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ABSTRACT 

 

Sustainable development has become the foundation in planning for the future. 

Nowhere is it more evident than in the energy sector. Re-Conceptualization of the 

electricity market is currently underway. The latter being unsustainable has attracted a 

lot of public attention. Debates on its future vary significantly in expectations. However 

its transition to a fully renewable based one has gathered most of the scientific and 

public support. Energy Transitions exhibit complex and dynamic behavior. In order to 

better understand them and close the gap between desired expectations and achieved 

results, new electricity market models are being build and analyzed. 

 

This thesis will rely on the System Dynamics methodology to build a small model of 

the electricity market. The model sheds some light on the dynamics of the battle 

between old non-renewable technologies and new renewable ones. The core interest is 

in generation expansion planning and its investment strategy. Optimal strategies given 

the built model are determined relying on a tool called Stochastic Optimization in 

Policy Space (SOPS). The policies highlight the fact that most investment should be re-

allocated from the non-renewable to renewable technologies from the beginning to 

achieve optimal results on the long run.  



   iii                     

TABLE OF CONTENTS 

 

ACKNOWLEDGMENT I 

ABSTRACT II 

TABLE OF CONTENTS III 

1.  INTRODUCTION 1 

2. BACKGROUND 3 

2.1 Power sector and renewable global investment 3 

2.2 Power sector sustainable development and uncertainty 4 

2.3 Current analysis approaches and relevance of System Dynamics 5 

2.4 SD model and its main drivers 6 

2.5 Optimization and choice of criterion 7 

3. MODEL 8 

3.1 Electricity Market Sector 8 

3.2 Capacity and cumulative generation 11 

3.3 Learning Rates, Resource Depletion and Generation Costs 14 

3.4 Investment 17 

3.5 SOPS Criterion 23 

4. BEHAVIOR TESTING 28 

4.1 Behavior 29 

4.2 Behavior Analysis and Validation 33 

4.3 Sensitivity Analysis 35 

5. POLICY DESIGN AND OPTIMIZATION 40 

5.1 Current policies discussion 40 

5.2 Types of Policies 41 

5.3 Optimal Policy in SOPS and Testing 43 

5.4 Policy Scenarios 51 

6. LIMITATIONS 57 

6.1 Level of Details in Investment Decision Analysis 57 

6.2 Level of details in the model's feedback loops 57 

7. CONCLUSIONS 58 

7. REFERENCES 59 

8. APPENDIX 61 

8.1 Explanation of small auxiliary structures 61 

8.2 Parameters 65 

8.3 SOPS Print screens for Different Policy Types 66 



           

                      

1 

1.  INTRODUCTION 

Electricity markets are undergoing major changes. Deregulation trend of markets worldwide, 

rise of renewable sources and increase in public interest about topics such as climate change 

and energy supply security have altered the behavior of the market and made it more volatile. 

As a result, new regulatory interventions are being introduced gradually to control for these 

factors. This in turn has further complicated the market since a blend of regulated and 

deregulated policies is now at play. 

 

These new developments have pushed the power sector players, private and governmental 

ones, to rethink and redefine their understanding of the mechanism in which the electricity 

market operates. Typical static frameworks that modeled monopolistic power markets 

(production, transmission and distribution) were judged to be obsolete and new market 

models have been developed that take into consideration the new competitive landscape with 

multiple producers and retailers. 

 

The interest of governments and private companies in new market models lies in their 

interest for survival in the constantly changing market. To achieve competitive advantage, 

the ability to hedge against uncertainties and design strategies to take advantage of the 

market is of absolute importance and this cannot be done without new and dynamic market 

models as stated in (Teufel, 2013) and (Olsina, 2005). 

 

Energy Transitions are inherently complex and dynamic. Delays, feedback, non-linearity and 

uncertainty are staple attributes of such events whether on a local, regional or global level. 

The System Dynamics (SD) model built in this thesis will portray a simple picture of the 

dynamics that govern this complex system in an effort to better control it behavior. If 

properly managed, the outcome will be a quick and smooth transition towards more 

sustainable sources of energy. These sources are renewable and can meet the ever growing 

demand for electricity while respecting their natural carrying capacity and meeting the newly 

drafted environmental regulations. 

 

The prime focus of the model is the long term generation expansion planning problem that 

arose lately in the market. Over the next 20 years, over 40% of the total world energy 

investments will be into the power sector, that is over 16 trillion dollars. 58% of the 16 

trillion dollars will be into power plant construction (IEA, 2014a). Efforts to better 

understand and plan capital expenditures in the power sector offer a lot of benefits if proven 

successful. The end goal is to devise optimal investment strategies to maximize the social 
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welfare. For this, a tool called Stochastic Optimization in Policy Space (SOPS) along with 

the modeling software Powersim were utilized. 

 

The model looks at the global expansion planning problem with an aggregated view of the 

two power sectors of Non-Renewable and Renewable. The Nuclear and hydropower 

technologies were removed from the non-renewable and renewable sectors respectively. 

Nuclear technology has been undergoing phasing-out policies in more countries around the 

world and hydropower has reached maturity and its potential for low cost environmentally 

friendly option is shrinking. All of the other technologies (Coal, gas, oil, biomass, wind, 

solar...) were considered when determining the generation capacity and its costs for each of 

the sectors. 

 

The simulation results show a steady increase in the renewable market share. The increase is 

achieved through a built in "Premium" factor. This factor aggregates some of the economic 

incentives such as capital subsidies and feed-in-tariff. It is this premium that is pushing the 

renewable technologies forward into maturity and eventually unsubsidized commercial 

viability. The increase in the market share is however not fast enough to meet targets such as 

the 2 degrees one. 

 

The optimization with the goal of maximizing the social welfare shows a straightforward 

strategy of re-allocating most if not all of the investments into the renewable sector to 

achieve optimal long term net benefits. Net benefits take into consideration both the 

producers and consumers interests. 

  

The model can prove useful for gaining insights into how the market behaves under certain 

assumptions and scenarios. Hence it is a learning tool for those interested in acquiring some 

preliminary understanding of the market. 
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2. BACKGROUND 

The basic issue which this thesis tries to discuss, analyze and offer some new insights about 

is energy management and in particular the electricity generation expansion planning 

problem. In this section we will try to justify the contemporary relevance of this issue and 

place the problem in context with the methodology utilized to analyze it. 

2.1 Power sector and renewable global investment  

Power sector investment has had the larger share of total energy investments (Figure 1). 

 

 

Figure 1: Investments into the power sector taken from (IEA, 2014b) 

Renewable sources of energy have been constantly under-invested. Currently it is around 

12% of the total energy investments (Figure 2). 

 

 

Figure 2: Non-Fossil Fuel Investment taken from (IEA, 2014b) 
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N.B: "Non-fossil fuel" category in Figure 2 includes all renewable technologies as well as 

nuclear and bio-fuels. 

 

Power sector will see an influx of 16 trillion dollars of investment over the next 20 years, 

which is over 40% of the total world energy investments. 58% of these investments will be 

into power plant construction (IEA, 2014a). 

 

Figure 3: Energy Sector Investments for the next 20 years taken from (IEA, 2014b) 

Investments into renewable sources of power generation will amount to 35% over the next 

20 years out the total power sector investments (Figure 3). This is too little to catalyze the 

energy transition and transform the power sector into a sustainable one. Hence the need to 

focus on the renewable generation expansion investment strategy. 

2.2 Power sector sustainable development and uncertainty 

Sustainable development has become a planning cornerstone of almost every nation. It has 

three dimensions: Economical, Social and Environmental. Energy and in particular the 

electricity sector is a prime subject of recent debates about sustainable development and is 

undergoing major re-conceptualization of how it works. Investigations are underway for 
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alternative solutions to transform the electricity sector into a sustainable one. The power 

sector is unsustainable on all three dimensions (Dominguez, 2008): 

 

 Economical: Societies are becoming more consumption oriented and are consuming vast 

amounts of electricity. This is placing a heavy burden on the power sector which is 

relying heavily on non-renewable sources which costs are increasing as they are being 

depleted more quickly causing the prices to increase as well. 

 Social: 1.6 billion people do not have access to electricity which is considered a basic 

commodity in other parts of the world. These people are located in mostly poor rural 

areas. The most viable solution to genuinely improve their lives is to present them with 

off-grid applications like wind turbines and photovoltaic panels. 

 Environmental: Pollution and climate change activism are gaining momentum. As more 

investigation is done, it is becoming clear that the recent surge in fossil fuels usage, 

mainly in electricity generation, is one of the main contributors and catalyst of climate 

change. 

 

Energy transition towards renewable sources shows promise in terms of transforming the 

power sector into a sustainable one. On the long run, transition to renewable sources will 

drive prices down improving its standing on the economic dimension. When the prices go 

down, electricity will become more accessible to the less privileged parts of the world. Also, 

the development of renewable means for electricity generation will make it accessible for 

everyone to rely on local or regional sources of energy instead of importing expensive 

foreign ones. With the prices going down as well as tapping into renewable sources of 

energy in every part of the world, the social standing of the power sector will be greatly 

improved. And finally, needless to say that transitioning to environmentally friendly sources 

of energy will improve the environmental standing for an overall boost of the power sector's 

sustainable development performance. 

 

Many of today's renewable electricity generation technologies face deep uncertainty whether 

they will survive the battle and reach maturity and large scale unsubsidized commercial 

adoption. A prerequisite to increase the survival chances of these technologies is initial 

availability of resources (labor, time and money) to enable active discovery and reduction of 

the uncertainty that hinder entrepreneurs from investing (Pruyt, 2011). To reduce uncertainty 

and make the transition smoother, long term analysis has to be done which requires new 

market models. 

2.3 Current analysis approaches and relevance of System Dynamics 



           

                      

6 

Old static frameworks of regulated and monopolistic electricity markets are outdated. New 

and dynamic models have emerged to study the metamorphosing markets. Three main 

modeling approaches have been adopted in literature according to (Ventosa et al., 2005) and 

(Sterman, 1991): Equilibrium models, Optimization models and Simulation models. Within 

the simulation category there are Agent-Based (AB) models and System Dynamics (SD) 

models. Both of these approaches are suitable for modeling liberalized electricity markets 

(Teufel, 2013) and have been widely utilized. This paper will utilize the System Dynamics 

approach. 

 

With the electricity market experiencing radical changes, our understanding of how it 

behaves is greatly compromised and "numerical databases" are scarce and incapable of 

portraying the causalities that govern its behavior (Teufel, 2013). This renders the System 

Dynamics (SD) methodology suitable for exploring and improving our understanding since 

SD relies mostly on the "mental database" of modelers involved (Forrester, 1961). These 

mental databases describe our qualitative cognitive grasp of the real system and can 

quantitatively portray the many feedback loops that are at play. 

The development of the SD model in this paper has followed an iterative process of 

boundary definition and relationship selection that is typical in simulating a dynamic and 

complex system such as an electricity market (Vogstad, 2005). 

2.4 SD model and its main drivers 

With the trend to shift towards liberalized deregulated markets, performance has switched 

from purely energy supply security and reserve margins to include profitability measures 

(Kadoya, 2005). This transition has created the generation expansion planning problem 

(Olsina, 2005). Hence Investments and profitability in the capital intensive power sector play 

a major role in determining performance. 

 

This paper will focus on the long term expansion planning problem and in particular on 

determining optimal investment scenarios. The main driver of investments in the model is 

profitability which in turn is assessed by the ratio of price over levelized costs. 

 

The SD model is built in Powersim software with the end goal of optimizing using a tool 

called Stochastic Optimization in Policy Space (SOPS). For this, some simplifications that 

we will discuss later were made along the way to make the model suitable for its intended 

purpose. However this has not misguided the author to focus purely on reaching the 

"optimum" solution, rather an effort was made to preserve as much as possible from the 

system variables and attributes in the final model. Hence the model is a simplified version of 
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reality yet it still can offer some practical insight both from its structure and behavior as well 

as from its optimal policies generated by SOPS. 

2.5 Optimization and choice of criterion 

Optimization was conducted to find the optimal investment track over the next 50 years in 

both the traditional non-renewable technologies as well as in the new renewable ones. The 

criterion which we are trying to maximize is the so called social welfare or "Net Society 

Benefit" as referred to in the model. This criterion was judged to be of pertinence to the 

model with sound foundation in the field of generation expansion planning. This 

optimization problem falls under the "decisions and policies" context within the SD 

optimization field (Graham, 2003). 

 

In centralized markets, performance is determined by energy supply security which in turn is 

part of the social welfare. Social welfare takes into consideration both producers and 

consumers surplus. In decentralized markets, profitability has a weight as well when 

determining performance. Hence in a centralized power market, social welfare would be the 

natural criterion to maximize for conceptual as well as economic reasons. In the 

decentralized market, the criterion to maximize could be profits or social welfare. The choice 

of criterion would greatly influence the optimal investment strategy. 

 

In a perfectly competitive market, investments in a centralized social welfare and a 

decentralized profit maximization market would be the same (Botterud, 2003). This is 

because in a perfectly competitive market, the price is set and the players are price takers 

rather than setters. Hence there would be no feedback from investment to the price, rendering 

the increase in social welfare the same as that of the increase in profits, which is the increase 

in producer surplus. As the price feedback which is determined by the price elasticity 

increases, the difference between the two criterions would increase. 

 

In our model, the market is decentralized and not in a state of perfect competition. Hence 

there is feedback from investments into price and vice versa. The elasticity is set at '-0.45' 

which means that the price feedback is moderate and there is some difference between the 

two criterion options. So, a choice has to be made about which criterion to consider when 

optimizing in SOPS. The social welfare criterion in our model would produce higher gains 

than the profit criterion resulting in lower investment threshold. Hence the social welfare is 

judged to be more appropriate for conceptual as well as economic reasons in our model.  
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3. MODEL 

Having discussed the importance and relevance of the power generation expansion planning 

problem and the appropriateness of the System Dynamics (SD) methodology to study it, this 

section will focus on introducing and explaining the SD model developed in this thesis. The 

model has a long term view of 50 years, from 2015 till 2065, with a time step of 1 year. 

 

The level of details included in the model is rather limited, and this is because we are solely 

interested in investigating long term behavior as well as because restrictions imposed from 

the beginning by the prospect of using the tool SOPS. The most important relationships for 

the long term development of the electricity market, determined following an iterative 

process of trial and error, are kept in the model even if slightly simplified. Transmission and 

distribution are not part of the model since they are not interesting to explore on the long run. 

The result is an SD model of the long term generation expansion planning problem where the 

profitability determined by price and levelized costs is the main driver of investments. 

 

The model is of a decentralized power market. Therefore it has two decision makers, the 

renewable and non-renewable ones. Each decision maker aggregates all of the technologies 

in its respective sector. 

 

The two energy sectors are built almost identically with the same structure. Minor 

differences, mainly non-renewable resource depletion and renewable premium, will be 

discussed. Most of the equations are part of the main text since the model explanation was 

divided into many small parts. Parameter values are naturally different between the two 

sectors and are listed in Appendix 8.2. The two sectors interact individually with their 

investment strategies and with each other through the electricity market sector . The 

electricity market is a simple electricity price formation structure which takes into 

consideration the supply as well as an exogenous reference demand. 

Please note than often the term renewable is shortened to "R" and non-renewable to "NR" in 

our discussion next. 

3.1 Electricity Market Sector 

Since our focus is on the long term dynamics, no discrepancy between supply and demand 

was assumed. So the demand is taken to be the same as the supply. Hence, price formation 

was determined by supply, an exogenously influenced reference demand stock and a 

reference market price with no need to include the reserve margin concept. When the supply 

rises over the reference demand, the electricity unit price will drop and vice versa. Also a 
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constant long-term price elasticity is introduced to capture some of the feedback that price 

has on demand. The feedback is not a direct one since supply and demand are the same; 

however it is through influencing the investments at time (t) which determine supply and 

demand at (t+1). The equations for the price formation are: 

 

Electricity unit price [Billion Dollars/TWh] = Market Reference Price × [ (Electricity Supply 

÷ Reference Demand) ^ (1/Demand Price Elasticity) ]                                                          (1) 

 

Reference Demand [TWh/Year] =  𝑅𝑒𝑓 𝐷𝑒𝑚𝑎𝑛𝑑 𝐺𝑟𝑜𝑤𝑡ℎ 𝑅𝑎𝑡𝑒
𝑡

𝑡=2015
                              (2) 

 

Ref Demand Growth Rate [TWh/Year^2] = Reference Demand × Long Run Demand Growth 

Rate                                                                                                                                         (3) 

  

 

Figure 4: Electricity Demand and Unit Price 

The "market reference price", even though being a parameter, is as well determined by the 

model itself. It is kept as a parameter to avoid the need to add more stocks. The model is run 

a few times with several values for the reference price until a value is found for which the 

model would be initialized in equilibrium. By equilibrium, it is not meant constant 

development over time rather than a smooth one. 

  

Grid and distribution costs are not part of the model hence their costs are not included. 

Between 30% and 50% of the end customer price is from the grid and distribution costs, so 

with a generation cost of 8.9 cents/KWh, the final selling price would be in the range of 11.5 
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cents to 13.4 cents/KWh.  This is very similar to the values found in several sources and 

most importantly in (IEA, 2013). 

 

The long run demand growth rate is placed at 1.5% per year. The rationale behind this value 

is that the economic growth would dictate the growth in electricity demand and they would 

have roughly the same value. The economic growth is often placed between 1% and 2% per 

year, so the mean value of 1.5% is taken. Efficiency improvements have a role in 

determining the long run electricity demand growth, however it is minimal compared to the 

economic (i.e. consumption) effect, hence they are neglected. 

 

The price elasticity is set at the value of '-0.45'. Typically commodities have almost inelastic 

attributes with values close to zero. Electricity being a commodity in some places of the 

world and a luxury in others, has a price elasticity around '-0.3' (Jamil, 2011). Income 

elasticity also has an impact on electricity demand. It usually slows down the increase in 

demand, meaning if supply increases over demand by a certain amount, price will remain 

higher than if income elasticity was not included. However, to simplify, it is merged with the 

price elasticity for a final value of '-0.45'. 

 

If there was a gap between supply and demand, meaning if the model took a look at the short 

to medium term dynamics, the concept of reserve margin would have an impact on price. 

 

Before we move on to the renewable sector explanation, let us quickly discuss the choice of 

the power units. The model is about the power market, so the units will be in terms of watts. 

A watt is energy per unit of time (1 watt = 1 Joule/second). The choice is whether the unit 

will be TW or TWh/Year.  Both are basically the same just on different scales:  

1 TW = 1 TW × 8760 hours/Year = 8760 TWh/Year. 

 

Usually supply units are in TW and demand units are in TWh/Year. Supply is represented in 

the model by the generation capacity stocks to be discussed next and demand is presented by 

the electricity generation rates also to be discussed next. For simplification and more clarity, 

both supply and demand will have TWh/Year units. 

As for the electricity sectors, the renewable sector is chosen to explain the structure. Any 

structural differences between the two sectors will be highlighted. A CLD of the renewable 

sector that visualizes the feedback loops and their stocks is presented in Figure 5. A brief 

explanation to better understand the CLD: 

 The elements in orange are shadow variables of elements from the other sector 

 The element in red is the price which is also present in the non-renewable sector 

 The element in green represents a structural difference between the two sectors 
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Figure 5: Renewable Sector CLD 

Also the stocks and flows model of the renewable sector is presented in Figure 6 for 

reference. The red arrows in Figure 6 are fake arrows that go into shadow variables. Instead 

of using graphical functions, each of these shadow variables has a small structure to 

determine its value. This is to enhance our control over the model as well as for smoother 

SOPS functioning. For aesthetic reasons, these small structures are moved to the side of the 

model and will be explained in parallel to the main structure. 

3.2 Capacity and cumulative generation 

The supply side is restricted to two stocks in each sector which are the generation capacity 

and the cumulative generation. The generation capacity has an energy investment inflow and 

capacity depreciation outflow:  

 

R Generation Capacity [TWh/Year] =  𝑅 𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 𝐼𝑛𝑣 − 𝑅 𝐶𝑎𝑝 𝐷𝑒𝑝𝑟𝑒𝑐𝑖𝑎𝑡𝑖𝑜𝑛
𝑡

𝑡=2015
              (4) 

Where: 

R Electricity Investment [TWh/Year^2] = R Generation Capacity × R Fraction to Invest    (5)                

R Cap Depreciation [TWh/Year^2] = R Energy Capacity ÷ R Capacity Life Time              (6) 

 

As for the electricity generation, it is determined by the capacity stock and a capacity 

utilization factor. In addition, a grid loss factor of 10% is introduced to account for the fact 

that not all generated electricity reaches end users and that some of it is lost in the grid and 

distribution networks. Later in the policy analysis, randomness will be introduced into the 

model through the electricity generation, so there is a normal noise factor and switch in 

equation (8). For now, randomness is switched off and there is no uncertainty in the model. 
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Figure 6: Renewable Sector S&F Model 
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R Electricity Cumulative Generation [TWh] =  𝑅 𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛
𝑡

𝑡=2015
             (7) 

 

Where: 

R Electricity Generation [TWh/Year]=R Generation Capacity * R Cap Utilization * (R Perfect 

Distribution - R Grid Loss) * MAX ((1 + (Normal Noise * Randomness Switch)),0)                (8) 

 

As for the capacity Utilization, it is determined by a small structure (Figure 7): 

 

 
Figure 7: Renewable Capacity Utilization Structure 

The structure in Figure 7 basically generates an exponential like curve rather than inserting 

one in a graphical function. This allows for better control and understanding as well it 

partially endogenizes the capacity utilization. The utilization is determined based on the two 

capacity stocks and their maximum generating capacity. As one sector's maximum 

generating capacity potential increases relative to the other sector, the utilization will 

increase following an exponential curve. The equation for capacity utilization is of the form 

[a × (b ^ x) + c]: 

 

R Capacity utilization [Unitless] = a R Capacity Utilization×[b R Capacity Utilization ^ (R 

Maximum Generating Capacity ÷ (R Maximum Generating Capacity + NR Maximum 

Generating Capacity))] + c R Capacity Utilization                                                                 (9) 
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Please refer to Appendix 8.1.1 for a more detailed view of the capacity utilization. Maximum 

capacity utilization was taken to be 80% for the non-renewable and 60% for the renewable. 

This is an aggregation of numbers found in (IEA, 2014b). Renewable technologies due to 

natural constraints such as limited solar light and wind have lower capacity utilization than 

that of the non-renewable since the latter is purely dependent on fuel sources. The minimum 

utilization of each sector was taken to be half of the relative sector's maximum utilization. 

The structure generates the behavior in Figure 8: 

 

 

Figure 8: NR Capacity Utilization 

The capacity utilization has been simplified to avoid adding more stocks. Ideally operational 

costs and profitability would have an impact on it. Also, if there was a gap between supply 

and demand, the gap would have as well an impact on utilization.    

3.3 Learning Rates, Resource Depletion and Generation Costs 

Technology learning and resource depletion are included in the model to shape how the costs 

change over time. The values to be presented next were drawn from several sources that the 

author came across and mainly from (EIA, 2013), (IEA, 2013) and (IEA, 2014b). They 

represent average aggregate values. Figure 9 represents the Non-Renewable learning, 

resource depletion and generation costs isolated part of the S&F model. The resource 

depletion, resource efficiency and fuel costs are a structural difference between the two 

energy sectors and they are only present in the non-renewable sector, hence in this particular 

section, the non-renewable part of the model will be illustrated. 
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Figure 9: Learning Rate, Resource Depletion and Generation Costs 

3.3.1 TECHNOLOGY LEARNING 

Learning is an essential part of the model since it deals with the long term dynamics of the 

market. Learning rates that vary between 10% and 20% are descriptive of most energy 

technologies (McDonald, 2000). Renewable technologies still have a lot of potential to 

reduce their costs through learning compared to non-renewable technologies given that they 

are still far from reaching maturity. Hence 10% learning rate was chosen for the non-

renewable and 20% for the renewable. The learning equations are: 

 

Non Renewable Learning Multiplier [Unitless] = (Non Renewable Electricity Cumulative 

Generation ÷ Initial Non Renewable Electricity Cumulative Generation) ^ Non Renewable 

Learning Coefficient                                                                                                             (10) 

 

Where: 

Non Renewable Learning Coefficient [Unitless] = Log (1- Non Renewable Learning rate, 2) (11) 

 

The values for the initial cumulative generation were iteratively determined based on the 

initial generation capacity and by observing their resulted output for the learning multiplier. 

3.3.2 RESOURCE DEPLETION 



           

                      

16 

Resource depletion, especially in the non-renewable sector also has a large part in 

determining the dynamics of costs evolution. Non-renewable technologies have exploited 

their resources to the point where resource availability has become a question to answer and 

that influences costs. As resources become more scarce costs will increase. For renewable 

technology, resource availability is in terms of optimal solar farms and wind turbines 

locations. Since renewable technologies are still pretty young and vastly untapped, resource 

availability is not a concern and is not included in the model for them. 

 

The depletion effect follows a logarithmic like curve. Here it can be argued that an 

exponential increase can also portray the depletion effect. In the author's opinion, as the 

depletion grows more and more, the limit of the depletion effect is reached and it will slow 

down rather than increase in the long term. The depletion effect equations are: 

 

Depletion Effect [Unitless] =  
1

Depletion  Lower  Limit  + A
                                                          (12) 

 

Where: 

A = 
1 − Depletion  Lower  Limit

(
Non  Renewable  Electricity  Cumulative  Generation  

Initial  Non  Renewable  Electricity  Cumulative  Generation
)^ Production  Depletion  Coefficient

  [Unitless] (13) 

     

The depletion coefficient translates in a very aggregate way the markets response to 

resources scarcity. As the depletion coefficient increases, the depletion effect increases and 

vice versa. 

The depletion lower limit translates the limit to which the global community is ready to 

deplete its non-renewable sources of energy. As the depletion lower limit increases, the 

depletion effect decreases and vice versa.  

3.3.3 GENERATION COSTS 

The costs are divided into 4 parts: Capital, Fixed Maintenance, Variable Maintenance and 

Fuel costs (for the non-renewable only). 

 

 Capital Costs: Capital costs are the capital expenditure of commissioning and building 

new power plants. They are the biggest cost component. Capital Costs are split into two 

variables: Capital costs [Billion Dollars/(TWh/Year)] incurred when building new power 

plants and the annual capital costs [Billion Dollars/TWh] used to assess profitability. 

NR Capital Costs [Billion Dollars/(TWh/Year)] = Non Renewable Initial Capital Costs × 

Non Renewable Learning Multiplier                                                                                    (14) 
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Non Renewable Annual Capital Costs [Billion Dollars/TWh] = NR Capital Costs ÷ Annuity 

Factor                                                                                                                                    (15) 

    

Annuity Factor [Year] = (1-EXP (-Yearly Interest Rate × Non Renewable Capacity Life 

Time)) ÷ Yearly Interest Rate                                                                                               (16) 

 

 Fixed Maintenance Costs: These costs reflect the maintenance costs which are incurred to 

keep a power plant in a running condition irrespective of its capacity utilization. 

Non Renewable Fixed Maintenance Costs [Billion Dollars/TWh] = Non Renewable Initial 

Fixed Maintenance × Non Renewable Learning Multiplier                                                 (17) 

 

 Variable Maintenance Costs: These costs reflect the maintenance costs that are incurred 

when running the power plant. They are linked with the capacity utilization, however in 

this model they are set as a constant parameter. 

 

 Fuel Costs: These costs are only part of the non-renewable sector. These costs are the 

only one affected by the resource depletion factor as well as the resource efficiency 

factor. They constitute a sizeable portion of the entire costs. Power plants have different 

efficiency levels in converting raw sources of energy into electricity (IEA, 2014b), as 

well as different fuel costs. Average values were plugged in to the model. 

Fuel Costs [Billion Dollars/TWh]= Fuel unit costs ÷ Non Renewable Resource Efficiency (18) 

 

Fuel Unit Costs [Billion Dollars/TWh] = Initial Fuel Unit Costs * Depletion Effect          (19) 

 

Non Renewable Resource Efficiency [Unitless] = Non Renewable Initial Resource 

Efficiency ÷ Non Renewable Learning Multiplier                                                               (20) 

3.4 Investment 

Profitability is the only driver of the investments for reasons already discussed in the 

background section. Investments can only be made at the beginning of each year based on a 

profitability index called "price over levelized cost" which is a ratio of the electricity selling 

price over the levelized costs. The investment decisions at each of the two sectors were kept 

to a large extend independent from each other resulting in decentralized decision making 

which depicts with some realism the competitive electricity market nowadays. This means 

that an increase (or decrease) in investment in one sector would not necessarily lead to a 

decrease (or increase) in the other. This is partly inspired by Jay W Forrester statement 
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(Forrester, 1961): "most industrial systems seem to operate so far from a hypothetical ideal, 

it is reasonable to hope that system improvements can first be obtained without requiring any 

compromise. Improving one factor may not require paying a penalty elsewhere." 

 

Figure 10 represents the isolated renewable S&F model for the profitability and investment. 

Three fake red arrows appear going into shadow variables. These shadow variables each has 

a small structure which for aesthetic reasons were re-allocated from the main S&F model to 

the side of it. They will be presented and discussed next. 

 

 

Figure 10: Profitability and Investment 

3.4.1 PROFITABILITY ASSESSMENT 

Profitability is the only driver of investments. It is assessed by relying on a ratio variable that 

compares the selling price with the levelized costs. Levelized cost is a common concept used 
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in the energy management literature to portray costs adjusted for annuity and capacity 

utilization (Anderson, 2007). 

 

R Price over Levelized Cost [Unitless] = Renewable Electricity Selling Price ÷ [(Renewable 

Annual Capital Costs + Renewable Fixed Maintenance Costs) ÷ R Cap Utilization + 

Renewable Variable Maintenance Costs]                                                                             (21) 

 

Where: 

Renewable Electricity Selling Price [Billion Dollars/TWh]= Electricity Unit Price + 

Renewable Premium                                                                                                             (22) 

 

The renewable premium is a structural difference between the two energy sectors. It is only 

present in the renewable sector. It accounts for the fact that most renewable technologies 

have been subsidized as well as sold at a higher price than that of the non-renewable ones. It 

captures and aggregates the tangible economic incentives utilized by some countries 

(investment subsidies, feed-in-tariff...) as well as the intangible preference of the public to 

rely on renewable sources. This factor has a small structure at the lower half of Figure 10. 

 

Renewable Premium [B Dollars/TWh] = Electricity Unit Price × Effect of Renewable MR on 

Premium                                                                                                                                (23) 

 

Please refer to Appendix 8.1.2 for a more detailed view of the premium structure. 

 

The renewable market is normalized with a "R Normal Market Share" of 50%. The 

normalized market share allows for the modeler to introduce a preference about how long the 

premium factor should remain active. If we have a normal market share of 50%, it means 

when the normalized renewable market shares passes the threshold of 1 (i.e. when renewable 

MR> 50%), the premium will be negligible. 

 

The "Effect of Renewable MR on Premium" follows an exponential decay as the normalized 

renewable market share increases. This means that as the renewable market share increases, 

the premium will decrease rapidly from '1.5' to '0.0001'. Figure 11 illustrates its behavior: 
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Figure 11: Effect of Renewable MR on Premium 

The premium is added to the electricity unit price, meaning when the renewable market share 

is zero, the renewable selling price would be (1+1.5) = 2.5 times that of the electricity unit 

price. The non-renewable price is always the same as the electricity unit price. 

3.4.2 CASH FLOW TO OPERATION (CFO) 

In this model, investments were mainly determined by the cash flow to operation. Cash flow 

to operation (CFO) measures the profits before capital investments are made. Companies 

usually invest a given percentage relative to their cash flow. As the product becomes more 

profitable, more of the cash flow will be invested and vice versa. It is possible for a company 

to invest more than its cash flow, meaning to take debts, if the product is very profitable. 

 

R Operation Cash Flow [Billion Dollars/Year] = R Electricity Generation ×Renewable 

Electricity Selling Price - R Operating Costs                                                                       (24) 

 

R Operating Costs [Billions Dollars/Year] = Renewable Fixed Maintenance Costs * R 

Generation Capacity + Renewable Variable Maintenance Costs * R Electricity Generation    (25) 

 

For the non-renewable the operating costs would have as well the fuel costs: 

 

NR Operating Costs [Billions Dollars/Year] = Non Renewable Fixed Maintenance Costs * 

NR Generation Capacity + (Non Renewable Variable Maintenance Costs+ Fuel Costs) * NR 

Electricity Generation                                                                                                          (26) 

3.4.3 INDICATED INVESTMENT 

Once the profitability is assessed through the "R Price over levelized costs", an indicated 

fraction to invest is determined. This indicated fraction is an initial number between 0 and 
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some maximum value that allocates the corresponding portion of the operational cash flow to 

investments. Indicated Investment has a small structure to the side of the main S&F model 

presented in Figure 12. 

 

This structure generates an S-shape (logistic growth) curve. As the profitability increases, the 

indicated fraction to invest increases however more slowly as it gets larger. The profitability 

index or 'PI' referred to in this structure and its equations is the "R Price over Levelized 

Costs". 

 

Figure 12: Indicated Fraction to Invest 

Renewable Indicated Fraction to Invest [Unitless] = Renewable Max Fraction to Invest ÷ 

[1+E^ - (Renewable Lambda × R Price over Levelized Cost + Renewable Alpha)]           (27) 

 

Please refer to Appendix 8.1.3 for a more detailed view of the Indicated Fraction to Invest 

structure. This structure generates an S-shape curve like the one in Figure 13: 

 

 

Figure 13: S-Shape Curve of the Indicated Fraction to Invest 
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The structure allows to better control the output as well as to clarify the modeler preferences 

about the shape of the curve through the chosen parameter values. After determining the 

indicated fraction to invest, the indicated investment is found: 

 

Renewable Indicated Investment [Billion Dollars/Year] = R Operation Cash Flow × 

[Renewable Indicated Fraction to Invest × IF(R Indicated Fraction to Invest with Policy = 0, 

1, 0) + R Indicated Fraction to Invest with Policy]                                                              (28) 

 

The "R Indicated Fraction to Invest with Policy" will be discussed in section 5. 

3.4.4 FRACTION TO INVEST 

After determining an indicated investment, the final investment is determined. Investments 

are determined in two stages to add a realistic constraint about the feasible capacity increase 

over 1 year. For example, if the indicated investment results in a 50% capacity increase in 1 

year, the fraction to invest would limit it to a more feasible percentage of 32%. The fraction 

to invest has a small structure presented in Figure 14: 

 

 

Figure 14: Fraction to Invest 

This structure generates an S-Shape curve for the fraction to invest. The rationale behind this 

structure is that the indicated investment will be compared with the monetary value of the 

current capacity stock and the ratio of the two will be modified to generate the final fraction 

to invest. The fraction to invest has a minimum value of zero, meaning it is not possible to 

decommission a plant early, however it can drop below the depreciation rate decreasing the 

capacity stock gradually. This helps to avoid wasteful capital investments later on in the case 

profitability increases for some reason. 

 



           

                      

23 

R Fraction to Invest [1/Year] = R Max Fraction to Invest / [1+E^ - (R Lambda * R II to 

Current K Ratio + R Alpha)]                                                                                                (29) 

 

Please refer to Appendix 8.1.4 for a more detailed view of the Fraction to Invest structure. 

The S-Shape generated by this structure is presented in Figure 15: 

 

 

Figure 15: S-Shape curve of the fraction to Invest 

Once the fraction to invest is found, the electricity investment flow is determined by: 

R Electricity Inv [TWh/Year^2] = R Generation Capacity × R Fraction to Invest              (30) 

3.5 SOPS Criterion                                           

As already discussed, the model is built with the end goal of using SOPS to find optimal 

investment strategies. Optimization requires a criterion to maximize, and in this model it is 

referred to as "SOPS Criterion". SOPS functions best when the criterion has values close to 

'1', so the criterion is a normalized value of the net society benefit. The choice of the criterion 

is discussed in section 2.5. Figure 16 presents the SOPS criterion structure. 

 

Net society benefit is defined as the difference between benefits and costs adjusted with a 

long run social discount rate. Benefits and Expenses will be discussed next in section 3.5.1. 

 

Net Society Benefit [Billion Dollars/Year] = Profit × EXP [- Social Discount Rate * (TIME-

INIT(TIME))]                                                                                                                       (31) 

 

Where: 

Profit [Billion Dollars/Year] = Supply Benefit + Renewable Premium Benefit - R Total 

Expenses - NR Total Expenses                                                                                             (32) 

 

Social Discount Rate [%/Year] = 5 
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Figure 16: SOPS Criterion 

The discount rate value is always open for discussion and can vary significantly depending 

on the model purpose as well as on the modeler preferences. In literature, it is natural to find 

values that vary from as little as 1%/Year to as big as 10%/Year. One of the more public 

disagreements over the discount rate value is between the one set by Professor Nordhaus 

(Nordhaus, 2008) at 4.1% and the one set by Professor Stern (Stern, 2006) at 1.4%. 

 

A higher discount rate would result in lower social climate change costs on the long run. The 

choice is always based on many assumptions and is highly dependent on personal beliefs.  If 

the modeler believes in the ability of future generations to handle potential climate change 

problems, a higher discount rate would be the natural choice. On the contrary, if the modeler 

thinks that abatement effort should occur sooner than later and more sharply to avoid 

potential disasters in the future, then a lower discount rate should be chosen. 

  

Given the author's limited knowledge in this highly sensitive topic, he believes that equal 

weight should be given to economic growth and to our moral responsibility to future 

generations when determining the social discount rate. We have a moral obligation to future 

generations to ensure their well-being as best as we can. In order to do so we have to ensure 
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continued economic growth which would be greatly hindered if sharp abatement measures 

were taken now. Hence the value of 5% was taken as the reference value. Please note than in 

section 5.4, scenarios will be run with a 1% discount rate to observe the difference between 

the two discount rate choices. 

3.5.1 BENEFITS AND EXPENSES 

Figure 17 illustrates in a simplistic manner the logic behind the calculation of benefits and 

expenses and consequently that of the profits. The product here is electricity that has a 

certain selling price for a given quantity. As demand increases, prices drop following the 

blue price curve. As Supply increases, the expenses rise following the purple expenses curve. 

They intersect at a point which is the equilibrium price for a given quantity. Consumer 

surplus is the area under the blue price curve and above the yellow price line. Producer 

surplus is the area above the purple expenses curve and below the yellow price line. 

 

 

Figure 17: Benefits, Expenses and Profits 

Since we are considering the net society benefit as our criterion, both consumer and producer 

surplus have to be considered resulting in the green area which is the profits.  It is this green 

area that we will try to maximize by using SOPS later on. 

 

To calculate this green area in our model, we simply calculate the entire area under the price 

curve, i.e. the benefits, and subtract from it the area under the expenses curve, i.e. the 

expenses. Some modifications were made to this logic in order to calculate the profits in our 

model and they will be discussed next. 

 

3.5.1.1 BENEFITS CALCULATION 
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Benefits are split into main categories, the supply benefits and the premium benefit. 

Supply Benefits 

To calculate the supply benefits we need to find the area under the price curve which 

requires integration. In Figure 17, there is a maximum price indicated where the price curve 

meets the y-axis. This is inaccurate, since when the demand/supply asymptotically edges 

closer to zero, the maximum price would increase to almost infinity. Hence the need to either 

set a fixed maximum price y-axis value and derive from it a minimum supply x-axis value or 

vice versa. We chose to set a minimum supply value and derive from it a maximum price. 

 

The minimum supply is set as a percentage of the reference demand. The percentage can be 

changed to reach a reasonable maximum price value. In our model, the minimum supply was 

set at 90% of the reference demand. This is plausible since in the electricity market, there 

will be a 90% or even higher minimum supply target to meet out of the reference demand. 

This results in a maximum price which is plausible and not too much higher than the market 

selling price, which is also a realistic portrayal of the electricity market. Since we have now a 

fixed minimum supply percentage with its maximum price, the integration is split into two 

parts: 

 

Supply Benefit [Billion Dollars/Year] =  𝑃𝑚𝑎𝑥  𝑑𝑆
𝑆𝑚𝑖𝑛

0
  +  𝑃𝑟𝑖𝑐𝑒

𝑆

𝑆𝑚𝑖𝑛
 𝑑𝑆                         (33) 

 

In Figure 18, the light blue area would be the max price (i.e. minimum supply) benefit and 

the dark blue area would be the remainder of the regular price (i.e. regular supply) benefit. 

The sum of these two areas results in the total supply benefits area. 

 

 

Figure 18: Supply Benefits area under the price curve 

The equation for the total supply benefits in the SD model is: 
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Supply Benefit [Billion Dollars/Year] = Min Supply Benefit + (Market Reference Price × 

(Electricity Supply ÷ Reference Demand) ^ (1 + 1 ÷ Demand Price Elasticity) × (1 ÷ (1 + 1 ÷ 

Demand Price Elasticity)) × Reference Demand) - (Market Reference Price × (Minimum 

Supply ÷ Reference Demand) ^ (1 + 1 ÷ Demand Price Elasticity) × (1 ÷ (1 + 1 ÷ Demand 

Price Elasticity)) × Reference Demand)                                                                               (34)

  

Where: 

Min Supply Benefit [Billion Dollars/Year] = Market Reference Price × (Minimum Supply ÷ 

Reference Demand) ^ (1 ÷ Demand Price Elasticity) × Minimum Supply                          (35) 

Premium Benefits 

On top of the supply benefits, there is a premium benefit which is from the renewable 

technologies. This premium reflects the fact that the renewable technologies have a higher 

selling price and hence more benefits. Its equation is: 

 

Renewable Premium Benefit [Billion Dollars/Year] = Renewable Premium × R Electricity 

Generation                                                                                                                             (36) 

 

3.5.1.2 EXPENSES CALCULATION 

For a given supplied quantity of electricity, there are expenses incurred. They have to be 

subtracted from the total benefits in order to calculate profits. Figure 19 illustrates the 

expenses curve and its resulting dark purple expenses area. 

 

 

Figure 19: Expenses and Final Profits area 

However a simplification was made in the expenses area calculation. To generate an 

expenses curve in function of the supply is a complicated task and would result in a complex 
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equation. This is because expenses are divided between operational costs and investment 

costs and the latter are not directly linked to supply. So the expenses are considered as a 

constant in function of supply when determining the expenses area. The expenses area is 

calculated as simply the area under the expenses line for a given supply, meaning it is now 

the sum of the light and dark purple areas in Figure 19. 

 

R Total Expenses [Billion Dollars/Year] = R Operating Costs + R Inv × R Capital Costs (37) 

NR Total Expenses = NR Operating Costs + NR Inv × NR Capital Costs                          (38) 

 

The calculated profit area is shown in green in Figure 19. The light blue and light purple 

areas were omitted in our calculation for reasons explained before. 

3.5.2 SOPS CRITERION 

SOPS functions best when its criterion has values close to '1'. So the accumulated net benefit 

is normalized with a reference one: 

SOPS Criterion [Unitless] = Accumulated net benefit ÷ reference accumulated net benefit     (39) 

 

4. BEHAVIOR TESTING 

The constructed model is of a highly aggregated global electricity market. It captures some 

of the long-term dynamics of the generation expansion problem. The model is not built to 

replicate historical behavior nor to be applied within a specific region. It is ran from the 

present (i.e. 2015) 50 years into the future (i.e. 2065). Its objective is to hypothetically 

simulate and determine optimal investment strategies by utilizing the tool SOPS. 

 

Uncertainty is not part of the model itself and investment decisions are made based on what 

is perceived as perfectly accurate information. The model is descriptive rather than 

prescriptive. However uncertainty will be inserted into the model to test the robustness of the 

optimal policy found in section 5.3. 

 

The model structure was explained in previous sections. Main assumptions and consequent 

structure simplifications were also discussed. Please note that a strict constraint on the 

number of stocks, including delays, was set from the beginning since utilizing SOPS was the 

end goal of this thesis. The model passes validation tests (Barlas, 2006) such as parameter 

confirmation tests, extreme condition tests and behavior sensitivity tests. Only Sensitivity 

tests will be briefly discussed next in section 4.3. 
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4.1 Behavior 

The behavior of the model will be briefly presented in this section. The graphs presented 

next are able to fully summarize the model's behavior.  

 

First let us start with the capacity stocks and their utilization: 

 

            

          Figure 20: Generation Capacity Stocks                Figure 21: Capacity Utilization 

Non Renewable capacity starts at a much higher level than that of the renewable (Figure 20). 

Both capacity stocks increase however the renewable stock increases at a much faster pace, 

this is because of the much higher investments seen in Figure 29. Around 2055, the Non 

renewable capacity stock stops increasing and even decreases a little, meannig the 

investmenta are no longer able to fully compensate for the capacity depreciation. 

 

The utilization is determined based on the capacity stocks and their maximum potential for 

generation. So as the renewable capacity stock increases at a faster pace than that of the non 

renewable, the renewable utilization will increase and the non renewable utilization will 

decrease as seen in Figure 21. The product of the capacity stocks and their utilization are the 

electricity generation flows in Figure 22: 

 

 

             Figure 22: Electricity Generation flows            Figure 23: Market Shares 
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Since the renewable capacity is increasing at a faster pace than that of the non-renewable as 

well as its utilization is increasing versus a decrease in that of the non-renewable, the 

renewable generation as a result will increase as well much faster than that of the non-

renewable. 

 

Market Shares are directly determined from the generation flows. Since we assume there is 

no gap between supply and demand, the supply of each sector will be its demand. The 

market share exhibits the same behavior as that of the generation flows. In 2015, the 

renewable market share starts at 9.6% and increases to 51% by 2065 (Figure 23). 

 

As the renewable market share increases, its premium will decrease. The premium concept is 

that people are willing to spend more on renewable sources of energy both for their 

environmental advantages as well as to increase their market share to reach maturity and 

commercial viability eventually. In the model, maturity was set at 50% market share, so the 

premium will become negligible once the renewable market share reaches 50%. Figure 24 

shows the development in the selling price for the renewable and the non-renewable. The 

premium starts very high and increases the renewable selling price over that of the non-

renewable by 50%. By 2065, the premium will become almost zero and the renewable 

selling price will merge with that of the market. 

 

  

               Figure 24: Electricity Selling Price                     Figure 25: Operating Costs 

As the generation increases for both sectors, so will the accumulated generation stocks. This 

will increase the learning multiplier and the resource depletion in the case of the non-

renewable. So the fixed and variable maintenance costs will decrease and the fuel costs will 

increase. The operating costs are the sum of the fixed and variable maintenance costs plus 

the fuel costs in the case of the non-renewable. As seen in Figure 25, the non-renewable 

operating costs are much higher than that of the renewable because of the significant fuel 

costs. The learning multiplier slows down the increase in operating costs however it is not 

enough to compensate for all of the increase in generation. So the operating costs will still 

increase yet at a slower rate than that of the generation flows. In the case of the non-
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renewable the increase in costs is much faster than that of the renewable because of the 

resource depletion effect.  However the final cost to generate 1 TWh (Figure 26) showcase a 

higher renewable cost before it drops below that of the non-renewable as the time passes. 

This is because the renewable investment costs are much higher than those of the non-

renewable which compensates for the difference in operating costs. 

 

  

           Figure 26: Cost to generate 1 TWh                Figure 27: Cash Flows to Operation 

Cash Flow to Operation (Figure 27) is the difference between the income from the electricity 

generated and the operation costs. Electricity generation flows are increasing for both 

sectors, so the income will increase. However the operating costs are increasing as well as 

seen in Figure 25. This causes the non-renewable cash flow to increase only slightly before 

dropping towards the end because of the increasing costs as well as the decrease in the 

selling price. In the renewable case, the operation cash flow increases very quickly, this is 

because of the much slower increase in operating costs as well as the much higher selling 

price because of the premium. 

 

         Figure 28: Price over levelized Cost             Figure 29: Fraction to Invest 

Investments are determined based on a profitability assessment. The profitability measure 

used is the price over levelized cost (Figure 28). Levelized cost is the sum of all of the costs 

adjusted for the capacity utilization. If the capacity utilization increases, the levelized cost 

will drop and vice versa. In the case of the renewable, the fast drop in costs due to a high 
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learning rate coupled with an increase in utilization results in a fast decrease in levelized 

costs. The decrease in levelized costs is faster than that of the renewable selling price hence 

the increasing profitability measure. Renewable technology is able to decrease its costs faster 

than its gains in market share which is necessary for its sustained success. For the non-

renewable, the decrease in costs is counteracted by a decrease in utilization which results in a 

almost constant levelized cost. Since the price is as well constant, the profitability measure 

only slightly decreases. However by the end, when the price starts to drop coupled with the 

strengthening of the resource depletion effect, the price over levelized costs drops. 

 

As seen in Figure 29, the investments have the same behavior as the price over levelized 

cost. The fraction to invest is determined in two stages. First stage considers the availability 

of funds for investment. We consider that most of the funds originate from the cash flow to 

operation, and if the profitability is sufficiently high, the company can take debts and 

increase its investment. So, in the first stage, an indicated fraction to invest is determined 

based on the profitability measure as well as the availability of funds from the cash flow to 

operation. After determining the indicated fraction to invest, it is smoothed and reduced in 

the second stage. The indicated fraction to invest is compared with the current capacity stock 

and the consequent increase in capacity is smoothed and reduced down to the final fraction to 

invest which represents a realistic percentage increase in capacity. 

 

 

Figure 30: SOPS Criterion 

Finally, the SOPS criterion increases from zero until it reaches its maximum of 0.8 at the end 

of the simulation run (Figure 30). The sops criterion reflects the difference between income 

and expenses adjusted for the long run with a discount rate. The end goal of the model is to 

maximize the sops criterion by utilizing the tool SOPS. 
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4.2 Behavior Analysis and Validation 

After discussing the behavior in the previous section, we can conclude that the model 

produces quite reasonable and realistic results. In this section, discussion will be restricted to 

the fractions to invest variables and the price formation behavior. The price formation 

structure in the model is quite simplistic yet its behavior is capable of reflecting the validity 

of the model given its intended purpose as well as the accuracy of most of its parameters. 

Price in the model is considered to be an expression of the real price. 

4.2.1 FRACTION TO INVEST 

The model end goal is to optimize the investment strategies; hence fractions to invest and 

their behavior (Figure 29) will be discussed because of their significance to the model 

objective. 

 

The non-renewable sector has already a large capacity stock plus its profitability is 

decreasing, hence percentage increases in its stock will have to be small and definitely lower 

than that of the renewable. The renewable sector has a relatively small capacity stock and it 

is able to realistically increase at a faster rate than non-renewable. By 2065, when renewable 

market share reaches 51%, its profitability will have reached its maximum level and 

afterwards it will decrease. So fraction to invest after 2065 will drop, which is excellent 

behavior since at that time the renewable capacity stock will have grown a lot and hence 

lower percentage increases can be achieved. So the model is able to generate a good behavior 

for its intended purpose. 

4.2.2 PRICE FORMATION 

Price in the model reflects the balance between the increase in supply and that of the 

reference demand. Also investment and generation costs do not have a direct influence on 

price which is definitely a simplification of reality. Reference demand is exogenous and is 

set to increase at a constant 1.5% per year. Electricity demand growth is said to match that of 

the economic growth or slightly exceed it on the long run. Hence the value of 1.5% seems to 

be a very good fit since long term economic growth is said to be around 1.3% (Norhaus, 

2008) and (Stern, 2006). Please note that in section 4.3.1, randomness by ±50% is introduced 

to the exogenous growth in reference demand to test the model sensitivity to it. In the long 

term, demand and supply should be almost equal. Given this logic, the model would be able 

to replicate reality if it was able to generate an increase in supply to match that of the 

increase in demand resulting in almost constant real price. 
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For the first 35 years (i.e. till 2050) the price is almost a constant reflecting a consistent 

behavior with the logic by which the model was built. After 2050, the price drops. This 

reflects the increase in the renewable market share with its rapidly decreasing costs. The drop 

in price should be slower, meaning the model does not capture some of the balancing price 

loops that gain momentum when the renewable market share starts to increase rapidly. These 

balancing loops could be an increase in investment and operation costs in both the non-

renewable and renewable sectors as the expansion potential shrinks down. 

 

 

Figure 31: Price Behavior 

So the model is omitting some loops that are present in the real market. These missing loops 

will cause the model to be somewhat sensitive under extreme sensitivity tests to be discussed 

in section 4.3.2. Hence a choice has to be made whether to add these loops or keep the model 

as is with a perfectly satisfactory behavior given its purpose. 

 

The model objective is to optimize investment strategies. This led to choose the net society 

benefit as the criterion to optimize. The criterion calculations were already discussed in 

section 3.5. Even with the simplistic price formation structure, some simplifications had to 

be made when calculating the criterion. If additional loops were added, the calculations 

would be much more complex and additional simplifications would have to be made. 

 

So the choice is between adding more complexity to the model to make it more robust under 

extreme sensitivity tests, or sacrifice some of its robustness for better and smoother 

optimization. The choice was to keep the model as is given that it already behaves perfectly 

given its intended purpose while recognizing its weaknesses. 
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4.3 Sensitivity Analysis 

Sensitivity of the model to its parameters was carefully analyzed. The model is insensitive to 

most of the parameters, while others the model is sensitive to. Given the limited number of 

stocks that the model contains with no other delays, it is only natural that it will be sensitive 

to some parameters. 

4.3.1 REFERENCE DEMAND GROWTH RATE 

In the previous section, we discussed the price behavior and the model's ability to generate 

an increase in supply to match that of the exogenous reference demand. Now we will test the 

model's sensitivity to the important long run reference demand growth rate parameter.  

This is done by running the model with the Latin Hypercube sampling method available in 

the risk analysis window in Powersim. This method allows introducing uncertainty into the 

model, and in this case into our selected exogenous parameter.  

The uncertainty was introduced by changing the parameter from a fixed value across the 

different runs into a normally distributed parameter that changes values within ±50% of its 

mean between different runs. Run count was set to 100 which is sufficient to test the sample 

space of the probability distribution. 

The effect of this uncertainty on the model's most important variables was analyzed. Graphs 

that illustrate 5 different scenarios are shown next: 

 

 

Figure 32: Electricity Unit price Sensitivity to demand growth rate 
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                   Figure 33: Fractions to Invest sensitivity to Demand Growth Rate 

  

 

        Figure 34: Market Share sensitivity            Figure 35: SOPS Criterion sensitivity 

As the graphs show, the model is only slightly sensitive to such a large uncertainty in this 

important parameter. Hence the model seems to perform well in terms of its intended 

purpose. 

4.3.2 EXTREME SENSITIVITY TESTING 

Instead of presenting the sensitivity analysis tests for each of the parameters, a randomness 

factor was inserted into both electricity generation flows. The generation flows are an ideal 

sensitivity testing location since they directly influence most of the model. This randomness 

will amplify any sensitivity that the model has. This can be labeled as extreme sensitivity 

analysis since it is equivalent to introducing uncertainty to most of the model's parameters 

simultaneously. Major variables are selected and their simulated results illustrate the model 

amplified sensitivity to any changes in its parameters. 

    

Model uncertainty is introduced by a Latin Hypercube sampling method with a run count of 

100. The randomness factor was a normal variable with a mean of zero and a standard 
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deviation of '0.1'. This variable is capable of skewing the electricity generation by as much as 

±40%. This is more than enough to illustrate the model sensitivity to any of its parameters. 

Equation 8 illustrates how the uncertainty was added into the generation flows equations. 

Graphs will be presented next that illustrate the model's most important variables behavior 

and sensitivity under 5 different scenarios, meaning under 5 different randomness values. 

Each of the scenarios represents indirectly different values for each of the model parameters. 

 

 

Figure 36: Electricity Unit Price Behavior and Sensitivity 

The electricity unit price exhibits a sensitive behavior. As already discussed at the beginning 

of this section, the model lacks some balancing loops to slow down the decrease in the 

renewable generation costs. As a result, the price drops rapidly once the renewable 

technologies reach maturity and their market share starts to increase rapidly. If the renewable 

market share (Figure 37) varies significantly between scenarios so will the price and vice 

versa. As we discuss the next variables, it will become clear that the price sensitivity is at the 

root of all of the rest. Hence by adding additional balancing loops to control for the sharp 

drop in prices, the model would become quite insensitive even when faced with large 

uncertainty. 

 

 

Figure 37: Non Renewable Market Share Behavior and Sensitivity 
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The non-renewable market share decreases across all scenarios. However the rate of decrease 

seems to vary a lot between different scenarios. The non-renewable market share is the 

portion of the non-renewable electricity generation out of the total generation. It is 

determined by the electricity generation flows, hence the variation. Also it is indirectly 

dependent on capacity investments, i.e. Fractions to invest in Figure 39. Capacity 

investments are in turn dependent on the price and expenses. Non-renewable expenses 

(Figure 38) do not vary a lot since their market share is already quite high, however the 

electricity unit price seen in Figure 36 varies quite a lot. 

 

 

Figure 38: Total Expenses Behavior and Sensitivity 

Expenses are dependent on the learning and depletion effects. In the case of the non-

renewable, cumulative generation is already quite high so a variation in the generation flow 

would not cause much of a change in the effects mentioned before. Hence expenses would 

not vary significantly. On the opposite end, the renewable cumulative generation is quite 

small and any variation in the generation flows would cause a sizeable change in the learning 

effect and hence in the expenses. 

 

 

Figure 39: Fractions to Invest Behavior and Sensitivity 
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Fractions to Invest are among the most important variables in the model. Their result 

influences significantly the development in the next time step. They are dependent on the 

profitability ratio "Price over levelized costs". The latter can change from either variation in 

the price or in the costs. After testing which one of the two elements, i.e. price or costs, 

contributes more to the variation in the profitability assessment, it is found that by far the 

price variations (Figure 36) have the bigger impact. Hence the fractions to invest are most 

sensitive to the price. 

  

 

Figure 40: SOPS Criterion Behavior and Sensitivity 

The SOPS criterion exhibits the same pattern of development over all of the scenarios. It 

increases from zero until it reaches its maximum value by the end of the simulation run. The 

average curve represents roughly the model without any randomness. The SOPS criterion is 

the end product of almost the entire model since it is the determined by the price and 

expenses of both sectors. The criterion seems to be only mildly sensitive to the randomness, 

given that there will be up to ±40% variation in each of the electricity generation flows that 

will in turn affect most of the model, and that it accumulates all of the variations over time. 

 

So, we can conclude that most of the model sensitivity can be traced back to the simplified 

structure of the price formation. However, the model is built with the primary goal of 

optimization. Hence a tradeoff has to be made whether to increase the model's complexity for 

more robustness or keep it at an already satisfactory level for more flexible optimization. The 

choice was to keep the model with its current structure while recognizing where it lacks in 

robustness. More so the SOPS criterion used in the optimization proves to be only mildly 

sensitive even to the most extreme sensitivity testing. Hence the current model structure and 

its chosen criterion were judged to be valid for the thesis's optimization purposes. 
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5. POLICY DESIGN AND OPTIMIZATION 

Energy transitions follow the typical S-shape technology diffusion curve. They exhibit a non-

linear behavior with long delays, hence policies have to be designed within dynamic market 

models that account for the inherent uncertainty. 

 

After having validated the structure and behavior of the model, we will suggest an optimal 

investment strategy for the next 50 years to maximize the society's net benefit. This is done 

by relying on a tool called Stochastic Optimization in Policy Space (SOPS) that works in 

parallel with the SD modeling software Powersim. 

 

The policies in this thesis are mostly focused on aggregate investment strategies generated by 

SOPS and not much emphasis was given to particular policies. Still, next is a brief discussion 

about current policies being implemented by nations worldwide to promote the development 

of the renewable technologies. 

5.1 Current policies discussion 

A one sentence to summarize the following policies discussion would be (Sgouridis, 2014): 

"Switching from an economy based on energy stocks to one based on energy flows requires a 

social paradigm shift." 

 

Shrinking fossil fuels reserves and recent evidence that supports their negative impact on the 

environment pushed societies and consequently governments and agencies worldwide to 

design and apply policies to transform the electricity sector into a sustainable renewable one. 

When designing new policies, debates about its effectiveness will emerge whether on the 

specifics or even on the general framework of it. 

 

The electricity sector falls under the energy sector, hence any policy within it will interact 

with policies on a much wider scale. Energy transitions are not uncommon in the electricity 

sector. However there is no experience in a transition into a fully sustainable one. To be fully 

sustainable, it implies that it is in harmony with all the other energy sub-sectors. Past energy 

transitions were always partial, meaning a primary source of energy, i.e. coal or gas or oil... 

was substituted in one energy sector yet remained fully present in others. The objective now 

is a full transition to renewable energy sources and this is unprecedented (Sgouridis, 2014). 

 

Renewable energy sources offer an abundance of supply if properly managed. Current 

barriers to their diffusion must be removed. Hence policies objective has to be barrier 
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removal. There are several types of barriers: technical, market, regulatory, social and 

environmental. The nature of the barriers and their magnitude is specific to either a particular 

technology, country or region. Government intervention is always seen as a necessity to 

overcome some if not all of these barriers (Painuly, 2000). 

 

Given that energy transition is such a complex and new concept, investment strategies are 

often shaped by economic as well as behavioral/non financial factors (Masini, 2013). 

Bounded rationality has to be considered when studying energy investment choices. Some 

studies, like (Masini, 2012), have been conducted to examine the structural and behavioral 

factors that shape investors attitude towards renewable energy investments. A-priori beliefs, 

personal experience preferences, and risk taking aptitude all affect the type, magnitude, 

duration and social acceptance of investments into renewable technologies. 

 

For the transition to be sustainable, it has to meet specific requirements on all three 

economic, social and environmental levels. (Sgouridis, 2014) proposes five constraints that 

must guide the energy transition to ensure its sustainability as well as its success. The five 

propositions are: 

 

1. The pollution rate must not exceed the assimilative capacity of the ecosystem 

2. Renewable energy harvesting and generation must be in harmony with the ecosystem's 

long run carrying capacity 

3. Energy per capita must remain higher than the minimum level necessary to meet society's 

needs and there should not be at any time shortages in its rate of change 

4. Investments into the renewable technologies generation must be fast enough to ensure a 

sustainable long term energy supply before the non renewable recoverable energy supply 

is exhausted 

5. Consumption in the future and consequently debt issuance must be coupled to energy 

availability in the future 

5.2 Types of Policies 

A range of tools and policies are being implemented nowadays to favor the development of 

renewable technologies. Among these instruments are green certificates, emission quotas, 

economic incentives, direct regulations and emission taxes (Maribu, 2002). 

 

These policies fall under two different types: Technology-Push and Market-Pull policies 

(Burer, 2009). Both of these types have to be applied in parallel to ensure a successful 
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transition. As always, there are debates on which of the two types of policies is the most 

efficient in meeting transition and mitigation targets.  

Technology-push policies focus on developing the technical/supply side of the new sources 

of energy. This type of policies rely on innovations and breakthroughs to push the renewable 

sector into maturity.  

Market -pull policies on the other hand focus on developing the demand side for the new 

renewable technologies. This type of policies rely on the fact that demand is essential for the 

success of any new product, and by increasing demand technological change will follow. 

Both of these types of policies have to be applied together for the renewable technologies to 

complete the innovation chain and survive the technology "valley of death" (Grubb, 2004). 

 

(Burer, 2009) is a study in which these two types of polices were assessed through surveys 

sent to investment professionals. Figures 41 and 42 taken from that study illustrate the rating 

of the effectiveness of the most common policies under these two types of polices. 

 

Figure 41: Perceived Effectiveness of Technology-Push Policies from (Burer, 2009) 

 

Figure 42: Perceived Effectiveness of Market-Pull Policies from (Burer, 2009) 
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From Figure 41, Government demonstration grants are perceived as the most effective 

technology-push policy. This confirms the opinions stated earlier from (Painuly, 2000). 

Feed-in tariff is perceived as the most effective market-pull policy as seen in Figure 42. This 

policy generates a guaranteed steady cash flow for the investors which is highly valued.  

 

In this thesis, not much emphasis was placed on one policy option over the others. Instead a 

built in renewable premium factor was introduced. This factor is an aggregate representation 

of some of the polices in Figures 41 and 42. GHG emission taxes will be introduced in 

section 5.4 to briefly explore its impact on the resulting optimal policy. 

5.3 Optimal Policy in SOPS and Testing 

As already discussed in section 3.4, The model determines the investments in two stages. 

First stage results in the indicated fraction to invest and the second stage results in the final 

fraction to invest. SOPS policy insertion point (Figure 43) was chosen at the first stage, i.e. 

the indicated fractions to invest. This cuts most of the S&F model feedback loops while 

retaining necessary ones allowing for smooth behavior with the generated optimal policy.  

The indicated fraction to invest has a lower limit of zero and an upper limit of '1.3' in the full 

S&F model. The upper limit is pushed to '2' in SOPS to relax the search space and allow 

reaching a closer result to the global optimal while still generating feasible policies. One of 

the scenarios tested in section 5.4 has no constraints to observe the difference in the resulting 

optimal investment strategies. 

 

For manuals and other applications of optimization by using SOPS please refer to (Moxnes, 

2014), (Krakenes, 2005) and (SOPS, 2009). 

 

There are two different types of policies that can be tested in SOPS. One is the grid policy 

function which results in a flexible non linear policy of ideally all the stocks in the model. 

The other is the custom policy function which results in a linear constrained policy of all the 

stocks in the model. 

 

The ideal policy to be found in SOPS would a grid policy function because it offers the more 

flexible and realistic outcome. However it can handle a maximum of three levels (i.e. stocks) 

making it not feasible for our model that has five stocks. Nonetheless several grid functions 

were tested and their results will be discussed later. 
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Figure 43: Policy Insertion point CLD 

The custom linear policy offers an option for models like ours that have more than three 

stocks. However being linear, it places a constraint on the policy search in SOPS and the 

outcome at best would be close to optimal rather than global optimal. For this reason, the 

optimal linear custom policy will be tested by relying on grid policy functions and more 

importantly by introducing uncertainty into the model and the policy search. 

 

SOPS was ran with the search count set to '5', eclectic search method and Monte Carlo 

simulations set to '1'. Also the iteration accuracy for the "SOPS Criterion" was set to 

'0.00001'. When inserting uncertainty into the model, the search count was set to '1' and 

Monte Carlo simulations to '100'.  

5.3.1 OPTIMAL LINEAR CUSTOM POLICY 

Since our model has more than three stocks, a linear custom policy function was chosen to 

find optimal investment strategies. The structure built in Powersim to be used by SOPS is 

presented in Figure 44. It is split into two identical parts, one for the non renewable 

investment and one for the renewable investment.  

The custom policy function assigns permanent weights to each of the model's stocks plus a 

weight independent from the stocks to prevent as much as possible the function from 

generating illogical results when extrapolating. The weights have to be initialized to values 

that makes sense, then SOPS will find the optimal combination to maximize the criterion. 

The equation for the renewable custom policy is: 
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R Ind Fraction Linear Policy [Unitless] = SOPSCUSTOMPOLICY( R W + Non Renewable 

Electricity Cumulative Generation × R non ren cum gen W + NR Generation Capacity × R 

non ren gen cap W + Reference Demand × R ref demand W + R Electricity Cumulative 

Generation × R ren cum gen W + R Generation Capacity × R ren gen cap W)                   (40) 

 

Where the optimal values by SOPS are: 

R W [Unitless] = 0.8607   (0.04468 for the non renewable) 

R non ren cum gen W [1/TWh] = 3.848E-7    (-1.058E-7 for the non renewable) 

R non ren gen cap W [Year/TWh] = 1.007E-5    (8.488E-7 for the non renewable) 

R ref demand W [Year/TWh] = 2.781E-5     (1.593E-6 for the non renewable) 

R ren cum gen W [1/TWh] = 2.922E-7    (4.825E-7 for the non renewable) 

R ren gen cap W [Year/TWh] = 9.132E-7    (2.146E-7 for the non renewable) 

 

The resulting behavior from this optimal linear policy is illustrated in Figures 45 and 46. 

Indicated fractions to invest for the renewable sector has to be at its maximum level from the 

beginning, while for the non renewable it has to be zero before increasing gradually later on. 

The increase in the non renewable indicated fraction to invest is because by 2030 the non 

renewable cash flow would be negative, so a higher indicated fraction to invest means a 

lower final fraction to invest as seen in Figure 46. 

 

 

Figure 44: Linear Custom Policy Structure 
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Figure 45: Indicated Fractions to Invest Linear Policy    Figure 46: Fractions to Invest Linear Policy 

The SOPS criterion reaches the value of '0.96' by the end compared to '0.8' with no policy 

and the renewable market share increases to 93% by 2065 compared to 51% with no policy. 

The resulting behavior of the fractions to invest is smooth and quite reasonable. The 

renewable fraction to invest increases gradually to a maximum value of about '0.17' before 

dropping back down gradually to '0.07' which is feasible in real life. 

 

This optimal linear policy was tested to judge its validity and robustness. This was done by 

relying on the grid policy function in SOPS and by inserting uncertainty into the model. 

5.3.2 GRID POLICY TESTING 

Two tests were conducted with the grid policy function. One was a time grid test with only 

the built in time stock and the other was grid test with the equivalent of all stocks except the 

reference demand stock. 

 

The grid policy function has as inputs the stocks to be considered in the policy, and for each 

stock a starting point (Fi) and the step increase or decrease (Delta). In addition, there are a 

lower and upper limit constraints (Lambda), a grid (Theta) and a dimension parameter for the 

grid (Rho). Initial values have to be initialized to values that make sense and then SOPS will 

generate the optimal values. Both of the grids require a grid "variation" value which is higher 

than zero in the "grid" page in SOPS. This value defines the breadth of the search around the 

initial grid values. For both grid tests, variation was set to '0.5'. 

 

5.3.2.1 TIME GRID TEST 

The time grid structure built in Powersim to be used by SOPS is presented in Figure 47. 

Same as the linear policy structure, it is split into two identical parts, one for the renewable 

and the other for the non renewable. There is only one input which is the built in time stock.  
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This test allows to verify that the behavior of the optimal linear policy is fairly similar to that 

of an optimal policy which is simply dependent on time. If it is similar, it means that the 

optimal linear policy is very close to the global optimal. 

 

The optimal time grid policy generated by SOPS has a similar behavior as the optimal linear 

policy. Meaning investments are to be allocated to the renewable sector and hardly any 

investments to the non renewable sector. This further validates the optimal linear policy. 

Figures 48 and 49 illustrate the behavior of the optimal time grid policy. 

 

 

Figure 47: Time Grid Structure 

 

Figure 48: Indicated Fraction to Invest Time Grid     Figure 49: Fraction to Invest Time Grid 
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5.3.2.2 4 STOCK EQUIVALENT GRID TEST 

This test has the same goal as the time grid test. The two capacity stocks were added 

together, so were the two cumulative generation stocks. The two resulting variables of "Total 

Generation Capacity" and "Total Cumulative Gen" could be considered as equivalent to 4 

stocks.  

If the resulting optimal 4 stock equivalent grid policy is similar to that of the linear policy, 

than the linear policy is close to the global optimal. Its structure is presented in Figure 50.  

The optimal grid policy generated by SOPS has a similar behavior (Figures 51 and 52) to the 

optimal linear policy further validating that the optimal linear policy is close to the global 

optimum. 

 

 

Figure 50: 4 stock equivalent Grid Structure 

 

Figure 51: Indicated Fractions to Invest Grid             Figure 52: Fractions to Invest Grid 
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5.3.3 MODEL UNCERTAINTY TESTING 

Ideally a Brownian motion structure would have to be added, however that requires an 

additional stock, so instead a random variable was introduced at each of the electricity 

generation flows. The uncertainty was modeled by using a variable which has a normally 

distributed value with a mean of zero and a standard deviation of '0.2'.  

This uncertainty was able to change the generations flows by more than ±50% which in turn 

considerably changes the costs dynamics over time. The noise variable was set as a "series" 

under the "type" option in the assumptions page in SOPS. This allows for the value to be 

changed within the same run rather than only between runs. Also the "randomness switch" is 

switched to '1'. 

This uncertainty was ran with the linear policy (Figure 44) with Monte Carlo simulations set 

to 100 and search count to '1'. If the behavior of the optimal linear policy with uncertainty is 

averaged out over many different runs, its behavior would be similar to that without 

uncertainty which confirms the validity of the optimal linear policy found. 

 

       

Figure 53: Indicated Fractions to Invest with Uncertainty Figure 54: Fractions to Invest with Uncertainty 

The behavior shown in Figures 53 and 54 is one example of behavior with uncertainty. Of 

course it can change when the model is run several times since the noise variable values will 

change between one run and the next. If ran enough times, like we did by setting the Monte 

Carlo simulations to '100' in SOPS, the results would be very close to the linear optimal 

without uncertainty. 

 

All of the optimal results of the different types of polices were inserted in the model for ease 

of reference. The modeler can switch between the different policies by simply selecting the 

parameter in question and set it to '1'. For example, if the modeler wants to run the optimal 

linear policy, then the parameter "Ind Frac Optimal Linear Policy Switch" should be set to 

'1'. If the modeler wants to run SOPS to find the optimal time grid policy, the parameter "Ind 

Frac Time Grid Switch" must be set to '1' either in the assumptions page in SOPS or directly 

in the model. 
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Special attention must be given if the modeler wishes to run the model with uncertainty. If 

the modeler wants to run SOPS to find optimal policy, then the "randomness switch" must be 

set to '1', the "Normal Noise" must be inserted in SOPS as already indicated before and "Ind 

Frac Linear policy Switch" set to '1' in the assumptions page. If the modeler wants to run the 

optimal policy with uncertainty, then "randomness switch" must be set to '1', the "Normal 

Noise" parameter must be changed to an auxiliary variable with a value of Normal (0,0.2) 

and "Ind Frac Optimal Linear policy with Randomness Switch" set to '1'. 

 

Figure 55 presents the part where the modeler can go and choose between the different 

polices: 

 

 

Figure 55: Different Policies and Optimal Results Switches 

Table 1 summarizes the SOPS criterion values as well as the final renewable market share 

for the different policies: 

 

Table 1: SOPS Criterion and Renewable Market Share for Different types of policies  

 SOPS Criterion Renewable Market Share 

Optimal Linear Policy 0.96 0.93 

Optimal Linear with Uncertainty 0.90 0.92 

Optimal Time Grid 0.94 0.87 

Optimal Grid 1.01 0.92 

 

SOPS was not able to properly save the files for the "Model with different types of policies". 

This is most probably because of the "sopscustompolicy" functions. The .sops files do not 
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open directly, so the .csim file has to be opened and from that file the relevant .sops file has 

to be opened. Once the .sops file is open, the results in the "optimization' page do not show 

however all of the assumptions are already set, so by simply clicking on the optimization 

button, the results will be generated. Please find attached in Appendix 8.3, print screens of 

the results obtained for all of these policies for your reference. 

5.4 Policy Scenarios 

Now that we have confirmed that the custom linear policy function is able to generate 

trustworthy results, different scenarios will be tested with it. Mainly different social discount 

rates as well as a GHG emissions taxes will be introduced. In total there are 4 different 

scenarios that can be activated by setting two switches, "High Discount Rate Switch" and 

"Taxes Switch" to '0' or '1' as presented in Table 2: 

 

Table 2: Different Policy Scenarios Switches Values 

 Taxes Switch High Discount Rate Switch 

Policy 11 0 1 

Policy 12 0 0 

Policy 21 1 1 

Policy 22 1 0 

 

In addition to these two switches, the "Ind Frac Linear Policy Switch" has to be switched to 

'1' as well to run SOPS under the different scenarios. Figure 56 presents the part of the model 

where the different scenarios can be activated.  

 

To run the model with the optimal results of the different scenarios, the "Optimal SOPS" 

parameter has to be set to '1' and the "Ind Frac Linear Policy Switch" to '0'. 
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Figure 56: Different Policy Scenarios switches model 

5.4.1 DIFFERENT SCENARIOS DISCUSSION 

The 4 different scenarios are a combination between different social discount rates with or 

without GHG emission taxes. The model has a default 5% high social discount rate and no 

emission taxes, so policy 11 is the same as the optimal linear policy found before. 

 

The social discount rate values were chosen based on the two values proposed by (Nordhaus, 

2008) and (Stern, 2006). Nordhaus proposes a value of 4.1% versus 1.4% by Stern. The 

difference in the values has as origin different beliefs by each of the authors about the 

severity of the climate change and the responsibility of current generations to mitigate its 

effects. The choice of the social discount rate is a highly subjective one based on personal 

beliefs. Hiding it within big models and discussing it as a purely mathematical/economical 

concept would be misleading. 

  

The two choices to be tested in the model, High with a 5% discount rate and Low with a 1% 

discount rate, portray the two opposite ends of what most policy makers choose as their 

discount rates. These two different values were chosen since the author has not had much 

experience working with climate change mitigation and consequently he still have not 

formed his own belief about what the rate should be. 
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If the discount rate is set to 5%/year, then 1 US$ today in either profit or expenses, is worth 

only 0.082 US$ in 50 years. If the discount rate is set to 1%/year, then 1US$ today is worth 

0.95 US$ in 50 years. Meaning under the high discount rate scenario, in order to maximize 

society's net benefit on the long term, profits now are valued much more than those in the 

future and spending/costs must be done in the future rather than now since it is so much 

cheaper. Under the low discount rate scenario, spending/costs done now will contribute 

almost equally to the society's net benefit on the long run. A lower discount rate would result 

in higher net benefits on the long run than with a higher discount rate, however this would 

depend on how you fundamentally perceive profits in the future versus now. 

 

Marginal Abatement Cost (MAC) curves are commonly utilized in economic investigations 

of energy transitions and particularly climate change mitigation (Kesicki, 2011). There are 

several approaches to generate MAC curves and each one has different assumptions. MAC 

curves are to be treated carefully and careful investigation of their background has to be done 

before their consideration in policy design. 

 

As for the GHG emission taxes, this policy is selected to be highlighted in parallel to the 

built in premium factor since it is a straightforward concept. It represents as well the 

mitigation costs for climate change. It can be either switched on or off. This policy needs an 

aggregated emission factor (Tonne of CO2 equivalent/TWh) and a GHG taxes variable 

(Billion Dollars/ Tonne of CO2 equivalent). Emission factors for the different types of non 

renewable generation technologies can be found in (WNA, 2011). The emissions aggregated 

factor was set to 700000 tonne of CO2 equivalent/TWh. 

 

Similar to the discount rate different values, there is no single agreed upon level for the 

mitigation costs. Values differ from as low as 3 US$/TCO2 to as high as 95 US$/TCO2 

(IPCC, 2007). (Stern, 2006) places a value of 61 US$/TCO2 in 2015 that drops until it 

reaches 22 US$/TCO2. We chose to place the constant value of 40 US$/TCO2 in our model. 

 

The GHG emissions has a structure to be added to the model as shown isolated in Figure 57: 

 

 

Figure 57: GHG Emissions Taxes Structure 
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NR GHG unit Taxes [Billion Dollars/TWh] = NR GHG Taxes per TCO2e × NR GHG 

Emissions Aggregated Factor × Taxes Switch                                                                     (41) 

 

Where: 

NR GHG Taxes per TCO2e [Billion Dollars/Tonne of CO2 equivalent] = 0.00000004 

NR GHG Emissions Aggregated Factor [Tonne of CO2 equivalent/TWh] = 700000 

 

By adding the GHG taxes, the non renewable operating costs and price over levelized cost 

equations would change to: 

 

NR Operating Costs [Billion Dollars/Year] = (Fuel Costs + Non Renewable Variable 

Maintenance Costs + NR GHG unit Taxes) × NR Electricity Generation + (Non Renewable 

Fixed Maintenance Costs × NR Generation Capacity)                                                         (42) 

 

NR Price over Levelized Cost [Unitless] = Electricity Unit Price ÷ [Fuel Costs + ( Non 

Renewable Annual Capital Costs + Non Renewable Fixed Maintenance Costs) ÷ NR Capacity 

Utilization + Non Renewable Variable Maintenance Costs + NR GHG unit Taxes]              (43) 

5.4.2 RESULTS OF DIFFERENT SCENARIOS 

The different scenarios shown in Table 2 were tested in the model. Also an additional 

scenario was tested. It is similar to policy 21 however with no restrictions in the model when 

running SOPS. The .sops files are available as well as for your reference. Policy 11 is the 

same as the optimal linear policy found in section 5.3.1, so its figures are not repeated here. 

The SOPS files are saved and available for your reference. 

 

                 

     Figure 58: Indicated Fraction to Invest Policy 12                       Figure 59: Fraction to Invest Policy 12 
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   Figure 60: Indicated Fraction to Invest Policy 21                      Figure 61: Fraction to Invest Policy 21 

                        

Figure 62: Indicated Fraction to Invest Policy 21 No res      Figure 63: Fraction to Invest Policy 21 No res 

               

 Figure 64: Indicated Fraction to Invest Policy 22                       Figure 65: Fraction to Invest Policy 22 

Figures 58 to 65 showcases the results of each of the policies when tested in the model. 

Policy 11 has the same behavior as the one shown earlier in Figures 45 and 46. 

  

The indicated renewable fraction to invest is always at its maximum allowable level of '2' 

while the non renewable indicated fraction to invest always starts at zero and then increases 

gradually at different paces between the different polices. The only policy exhibiting a large 

difference in behavior is the unrestricted policy 21 in Figures 62 and 63. 

 

The renewable fraction to invest has the same behavior across the different policies (except 

policy 21 unrestricted) since the indicated fraction is as well the same. The non renewable 

fraction to invest differ slightly in their decrease, where in Policy 12 there is still 3% 
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investment into non renewable at the end while in the other scenarios it is almost zero. For 

unrestricted policy 21, the fractions to invest exhibit a more extreme behavior. The 

renewable fraction to invest starts at above 30% and then decreases to zero by the end. The 

non renewable fraction to invest starts as usual however it quickly drops to zero by 2025. 

 

The higher the rate of increase in the non renewable indicated fraction to invest, the higher 

the rate of decrease in the non renewable fraction to invest. This is because higher indicated 

fractions to invest with negative cash flows leads to lower final fractions to invest. 

 

We can notice that for policies 21 and 22 where taxes are activated, the non renewable 

indicated fraction to invest rises more quickly leading to a bigger drop in the final fraction to 

invest. This is because GHG emission will render the non renewable cash flow even smaller 

and it will drop faster to negative values. 

 

In the case of the unrestricted policy, the behavior is quite extreme. This is because when no 

realistic constraints are placed to guide the search in SOPS, the result would be simply 

criterion maximization at the expense of the feasibility of the policy. To maximize the 

criterion between 2015 and 2065, there would ideally be no investments in both sectors by 

the end. This is the case in the unrestricted policy. 

 

Table 3 summarizes the SOPS criterion and renewable market share end values for the 

different scenarios: 

Table 3: SOPS Criterion and Renewable Market Share for the different Scenarios 

 SOPS Criterion Renewable Market Share 

Policy 11 0.96 0.93 

Policy 12 3.02 0.92 

Policy 21 0.67 0.95 

Policy 21 unrestricted 0.90 0.96 

Policy 22 2.64 0.95 

    

As already discussed, the policies with the lower discount rate will generate significantly 

higher net society benefits, however this does not automatically translate into being better 

polices because it all comes back to  how you judge mitigation efforts should be. 

 

The renewable market share is very close between the different scenarios since it is 

independent from discount rate choices. With the introduction of non renewable GHG taxes, 

the renewable market will naturally increase slightly as shown in Table 3. The slight 
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differences in the market share are a reflection of the slight differences in the investment 

behavior. 

 

There is no clear measure to assess which policy scenario is best. Policy makers will have to 

formulate their preferences for the characteristics, i.e. taxes, discount rates, etc..., of their 

desired power market before being able to discern a more desirable scenario desirable. Also 

as discussed in section 5.1, a portfolio of different policies has to be applied to increase the 

odds of a successful transition of the power sector into a sustainable renewable one.  

 

Most of the policies have many barriers to overcome, and it all starts with a change in the 

mindset of the policy makers as well as society. Typical dependence on the depletion of 

reliable energy stocks has proven to be myopic thinking at best. Societies instead have to 

switch to thinking of renewable energy flows which naturally brings with it more uncertainty 

in the short term yet guaranteed higher benefits on the long run. 

 

6. LIMITATIONS 

Most of the model's assumptions and limitations were gradually discussed as the explanation 

of the model and policies progressed. Two main ideas/limitations are still to share. 

6.1 Level of Details in Investment Decision Analysis 

Our model has two sectors, Non Renewable and Renewable. Each of the sectors aggregates 

all of the technologies that fall under its category. This is simplistic yet necessary for the 

thesis's purpose. Nonetheless, future work must take into consideration that portfolio 

diversifications, i.e. explicit modeling of different power generation technologies, allows for 

a more accurate valuation of the different options (Masini, 2013). By adding renewable 

technologies to a portfolio of non renewable ones, the risk associated with the new 

technologies would be lower than if assessed on their own, hence investments would be more 

likely. Also, by diversifying within the renewable portfolio itself, the currently more risky 

options that may offer the higher profits on the long term would have higher chances to 

survive (Masini, 2013). 

6.2 Level of details in the model's feedback loops 

Our model is of a long term power market, hence it only captures long term effects. This is 

probably simplistic since it assumes that the principle of superposition applies which in turn 
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assumes that the model is of a linear system. If a model is linear, then the sum of all the short 

term effects can be simply added up to produce a single long term effect while capturing all 

of the dynamics involved. For example, a range of short term effects might create a gap 

between supply and demand that on the long term will be reduced to almost zero. By 

assuming linearity, these short terms effects can be simply added up and the resulting long 

term behavior would be balance between supply and demand like we have it in our model. 

However our model is not linear, hence by doing so we have compromised some of the 

underlying dynamics of the system. Future work must include short-range effects in order to 

capture more wholesomely the long term behavior as stated by (Forrester, 1956): "Models, 

suitable only for long-range prediction, are often used with short-term influences and 

fluctuations omitted. This is justifiable only if the system is sufficiently linear to permit 

superposition, an assumption which has not been justified or defended and which is probable 

untrue. Therefore, the long-range trends are probably very much a function of the short-range 

behavior of a system." 

7. CONCLUSIONS 

This thesis has relied on the System Dynamics Methodology to build a small dynamic model 

of the power market. Current electricity generation technologies rely heavily on fossil fuels 

which are unsustainable on all three economic, social and environmental levels. Thus, the 

primary focus was analyzing the generation expansion planning problem and the transition of 

the power sector into a more sustainable one. The model shows that if current investment 

behavior stays unchanged , the renewable market share will steadily increase yet not fast 

enough to meet mitigation targets such as the 2 ̊ C. 

  

Near optimal investment strategies were generated by utilizing the Stochastic Optimization 

in Policy Space (SOPS) tool. The objective was maximizing the society's net benefits on the 

long term which takes into consideration both consumer and producer surplus. Optimal 

scenarios all have in common that most investments should be reallocated to the renewable 

sector, forgoing short term profits to realize even higher ones on the long run. 

    

The model can prove useful for gaining insights into how the market behaves under certain 

assumptions and scenarios. Future work must take into consideration the discussed 

limitations of the current work, mainly by developing a disaggregated model with short term 

effects included. 
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8. APPENDIX 

8.1 Explanation of small auxiliary structures 

There are no graphical functions in the model, instead small structures were added to 

generate the same behavior in a partly endogenous. 

8.1.1 CAPACITY UTILIZATION 

The capacity utilization has a structure shown in Figure 6. It basically generates an 

exponential like curve. The utilization is determined based on the two capacity stocks and 

their maximum generating capacity. As one sector's maximum generating capacity potential 

increases relative to the other sector, the utilization will increase following an exponential 

curve. The equation for capacity utilization is of the form [a × (b ^ x) + c]: 

 

R Capacity utilization [Unitless] = a R Capacity Utilization×[b R Capacity Utilization ^ (R 

Maximum Generating Capacity ÷ (R Maximum Generating Capacity + NR Maximum 

Generating Capacity))] + c R Capacity Utilization 

 

R Maximum Generating Capacity [Unitless] = R Generation Capacity × R Capacity 

Utilization when Fraction equal 1 

 

NR Maximum Generating Capacity [Unitless] = NR Generation Capacity × NR Capacity 

Utilization when Fraction equal 1 

 

R Capacity Utilization when Fraction equal 1 [Unitless] = a × b + c = 0.6  (0.8 for the Non-

renewable) 
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R Capacity Utilization when Fraction equal 0 [Unitless] = a + c = 0.3  (0.4 for the Non-

Renewable) 

    

a R Capacity Utilization [Unitless] = 0.1     (a R Capacity Utilization ≠ 0) 

 

b R Capacity Utilization [Unitless] = (R Capacity Utilization When Fraction equal 1 - R 

Capacity Utilization when Fraction equal 0) ÷ a R Capacity Utilization + 1 

 

c R Capacity Utilization [Unitless] = R Capacity Utilization When Fraction equal 1 - (a R 

Capacity Utilization × b R Capacity Utilization) 

 

The fraction referred to is  X= ( 
R Maxi mum  Generating  Capacity  

R Maximum  Generating  Capacity  + NR  Maximum  Generating  Capacity
 ). 

8.1.2 RENEWABLE PREMIUM 

The structure for the renewable premium is shown in the lower half of Figure 10. It is a 

structural difference between the two energy sectors. It is only present in the renewable 

sector. It aggregates the tangible economic incentives utilized by some countries (investment 

subsidies, feed-in-tariff...) as well as the intangible preference of the public to rely on 

renewable sources. 

 

Renewable Premium [B Dollars/TWh] = Electricity Unit Price × Effect of Renewable MR on 

Premium 

 

Where: 

 

Effect of Renewable MR on Premium [Unitless] = a × bx   

 

When Renewable Market share is 100%, then X = 
Renewable  Market  Share

R Normal  Market  Share
 = 2.  

When it is 0%, X = 0. 

 

So, when the renewable market share is 100%, Effect of Renewable MR on Premium = a × 

b2, and b=  
Effect  of  Renewable  MR  on  Premium  when  MR  100%

a
 . 

When the renewable market share is 0%, Effect of Renewable MR on Premium = a. 

 

So the equation would be: 
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Effect of Renewable MR on Premium [Unitless] = a × bx  = Renewable Premium when MR 

equal 0% × [b^ (Renewable Market Share ÷ R Normal Market Share)] 

 

b =  Renewable Premium When MR equal 100% ÷  Renewable Premium when MR equal 0% 

 

Renewable Premium when MR equal 0% [Unitless] = 1.5 

R Normal Market Share [Unitless] = 0.5 

Renewable Premium when MR equal 100% [Unitless] = 0.0001 

 

The normalized market share allows for the modeler to introduce a preference about how 

long the premium factor should remain active. If we have a normal market share of 50%, it 

means when the normalized renewable market shares passes the threshold of 1 (i.e. when 

renewable MR> 50%), the premium will be negligible. 

8.1.3 INDICATED FRACTION TO INVEST 

The structure for the Indicated Fraction to Invest is shown in Figure 12. It generates a logistic 

growth or S-Shape curve. Its equation is: 

 

Renewable Indicated Fraction to Invest [Unitless] = 
Max

1+ e− (Lambda  ∗ X +alpha ) 

 

X = Profitability Index = PI 

 

So, Renewable Indicated Fraction to Invest = Renewable Max Fraction to Invest ÷ [1+E^ - 

(Renewable Lambda × R Price over Levelized Cost + Renewable Alpha)] 

 

To derive the Lambda and Alpha, we need to set two reference points. We chose to have the 

points when PI = 1 and when the S-Curve will start to increase rapidly referred to as lower 

turning point. 

  

When PI = 1, then: Renewable Indicated Fraction to Invest = 
Max

1+ e− (Lambda  +alpha ) 

When PI = Lower Turning Point = 
Max

1+ e− (Lambda ∗Lower  Turning  Point  +alpha ) 

 

From these two equations we can derive Lambda and alpha: 

 

Renewable Lambda [Unitless] = Ln [(Renewable Fraction to Invest when PI equal 1 × 

(Renewable Max Fraction to Invest - Renewable Fraction to Invest when PI at Lower 

Turning Point)) ÷ (Renewable Fraction to Invest when PI at Lower Turning Point × 
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(Renewable Max Fraction to Invest - Renewable Fraction to Invest when PI equal 1))] ÷ (1 - 

Renewable Lower Turning Point Profitability Index) 

 

Renewable Alpha [Unitless] = Ln [Renewable Fraction to Invest when PI equal 1 ÷ 

(Renewable Max Fraction to Invest - Renewable Fraction to Invest when PI equal 1)] – 

Renewable Lambda 

 

The parameters are set at: 

Renewable Max Fraction to Invest [Unitless] = 1.3 

Renewable Fraction to Invest When PI equal 1 [Unitless] = 0.85 

Renewable Fraction to Invest when PI at Lower Turning Point [Unitless] = 0.2 

Renewable Lower Turning Point Profitability Index [Unitless] = 0.8 

8.1.4 FRACTION TO INVEST 

This structure generates an S-Shape curve for the fraction to invest. It has the same equation 

as the Indicated fraction to invest. So Lambda and alpha were derived in the same way. The 

difference here is that X = R II to Current K Ratio. 

 

The rationale behind this structure and X is that the indicated investment (or II) will be 

compared with the monetary value of the current capacity stock (or K) and the ratio of the 

two will be modified to generate the final fraction to invest. 

 

R Fraction to Invest [1/Year] = R Max Fraction to Invest / [1+E^ - (R Lambda * R II to 

Current K Ratio + R Alpha)] 

Where: 

R Lambda [Unitless] = Ln [(R Fraction to Invest when Ratio equal 1 × (R Max Fraction to 

Invest - R Reference Fraction to Invest)) ÷ (R Reference Fraction to Invest × (R Max 

Fraction to Invest - R Fraction to Invest when Ratio equal 1))] ÷ (1 - R II to K Ratio of 

Reference Fraction to Invest) 

 

R Alpha [Unitless] = LN[R Fraction to Invest when Ratio equal 1 ÷ (R Max Fraction to 

Invest - R Fraction to Invest when Ratio equal 1)] - R Lambda 

 

R Max Fraction to Invest [1/Year] = 0.5 

R Fraction to Invest when Ratio equal 1 [1/Year] = 0.49 

R Reference Fraction to Invest [1/Year] = 0.04 

R II to K Ratio of Reference Fraction to Invest [Unitless] = 0.04 
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The reference fraction to invest is the point at which investment would just even out the 

capacity depreciation. Hence it is '0.04' since the life time is 25 years. 

 

R II to Current K Ratio [Unitless] = Renewable Indicated Investment / (R Generation 

Capacity × Renewable Capital Costs × Time fixer) 

 

The rationale compares a flow like variable which is the indicated investment [Billion 

Dollars/Year] with the monetary value [Billion Dollars] of a stock which is the generation 

capacity stock. Hence a constant parameter with a value of '1' was introduced, "Time fixer" 

[1/Year] to reconcile the units of these two to generate a unitless ratio. 

The question here arises whether or not to use the "Renewable Annual Capital Costs" 

[Billion Dollars/TWh] instead of the "Renewable Capital Costs" [Billion 

Dollars/(TWh/Year)] to determine the monetary value of the stock. This would relax the 

need to use the "time fixer". However the concept is to compare the indicated investment 

which is over time with the monetary value of the already installed capacity stock which is 

not over time, so the "Renewable annual capital costs" do not fit and would violate the 

concept. Hence a parameter with a value of '1' is necessary to reconcile the units. 

8.2 Parameters 

8.2.1 ELECTRICITY MARKET 

Market Reference Price [Billion Dollars/TWh] = 0.089    (equal to 8.9 cents/KWh) 

Demand Price Elasticity [unitless] = -0.45      

Long Run Electricity Demand Growth Rate [1/year] = 0.015 

8.2.2 CAPACITY AND CUMULATIVE GENERATION 

R Capacity Life Time [Year] = 25 (same for the non-renewable) 

R Perfect Distribution [Unitless] = 1    

R Grid Loss [Unitless] = 0.1    

Normal Noise [Unitless] = 0     

Randomness Switch [Unitless] = 0 

8.2.3 TECHNOLOGY LEARNING 

Non Renewable Learning Rate [Unitless] = 0.1 (0.2 for the renewable)                                                                

Initial Non Renewable Electricity Cumulative Generation [TWh] = 963600 (14892 for the R) 
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8.2.4 RESOURCE DEPLETION 

Depletion Lower Limit [Unitless] = 0     

Production Depletion Coefficient [Unitless] = 0.2 

8.2.5 GENERATION COSTS 

 Capital Costs: 

Non Renewable Initial Capital Costs [Billion Dollars/(TWh/Year)] = 0.2   (0.4 for the  R) 

Yearly Interest Rate [%/Year] = 7 

 

 Fixed Maintenance Costs: 

Non Renewable Initial Fixed Maintenance Costs [Billion Dollars/TWh] = 0.004 (0.005 for 

renewable) 

 

 Variable Maintenance Costs: 

Non Renewable Variable maintenance Costs [Billion Dollars/TWh] = 0.004 (0.005 for the R) 

 

 Fuel Costs (Only for Non Renewable): 

Initial Fuel Costs [Billion Dollars/TWh] = 0.02 

Non Renewable Initial Resource Efficiency [Unitless] = 0.4 

8.3 SOPS Print screens for Different Policy Types 

8.3.1 OPTIMAL LINEAR POLICY 

 

Figure 66: Optimal Linear Policy SOPS Results 
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8.3.2 OPTIMAL LINEAR POLICY WITH RANDOMNESS 

 

Figure 67: Optimal Linear Policy with Randomness SOPS Results 

8.3.3 OPTIMAL TIME GRID POLICY 

 

Figure 68: Optimal Time Grid Policy SOPS results 

8.3.4 OPTIMAL GRID POLICY 
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Figure 69: Optimal Grid Policy SOPS results 


