1951–2010 are defined
as

EµX
m =

1

12

12∑
s=1

∣∣∣µX
m(s) − µX

0 (s)

∣∣∣ , (3)

EσX
m =

1

12

12∑
s=1

∣∣∣σX
m (s) − σX

0 (s)

∣∣∣ . (4)

In addition, errors in the marginal distribution ofXm can
be quantified by averaging the absolute differences between
the quantilesxm(αi) of the observed (m = 0) and simu-
lated (m = 1, . . . , 14) series at different probability levelsαi

(i = 1, . . . ,n):

EqX
m =

1

n

n∑
i=1

|xm (αi) − x0 (αi)| . (5)

The above-defined error metrics provide information on the
reliability of a single variable, whereas for subsequent hy-
drological modeling we need to identify those models that
perform best for a specific set of variables. As a minimum re-
quirement for hydrological modeling, we seek for CMs that
provide reliable estimates of precipitation and temperature:
precipitation is the main source of water in the catchment,
whereas temperature controls evaporation and evapotranspi-
ration processes. Thus, in order to compare the performances
of different modelsm (m = 1, . . . , 14) in reproducing, si-
multaneously, the statistics of the observed precipitation and
temperature fields, we introduce the following dimensionless
measures:

εµm = wP EµP
m

M∑
k=1

EµP
k

+ wT EµT
m

M∑
k=1

EµT
k

, (6)

ε σm = wP EσP
m∑M

k=1 EσP
k

+ wT Eσ T
m∑M

k=1 Eσ T
k

, (7)

whereM = 14 is the number of models, andwP andwT are
weighting factors for precipitation and temperature errors, re-
spectively, that satisfywP

+ wT = 1.
Equations (6) and (7) can be used to assess the relative

performance of different models in reproducing the monthly
mean and standard deviation of the observed temperature and
precipitation series. The weighting schemewP =wT = 0.5
corresponds to the most neutral option (i.e. same weights
for both precipitation and temperature). In the limiting case
whenwP = 1 andwT = 0, Eqs. (6) and (7) provide the same
information as Eqs. (3) and (4) when applied to precipita-
tion, with the only difference being that the former equations
lead to dimensionless error metrics. A similar setting holds
for wP = 0 andwT = 1, where Eqs. (3) and (4) lead to dimen-
sionless error metrics for temperature.

It is worth mentioning that proper weighting of precipi-
tation and temperature errors in Eqs. (6) and (7) should in
principle be determined by taking into account the structure
and parameterization of the hydrological model used and its
sensitivity to different forcing variables, as well as the cli-
matology of the basin. However, within the CLIMB project
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a variety of hydrological models have been applied (includ-
ing fully distributed hydrological models as well as semi-
distributed models), to a number of catchments with different
climatologies. Under this setting, it was essential to conduct
a sensitivity analysis to different weighting schemes as de-
scribed in Sect. 5.2.

5 Results and discussion

5.1 Seasonal distribution of precipitation and
temperature

When assessing models’ skills, it is important to exam-
ine their ability to reproduce the annual averages and sea-
sonal variability of precipitation and surface temperature.
These two variables specify the climate type according to the
Köppen–Geiger climate classification system. Thus, a first
skill measure is the ability of the models to reproduce the
local climatic characteristics of specific basins.

Figures 3 and 4 show the mean monthly precipitation and
temperature for each catchment, calculated using Eq. (1),
for the Ny = 60 yr verification period (1951–2010). For the
E-OBS observational reference, we use a dotted black line,
whereas ENSEMBLES RCM results are plotted using the
reference introduced in Fig. 2. Based on the E-OBS seasonal
variation of precipitation and temperature, Thau, Riu Mannu,
Kokaeli and Chiba are characterized by a Mediterranean cli-
mate, with precipitation maxima in winter, and minima in
summer. Gaza, although exhibiting a seasonal cycle of pre-
cipitation similar to the previously mentioned basins, is clas-
sified as semi-arid due to its low annual precipitation and
high mean annual temperature. Noce, by contrast, has a hu-
mid continental climate, receiving regular precipitation dur-
ing the year, with a single maximum during summer. In
essence, although based on a sparse network, E-OBS data
reproduce quite reasonably the expected seasonal climato-
logical patterns in the considered catchments.

In comparing model results for precipitation with E-OBS
observational data, Fig. 3 clearly shows significant discrep-
ancies between ENSEMBLES RCMs and E-OBS climatolo-
gies, both in terms of magnitude and, in some cases, the
observed seasonal cycle. In almost all catchments, several
RCMs produce higher annual precipitation than that ob-
served. In more detail: for Thau, Riu Mannu and Noce, 11 out
of 14 models simulate higher precipitation amounts for at
least ten months of the year. The same problem is detected
for 9 RCMs in Kokaeli and 8 RCMs in Chiba catchments.
An additional observation is that, in all catchments except
Gaza, RCMs exhibit a larger relative error for high precipita-
tion amounts in summer months. This positive bias is ampli-
fied in catchments with Mediterranean climate, where RCM
precipitation can be up to ten times higher than the observed
precipitation. In Gaza, on the other hand, models are typi-
cally biased towards lower values of precipitation, with the

exception of a handful of models, which are instead biased
towards larger precipitation amounts. Note, also, that one
model, BCM–RCA, produces unrealistic results.

A catchment where models’ skills are problematic is
Riu Mannu: while E-OBS indicates almost no precipitation
during the summer months of June–August, some models
(HCL–RCA, BCM–HIR, BCM–RCA, HCH–HRM) display
relatively high amounts of summer precipitation. Although
the skill of RCMs in reproducing seasonal precipitation is
generally weaker during summer, especially for the drier
southern and eastern European regions (Frei et al., 2006;
Maraun et al., 2010), this finding is still surprising, since sev-
eral studies indicate that RCMs tend to underestimate precip-
itation during summer (e.g.Jacob et al., 2007).

Figure 3 also shows that, despite the aforementioned bi-
ases, almost all models predict a reliable seasonal precipita-
tion cycle for the Thau, Riu Mannu, Kocaeli, Chiba and Gaza
catchments. By contrast, RCMs fail to capture the seasonal
cycle of precipitation in the Noce catchment: instead of a
single maximum during summer, most models display a bi-
modal behavior, with one maximum before the summer sea-
son and one directly following it. This pattern indicates a hu-
mid subtropical climate, typical of most lowlands in Adriatic
Italy, south of the Noce region. A possible reason is that, at
24 km resolution, RCMs are limited in resolving small-scale
features necessary to correctly reproduce orographic precip-
itation. Moreover, the observed differences between CM re-
sults and E-OBS observational data might stem from the ir-
regular and sparse network of E-OBS stations, especially in
view of the fact that most stations are located at low altitudes.

Unsurprisingly, RCMs tend to perform better in modeling
surface temperature. Figure 4 shows that all RCMs reproduce
a reliable yearly cycle of monthly climatological tempera-
tures (previously reduced to sea level, see Sect. 4). Neverthe-
less, when compared to E-OBS, several RCMs exhibit sig-
nificant biases (often larger than 5 K), while the inter-model
spread can be as large as 10 K (especially during summer).
In more detail: for Noce, HCL–RCA exhibits a negative bias
larger than 5 K during winter; for Kocaeli, ECH–HIR ex-
hibits a positive bias of about 4 K during winter; whereas for
Chiba, HCL–HRM overestimates temperature during sum-
mer by 5 K. However, given the good representation of the
seasonal temperature cycle, these discrepancies can be prop-
erly reduced using simple bias-correction techniques.

5.2 Selection of best-performing ENSEMBLES models

Error metrics introduced in Eqs. (3) and (4) were calculated
for each ENSEMBLES RCM for the 60 yr verification pe-
riod from 1951 to 2010, and then plotted for each catchment
in a separate scatter plot (Fig. 5). One sees that, in all catch-
ments except Noce, most models (i.e. 11 out of 14 models
of the Thau basin; 13 models of the Riu Mannu and Kocaeli
catchments, and all 14 models of Gaza and Chiba) exhibit
errors lower than 1.5 mm d−1 in their monthly means,EµP,
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Fig. 3. Mean monthly precipitation (mm) over the 60 yr verification period (1951–2100) for the 14 ENSEM-
BLES models and E-OBS. Each subplot displays areal averages over a 4×4 grid-point stencil centered in each
catchment.
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Fig. 3. Mean monthly precipitation (mm) over the 60 yr verification period (1951–2100) for the 14 ENSEMBLES models and E-OBS. Each
subplot displays areal averages over a 4× 4 grid-point stencil centered on each catchment.

and lower than 1 mm d−1 in their monthly standard devia-
tions,EσP. For Noce basin, the corresponding errors are sig-
nificantly larger.

Concerning the temperature error metrics,EµT andEσ T ,
in Fig. 6, one notes that the error in the monthly means is
much larger than the one in the standard deviations: for al-
most all models and most catchments (i.e. all models of the
Thau, Riu Mannu and Chiba basins, 13 out of 14 models
of the Kocaeli catchment, and 12 out of 14 models of Noce
and Gaza),EµT andEσ T are smaller than 3 and 0.5 K, re-
spectively. Again, one concludes that Noce is the catchment

where ENSEMBLES RCMs tend to perform even worse for
temperature: only 4 out of 14 models exhibit errors smaller
than 1.5 K inEµT . Note that in Gaza (the second-worst per-
forming catchment), 8 out of 14 RCMs exhibit errors smaller
than 1.5 K inEµT . Concerning Noce basin, it is worth not-
ing that one cannot easily conclude to what extent the cal-
culated temperature and precipitation errors originate from
limitations of the observational network at high elevations in
the Alps.

Figures 5 and 6 also show that model performances
can vary significantly from one catchment to another. For
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Fig. 4. Same as Fig. 3, but for mean monthly temperatures (K) reduced to sea level.
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Fig. 4.Same as Fig.3, but for mean monthly temperatures (K) reduced to sea level.

instance, HCS–CLM is one of the two worst performers re-
garding modeling precipitation in Thau, but it performs best
regarding modeling precipitation in Noce (see Fig. 5). For
all models, precipitation errors in Gaza are quite small (see
Fig. 5), while temperature errors are significant (see Fig. 6).
This means that, as expected, of all of the considered RCMs,
it is not possible to identify a subset of models that performs
best for both variables in all catchments. One option is to
base model selection on dimensionless metrics capable of
weighting the errors in the variables of interest, even when
the choice is driven by additional constraints as discussed
in Sect. 2. With this aim, we introduced the dimensionless

error metrics in Eqs. (6) and (7) to account for both precip-
itation and temperature RCM performances in reproducing
E-OBS observational data. As discussed in Sect. 4, proper
selection of precipitation- and temperature-weighting factors
(wP ,wT ) in Eqs. (6) and (7) should account for the structure
and parameterization of the hydrological model used and its
sensitivity to different forcing variables, as well as the clima-
tology of the basin. Given the variety of catchments and hy-
drological models considered in the CLIMB project, we per-
formed a sensitivity analysis to different (wP, wT ) weight-
ing schemes, covering the whole range of (wP = 1, wT = 0;
highest precipitation weighting) to (wP = 0, wT = 1; highest
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Fig. 5. Scatterplot of errors in the mean and standard deviation of monthly precipitation (mm d−1) over the
60 yr verification period (1951–2100), computed using Eqs. (3) and (4) for each of the 14 ENSEMBLES models
with respect to E-OBS observational reference. Each subplot displays areal averages over a 4× 4 grid-point
stencil centered in each catchment. 24

Fig. 5.Scatter plot of errors in the mean and standard deviation of monthly precipitation (mm d−1) over the 60 yr verification period (1951–
2010), computed using Eqs. (3) and (4) for each of the 14 ENSEMBLES models with respect to E-OBS observational reference. Each subplot
displays areal averages over a 4× 4 grid-point stencil centered in each catchment.

temperature weighting). As an example, Fig. 7 shows re-
sults for the neutral case, i.e. equal weights for precipitation
and temperature errors (i.e.wP = 0.5, wT = 0.5). One sees
that the selection of HCH–RCA, ECH–RCA, ECH–RMO,
ECH–REM models (marked with an additional black circle)
are the best choices for the Thau, Riumannu, Kokaeli and
Chiba catchments, under the additional constraint of main-
taining two different RCMs nested in the same GCM, and

two different GCMs forcing the same RCM. For Noce and
Gaza, for which other choices would have been slightly bet-
ter, the selected four models still display good performances.
Although not presented here, similar results were obtained
for all possible couples of weights, making us confident that
our selection of the four best-performing models is robust,
regardless of the hydrological model framework. Concern-
ing the limiting cases (wP = 1, wT = 0) and (wP = 0, wT = 1),

www.hydrol-earth-syst-sci.net/17/5041/2013/ Hydrol. Earth Syst. Sci., 17, 5041–5059, 2013
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Fig. 6. Same as Fig. 5, but for temperatures (K) reduced to sea level.
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Eqs. (6) and (7) correspond to dimensionless variants of
Eqs. (3) and (4), respectively. Thus, Figs. 5 and 6 allow one to
conclude that the four best-performing models identified us-
ing equal precipitation and temperature weights, remain best
also in the limiting cases of highest precipitation (wP = 1,
wT = 0) or temperature (wP = 0,wT = 1) weightings.

In order to check the general behavior of the probabil-
ity distributions of the simulated precipitation and temper-
ature fields against E-OBS, we used Eq. (5) to compute the
mean absolute errors in the quantiles at 100 uniformly spaced

probability levels. The results are presented in the scatter
plots of Fig. 8. One sees that the 4 selected models display
reasonable performances in all considered catchments, thus
confirming the selection. To assist the reader in identifying
the 4 selected models in all figures, we have drawn thicker
the corresponding lines in Figs. 3 and 4, and added black cir-
cles in all scatter plots (Figs. 5–8).

Last but not least, it is interesting to analyze and intercom-
pare the variability of the mean annual precipitation and tem-
perature over the five 30 yr climatological periods between

Hydrol. Earth Syst. Sci., 17, 5041–5059, 2013 www.hydrol-earth-syst-sci.net/17/5041/2013/
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Fig. 7. Same as Fig. 5, but for the dimensionless error metrics accounting for both precipitation and temperature,
as defined in Eqs. (6) and (7).
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1951 and 2100. In Fig. 9, where results for precipitation are
presented, one clearly observes a very large variability in
the simulations of the 14 models, with some models pre-
dicting mean annual precipitation three times higher than
others. One also gets an idea of how drastically the behav-
ior of a single model can change for different catchments.
These findings support the need for extensive analyses, like
the one presented here, before proceeding with hydrologi-
cal modeling in specific catchments. For example, the ECH–
HIR model gives the largest annual precipitation in Thau and
Noce, greatly overestimating E-OBS, while the same model

gives a very small annual precipitation for Riu Mannu and
Gaza, greatly underestimating E-OBS. The five 30 yr clima-
tologies for the 4 selected models are shown in Fig. 9 inside
vertical rectangles. Again, one visually observes that the se-
lection of the four models is a reasonable compromise for all
catchments.

An additional observation one makes is that, for each
catchment, the variability in the 30 yr climatological peri-
ods for a single model is much smaller than the variability
among different models. Figure 10 shows similar results for
temperatures, where the variability among different models,

www.hydrol-earth-syst-sci.net/17/5041/2013/ Hydrol. Earth Syst. Sci., 17, 5041–5059, 2013
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Fig. 8. Scatterplots of mean absolute errors in the quantiles of daily precipitation and temperature distributions,
computed using Eq. (8) for each of the 14 ENSEMBLES models with respect to E-OBS observational reference.
Quantiles are calculated at 100 uniformly spaced probability levels. Each subplot displays areal averages over
a 4× 4 grid-point stencil centered in each catchment. 27

Fig. 8. Scatter plots of mean absolute errors in the quantiles of daily precipitation and temperature distributions, computed using Eq. (8)
for each of the 14 ENSEMBLES models with respect to E-OBS observational reference. Quantiles are calculated at 100 uniformly spaced
probability levels. Each subplot displays areal averages over a 4× 4 grid-point stencil centered in each catchment.

although still larger than the variability among the 30 yr cli-
matological periods for a single model, is of comparable
magnitude.

6 Conclusions

Validation of climate models is typically performed using ob-
servational data, by studying the skills of different models in

reproducing climate features in the study area. One major
task is the choice of such observations. This study focuses
on providing reliable climatic forcing for hydrological ap-
plications at a river-basin level and, therefore precipitation
and surface temperature were chosen as verification variables
since (a) they are used to specify the climate of a region
in several climate classification systems, like the Köppen–
Geiger one, (b) they represent a minimum requirement for

Hydrol. Earth Syst. Sci., 17, 5041–5059, 2013 www.hydrol-earth-syst-sci.net/17/5041/2013/
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Fig. 9. Variability of the mean annual precipitation (mm yr−1) over the five 30 yr climatological periods be-
tween 1951 and 2100. Models HCS-HIR and BCM-HIR stop in year 2050. The reference values of E-OBS
climatologies in the two 30 yr periods between 1951–2010 are indicated with empty circles and horizontal lines.
Each subplot displays results based on areal averages over a 4×4 grid-point stencil centered in each catchment.
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Fig. 9. Variability of the mean annual precipitation (mm yr−1) over the five 30 yr climatological periods between 1951 and 2100. Models
HCS–HIR and BCM–HIR stop in year 2050. The reference values of E-OBS climatologies in the two 30 yr periods between 1951–2010
are indicated with empty circles and horizontal lines. Each subplot displays results based on areal averages over a 4× 4 grid-point stencil
centered on each catchment.

hydrological modeling, being, respectively, the main source
of water in the catchments and the main control parameter
for evaporation and evapotranspiration, and (c) precipitation-
and temperature- observation networks are the most dense
and readily available ones (in contrast to, say, radiation- or
evapotranspiration-measurement networks).

Another basic problem of model validation is that of se-
lecting appropriate metrics to weight the relative influence
of different variables. Since we needed to compare model

performances in simultaneously reproducing the statistics of
temperature and precipitation fields, we introduced dimen-
sionless normalized metrics.

RCMs have been used in two major scientific projects,
PRUDENCE and ENSEMBLES, to produce future cli-
mate projections for the European Union. The correspond-
ing model simulations have been studied and validated
in several recent papers (i.e. Christensen and Christensen,
2007, for PRUDENCE; andLorenz and Jacob, 2010, for

www.hydrol-earth-syst-sci.net/17/5041/2013/ Hydrol. Earth Syst. Sci., 17, 5041–5059, 2013
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Catchment "noce" − Interperiod variability (1951−2100)
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Catchment "kokaeli" − Interperiod variability (1951−2100)
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Catchment "gaza" − Interperiod variability (1951−2100)
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Catchment "chiba" − Interperiod variability (1951−2100)
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Fig. 10. Same as Fig. 9, but for temperatures (K) reduced to sea level.
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Fig. 10.Same as Fig.9, but for temperatures (K) reduced to sea level.

ENSEMBLES). While most validation studies examined
model performances by focusing on medium- to large-scale
areas (e.g.Christensen et al., 2010, and Kjellström et al.,
2010, studied ENSEMBLES RCM results by dividing Eu-
rope into several large areas), RCMs were found to only
partially reproduce climate patterns in Europe (Jacob et al.,
2007;Christensen et al., 2010).

Our study suggests that when interest is at relatively small
spatial scales associated with hydrological catchments, as
it is the case of CLIMB project, validation of CM results
should be conducted at a single-basin level rather than at

macro-regional scales. In this case, it is necessary to check
models’ skills in reproducing prescribed observations at spe-
cific river basins, since averaging over quite large areas might
bias the assessment. For example, for Riu Mannu, Thau
and Chiba catchments, model performances can vary signif-
icantly (see Sect. 5), even though these catchments are in-
cluded in the same large-scale area in theChristensen and
Christensen(2007) study.

In this work we validated RCM results at scales suitable to
run hydrological models and conduct climate impact studies
for representative Mediterranean catchments. We found that

Hydrol. Earth Syst. Sci., 17, 5041–5059, 2013 www.hydrol-earth-syst-sci.net/17/5041/2013/



R. Deidda et al.: Regional climate models’ performance over selected Mediterranean basin areas 5057

the performance of a single RCM in reproducing observa-
tional data can change significantly for different river basins.
This finding highlights the need for extensive analyses of
climate model outputs before proceeding with hydrological
modeling in specific catchments.

Another important finding is that, at least for temperature
and precipitation studied at a river-basin level, the variabil-
ity in the 30 yr climatological periods for a single model is
much smaller than the variability among different models, as
Figs. 9 and 10 clearly show. We also stressed that the vali-
dation process in complex terrains, such as the Alps (Noce
catchment), may be significantly affected by weaknesses of
model grids and the representativeness of the observational
network. Actually, it can be problematic to interpret the dif-
ferences between model outputs and observations, since they
may originate from a combination of issues: (a) the model
grid is too coarse (e.g. the Noce case, located in the Alps,
where the maximum elevation considered by the models
is approximately 2500 m, quite lower than real orography);
and (b) the observational network is too sparse to provide a
proper basis for models’ validation.

Projects like ENSEMBLES and PRUDENCE stimulated
and guided several climatic centers towards standardiza-
tion of procedures, model grids and outputs and, thus, pro-
moted synergies across different research areas and interdis-
ciplinary efforts. Nevertheless, our study indicates that er-
rors and inconsistencies are still present, suggesting basin-
specific pre-processing of CM outputs before proceeding
with hydrological modeling and climate impact assessments.

As to what concerns hydrological applications, we note
that while our validation-based model selection provides a
reasonable indication of the four best-performing models
in the considered catchments, some model deficiencies still
need to be addressed. Specifically, by applying bias- and
quantile-correction techniques, we were able to reduce the
differences between observed and modeled probability dis-
tributions. In addition, by accounting for the effects of orog-
raphy on precipitation, temperature and other variables, and
making proper use of downscaling tools, we reproduced lo-
cal climate attributes and, to some extent, the observed small-
scale variability. These results, as well as hydrological mod-
eling projections in the considered catchments (currently ad-
dressed by several working groups of the CLIMB project)
will form the subjects of forthcoming works.
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