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Abstract The spatial distributions of different ion species are useful indicators for plasma sheet dynamics.
In this statistical study based on 7 years of Cluster observations, we establish the spatial distributions of
oxygen ions and protons at energies from 274 to 955 keV, depending on geomagnetic and solar wind
(SW) conditions. Compared with protons, the distribution of energetic oxygen has stronger dawn-dusk
asymmetry in response to changes in the geomagnetic activity. When the interplanetary magnetic field
(IMF) is directed southward, the oxygen ions show significant acceleration in the tail plasma sheet. Changes
in the SW dynamic pressure (Py,)) affect the oxygen and proton intensities in the same way. The energetic
protons show significant intensity increases at the near-Earth duskside during disturbed geomagnetic
conditions, enhanced SW Py, and southward IMF, implying there location of effective inductive
acceleration mechanisms and a strong duskward drift due to the increase of the magnetic field gradient

in the near-Earth tail. Higher losses of energetic ions are observed in the dayside plasma sheet under
disturbed geomagnetic conditions and enhanced SW Py ,,. These observations are in agreement with
theoretical models.

1. Introduction

The distribution of charged particles in the near-Earth plasma sheet has been discussed in various aspects in
previous studies. Meng et al. [1981], using energetic proton (50-500 keV) observations from 5 years (each) of
IMP 7 and 8 data, at ~30R; < R <~ 40R;, reported dawn-dusk asymmetry in the plasma sheet with intensities
of protons higher at the duskside. Sarafopoulos et al. [2001] studied the asymmetry of dawn-dusk plasma
sheet energetic particles at <25 to 850 keV in the ~15-28 R, downtail plasma sheet from the Interball tail
probe. They reported duskward asymmetry for ions as well. The asymmetry was found for the average oxygen
energy by Ohtanietal. [2011] at distances < 15R;, for oxygen densities at the dayside by Bouhram et al. [2005],
in MHD simulations by Winglee and Harnett [2011] for relative oxygen energy density and in simulations by Fok
et al. [2006] based on the Lyon-Fedder-Mobarry MHD model [e.g., Fedder et al., 1995] for the plasma pressure.
However, no or very small asymmetries in the densities of protons and oxygen were observed by Mouikis et al.
[2010] (0-40 keV/e), Ohtani et al. [2011] (9-210 keV/e) (also for the average proton energy), and Maggiolo
and Kistler [2014] (0-40 keV/e). Therefore, there still is no clear, consistent picture of the spatial distribution
of ions and their dependence on magnetospheric disturbances in the magnetosphere [Kronberg et al., 2014].
The underlying physics that creates these distributions is also poorly understood.

An acceleration by quasi-stationary dawn-dusk electric fields alone (like Speiser acceleration [Speiser, 1965])
cannot accelerate ions to energies higher than the typical tail potential drop (not more than 100 keV). Also,
pure betatron acceleration (as reported, e.g., by Sarafopoulos et al. [2001]) cannot lead to these energies.
Therefore, the ions at energies >100 keV must be accelerated by a different mechanism. Induced electric
fields can accelerate ions to energies well exceeding the typical value of the potential drop across the tail
(higher than 100 keV). Induction electric fields [see, e.g., Delcourt, 2002] can result from the fast magnetic X
line formation [Zelenyi et al., 1990], electromagnetic turbulence [Grigorenko et al., 2011], or current disruption
processes [Lui, 1996; Lutsenko et al., 2008]. Nosé et al. [2000] using 3 years of Geotail/EPIC measurements of
energetic (60 keV to 3.6 MeV) ions reported that, in substorms, the energetic particle flux of Ot ions is more
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enhanced than that of H* ions in the near-Earth tail (X ~ —16 to —6R;). They stated that the strong increase
of energetic oxygen ions was due to the local magnetic field reconfiguration (dipolarization) and not due to
magnetotail reconnection. Effective acceleration of ions up to energies higher than ~140 keV, in the vicinity
of the near-Earth X line, was statistically demonstrated by Luo et al. [2014].

Accelerated plasma sheet particles drift earthward and populate the ring current which influences the forma-
tion of the radiation belts. Energetic ions at energies from 274 to 955 keV may contribute to the dynamics of
the ring current which is responsible for the disturbances of the terrestrial magnetic field, especially during
magnetic storms [Kozyra and Liemohn, 2003; Ganushkina et al., 2005]. The rapid increase of oxygen pressure
in the nightside ring current at substorm expansion was revealed, e.g., in case study by Mitchell et al. [2005],
simulations by Fok et al. [2006], and reviewed by Keika et al. [2013]. Various simulations have shown that the
inclusion of the energetic oxygen ions is crucial for reproducing the ring current and for the magnetospheric
dynamics, in general (as at the same energy with protons it has 4 times higher energy density and therefore
pressure) [Glocer et al., 2009; Fok et al., 2011; Winglee and Harnett, 2011]. lons at energies higher than thermal
also serve as a seed population for formation of the radiation belts.

Variations of the plasma pressure define not only the growth but also decay of the ring current. This can lead
to the dawn-dusk asymmetry at the dayside and can be, e.g., due to the losses of ions at the magnetopause.
The open drift paths lead to escape at the dayside magnetopause [e.g., Paschmann, 1997; Keika et al., 2005;
Wang et al., 2013]. It is interesting to check the presence of asymmetry in the spatial distributions of energetic
ions of different masses under various geomagnetic and interplanetary conditions.

In this study we investigate how the spatial distribution of the energetic oxygen and protons from 274 to
955 keV in the plasma sheet depends on the SW dynamics and geomagnetic activity. lon distribution patterns
can give us a hint on the acceleration, transport, and losses in the plasma sheet and to assess simulation stud-
ies. Studying the ions at energies >274 keV, we can find out under which SW and geomagnetic conditions the
inductive acceleration mechanisms are the most effective and whether it is different for oxygen and protons.
We present a comprehensive study of the distribution of energetic oxygen and hydrogen ion abundances in
the near-Earth plasma sheet (from —20 Ry < Xsom < 10 Rg). The measurements are obtained from 7 years of
particle measurements from the Cluster satellites. The novelty of this study is a combination of (a) the exten-
sive region coverage of the near-Earth magnetosphere dayside and mainly toward the flanks at the nightside,
as previous studies either focused on the magnetotail region or were case studies in the near-Earth region;

(b) energy range, as no extensive statistical study has been done so far for energies up to 955 keV; (c) for the
first time we thoroughly look at how the spatial distribution of these populations depends on the geomag-
netic activity and SW dynamics from the tail to the near-Earth plasma sheet at the dayside; and (d) we compare
our results with recent numerical models.

The paper is organized as follows. In section 2, we give a brief overview of the data set and describe how the
data maps were constructed. Section 3 shows how the spatial distribution of the oxygen and hydrogen ions
in the near-Earth magnetosphere varies for different levels of geomagnetic and SW disturbance. Section 4
discusses the results and related physical processes. Section 5 summarizes the results.

2. Instrumentation, Data, and Methodology

The results presented in this study are primarily based on in situ measurements from the Cluster spacecraft
for years 2001-2007. More information about the Cluster mission and instrumentation is given in Escoubet
etal. [1997]. In this paper we used 1 min averaged omnidirectional energetic ion intensities from spacecraft
4, since this gives the best data return for our purpose.

We utilized data from the “Research with Adaptive Particle Imaging Detector” (RAPID) [Wilken et al., 2001]
taking the combined energy channels from 274 to ~955 keV. This energy range is chosen as this is the low-
est range for the oxygen ion measurements by RAPID instrument [Daly and Kronberg, 2010]. The method on
how those channels were created and further details on related data processing can be found in Kronberg
etal. [2012].

2.1. Construction of Maps

In our study the plasma sheet region is defined by plasma beta values in the range 0.2-10 [Baumjohann et al.,
1989; Grigorenko et al., 2012]. The plasma beta is calculated using Cluster lon Spectrometry (CIS)/COmposition
and Dilstribution Function (CODIF) plasma pressure observations [Réeme et al., 2001] and the magnetic field
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Table 1. Median Values of the Dst Index, the AE Index, SW den, IMFBZ, the Plasma Beta, the Number of Records, and the
Median Number of Records Per Bin for Oxygen in Figures 2-4

Type of Map Dst(nT) AE(nT) SWPy,,(nPa) IMFg (nT) Beta NumberofRecords ~Number Per Bin
AE <150 nT -13.5 64 0.97 14 1.04 17,315 77
AE >250 nT —-30.5 505 2.04 =27 0.86 26,560 113
SWPgy, <1.5nPa =21 177 0.52 -0.72 0.90 24,803 85
SW Pyyn = 2nPa -23 391 3.21 —-0.67 1.00 20,325 112
|MFBZ >2nT =17 133 1.83 4.19 0.97 14,025 70
|MFBZ <-=-2nT -29 452 1.54 -5.16 0.86 18,977 76

observations by fluxgate magnetometer [Balogh et al., 2001]. Median values of the plasma beta (fluctuating
around 1) for different geomagnetic and SW conditions are shown in Table 1.

Using this beta range, we mostly include the plasma sheet ions [Grigorenko et al., 2012]. The amount of ions
from the plasma sheet boundary layers (PSBL) is at most 30%. In order to totally exclude PSBL ions one should
use the beta >5. At those beta values it is impossible to get meaningful statistics for the maps. We have
investigated how the maps will change if we use beta >1 (in this case less than 17% ions can be from PSBL
[Grigorenko et al., 2012]). We found no substantial difference in ion distributions. Additionally we controlled
distributions using another criteria for the plasma sheet B, /B < 0.8. These distributions also do not show
substantial differences in this case. Therefore, for the better coverage we choose to show maps without two
latter restrictions.

We project the ion intensities into the XY, plane and do not map them along field lines, as we are interested
in the content of the ions (proxy of energy density, which is an approximation of plasma pressure) in the
plasma sheet as it is. In addition the considered ions have large gyroradius (e.g., the gyroradius of oxygen
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Figure 1. Maps of the sample number of the 1 min averaged energetic oxygen observations, (top left) in XYgg) (dayside
and nightside) and (top right) in YZgg), dayside (all data for 0 < Xggy); (bottom left) in YZgq\ nightside, near-Earth

(all data for —10 < Xgsy < 0 Rg) and (bottom right) YZgg nightside, tail (all data for —10 < Xgsp < 0 Rg) for plasma beta
between 0.2 and 10 and —9 > Zggy < 9 Rg.

KRONBERG ET AL.

ION DISTRIBUTION IN THE MAGNETOSPHERE 3417



@AG U Journal of Geophysical Research: Space Physics 10.1002/2014JA020882

O+, E >274 keV, AE<150 nT O+, E >274 keV, AE>250 nT
2067 i 1] 104 2087 i 1] ETY
10 00l |8 1 408 ‘Vé
: £y 2
g 0 102 % % 1070 £
-10 10° é 1 10" %
1 I
-20 10° 3 10°
-20 -10 0 10 20  -10 0 10
XGSM, RE XGSM, RE
H+, E >274 keV, AE<150 nT H+, E >274 keV, AE>250 nT
2077 ii m 2077 ii m
10408 10408
10 5 10 | 5
o o
w § w 5
o =z O =
z 0 sz 0 3
(%] (7]
9 § 9 8
” 10°0 £ > 10°0 =
) S .10 i g
10 3 3
o o
200,V 200 ]
-20 -10 0 10 -20 -10 0 10
XGSM, RE XGSM, RE
O+/H+, E >274 keV, AE<150 nTw O+/H+, E >274 keV, AE>250 n'I'101
20E7 m |l m 2087 i m
N
10 10° 10" 310°
w + W +
o I o | T
s 9 1wl = oi 10 &
[2] g o =}
1] 5 O 5
> T > i
-10 10? 10k - 102
H B
-20 . 10° 20b. V! ViV e
20  -10 0 10 20  -10 0 10
XGSM, RE XGSM, RE

Figure 2. Maps of ion intensities at £ > 274 keV versus AE index, with (left) AE < 150 nT, (right) AE > 300 nT. (top) O™,
(middle) Ht, and (bottom) O*/H™. Lower/higher than in color bar values of intensities are presented by the minimum/
maximum value in the color bar. Please note that the parts | and VI are more filled with data during disturbed times. This
is not because there are more ions but that there were fewer measurements here during quiet times. The size of the
Earth is not to scale.

ion, taking 511 keV as the geometric mean of the considered energy channel, is about 2R; considering
the averaged magnetic field over this data set ~25 nT) and mapping along magnetic field lines would be
rather uncertain.

The spatial coverage of >274 keV oxygen ion measurements in the geocentric solar magnetospheric (GSM)
coordinate system used in this study is shown in Figure 1. As a result of spacecraft trajectories in the near-Earth
region our data mainly cover the dawn and dusk flanks in the tail and the dayside plasma sheet, primarily in
the north. This coverage allows us to study the transport of ions from the tail region around the Earth. We also
restricted the vertical extend of observations to [Z5g,| < 9in order to keep the coverage more symmetric. The
asymmetry of the spatial coverage which is still present at the dayside along Z,, axis (see Figure 1, top right)
does not affect our conclusions. For example, the dawn-dusk asymmetry at the dayside for energetic ions is
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Figure 3. Maps of ion intensities at £ > 274 keV versus the SW Payns with (left) Pgyn <1.51T, (right) Pgyn 22 nT.In the
same format as Figure 2.

still present if we take more narrow Zg), ranges (to keep approximately the same latitude, not shown here).
Radial distances are chosen to be greater than R > 6 R; to avoid possible contaminations in radiation belts.

lon intensity maps for energies >274 keV for two geomagnetic activity levels, quiet (AE < 150 nT) and dis-
turbed (AE > 250 nT) are shown in Figure 2, for two SW dynamic pressure(Py,,,) levels, low (P < 1.5 nPa) and
high (P > 2 nPa) in Figure 3, and for two IMF directions, northward (IMFBZ > 2) and southward (IMFBZ < -2)in
Figure 4. As a compromise between resolution and statistics, we use 2R, X 2R, bins, and only plot values where
each bin has more than 10 data records from three independent Cluster orbits. White color shows where there
is a lack of data, and black color shows where the measurements yield zero counts. If a data point has a value
equal to zero or less than the minimum color bar value, it is painted in black color. We have divided the maps
into six regions (I-VI) for better comparison. The total number of 1 min averaged records and the median
number of samples per 2R X 2R, bin for each type of map are shown in Table 1. We show the numbers only
for oxygen as the difference from those for protons is less than 0.1%. Additionally we show the median values
of the Dst index, the AE index, SW Py,,, and IMF;_for each type of map in Table 1. To minimize the effect of
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Figure 4. Maps of ion intensities at £ > 274 keV versus IMF B, direction, with (left) IMF B, > 2 nT, (right) IMF B, < —2 nT.
In the same format as Figure 2.

skewed distribution, we use median rather than mean values of the fluxes for construction of the maps, see
details in Kronberg et al. [2012].

In Table 1, one can see that the low (high) SW Py, and the northward (southward) IMF, are correlated
with lower (higher) AE index. We checked the linear Pearson correlation between these parameters in our
database: AE versus SW Py, is —0.008 and AE versus IMF_is —0.11 (for the test, SW pressure versus SW density
is 0.99). This means that AE index is quite independent from the SW Py, and the IMF; . We have also tried
to plot the ion distributions for the SW Py, and the IMFy at specific AE ranges in order to eliminate the
apparent dependence on AE. However, in such cases we do not have enough points of measurements to do
meaningful statistics.

We checked if seasonal effects related to Cluster orbit affect our conclusions. Namely, the regions | and II
are always traversed by Cluster during approximately September-November, when the IMF-magnetosphere
coupling is most efficient. We compared the median AE index for dusk and dawn observations at the nightside
during both quiet and disturbed times. The numbers are the following: 75 nT and 56 nT for quiet times, 528 nT
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Figure 5. Dependencies on local time of (first panel) proton intensities at >274 keV, (second panel) oxygen intensities at
>274 keV, and (third panel) ratio of Ot/H* at >274 keV, derived from Figure 2. The thick solid lines show the intensities
for the disturbed times (AE > 250 nT) and thin dashed ones for the quiet times (AE < 150 nT). Error bars indicate 95%
confidence intervals.

and 522 nT for disturbed times, for dawn and dusk, respectively. This difference should not significantly affect
our conclusions.

According to the results of earlier statistical studies there is a 1-2 h delay between the southward turn of
the IMF and the generation of the accelerated ion beams in the current sheet sources [Borovsky et al., 1998;
Grigorenko et al., 2005]. The SW Py, may affect the distribution in the plasma sheet with a time delay. We have
plotted the ion distributions with two different time delays (0.5 h and 1.5 h), finding no significant difference
in comparison with the distributions without delay. This means that the delays vary quite a lot depending on
the particular acceleration source which accelerates the ions to high energies (e.g., magnetic reconnection,
dipolarizations, and so on). Several acceleration sources may simultaneously operate in the magnetotail. As
a result, what we see in the plasma sheet is an “average” distribution of energetic ions reflecting the global
dependence on the IMF and SW conditions.

In order to better visualize and quantify the dawn-dusk asymmetries Figures 5-7 show the distributions of ion
intensities and their ratios in the dawn and dusk regions, on the dayside and nightside, also dividing nightside
into two regions for two geomagnetic activities, SW Py, and IMF B, levels, respectively. The numbers and error
bars used in these figures are listed in Table 2. The intensity values are derived by taking the median value of
the intensity of all 2R x 2R, bins in the corresponding region. By this, we lose information on magnetic local
time and radial variations. In order to calculate error bars in Figures 5-7, we first calculated the median abso-
lute deviation which we then converted to standard deviation using a factor of 1.4826 [Huber, 1981] (see more
details on how the statistical analysis was done in Kronberg et al. [2012]). In order to simplify comparison of the
values, the confidence interval (Cl) error bars (Cl = t,,_, - a/\/ﬁ, where t,_; is the Student’s t distribution with n
degrees of freedom and ¢ the standard deviation) are calculated in Figures 5-7. The Student’s coefficient t,,_,
is used at the 5% level of significance. Two values are considered to be significantly different if the confidence
interval error bars do not overlap each other. Two values do not show significant difference if the standard
error bars (SE = a/\/ﬁ, not shown in figure but basically half of the confidence interval) overlap each other.

3. Results

We check here for prominent spatial asymmetries in the ion distributions and significant differences between
different geomagnetic and SW conditions.

For the different levels of geomagnetic activity the main findings are the following:
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Table 2. Median Values of the lon Intensities (cm~2sr~'s~1) in the Different Regions in Figures 2-4

Species Region | Region Il Region Il Region IV Region V Region VI
AE <150nT

ot 83 +50 460 + 209 1100 + 186 200+ 124 0+0 0+0

H* 1000 + 291 1400 + 263 1500 + 310 1300 + 266 710+ 150 1100 + 233

O*/H* 0.08 + 0.06 0.33+0.16 0.73+0.20 0.15+0.10 0+0 0+0
AE >250nT

ot 1700 + 435 3300 + 951 2700 + 930 540 + 169 350 +339 510+ 221

H* 2500 + 371 4700 £ 1119 5200 + 1279 1300 + 296 2000+ 1115 2100 + 648

Ot/Ht 0.68 + 0.20 0.70 + 0.26 0.52 +0.22 0.42+0.16 0.18 +0.20 0.24+0.13

SWde,,, P <1.5nPa

ot 900 + 344 860 + 344 1500 + 297 400+ 118 0+0 140 +73

H* 2000 + 470 2100 + 354 2300 + 297 1400 + 316 1100 + 367 1900 + 475

O*/H* 0.45 +0.20 0.41+0.18 0.65 +0.15 0.29+0.11 0+0 0.07 + 0.04

SWden, P >2nPa

ot 1300 + 365 2400 + 540 1700 + 774 400+ 170 390 + 378 190 + 106

H* 2700 + 513 4900 + 755 2800 + 824 1600 + 303 1200 + 872 1300 + 425

O *t/H* 0.48 +0.16 0.49 +0.13 0.61+0.33 0.25+0.12 0.33+0.39 0.15+0.09
IMFg, >2nT

ot 540 + 255 880 + 432 1700 + 533 440 +171 0+0 74 + 42

H* 1600 + 297 2300 + 432 2400 + 571 1800 + 634 1400 + 696 2100 + 570

O*/H* 0.34+0.17 0.38 +0.20 0.71+0.28 0.24+0.13 0+0 0.04 + 0.02

IMFg, < —2nT

ot 1500 + 584 1700 + 637 1400 + 667 490 + 247 95 + 80 480 + 224

H* 2700 + 531 4300 + 934 2400 + 545 1300 + 390 1800 + 1124 1700 + 503

Ot/Ht 0.56 + 0.24 0.40 +0.17 0.58 +0.31 0.38 +0.22 0.05 +0.06 0.28 +0.16

1. The oxygen intensities are significantly higher at dusk than at dawn (about ~8 times for quiet periods and

~5.5 times during disturbed periods). There is a significant drop of the ion intensity between the postnoon
and prenoon regions (ion intensity is ~5 times lower during both quiet and disturbed times, compared
regions lll and IV), see Figures 2 and 5. The average intensity of >274 keV oxygen ions (for the current data
coverage) shows an increase by a factor almost 5 during disturbed times. The most dramatic change in
intensities between quiet and disturbed times, more than an order of magnitude is at the tail plasma sheet
side (regions | and VI).

.In contrast to >274 keV oxygen ions, the protons do not show significant asymmetry between dawn and
dusk during quiet times (between regions Il and VI, llland IV), as shown in Figures 2 and 5. For disturbed peri-
ods, the proton intensity is significantly higher on the duskside (dusk ion intensity is approximately 3 times
of dawn ion intensity, compared regions I1-V) but in the tail regions (I and VI) they do not show significant
difference. At the dayside the intensity of protons drops by ~4 times during disturbed time. The averaged
intensity of >274 keV protons (for the current data coverage) during disturbed conditions is approximately
2.5 higher than during quiet periods.

.The O*/H* ratio of >274 keV ions is on average 0.21 during quiet times and 0.45 during disturbed times.
This is significantly higher than the density ratios derived by Maggiolo and Kistler [2014]. This also means
that if we would compare the energy densities which are proxies of the particle pressure, oxygen dominates
the pressure at these energies in most of the regions covered here during disturbed times. The O*/H" ratio
and the oxygen intensity show almost identical distribution patterns, namely dawn-dusk asymmetry, during
quiet time. There is a significant dawn-dusk asymmetry of the O*/H* ratio in the tail region during disturbed
times. This implies different acceleration mechanisms and/or type of particle sources for protons and oxygen
ions. At the dayside the loss mechanism is similar for both oxygen ions and protons. However, during quiet
time the relative loss of oxygen is more significant than of protons.

For the different levels of the SW Py, the main findings are the following:
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Figure 6. Dependencies on local time of (first panel) proton intensities at >274 keV, (second panel) oxygen intensities at
>274 keV, and (third panel) ratio of Ot/H* at >274 keV. The thick solid lines show the intensities for the high SW den
(>2 nPa) and thin dashed ones for the low SW den (<1.5 nPa), derived from Figure 3. Error bars indicate 95%
confidence intervals.

4. The oxygen intensities are significantly higher at dusk than at dawn (about ~6 times at times of low SW P, ,
and ~5.5 times at times of high SW Py, ), see Figures 3 and 6. There is a significant drop of the ion intensity
between the postnoon and prenoon regions during both low and high SW Py, (ion intensity is ~4 times
lower, compared regions Ill and IV). We do not observe an expected significant overall intensity increase
from low to high SW den (as flux tubes are compressed) but rather local increase, about 3 times, at the dusk
near-Earth side (region Il).
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Figure 7. Dependencies on local time of (first panel) proton intensities at >274 keV, (second panel) oxygen intensities at
>274 keV, and (third panel) ratio of Ot/H* at >274 keV. The thick solid lines show the intensities for the southward IMF
(< =2 nT) and thin dashed ones for the northward IMF (>2 nT), derived from Figure 4. Error bars indicate 95%
confidence intervals.
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Table 3. Presence of the Significant Dawn-Dusk Asymmetry Between Different Regions (Tail—regions | and VI,
near-Earth nightside—regions Il and V, dayside—regions Ill and IV) in Figures 2-42

Oxygen Protons Ot/H*
Region Q D Q D Q D
AE Index
Tail yes yes no no yes yes
Near-Earth nightside yes yes yes yes yes yes
Dayside yes yes no yes yes no
SD between “Q” and “D” all regions excluding IV regions |-IlI regions |, IV, and VI
SWPyy,
Tail yes yes no yes yes yes
Near-Earth nightside yes yes yes yes yes no
Dayside yes yes yes yes yes no
SD between Q and D region Il region Il no

IMFg_ Orientation

Tail yes yes no no yes no
Near-Earth nightside yes yes no yes yes yes
Dayside yes yes no yes yes no

SD between Q and D regions |, V, and VI regions | and Il region VI

Kp Index for lon Densities From Maggiolo and Kistler [2014]

Tail no no no no no no
Near-Earth nightside no no no no no no
Dayside no no no no no no

SD between Q and D all regions excluding IV region V regions | and ll1-VI

* Qand D mean “Quiet” and “Disturbed” conditions, respectively. For SW Pgyn the higher pressure is Disturbed. For IMF
orientation the southward direction is considered to be Disturbed. Additionally we show the regions where the significant
difference (SD) between Quiet and Disturbed conditions is observed.

. The dawn-dusk asymmetry of protons is less prominent than for oxygen ions during low SW Py,.. However,

the asymmetry becomes more prominent at times when the SW Py, is high (2.5 times higher at the dusk-
side). The same as for oxygen a significant intensity increase, about 2 times, is observed only at the dusk
near-Earth side (region Il) between the two SW Py, levels.

. There is no significant difference in the O*/H* ratio between two levels of the SW Py,,. This means that the

SW Py, affects oxygen and proton ions in a similar way, probably controlling ionospheric ion outflow [Cully
etal, 2003a] or the volume of the magnetosphere. Also, this means that SW Py, does not affect the relative
efficiency of proton and oxygen acceleration.

For the different directions of the IMF B, the main findings are the following:

. The oxygen intensities are significantly higher on the duskside than on the dawnside (about ~6 times for

northward IMF and ~4 times during southward IMF). There is a significant drop of the ion intensity at
between the postnoon and prenoon regions (ion intensity is ~4 times lower during northward IMF and
~3 times during southward IMF, compared regions Il and 1V), see Figures 4 and 7. A significant change in
intensities between northward and southward IMF, a factor of 3, is at the tail plasma sheet side (regions |
and VI).

.In contrast to >274 keV oxygen ions, the protons do not show significant asymmetry between dawn and

dusk during northward IMF, as shown in Figures 4 and 7. However, they show significant dawn-dusk asym-
metry during southward IMF (factor of 2 higher at the duskside, regions Il-V). The asymmetry is observed
at the dayside the proton intensity ~2 times higher at the dusk during southward IMF. During southward
IMF, the proton intensity is significantly higher on the duskside compared to those during northward IMF
(regions I and Il ion intensity is approximately 2 times higher).

9. There is a significant difference in the O*/H* ratio between the two IMF directions at the dawn tail side

(region VI). This means that acceleration, transport, and loss mechanisms are not the same for oxygen and
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proton ions for the two IMF directions. At the dayside the loss mechanism is similar for both oxygen ions
and protons. However, during northward IMF the relative (ratio of intensity before (region Ill) and after
(region IV)) loss of oxygen is more significant than of protons.

We summarize the findings on dawn-dusk asymmetries and the differences between quiet and disturbed
magnetospheric conditions in Table 3. We also compare our results with those derived for the ion densities
by Maggiolo and Kistler [2014].

4. Discussion

4.1. Dependence on Geomagnetic and Solar Wind Parameters

The direction of IMF regulates plasma transport in the magnetosphere [e.g., Winglee, 2000; Welling and
Ridley, 2010; Cully et al., 2003b]. The supply of ionospheric ions into the magnetotail plasma sheet depends on
the IMF direction. During a southward directed IMF, a part of the outflowing ionospheric ions is captured on
reconnecting field lines at the dayside and, due to enhanced convection, is transported to the central plasma
sheet. There, the ions get trapped and are significantly accelerated, e.g., by tail reconnection or/and dipolar-
ization. During a northward IMF, because of the weak convection, ionospheric ions mostly stay on the open
field lines in the lobes and do not enter the plasma sheet. During periods of southward IMF, the abundance of
ionospheric oxygen increases in the plasma sheet, where they can be further accelerated. One may therefore
expect higher intensities of energetic oxygen fluxes during periods of southward IMF. A significant increase
in oxygen ion intensities is indeed observed in the magnetotail regions | and VI (see section 3 and Figures 4
and 7) during southward IMF.

There is an increased possibility of reconnection events in the magnetotail at times when the magnetosphere
is compressed, because the current sheet becomes thinner. However, the increase in SW Py, shows a corre-
lation with the increase in ion intensities only at the near-Earth duskside at least for our SW Py, levels. Also,
the ratio of oxygen and proton intensities is similar for both SW Py, levels.

The most pronounced correlation is seen between ion intensities and geomagnetic activity. During sub-
storms, the amount of oxygen increases significantly in the whole near-Earth magnetosphere. The clear
dependence of the energetic ion distribution on the AE value can be due to the following effect. The partial
disruption of the cross-tail electric current in the course of reconnection and/or current sheet disruption pro-
cesses results in the formation of a substorm current wedge, reflected by high AE index values. These processes
are followed by the generation of strong inductive electric fields which can be responsible for the effective
ion energization. During periods of high AE we may expect an intensification of the ionospheric source trig-
gered by precipitating particles during reconnection and/or current disruption. This provides an additional
ion supply to the magnetotail. Quiet geomagnetic conditions, however, mean that there is no substorm cur-
rent wedge formation and, therefore, no ion energization and no additional ionospheric source. Therefore,
we observe quite low intensity levels for oxygen ions, see Figure 2.

The absence of a clear dependence of the energeticion distributions on IMF and SW Py, can be due to variety
of acceleration processes and their delays in operation relative to those conditions.

4.2, Dawn-Dusk Asymmetries

The dawn-dusk asymmetry in the plasma sheet ion distribution can be caused by two general effects. One is
gradient drift of the adiabatic ions toward the dusk flank. The other effect is when ions with gyroradii larger
than the radius of curvature of the magnetic field lines in the current sheet experience nonadiabatic motion in
the duskward direction and are accelerated by the dawn-dusk electric field (through the Speiser mechanism).
The other effect occurs if there is a transient acceleration source. The ions are then subject to acceleration
by inductive electric fields. It is worth to note that only inductive electric fields are capable of accelerating
charged particles to energies exceeding the value of the cross-tail potential drop (> 100 keV) in the mag-
netotail. This mechanism is more complicated and depends on the spatial/temporal characteristics of the
accelerating source. The simulations presented in previous studies [e.g., Grigorenko et al., 2011, and references
therein] showed that the dawn-dusk asymmetry in the energy distribution of 100 keV ions is not observed
in the magnetotail if only inductive acceleration sources are operating. This is because under the influence
of a strong time-dependent inductive electric field, a particle gains energy quickly and escapes the current
sheet without a significant displacement in the dawn-dusk direction. The strength of the dawn-dusk asym-
metry in the spatial distribution of energetic ions thus reflects the interplay between these two effects and
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Figure 8. Trajectories of the 1 keV test protons are launched from the same position off equator (closed black circle in
Northern Hemisphere) on midnight meridian from 4 Rg, 40° latitude with 160° pitch angle in (left) GSM XZ and XY
planes. However, the protons are launched at distinct times before dipolarization and stopped at t = 5 min. (right) The
dipolarization starts at t = 0 and terminates at t = 1 min as seen particles launched 3 min, 2 min, and 1.5 min before
dipolarization, respectively. The figure shows how the induced electric field between 0 and 60 s can accelerate the
particles (Figure 8, top right). Magnetic moments normalized to the initial value are also shown (Figure 8, bottom right).

inductive acceleration mechanisms. In this context we discuss in the following paragraph the features of the
dawn-dusk asymmetry in the distributions of energetic protons and oxygen ions observed during the quiet
and disturbed conditions.

Proton intensities do not show a significant dawn-dusk asymmetry during quiet geomagnetic periods. This
confirm the importance of spatially localized inductive acceleration sources during quiet conditions. The value
of the AE index does not necessary reflect the operation of transient localized dynamical processes in the
magnetotail [e.g., Grigorenko et al., 2013; Luo et al., 2014].

During disturbed times, the duskward asymmetry is seen at the near-Earth nightside. This suggests the

presence of two mechanisms: a strong duskward drift due to the increase of the magnetic field gradient in
the near-Earth tail and strong inductive acceleration by nonstationary processes (magnetic dipolarization,

turbulence, and transient reconnection) capable of energizing protons up to hundreds of keV [Nosé et al.,
2000; Ono et al., 2009; Luo et al., 2014]. A similar effect has been observed in the model by Delcourt [2002],
where mass-selective ion energization occurs under the influence of a electric field induced by a time-varying
magnetic field. The trajectories of protons subject to this acceleration are shown in Figure 8. This figure illus-
trates that the particles can get energized pretty fast without undergoing large distances in the dawn-dusk
direction by the induced electric field between 0 and 1 min. This energization depends upon particle
trajectory apex in the magnetotail as well as phasing with the dipolarizing field lines.

The oxygen ions at these energies are nonadiabatic even at the near-Earth magnetotail (3-D particle
tracing modeling). They experience a duskward motion (along the dawn-dusk electric field) while convecting
earthward. This leads to the dawn-dusk asymmetry during both quiet and disturbed times, in agreement
with nightside observations. During quiet time periods, the presence of energetic protons (presumably pro-
duced through local inductive acceleration) and the relatively low intensity of the oxygen ions at the dawnside
implies that the oxygen source is weak. During disturbed times, a dramatic increase of the oxygen intensity
in the whole near-Earth plasma sheet (compared to protons) implies an additional source (ionosphere).

The duskward asymmetry of the energetic ion distribution is in agreement with the duskward distribution of
the ioninjections [Gabrielse et al., 2014]. These injections were associated with localized dipolarizations which
imply inductive acceleration.
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Figure 9. Comparison of simulations for the (top left) proton and (bottom left) oxygen pressures taken from Fok et al.
[2006] with corresponding energetic intensities (top right) of the protons and (bottom right) of oxygen.

The >274 keV oxygen distribution pattern is similar to those seen in simulations by Fok et al. [2006] using the
Lyon-Fedder-Mobarry MHD model [e.g., Fedder et al., 1995] for substorm expansion phase, see comparison in
Figure 9. We do not compare the growth phase as it is not clear to which AE index range it would correspond.
For protons our map for geomagnetically disturbed times (Figure 9) is also in very good agreement with the
simulations by Fok et al. [2006]. The dawn-dusk asymmetry is reflected by higher energetic ion intensities and
by higher pressure at the near-Earth duskside. In the model by Fok et al. [2006] the energization of particles is
due to inductive electric fields [Delcourt, 2002].

Also, the distribution of the relative energy density (O*/H*) for the AE < 150 nT simulated by Winglee and
Harnett [2011]is similar to the corresponding map for the O*/H* ratio, see comparison in Figure 10. They both
show clear dawn-dusk asymmetry.

Considering asymmetries one has to compare the same physical quantities. Our study confirms previ-
ous observations of energetic particles and simulations of ion pressure and energy density which show a
dawn-dusk asymmetry in the near-Earth magnetosphere. Observations of low-energy proton and oxygen
densities [e.g., Maggiolo and Kistler, 2014] do not show such an asymmetry. Because of their lower energies
(0-40 keV/e) the probability of the nonadiabatic effects in their dynamics is much smaller.

4.3. Losses

During disturbed times, the energetic ion intensity drops significantly between the postnoon and prenoon
regions. This indicates particle sinks at these energies. lons can be lost internally in the magnetosphere, for
example, through charge exchange with neutral hydrogen at the geocorona or precipitation into the atmo-
sphere through wave-particle interactions [Kistler et al., 1989; Jordanova et al., 1996]. However, these losses
are not very likely to happen at our energies and locations, according to runs of the particle tracing model by
Delcourt et al. [1990]. This can be due to leakage through the magnetopause in the dayside [Keika et al., 2005].
This can happen when the magnetosphere is compressed. To provide some estimate for this loss, we assume
that all ions have escaped through the duskside half of the dayside, a surface that we describe as an ellipsoid
with axes 10R;, 14R;, and 9R;. If we take the values between regions lll and IV for the quiet time and between
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Figure 10. Comparison of simulations of relative energy density for O*/H* at times when AE < 150 nT adapted from
Winglee and Harnett [2011] with corresponding O /H* intensity ratio.

regions Il and IV for the disturbed time (as actually the intensities are the highest in region Il for this time) from
Table 2, the loss rate of the oxygen ions during quiet geomagnetic time is ~9.1 x 1022 + 2.3 x 10?2 s™" and
during disturbed geomagnetic time ~2.8 x 102 + 9.8 x 10> s™'. For low and high levels of the SW P, we
get ~1.1 x 108 £ 3.2 x 1022 s7" and ~2 x 10% + 5.7 x 10?2 s, respectively. For northward and southward
directions of IMF, the loss is ~1.3 x 102 + 5.6 x 10?2 s and ~1.2 x 10?3 + 7.2 x 10?2 s~'. These numbers
are comparable to the estimates of oxygen loss from the dayside plasma sheet by Seki et al. [2001] which is
~10%* 571, These authors neglected the losses of the particles at energies higher than 17 keV. However, our
estimations show that the energetic particles also play a role in the loss estimations (taking into account that
we start from quite high energies, 274 keV). These values show that the absolute loss is controlled by the SW
Pg4yn and depends on the geomagnetic activity.

Another possible loss of energetic ions is energy diffusion which occurs during their drift around the Earth.
Estimation of an interplay between the losses at the magnetopause and energy diffusion losses requires
further studies.

Itis also interesting that protons do not show any significant loss between the postnoon and prenoon regions
for the northward IMF direction and also during low geomagnetic activity. Whether this is a gyroradius effect
or, e.g., caused by entry through the magnetopause of the energetic upstream ions from the quasi-parallel
bow shock needs to be investigated.

4.4. Pressure Estimations
The partial isotropic pressure can be derived using the following formula (see RAPID User Guide [Daly and
Kronberg, 2014])

P(nPa) = 4n§0.517 x 107 8y/m(amu)v/E(keV)J(cm™2sr's7), m

where m is the ion mass in atomic mass units (amu), J is the integral intensity, and E is the effective energy.
The median intensity for the oxygen at energies >274 keV is 85 (cm~2sr~'s™") and for the protons 1300
(cm~2sr~'s~1) during geomagnetically quiet times, 1300 and 2800 (cm~2sr~'s™") during geomagnetically dis-
turbed times, respectively. This gives us 3.3 x 10~ nPa and 1.3 x 103 nPa for the energetic oxygen and
protons, respectively, during quiet times. The median proton pressure derived from CIS/CODIF observations
is 0.17 nPa during quiet times. For the disturbed times the partial pressure of oxygen and protons at >274 keV
is 5 x 1073 and 6 x 1073 nPa, respectively. This is insignificant compared to the median proton pressure
0.28 nPa derived from CIS. The two instruments may not be perfectly cross calibrated, but cross comparison
between CIS and RAPID data reveals that intensities of RAPID ions may be higher than the CIS intensities but
usually less than factor of 2 [Kronberg et al., 2010]. The error in estimation of the partial pressure due to the
different spectral shape of oxygen and protons is at most 20% and on average 7% [Kronberg and Daly, 2013].
Although the estimations are rough, they clearly show that the energetic ions at energies >274 keV do not
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significantly contribute (<2%) to the partial pressure produced by ions at 0—40 keV/q. We did the same esti-
mations between 6 and 8R; as this region related to the ring current where energetic particles suppose to
make significant contribution. However, the contribution of >274 keV ions is estimated to be <1% during
disturbed time.

5. Summary

For the first time, based on 7 years of Cluster observations we established the distributions of energetic proton
and oxygen intensities and their ratios at energies >274 keV in the near-Earth magnetosphere depending on
the geomagnetic activity and SW activity. This information is important as an input for future verification of
sources, acceleration mechanisms, transport, and ion losses.

From distributions we learn that

1. The distribution of ions in the magnetosphere is mass dependent. Energetic oxygen possesses the strongest
spatial asymmetry depending on geomagnetic and solar wind activity.

2. The southward IMF leads to significantly stronger oxygen energization in the tail plasma sheet compared
with the northward directed IMF.

3. The proton intensity shows significant increases at the duskside during disturbed geomagnetic conditions
and at the near-Earth duskside during enhanced SW Py, and southward IMF, implying there location of
effective inductive acceleration mechanisms and a strong duskward drift due to the increase of the magnetic
field gradient in the near-Earth tail.

4. The strongest changes of the ion intensities are associated with AE index and not the change of the IMF
direction or SW Py,,.. This suggests that acceleration of ions is directly associated with inductive effects in
the magnetotail during substorms.

5. We do observe the dawn-dusk asymmetry for the energetic ion intensities for disturbed conditions and for
oxygen during quiet conditions. This is in agreement with previous observations of energetic particles and
models which output the ion pressure and energy density and take into account ionospheric source. Most
notably, such an asymmetry is not observed for the distributions of low-energy ion density [e.g., Mouikis
etal.,, 2010; Maggiolo and Kistler, 2014].

6. Higher losses of energetic ions are observed in the dayside plasma sheet under disturbed geomagnetic
conditions and enhanced SW Py, ,.

7. Our observations are in agreement with models by, e.g., Delcourt [2002], Fok et al. [2006], Welling and Ridley
[2010], and Welling and Ridley [2011].
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