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of Orléans, France. Many thanks goes to the people at LIFO for making this
time interesting and productive. In particular I would like to thank Ioan and
Alice Todinca, and Karol Suchan for making these two periods rewarding and
memorable, both academically and socially. Especially when I, my wife and our
little daughter where living in Orléans as a family.
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Introduction to the Thesis

Yngve Villanger

1 Background and motivation

Computing the treewidth and the minimum fill-in of a graph are two of the most
well studied problems in the field of graph algorithms. Treewidth can be seen as a
parameter that describes how close a graph is to a tree, while the minimum fill-in
can be seen to describe how close a graph is to a chordal graph. The solution of
each of these problems is equivalent to embedding a given graph into a chordal
supergraph with some special properties. Unfortunately both these problems are
NP-hard on general graphs [1, 47], thus no efficient polynomial time algorithms
are known.

During the work on their graph minor project, Robertson and Seymour [40]
introduced several new graph parameters as tools to prove their results, and
treewidth was one of them. Later, treewidth has proved useful in many areas,
where VLSI layout and evolution theory [11] are some examples. Even more
important, treewidth is now widely accepted as one of the most important graph
parameters, because a wide range of NP-hard problems on general graphs can
be solved in polynomial time when the treewidth is bounded by some constant.
(These algorithms are polynomial in the size of the input graph, but they are
exponential in the treewidth of the graph.)

The minimum fill-in problem is also known as the minimum triangulation
problem. An embedding of an input graph into a chordal graph can be obtained
by adding edges until the graph becomes chordal. The edges added to the graph
are called fill edges, and the resulting chordal graph is called a triangulation.
Minimum triangulation is the problem of obtaining a chordal graph by adding
the fewest possible number of fill edges, and the minimum fill-in is the number
of such edges. The problem of finding the minimum fill-in was first studied in
sparse matrix computations [42], but it has also applications in other areas, like
database management [2, 43] and computer vision [15].

A tree decomposition is a way of decomposing the input graph into a tree,
where each node of the tree corresponds to a vertex subset of the input graph.
The definition of treewidth is based on tree decompositions. However it is in-
teresting to notice that a tree decomposition describes a triangulation and every
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triangulation describes a tree decomposition, thus these two structures are equiv-
alent. The problem of computing the treewidth can be restated as the problem
of computing a triangulation where the size of the largest clique is minimized. A
consequence of this is that triangulations and tree decompositions can be used
interchangeably when working on one of the two NP-hard problems mentioned
above.

A minimal triangulation is a triangulation of the input graph such that no
subset of the added edges results in a triangulation of the graph. Unlike treewidth
and minimum triangulation, a minimal triangulation can be computed in polyno-
mial time, where the best known time bounds are O(nm) [6, 8, 36, 41] for sparse
graphs and O(n2.376) [26] for dense graphs, for an input graph with n vertices and
m edges. For a survey about chordal graphs and minimal triangulation see [24].

Minimum fill-in and treewidth require searching for triangulations with differ-
ent properties, but the optimal solution for both problems can be found among
the minimal triangulations. Thus, minimum fill-in and treewidth problems can
be solved by searching through the set of minimal triangulations of the input
graph, which might be exponentially large. Minimal triangulations can be char-
acterized in several different ways. Examples are characterizations through a tree
decomposition, an elimination ordering of the vertices [37], and a set of minimal
separators [38]. These and other characterizations will be explained in subsection
2.4.

Any ordering of the vertices in a graph defines a triangulation, which can
be obtained by an algorithm called the elimination game [39]. If no fill edges
are added by this algorithm, then the ordering is called a perfect elimination
ordering. Fulkerson and Gross [21] showed that a graph is chordal if and only if
it has a perfect elimination ordering. This was later used by Ohtsuki, Cheung, and
Fujisawa [37] to define a minimal triangulation through an elimination ordering.
Such an elimination ordering is called a minimal elimination ordering.

Vertex separators are structures that are central both in tree decompositions
and in triangulations, and these separators can easily be reduced to minimal sep-
arators without increasing the treewidth or fill-in of a triangulation. The minimal
separators of a graph are powerful enough to describe all interesting tree decom-
positions and triangulations [38], and thus the solution of treewidth, minimum
triangulation, and a minimal triangulation can be defined by a set of minimal
separators. It follows that each of these three problems can be reformulated as a
problem of finding a set of minimal separators with some given property.

In this thesis we study properties of tree decompositions, minimal separators,
and elimination orderings, and how these can be used as tools when constructing
new algorithms for problems like minimal triangulation. We will now give some
examples, where these structures are used. Besides from being a decomposition of
a graph, a tree decomposition can also be used as a data structure that stores ver-
tex separators. In contrast to a simple list structure, this tree structure contains
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information about the relation between the separators. By using this informa-
tion, it is possible to compute the union of a set of minimal separators in a more
efficient way, as we showed in [6]. In special cases the union of a set of minimal
separators can be found even faster by using an alternative representation of the
tree decomposition, and an example of this data structure is presented in [8].

Minimal separators do not only separate the graph into at least two con-
nected components, but they also separate the minimal triangulation problem
into independent subproblems [31]. Even though this characterization of mini-
mal triangulations has been implicit for some years, almost no algorithm took
advantage of this property until 2004. In [26] we use this in combination with
other techniques, to improve the running time for minimal triangulation of dense
graphs.

Not all minimal triangulation algorithms are able to produce every minimal
triangulation of an input graph. Even though two algorithms produce different
sets of minimal elimination orderings, it is possible that they produce the same set
of minimal triangulations, since many different elimination orderings can define
the same triangulated graph. In [29] we define a set of modifications that can
be done to an elimination ordering without changing the resulting triangulation.
Based on these observations it is shown in [45] that two algorithms, Lex M [41]
and MCS-M [4], that produce different sets of elimination orderings, actually
produce the same set of triangulations.

As mentioned above, the treewidth and minimum fill-in can be found by
searching through the set of minimal triangulations of the input graph. For each
minimal triangulation, there exists a tree decomposition of the input graph defin-
ing the same set of fill edges. Each of the tree nodes in this tree decomposition
is defined by and contains the information of a set of minimal separators in the
minimal triangulation. These tree nodes are called potential maximal cliques [12]
of the input graph, and can be used to define minimal triangulations [12], or to
improve the time bound of exponential time algorithms [20].

The purpose of this introduction is to emphasize a set of relations and links
between the papers that present the technical results of this thesis. The thesis
consists of this introduction and five attached research papers following it, where
the introduction is organized as follows. Section 2 provides definitions, and shows
how several different structures and definitions that are commonly used in trian-
gulation algorithms can be considered as separators in a graph. Section 3 presents
the history behind some of the attached papers, and a summary of the technical
results in each paper. The five papers that define the main body of this thesis
are listed below. The list of papers is sorted chronologically according to the date
each paper was submitted to a journal.

I. Anne Berry, Jean-Paul Bordat, Pinar Heggernes, Genevieve Simonet, and
Yngve Villanger. A wide-range algorithm for minimal triangulation from
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an arbitrary ordering. Journal of Algorithms. Volume 58, Issue 1, Pages
33-66, Year 2006. [6]

II. Anne Berry, Pinar Heggernes, and Yngve Villanger. A Vertex Incremental
Approach for Maintaining Chordality. Discrete Mathematics. Volume 306,
Issue 3, Pages 318-336, Year 2006. [8]

III. Yngve Villanger. Lex M versus MCS-M. Discrete Mathematics. Volume
306, Issue 3, Pages 393-400, Year 2006. [45]

IV. Pinar Heggernes, Jan Arne Telle, and Yngve Villanger. Computing Minimal
Triangulations in Time O(nα log n) = o(n2.376). SIAM Journal on Discrete
Mathematics. Volume 19, Number 4, Pages 900-913, Year 2005. [26]

V. Fedor V. Fomin, Ioan Todinca, Dieter Kratsch, and Yngve Villanger. Exact
algorithms for treewidth and minimum fill-in. Submitted to SIAM Journal
on Computing. [20]

2 Viewing everything as separators

Chordal graphs and the process of creating chordal graphs by adding edges to
arbitrary graphs are two subjects that are common to all results presented in this
thesis. If a chordal graph is obtained by adding edges to a non chordal graph,
then this resulting graph is called a triangulation of the non chordal input graph.
Both chordal graphs and triangulations can be characterized in several different
ways, which will be discussed further, later in this introduction. These charac-
terizations are useful tools when designing new triangulation algorithms, since
each characterization defines a way to recognize or create a chordal graph. New
triangulation algorithms are usually obtained by finding a new characterization
and then combining this with already known characterizations, or by combining
several known characterizations in a new way. Thus, knowing and understanding
these characterizations are important when designing such algorithms. But before
we can define and discuss these characterizations, some definitions are required.
In order to give an alternative view of these problems and definitions, we will
redefine several known structures used in triangulation algorithms as different
types of separators.

2.1 Basic definitions

Graphs considered in this thesis are simple and undirected. A graph G = (V, E)
is a pair consisting of a set of vertices V and a set of edges E. The number of
vertices is denoted by n, and the number of edges is denoted by m. Two vertices
u, v are considered as neighbors if uv is an edge in E. The neighborhood of a
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vertex u is denoted by the vertex set N(u), where v ∈ N(u) if uv ∈ E, and the
closed neighborhood N(u)∪ {u} of u is denoted by N [u]. For a vertex set A ⊆ V
the edge set E(A) is given by {uv ∈ E | u, v ∈ A}. Let G[A] denote the subgraph
(A, E(A)) of G. We call G[A] the subgraph of G induced by A. For simplicity we
will write G \A for the induced subgraph G[V \A] of G. A vertex set A ⊆ V is a
clique if uv ∈ E for every pair u, v ∈ A, and A is a maximal clique if there exists
no clique A′ such that A ⊂ A′. The opposite of a clique is an independent set,
and the vertex set I ⊆ V is an independent set if uv 6∈ E for every pair u, v ∈ I.

An ordering of the vertices in a graph G is a function α : V ↔ {1, 2, ..., n}.
Let v0, v1, ..., vk denote a path from v0 to vk in G of length k, i.e., vi 6= vj for i 6= j
and vivi+1 ∈ E for 0 ≤ i < k. In the same way v0, v1, ..., vk, v0 denotes a cycle
of length k + 1. A vertex set C containing u induces a connected component of
G, if v ∈ C for every pair u, v, such that there exists a path from u to v in G.
A connected graph G is a tree, if G contains no cycles, and for every pair u, v of
vertices in V , there exists a path between u and v in G.

2.2 Separators

A vertex separator is a vertex set such that a connected component of a graph
becomes disconnected by removing this set. A vertex set S ⊂ V is a u, v-separator
in a connected graph G = (V, E) with u, v ∈ V if u and v are contained in different
connected components of G \ S. Given a graph G = (V, E), let S ⊂ V be a u, v-
separator of G, then S is a minimal u, v-separator of G if no proper subset of S
separates u and v. If S is a minimal u, v-separator of G = (V, E) for some pair
u, v ∈ V , then S is a minimal separator of G.

Lemma 2.1 (Folklore) Given a graph G = (V, E), let S ⊂ V , and let C1, C2,
..., Ck be the connected components of G\S. Then S is a minimal separator if and
only if there exists a pair i, j, with 1 ≤ i < j ≤ k, such that S = N(Ci) = N(Cj).

Proof. Let i and j be integers such that S = N(Ci) = N(Cj), where 1 ≤
i < j ≤ k, and let u and v be vertices such that u ∈ Ci and v ∈ Cj. Since
S = N(Ci) = N(Cj) then it follows that u and v are contained in the same
component of G \ (S \ {x}) for every vertex x ∈ S. Thus, S is a minimal u, v-
separator since no subset of S separates u and v.

If S is a minimal separator, then there exists a pair u, v such that no subset
of S separates u and v. Then u and v are contained in the same component C of
G \ (S \ {x}) for every vertex x ∈ S, and every path from u to v in C contains
the vertex x. Let Cu and Cv be the connected components of G \ S containing u
and v. Since both u and v have a path through vertices in V \ S to every vertex
x ∈ S, then it follows that S = N(Cu) = N(Cv).

A connected component C of G\S is called a full component of S if S = N(C).
Lemma 2.1 can now be restated as follows: A separator is minimal if and only if
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it has at least two full components. Actually the neighborhood of any component
of G \ S is a minimal separator if S is a minimal separator of G, see Lemma
2.2. Another property of minimal separators is that no pair u, v of non adjacent
vertices contained in a minimal separator S can be separated by a subset of
the vertices in S. Notice that this is only true if G \ S contains a connected
component C, such that u, v ∈ N(C). We can now use this component to restate
the property: For any non adjacent pair u, v contained in a minimal separator
S, there exists a component C of G \ S such that u, v ∈ N(C). Even though
this property is trivial for minimal separators since they have at least two full
components, it will be useful when we generalize the definition of separators
further later in this text.

Lemma 2.2 Given a graph G = (V, E), let S ⊂ V , and let C1, C2, ..., Ck be the
connected components of G \ S. Then S is a minimal separator if and only if

1. Cj is a full component of S, for some j satisfying 1 ≤ j ≤ k, and

2. N(Ci) is a minimal separator of G, for every i satisfying 1 ≤ i ≤ k, and

3. for any non adjacent pair u, v ∈ S, there exists an i such that u, v ∈ N(Ci),
where 1 ≤ i ≤ k. (This requirement follows from the first, since S = N(Cj)
and thus u, v ∈ N(Cj).)

Proof. Let Cj be a full component of G, where 1 ≤ j ≤ k, and let N(C1),
N(C2), ..., N(Ck) be minimal separators of G. Then S is a minimal separator
since S = N(Cj) and N(Cj) is a minimal separator of G.

Let S be a minimal separator of G. Then it follows from Lemma 2.1 that there
exist at least two full components Cp and Cq of S, where 1 ≤ p, q ≤ k and p 6= q.
The set N(Ci) is a minimal separator for 1 ≤ i ≤ k, since G \ (Ci ∪ S) contains
one of the two full components of S, and thus there exists a full component of
N(Ci) in G \N [Ci]. Finally for every non adjacent pair u, v ∈ S, the vertices u, v
are contained in N(Cp), since Cp is a full component, and thus u, v ∈ S = N(Cp).

A vertex separator is defined as a vertex set separating at least two vertices.
This can be restated as separating every pair of vertices in a vertex set I, where
|I| = 2. We can now generalize the definition of separators to separate every
pair of vertices in a vertex set I, where |I| ≥ 01. Obviously none of the vertices
contained in I can be adjacent.

It is tempting to define such a separator for a set in the following way. Let
I ⊂ V be an independent set in G = (V, E), let K ⊆ (V \I), and let C1, C2, ..., Ck

1For the purpose of generalization we allow that |I| < 2, even though this is a bit against
the intuition of separation since, no vertices are separated in this case.
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be the connected components of G \K. Then K is a set separator separating I
if |I ∩ Ci| ≤ 1 for 1 ≤ i ≤ k.

Since a set separator is a generalization of a vertex separator, we want minimal
set separators to have similar properties as minimal separators. Unfortunately,
inclusion minimal set separators do not behave like minimal separators. For
instance, we want to maintain the property that no subset of a minimal set sep-
arator separates vertices contained in that minimal set separator. The following
example shows that this does not hold for the above definition of set separators.
Consider a simple cycle with eight vertices. Start from any vertex and number
the vertices 1 to 8 in a clockwise order. Let I be vertices with odd number, and
let K be vertices with even number. The set K is clearly a minimal set separator,
since every vertex in K has two vertices from I in its neighborhood. Notice that
no component of the graph where K is removed contains both the vertices num-
bered 2 and 6 or 4 and 8 in its neighborhood. Now we have a counterexample to
the property since set {4, 8} separates 2 and 6, and the set {2, 6} separates 4 and
8.

Another property that we would like to preserve is that the neighborhood
of the resulting connected components are minimal separators. The following
example shows that this is not the case for the above definition of set separators.
Consider a simple path with five vertices. Start in one end of the path and number
the vertices successively towards the second end, with the numbers 1 to 5. Let
I be the set of odd numbered vertices, and let K be the set of even numbered
vertices. The set K is clearly a minimal set separator, since every vertex in K
contains two vertices from I in its neighborhood. The vertex with number 3 is one
of the resulting connected components when K is removed from the graph. Let
us call this component C. This component does not satisfy the desired property,
since K = N(C), but K is not a minimal separator in the graph.

We will now define a separator for sets such that the following two properties
are preserved in the inclusion minimal version of the separator: No subset of a
minimal separator for a set separates vertices contained in the separator, and
the neighborhood of any remaining connected component when the separator is
removed is a minimal separator. Notice the similarities between Lemma 2.2 and
Definition 2.3.

Definition 2.3 Given a graph G = (V, E), let I ⊂ V be an independent set, let
K ⊆ (V \ I), and let C1, C2, ..., Ck be the connected components of G \K. Then
K is a BT-separator separating I if

1. |Ci ∩ I| ≤ 1 for every i satisfying 1 ≤ i ≤ k, and

2. N(Ci) is a minimal separator of G, for every i satisfying 1 ≤ i ≤ k, and

3. for every non adjacent pair u, v ∈ K there exists an i, such that u, v ∈
N(Ci), where 1 ≤ i ≤ k.
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Definition 2.4 Given a graph G = (V, E), let I ⊂ V be an independent set,
and let K ⊆ (V \ I) be a BT-separator separating I. Then K is a minimal
BT-separator separating I if no subset of K is a BT-separator separating I.

If K is a BT-separator separating some independent set I in a graph G, then
we say that K is a BT-separator of G. We can now obtain the following result.

Lemma 2.5 Given a graph G = (V, E), let K ⊆ V , and let C1, C2, ..., Ck be the
connected components of G \K. Then K is a BT-separator of G if and only if

1. N(Ci) is a minimal separator of G, for 1 ≤ i ≤ k, and

2. for every non adjacent pair u, v ∈ K there exists an i, such that u, v ∈
N(Ci), where 1 ≤ i ≤ k.

Proof. Let K be a vertex set such that N(C1), N(C2), ..., N(Ck) are minimal
separators of G, and such that for every pair u, v ∈ K, there exists an integer i
such that u, v ∈ N(Ci) and 1 ≤ i ≤ k. Let I be a vertex set obtained by selecting
one vertex from each of the connected components C1, C2, ..., Ck. The vertex set
K separates I and thus it follows from Definition 2.3 that K is a BT-separator
of G. The opposite direction of the proof follows directly, since the requirements
are a subset of the requirements in Definition 2.3.

Notice that if G\K has a full component for a BT-separator K of G, then K is
a minimal separator, and thus K has at least two full components. It follows that
a BT-separator has either zero or at least two full components. A BT-separator
which is not a minimal separator, and thus has no full components, is known as
a potential maximal clique [12]. This will be studied in detail in subsection 2.4.

Two vertex separators S and T of a graph G, are said to be crossing if S is a
u, v-separator for a pair of vertices u, v ∈ T , or if T is an x, y-separator for a pair
of vertices x, y ∈ S. This can be stated even stronger for minimal separators.
Two minimal separators are said to be crossing if S is a u, v-separator for a pair
of vertices u, v ∈ T , in which case T is an x, y-separator for a pair of vertices
x, y ∈ S [31, 38]. We will say that two BT-separators K and L of a graph G are
crossing if there exists a component CK of G \K and a component CL of G \ L,
such that N(CK) and N(CL) are crossing minimal separators.

Actually a BT-separator can be considered as a well chosen set of non-crossing
minimal separators [12]. Notice that this set can actually be the empty set, like
the BT-separator V in the complete graph G = (V, E). We will now generalize
the definition of separators further, such that a larger set of separators can be
represented in the same structure. Crossing separators can be considered as rivals
of each other, since at least one of them separates vertices in the other. If we
limit our selves to only consider sets of non-crossing separators, then this allows
us to represent several separators in a single structure.
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Definition 2.6 Given a graph G = (V, E), let S1, S2, ..., Sk be a set of non-
crossing separators in G. Then H = (V, F ′) is a tree separator representing the
separators S1, S2, ..., Sk if uv ∈ F ′ for every pair of vertices u, v such that u and
v are not separated by Si for 1 ≤ i ≤ k.

Tree separators can be considered as a generalization of separators and thus
also BT-separators, since every separator or BT-separator can be represented by
a tree separator, while the opposite is not true. Some properties can be noticed
about a tree separator H of G. Since no separator separates adjacent vertices in
G, then E ⊆ F ′, and since all the separators are non-crossing, then the vertex
sets S1, S2, ..., Sk are all cliques in H. Actually any BT-separator in H is a clique.

Lemma 2.7 Let H = (V, E ∪ F ) be a tree separator representing a set of non-
crossing separators in G = (V, E). Then every BT-separator of H is a clique.

Proof. Let K be a BT-separator in H. If K is a clique, then there is nothing to
prove. If K is not a clique, then there exists a pair u, v of non adjacent vertices in
K. From the definition of H, we know that there exists a separator S represented
by H separating u and v. Let S ′ be an inclusion minimal subset of S separating
u and v. Since uv 6∈ E ∪ F and u, v ∈ K, then there exists a component C of
H \K such that u, v ∈ N(C). Let T be the minimal separator N(C) in H. The
minimal separator S ′ is now separating u, v ∈ T . Thus, it follows from [31, 38]
that T separates two vertices x, y ∈ S ′. This is a contradiction since S ′ ⊆ S,
where S is a clique in H. We can now conclude that K is a clique in H, since
there exists an edge in H between every pair of vertices in K.

If a tree separator can be defined by a set of BT-separators, then we call this
tree separator a BT-tree separator. We have now defined several new types of
separators, and some of these contain others as special cases. By using these in-
clusion relations we can create a hierarchy between the definitions. The different
inclusion relations are displayed on the left side of Figure 1. Separator definitions
can also be partitioned into two groups, depending on whether they are defined
through a vertex set or an edge set. The partition is as follows: minimal sepa-
rators, minimal BT-separators, BT-separators, and vertex separators are defined
through a vertex set, while BT-tree separators and tree separators are defined
through an edge set. When first looking at Figure 1 it might seam like the tree
separator is the optimal structure, since it contains all the other definitions as
special cases. But notice that vertex set representation only requires O(n) space,
while an edge representation might require as much as O(n2) space. But a tree
separator can also be represented with a set of vertex separators, and thus it can
be represented with O(n) times the number of vertex separators of space. This
does not make a list of vertex separators an equal structure to a tree separator,
since tree separators only store sets of non-crossing separators, while a list can
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store any set of separators. In the next section we will see that finding sets of
non-crossing separators are of interest to us, so the fact that tree separators never
represent crossing separators will be a useful property.

a b c

i

g h

d f je

Minimal Separators

Minimal BT−separators

Tree Separators BT−separators

BT−Tree Separators

Tree Separators

Vertex Separators

Figure 1: The left part of the figure shows the inclusion relation between the
different types of separators defined in this section. We will use the graph on
the right part of the figure to prove that the equality relation only holds in one
direction. Let us start with the left branch of the inclusion relations to the
left. The vertex pair {b, d} in the graph to the right is a minimal separator,
since it has two full components, and {a, b, d, e} is a vertex separator since it
separates g and i, and the vertex separators {a, b, d, e} and {b, c, e, f} define a
tree separator, since they are non-crossing. The vertex separator {a, b, d, e} is
not a minimal separator, since it does not have a full component, and no vertex
separator can represent the tree separator defined by the two vertex separators
{a, b, d, e} and {b, c, e, f}, since they separate vertices contained in one of the
remaining connected components when the other vertex separator is removed.
Let us now consider the right branch of the inclusion relations. The vertex pair
{b, d} is a minimal separator, and the vertex pairs {a, g} and {b, d} are minimal
BT-separators, and {a, b, d} is a BT-separator. The BT-separators {a, b, d} and
{c, e, f} define a BT-tree separator, and finally the separators {a, b, c, d, e} and
{a, b, c, e, f} define a tree separator. The minimal BT-separator {a, g} is not a
minimal separator since there is no full component, and the BT-separator {a, b, d}
is not a minimal BT-separator, since {b, d} is a BT-separator separating the same
set of vertices. Using the same arguments as for the left branch, we can argue that
no single BT-separator can represent BT-tree separator defined by BT-separators
{a, b, d} and {c, e, f}, and the tree separator {a, b, c, d, e} and {a, b, c, e, f} can
not be defined by a set of BT-separators, since no single BT-separator contains
both a and c. It might also be noticed that the sets vertex separators 6= minimal
BT-separators, since {a, b, d, e} is a separator and not a minimal BT-separator,
and {a, g} is a minimal BT-separator and not a vertex separator.
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2.3 Chordal graphs

A graph is chordal if every cycle of length more than three has a chord. A
chord is an edge between two non consecutive vertices in a cycle. The class
of chordal graphs has been thoroughly studied since the early sixties, and has
several interesting properties that will be useful to us. One of the first published
results was that a chordal graph is either complete, or has two non adjacent
simplicial vertices [18]. A vertex u is simplicial if N [u] induces a clique in the
graph. If the empty graph can be obtained from a graph by repeatedly removing
simplicial vertices, then the order in which we remove the vertices is called a
perfect elimination ordering (PEO) [21].

The definitions of intersection graphs and tree decompositions are useful when
we talk about chordal graphs. A graph G = (V, E) is the intersection graph of
subtrees of a tree if there is a tree T = (I, F ), and for each vertex u ∈ V a subtree
Tu of T , such that for every pair u, v ∈ V , uv ∈ E if and only if the trees Tu and
Tv have at least one vertex in common.

Definition 2.8 A tree decomposition of a graph G = (V, E), is a pair (X, T ) in
which T = (VT , ET ) is a tree and X = {Xi | i ∈ VT} is a family of subsets of V
such that:

1.
⋃

i∈VT
Xi = V , and

2. for each edge uv ∈ E there exists an i ∈ VT such that both u and v belong
to Xi, and

3. for all u ∈ V , the set of tree nodes {i ∈ VT | u ∈ Xi} induces a connected
subtree of T .

Tree decompositions were defined and used by Robertson and Seymour [40]
to define the treewidth of a graph. The width of a tree decomposition (X, T =
(VT , ET )) of a graph G is the maximum of |Xi| − 1 for every i ∈ VT , and the
treewidth of the graph G is the minimum width over all tree decompositions of
G. From now on we will simply refer to T when we mention a tree decomposition
(X, T = (VT , ET )). The vertex subsets contained in X will be referred to as tree
nodes of T , and the vertex set Xi ∩Xj for an edge ij ∈ ET will be referred to as
tree edges of T .

From the definition we know that chordal graphs do not contain chordless
cycles. One consequence of this that can be deduced from [18] is that a chordal
graph contains at most n maximal cliques. In [10] this property is used in a linear
algorithm that lists all the maximal cliques and creates a tree decomposition
of the chordal graph, where every tree node is a maximal clique. A result of
this is that treewidth and the clique number(the size of the largest clique) of a
chordal graph can be computed in linear time. But not all problems have efficient
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polynomial time algorithms for chordal graphs. Examples of the opposite are
graph isomorphism [35] and the problem of computing the pathwidth [23] for
chordal graphs. This property that some problems that are NP-hard for general
graphs have efficient algorithms for chordal graphs, while other problems remains
NP-hard is one of several reasons that makes chordal graphs interesting. The
number of different characterizations of chordal graphs gives an intuition of how
well studied this class is. Some characterizations, directly or indirectly related to
algorithms or proofs presented in this thesis, are listed below.

1. A graph is chordal if and only if every minimal separator is a clique. (1961
[18])

2. A graph is chordal if and only if every minimal separator contained in the
neighborhood of a vertex is a clique. (1962 [34])

3. A graph is chordal if and only if it has a perfect elimination ordering (PEO).
(1965 [21])

4. A graph is chordal if and only if it is the intersection graph of subtrees of
a tree. (1974 [22])

5. A graph G is chordal if and only if there exists a tree decomposition of G
such that every tree node is a maximal clique in G, and every tree edge is
a minimal separator of G. (1972-74 [14, 22, 46])

6. A graph G is chordal if and only if all minimal separators in G are pairwise
non-crossing. (1997 [38])

7. A graph G = (V, E) is chordal if and only if N(u) ∩ N(v) is a minimal
separator in (V, E \ {uv}), for every edge uv ∈ E. (2004 [8])

8. A graph G = (V, E) is chordal if and only if G is a tree separator represent-
ing every BT-separator of G. (2006 here)

The following corollary can now be obtained from Characterization 6.

Corollary 2.9 A graph G is chordal if and only if all BT-separators in G are
pairwise non-crossing.

Proof. Every minimal separator is also a BT-separator, so we know from Char-
acterization 6 that the graph is chordal if all BT-separators in G are pairwise
non-crossing. Now for the opposite direction of the proof. If two BT-separators
are crossing, then by the definition of crossing BT-separators, the graph contains
two crossing minimal separators. We can now conclude, also by Characterization
6 that the graph is not chordal.

We will now use this new corollary to prove Characterization 8 in the list of
characterizations.
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Characterization 2.10 A graph G = (V, E) is chordal if and only if G is a tree
separator representing every BT-separator of G.

Proof. Let H = (V, F ′) be a tree separator representing every BT-separator of
G. Since no BT-separator of G separates consecutive vertices in G, and since
all pairwise non consecutive vertices in G are separated by some BT-separator of
G, then F ′ = E and H = G. By Lemma 2.7 all BT-separators of H and G are
cliques, and as a result all pairs of BT-separators of H and G are non-crossing.
Thus, by Corollary 2.9 we can conclude that G is chordal.

Let G be chordal. Then we know from Corollary 2.9 that all BT-separators
in G are pairwise non-crossing. From the definition of tree separators it follows
that a tree separator H = (V, F ′) representing every BT-separator of G can be
constructed. For every pair of non adjacent vertices in G, there exists a BT-
separator in G separating these vertices, and no BT-separator of G separates
consecutive vertices in G. Thus, G = H, and the proof is complete.

Actually the technique used in the proof of Characterization 2.10 is not the
only way to relate tree separators to chordal graphs. The intersection graph of
subtrees of a tree can also be used to create such a relation. Let T be a tree
decomposition of a graph G = (V, E). For every u ∈ V , let Tu be the tree nodes
of T containing the vertex u, and by Definition 2.8 we know that Tu induces a
connected subtree of T . The tree T and the subtrees Tu for every u ∈ V define
an intersection graph H = (V, F ′) of subtrees of a tree. We will say that the
graph H is defined by the tree decomposition T . From Characterizations 4 and
8 we know that H is chordal and that H is a tree separator representing some
of the separators in G, and thus E ⊆ F ′. A final notice might be that G is not
necessarily a chordal graph, and in this case H is a chordal supergraph of G that
is obtained by adding edges to G.

2.4 Triangulation and minimal triangulation

As we have seen in the previous subsection, chordal graphs can be obtained from
non chordal graphs by adding edges. This is always possible, since a single tree
node containing every vertex of the input graph is a tree decomposition of the
input graph, and thus also defines a complete chordal supergraph of the input
graph. If H = (V, E∪F ) is a chordal supergraph of G = (V, E), where E∩F = ∅
then H is called a triangulation of G, and edges in F are called fill edges. We
will say that the edge set F defines the triangulation H.

Some natural questions arise. What is the minimum number of fill edges that
defines some triangulation of a given graph? Finding such a set of edges is known
as the minimum fill-in or the minimum triangulation problem. This problem
was conjectured to be NP-hard [41] in 1976, a conjecture that was confirmed by
Yannakakis [47] five years later.
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A simplification and a polynomial time version of the problem is to find an
inclusion minimal set of fill edges, called a minimal triangulation. If H = (V,
E ∪ F ) is a triangulation of G = (V, E), then H is a minimal triangulation of G
if H ′ = (V, E ∪ F ′) is not a triangulation of G, for any edge set F ′ ⊂ F . Such
triangulations can be obtained by a wide range of algorithms, where [9],[26],
and [41] are some examples. Notice that a minimum triangulation is also a
minimal triangulation, so the problem of finding a minimum triangulation can be
considered as a problem of finding the right minimal triangulation.

Trivially a triangulation can be obtained by adding fill edges one by one until
the graph becomes chordal. Even though checking if the obtained graph is chordal
can be done in linear time [41, 43], it can be time consuming if we do this check at
each step. In order to avoid this, triangulation algorithms introduce fill edges in
a way that ensures that the resulting graph is chordal. This certificate is usually
obtained by producing a perfect elimination ordering, or a tree decomposition
which defines the resulting graph.

Without being aware of it, Parter2 [39] presented the first triangulation algo-
rithm, known as the elimination game in 1961. A graph G = (V, E) and a vertex
ordering α of G define the input to the algorithm. The elimination game adds
edges to the input graph, such that the provided vertex ordering becomes a per-
fect elimination ordering of the resulting graph [21]. As a result, it follows that
any graph produced by the elimination game is chordal. Another nice property
of the algorithm is that it can be implemented to run in O(n + m′) time [43],
where m′ is the number of edges in the produced triangulation.

Using a tree decomposition is another way of defining a triangulation of the
input graph. A triangulation defined by a tree decomposition can simply be
created by completing every tree node in the tree decomposition into a clique.
Notice that any triangulation algorithm that is based on finding and completing
some separating vertex set into a clique, actually defines a tree separator or
equivalently a tree decomposition. These triangulations can also be obtained in
O(n + m′) time, by using a similar approach as the one used for the elimination
game. But there is one difference: it can be easily verified that all triangulations
can be defined by a tree decomposition, while this is not always possible by using
an elimination ordering. For example, a complete graph can not be generated
unless the input graph has a vertex adjacent to all other vertices. Despite this
limitation, any minimal triangulation can be defined by a minimal elimination
ordering [37]. This was proved by defining a minimal elimination ordering, which
is an elimination ordering, such that no other ordering defines a triangulation
using a strict subset of the fill edges.

Since a triangulation can be obtained in linear time and is defined by the
elimination ordering or the tree decomposition, then the problem of finding trian-

2His aim was to give an algorithm that simulates Gaussian elimination on sparse matrices.
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gulations with interesting properties is reduced to finding interesting elimination
orderings or tree decompositions. We will now discuss different ways minimal
triangulations can be defined.

In 2001 Bouchitté and Todinca [12] defined a potential maximal clique of a
graph G to be a maximal clique in some minimal triangulation of G. These
potential maximal cliques were key structures when Bouchitté and Todinca [13]
showed that treewidth is polynomially tractable for all classes of graphs with a
polynomial number of minimal separators. At first glance a potential maximal
clique does not seem to be a very interesting structure when we are searching
for minimal triangulations. Since a potential maximal clique is defined through a
minimal triangulation of the input graph, it may seem that a triangulation should
be computed before potential maximal cliques can be found. But this is not the
case, since a potential maximal clique can be recognized directly in the input
graph, and thus can be used to create the minimal triangulation it was defined
from.

Theorem 2.11 ([12]) Given a graph G = (V, E), let K ⊆ V , and let C1,
C2, ..., Ck be the connected components of G \ K. Then K is a potential max-
imal clique if and only if

1. there exists no i such that Ci is a full component of K, where 1 ≤ i ≤ k,
and

2. N(Ci) is a minimal separator of G, for 1 ≤ i ≤ k, and

3. for any non adjacent pair u, v ∈ K there exists an i such that u, v ∈ N(Ci),
where 1 ≤ i ≤ k.

The second requirement of Theorem 2.11 follows from the first and the third
[12], but we add it to make it more similar to a previously defined structure:
a BT-separator. It is interesting to notice that the only difference between the
definition of a potential maximal clique in Theorem 2.11, and the definition of a
minimal separator in Lemma 2.2, is the change in the first requirement from none
to some. When we discussed BT-separators, we pointed out that BT-separators
are either minimal separators, or have no full component. If a BT-separator has
no full component, then it follows from Theorem 2.11 that this BT-separator is a
potential maximal clique. Because of this strong similarity we have called these
separators Bouchitté,Todinca-separators, or BT-separators for short. Thus, the
set of BT-separators is the union of minimal separators and potential maximal
cliques. Minimal BT-separators contain the set of minimal separators, but not
the complete set of potential maximal cliques. An example of this is provided by
a chordless four cycle. Every triple of vertices is a potential maximal clique, and
only the two pairs of non adjacent vertices are minimal BT-separators.
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Some of the motivation for finding characterizations of chordal graphs orig-
inates from the desire for finding new algorithms for minimal triangulations.
Partly by the same motivation, the problem of finding minimal triangulations
has been intensively studied. As a result, several characterizations for minimal
triangulations have been published. We now give a list of characterizations of
minimal triangulations.

1. A triangulation is minimal if and only if every fill edge is the unique chord
of a 4-cycle in the triangulation. (1976 [41]) (Alternative formulation: A
triangulation is minimal if and only if the removal of any single fill edge
results in a non chordal graph.)

2. A triangulation is minimal if and only if it is defined by a minimal elimina-
tion ordering. (1976 [37])

3. Let S be a minimal separator of G = (V, E), and let G′ = (V, E ′) be
the graph obtained from G by completing S into a clique. Let further
C1, C2, ..., Ck be the connected components of G \ S. The graph H =
(V, E ′∪F ) is a minimal triangulation of G if and only if F =

⋃k
i=1 Fi, where

Fi is the set of fill edges of a minimal triangulation of G′[S ∪ Ci]. (1997
[31])

4. A triangulation H = (V, E ∪ F ) is a minimal triangulation of G = (V, E)
if and only if it can be obtained by completing a maximal set of pairwise
non-crossing minimal separators of G into cliques. (1997 [38])

5. Let K be a potential maximal clique of G = (V, E), and let G′ = (V, E ′)
be the graph obtained from G by completing K into a clique. Let further
C1, C2, ..., Ck be the connected components of G \ K, and Si = N(Ci) for
1 ≤ i ≤ k. The graph H = (V, E ′ ∪ F ) is a minimal triangulation of G
if and only if F =

⋃k
i=1 Fi, where Fi is the set of fill edges of a minimal

triangulation of G′[S ∪ Ci]. (2001 [12])

6. A tree separator H = (V, E ∪ F ) defines a minimal triangulation of G =
(V, E) if and only if u and v are contained in a BT-separator of G represented
by H, for every edge uv ∈ F \ E. (2006 here)

As mentioned earlier, the set of BT-separators is the union of minimal sep-
arators and potential maximal cliques. We can now merge Characterizations 3
and 5 into a single characterization in the following corollary.

Corollary 2.12 ([12, 31]) Let K be a BT-separator of G = (V, E), let G′ =
(V, E ′) be the graph obtained from G by completing K into a clique. Let further
C1, C2, ..., Ck be the connected components of G \ K, and Si = N(Ci) for 1 ≤
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i ≤ k. The graph H = (V, E ′ ∪ F ) is a minimal triangulation of G if and only
if F =

⋃k
i=1 Fi, where Fi is the set of fill edges of a minimal triangulation of

G′[S ∪ Ci].

Characterization 4 can also be generalized to include BT-separators.

Characterization 2.13 A triangulation H = (V, E ∪ F ) is a minimal triangu-
lation of G = (V, E) if and only if it can be obtained by completing a maximal set
of pairwise non-crossing BT-separators of G into cliques.

Proof. Let K be a maximal set of pairwise non-crossing BT-separators of G. We
will now use the set K to find a maximal set S of non-crossing minimal separators.
For every BT-separator K ∈ K, and for every connected component C of G \K
add the minimal separator N(C) to S. Then all minimal separators in S are
pairwise non-crossing. We will prove this by contradiction, where we assume that
the minimal separators S and T in S are crossing. By [12] all minimal separators
in a BT-separator are pairwise non-crossing, so S and T are added to S using
two different BT-separators KS and KT . The BT-separators KS and KT are now
crossing, since S = N(CS) and T = N(CT ) for a component CS of G \KS and
a component CT of G \KT . This is a contradiction since all BT-separators in K
are pairwise non-crossing, and KS and KT are contained in K. Now back to the
main proof. The set S is also a maximal set of minimal separators, since K is a
maximal set of BT-separators, and minimal separators are BT-separators. Thus,
any minimal separator that could be added to the set S could also be added to
K, which contradicts that K is a maximal set. By Characterization 4 it follows
that a minimal triangulation of G is obtained by completing every BT-separator
in K into a clique.

Let H be a minimal triangulation of G. By Characterization 4 we know that H
can be obtained by completing a maximal set S of pairwise non-crossing minimal
separators into cliques. Since minimal separators are also BT-separators, add
every separator of S to the set K, which contains BT-separators. Let us further
add BT-separators to K, such that K becomes a maximal set of pairwise non-
crossing BT-separators. Notice that for every BT-separator K ∈ K, and for every
connected component C of G \K the minimal separator N(C) is contained in S,
since K is not crossing any BT-separator in S, and S is a maximal set of non-
crossing minimal separators. Thus, there exists a maximal set K of non-crossing
BT-separators, such that H is obtained by completing every BT-separator in K
into a clique.

Let us finally prove Characterization 6 which is new here.

Characterization 2.14 A tree separator H = (V, E ∪ F ) defines a minimal
triangulation of G = (V, E) if and only if u and v are contained in a BT-separator
of G represented by H, for every edge uv ∈ F where E ∩ F = ∅.
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Proof. Let H be a tree separator of G, such that for every edge uv ∈ F , the
vertices u and v are contained in a BT-separator of G represented by H. Let K be
the set of BT-separators of G, which is represented by H. Only non-crossing BT-
separators can be represented by a tree separator, so every pair of BT-separators
in K are non-crossing. Notice that every BT-separator K of G represented by H
is also a BT-separator of H, since every edge of G is contained in H, and every
pair of vertices separated by K in G, is non adjacent in H. By Lemma 2.7 and
Corollary 2.9 every BT-separator of H is a clique, and H is chordal. Thus, a
triangulation of G can be obtained by completing the BT-separators in K into
cliques, and by Characterization 2.13 H is a minimal triangulation of G.

Let H be a minimal triangulation of G. Then there exists a set K of pairwise
non-crossing BT-separators of G, such that H is obtained by completing these
BT-separators into cliques (Characterization 2.13). Thus, for every uv ∈ F there
exits a BT-separator in K, which contains both u and v.

As we have seen in this section, tree decompositions and potential maximal
cliques can be considered as, or defined by, a set of pairs of vertices which are not
adjacent. Most papers that discuss some kind of triangulation focus on finding
fill edges and not pairs of vertices to separate in the final triangulation. There are
at least two reasons for this. The first is that the triangulation problem is defined
through a set of fill edges and not pairs of vertices to separate, and secondly it is
harder to draw examples when the decision is to separate pairs of vertices and not
add fill edges. But these two approaches are not necessarily equal. If some subset
of the set of pairs of vertices we have decided to separate defines a BT-separator,
then we might as well complete the BT-separator into a clique. But if this set
of pairs of vertices only defines a separator and not a BT-separator, then this
can be considered as a subproblem of the general triangulation problem. The
reason why we can consider this as a subproblem is that some choices are made,
and thus there are fewer final triangulations to choose among. Some examples of
algorithms using this separating approach can be found in [6],[9], and [26].

3 History and relation to introduction

Apart from this introduction, this thesis consists of five papers, of which all
are submitted to journals, and four are accepted for publication3. With the
exception of Paper III, the main results of all of these papers are presented at
some conference. Each of papers II and IV is a final full version of a single
paper first presented at a conference. Each of papers I and V is a journal paper
based on two separate conference papers. Each of the journal papers I and V
was the result of merging a conference paper containing our results with another

3Some of the papers attached to this thesis have minor editing changes compared to the
submitted version.
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conference paper by different authors. Since a thesis should contain the most
recent, well written, and full version of each result, we attach the merged journal
papers in this thesis, and not the preliminarily conference versions.

This section contains five subsections, one for each paper. Each subsection has
two purposes. The first is to tell a bit of the history behind the result. By history
we mean to identify the conference papers (if any) the paper is based on, and
in some cases also how the project started. The second purpose is to emphasize
the relation to the introduction, by explaining how tree decompositions, minimal
separators, and elimination orderings are used to obtain the results.

3.1 (Paper I [6]) Tree decomposition as a tool to compute
minimal triangulations efficiently

Several different minimal triangulation algorithms have been presented since the
mid seventies, where the LB-Triang algorithm by Berry [3] is one of the more
recent. LB-Triang was first presented at ACM-SIAM Symposium on Discrete
Algorithms (SODA) in 1999 [3], and it is based on Lekkerkerker and Boland’s
[34] characterization of chordal graphs. This characterization states that a graph
is chordal if and only if every minimal separator contained in the neighborhood
of a vertex is a clique. The LB-Triang algorithm describes a procedure for adding
fill edges, such that this property is established. The time bound for LB-Triang
was claimed in [3] to be O(nm) without a proof, and the existence of such an
implementation remained unproved until our result in 2002. A straight forward
implementation of LB-Triang gives O(nm′) time complexity, where m′ is the
number of edges in the resulting minimal triangulation. Since O(nm) time algo-
rithms already existed [36, 41], the O(nm′) time complexity was not satisfactory,
although the LB-Triang algorithm has many other nice properties.

An O(nm) time implementation of LB-Triang was presented by Heggernes
and Villanger at European Symposium on Algorithms (ESA) [28] in 2002. The
implementation is based on a tree decomposition which preserves the information
about the set of minimal separators found so far by the algorithm. This tree
decomposition structure allows us to compute the information we need from the
new fill edges in O(m) time, and thus we obtain an O(nm) time algorithm.

Paper I is based on the two conference papers [3] and [28]. The use of minimal
separators in the algorithm, and the use of tree decompositions in the O(nm) im-
plementation, relate this paper to the structures mentioned in the introduction.
We will now discuss how, and a bit why, tree decompositions make the difference
in the time complexity. The LB-Triang algorithm processes each vertex of the
graph in some order. This order is part of the input in the O(nm) implementation,
but can be provided in an on-line fashion for the O(nm′) implementation. For
each vertex, LB-Triang completes the minimal separators contained in the neigh-
borhood of the current vertex into a clique, and then this procedure is repeated
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with the next vertex in the ordering. The final result is that every minimal sep-
arator contained in the neighborhood of some vertex is a clique. Thus, it follows
from [34] that the resulting graph is a triangulation.

Completing minimal separators into cliques is the operation that requires
O(m′) time for each separator in a naive implementation, and gives an O(n2m′)
algorithm. This can easily be improved to O(nm′) by recognizing duplicate sepa-
rators, and complete each minimal separator into a clique only once. To improve
the time bound further we need the observation that the added fill edges are
only required to compute N(u) if u is the next vertex to be processed. Thus,
an O(nm′) time algorithm can also be obtained by scanning every minimal sep-
arator containing u once from a list containing only unique minimal separators,
and in this way compute N(u). Another important observation is that each min-
imal separator separates the remaining set of separators into subsets. Unlike a
list structure, a tree decomposition can be used to store the minimal separators,
while preserving this information. This extra information enables us to compute
N(u) from a subset of the minimal separators containing u, and to bound the
sum of these to m. As a result we obtain an O(nm) time implementation.

3.2 (Paper II [8]) A vertex incremental approach to com-
pute minimal triangulations

An early version of the results of Paper II was presented at the International
Symposium on Algorithms and Computation (ISAAC) [7] in 2003. The project
resulting in Paper II started with the following question: Given a graph G =
(V, E), and a partition V1, V2 of V , such that G[V1] and G[V2] are chordal graphs,
does there always exist a minimal triangulation H of G, such that u ∈ V1 and
v ∈ V2, for every fill edge uv in H? As we can see in the example of Figure 2,
there might not even be such a triangulation. This negative result removes the
possibility of finding a minimal triangulation of a graph G, by triangulating G[V1]
and G[V2] and then adding fill edges between V1 and V2, for any partition V1, V2

of V .
Let us now try to reformulate the question, such that we can obtain a positive

result. By studying the graphs in Figure 2, we can observe that such a triangu-
lation can be obtained if either V1 or V2 induces a clique. Let V1 be the vertex
set that induces a clique, and let us fix the size of V1 to one. Fixing the size of V1

to one has two advantages, the first is that all new fill edges are incident to the
single vertex in V1. The second is a bit more complicated. Let V1 and V2 be a
partition of V for a graph G = (V, E), and let H2 be a minimal triangulation of
G[V2]. For a vertex u ∈ V1 let {u}, V2 be a partition of the vertices in G[V2∪{u}],
notice that H2 is still a minimal triangulation of G[V2]. A minimal triangulation
Hu of G[V2 ∪{u}] can now be obtained by supplying the fill edges of H2 by some
fill edges incident to u. In this way we obtain a new partition V1 \{u}, V2∪{u} of
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Figure 2: Let the partition of V in G1 be as follows V1 = {a, b, c} and V2 =
{d, e, f}. No triangulation of G1 can be obtained by adding edges between V1

and V2, since all these edges are already presented, and a, d, c, f, a is a chordless
cycle of length four. If we allow G[V1] and G[V2] to be disconnected, then a smaller
example can be found. By using the partition V1 = {a, b} and V2 = {c, d} of V in
G2 we obtain a similar example as obtained by G1. Every edge between vertices
in V1 and V2 is already present and a, c, b, d, a is a chordless cycle of length four.
Unlike the example using G1, the vertex sets V1 and V2 are disconnected, and of
size two.

V , where Hu is a minimal triangulation of G[V2 ∪ {u}]. A minimal triangulation
of G can now be obtained by repeating this until V1 = ∅. The topic discussed in
Paper II, corresponds exactly to this procedure, where |V2| ≤ 1 before the first
iteration.

Paper II presents a single algorithm that can be used to compute both minimal
triangulations and maximal subtriangulations of an input graph. A graph H =
(V, D), is a maximal subtriangulation of G = (V, E) if D is an inclusion maximal
subset of E, such that H is a chordal graph. This algorithm is based on a
vertex incremental approach, a new technique in triangulation algorithms, but an
already used technique on other problems like different types of graph recognition
[17] and [32]. Since then the incremental approach has proved useful on other
minimal completion problems [25].

The algorithm in Paper II uses the minimal separators in the chordal subgraph
to find the new fill edges every time a new vertex u is introduced to the chordal
subgraph. The fill edges incident to u are obtained by adding to N(u) the union
of a set of minimal separators in the chordal subgraph. In order to compute
this set efficiently we need data structure that allows us to find and compute the
union of these minimal separators efficiently. This is obtained by representing a
tree decomposition in a new way.

The paper presents also a new way to implement tree decompositions. Unlike
a regular representation of a tree decomposition, which represents each tree node
as a vertex set, we only store the difference between tree nodes. This enables us
to manipulate the tree decomposition such that every tree edge between two tree
nodes are minimal u, v-separators for some vertex v, and to compute the union of
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these minimal separators in O(n) time, which is not possible in a standard vertex
set representation. When this is combined with an amortized time analysis an
O(nm) time algorithm for minimal triangulation and maximal subtriangulation
is obtained.

3.3 (Paper III [45]) Comparing minimal triangulation al-
gorithms

Lex M [41] is one of the first two minimal triangulation algorithms published in
1976, and is based on a lexicographic breadth-first search. Almost 30 years later
Berry, Blair, Heggernes, and Peyton presented a similar minimal triangulation
algorithm called MCS-M [4]. MCS-M combines the cardinality labeling of neigh-
bors used in MCS [43] (a linear time recognition algorithms for chordal graphs),
with the labeling along paths used in Lex M. Both algorithms find minimal trian-
gulations by producing a minimal elimination ordering. Some of the similarities
between these algorithms can be exemplified with a simple cycle of length six.
Both algorithms are capable of producing the same set of minimal triangulations,
and none of them are able to produce minimal triangulations that are the re-
sult of only adding fill edges incident to a single vertex, or to create a minimal
triangulation that is the result of adding three fill edges that define a cycle of
length three. The difference between Lex M and MCS-M can be exemplified by
two simple cycles of length five sharing a single vertex. If the vertex contained
in both cycles are chosen to be the last in the elimination ordering, then the
set of elimination orderings produced by Lex M and MCS-M are disjoint sets.
Despite this, the same set of minimal triangulations is obtained by these sets of
elimination orderings. A natural question emerges, which is also left as an open
question in [4]: Does Lex M and MCS-M produce the same set of triangulations?

Paper III attends this problem, and shows that the two algorithms actually
produce the same set of triangulations. The idea behind the proof is as follows.
Each minimal triangulation can be obtained by a set of minimal elimination
orderings, and any pair of orderings from this set are said to be equivalent. Paper
III proves that an ordering can be obtained by MCS-M if and only if Lex M can
produce an equivalent ordering from the same input graph.

3.4 (Paper IV [26]) Combining several new techniques
into a faster minimal triangulation algorithm

Until the spring of 2004 it was not known whether or not minimal triangula-
tions could be computed with better time bound than O(nm), which is O(n3)
for dense graphs. Attempts to improve the time complexity of known minimal
triangulation algorithms below O(n3) mainly meet two obstacles. The first is to
avoid searching the input graph O(n) times, and the second is to compute the
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set of new fill edges after each iteration. In most cases these fill edges can be
obtained by completing a set of vertex sets into cliques. This problem can be
restated as a binary multiplication problem, and thus solved in time O(n2.376)
[16]. Independently of each other, two research groups used this technique to find
new and faster minimal triangulation algorithms for dense graphs.

Kratsch and Spinrad [33] designed an O(n2.69) time algorithm, which is a
new implementation of Lex M. It executes several steps of Lex M at once, and
then uses binary matrix multiplication to update all the labels in one operation.
Heggernes, Telle, and Villanger [26] designed an o(n2.376) time algorithm, by using
minimal separators and potential maximal cliques to partition the triangulation
problem into subproblems, and used binary matrix multiplication to find the new
subproblems. The second result is presented as Paper IV. A preliminary version
of Paper IV appeared at ACM-SIAM Symposium on Discrete Algorithms (SODA)
[27] in 2005.

From [31] and [12] it is known that minimal separators and potential maximal
cliques can be used to separate the minimal triangulation problem into indepen-
dent subproblems. The problem with this approach is to bound the depth of the
recursion tree, since it might be O(n) in the worst case. In the algorithm pre-
sented in Paper IV, the height of this recursion tree is O(log n). This is obtained
by a partitioning algorithm that finds a set of non-crossing minimal separators,
such that no subproblem contains more than some fraction of the non edges in
the input graph. Let O(nα) be the time bound of multiplying two n × n ma-
trices. Currently the lowest value of α is 2.375 < α < 2.376 by the algorithm
of Coppersmith and Winograd [16]. An O(nα log n) time algorithm for minimal
triangulation can now be obtained by implementing the balanced partition algo-
rithm to run in O(n2 − |E|) time for an input graph G = (V, E), and then use
matrix multiplication to complete the minimal separators into cliques.

Even though tree decompositions are not used directly in this algorithm, the
algorithm can be considered as an algorithm that refines a tree decomposition,
until it defines a minimal triangulation. Unlike the algorithm, one of the proof
used to claim the time complexity heavily depends on tree decompositions. This
makes tree decompositions to one of the basic structures used to obtain this result.

3.5 (Paper V [20]) Computing treewidth in exponential
time using potential maximal cliques

Computing the treewidth of a graph is a problem that has received a lot of atten-
tion, but it is quite recent that exact exponential time algorithms for treewidth
have been published. The first was an exact algorithm for treewidth and min-
imum fill-in by Fomin, Kratsch, and Todinca [19], presented at International
Colloquium on Automata, Languages and Programming (ICALP) 2004. This
algorithm requires every potential maximal clique of G as part of the input, and
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computes the treewidth of G in time O(n3ΠG), where ΠG is the number of poten-
tial maximal cliques in G. Listing the potential maximal cliques of G is the most
time consuming operation in [19], and thus the time complexity of the algorithm
becomes O∗(1.9601n), which is the time required to list all potential maximal
cliques of the input graph. Improving the time required for listing the potential
maximal cliques would thus improve the time complexity of the algorithm, and
this was also left as an open question in [19].

The problem of finding a better upper bound for the number of potential
maximal cliques in a graph, and to list these more efficiently, is addressed in [44],
which will be presented at Latin American Theoretical Informatics Symposium
(LATIN) 2006. The O∗(1.9601n) time algorithm for listing all potential maxi-
mal cliques presented in [19], is improved to O∗(1.8899n), and we show that the
number of potential maximal cliques contained in a graph is O∗(1.8135n). The
second result will be the new running time if somebody manages to list all po-
tential maximal cliques of a graph, with a polynomial delay for each potential
maximal clique, i.e. listing all the potential maximal cliques in O∗(ΠG) time.
Such algorithms exist for listing minimal separators [5, 30], so it is an interesting
open question if this type of algorithms exists for potential maximal cliques.

Paper V is obtained by combining the results of [19] and [44]. The time bound
for algorithm in [19] is obtained by proving that every potential maximal clique
can be defined by a set of 2n/5 vertices. In [20] this is improved, such that any
potential maximal clique can be defined by at most n/3 vertices, which improves
the time bound for listing potential maximal cliques, and thus also for finding the
treewidth, to O∗(1.8899n). One of the results of [13] is that all potential maximal
cliques of a graph can be found by finding the nice potential maximal cliques,
and then use these to generate the potential maximal cliques that are not nice.
Another result in [13] is that any nice potential maximal clique can be defined
by two crossing minimal separators. These separators and other observations are
used in Paper V to partition the vertex set of the graph into three independent
sets, such that any of these can be used to define the potential maximal clique.
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