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1H NMR metabolic profiling of cod (Gadus morhua) larvae:
potential effects of temperature and diet composition during early
developmental stages
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Velmurugu Puvanendran4, Terje van der Meeren5, Ørjan Karlsen5, Ivar Rønnestad6 and Kristin Hamre7

ABSTRACT
Marine aquaculture offers a great source of protein for the increasing
human population, and farming of, for example, Atlantic salmon is a
global industry. Atlantic cod farming however, is an example of a
promising industry where the potential is not yet realized. Research
has revealed that a major bottleneck to successful farming of cod is
poor quality of the larvae and juveniles. A large research programwas
designed to increase our understanding of how environmental factors
such as temperature and nutrition affects cod larvae development.
Data on larvae growth and development were used together with
nuclear magnetic resonance. The NMR data indicated that the
temperature influenced the metabolome of the larvae; differences
were related to osmolytes such as betaine/TMAO, the amino acid
taurine, and creatine and lactate which reflect muscle activity. The
larvae were fed Artemia from stage 2, and this was probably reflected
in a high taurine content of older larvae. Larvae fed with copepods in
the nutrition experiment also displayed a high taurine content,
together with higher creatine and betaine/TMAO content. Data on
the cod larvae metabolome should be coupled to data on gene
expression, in order to identify events which are regulated on the
genetic level versus regulation resulting from temperature or nutrition
during development, to fully understand how the environment affects
larval development.
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INTRODUCTION
Seafood is one of the major protein sources for human consumption
in theworld today and the importance of seafood proteins is likely to
increase in the coming years. Marine aquaculture has become a
knowledge based industry that successfully supplies a large fraction
of high quality food. Farming of Atlantic salmon (Salmo salar
Linnaeus) is one example of a successful aquaculture industry, and

cod (Gadus morhua L.) farming has been attempted for some
decades but with less success compared to salmon and other
species. One of the main bottlenecks of successful cod farming is
the poor larval and juvenile quality (Hamre et al., 2013b; Valente
et al., 2013).

Teleosts are ectothermic and the early development is therefore
closely correlated towater temperature. Lower temperatures result in
slower development, later hatching and larvae with a smaller yolk
sac at hatching (Galloway et al., 1998; Geffen et al., 2006; Hall et al.,
2003; Hall and Johnston, 2003; Hunt von Herbing et al., 1996;
Jobling, 2002; Johnston et al., 2009). The optimal temperature for
embryonic development in cod is still being debated (Puvanendran
et al., 2013), and although it has been shown that high temperatures
result in rapid growth and large larvae at hatching, harmful effects
may appear at later stages. Development and metabolic responses at
different temperature regimes need to be examined in order to
increase our understanding of the effects of temperature on larval
growth. Such knowledge will ensure production of high quality cod
larvae in the hatcheries.

Nutrition is important from the moment the cod larvae start to
feed, and food quality determines the development of the young. In
the sea and in semi-natural pond systems, cod larvae feed on
zooplankton and especially copepod nauplii (Last, 1978; van der
Meeren and Næss, 1993). Large scale production of copepods for
use in hatcheries is challenging, and rotifers and Artemia Leach
(which are relatively easy to cultivate) have therefore been used to
feed fish larvae in commercial production. It has become clear;
however, that rotifers and Artemia are not nutritionally optimal for
the larval cod development (Busch et al., 2010; Hamre et al., 2008;
Li et al., 2015;Maehre et al., 2013; van derMeeren et al., 2008), and
cod larvae fed with zooplankton or nauplii from Acartia tonsaDana
showed higher growth rate and less bone deformities compared to
larvae fed with rotifers (Busch et al., 2010; Finn et al., 2002;
Imsland et al., 2006; L. R. McQueen, PhD thesis, University of
Tromsø, 2003; Otterlei et al., 1999; Øie et al., 2015). Copepods have
a well-balanced composition of proteins, free amino acids and
lipids, including significant amounts of n-3 fatty acids in the
phospholipids (Drillet et al., 2006; Evjemo et al., 2003; Olsen et al.,
2014; Shields et al., 1999; van der Meeren et al., 2008). Changing
diets from rotifers to copepods have shown promising results in
several aquatic species (Conceicao et al., 2010).

The underlying mechanisms that result in differences in growth
and quality of fish larvae is still unknown, but oneway to learn more
about this is to study the metabolome of developing larvae. The
metabolome is the set of small molecules (<1500 D) present in a
cell, and metabolomics is the study of interactions between the
environment and the metabolome of an organism (or parts of it). We
have used proton nuclear magnetic resonance (NMR) spectroscopyReceived 1 September 2015; Accepted 13 October 2015
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to analyze tissue extracts and identify metabolites that can be used to
follow environmental impacts on the fish larvae. 1H NMR has been
used to study the metabolic profile in gilthead sea bream Sparus
aurata L. (Picone et al., 2011; Savorani et al., 2010), effects of larval
feeding in ballan wrasse Labrus bergylta Ascanius (Øie et al.,
2015), and effects of feeding (Bankefors et al., 2011) or stress
response (Karakach et al., 2009) on Atlantic salmon. NMR has also
been used to study cod in food processing contexts, often using 31P
NMR (Sartoris et al., 2003) or 13C NMR (Standal et al., 2008); 1H
NMR on the other hand, has been used to study lipid hydrolysis and
esterification in cod gonads (Falch et al., 2007) or bioactive
compounds in cod fillet (Martinez et al., 2005). There are studies
which have used 1H NMR to examine the environmental effects
such as temperature (Turner et al., 2007) or toxic substances (Viant
et al., 2006) on the metabolome of developing fish larvae. There are,
however, few studies that have applied a metabolomics approach
employing 1H NMR to study environmental effects such as
temperature or diet on the early development of cod larvae.
The present study is part of a larger program where the aim is to

build a knowledge platform to understand the environmental and
nutritional impacts on the early development, growth and
metabolism in Atlantic cod larvae. The present study uses 1H
NMR spectroscopy analyses and unsupervised cluster analyses on
data from two separate experiments targeting effects of (1)
temperature and (2) diet composition on the metabolism and
growth of early stages of Atlantic cod larvae. The main objective of
the knowledge platform was to understand the reasons for high
larval mortality or poor physiological conditions of the survivors
and also long-term effects that appear later in life as a result of the
environmental and nutritional influences in early life.

RESULTS
A list of all the identified compounds in the 1H NMR spectra from
cod larvae is given in Table 1. Our NMR data showed the presence
of metabolites such as 14 different amino acids, organic acids/
osmolytes betaine, choline and lactate, N,N-Dimethylglycine and
taurine (Tau). We also identified TMAO, the tricarboxylic acid
cycle intermediate succinate, as well as formate and 4-
Aminonbutyrate, energy compounds glucose, creatine and ATP,
in addition to some fatty acid metabolism intermediates.
The experimental setup with differences in temperature and diets

resulted in different developmental times for the larvae, and
therefore different sizes at the sampling times. A staging system
based on larvae from both the temperature and the nutrition
experiments was established and used here, see Materials and
Methods for a description of cod stages (Table 2), and the length and
stages of cod larvae at each sampling (Table 3).

Temperature experiment
In the temperature experiment, cod larvae stages and average
standard lengths was (stage/length, in mm): 2/6.2, 3/8.8 in T1
treatment, 2/6.2, 3-4/9.8, and 5/16.6 in T2. In the T3 treatment
larvae reached 5.5 mm at stage 2, while in the T4 treatment larvae at
stage 2 were on average 5.4 mm long, in stage 3-4 they were 8.8 and
at stage 5 they were 16.8 mm long (Table 3). There were no
significant differences in larval growth in the four treatments during
the first 20-25 days (stage 1-2), but after that the larvae reared at the
highest temperature (T2 and T4) grew faster than the other larval
groups (Puvanendran et al., 2013). The T3 larvae were only
measured during the first phase of the experiment, and the
measurements indicated that they grew with the same speed as the
T1 larvae. Due to differences in growth rates and development

between the treatments the larvae reached different stages on the
selected sampling days (Table 3). In the control treatment (T1),
stage 2 and 3 corresponded to 29 and 60 days post hatch (dph),
respectively. In the T2 treatment stage 5 corresponded to 66 dph,
while in the T4 treatment stage 5 corresponded to 57 dph. Of the
larvae ranging from 8.7 to 9.8 mm standard length (SL), the T1
larvae were less developed compared to larvae from the T2 and T4
treatments (Table 2). Only larvae from T2 and T4 were sampled for
staging after stage 3/4.

The NMR data from the temperature experiment were analysed
by PCA, and there was a clear distinction between younger larvae
(stage 2) and the older larvae (stages 3-5). Because we pooled
several larvae from the early samplings they cluster tightly, while
the score plot shows some inter-individual variance in the older
larvae that were analyzed one by one from the T2 and T4 treatments
(Fig. 1A). The PC1 loading plot indicated increasing amounts of N,
N, N-trimethylamine (betaine)/trimethylamine N-oxide (TMAO)
and less lactate, alanine (Ala), Tau, and creatine (Fig. 1B). The
scores along PC2 (data not shown) indicated that the betaine/
TMAO, Ala and lactate levels were higher in the T2 larvae than in
the T4 larvae.

Nutrition experiment
In the nutrition experiment the larvae sizes at the different stages
were as follows (stage/length, in mm): 1/4.2-4.5, 2/6.5, 3/8.7, 4/12.4
and 5/23.4 in the copepod regime, and 1/4.2-4.7, 2/6.03, 3/8.3,
4/15.3 and 5/23.5 in the rotifer/Artemia regime (Table 3). Larvae in
the nutritional experiment grew at similar rates until 22 dph
(stage 2). Thereafter and until stage 4, the daily length growth was

Table 1. 1H nmr chemical shifts (ppm) and signal multiplicity (s, singlet;
d, doublet; dd, double doublet; t, triplet; m, multiplet) of abundant
metabolites in cod larvae

Metabolite
class Compound

1H
multiplicity

1H NMR
chemical shift

Amino acids Alanine d 1.48
Aspartate dd, dd 2.67, 2.82
Glutamate m, t 2.11, 2.34
Glutamine m, m 2.14, 2.44
Glycine s 3.55
Histidine s, s 7.86, 7.06
Isoleucine d, t 0.99, 0.93
Leucine d 0.96
Lysine t 3.02
Phenylalanine m, m 7.4, 7.33
Sarcosine s 3.61
Threonine m, d, d 4.25, 3.58,

1.33
Tyrosine d, d 7.2, 6.9
Valine d, d 1.01, 0.99

Organic acids Betaine s, s 3.9, 3.27
Choline s 3.19
Lactate d 1.33
N,N-Dimethylglycine s, s 3.71, 2.92
Taurine t, t 3.42, 3.25

Amines Trimethylamine
N-oxide

s 3.27

TCA Succinate s 2.41
Formate s 8.46
4-Aminobutyrate t 2.3

Energy/glucans Glucose d, t, t 5.24, 3.5, 3.41
Creatine s, s 3.93, 3.04
ATP s, s, d 8.5, 8.24, 6.15

FA metabolism Acetoacetate s 2.29
Phospolipids O-Phosphocholine s 3.21
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4.4% in larvae fed copepods, while in larvae fed rotifers/Artemia the
daily length growth was only 2.2%. Larvae weaned onto a
formulated diet after stage 4 again grew at similar rates (Karlsen
et al., 2015). Samples were taken at comparable larval sizes, and the
stages corresponded well with the larval sizes for both feeding
regimes (Table 3).
Larvae of different sizes/development stages were analyzed by

NMR, and individuals up to stage 2 grouped together (Fig. 2A).
Older individuals (stages 3-5), however, displayed clear separation
between those fed rotifers/Artemia and those fed copepods. Also
here the older larvae were analyzed individually and the score plot
shows some inter-individual variance. The PC1 loading plot
indicates that the larvae fed copepods have higher levels of
creatine, betaine/TMAO, Tau and choline than those fed rotifers/
Artemia (Fig. 2B). The PC2 loading plot (not shown) indicated a
higher content of Ala and lactate, and less Tau in the larvae that were
fed rotifers/Artemia.

DISCUSSION
The metabolomic ‘snapshots’ of the cod larvae subjected to
different temperatures and nutrient regimes show that the larvae
displayed metabolomic differences during the various stages from
hatching through first feeding to weaning onto a formulated feed.
When discussing data based on NMR analysis, it is necessary to
discern the ‘biological noise’ or the inherent metabolomic
variability, from the true effects of perturbations or the
experimental setup in the metabolomics data. Inter-individual
differences can mask the experimental effects, and we therefore
discuss our observations both as a function of developmental stage
and potential effects of experimental setup (temperature and
nutrition), and consider this approach important in order to
understand the development of cod larvae between hatching and
juveniles.

Our data showed little effect of the temperature treatments on
growth in the early life of the larvae, and it was only after 20-25 dph
(stage 2) that the growth of the T2 and T4 larvae began to increase
rapidly. The larvae in T1 were exposed to low temperatures
throughout development, thus the growth was slow throughout. In
the PCA score plot larvae grouped into two clusters based on the
metabolomic analysis (Fig. 1A). Younger larvae (until stage 2)
showed a high score on PC1 (Fig. 1B) which is related to increased
TMAO/betaine content and less creatine, Tau, Ala and lactate. In the
older larvae (stages 3-5), there was a differentiation between the
samples from the T2 and the T4 temperature regimes: The T2 larvae
were subjected to low temperature during the egg phase, and they
showed a higher score also on the PC2. This indicated that the
betaine/TMAO, Ala and lactate levels were higher in the T2 larvae
than in the T4 larvae, possibly reflecting the development of
osmoregulation and muscle activity over the time of the experiment.
The T1 larvae, which were exposed to low temperature from the egg
stage also showed a lower score on the PC2, tentatively reflecting
slower development of osmoregulation and muscles due to the low
temperature.

The Tau content was more prominent in older larvae (stages 3-5),
probably because the larvae were fed Artemia from stage 2 (25-
46 dph), and Artemia contains more Tau than rotifers (Karlsen et al.,
2015). The period between hatching and metamorphosis into
juveniles involves many complex processes of functional organ
development: e.g. the gastrointestinal tract, osmoregulatory
systems, muscles and sensory organs, and ossification (Kjørsvik
et al., 2004; Sæle, Ø., personal communication). The amino acid
Tau has many important roles in metabolism (Chatzifotis et al.,
2008; Salze and Davis, 2015), and functions as a buffering agent in
mitochondria in animal cells (Hansen et al., 2010) and as a
compatible solute, i.e. metabolites which interact without
perturbing other molecules (Yancey, 2005). A study showed that
Tau was higher in eggs from wild broodstock of cod compared to

Table 2. Description of stages based on morphological characters and ossification of bony structures in developing cod larvae

Cod stages (after Hunt von
Herbing et al., 1996)

Cod stages (Sæle, Ø.,
personal communication) Ossified tail fin rays Fully ossified vertebrae Ossified neural arches Flexion

3 1 - - - -
4-8 2 - - - -
11 3 No None <30 No
12 4 No Start >30 No
12 5 >30 ≥50 ≥50 Yes
Juvenile Juvenile All bones and fin rays fully developed

The staging system is based on additional studies of ossification vertebrae and fin rays (Sæle, Ø., personal communication), and adjusted to larvae staged after
Hunt von Herbing et al. (1996). The cod stages (left column) refer to the stage determination based on larvae from both experiments, and the following columns
provide information regarding the new, additional staging parameters related to ossification of vertebrae, fin rays, and flexion.

Table 3. Staging of cod larvae from the temperature and nutrition
experiments

Treatment
Mean SL
(mm)

Age
(dph)

Cod
stages

Temperature
stages

Temperature experiment
T1 6.2 29 2 8
T1 8.8 60 3 11
T2 6.2 29 2 8
T2 9.8 43 3/4 11
T2 16.6 66 5 12
T3 5.5 29 2 8
T4 5.4 29 2 8
T4 8.8 42 3/4 11
T4 16.8 57 5 12

Nutrition experiment
Copepods 4.2 4 1

4.5 11 1
6.5 22 2
8.7 29 3
12.4 37 4
23.4 53 5
4.2 4 1

Rotifers/Artemia 4.7 11 1
6.03 22 2
8.3 31 3
15.3 54 4
23.5 71 5

Larvae were sampled according to expected size [standard length (SL), mm],
therefore the age [days post hatch (dph)] of comparable groups is different
due to different growth rates. The cod stages used were modified according to
criteria in Table 1, and the staging system used in the temperature
experiment (after Hunt von Herbing et al., 1996) is included. The mean SL
given in the current table was measured in larvae fixed in 4% formaldehyde
in PBS.
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captive broodstock (Lanes et al., 2012). Hamre et al., showed that
Tau was lower in cultured than in wild Ballan wrasse (Labrus
berggylta) juveniles and mature gonads (Hamre et al., 2013a). This
may indicate that Tau may be a limited nutrient in reared fish, and
Tau requirement in marine fish must probably be assessed for each
species and life-stage (Hawkyard et al., 2014).
The differences in metabolite concentrations between stage 3-5

larvae in the T2 and T4 groups was caused by different rearing
temperatures in the embryonic stage. The effect lasted until the late
larval stage even though the temperature conditions during larval
rearing were similar between treatments. Embryonic temperature is
known to affect muscle development and protein expression in fish
larvae (Hall et al., 2003), and increased embryonic temperature
shortens the embryonic phase and stimulates white muscle growth
in cod larvae (Galloway et al., 1998, 1999).
In the nutrition experiment, clear effects of diet on larval sizewere

observed after approximately 22 dph (stage 2), and the cod larvae
that were fed copepods were bigger than the larvae that were fed
rotifers/Artemia (Karlsen et al., 2015). Bigger, fast growing larvae
are believed to be more robust, and a more nutritious diet is therefore
considered as a paramount factor in cod rearing. The nutrition
experiment showed a clear difference in the metabolome between
the larvae that were fed different diets (Fig. 2A,B), and the larvae fed
copepods had higher contents of creatine, betaine/TMAO and Tau.
In addition choline was higher in larvae fed copepods. Analyses of
the live feed showed that the principal differences between the
rotifer/Artemia and the copepod diet was a higher content of protein
(40 vs 60%) and Tau (1 vs 50 µmol/g DW) in copepods (Karlsen

et al., 2015). Dietary differences may therefore be the reason that
copepod-fed larvae seem to have a higher content of Tau and choline
than larvae fed rotifers/Artemia. Similar differences were found for
ballan wrasse larvae fed cultivated copepod nauplii or rotifers (Øie
et al., 2015). There were also differences in the composition of fatty
acids between rotifer/Artemia and copepod diets, including ARA,
EPA and DHA and a minor difference in the ratio of polar to neutral
lipids. With the NMR protocol applied here, however, large
molecules like lipids and proteins are not observed and are
therefore not represented in the data.

The higher creatine and TMAO/betaine in the copepod-fed larvae
may be coupled to more muscle tissue and higher dietary
concetrations of the methyl donors betaine and methionine, the
latter due to a higher total protein content in the copepods. Choline
and compounds containing choline, such as phosphatidylcholine,
are the sources of TMAO and betaine (Seibel and Walsh, 2001).
TMAO/betaine are important in osmoregulation, and efficient
osmoregulation must be in place when the larvae hatch. TMAO
also acts as a stabilizer of macromolecules, such as proteins, and
protects them from unfolding and denaturing, for example in
response to salt and heat (Yancey, 2005). Furthermore, betaine is
one of several methyl-donors which re-activate methionine in the
S-adenosylmethionine pathway (Michel et al., 2006). It is possible
that rotifers and Artemia are deficient in choline, since they usually
have low phospholipid contents (Hamre et al., 2013b).

Creatine stores energy in the muscle as creatine-phosphate,
reversibly synthesized using a phosphate group from ATP. It is
present in a much higher concentration than ATP and is necessary

Fig. 1. Principal component analysis (PCA) score plot of
larvae from developmental stages 1-5 in the
temperature experiment. (A) Symbols refer to the different
temperature regimes: T1 (square), low temperature during
all phases; T2 (triangle), low temperature during egg phase
and high temperature during larva and juvenile phase; T3
(diamond), high temperature during egg phase, low
temperature during larva and juvenile phase; T4 (star), high
temperature during egg and larva phase, low temperature
during juvenile phase. Thin line is the 95% C.I. of the PCA,
and the bold black circle has been drawn by hand to identify
the grouping of individuals of stage 2 to the right
(independent of temperature regime) versus the individuals
of stages 3 to 5 which show a tendency of grouping but with
larger individual variance (to the left). (B) Loading plot of the
first principal component (PC1) in the PCA analysis.
Numbered peaks show (1) creatine, (2) betaine/TMAO, (3)
taurine, (4) alanine and (5) lactate.

1674

RESEARCH ARTICLE Biology Open (2015) 4, 1671-1678 doi:10.1242/bio.014431

B
io
lo
g
y
O
p
en



for prolonged muscle activity (Wallimann et al., 2011). Creatine is
synthesized mainly in the liver and kidneys from arginine and
glycine, using a methyl group from methionine (Cantoni and
Vignos, 1954; Wallimann et al., 2011). Alanine and lactate are also
related to muscle activity. The muscle uses amino acids as fuels, and
the amino groups are shunted over to alanine while the carbon
skeletons can be converted to lactate during anaerobic metabolism.
Both compounds are transported to the liver for further metabolism
(Felig, 1973). The increases of alanine and lactate in older larvae
may therefore reflect increasing muscle mass and activity.
Metabolism is a complex and very dynamic system, and perhaps

even more so in fish which undergo metamorphosis. Furthermore, a
major determinant of how the digestive system (and indirectly the
metabolome) functions is the microbiome (Llewellyn et al., 2014)
that is established in the gastrointestinal (GI) system after the larvae
open up their mouth and start feeding. Larvae from different
experimental tanks do not necessarily host the same bacteria
consortia (Bakke et al., 2013) and there is also a natural evolution in
bacteria consortia during ontogeny (De Schryver and Vadstein,
2014). The microbial ecology of developing fish larvae should
therefore be considered in future studies.
The findings presented here show some of the many important

metabolic processes that must develop properly during the ontogeny
of larvae: a robust osmoregulatory system including different
osmolytes such as betaine/TMAO and Tau, a myriad of proteins
built from the various amino acids we observed, muscle function
(with functional compounds such as lactate) to catch prey and avoid
predators, energy creation and consumption from ATP and creatine,

to mention some. Temperature during the egg period, hatching and
ontogeny is also a powerful modulating factor, and perhaps
especially so during the very first stages until the larvae reach a
certain size and robustness. Our data also show the importance of
nutrient availability from the first feeding starts. The cod larvae are
able to synthesize many essential metabolites, but at some stage the
need for exogenously supplied metabolites is apparent. One
example is the case with Tau seen here, which seems to be
supplied to a large extent through the diet. On the other hand,
temperature determines the speed and sometimes the order of
development and the timing of exogeneous feeding, so temperature
is a modulator of nutritional deficiency appearances. Further
research is needed to understand and solve challenges related to
high mortality of young larvae, poor physiological conditions, or
malformations in the survivors. Data on the larval metabolome
should be coupled to analyses of gene expression, to determine the
properties which are regulated at the genetic level and post-
translational modifications potentially related to temperature or
nutrition.

MATERIAL AND METHODS
The two experiments on effects of temperature and nutrition in cod larvae
are described briefly below. A detailed description of the temperature
experimental setup is presented elsewhere (Puvanendran et al., 2013), as
well as the nutritional experimental setup (Karlsen et al., 2015; Penglase
et al., 2015). For the temperature experiment, eggs from broodstock at
Nofima in Tromsø were used, whereas eggs from broodstock at the
Institute of Marine Research (Austevoll) were used for the nutrition
experiment.

Fig. 2. Principal component analysis (PCA) of cod
larvae from developmental stages 1-5 in the nutrition
experiment. (A) Symbols refer to the different nutrion
regimes: Rotifer/Artemia diet (square) and Copepod diet
(triangle). The variance in PC1 accounts for 45.70% of the
variance between the earlier stages 1-2 (bold circle) and
successively older larvae (stages 3-5) towards the right.
Larvae from stages 3 to 5 are also separated along the PC2
(20.20%) and the two different groups correspond to larvae
from the two different diets (rotifers/Artemia versus
copepods). (B) Loading plot of the first principal component
(PC1) in the PCA analysis. Numbered peaks show (1)
creatine, (2) betaine/TMAO, (3) taurine, and (4) choline.
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Temperature experiment
The temperature experiment consisted of four different treatments, where the
first one (T1) served as control: eggs and larvaewere kept at low temperatures
of 4.5±0.5°C, 5.5±0.5°C, and 7.5±0.5°C, respectively. In the second treatment
(T2), eggs were kept at a low temperature (4.5±0.5°C) until hatching,
and subjected to a high temperature (11.5±0.5°C) after hatching. In the third
(T3) and forth (T4) treatments, eggs were subjected to a high temperature
(9.5±0.5°C) until hatching and then split; the larvae were subjected to
either a low (5.5± 0.5°C; T3) or high (11.5±0.5°C; T4) temperature.
Nannochloropsis (Instant Algae, Reed Mariculture Inc., CA, USA) was
added to the tanks for the first ten days, and the larvae were fed rotifers
enriched with Phosphonorse (Tromsø Fiskeindistri AS, Tromsø, Norway)
andMicronorse (Tromsø Fiskeindistri AS, Tromsø, Norway) from 2-29 dph.
From 25-46 dph the larvae were fed Artemia, enriched with Larviva
Multigain (Biomar AS, Norway), Phosphonorse andMicronorce, and co-fed
with a formulated feed from 38-44 dph. After a gradual decrease in Artemia
feeding, the larvae were weaned onto a formulated feed (AlgoNorse
Coldwater, Tromsø Fiskeindistri AS, Tromsø, Norway) between 45-56 dph.

Nutrition experiment
Cod eggs were incubated at 5.8-6°C, using continuous light and water (35 ppt
salinity) exchange. Post-hatch larvae (4 dph) were transferred to black start
feeding tanks, and the temperature was successively increased from 8 to
11.6°C at 11 dph. Gentle flow and aeration was applied, and a 16:8 light:dark
period. Prior to feeding the tanks were supplied with algae paste to produce
green water conditions. From 4 dph, the cod larvaewere fed a diet of either (i)
enriched rotifers (Brachionus sp., 4-31 dph), followed byenriched rotifers and
Artemia (32-35 dph) and only enriched Artemia from 36-63 dph, or (ii)
harvested marine zooplankton with a high content of copepod, from 4 until
44 dph (matching the rotifer diet from 4-63 dph). Zooplankton was collected
from a pond system (van der Meeren et al., 2014), and was provided in size
fractions from nauplii (4-20 dph) to copepodites (from 20 dph) as the cod
larvae increased in size. Larvae from both treatments were weaned onto
formulated feed (AgloNorse 400-600 μm, Tromsø Fiskeindustri AS, Tromsø,
Norway) when they reached 12-15 mm SL.

Larval developmental stages
In the temperature experiment the larvaewere sampled at standard lengths (SL,
mm) corresponding to pre-, onset, mid- and end metamorphosis, respectively
(Hunt vonHerbing et al., 1996). In the nutrition experiment, on the other hand,
sampling was performed at SLs corresponding to developmental stages 1-5
(Sæle, Ø., personal communication), and the corresponding ages (dph)
therefore varied between treatments due to differences in growth rates.
A comparison between the two experiments was made using fixed larvae
(in 4% formaldehyde in phosphate buffered saline, pH 7.4, Apotekproduksjon
AS; Norway) from both experiments. There were not a sufficient number of
larvae to be sampled from the T3 treatment after day 29.

Bone staining with Alizarin Red (Kjørsvik et al., 2009) was done on 9-11
larvae from each treatment and each sampling time, and stained larvae were
photographed while submerged in 40% glycerol, using a stereo microscope
(Leica MZ7.5, Germany) equipped with a camera (Nikon Digital Sight DS-
5M L1, Japan). Analyses of the larvae were performed both from the pictures
and direct observations of the stained samples. SL was measured from the tip
of the upper lip to the end of the vertebrae in preflexion larvae, and to the root
of the caudal fin (peduncle) in postflexion larvae.Ossificationof vertebrae and
fin rays were included for a joint staging scale (Tables 2, 3).

1H NMR spectroscopy
Sample preparation
In both experiments cod larvae were sampled at selected stages and snap
frozen in liquid nitrogen before freeze drying, transport, and storage at−80°C
until the NMR analyses were performed. Larvaewere extracted intact, and to
adjust for the individual variation in body size from stages 1 to 4, 20
individuals were pooled in each sample. Individual larvae were analyzed
from stage 5. Whole larvae were homogenized on a Precellys bead beater
and extracted with 2:1 methanol:H2O. After centrifugation, 800 µl of the
extract was transferred to a new tube and vacuum centrifuged for 30 min at

30°C to remove the MeOH. After quick freezing at −80°C, the extracts were
lyophilized and stored cold and dark. Shortly before the NMR analysis, the
lyophilized extracts were dissolved in 200 µl D2O/PBS buffer in 5 mm
NMR tubes (Bruker), and 1 mM deuterated trimethylsilyl propanoic acid
(TSP) was added for reference.

Data acquisition and processing
NMR spectroscopy was performed at the MR Core Facility, Norwegian
University of Science and Technology (NTNU), and 1H NMR spectra were
acquired on a 600 Mhz Bruker Avance III NMR spectrometer (Bruker
Biospin GmbH, Rheinstetten, Germany) equipped with an autosampler
(Sample Jet). Temperature during acquisition was 300 K and a 5 mm
CPQCI cryoprobe was used to sample 1 D proton spectra with a
preprogrammed water presaturation pulse sequence (noesygppr1d, Bruker
library); the recycle delay was 3 s, and the mixing time 10 ms. Spectra were
collected into 65 K data (SW 12,019 Hz) and the FID transformed with line
broadening 0.3 Hz and zero filling 1.0. Phasing, baseline correction and
chemical shift calibration (using the TSP signal as reference, δ 0.0 ppm) of
the frequency domain spectra was done using Bruker TopSpin v. 3.0.

Spectral assignment and multivariate analysis
Chemical shifts were referenced to TSP as δ 0.0 ppm, and spectral
assignment was performed using the metabolite library provided by
Chenomx NMR suite v. 7.7. Processed spectra were analyzed using Matlab
and the principal component analysis (PCA) routines included in PLS
Toolbox (Eigenvector, v. 7.3.1). Spectral data between 10.0 and 0.2 ppm
were binned into buckets of 0.05 ppm width, and the spectral region 4.92-
4.42 (which contains the suppressed water signal) was removed. All spectra
were normalized to unit area and mean-centered before they were included
in the PCA model. The unsupervised PCA reduces a large dataset with
many variable vectors to a low-dimensional, orthogonal projection were a
few of the most significant variables are highlighted (the Principal
Components). When these PCs have been identified, the loading plot of
each PC was compared to the results of the spectral assignment to identify
the metabolites that caused most of the variability in the spectra and identify
and describe subgroups that display differences within the dataset.
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