Generating software for MUB
complementary sequence

constructions

November 2015

Master Thesis

Department of Informatics
University of Bergen
Norway

)

To my
parents,
husband,
sisters and
daughter.

Acknowledgements

First of all T would like to express my gratitude to my supervisor, Professor Matthew
Geoffrey Parker, for providing me with the opportunity to work in the interesting world
of MUBs.

I am very thankful to Mari Garaas Lgchen for being so forthcoming, punctual and helpful
whenever I need her for educational and administration issues.

Tor Helleseth and Tetiana Yarigina deserve to be acknowledged for the great inputs
within classical cryptosystems and basic code.

I started my academic training in Norway with the Master program in Telematics at the
Norwegian University of Science and Technology n Trondheim. I would like to thank my
professors at NTNU and especially the course coordinator Laurent Paquereau for the
valuable academic experience in Trondheim.

Last but not least, I would like to thank my lovely husband Mahdi and my cute daughter
Rihanna for always being there for me. I am also deeply grateful to my family members
back home, my parents and sisters for their unconditional love and support.

Hanieh Roodashty
Bergen, November 2015

10

Summary

This master thesis has been performed at the Department of Informatics, University of
Bergen between February and November 2015. The work has been supervised by
Professor Matthew G. Parker as a part of the research interest within complementary
construction using mutually unbiased bases.

This project is an attempt in the line of the study to improve the set size of the
complementary sequences while keeping the upper bound of PAPR as low as possible and
also maintaining the pairwise distinguishability. To perform this task, seeding the
recursive construction with optimal mutually-unbiased bases in dimension 2 and 3 was
used in this study.

To use the MUB-based sequences in OFDM containing systems, we generated program
codes that constructed distinct arrays and sequences for dimension 2 and 3 seeding by
MUBs with and without linear offset. The codes were produced in MATLAB

environment.

The codes for both dimensions have delivered satisfactory results. The results for lower
iterations have also matched with the manually calculated values based on theory.

Various strategies were used to increase the software speed as well as to decrease the
resource demand, but still to run the codes for higher iterations there needs advanced
and professional computing solutions such as supercomputers.

It has been attempted to generate the codes with maximum possible flexibility so that
they can be used for other dimensions with minor adjustments. The codes have also the
capability of conversion to other programming languages.

Table of Contents

ACKNOWIedZements.cooiiiiiiiiii iii
STIILITIATY e aaas iv
Table of Contents v
LAST OF FI@UIES . oottt e e e e e e e s vii
LSt OF TaDLES ettt vii
Symbols and Nomenclature ..., viii
Chapter 1 INtroduction...cicevivivieiiiiierereieeriniceciiirersraressisreesssrosssssasssssossssssssossss 1
1.1 BaCK@IOUNA ..o 1
1.1.1 Problem statementooiiiiiiiiii e 5

1.1.2 THESIS SETTUCTUL. ...ttt 6
Chapter 2 Methodology .o.iciviviiiriiiiiiieiuieirinicciiiirersraressisreessrosssssasssssorsssssssossss 7
2.1 OF DM e 7
2.2 Optimal mutually-unbiased bases (MUB).........cocciiiiiiiiiiiiicc 10
2.2.1 MUB for constructing large sets of complementary pairscccccoeeevneeeeen. 11
2.2.1.1 Using M, to construct complementary pairs..................eeeeveveveverevvevevevneeneennnns 11

2.2.1.1.1 The complementary set cONStructioncccccvieieieeriiiiiiiiineeeeeees 12

2.2.1.1.2 Enumerating arrays in B, and sequences in Bl,n.............ccoeonni. 14

2.2.1.2 Using M; to construct complementary triplescccooeveeeiiiiiiiiiiiieeeiiiiiiinn. 15

2.3 Hardware and programming languageeeeeeeiinmiiiiiiiiieeniiiiiiieeeeeee e 20
Chapter 3 Results and DiSCUSSION t.vvviuiiiriiiiniiniieinieirinieeensiieecsrarerstorcnsssnscsses 21
T80 B 3 oY 1 et 1o 3 U P PP 21
3.2 Seeding with M, to generate complementary pairscccccevvmiiiiiiiiieeininniiiineee. 22
3.2.1 Multivariate construction using {H}ccoooiiiiiii, 23

3.2.2 Univariate construction using {H} ... 27

3.2.3 Multivariate construction using {H, I, N}......oooooi, 32

3.2.4 Univariate construction using {H, I, N} 39

3.3 Seeding with M3 to generate complementary triples..............ccooo 44
Chapter 4 Conclusion and future Work.....c.c.cceeeeeiiiiiiiininininininiarerererenececenenns 49

4.1 Concluding remMATKScooeiiiiiiiiiiie e e 49

vl

4.2 Recommendations for future Workcooooiiiiiiiiiiii e 50

R 310) FleT=y =10 1 PPN 51
Appendix 1: User Manual.......ccoooiiiiiiiiiiiiiiiiiiiiiiiiiiiiiie et eenenen 56
Appendix 2: Program SOUICES «.iveveveieiririiieuriiirsrsiarsssiorsessorssssssasssssossssssssossss 60
A DIMEIISION 2 1oiviiiiii e 60
A-1 Function construct_ arrays_ sequences di2cccccceeeeeiiiiiiiiiiiiiiiiiiiieieeeeenne 60

A-2 Function permutation di2..............oeeviiiiiiiiiiiiiiiiiiiiiiiiieiieeeeee e 65

A-3 Function used matriCesoooiiiiiiii e 66

A-4 Function construct_ arrays_ sequences_ without_ linearoffset.......................... 67

A-5 Function CONSIUCH_ AITAYS ..oviiiiiiiiiiiiiiiiii e e e ettt e e et e e e e e 70

A-6 Function H_arrays ...ooooeieiiiiiiii e 73

A-7 Function H_ SEqUENCESeiiiiiiiiiiiiiiiie e 74

B DIIMEIISION 3 oeniiiiiiii e 76
B-1 Function construct_ arrays_ sequences_ didccccoeeeieriiiiiiiiiiinieeeeeiiiiiiinnnn. 76

B-2 Function all__permutation_ didcccooiiiiiiiiiiiiiiiiii e 81

B-3 Function used matrices did.......ccooiiiiiiiiiii e 82

B-4 Function construct_arrays sequences_ without_ linearoffset di3................... 83

vt

FIGURE 1-1:
FIGURE 1-2:
FIGURE 2-1:
FIGURE 2-2:
FIGURE 3-1:

TABLE 2-1:
TABLE 3-1:
TABLE 3-2:
TABLE 3-3:
TABLE 3-4:
TABLE 3-5:
TABLE 3-6:
TABLE 3-7:
TABLE 3-8:
TABLE 3-9:

TABLE 3-10:
TABLE 3-11:
TABLE 3-12:
TABLE 3-13:
TABLE 3-14:
TABLE 3-15:
TABLE 3-16:
TABLE 3-17:
TABLE 3-18:
TABLE 3-19:

List of Figures

Comparison of FDM and OFDM approach to bandwidth consumption........ 3

Overview of the hierarchy and the project conceptccccooiiiiiiiiiinnnn. 5
Graphical representation of the example functions.............cccooeeeiiiiniiinnn... 14
Schematic of some strings in dimension 3..........cccccceueiiiiiiiiiiiiiiiiiiiiiiiiiiiees 19
Symbolic representation of the IHN combinationscccccccooiiiiiiinninn. 33
List of Tables
The number of unique IHN sequences where Pj={I} and n=i+1................ 15
The number of unique H arrays where p={I, X} and n=i+1........c.ccceeeuee. 26
The output of the code H_ arrays for i=0-2............ccce, 27
The number of distinct H sequences for p={I, X} and n=i+1. 28
All projections for 14z0+21-20Z1+ 2o+ 20202122 202122 oo eeeeeeeeeeeeeeeeeeeeeeeeeeeeee 29
The output of the code H_ sequences for i=0-2.ccooeeviiiiiiiiiiiniiiiiiineee, 31
The number of unique IHN arrays for p={I} and n=i+1.............ccoce 35
The number of unique IHN arrays for p={[,X} and n=i+1.ccceeevrennnn 35
The output construct_ arrays_ sequences without_ linearoffset, i=0-1. 37
The output of the code construct_ arrays sequences di2 for i=0-1............. 38
The number of distinct IHN sequences for p={I} and n=i+1.................. 39
The number of distinct THN sequences for p={I,X} and n=i+1. 40
The output construct__arrays_sequences_ without_ linearoffset 41
The output of the code construct_ arrays_sequences di2 for i=0-1........... 42
The number of unique IFQR arrays for p={I} ... 46
The number of distinct IFQR sequences for p={I}ccccocciiiiiinnn. 46
The number of unique IFQR arrays for PEPjKcoocoiiiiiiiiiiii 46
The number of unique IFQR sequences for PePjk............cccooiiiiiiiiinnn. 47
The output of construct_arrays_ sequences_ without_ linearoffset_ di3...... 47

The output of the code construct_ arrays_ sequences_ di3 for i=0-1........... 48

viL

Symbols and Nomenclature

Roman letters

A Amplitude

! Hilbert Space

n Iteration +1

i Iteration

d Representative prime number
Abbreviations

AM Amplitude Modulation

ASK Amplitude Shift Keying

CDMA Code Division multiple Access
DTE Data Terminal Equipment

FDM Frequency Division Multiplexing
FM Frequency Modulation

FSK Frequency Shift Keying

IFFT Inverse Fast Fourier Transformation
MUB Mutually Unbiased Base

OFDM Orthogonal Frequency Division Multiplexing
PAPR Peak to Average Power Ratio

PM Phase Modulation

PSK Phase Shift Keying

QAM Quadrature Amplitude Modulation
QPSK Quadrature-PSK

TDM Time Division Multiplexing

WDM Wave-Length Division Multiplexing

Chapter 1

Introduction

An introduction to the master thesis work is provided in this chapter. The chapter begins
with an explanation of the background of the work and then describes the drive and
motivation for generating the MUB complementary sequence constructions.

1.1 Background

The word “telecommunication” adopted from the French word
télécommunication consisting of the Greek prefix tele (tnke-) which means "distant" and
the Latin word communicare, meaning "to share" [1]. Telecommunication then literally
means to share information from distance. Today, telecommunication is the act of
exchanging information between two or more entities including the use of technology and
it has its own developed branch of scientific research.

2 Introduction

In telecommunications, communications systems consist of transmission systems,
communication channels and also communication equipment at the end of a
communication link that are called Data Terminal Equipment (DTE).

Transmission technologies are closely connected to physical layer protocols. This layer
includes modulation, demodulation, error control and multiplexing.

By multiplexing, several signals can be transferred through the same channel so as to use
the available bandwidth capacity in an efficient way.

The following are some of the most well-known techniques for multiplexing that are
widely used nowadays:

e Frequency Division Multiplexing (FDM)

e Time Division Multiplexing (TDM)

e Wave-Length Division Multiplexing (WDM)
e Code Division multiple Access (CDMA)

Modulation is the process of conveying a data signal on another signal that can be
physically transmitted. By Modulation, the data signal is transferred from Base Band to
the frequencies of Band Pass. Modulation itself can be either analog or digital. Important
types of digital modulation are:

e ASK (Amplitude Shift Keying)

e FSK (Frequency Shift Keying)

e PSK (Phase Shift Keying)

e QPSK (Quadrature-PSK)

e QAM (Quadrature Amplitude Modulation)

e Orthogonal Frequency Division Multiplexing (OFDM) modulation

By using OFDM [2][3] as a multiplexing technique, each carrier signal is modulated with
its own specific frequency where each of them is orthogonal to all other carriers. Then all
the signals can be closely packed even with overlaps.

Background 3

NANNNN

-««—— Saved Bandwdith ———
OFDM

FI1GURE 1-1: Comparison of FDM and OFDM approach to bandwidth consumption.

Hz

OFDM has several applications in industry including but not limited to high data rate
wireless systems, telecommunication standards like 802.11a, 802.11g and mobile

communications.

OFDM is well known for the possibility to send higher bit rates in a given bandwidth
using less frequency compared to other techniques, yielding higher bandwidth efficiency.
It is also a very resistant method to frequency selective fading if compared to single
carrier systems. Another advantage of OFDM is not being sensitive to time

synchronization errors.

On the other hand, there are some weak points associated with the OFDM technique
where the most important one is the high peak to average power ratio (PAPR) [2][4] that
this master thesis addresses. Sensitivity of OFDM to frequency synchronization is also a

minor issue to be resolved when working with this method.

The peak-to-average-power ratio (PAPR) is the peak amplitude squared (this is the peak
power) of the waveform divided by the root mean square (RMS) value squared (this is

average power) of the waveform as shown in equation (1-1).

|x|peak?

PAPRy;, = 10log;, > (1-1)

XRMS

If the wave type is OFDM, the value of PAPR in typical systems may be around 12 dB
and in QPSK is 0 dB and in QAM is equal to 3.7 dB meaning that OFDM has the
highest PAPR among available systems. This is a big concern associated with the OFDM
systems.

High PAPR for the OFDM systems may be caused by independent modulated
subcarriers coupled together to form a signal to be transmitted. The subcarriers in this

4 Introduction

case have been formed via an inverse fast Fourier transformation (IFFT) operation so the
transmitted signal does not have a flat inverse Fourier spectra.

The importance of high PAPR will enforce some restrictions and also further significant
issues for power amplifiers in transmitters [4]. In one hand the power amplifiers work
efficiently when the PAPR is low. On the other hand, high PAPR makes the peak of the
signal move to the nonlinear region of the power amplifier and reduces the efficiency of
power amplification. Additionally high PAPR signals require a larger range of dynamic
linearity than analog circuits, which often results in expensive devices.

Consequently, there is a motivation to do research on the current issues and
shortcomings of OFDM including its high PAPR, leading to properly utilize the
capabilities of OFDM.

As of now there have been several methods suggested to address this issue by increasing
the average values of the peak powers in order to decrease the ratio of the peak power to
the peak average or PAPR. By decreasing the PAPR, there will be a decrease in bit rate,
an increase in the bandwidth efficiency and also an increase in the bit errors.

In this project we will emphasize on a technique that uses a designed code [4][5][6] to
simultaneously possess both low PAPR and appropriate error correction capabilities.

In 1999 Davis and Jedwab [5] suggested a coding scheme for OFDM systems using binary
modulation with a high code rates for moderate carries. They showed that it is feasible to
form standard 2"-array complementary sequences where the resulting length would be 2"
These sequences had second- order cosets of first-order Reed-Muller codes that are from
the RM2" (1, n) family [7][8][9][10]. This in practice means that the sequences are
pairwise distinguishable. Some other researchers such as [7][11][12][13] [14][15][16]
exhibited that the constructed arrays have the same structure as the complementary set
construction. In this case, the sequences are provided by the projection of the arrays.
Although this was a good idea, the set size alteration could lead to a change in upper
bound of PAPR and also pairwise distinguishability.

It is then of great interest to be able to enhance the set size of the complementary
sequences while the upper bound of PAPR keeps being as low as reasonably achievable
and also the pairwise distinguishability is fulfilled. The method to meet all these criteria
has been proposed by these references [7][17][18][19] where Mutually Unbiased Bases
(MUBS) are central to the sequence constructions.

It has been shown [7] that practical MUBs for telecommunication purposes should have
the following characteristics:

e FEach sequence has a near-flat Fourier spectrum.
e Pairwise distance between any two sequences: minimum

e Sequences set is as large as possible (with near-flat constraint)

Background 5

In order to construct the complementary sequences with the abovementioned properties,
Matthew G. Parker and Gaofei Wu [7] suggested an algorithm to uniquely generate
complementary sets of arrays exploiting a set of MUBs. The suggested algorithm can
potentially be seeded of any MUB with any dimension and that will consequently need
the corresponding formulation of the size of arrays and sequences.

Addressing the practical need to have the outcome of this algorithm, we need a software
package that can help generate the relevant arrays and sequences. In this project we have
focused on a MUB of dimension 2 as studied in the reference [7] with some modifications
and also a MUB of dimension 3. The resulting software of this project is aimed to
uniquely generate arrays and sequences and the number of the generated items.

Telecommunication

Multiplexing
OFDM PAPR

Complementary
sets

Without linear

offset With linear offset

FIGURE 1-2: Overview of the hierarchy and the project concept

Figure 1-2 shows an overview of the important subjects connected to
telecommunication technology from one end and the content of this thesis from the other
end.

1.1.1 Problem statement

The algorithm suggested [7] for the unique generation of MUB based arrays and
sequences were considered. The number of complementary sequences in dimension 2 and
dimension 3 initially require computerized approaches to generate them.

These enumerations then help to confirm the associated theoretical derivations.

6 Introduction

The current master thesis is focused on developing software to address the need of MUB
complementary sequence constructions in the two mentioned dimensions. The results of
the thesis can be instrumental to systematically verify the results of the already
suggested algorithms for uniquely generation of MUB based arrays and sequences.

1.1.2 Thesis structure

The thesis consists of four chapters, bibliography and two appendices.

In chapter 1 we introduced the concept and applications of MUBs and the statement of
the problem to be addressed in the thesis.

In chapter 2 the details of the algorithm and the steps taken to prepare the code are
stated.

Chapter 3 comprises the results and outputs of the code and relevant discussions.
The conclusions and recommendations for future work are reflected in chapter 4.

Finally the source code written for the thesis following a brief user manual is presented as
the appendices.

Chapter 2

Methodology

This chapter briefly presents the concept and application of OFDM technique and the
methodology for generating MUB-based sequences and arrays. The chapter eventually
presents the step-by-step design of the software generated in this thesis.

2.1 OFDM

Modulation in telecommunication is the process of carrying an information signal on
another signal, called a carrier signal, which can be physically transmitted in order to

have a high efficiency of transmission.

When modulating on a data signal occurs, one property of the carrier signal, for instance
amplitude, frequency or phase changes according to the changes in data signal.

Some common modulation techniques are amplitude modulation (AM), frequency
modulation (FM), phase modulation (PM) and orthogonal frequency division
multiplexing (OFDM) modulation.

By multiplexing, multiple digital or analog data are combined into one signal so that by
sharing, expensive resources in transferring channels can be used more cost effectively.

] Methodology

OFDM is a combination of modulation and multiplexing [20]. The OFDM is a form of
multi-carrier modulation technique. In this technique the bandwidth is shared among
multiple individual modulated data signals.

OFDM in many ways is similar to conventional frequency division multiplexing (FDM).
One of the minor differences is the method of signal modulating-demodulating.

FDM is also a multi-carrier technique that divides the bandwidth of the channel among
all carriers. There is no relationship between the sub-carriers of the data signal. FEach of
them has its own frequency and is modulated individually. A part of this method is to
provide enough frequency space between each data carrier. There will be no overlap
between the data carriers so that they can be distinguishable at the receiver side. In this
method the use of resources of the channel is not efficient since there is much bandwidth
wasted.

On the other hand, in OFDM, the frequencies of carriers are chosen so that the carriers
are orthogonal to each other. Overlap between the data carriers is allowed here and as a
result the frequency space is not required in this technique. This practically means that
we can generate a larger number of carriers over a channel with OFDM compared to
FDM and then more bitrate can be transmitted in lower frequency bandwidth.

Another strong point for OFDM is the capability to be adapted to environments
containing high radio frequency (RF) interference.

Finally, OFDM is more practical in harsh multi-path environments.

These advantages make OFDM outstanding among other multi carrier modulation

schemes.
OFDM has been adopted by several technologies including but not limited to [2]:
e Asymmetric Digital Subscriber Line (ADSL) services
e [EEE 802.11a, g, n (WLANS)
e [EEE 802.20 Mobile Broadband Wireless Access
e JEEE 802.15.3a (Wireless PAN)
e [EEE 802.16d, e (WiMAX),
e DAB (Digital Video Broadcast)
e DVB-T (digital terrestrial television broadcast)

e DVB-H: Digital Broadcast Services to Handheld Devices

OFDM 9

The technology of OFDM is in the early stage of developments and naturally there are
still some issues to be resolved. First of all, OFDM is fairly sensitive to Doppler shift and
in general it does not give proper results when subjected to offset in carrier frequency.

The OFDM systems also possess large dynamic range amplitude. Therefore we need radio
frequency power amplifiers with a high peak-to-average-ratio (PAPR) to handle the
incident signals when compared to single-carrier systems. This high PAPR can be
nominated as the greatest challenge hindering a mass use of OFDM in industry.

As discussed in the first chapter, the PAPR is calculated from the equation (2-1):

|x|peak?
PAPRy, = 10log,) ——— (2-1)
XRMS

In a case that we have N signals all with the same phase, the resulting peak power of
them will be N times their average power. As a consequence there will be a high PAPR
wave in the system that needs severe amplifying to be transmitted [6]. This shows the
importance of characterization PAPR in OFDM systems and solving the problem of high
PAPR.

There has been significant research into the PAPR problem making it a central topic in
OFDM systems [21], [22]. Furthermore there have been many attempts to reduce the
PAPR through various techniques such as coding schemes [23][24], clipping [25], [26],
phase optimization [27], Tone Reservation (TR) and Tone Injection (TI)[28] and Partial
Transmission Sequence (PTS) and Selective Mapping (SLM) [29], [30]. These methods
are basically either of the signal distortion type (clipping for instance) or signal
scrambling techniques e.g. block codes and PTS.

It has been proposed that an appropriate compromise needs to be made between the
extent of reducing PAPR and the power consumption for transmission, data loss rate,
Bit-Error-Ratio (BER) performance and also practicality of the system implementation
[4].

An interesting idea to effectively reduce the PAPR has been suggested in [23] and later
[31] to utilize block coding via selecting a set of code words. Selecting the right code
words with considerations of M-ary phase modulation scheme and the coding rate
suitable for encoding-decoding are keys in this technique. This method however requires a
comprehensive search operation to select the right code words which can be resource
demanding for search, storage and encoding operations. The technique is also problematic

when it comes to the error correction.

Golay complementary sequences were later suggested as code words [8] to decrease the
PAPR of the signal to 2 or values less than 2 which was a breakthrough at the time.

10 Methodology

A development in this field later proposed by Davis and Jedwab was that a given second-
order cosets of generalized first order Reed-Muller codes RMax (1,n) can form large sets of
binary length 2" Golay complementary pairs [5]. They eventually used the joint effect of
block coding and Golay complementary sequences to enjoy the strongpoints of both and
at the same time to address their shortcomings through the combination. As a result,
their outcome had a reduced PAPR, while maintaining error correction within an
acceptable range, included high code rates and also effective encoding-decoding
capabilities.

Later several research works have shown that the structure of the complementary sets
are in fact array structures [14][15][13][12][16] and the sequence sets can be generated by
projections of the arrays. It is then of interest to have complementary constructions that
can expand set size without significantly changing the upper bound of PAPR or the
pairwise distinguishability.

Finally it has been showed [7] that the issue of construction of large sets of
complementary sequences while preserving proper pairwise distinguishability can be
addressed by seeding the recursive construction with optimal mutually-unbiased bases
(MUBSs) [19][17][18].

2.2 Optimal mutually-unbiased bases (MUB)

The first person to initiate the notion of MUB was Schwinger who showed the concept in
1960 [19]. Then the first researcher to study the applications of MUB was Ivanovic [17]
who used MUBs for quantum state determination.

Nowadays MUBs have a lot of important applications in quantum computation including
quantum state tomography and quantum cryptographic schemes [32][33][34]. MUB
problems also include dozens of mathematical contributions that have been developed in
the context of communication theory and there is potential for progress in the field such
as the use of MUBs to construct complementary sequences that is a central part of the
present thesis.

In quantum theory, a pair of bases {ui,..,ua} and {vi,..,va} in Hilbert space ¢’ [35] is
called mutually unbiased if they are orthonormal and the square of the magnitude of
the inner product between any two bases w and v;j equals the inverse of the dimension d
[32] as shown in equation(2-2):

2 — 2_1
A (u]',Vj) = |< ui,vj >| = a (2-2)

https://en.wikipedia.org/wiki/Square_(algebra)
https://en.wikipedia.org/wiki/Magnitude_(mathematics)
https://en.wikipedia.org/wiki/Inner_product

Optimal MUTUALLY-UNBIASED BASES (MUB) 11

A conventional challenge with MUBs is how to find the maximum number of mutually
unbiased bases in the d-dimensional Hilbert space ¢’

This problem was first addressed by Ivanovic where d was a prime number [17] and then
by Wootters and Fields where d was an integer power of a prime number [35] but it is
still an open question [36] for arbitrary d.

Approaching the upper bound, Wootters and Fields proved [35] that it is not possible to
find more than d+1 MUB in any d-dimensional Hilbert space c!. If there exist d+1
MUBs in a Hilbert space where d is a power of a prime number, the MUB is considered
an optimal MUB.

For the lower bound on MUBs, if d is a prime number decomposition ie. d=
PPPP2 . PPK and with PP < PP2 < .- < PPX then PP + 1 will be the minimal MUB.

In this case, the number of constructed MUBs obeys the following equation:

PM+1<#MUB <d+1 (2-3)
2.2.1 MUB for constructing large sets of complementary pairs

A method has already been presented to construct large sets of complementary sequences
by seeding with optimal MUB by G. Wu and M. G. Parker [7]. They considered an
optimal MUB as My and constructed complete sets of complementary sequences that are
seeded by a MUB of dimension 2 (M,) although their main construction works on any
MUB of any dimension. But developing formula for the size of the arrays and sequences
sets for higher MUB constructions is still open. In this work they developed techniques
for constructing sequence and arrays by an optimal MUB of dimension 2. We generated
the same arrays and sequences that were seeded by the MUB of dimension 2 and also
dimension 3 these will be discussed in the next chapter.

2.2.1.1 Using M, to construct complementary pairs

In the reference mentioned above [7] it was considered that M2={I, H, N} where

P _(1 0y ;_1/1 1Y), _1/1 i o .
matucesl—(o 1), H—ﬁ(1 _1) aLndN—ﬁ(1 —i)' Here it should be noted that 7

equals v—1 .
I, H and N are unitary matrices meaning that HH*=H*H=I and NN*=N*N=I where I is
identity matrix and * means transpose conjugate. In addition to these matrices, the Pauli

matrix X = ((1) é) was also considered a permutation matrix that could be used for

constructing complete sets of MUBs of dimension 2. Here a set of complementary array
pairs were constructed over the alphabet {0, 1, i, -1, -i}.

12 Methodology

We shall let F(z) define a complementary set with length d sequences and with degree d-
1 polynomials in variable z. Fi(z) is a univariate polynomials with degree d-1 where the
coefficients of these polynomials are considered as sequences.

F(z) is also considered as a complementary set of n-dimensional dygo X dy; X ...X
dygn-1 arrays and Fi(z) is a multivariate polynomial in variables z ={z, zi,...,z..1} where
the coefficients of these polynomials will be considered as arrays.

We can define arrays and sequences as generalized Boolean functions if we write:
f(x): F3 = A where A={0,1,i, -1, -i}.

The set of complementary pairs of arrays F(z) are constructed as a recursive function
and B, set is the set of distinct complementary arrays that is obtained from F(z).

F(z) is constructed from F(z) by projections Zzn(i), 0 <i<n and fixed By, as the set of
unique complementary sequences that can be obtained from F(z).

As an example, we can imagine that the array Fi(z) =1—1zy+ 21 +7z¢z; can be
projected down to a univariate polynomial by assigning zy=z ,z1=z>. This means that
Fi(z)= 1-z+7°+7z* and by the assignment z=2z* 7=z the result will be Fi(z)= 1+z-z*+7".

Equation (2-4) is valid when a set of complementary pairs are seeded with M2={I, H,
N}:

1
A%(By,) = max{A?(u,v)|u # v,u,v € By} = > (2-4)

2.2.1.1.1 The complementary set construction

The recursive function construction to generate a set of complementary arrays is:
Fi(2) = BuyVi(z)Fj-1(z-1) (2-5)
. . : 10
where d=S=2, P, = {I, X} is permutation unitary, u; € M, and V]-(Z]-) = (0 Z-)'
j

A set of complementary sequences can be then constructed by projecting down the arrays
where the sequences possess PAPR< S=d since every member of My is a unitary matrix
and finally the size of the projected sequence set can be increased by selecting d!
permutations of the rows of the unitary matrices at each stage of recursion. We will

F _ 4
perform the recursive function (2-5) n times so as to reconstruct F,_,(Z) = (Fn o EZD
n-1,1
_ X i .
where Fy_y i (Z) = ¢ Bepn fo1£ (07", k € {0,1},2 = ;.l=01 z; 7, and ¢ is some real

constant such that F,,;(z) is normalized as an array. f..; is defined with three

conditions as follows:

1- uj=H and Pj=I, Vj

Optimal MUTUALLY-UNBIASED BASES (MUB) 13

In this case fy_1x):F3 —>{1,—-1}= iz(kX“‘1+Z?=_°2Xij+1),k € {0,1} which are binary
complementary sequences as constructed in [5].
An example of this function is:
u=(H,H,H) = f,,(x) = i?FoX1+¥1¥2)
This function is illustrated by Figure 2-1a.
2- uj € {H,N}and 1= (ju; =N)

. . 2(KXon A+ 2 + =1 .
Here we have fy_qx(x):F5 - {1,i,—1,—i} =1 (kxn-1+2jz0 XjXj+1)+Lj=0 X1(). These are

quaternary complementary sequences as discussed in [5].

An example of this function is u=(H,N,H)=f,,(x) = 2Zox1+x1X2)4X1 which s

schematically shown in in Figure 2-1b.
3- uj € {I,H,N}, where uy_y #1p = (j,u; € {H,N}) ,s=(j,uj=I), q(v) =jifu; #
landuy; =1,Vi,v<i<j,j<n,j#vandq(v) =n otherwise.

Ipl-2 . -1
foo1c(X):F) — A= (H,!ﬂgl(xs(j) + Xq(s() + 1))i20%ptpl-0+Zj=0 " Xp()XpG+0)+Ejz0 X10) yy
then constructed where p(-1)=n, x,=0, and A={1,i, -1, —i}.

An example of this function is
u=(HLLN) = f5,(x) = (x; + X3 + 1)(Xg + x5 + 1)i2&ox)¥%s
This function is also schematically presented in Figure 2-1c.

More generally, if uj € {Il,H,N} and for some t, up_y =up_,=-=uy=10<t<
n, and u,_¢_1 # I, then define b such that b(j)=1 for j = n —t, and b(j)=0 otherwise.

Then they constructed
1:r1—1,k (X):

|s|]—1
Ipl- s
P = A= ([[G + %G5 + KD(0)) + D)iZC0rI=0 2020 00000 510510,
j=0

Where p(-1)=n, xn=0, and A={1,i,—1, —i}.
An example of this function is
u=(NHLD = f5,(x) = (xp + k+ 1)(x5 + k + 1)i2Kx1+Xox)+%o

This function is shown in Figure 2-1d.

14 Methodology

) 00O) 00O

9) 000

FIGURE 2-1: Graphical representation of the example functions

For drawing figure 1, they used the graphical language of [5][8][37][38][39] .

2.2.1.1.2 Enumerating arrays in B, and sequences in B

We have already defined B, but we also need to define |Bl,n| which is the number of
complementary sequences of length 2" that can be generated from arrays in B, by
projection Zzn(i), T € S,, from the n-dimensional arrays down to one dimensional sequences
of length 2°. It is important to evaluate |B.| and also |B l.nl and to determine the number
of arrays in B,. It has been shown that the number of distinct arrays in B, can be

determined by:
n
2n-1 (3" +3.32 — 2),for n even,

n
Bal= D IBil2nm=4 N
= 2" .(3 +5.37—2>, or nodd,
m=o ! (2-6)

where |Bg| = 1.

Also for |B l.nlr a recursive algorithm was first found [7] that could generate all sequences

in |B l,nl uniquely. The algorithm was implemented first to generate unique sequences for

Optimal MUTUALLY-UNBIASED BASES (MUB) 15

u € {I,H}" and then for u € MJ. For each case a mathematical relation for calculating the
number of all complementary sequences has been formulated from the arrays in B, by
projection.

For each Fyi,0(z), there are n! possible projections, but not all these projections are
unique. The reason is the likelihood that two IH strings generate the same sequence. In
this situation there is a need to enforce some restrictions on the allowed permutation for
generating unique sequences as described in details in [7]. To calculate the unique
sequences in |B ¢'n| this equation can be used:

_ n 1
Eniw = 3 0o 242k {] + 27 =2 (2-7)

where Pi€ {I}.

Finally we can calculate all sequences in |B¢'n| by the following equation where
Pe {I,X}:

Bin| = 2" Ern (n) (2-8)

shows the number of unique IHN sequences where P; € {I}, Vj for n=1 to 6

TABLE 2-1: The number of unique IHN sequences where Pj={I} and n=i+1.

Parameter Value
n 1 2 3 4 5) 6
Eign(n) 3 11 63 563 6783 99971
log, (Ern(0) 1.58 3.46 5.98 9.14 12.73 | 16.61
log,(n! 2" 1) 0 2 4.58 7.58 10.91 14.49

As a result the PAPR upper-bound of the sequences in |B l,n| is 2. The reason for this is
that I, H and N are d X d unitary, the value of |B¢,n| is large since M| =3 =d + 1 ,the

maximum value possible, and the value of A2 (B l.n) is small since A= % = % for M, is the

minimum value possible here.

2.2.1.2 Using M; to construct complementary triples

How to determine a formula for the size of the array and sequence sets for an optimal
MUB of dimension 3 is still an open question. We however generated unique arrays and
sequences and attempted to calculate the number of distinct arrays and sequences for
dimension 3 by our software in a similar manner to what has been done for dimension 2.
Here the unique optimal MUB for d= 3 is obtained by Ms={I, F, FD, FD?}.

16 Methodology

1 0 0
I=10 1 0 (2-9)
0 0 1
1 0 O
D=0 w O (2-10)
0 0 w
1 1 1
F=|1 o o? (2-11)
1 0? w
01 0
W={0 0 1 (2-12)
1 0 0
(1 0 0)
X={0 0 1 :
2-13
0 1 0 (2-13)
2mi
where w = e 3.
The recursive function construction to generate a set of complementary arrays is:
Fi(z) = P V;(2)Fj-1(2-1) (2-14)
where P; € Py, = {Wij|je{0,1}, ke {0,1,2}} are all permutations of 3x3 matrices,
1 0 O
u; € M3 and Vj(zj) =0 %z 0] Based on this formula we started generating
0 0 ij
1
matrices with vector | 1]. We also constructed a set of complementary arrays and
1

sequences over the alphabet {0, 1, o, w*}.

Using the following algorithm, the Truth-Table (TT) in modular 3 was converted to
Algebraic Normal Form (ANF):

Let us start by an example that TT=[0010201 2 2]

1 00
The ANF is given by AQA X TT where A= |0 2 1], sothe ANF[012120212]=
2 2 2

Xo + 2X3 + Xq + 2XoXq + 2xX5 + XoX7 + 2x3x%. Now if we apply {IF} i.e. wi=I, uy=F where
Po, Py={I} in the recursive function (2-8) we will have:

1 0 oN/1 0 O 1+2zy+23 142y +23
<0 1 0) 0 z; 0 |[1+4+wzy+w?z2 |=| 2z +wzoz; + 0?2374
0 0 1/\0 0 z{/\1+ w?zy+ wz? 7% + w?zgz? + wzdzi

Optimal MUTUALLY-UNBIASED BASES (MUB) 17

So the TT and ANF for corresponding phases and magnitudes are:

TT - ANF TT —» ANF
0 0 1 1
phase:|[0| — |0] ,Magnitude: |0| = |0
0 0 0 2

= 2x¢ + D0’ =1+ zy + 28

0 0 0 0
phase:|1| — |1| , Magnitude: |1| — |2
2 0 0 2

= (2x2 + 2% 0% = 74 + 0ZgZ; + w?z574

0 0 0 0
phase:|2| — |2| , Magnitude: |0| — |1
1 0 1 2

= (2x2 + xp) w20 = 22 + w?zyz? + wziz?

18 Methodology

Determining ANF will be useful to generate unique arrays and sequences as also
discussed for dimension 2. Here we also need to take three principles into account as
following:

Principle A: Here we consider array u=XFF as an example and its function as
f=x¢x1+x¢ and another array u=FXF, that is generated by f=x¢x;+x;. Then let a
permutation like xo=x; for f where the new generated function is the same as f. So, to
guarantee unique generations, only one of for f should be created. Consequently we must
be cautious about the position of X and also W, X? WX and WX? in each combination
to have all arrays unique.

Principle B: Let consider FD=Q and FD’=R, the array u=FIQ and also u=IQF as
graphically shown in Figure 2-2e and Figure 2-2f respectively. It is seen that IQF is a
symmetrical reflection of FQI. Then these two arrays are considered as one and will be
projected down to the same set of sequences. This phenomenon does not occur when u,=I
or in situations where I is the last object on the right hand side of the string.

When reversing the strings we have to face two different situations, a) when u€ {F,Q,R}
and b) when ue {I,F,Q,R}.

In situation a, we simply reverse the string symmetrically e.g. FQ will be reversed from
QF. See Figure 2-2a and Figure 2-2b.

In situation b we consider I and the first adjacent substring to its right hand side as an
irreversible unit. Here the whole string will be reversed except for the irreversible unit
that keeps its configuration, e.g. FIQ will be reversed as IQF as illustrated in Figure 2-2e
and Figure 2-2f. Now, a special case of situation b is when we have some neighboring I's.
In this case the irreversible unit will continue to be on the right side as long as it reaches
to a non-I substring, so e.g. FIIQ will be reversed to IIQF. See Figure 2-2c¢c and
Figure 2-2d.

Principle C: If a string is symmetric it means that its reversal is equal to itself and no
repeating combinations will be observed in this case, such as IFIF that is presented in
Figure 2-2g. We, however, need to control whether the conditions for principle A apply.

Optimal MUTUALLY-UNBIASED BASES (MUB) 19

F@ RO « |

R OR
e) ‘7 f) 4.

) ¢—@

FIGURE 2-2: Schematic of some strings in dimension 3

20 Methodology

2.3 Hardware and programming language

To perform this project, a personal MacBook Air with a 1.8-GHz Intel Core i5 processor
was used as the hardware for the programming parts. MATLAB as a multi-paradigm
numerical computing platform developed by MathWorks was also used as the
programming language with the academic license provided by UiB. MATLAB is a robust
tool to work with matrices and was a convenient option for this project where we mainly
dealt with matrix manipulations. The code developed in this project can be interfaced
with other languages such as C, C++4, Java, Fortran and Python and also can be
converted to C, C++ using a specific compiler.

The main strong point of the use of MATLAB for this thesis was the fact that its basic
data element is the matrix itself. This made it straightforward to perform several
mathematical operations on the construction of arrays and sequences required in the
project. The relatively sophisticated mathematical content of the thesis also made it
attractive to utilize an interactive computer language.

Although there were strong points associated with use of MATLAB in this thesis it also
had some shortcomings including the large amount of memory required to run the codes.
For high iterations and very complicated operations that involved matrices with more
than 10000000 rows, the personal computer in use was practically incapable of running
the code. The issue of low amount of memory compared to available capacity on normal
computers however is the case for almost every language programming running such code
with huge number of arrays and there is a need for probably super computers or a cluster
of computers to be completely able to run for all iterations used in this project. At any
rate, we have tried to ensure the quality of the code and the accuracy of the output. For
the iterations that we managed to obtain output for, it has been proven that the
accuracy and correctness of the generated software are maintained.

Chapter 3

Results and Discussion

The output of the generated code for the distinct MUB-based arrays and sequences for
both dimension 2 and 3 is presented in this chapter. Relevant discussions and
observations are also mentioned together with the results.

3.1 Introduction

The idea is to prepare a software package for generating complementary sets of arrays by
using mutually unbiased bases (MUB) that satisfy all the following criteria:

1. Each sequence has near-flat Fourier spectra.

2. The pairwise distance between any two sequences (e.g. as measured by the inner-
product) is as small as possible.

3. The set of sequences is as large as possible, given the near-flat constraint.

More accurately it is aimed to write a set of codes to generate arrays and sequences by
using one, two or three MU bases in dimension 2 at first and then by using one, two,
three or four MU bases in dimension 3. It is then targeted to calculate the total number
of distinct arrays and unique sequences obtained in the two dimensions.

22 Results and Discussion

For generating arrays and sequences in dimension 2 the construction proposed by Gaofei
Wu and Matthew G. Parker [7] was used. In addition to the criteria for adding the
sequences and arrays mentioned in this reference, we also added some criteria for
calculating the number of distinct arrays and unique sequences. As a result of these
modifications, the outcomes of the current calculations are slightly different from those of
reference [7] and this will be further discussed in this chapter.

With regard to the size of the array and sequence sets of dimension 3, no results existed
before this thesis as complementary triples are a novel topic in MUB studies. The
approach for dimension 3 then in this thesis was to generate distinct arrays and
sequences first manually for a few iterations and then use the prepared software for the
higher iterations.

3.2 Seeding with M- to generate complementary pairs

To generate complementary pairs, we introduce three sets {I}, {I, H}, {I, H, N} as one,
two and three MU bases used in this study.

The matrices used for dimension 2 are:

-G) o

=7 o 52
wes 1) 59
ves 1) o0
k=(p)

(3-5)

where i=y/-1 and I, H, N are unitary matrices as already described in the previous

chapter.

We can construct multivariate polynomials in order to generate the required sequences
and arrays. The structures for dimension 2 will be formed as follows:

Seeding WITH M2 TO GENERATE COMPLEMENTARY PAIRS 23

L+ 20+ 21+ 2021+ 2o+ 2020+ 20 2o+ 2021 Zo - . (3-6)

It was decided to take the following six steps in order to generating complementary
pairs (arrays and sequences) by using 2 x 2 unitary matrices:

1. Multivariate (array) construction using {H}

2. Univariate (sequence) construction using {H}

3. Multivariate (array) construction using {H, N}

4. Univariate (sequence) construction using {H, N}
5. Multivariate (array) construction using {H, I, N}
6. Univariate (sequence) construction using {H, I, N}

The software was generated to cover step 1 and 2 and also step 5 and 6 which are
considered as the main objectives of the software. The following will be the explanation
on how the software has been prepared and the relevant output achieved.

3.2.1 Multivariate construction using {H}

Constructions of arrays were started either with the two polynomials 1 and 1, or with

. . . 1
the two polynomials 1 and -1. These polynomials were considered as column vectors (1)

or (—11)

At the i’th step each vector was multiplied by matrices of the form PUR;, where P=
{I, X} and for this part U={H}. The global constant 1//2 from H was neglected as it
does not impact on the final outcome of the software and at the same time it made the
generation of arrays and sequences in each iteration more straightforward, so:

H=() (3-1)

Then, after the i= 0’th iteration, the following four vectors will be obtained:
1+ Z 1
(12 2) =1%o ()
1-— Z 1
(14 z) = ¥R)

172y =nr, (1) (3-8)

24 Results and Discussion

1+ Z 1
(12 20) = xR0 ()

Obviously there is a repetition here, so after the i=0’th iteration we obtain two distinct
vectors, where vector elements are univariate polynomials in z,. Additionally there are
only two distinct elements (polynomials) in these vectors, i.e. 14z and 1-z,. As discussed
in the previous chapter the coefficients of these distinct elements in turn generate arrays
so we will have two arrays after the i=0th iteration.

After the i=1*" iteration we obtained the following four vectors:

(1+Z0+Z1 —Zozl) _y (1+ZO)

1+2zy— 21+ 2921/~ 77\ = 2

1+Z0—Z1+ZOZ1 _ 1+ZO

(1+Zo+Z1 —Zozl) _XHRl (1—20)

1—Z0+Z1+ZOZ1 _ 1—Z0 ,
(1—20—21 —Zozl) - 1(1+Z) (3_9)

1—20—21—2021 1—20
(1 — 2 + Zq +Z()Z1> - XHRl (1 + Zo)

So after the i=1" iteration we obtained four distinct vectors where vector entries are
bivariate polynomials in z, and z;. Also there are only four distinct elements in these

vectors namely 1+Z0—|—Z1—Z0Z1, 1—i—Z0—Z1—|—Z0Z17 1-zo+2z1+20z1 and 1-zop-z1-ZoZ1.

Seeding WITH M2 TO GENERATE COMPLEMENTARY PAIRS 25

After the i=2" iteration we obtained the following eight vectors:

(1 +2zy+ 2z —2z9z1 + 2y + 292y — 212y + Z021Z2) (1 +zy+2z;— Zozl)
1+ 29+ 2y — 292 — 2y — ZoZy + 2125 — 292127) A\l + 25— 21 + Zp74

(1 +2zy+ 21— 2021 — 2y — 292y + 212y — ZgZ12Z;

1+2zy+2z — Zozl)
1+2zy+2z1 — 2921 + 25 + 292y — 212y + Z9Z12;

) :XHRZ (1 +ZO —2Z1 +Z()21

(1 +2zy— 21+ 2z9z1 + 2y + 292y — 212y + Zozlzz) i (1 +zy—2z; + Zozl)
1+Z0 —2Z1 +ZOZ1 —Zy — ZyZy +lez — ZyZ1Zy - 2 1 +Z0 +Z1 — ZyZ1

(1 +zy—2z1+29z1 — 2y — Zpzy + 212y — ZyZ12Z; 1+2zy—2z + zozl)

1+ Zy — Z1 + ZyZ1 +) + ZyZy — Z12Zp + Z()ZlZz) = XHRZ (1 + Zy — Z1 + ZyZq (3_10)

(1 —2zy+ 21+ 2921 — 2y — ZgZy — 212y — zozlzz) " (1 —Zy+z;+ zozl)
1—Z0 +Z1 +ZOZ1 —Zy +Z()ZZ +lez +202122 o 2 1 —Zy —Z1 — ZyZq

(1 — 20+ 21+ 2921 — 29 + 292y + 212y + 2212,

1—2zy+2z + zozl)
1-— Z + Zq + ZyZ1 — Zyp — ZgZy — Z1Zy — ZyZ1Z3

) :XHRZ (1 —Zy — Z1 — ZypZq

(1 —Zy—Z1 — ZgZ1 t+ 2y — ZgZy + 21Zy + 202122) I (1 —Zy—Z1 — Zozl)
1—20 —Z1 — ZoZ1 — 2y +ZOZZ — Z1Z) — ZyZ1Z3 - 2 1 —Zy +Zl +Z()Zl

1-— Zy —Z1 — ZpZ1 — 2y + ZyZy — Z1Zy — ZyZ1Z3 1-— Zy —Z1 — ZpZq
= XHR,
1—2zy—2z1 — 2921 + 2y — 292y + 212y + Z9Z12; 1—2zy+ 2z + 2924

Here the vector entries are trivariate polynomials in zy, z1, and z. Furthermore there are
only eight distinct elements in these vectors.

Now looking at the trend for i=1, 2 and 3 above, it can be said that after the i'th
iteration, we will obtain 2! distinct vectors and 27! distinct polynomials in ¢ variables,

Z0, Z1, . . . Zi1. The relevant number of distinct arrays is then obtained by:

_ oi+tl
|B,| = 2° (3-11)

The number of obtainable distinct arrays from the software is called H_arrays in this
thesis. The output of the code is the same as that of the formula above presented in
Table 3-1 for n=1 to 5.

26 Results and Discussion

TABLE 3-1: The number of unique H arrays where p={I, X} and n=i+1.

Parameter Value
n 1 2 3 4 5 6
| B.| (#unique H array) 2 4 8 16 32 64

The software in this project deals with large numbers and it is vital to decrease the time
consumed to run the code by any possible means. One of the approaches to increase the
speed of the software was to define a type of multiplication of matrices where the
summation of operators is omitted for example:

(é (1))(3 (1)):(3 g 8 2)_}(%21) (3-12)

We also figured out that we do not need to calculate the matrices that are multiplied by
(_11) since the results of these matrices are swapped from the product of the matrices

and (i)

Table 3-2 shows the results of the H_arrays function for the iterations from 0 to 2 where

the distinct arrays and the number of them are displayed.

Seeding WITH M2 TO GENERATE COMPLEMENTARY PAIRS 27

TABLE 3-2: The output of the code H_ arrays for i=0-2.

Output of H_ arrays

>> H_ arrays

Enter your iteration: 2

Iteration = 0

Number of distinct arrays = 2
1 1
1 -1

Iteration = 1

Number of distinct arrays = 4

1 1 1 -1
1 1 -1 1
1 -1 1 1
1 -1 -1 -1

[teration = 2

Number of distinct arrays = 8
1 1r 1 -1 1 1 -1 1
T 1r 1 -1 -1 -1 1 -1

3.2.2 Univariate construction using {H}

In this section complementary sequences of length 2" were constructed. These sequences
are obtained by projection of the arrays already produced in the last section using the

(i)
2 e Sp, from the n-dimensional arrays down to 1 dimensional

formulaz; =z
sequences of length 2".

There are n! possible projections here, but not all these projections are unique. We need
to elaborate this with an example. The multivariate polynomial 14z+2z1-z0z142Z2o+ 2022
Z1Zo+7021Z2, one of the eight distinct arrays for the i=2 iteration, is considered as the
example here.

We can project this multivariate polynomial down to a univariate polynomial with

coefficients from the alphabet {1, -1} by projecting z, z1, and z to suitable powers of z.

28 Results and Discussion

The coefficients of this univariate polynomial will describe a sequence of length 2° = 8 in
the alphabet {1, -1}ie. (111-111-11).

There are 3!=6 possible projections for each array but only 3!/2=3 of them are in the set
of distinct sequences. The following is the 3!/2=3 projections that were chosen:

Zy = 2,21 =ZZ,ZZ == 14z+2 -2+t +2°5-20+7
Zy :ZZ,Zl =212 =zt=14+z+2 -2+ -2 +25+7 (3-13)
z0=2%2,=2Y2,=2= 1+z+22+28+24—2° - 28+ 77
The rest of the possible projections provide the same univariate polynomials as above.
Then the number of distinct univariate polynomials (sequences) generated by the arrays
is given by:
_onn
Ey(n)=2 > (5-14)
where n=i+1.
In this thesis the number of obtainable distinct sequences from the software is named

H_sequences. The output of the code is the same as that of the formula above presented
in Table 3-3 for n=1 to 5.

TABLE 3-3: The number of distinct H sequences for p={I, X} and n=i+1.

Parameter Value
n 1 2 3 4 5
E istinct H
u(n) (##distinc 1 4 24 192 1920
sequences)

The code finds coefficients of multivariate polynomials, which are called arrays, and also
finds distinct sequences by determining the negative elements in multivariate polynomials
and then finding the indices of them in all possible permutation of zy, 7, z and higher
indices. Then the value of these indices for elements in any permutation is assigned to -1.
Now the rest of the sequence elements in each permutation are assigned to 1. This way
we get n! possible sequences for each array, but n!/2 are distinct as already discussed.
According to (3-14) we will then have 2(n!/2) distinct sequences in each iteration.

For example for i=2, we have zy, z; and z in multivariate polynomials so 3! permutations

for these variables meaning that we will have six different combinations as listed below:

Seeding WITH M2 TO GENERATE COMPLEMENTARY PAIRS 29

(Z(): Zl'Zz) - 1,2¢,21, 2021, 22, Z0Z3, 2122, Z0Z122
(21120'22) - 1,2q,2, 2021, 22, Z0Z2, 2122, Z0Z122
(22,20, 21) = 1,25, 20, 2022, 21, 2122, 2071, 202127
(3-15)
(Z(): 22'21) - 1,2¢,23, 2022, 21, 2071, 2122, Z0Z122

(22'21:20) = 1,2,241,212y, 20, 2023, 2021, Z0Z122

(21'22:20) = 1,21,2,212), 20, 2021, Z0 22, Z0Z122

Now for the multivariate polynomial 1+z¢+2z1-zoz1+ 2o+ 2022-2122+ 707122 We see that zyz; and
712> have negative coefficients as marked in red in (3-15). The rest of the terms have
positive coefficients so the six combinations according to the length of the sequence in the
1’th iteration are listed in Table 3-4:

TABLE 3-4: All projections for 1+29+2:-20214 2042020~ 21204202122

Sequences
111-111-11)
111-111-11)
11111-1-11)

)
)
)

11111-1-11
111-111-11
111-11-111

(
(
(
(
(
(

As can be seen, three of the sequences above are alike so we will have 3!/2=3 distinct

univariate polynomials as following:
l+z+22-2+2+ 22547
\+z+72+ 247" -2-25+7 (3-16)

\+z4+ -2+ 7 -2+ 2547

To find the negative elements in the multivariate the polynomials we created a set of
elements (1, zo, 71, zoz1, 7, etc.) with a new subfunction called [d5,m]=permutation

di2(iter).

30 Results and Discussion

In the initial steps of this master thesis we have utilized symbolic variables in Matlab
software for generating zo, z1, z2 etc. but the code would take too much time for
processing. Therefore to improve the speed of the software, the new subfunction was
formed with numeric values. The results showed that the running time for the code was
significantly reduced by using numeric values. In this subfunction ¢ter is ¢ and m is the
prime numbers that we consider as zy, zi, .. and the numbers are assigned to the values
in order, e.g. z0=2, z1=3, zo=>5, z3=7, za=11, z:=13, z,=17 and so on. The reason to use
prime numbers is to make a unique set of variables. If the numbers for zy, z, .. z, are not
prime numbers, the numbers that are produced by the products/combinations of these
variables can be repetitions of the variables themselves. For instance, imagine that zs is
not 13 or any other prime number and instead, it is a non-prime number such as 14.
Then having zwzs (=14), it has already appeared in the set and we then face to a
repetition. d5 is all possible permutations of the variables. The subfunction has also been

used in our main code for generating sequences.

It has been attempted to create sequences and arrays in the same code that in turn
increased the speed compared to generating the sequences and arrays separately in two
different codes. The function H_ sequences can then provide both distinct arrays and
sequences at the same time.

Table 3-5 shows the results of the H_sequences function for the iterations from 0 to 2

where the distinct sequences and the number of them are displayed.

Seeding WITH M2 TO GENERATE COMPLEMENTARY PAIRS

TABLE 3-5: The output of the code H_sequences for i=0-2.

Output of H_ sequences

>> H_ sequences
Enter your iteration: 2
Iteration = 0
Number of distinct arrays = 2
Number of unique sequences = 2
1 -1
1 1
[teration = 1
Number of distinct arrays = 4
Number of unique sequences = 4

1 -1 -1 -1
1 -1 1 1
1 1 -1 1
1 1 1 -1

[teration = 2
Number of distinct arrays = 8
Number of unique sequences = 24

=1 =1 =1 <l 1 1
=1 =1l 1 1 =1 <l
-1 1 =1 =1 - 1

— = e e e el el el e el e el e el el e e pd el el e e e

— = = = = e e e e e e
1
—_
—_
—_
—_
—_
1
—_

32 Results and Discussion

3.2.3 Multivariate construction using {H, I, N}

In this section two codes were separately created for two special cases; P= {I, X}, U={H,
I, N} and P={I}, U={H, I, N} for the situations with and without linear offset
respectively.

The following are the principles that were considered for finding distinct arrays. For the
P={1,X} principles A, B and C are applicable while principles B and C are applicable for
P={I} since there is no X available in this case.

Principle A: To start explaining this principle we consider an example of an array
u=IXIH with Boolean function f=(x¢+x2+1)(x1+x2)i" and another array u=XIIH, where
f=(x0+x2)(x1+x2+1)i". The arrays that are generated by the recursive function presented
in the previous chapter are not unique. To elaborate this we can consider that xo is
swapped with x; in f where the new generated function is the same as f. So, to guarantee
unique generations, only one of for f should be created. The same goes for XIIXH and
IXIXH. So, for the combination ITH we will have six distinct arrays instead of eight
arrays. Consequently we must be cautious about the different positions of X in each
combination to have a proper picture of unique arrays. We also considered two arrays
equal if the only difference in their functions are to be multiplied by global constants and

everything else is the same between them. For example, if we consider u=NXI, the
Z + iZl

.] If we swap zo and z; in the first row we will have
Zy — iz4

matrix generated by u is [

z1+izo which is the same as the second row if multiplied by —i (global constant) meaning
that we can consider these two arrays as one.

Principle B: Let us consider the arrays u=IHN and u=NIH drawn in a graphical
language as shown in Figure 3-1 parts a and b respectively. It can be observed that the
figure of NIH (b) is a symmetrical reflection of ITHN (a). Then these two arrays are
considered as one and will be projected down to the same set of sequences. This
phenomenon does not occur when u,=I or in situations where I is the last object on the
right hand side of the strings. For reversing the strings we have two different situations,
a) when u€ {H,N} and b) when u€ {ILHN}. In situation a, we simply reverse the string
symmetrically e.g. NHNH will be reversed as HNHN. See Figure 3-1c and Figure 3-1c.

On the other hand in situation b we consider [and the first adjacent substring to its
right hand side as an irreversible unit. Here the whole string will be reversed but not the
irreversible unit that keeps its configuration, e.g. HIHN will be reversed as NIHH (see
Figure 3-1 parts e and f). Now, a special case of situation b is when we have some
neighboring I’s. In this case the irreversible unit will be continued to the right side as
long as it reaches to a non-I substring, so e.g. NIIH will be reversed to ITHN and IIINH
will be reversed to HIIIN (see Figure 3-1g and Figure 3-1h and also Figure 3-1i and
Figure 3-1j).

Seeding WITH M2 TO GENERATE COMPLEMENTARY PAIRS 33

Principle C: If a string is symmetric it means that its reversal is equal to itself and no

repeating combinations will be observed in this case, such as IHIH. We, however, need to

control whether the conditions for principle A apply.

a)

q)

e)

9)

N @

%
%

H@

b)

d)

f)

h)

)

FIGURE 3-1: Symbolic representation of the IHN combinations

We wrote two functions individually and used them in two main codes for generating

arrays for the two special cases of P= {I, X} and P={I}. The first function is

34 Results and Discussion

wl=used matrices(n) where n=i+1 and wl, the output of the function, are matrices
(combinations) that are required to generate distinct arrays. When preparing the
functions, principles A to C should apply. For example when i=1 w1l is II, IH, IN, HI,
HH, HN, NI, 00 and NN. As we see the value of NH is equal to zero since NH is
symmetric with HN and according to principle B we must ignore one of them.

The second function is [d5,m|=permutation di2(iter) where iter=¢ and m is the prime
numbers that we considered as z, z1,..zi. d5 is defined as a cell array that covers all
possible permutations of the set of these numbers as 1, zy, z1, zoz1 and etc.

For example when dter=2 then m will be {2} for zo, {3} for z and d5{1}={1,2,3,6} as 1,
zo, 71, zoza and d5{2}={1,3,2,6} as 1, z, 2, zoz:.

We constructed a set of complementary array pairs over the alphabet {0, 1, i, -1, -i},
i=/-1. For instance where P={I, X}, after the i=0'th iteration we obtain the following
eight vectors:

mr (1) =(152) mre(2) = (15 %)
wr(D=(122) wr(l)=(1712)
1 2o 1 — 2, (3—1 7)
XIRy (;) = (7) xR ()= (1"
xire(1)=(152) xur(1)=(112)
R (D) =(150) avee(1)=(1 1)

The elements of the vectors are univariate polynomials containing z,. Additionally there
are only six distinct elements (polynomials) in these vectors, namely 1, zy, 14z, 1-z0,
14z, 1-izg. Here -z is the same as 7 since they differ only by a global constant.

. . . 1 .
For preparation of the code we did not consider vector (1) as its outcomes were the

1
same for vector (1). We also did not need to write codes for calculating X when it is

placed in the first position at the left hand side in any combinations. The reason is that
all the matrices can be formed by F]-(z]-) = PUjR; (z))Fj-1(zj-1) (Pi=I, and Pj.={I, X})

Seeding WITH M2 TO GENERATE COMPLEMENTARY PAIRS 35

and if performing a swap of the rows of these matrices, Pj=X will also be calculated. For
finding distinct arrays we only need the matrices that are generated by Pj=I.

For the generation of the arrays without linear offset we did not need to add p=X to our
combinations. For instance after the =1 iteration we obtain nine matrices with two rows
and four columns where P=I and the matrices’ entries are bivariate polynomials
containing zp, zi. Then there are sixteen arrays where we also take principle A into

consideration.

We created both sequences and arrays using unique software again similar to what has
been done in the last section to increase efficiency and speed of the software. Using the
function construct_arrays sequences without linearoffset we can get both distinct
arrays and sequences for P={I} i.e. without linear offset.

The Table 3-6 shows the number of distinct arrays for n=1 to n=5.

TABLE 3-6: The number of unique IHN arrays for p={I} and n=i+1.

Parameter Value
n 1 2 3 4 5 6
B, i THN
| Bl (##unique 6 16 42 120 342 | 1008
array)

For generating distinct arrays and sequences with linear offset i.e. P={I,X} we wrote the
function construct_arrays_sequences_di2 and received back the number of distinct
arrays and sequences. The results only for the distinct arrays are summarized in
Table 3-7 .

TABLE 3-7: The number of unique IHN arrays for p={I,X} and n=i+1.

Parameter Value
n 1 2 3 4 5
B, i THN
| Bl (##unique 6 28 130 677 3581
array)

These results are slightly different from the reference [7] since the distinct arrays here are
determined with linear offset (p={I,X}) and also take principle A to C into account.

It is also of interest to point out that principle A was a time consuming part of the code
and to check its criteria added dramatically to the running time of the software. For

36 Results and Discussion

example for wi=(1, I, I), the three combinations with linear offset are w,=(I, XI, IT), us=(1,
XI, XI) and us=(I, I, XI) and their generated arrays are:

1
u; = (I, 1 1) the arrays are : [ZOZ1Z2]

Zg
u, = (1,1, XI)the arrays are: [lez]

- (5-18)
uz = (I, X1, 1) the arrays are: [2]

z
u, = (I, XI, XI) the arrays are: [20;2]

It can be seen that in u, when z, and z; are swapped, we would get the arrays of us.
Likewise, when zj,and z» are swapped in u», we would get the arrays of us. As a result, the

four distinct arrays here are 1, zgz1z2, zoand ziz..

We have figured out that the first element of the arrays can have only two values, either
0 or 1. So we could limit our search for finding the arrays that only differ by a global
constant over the arrays which have zero in the first column.

We made matrices using {I,H,N} and {I, X} so that they have the output in an ordered
configuration so that we can search for and find the linear offsets of each combination
and check principle A for them. Using this method the search operation was restricted

and the software functioned much faster as a consequence.

Table 3-8 shows the results of the construct_arrays_sequences without_linearoffset

function for the iterations from 0 to 1.

Seeding WITH M2 TO GENERATE COMPLEMENTARY PAIRS

37

TABLE 3-8: The output construct_ arrays_ sequences without_ linearoffset, i=0-1.

Output without linear offset

>> construct_ arrays_sequences_ without__ linearoffset
Enter your iteration: 1
Iteration = 0
Number of distinct arrays = 6

0]
, 1
, 1
-1
, i
[1, -1
Iteration = 1

[1,
[
[
[
[

—_ = = O

Number of distinct arrays = 16

[1, 0, 0, 0]
[0, 0, 0, 1]
[1, 1, 0, 0]
[0, 0, 1, -1]
[1,1i, 0, O]
[0, 0, 1,-1i
[1, 0, 0, 1]
[1, 0, 0, -1]
(1, 1, 1, -1
(1, 1, -1, 1]
[1,1i, 1,-1i]
[1, 1i, -1, 1i]
[1, 0, 0, 1i
[1, 0, 0,-1i
[1,1i, 1i, 1]
[1, 1, -1i, -1]

38

Results and Discussion

Table 3-9 shows the results of the construct arrays sequences di2 function for the

iterations from 0 to 1.

TABLE 3-9: The output of the code construct_arrays sequences_ di2 for i=0-1.

Output with linear offset

>> construct_ arrays_ sequences_ di2
Enter your iteration: 1

Iteration = 0

Number of distinct arrays = 6

(1, 0]

0, 1]

(1, 1]

[17 _1]

[1, 1i]

[1, -1i]

Iteration = 1

Number of distinct arrays = 28
1, 0, 0, O

, 0, 0, 1]

0]

Seeding WITH M2 TO GENERATE COMPLEMENTARY PAIRS 39

3.2.4 Univariate construction using {H, I, N}

In this section two codes were separately created for P={I} and P={I, X}. The

complementary sequences of length 2" are constructed from the arrays that were created
(i)

in the last section for P={I} and P={I, X} by the projections z; = z*

n-dimensional arrays down to 1 dimensional sequences of length 2. In addition to

,T €S, from the

applying the three principles A, B and C discussed before, here we also need to check
that all sequences in the complementary sets are unique.

There are n! possible projections for each array, but not all these projections are unique.
For example for i=1 we have the string u=NXI in the set of combinations and it is equal
01 i 0

to 0 1 —i O]' Each array has 2! possible projections so there are four sequences for

this string: [0,1 ,i,0], [0, 1, - ,0], [0, i, 1, O] and [0, -i, 1, 0]. The third sequence is the
same as the second one after multiplying by the global constant —i. If the fourth sequence
is multiplied by the global constant ¢, the result will be the same as the first sequence. In
this case we can omit two of the four mentioned sequences and eventually there will be
two unique sequences for this combination.

In our code for any iteration it will be checked that all sequences are distinct. It will be
also checked that there are no sequences differing from each other only by a
multiplicative global constant.

For generating unique sequences without linear offset i.e. P={I} we wrote the function
construct_ arrays_ sequences_ without_ linearoffset and received back the number of
distinct arrays and sequences. The results only for the distinct sequences are summarized
in Table 3-10.

TABLE 3-10: The number of distinct IHN sequences for p={I} and n=i+1.

Parameter Value
n 1 2 3 4 5 6
Emy(n) (#distinct 6 24 150 1318 15466 | 225962
IHN sequence)

Furthermore we obtain unique sequences for P={I X} by the function
construct_arrays_ sequences_di2. The number of unique sequences obtained from this
function is shown in Table 3-11.

40 Results and Discussion

TABLE 3-11: The number of distinct IHN sequences for p={I,X} and n=i+1.

n 1 2 3 4 5
Emn(n) (#distinct
THN sequence)

6 44 504 8755 207170

Table 3-12 shows the results of the construct_arrays sequences without_ linearoffset
function for the iterations from 0 to 1.

Seeding WITH M2 TO GENERATE COMPLEMENTARY PAIRS 41

TABLE 3-12: The output construct_ arrays_sequences_without_ linearoffset

Output without linear offset
>> construct_ arrays_ sequences_ without__ linearoffset
Enter your iteration: 1
Iteration = 0
Number of unique sequences = 6
[1, 0]

[0, 1]

[1, 1]

[1’ '1]

[1, 1i]

[1, -1
Iteration = 1
Number of unique sequences = 24
[1, 0, 0, O]
[1, 0, 0, 1]
[1, 0, 0, 1i]
[1, 0, 1, 0]
[1, 0, 1i, 0]
[1, 1, 0, 0]
[1, 1, 1, -1]
[1, 1, 1i, -1i]

[1, 1i, 0, O
[1, 1i, 1,-1i]
[1, 14, 1i, 1]
[0, 0, 0, 1]
[0, 0, 1,-1i
[0, 0, 1, -1]
[0, 1, O0,-1i]
[0, 1, 0O, -1]
[1, 0, O0,-1i]
[1, 0, 0, -1]
[1,-1i, 1i, -1]
[1, 1, -1, 1]
[1, 1i,-1i, -1]
[1, 1i, -1, 1i]
[1, -1, 1, 1]
[1, -1, 1i, 1i]

Likewise Table 3-13 shows the results of the construct_arrays_sequences di2 function
for the iterations from 0 to 1.

42

Results and Discussion

TABLE 3-13: The output of the code construct_arrays sequences_di2 for i=0-1.

Output with linear offset
>> construct_ arrays_ sequences_ di2
Enter your iteration: 1
Iteration = 0
Number of unique sequences = 6
[1, 0]

[0, 1]

[1, 1]

[L, '1]

[1, 1i]

[1, -1i]
Iteration = 1
Number of unique sequences = 44
[0, 0, 0, 1]
[0, 0, 1, 0]
[0, 0, 1,-1i
[0, 0, 1, 1]
[0, 0, 1, 1i
[0, 0, 1, -1]
[0, 1, 0, 0]
[0, 1, 0,-1i
[0, 1, 0, 1]
[0, 1, 0, 1i
[0, 1, 0, -1]
[0, 1, 1, 0]
[0, 1, 1i, O
[0, 1, -1, 0]
[0, 1i, 1, O
[1, 0, 0, 0]
[1, 0, 0,-1i
[1, 0, 0, 1]
[1, 0, 0, 1i
[1, 0, 0, -1]
[1, 0,-1i, O
[1, 0, 1, 0]
[1, 0, 1i, O
[1, 0, -1, 0]
[1,-1i, 0, 0
[1,-1i, -1i, 1]
[1,-1i, 1, 1i]
[1,-1i, 1i, -1]
[1,-1i, -1, -1i]
[1, 1, 0, 0]

43

Seeding WITH M2 TO GENERATE COMPLEMENTARY PAIRS

= T 5= —_ O " =
— < = = = S — —
1 1 I
B S N T AR S A D R iy
) = o e 4 = 7 © N —
1

T T T T T L B B R R R R
— = o~ o~ | | | | |

— o~ o~ o~ = = = o~ o~ o~ o~ o~ o~

44 Results and Discussion

3.3 Seeding with M3z to generate complementary
triples

To begin with the generation of complementary triples, we introduce four sets {I}, {I,
F}, {1, F, FD} and {I, F, FD, FD2} as one, two, three and four MU bases used in this
study.

The matrices used for dimension 3 are:

100
1=<0 1 o) (3-19)

0 0 1
1 0 O
D={(0 w 0 (3-20)
0 0 w
1 1 1
F=11 o ? (3-21)
1 w? w
1 0 O
R, = (0 Z; 0) (3-22)
0 0 Z
0 1 0
w=|0 0 1 (5-23)
1 0 O
1 0 O
X=(0 0 1 (3-24)
0 1 0

2mi
where w = e 3 in.

There are 3!=6 possible permutations for the rows of a 3x3 matrix. Then Py, =
{WIX¥| je{0,1}, ke {0,1,2}} generates all 6 permutations.
The procedure to generate arrays and sequences for dimension 3 is the same as
dimension 2 but with different matrices.
1
We started with <1) as column vector. At the #th step each vector was multiplied by

1
matrices of the form PUR;, where PePj, and U={l, F, FD, FD*}.

We constructed a set of complementary array and sequences over the alphabet
0,1, w, w?}.

Seeding WITH M3 TO GENERATE COMPLEMENTARY TRIPLES 45

Furthermore the structure of variables in multivariate polynomial for dimension 3 was
considered as 14Zo+Zo*+Za+ZoZn+ 2o Zi+Z0*+ZoZa*+Zo*Z1* and so on.

Let us consider FD=Q and FD?=R. After the i=0'th iteration we will obtain the
following 24 vectors:

1 1+ zg + 22
1) 1+ wzg + w?z3
1 1+ w?zy + 0z}

1+ wzy + wzd (3-25)

>= 1+ w?zy + 23

1+ z¢ + w?z3
1+ w?zy + w?z3

): 1+Zo+(1)Z(2)

1+ wzg + z¢

The other 20 vectors are generated by placing W, X, WX, WX? X? instead of I in each
of the above vectors. The value of these vectors is obtained by swapping the rows.

0 1 0
We consider matrix WX = (1 0 0> as an example. Here the vectors WXIR0, WXFRO,
0 0 1

WXQR0, WXRRO are generated by swapping rows 1 and 2.

In a similar manner to dimension 2, we consider two cases for generating arrays and
sequences: with and without linear offset and the corresponding codes were created
separately.

The generation of sequences and arrays without linear offset here were based on the
principle B and C discussed in section 3.2.3. Also the generation of sequences and arrays
with linear offset were based on principles A, B and C.

Two subfunctions were then individually created for generating arrays for the two main
codes. The function wl=used matrices_di3(n) provides some of the necessary matrices
(combinations) for generating arrays after considering principles B and C. For example
when =1, wl will be: II, IF, IQ, IR, FI, FF, FQ, FR, QI, 00, QQ, QR, RI, 00, 00, RR.

46 Results and Discussion

It can be observed that the value of QF equals to zero since QF is symmetric with FQ
and according to principle B we need to count only one them and also RF and RQ are

equal to zero.

The second function is [d5,m|=all permutation di3(iter) where iter=i and m is the
prime numbers that we considered as zy, z; and so on as discussed before. d5 is defined as
a cell array which can be all possible permutations of the set of these numbers as 1, z,

70>, z1 and more.

For example when iter=2 the m will be {2} for z and {3} for z; and d5{1} will be
{1,2,4,3,6,12,9,18,36} as 1, Zo, ZUQ, Zl, Z()Zl, ZOQZ1, Z12, ZoZ12, 202212 and d5{2} is
{1,3,9,2,6,18,4,12,36 } as 1, Z17 Z12, Zo, Z1Z0, Z12Z07 ZOZ, 21Z02, 212202.

without linear offset were generated by the function

Sequences and arrays

construct__arrays_ sequences_ without_ linearoffset_ di3.

The Table 3-14 and Table 3-15 show the number of distinct arrays and sequences
without linear offset for n=1 to 5.

TABLE 3-14: The number of unique IFQR arrays for p={I}

Parameter Value
n 1 2 3 4 5
| B.| 11 39 139 517 1993
TABLE 3-15: The number of distinct IFQR sequences for p={I}
Parameter Value
n 1 2 3 4 5

For the generation of distinct arrays and sequences for P={I, W, X, WX, WX?* X°} the
function construct_arrays sequences_ di3 has been used. The number of distinct arrays
and sequences were obtained from this function as shown in Table 3-16 and

Table 3-17 for different values of n.

TABLE 3-16: The number of unique IFQR arrays for PePj

Parameter Value
n 1 2 3
| B, 11 188 3725

Seeding WITH M3 TO GENERATE COMPLEMENTARY TRIPLES

47

TABLE 3-17: The number of unique IFQR sequences for PePj

Parameter Value
n 1 2 3
Eiror (n) 11 350 20405

In dimension 2 we needed to detect the sequences that are similar except for being

multiplied by a global constant. In dimension 3 however we figured out based on an

inductive iteration that there is no need for such detection and this is an interesting

observation for dimension 3.

Table 3-18 presents the resulting output without linear

construct__arrays_ sequences_ without_ linearoffset_ di3.

offset of the function

TABLE 3-18: The output of construct_ arrays_sequences_ without_ linearoffset_ di3.

Output without linear offset

Enter your iteration: 1
Iteration = 0
Number of distinct arrays = 11
Number of unique sequences =
1 0
1
0
1
-0.5 + 0.87i
-0.5 - 0.87i
-0.5 + 0.87i
-0.5 - 0.87i
1
1
1 -0.5 + 0.87i
Iteration = 1

[S S S e e T =)

Number of distinct arrays = 39

11

= = O O

-0.5 - 0.871
-0.5 + 0.87i
-0.5 + 0.87i

1

-0.5 - 0.87i
-0.5 + 0.87i

Number of unique sequences = 64

1

>> construct_ arrays_ sequences_ without_ linearoffset_ di3

Here the results for generated arrays and sequences for iteration=1 are not presented due

to them being too lengthy.
Likewise Table 3-19 presents
construct__arrays_ sequences_ di3 for i=0 to 1.

the

output

for

the

function

48

Results and Discussion

TABLE 3-19: The output of the code construct_arrays sequences_ di3 for i=0-1.

Output with linear offset

>> construct_ arrays_ sequences_ di3
Enter your iteration: 1

Iteration = 0

Number of distinct arrays = 11
Number of unique sequences = 11

1 0 0
0 1 0
0 0 1
1 1 1
1 -0.5 + 0.87i -0.5 - 0.87i
1 -0.5 - 0.871 -0.5 + 0.87i
1 -0.5 + 0.87i -0.5 + 0.87i
1 -0.5 - 0.87i 1
1 1 -0.5 - 0.87i
1 1 -0.5 + 0.87i
1 -0.5 + 0.87i 1

Iteration = 1
Number of distinct arrays = 188
Number of unique sequences = 350

Here also we did not present the arrays and sequences for iteration=1 due to being too

lengthy.

Chapter 4

Conclusion and future work

In this chapter the conclusions of the work are summarized together with

recommendations for future work.

4.1 Concluding remarks

This project has been in line with the research aiming to enhance the set size of the
complementary sequences while the upper bound of PAPR keeps as low as reasonably
achievable and also the pairwise distinguishability of the sequences is maintained. The
approach used to perform the task was seeding the recursive construction with optimal
mutually-unbiased bases. Such sequence construction is a mathematically complicated job
and often needs computer aided solutions. To address this we generated program codes
that constructed unique arrays and sequences for dimension 2 and 3 seeding by MUBs
with and without linear offset.

The codes for both dimensions have delivered satisfactory results as far as the available
computer resource can handle. The results for lower iterations have also perfectly
matched with the manually calculated values based on theory.

In dimension 2 it was required to detect and remove the sequences that differ only by a

50 Conclusion and future work

global constant. In dimension 3 however we figured out that such problematic sequences
are not produced.

It has been observed that the number of sequences increases almost exponentially with
increasing iterations and the growth rate was significantly higher in dimension 3.

In general, generating software capable of handling very large numbers as we are facing
in this project is resource demanding. We have taken different measures to make the
code efficient and fast and the running time for the code has been significantly improved
over the course of this thesis.

The code has been generated on a flexible platform with a customizable structure that
can be straightforwardly converted to other programming languages and can also be used
for other dimensions with slight modifications.

4.2 Recommendations for future work

OFDM with low PAPR is attractive for telecommunication purposes and we still need to
understand the mathematical behavior of arrays and sequences better. The following list
of investigations may be considered in this regard:

v" To run the current code for high iterations or to produce sequences and arrays in
higher dimensions there is a need for a super computer or clusters of computers in

future projects.

v'Although the present software can be tailored for higher dimensions, it is still of
interest to specifically work on dimension 5 and higher.

v" Finding a general formula for determining the number of arrays and sequences for
dimension 2 and 3 precisely both with and without linear offset. This may be
instrumental in order to make wide application of MUB-based sequences possible.

v' The complementary sequences and associated MUBs from this project can be
potentially used in encoding-decoding tasks such as quantum cryptography in
future.

51

Bibliography

New Ozford American Dictionary. Oxford University Press, 2015.

W. Y. Zou, “Orthogonal frequency division multiplexing: a multi-carrier
modulation scheme,” IEEE Trans. Consum. Electron., vol. 41, no. 3, pp. 392-399,
1995.

W. Y. Zou and Y. Wu, “COFDM: an overview,” IFEE Trans. Broadcast., vol. 41,
no. 1, pp. 1-8, 1995.

T. Jiang and Y. Wu, “An overview: peak-to-average power ratio reduction
techniques for OFDM signals,” Broadcast. IEEE Trans., vol. 54, no. 2, pp. 257—
268, 2008.

J. A. Davis and J. Jedwab, “Peak-to-mean power control in OFDM, Golay
complementary sequences and Reed-Muller codes,” IEEE Int. Symp. Inf. Theory -
Proc., vol. 45, no. 7, p. 190, 1998.

T. Jiang and G. Zhu, “Complement block coding for reduction in peak-to-average
power ratio of OFDM signals,” Commun. Mag. IEEE, vol. 43, no. 9, pp. 17-22,
2005.

G. Wu and M. G. Parker, “A complementary construction using mutually
unbiased bases,” in Cryptography and Communications, 2013, vol. 6, no. 1, pp. 3—
25.

K. G. Paterson, “Generalized Reed-Muller codes and power control in OFDM
modulation,” Inf. Theory, IEEE Trans., vol. 46, no. 1, pp. 104-120, 2000.

K.-U. Schmidt, “On cosets of the generalized first-order reed-muller code with low
PMEPR,” IEEE Trans. Inf. Theory, vol. 52, no. 7, pp. 3220-3232, 2006.

Bibliography

[11]

[14]

[15]

[16]

[19]

K.-U. Schmidt, “Complementary Sets, Generalized Reed-Muller Codes, and Power
Control for OFDM,” IEEE Trans. Inf. Theory, vol. 53, no. 2, pp. 808-814, 2007.

F. Fiedler, J. Jedwab, and M. G. Parker, “A multi-dimensional approach to the
construction and enumeration of Golay complementary sequences,” J. Comb.
Theory, Ser. A, vol. 115, no. 5, pp. 753-776, 2007.

J. Jedwab and M. G. Parker, “Golay complementary array pairs,” Des. Codes
Cryptogr., vol. 44, no. 1-3, pp. 209-216, 2007.

S. Matsufuji, R. Shigemitsu, Y. Tanada, and N. Kuroyanagi, “Construction of
Complementary Arrays,” in IEEE Symposium on Trends in Communications,
2004, pp. 78-81.

M. G. Parker and C. Tellambura, “Golay-Davis-Jedwab Complementary
Sequences and Rudin-Shapiro Constructions,” IEEE Transactions on Information
Theory. pp. 1-44, 2001.

M. G. Parker and C. Tellambura, “A Construction for Binary Sequence Sets with
Low,” [IEEE International Symposium on Information Theory, Lausanne,
Switzerland, June 30- July 5, 2002, no. 7, p. 239.

M. G. Parker and C. Riera, “Generalised Complementary Arrays,” in 13th IMA
International Conference on Cryptography and Coding, 12-15 Dec. ,2011, Oxford,
UK, Lecture Notes in Computer Science, LNCS, 2011.

I. D. Ivonovic, “Geometrical description of quantal state determination,” J. Phys.
A. Math. Gen., vol. 14, no. 12, pp. 3241-3245, 1999.

M. B. Ruskai, “Some Connections between Frames, Mutually Unbiased Bases, and
POVM’s in Quantum Information Theory,” Acta Appl. Math., vol. 108, no. 3, pp.
709-719, 2009.

J. Schwinger, “Unitary Operator Bases.,” Proc. Natl. Acad. Sci. U. S. A., vol. 46,
no. 4, pp. 570-579, 1960.

53

[21]

[22]

[24]

[25]

[26]

[27]

M. Viswanathan, Simulation of Digital Communication Systems Using
MatlableBook/-Second Edition. 2013.

S. Shepherd, J. Orriss, and S. Barton, “Asymptotic limits in peak envelope power
reduction by redundant coding in orthogonal frequency-division multiplex
modulation,” IEEFE Trans. Commun., vol. 46, no. 1, pp. 5-10, 1998.

J. Tao, M. Guizani, C. Hsiao-Hwa, X. Weidong, and W. Yiyan, “Derivation of
PAPR Distribution for OFDM Wireless Systems Based on Extreme Value
Theory,” Wirel. Commun. IEEE Trans., vol. 7, no. 4, pp. 1298-1305, 2008.

A. E. Jones, T. A. Wilkinson, and S. K. Barton, “Block coding scheme for
reduction of peak to mean envelope power ratio of multicarrier transmission
schemes,” Electron. Lett., vol. 30, no. 25, pp. 2098-2099, 1994.

S. Ben Slimane, “Reducing the peak-to-average power ratio of OFDM signals
through precoding,” IEEE Trans. Veh. Technol., vol. 56, no. 2, pp. 686-695, 2007.

R. O’Neill and L. B. Lopes, “Envelope variations and spectral splatter in clipped
7 Pers. Indoor Mob. Radio Commun. 1995. PIMRC’95.
“Wireless Merging onto Inf. Superhighway”., Sixth IEEE Int. Symp., vol. 1, pp.
71-75 vol.1, 1995.

multicarrier signals,

R. Guangliang, Z. Hui, and C. Yilin, “A complementary clipping transform
technique for the reduction of peak-to-average power ratio of OFDM system,”
Consum. Electron. IEEE Trans., vol. 49, no. 4, pp. 922-926, 2003.

H. Nikookar and K. S. Lidsheim, “Random phase updating algorithm for OFDM
transmission with low PAPR,” Broadcast. IEEE Trans., vol. 48, no. 2, pp. 123—
128, 2002.

S. Yoo, S. Yoon, S. Y. Kim, and I. Song, “A novel PAPR reduction scheme for
OFDM systems: selective mapping of partial tones (SMOPT),” IEEE Trans.
Consum. Electron., vol. 52, no. 1, pp. 40-43, 2006.

54 Bibliography

[29] R. W. Bauml, R. F. H. Fischer, and J. B. Huber, “Reducing the peak-to-average
power ratio of multicarrier modulation by selected mapping,” Electron. Lett., vol.
32, no. 22, p. 2056, 1996.

[30] S. H. Miller and J. B. Huber, “OFDM with reduced peak-to-average power ratio
by optimum combination of partial transmit sequences,” FElectron. Lett., vol. 33,
no. 5, p. 368, 1997.

[31] T. A. Wilkinson and A. E. Jones, “Minimisation of the Peak To Mean
Transmission Schemes By Block Coding,” IEEE /5th Veh. Technol. Conf., no. 1,
pp. 825-829, 1995.

[32] I Bengtsson, “Three ways to look at mutually unbiased bases,” in AIP Conference
Proceeding 889- Vazjo Conference on Foundations of Probability and Physics,
2007, no. October, pp. 1-18.

33] W. K. Wootters, “A Wigner-Function Formulation of Quantum Mechanics,” Ann.
Phys. (N. Y)., vol. 176, pp. 1-21, 1987.

[34] N. J. Cerf, M. Bourennane, A. Karlsson, and N. Gisin, “Security of quantum key
distribution using d-level systems,” Phys. Rev. Lett., vol. 88, no. 12, pp. 1-4, 2001.

[35] W. K. Wootters and B. D. Fields, “Optimal state-determination by mutually
unbiased measurements,” Ann. Phys., vol. 191, pp. 363-381, 1989.

[36] T. Durt, B.-G. Englert, I. Bengtsson, and K. Zyczkowski, “On mutually unbiased
bases,” Int. J. Quantum Inf., vol. 8, pp. 535-640, 2010.

[37] M. Hein, W. Diir, J. Eisert, R. Raussendorf, M. Van den Nest, and H.-J. Briegel,
“Entanglement in Graph States and its Applications,” in Quantum Computers,
Algorithms and Chaos, 2006, pp. 1-99.

[38] F. R. Kschischang, B. J. Frey, and H. a. Loeliger, “Factor graphs and the sum-

55

product algorithm,” IEEE Trans. Inf. Theory, vol. 47, no. 2, pp. 498-519, 2001.

[39] C. Riera, S. Jacob, and M. G. Parker, “From Graph States to Two-Graph States,”
Des. Codes Cryptogr., vol. 48, no. 2, pp. 179-206, 2008.

56

Appendix 1: User Manual

Appendix 1: User Manual

The goal here is to construct distinct arrays and sequences seeding by MUBs for

dimension 2 and 3. The generated code in this project is in MATLAB language and one

would need this software with a valid license to run the code.

>
>

Open the code in MATLAB environment.
Add all functions and subfunctions (eleven items) in the same folder in
MATLAB.
Generating arrays and sequences for dimension 2: Run function
construct_arrays_sequences_ di2. You will be prompted with the message: “Enter
your iteration:”. In the command window.
Enter the number of iteration you are interested in. The iteration can be any
integer but higher iterations need a huge memory and strong processor to run.

o Iteration=0 is defined in the code by default and cannot be entered in this

step.

After entering the number and running the code, the output will be the number
of distinct arrays and sequences for any iteration separately.
When the code has completely run, all distinct arrays and sequences are stored on
'array-di2.txt' and 'sequence-di2.txt'files.
Type 'array-di2.txt' or 'sequence-di2.txt' in the command window to retrieve the
output.
To generate arrays and sequences for dimension 2 without linear offset one can
run the function construct_arrays sequences without_ linearoffset.
All the next steps are similar to the above with the same steps including the
input to the code, output and the place for storage.
To generate arrays and sequences for dimension 3: Run function
construct_ arrays_ sequences_ di3.
Enter the number of iteration.
The output will be stored in 'array-di3.txt'and 'sequence-di3.txt'files.
To generate arrays and sequences for dimension 3 without linear offset one can
run the function construct_arrays_sequences_without_ linearoffset.
All the next steps are similar to the above for dimension 3 with the same steps
including the input to the code, output and the place for storage.

o7

00 MATLAB R2015a - academic use
EDITOR PUBLISH VIEW O Search Documentation n

EI—_II:I E E e \% E L1z, New variable |& Analyze Code @ @ {0} Preferences

New New Open |- Compare Import Save [open variable k7 Run and Time e (5 Set path —
Script ~ - Data Workspace [Clear Workspace ~ (77 Clear Commands ~ Library ~ Il parallel ~
FILE | VARIABLE | CODE | SIMULINE | ENVIRONMENT | |
4= = (X = [0/ » Users » haniehroodashty » Documents » MATLAB » - Qo
[# Editor - /Users/haniehroodashty/Documents/MATLAB/master-thesis/construct_arrays_seque.. ® x
| construct_arrays_sequences_diz.m | + |
v [master-thesis 1 %This function produces all distinct arrays and unigue sequences for dimension 2 1
» [html 2 function construct_arrays_sequences_di2
7] all_muiltiply_marice... b= iter = input('Enter your iteratien: '); =
’:ﬂ all_permutation_di3... als
all_projection.m 5=
) all_unique_arrays.m 6 -
) all_unigue_sequenc... 7l
’F‘J arrays_seguences.m 8- [d5,m]=permutation_diZ2(iter);
) construct_arrays.m 9 - Neg3=cell(1,8);
& construct_ 10
| CONSTruct_arrays_s 1 - for i1=0:iter
7] construct_arrays_se 12
%] construct_arrays_se... [|* 13 - if i1==0
) construct_sequence... 14 - di=[1 21;
) generate_arrays.m 15 - else
7] generate_sequences... 16 - k1=i1;
7] H_arrays.m 17 - | d1=[d1 m(k1+1).+d1l;
%) H_sequences.m 18 - end
permutation_di2.m 19
f,ﬂ testl_construct_arr... 1
fﬂ test1l_construct_arr... -
%] used_matrices.m Command Window ®
f,ﬂ used_matrices_di3.m fe 5
) all_comb.m -
£ all_muiltiply_marices.m
£ all proiection.m
construct_arrays_sequences_di A

FI1GURE A-1: Run the code in MATLAB.

MATLAB R2015a - academic use

1 Search Documentation

Q @ [] Run Section &)?

Breakpoint Run BRun and @ Advance Run and

HOME

5‘13 E E L] Find Files o Insert 51 fx -

EDITOR PUBLISH WIEW

=| Compare ~ GoTo »~ Comment 95 s
New Open Save = " I;Zu ﬁ B
-

- v Print v 4 Find ¥ Indent =R - Advance Time
FILE | NAVIGATE | EDIT | BREAKPOINTS = RUN |
% = H ﬁ [0/ » Users » haniehroodashty » Documents » MATLAE » > 2
Current Folder ® | [# Editor - [Users/haniehroodashty/Documents/MATLAB/master-thesis/construct_arrays_seque.. ® X
B |Name & : | construct_arrays_sequences_di2.m]T\
v [master-thesis 1 %This function produces all distinct arrays and unigue sequences for dimensfion 2 ‘1o
» [0 hml 2 functien construct_arrays_sequences_di2
] all_muiltiply_marice... b= iter = input('Enter your iteration: '}; H
ﬁ’_‘l all_permutation_di3... = t=0+11i;
all_projection.m . j5=0;
) all_unique_arrays.m 6 -
) all_unique_sequenc... 7l
7] arrays_sequences.m 8 - [d5,m]=permutation_di2{iter);
£ construct_arrays.m 9 - Neg3=cell(1,8);

£ construct_arrays_se...

18
£ construct_arrays_se... 1 - for il=@:iter
) construct_arrays_se... 12
) construct_arrays_se... | 13 - if i1==0
%] construct_sequence... 14 - di=[1 21;
£ generate_arrays.m 15 - else
£ generate_sequences... 16 - kl=i1;
] H_arrays.m 17 - | di=[d1 m(k1+1).%d1];
£ H_sequences.m 18 - end
7 permutation_di2.m 19

fﬂ test]l_construct_arr...
ﬁ’_‘l test]l_construct_arr...
ﬁ’_‘l used_matrices.m
fﬂ used_matrices_di3.m
£ all_comb.m
£ all_muiltiply_marices.m
£ all nroiection.m
construct_arrays_sequences_di A

>> construct_arrays_sequences_di2
Jx Enter your iteration:

+ Waiting for input

FIGURE A-2: Enter the iteration and press enter.

58

Appendix 1: User Manual

HOME

PLOTS

EI—_II:I -@ ﬁ [?Fmdﬂles

|5l Compare

MNew Open
-

Save
- -

=i Print =

FILE

MATLAB R2015a - academic use

EDITOR PUEBLISH VIEW
LT > &
GoTo = Comment 9 s
e % 4 i Breakpoints Run Runand
4 Find ~ Indent [5| o |z - ~ Advance
NAVICATE | EDIT | BREAKPOINTS |

O Search Documentation E

@ Run Section &?
@ Advance

Run and
Time

<= = 5 3 [/ » Users » haniehroodashty » Documents » MATLAB »

Current Folder

B (Name &

v |

| master-thesis

[3

[html

] all_muiltiply_marice...
'a all_permutation_di3...
] all_projection.m

all_unigue_arrays.m
7 all_unique_sequenc...
] arrays_sequences.m
] construct_arrays.m
7 construct_arrays_se...
1] construct_arrays_se...
7] construct_arrays_se...
] construct_arrays_se...
] construct_sequence...
] generate_arrays.m

] generate_sequences...
#] H_arrays.m

'a H_sequences.m

] permutation_di2.m
fﬂ testl_construct_arr...
fﬂ testl_construct_arr...
7] used_matrices.m

la used_matrices_di3.m

fﬂ all_comb.m
fﬂ all_muiltiply_marices.m

E=]
construct_arrays_segquences_di

all nroiection.m

~

roodas

construct_arrays_sequences_diz.m | + |

cuments/MATLAB/mas!

1

2 functien construct_arrays_sequences_di2
Bl= iter = input('Enter your iteration: ');
4 - t=0+11;

5 - j5=0;

6 - jB=8;

7

- i3=1;

%This function produces all distinct arrays and unique sequences for dimenslion 2 '

Command Window
Enter your iteration

Iteration =

Number of distinct arrays = 6
Number of unique sequences = 6

Iteration = 1

Number of distinct arrays = 28
Number of unique sequences = 44
Iteration = 2

Number of distinct arrays = 130
Number of unigue sequences = 504

fr ==

| construct_arrays_sequences_di2

[n 38 Col 1

F1GURE A-3: The number of arrays and sequences are presented for any iterations.

HOME

,{P 5 ﬁ [?FindFiles

Mew Open
-

PLOTS

[l Compare ~

Save
- -

E Print ~

FILE

PUBLISH

EDITOR VIEW

£ | o885 R 5
oy C t O S

QGO e emment 96 g i Breakpoints Run Run and

Ly Find ~ Indent = - ~ Advance

| NAvICATE | EDIT | BREAKPOINTS |

C Search Documentation H

LEI Run Section @ |

@ Advance

Run and
Time

RUN |

<= = [I [/ » Users » haniehroodashty » Documents » MATLAB »

Current Folder

B Name &

v

| master-thesis

»

9 html

) all_muiltiply_marice...
£ all_permutation_di3...
] all_projection.m

f,ﬂ all_unique_arrays.m
) all_unique_sequenc...
£ arrays_sequences.m
] construct_arrays.m
] construct_arrays_se...
) construct_arrays_se...
£ construct_arrays_se...
£ construet_arrays_se...
] construct_sequence...
] generate_arrays.m

£ generate_sequences...
) H_arrays.m

] H_sequences.m

f,ﬂ permutation_di2.m
f,ﬂ testl_construct_arr...
fﬂ testl_construct_arr...
£ used_matrices.m

f,ﬂ used_matrices_di3.m

ﬁ'_‘l all_comb.m
7 all_muiltiply_marices.m
A all nraiection.m

construct_arrays_sequences_di

A

® @_Edi[or—JfUsersfhaniehroodashty,fDocume_n(sfMATLAB,’mas(er—thesisftonstruc(_arrays_seque... ®» x

| construct_arrays_sequences_diz.m | + |

203 - | disp(’ '); i
204 - Numarrays=size(p,1); =
205 - disp(® *);

206 - fprintf('Number of distinct arrays = %g', Numarrays);

207 - disp(' ');

208 - dlmwrite(‘array-di2.txt',p, '-append', 'delimiter’, '\t', 'precision’,1})

209

I -

Command Window [C]

Enter your iteratien: 2
Iteration = @

Number of
Number of

distinct arrays = 6
unigue sequences = 6

Iteration = 1

Number of
Number of

distinct arrays = 28
unigue sequences = 44

Iteration = 2

130

Number of distinct arrays =
i 504

Nui ces =
fx > Type ‘array-di2.txt'

FIGURE A-4: Type ‘array-di2.txt’ to obtain all the distinct arrays.

59

L SN) MATLAB R2015a - academic use
HOME PLOTS A EDITOR PUBLISH VIEW = Q Search Documentation ‘
5‘1] ﬁ ﬁ @Flnd Files <:j 8 fsert :‘ fx T [2 E]Run Section @
New Open Save @Comwm - ﬂﬂo R ARELLLY J"‘B -2 Breakpoints Run Runand @Adv‘n(e Run and
- - v = Prim v ii Find ~ Indent +F [z - = Advance Time
FILE | NAVIGATE 'ld proes r‘r‘“ | ! REEAKPOINTS | RUN —
4 = EH & /v Users » haniehmo;illr;nx »°p3327;r"r'|;fr§‘iteﬁ?ﬁa » v R
Current Folder ®
B Name &
v [master-thesis
» [html!
) all_muiltiply_marice... 4 N
£ all_permutation_di3... 1 [
ﬁ’_‘l all_projection.m 2] 1
) all_unique_arrays.m 1 1
£ all_unique_sequenc... 1 -1
] arrays_sequences.m 1 0+11
#] construct_arrays.m 1 -8-11
fﬂ CONSTruct_arrays_se... 1]] @
ﬁ’_‘l construct_arrays_se... 5] 4] 1
fﬂ construct_arrays_se... 1 1 -0
f;‘l construct_arrays_se... |~ @ @ 1 -1
ﬁ’_‘l construct_seguence... 1 B+11 @
fﬂ generate_arrays.m 4]] 1 -8-11
fﬂ generate_sequences... 1] 2] 1
£ H_arrays.m 1] -0 -1
ﬁ'_‘l H_sequences.m 1 1 1 -1
7 permutation_di2.m 1 1 -1 1
J‘a testl_construct_arr... 1 B+1i 1 =-B=-11
ﬁ’_‘l testl_construct_ar... 1 B+11 =1 @+1i
used_matrices.m 1 <] f+11
fﬂ used_matrices_di3.m 1 4] @-11i
fﬂ all_comb.m 1 B+1i B+1i 1
all_muiltiply_marices.m 1 B+11i B-11 -1
#9 all nraiection.m @ 1 4] @
construct_arrays_sequences_di A 1 =1 %] 5

F1GURE A-5: All distinct arrays will be presented. Scroll down to see entire list.

o0 e MATLAB R2015a - academic use

HOME PLOTS EDITOR PUBLISH VIEW l20EE L9 @S () O search Documentation

s 4 B [JFindFiles | <, imsert 2 f¢) = P % 2] Run section &?

~| Compare = GoTo ~ Comment % ‘¢ %
New Open Save = P ‘;2” & & Breakpoints Run Run and @ Advance Run and
A - hd E Print ~ “ Find ~ Indent hd ~ Advance Time

FILE | NANIGATE ‘ EDIT ‘ERUKPDINTS‘ RUN —

<= o 5 & [/ » Users » haniehroodashty » Documents » MATLAB » v R
Current Folder ® | (A Editor - /Users/haniehroodashty/Documents /MATLAB/master-thesis/construct_arrays_sequenc... ® x
B (Name & ¢ | construct_arrays_sequences_di2.m | + |
w [master-thesis 209) o |
» (3 html 210 - univar2 = unique(-t#(tpl), 'rows'); =
1] all_muiltiply_marice 211 - univar3 = unigue(-t#(t+p2), ' rows');
%] all_permutatio - 212 - s8=ismember(univar2,univar3 ,‘rows’);
721 all_projection.m 213 - univar2(s8,:)=[1;
% all_unique_arrays.m 214 — Momeamiancar—rizaloniuae? 11
all_unique_sequenc... 1
vyl Corrand Window O
% construct_arrays.m
7 construct_arrays_se...
£ construct_arrays_se...
%) construct_arrays_se...
<] construct_arrays_se... 77&[’9 '59‘“5"‘[9"112-“ﬂ
% construct_sequence...
7] generate_arrays.m I a A
%] generate_sequences... e 1
%) H_arrays.m 1 1
#] H_sequences.m 1 -1)
#) permutation_di2.m 1 0+11
ﬁlesll_cunslrucl_arr... 1 -0-1i
) test1_construct_arr...] @ 1]
a used_matrices.m o 1 a
i,a used_matrices_di3.m o 1 1 . a
all_comb.m] 1 @+1i
7 all_muiltiply_marices.m e 0+11 1
all_projection.m 1 e e @
% all_unique_arrays.m 1 a a 1
1 array-di2.txt 1 a a) 2+11
7 array-di3.txt 1 a -0-11
7 arravs seauences.m 1 a 1
construct_arrays_sequences_di A 1 4] 0411] G

FIGURE A-6: Type ‘sequence-di2.txt’ and scroll down to see all the distinct sequences

60 Appendix 2: Program Sources

Appendix 2: Program Sources

A Dimension 2

A-1 Function construct__arrays_ sequences__di2

1 $This function produces all distinct arrays and unique sequences
for dimension 2 with linear offset

2 function construct arrays sequences di2
3 iter = input ('Enter your iteration: ');
4 t=0+11;

5 35=0;

6 78=0;

7 33=1;

8 [d5, m]=permutation di2 (iter);

9 Neg3=cell (1,8);

10

11 for 1i1=0:iter

12

13 if il==

14 di=[1 2];

15 else

16 kl=11;

17 dl=[dl m(kl+1).*d1l];

18 end

19

20 Q=cell (1,3*6"1l);

21 prev2=cell (1,3*6%il);
22 n=il+1;

23 wl=used matrices(n);

24 sizw=size (wl,1);

25

26 1TE Ili==

27 prev{l}=[1 0;0 1],

28 prev{2}=[1 1;1 -1];

29 prev{3}=[1 t;1 -t];

30 prev{4}=[0 1;1 0];

31 prev{5}=[1,-1;1 11;

32 prev{6}=[1 -t;1 t];

33 p(l:2,1:2)=prev{l};

34 p(3:4,1:2)=previ{2};

35 p(5:6,1:2)=prev{3};

36 disp(' ")

37 fprintf ('Iteration = %g',1il);
38 disp(' ");

39 disp(' ")

40 fprintf ('Number of distinct arrays = %g',06):;

41 disp(' ");

61

42
43
44
45

46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

fprintf ('Number of unique sequences = %g',06);
disp(' ");
dlmwrite ('array-di2.txt',p, 'delimiter',"\t', '"precision', 1)
dlmwrite ('sequence-
di2.txt',p, 'delimiter',"\t', '"precision', 1)
else
k=1;

for j=1:671i1l
if §>1
if mod(j-1,3%11)==0
k=k+2*3711;
end
end
Of{k}=[prev{j} (1,:) O*prev{j}(2,:);0*prev{j}(1l,:) prev{j}(2,:)];
prev2{k}=0{k} ([2 1],:);

O{k+3%il}=[prev{j} (1,:) prev{j}(2,:);prev{j}(1,:) -prev{j}(2,:)];
prev2{k+37il}= Q{k+37il} ([2 1]1,:);

O{k+2*3%il}=[prev{j} (1,:) t*prev{j} (2,:);prev{j}(l,:) -
t*previ{j}(2,:)1;
prev2{k+2*37il}= Q{k+2*37i1} ([2 11,:);
k=k+1;
end

k= (k+2%37i1)-1;
prev=[Q,prev2];

AM(il+1)),
AM(11+1)),

pl=zeros (k*factorial (
p2=zeros (k*factorial (
j3 =j3+factorial (il) ;
s=size (Q,2);

p=zeros (2*s,2” (i1+1));
r=-1;

k1=0;

i1+1),

2
i1+1),2

for jj=1:k
kl=k1l+1;

if j3>1

if mod(jj-1,3"(il1+1))==0

k1=1;

end
end
if Q{jjl==zeros(2,2”(il1l+1))
else
if wl(kl,:)=='0"

Q{jjl=zeros (2,27 (11+1));

else

d2{1}=d1 (Q{jj} (1,:)==
dz{2}=d1(Q{jj} (1,:)=
dz2{3}=d1(Q{jj} (1,:)=
dz{4}=d1(Q{jj} (1,:)=

_1)
=t ;
=155

-t);

=~ ~

62 Appendix 2: Program Sources
96 d2{5}=d1(Q{jj}(2,:)==-1);

97 d2{6}=d1(Q{jj} (2,:)==t);

98 d2{7}=d1(Q{jj} (2,:)==1);

99 d2{8}=d1(Q{jj} (2,:)==-t);

100

101 74=0;

102 J6=35+1;

103 37=78+1;

104

105 for j2=33: ((factorial (il1+1)+33)-1)

106 J5=735+1;

107 78=78+1;

108 if dl == d5{j2}

109 pl(j5,:)=Q{jj}(1,:);

110 pP2(38,:)=0{3J}(2,:);

111 else

112 for 11=1:8

113 J4=94+1;

114 Neg3{j4}=find (ismember (d5{j2},d2{11}));
115 end

116 pl(J5, [Neg3{1}])=-1;

117 1(35, [Neg3{2}])=t;

118 1(35, [Neg3{3}1)=1;

119 (35, [Neg3{4}])=-t;

120

121 (38, [Neg3{5}])=-1;

122 2(j8, [Neg3{6}])=t;

123 (38, [Neg3{7}1)=1;

124 (38, [Neg3{81}])=-t;

125

126 J4=0;

127

128 for s=jj+size(wl,1l):size(wl, 1) :k

129 sl= ismember (Q{s}, [Pl (Jj5,:);p2(j8,:)]1, 'rows');
130 Q{s} (s1l,:)=0;

131

132 if pl(3j5,1)==0 || p2(j8,l) 0

133 s2=ismember (Q{s},-1*[pl(j5,:);p2(38,:)1, "'rows")

134 s3=ismember ((-t* (t*Q{s})), (£*[pl(J5,:);p2(J8,:)]1), 'rows");
135 séd=ismember ((-t* (t*Q{s})), (= (t*[pl(j5,:);p2(38,:)1)), 'rows")
136 Q{s} (s2,:)=0;

137 Q{s} (s3,:)=0;

138 Q{s} (s4,:)=0;

139 end

140 end

141

142 if ji>sizw

143

144 if all(pl(35,:)==0) || all(p2(j8,:)==0)
145 else

146

147 RS=IR21(181, RIS, R

148 if Q{jjl==p3(1:2,:)

149 Q{jJjr(2,:)=0;

150 p2(3j8,:)=0;

151 else

152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180

181

182

183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204

if pl

i

@

i

@

if

end
end

end
end
end
if ji>sizw
if 32 > 33

if pl(35,
sb5=ismember ([pl (j6:3J5-1,

l*[pl(j5,:);P2(j8 1,

s6=1smember ((- *[pl(j6:35-1,:);p2(J7:]8-
1,:)1)), (t [p1(35 2);p2(38,:)1), "'rows');
s7=ismember ((-t* (t*[pl (j6:35-1,:);p2(J7:38-1,
(t*[pl(j5,-),p2(38,)1)), 'rows');
k2=[pl(j6:35-1,:);p2(37:38-1,:)1;
k2 (s5,:)=0;
k2 (s6,:)=0;
k2 (s7,:)=0;
sil=size(pl(j6:35-1,:),1);
pl(j6:35-1,:)=k2(1l:sil1,:);
P2(j7:38-1,:)=k2(sil+l:end, :);
end
end
end
end
r=r+2;
p(r:r+l,:)=0{jj};
end
end
end
p = plany(p,2),:);
disp (' ");
fprintf ('Iteration = %g',1il);
disp (' ");

Numarrays=size (p,1);

(351 l)==0

f o{jjrz,:)=
0{jjr(2,:)
p2(j8,:)=
1lse

=-1*pl (j
0;

£ (-t*(£*Q{jJj} (2,
0{jjr(2,:)=0;
p2(j8l :)=0;

1se

(- t*(t*Q{JJ
Q{JJ}(:)

1)==0 || p2(J8,1)==0
) ;p2(37:38-1,:)1,-
rows') ;

1)) ==

:)

(t*pl (3

j 5

ri))

64 Appendix 2: Program Sources

205 disp(' ");
206 fprintf ('Number of distinct arrays = %g', Numarrays);
207 disp(' ")

208 dlmwrite('array-di2.txt',p,'-
append', 'delimiter', '\t', 'precision',1)
209
210 wunivar2 = unique(-t* (t*pl), 'rows');
211 wunivar3 = unique (-t* (t*p2), 'rows');
212 s8=ismember (univar2,univar3 , 'rows');
213 univar2(s8,:)=[];
214 Numsequences=size (univar2,1);
215 Numsequencesl=size (univar3,1l);
216 totalsize= Numsequences+Numsequencesl-1;

217
218 fprintf ('Number of unique sequences = %g',totalsize);
219 disp(' ");

220 dlmwrite('sequence-di2.txt',univar2, '-
append', 'delimiter', '"\t', 'precision', 1)
221 dlmwrite ('sequence-di2.txt',univar3, '-
append', 'delimiter', '\t', 'precision', 1)

222 end
223 35=0;
224 38=0;
225 end

226 end

65

A-2 Function permutation__di2

66

Appendix 2: Program Sources

A-3 Function used__matrices

1

S W

@0 ~J oy U

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

Q

% All possible combinations of 3 matrices(I,H,N) in each iteration
without flip combinations
% is found by this function.
% n is equal to iteration +1 (n=i+1)
%I found line 7-19 from internet. It is wrote by Abdulrahman Ikram
Siddiqg.
for useing this function we must write two lines:
n=3 (give value to n)
and
wl=used matrices (n)
function m=used matrices (n)
alphabet=['I"'" 'H' 'N'];
L=length (alphabet) ;
for i=n:-1:1
v=[];
for j=1:L
v=[v alphabet (j)*ones(1,L"(1i-1))1;
end
cv=[];
Lv=length (v) ;
for k=1:(L”n)/Lv
cv=[cv V];
end
m(l:L"n,n-i+1l)=cv’';

o° o° oe

o°

end
m=char (m) ;

for el=1:3"n

if m(el,n)~="1"

N = fliplr(m(el,:));

N3=N;

N2 = find(N =='1");

for e2=1:1ength (N2)
N3 (N2 (e2))=N3 (N2 (e2)-1) ;
N3 (N2 (e2)-1)="1";

end
if N(1,n)~='T1"
N1 =find (ismember (m,N, 'rows"')) ;
if Nl~=el
m(Nl,:)="0";
end
end
N4=find (ismember (m,N3, '"rows"')) ;
if Ni~=el
m(N4,:)='0";
end
end
end
%disp (m)
end

67

A-4 Function construct__arrays_ sequences_ without__linearoffset

37
38
39
40
41
42
43
44

45
46
47
48
49
50
51

$This function produces all distinct arrays and unique sequences
for dimension 2 without linear offset
function construct arrays sequences without linearoffset
iter = input ('Enter your iteration: ');
e=(0)<~1Lt 5
35=0;
j3=1;
[d5, m]=permutation diZ2 (iter) ;
Neg3=cell (1,8);
for il=0:iter
if 11==
dl=[1 2];
else
kl=i1l;
dl=[dl m(k1l+1).*d1];
end
Q=cell (1,3*3711) ;
n=1i1+1;
wl=used matrices (n);

if il==
prev{l}=[1 0;0 1];
prev{2}=[1 1;1 -11];
prev{3}=[1 t;1 -t];
p(l:2,1:2)=prev{l};
p(3:4,1:2)=previ{2};
p(5:6,1:2)=previ{3};
disp(' ");
fprintf ('Iteration = %g',il);
disp(' ");
disp(' ");
fprintf ("Number of distinct arrays = %g',06):;
disp(' ")
fprintf ('Number of unique sequences = %g',06);
disp(' ');

dlmwrite ('array-di2.txt',p, 'delimiter',"\t', 'precision', 1)
dlmwrite ('sequence-
di2.txt',p, ' 'delimiter', '"\t', 'precision', 1)
else
k=1;
for j=1:37i1
Of{k}=[prev{j}(1,:) O*prev{j}(2,:);0*prev{j} (1,:) prev{j}(2,:)];

Q{k+3%il}=[prev{j} (1,:) prev{j}(2,:);prev{j}(1,:) -prev{j}(2,:)];

Q{k+2*3711}=[prev{j} (1, :) t*prev{j}(2,:);prev{j}(1,:) -
t*prev{j} (2,:)1;
k=k+1;
end
k=(k+2*3711)-1;
prev=0Q;

pl=zeros (k*factorial (il1+1),2"(1i1+1));
p2=zeros (k*factorial (i1+1),2"(1i1+1));

68 Appendix 2: Program Sources

52 j3 =j3+factorial (il);
53 s=size (Q,2);
54 p=zeros (s,2” (11+1));

55 r=-1;

56 k1=0;

57 for jj=1l:k

58 k1=kl+1;

59

60 if wl(kl,:)=="0"

61 Q{jjt=zeros (2,2" (11+1));

62 else

63

64 d2{1}=dl(Q{jJ}(1,:)==-1);

65 d2{2}=d1(Q{jJj} (1, :)==t);

66 d2{3}=d1(Q{jj} (1, :)==1);

67 d2{4}=d1(Q{Jjj} (1, :)==-%t);

68

69 d2{5}=d1(Q{jJj}(2,:)==-1);

70 d2{6}=d1(Q{jj} (2,:)==t);

71 d2{7}=d1(Q{jj} (2,:)==1);

72 d2{8}=d1(Q{jj}(2,:)==-t);

73 34=0;

74 for j2=j3: ((factorial (i1+1)+j3)-1) %j2=2:3
75 35=75+1;

76 if dl == d5{j2}

7T pLl(35,:)=0{33}(1,:);
78 P2 (35,:)=0{33}1(2,:);
79 else

80 for 11=1:8

81 J4=74+1;

82 Neg3{j4}=find (ismember (d5{j2},d2{11}));
83 end

84 pl(j5, [Neg3{1}])=-1;
85 (35, [Neg3{2}])=t;
86 pl (35, [Neg3{3}]1)=1;
87 (35, [Neg3{4}])=-t;
88

89 2(j5, [Neg3{5}])=-1;
90 2(j5, [Neg3{6}])=t;
91 2(35, [Neg3{7}])=1;
92 2(35, [Neg3{8}])=-t;
93 34 0;

94 end

95 end

96 E=142

97 p(r:r+l,:)=0{33};

98 end

99 end

100 disp(' ");

101 fprintf('Iteration = %g',il);

102 disp(' ");

103 Numarrays=size(p,1);

104 disp (" ")

105 fprintf ('Number of distinct arrays = %g', Numarrays) ;
106 disp (" ");

107 dlmwrite('array-di2.txt',p,'-

69

108
109
110
111
112
113
114
115
116
117
118
119
120

121

122
123
124
125

append', 'delimiter', '"\t', "precision', 1)

univar2 = unique (-t* (t*pl), 'rows');
univar3 = unique (-t* (t*p2), 'rows') ;
s8=ismember (univar?2,univar3 , 'rows');
univar2 (s8,:)=[];

Numsequences=size (univar2,1) ;

Numsequencesl=size (univar3, 1) ;
totalsize= Numsequences+Numsequencesl-1;

fprintf ('Number of unique sequences = %g',totalsize);
disp(' ")
dlmwrite ('sequence-di2.txt',univar2, '-

append', 'delimiter', '\t', 'precision', 1)
dlmwrite ('sequence-di2.txt',univar3, '-
append', 'delimiter', '\t', 'precision', 1)
end

35=0;

end

end

70 Appendix 2: Program Sources

A-5 Function construct__arrays

1 %This function produces all distinct arrays for dimension 2 with
linear offset

2 function construct arrays

3 iter = input ('Enter your iteration: ');
4 t=0+11;

5 35=-1;

6 33=1;

7 [d5, m]=permutation di2 (iter) ;
8 Neg3=cell (1,8);

9

10 for il=0:iter

11

12 if il==

13 di=[1 27];

14 else

15 kl=1i1;

16 dl=[dl m(k1l+1).*d1];

17 end

18 QO=cell (1,3*6"1il) ;
19 prev2=cell (1,3*671il);

20

21 n=11+1;

22 wl=used matrices (n);

23

24 if il==

25 prev{l}=[1 0;0 1];
26 prev{2}=[1 1;1 -1];
27 prev{3}=[1 t;1 -t];
28 prev{4}=[0 1;1 0];
29 prev{5}=[1,-1;1 1];
30 prev{o6}=[1 -t;1 t];
31 p(l:2,1:2)=previ{l};
32 p(3:4,1:2)=previ{2};
33 p(5:6,1:2)=previ{3};
34 else

35 k=1;

36 for j=1:671il

37 if §>1

38 if mod(j-1,3%1il)==
39 k=k+2*3711;
40 end

41 end

42 Of{k}=[prev{j}(1,:) O*prev{j} (2,:);0*prev{j} (1l,:) prev{j}(2,:)];
43 prev2{k}=0{k} ([2 1]1,:);

45 O{k+3%il}=[prev{j} (1,:) prev{j}(2,:);prev{j}(1,:) -prev{j}(2,:)];
46 prev2{k+37il}= Q{k+371i1} ([2 1],:);

48 Q{k+2*3%il}=[prev{j} (1,:) t*prev{jl}(2,:);prev{j}(l,:) -
t*prev{j} (2,:)];

49 prev2{k+2*371i1}= Q{k+2*371i1} ([2 11,:);

50 k=k+1;

51 end

52 k= (k+2*3711)-1;

71

53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108

prev=[Q, prev2];

pl(l:2*k*factorial (i1+1),1:2"(11+1))=
33 =j3+factorial (il) ;

s=size(Q,2);

p=zeros (2*s,

r=-1;

k1=0;
for jj=1:
kl=k1l

if 33

27 (11+1)) ;

k
+1;

>1

if mod(jj-1,3"(il+1l))==

kl=1;

end

end

if Qf
else
if wl

else

d2{1}
d21{2
d2{

d2

d2{5}
d2{6
d2 {
d2

Jjt==zeros (2,27 (il+1))

(k1,:)=="0"
O{jjl=zeros(2,2”(11+1));

=d1(Q{JJ} (1,:)==-1);

}=d1(Q{3j} (1,:)==0);
3}=d1(Q{jj1} (1,:)==1);
{4}=d1(Q{j3} (1, :)==-t);

=d1(Q{J3j} (2,:)==-1)
}=d1(Q{3j}(2,:)==0)
7}=d1(Q{jj} (2,:)==1);
{8}=d1(Q{jj} (2,:)==-t);

for j2=93: ((factorial (11+1)+33)-1) %j2=2:3
35=35+2;
if dl == d5{j2}
j5=35-2;
else
for 11=1:8
j4=34+1;

Neg3{j4}=find (ismember (d5{j2},d2{11}));

end
pl(j5

[Neg3{1} =1z
, [Neg3{2} 0;
Al 1g

Neg3{3}

1(3
1(3
1(j5, [Neg3{4}])=-
(35+1 [Neg3{5}])
1(35+1, [Neg3{6}])
1(j5+1, [Neg3{71}1])
1(j5+1, [1)
j4:0;

)
)
)
)
}

H(‘t"

-1;
OI
1

Neg3{8}

for s=jj+size(wl,1l):size(wl,1) :k

sl= ismember (Q{s},pl(j5:35+1,:), 'rows"');

Q{s} (sl,:)=0;

72 Appendix 2: Program Sources

109 if p1(35,1)==0 || pl(j5+1,1)==0
110 s2=ismember (Q{s},-1*pl(j5:35+1,:), 'rows');
111 s3=ismember ((-t* (t*Q{s})), (t*pl(j5:)5+1,:)), 'rows');
112 sd4=ismember ((-t* (t*Q{s})), (- (t*pl(35:35+1,:))), "rows"');
113 Q{s} (s2,:)=0;
114 Q{s} (s3,:)=0;
115 Q{s} (s4,:)=0;
116 end
117 end
118 if all(pl(35,:)==0) || all(pl(j5+1,:)==0)
119 else
120 if Q{33 }==p1([J 5+1 351, :)
121 Q{33}<2 :)=0;
122 end
123 if pl(35,1)==0
124
125 if 0{33}(2,:)==-1*p1 (35, :)
126 0{33}(2,:)=0;
127 end
128
129 if (-t*(E*Q{3F) (2, :))) ==(t*pl (35, :))
130 Q{jjr(2,:)=0;
131 end
132
133 if (-t*(E*Q{FF) (
134 0{3ijr(2,:)=
135 end
136
137 end
138 end
139 end
140 end
141 r=r+2;
142 p(r:r+l,:)=0{37J};
143 end
144 end
145 end
146 p = p(any(p,2),:);
147 end
148 disp (' '
149 fprintf (
150 disp (' ");
151 Numarrays=size(p,1);
152 disp (' ");
153 fprintf ('Number of distinct arrays = %g', Numarrays);
154 disp (' ");
155 dlmwrite ('array-di2.txt',p,"'
append', 'delimiter', '\t', "precision', 1)
156 end
157 end

r2)))==(=(t*pl(35,:)));

) ;
'ITteration = %g',1il);

73

A-6 Function H_ arrays

1 $This function produces all distinct arrays for U={H}, P={I,X} in
dimension 2

2 function H arrays

3 iter = input ('Enter your iteration: ');

4 rows=2;

5 prev=cell (rows,2%iter);

6 for i=0:iter

7

8

j=0;
k=0;
9 columns=2" (i+1) ;
10 matrix=cell (rows,columns);
11 if i==
12 prev{l}=[1;1];
13 end
14 for jj=1:27(i+1)
15
16 if jj<=2"1
17 j=J+1;
18 matrix{jj} (1, :)=[prev{j}(1l,:) prev{j}(2,:)] ;
19 matrix{jj} (2,:)=[prev{j}(1,:) -prev{j}(2,:)];
20 else
21 k=k+1;
22 matrix{jj} (1, :)=[prev{k} (1l,:) -previ{k} (2,:)];
23 matrix{jj} (2, :)=[prev{k} (1,:) previ{k} (2,:)] ;
24
25 end
26 end

27 prev=matrix;
28 fprintf ('Iteration = %g',1);

29 disp(' ");

30 Numarrays=size (matrix,2);

31 fprintf ('Number of distinct arrays = %g', Numarrays);
32 disp (' ')

33 for jj=1:27 (1)

34 disp (matrix{jj});

35 end

36 end

74 Appendix 2: Program Sources

A-7 Function H_ sequences

1 %$This function produces all unique arrays and sequences for
U={H}, P={I,X} in dimension 2

2 function H sequences

3 iter = input ('Enter your iteration: ');
4 rows=2;

5 prev=cell (rows,2”%iter);

6 33=1;

7 35=-1;

8 [d5, m]=permutation di2 (iter) ;
9

10 for 1i1=0:iter

11 3=0;

12 k=0;

13 columns=2" (i1+1) ;

14 matrix=cell (rows,columns):;
15

16 if il==

17 di=[1 27];

18 else

19 kl=i1l;
20 dl=[dl m(kl+1l).*d1l];

21 end
22
23 if il==

24 prev{l}=[1;1];
25 p=[1 1;1 -11];
26 pl=[1 1;1 -1];

27 end

28

29 for jj=1:2"(i1+1)

30

31 if jjy<=271i1

32 J=j+1;

33 matrix{jj} (1, :)=[prev{j} (1l,:) prev{ji}(2,:)] ;
34 matrix{jj} (2, :)=[prev{j} (1,:) -prev{j}(2,:)1;
35

36 else

37 k=k+1;

38 matrix{jj} (1, :)=[prev{k} (l,:) -previ{k} (2,:)]1;
39 matrix{jj} (2, :)=[prev{k} (1,:) prev{k} (2,:)] ;
40

41 end

42

43 end

44

45 prev=matrix;

46 if i1~=0

477 p=zeros (2711,2" (11+1)) ;

48 pl(l:27(il+1)*factorial (11+1),1:2"(1i1+1))=1;
49 33 =j3+factorial (il) ;

50 r=-1;

52 for jj=1:271i1l

75

53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88

89
90
91

d2{1}=dl (matrix{jj}(1,:)==-1);
d2{2}=dl (matrix{jj} (2, :)==-1);
34=0;

for 32=33: ((factorial (il+1)+3j3)-1)

§5=35+2;
if dl == d5{j2}

pl(35:35+1, :)=matrix{jj};

else
for 11=1:2
J4=74+1;

Neg3{j4}=find (ismember (d5{j2},d2{11}));

end
pl (35, [Neg3{1}])=-1;

pl(j5+1, [Neg3{2}])=-1;

j4=0;
end
end

r=r+2;
p(r:r+l, :)=matrix{jj};
end
end
fprintf ('Iteration = %g',il);
disp(' ");
Numarrays=size(p,1);
disp(' ");
fprintf ("Number of distinct arrays = %g
disp(' ");

dlmwrite ('array.txt',p,'-append', 'delimiter','\t', 'precision', 2)

disp(' ');

univar =unique (pl, 'rows');
Numarrays2=size(univar,1);

fprintf ('Number of unique sequences = %
disp(' ");

dlmwrite ('sequence.txt',univar, '-
append', 'delimiter', '\t', "precision', 2)

35=-1;
end

]
14

g',

Numarrays) ;

Numarrays2) ;

76

Appendix 2: Program Sources

B Dimension 3

B-1 Function construct__arrays_ sequences__di3

1

O ~J o Uk W

9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

%$This function produces all distinct arrays and sequences for
dimension 3 with linear offset

function construct arrays sequences di3

iter = input ('Enter your iteration: ');

35=0;

j3=1;

a=exp (2*pi*1i/3)

[d5,m]=all permutation di3 (iter);

Neg3=cell(1,8);

for 11=0:iter
if il==
dl=[1 2 4];
else
kl=1i1;
dl=[dl m(k1l+1).*dl (m(k1l+1))"2.*d1l];
end
Q=cell (1,4*24711) ;
prev2=cell (1,4*247i1) ;
prev3=cell (1,4*247i1);
previd=cell (1,4*2471i1) ;
prevb=cell (1,4*24711)
preve=cell (1,4*24711)

’

—_ e~~~

’

n=il+1;
wl=used matrices di3(n);
sizw=size (wl,1);

if il1==

prev{l}=[1 0 0;0 1 0;0 0 1
prev{5}=prev{l} 3
prev{9}=prev{l} 3

17

(1 17,:)7
(1 2
prev{l3}=prev{l} (
}(
}(

I -) 14
] 4)
1,:)s
I,:)s

4

prev{l7}=prev{l

2
1
[
[
prev{2l}=prev{l [

]
]
213
321
312 ;

prev{2}=[1 1 1;1 a a*2;1 a*2 a]l;
prev{6}=prev{2}([2 3 1]1,:);

prev{10}=prev{2} ([1 3 2],:);
prev{l4d}=prev{2} ([2 1 3],:);
prev{l8}=prev{2} ([3 2 1],:);
prev{22}=prev{2} ([3 1 2],:);

prev{3}=[1 a a;1 a®2 1;1 1 a"2];

prev{7}=prev{3}([2 3 1],:);

prev{ll}=prev{3} ([1 3 2],:);
prev{1l5}=prev{3}([2 1 3],:);
prev{1l9}=prev{3} ([3 2 1],:);
prev{23}=prev{3} ([3 1 2],:);

7

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70

71

72
73
74
75
76
77
78
79
80

81
82
83
84
85
86
87
88

89
90
91
92
93
94
95
96

97
98

prev{4}=[1 a*2 a”2;1 1 a;1 a 1];
prev{8}=prev{4} ([2 3 1],:);

prev{l2}=prev{4} ([1 3 2],:);
prev{l6}=prev{4} ([2 1 3],:);
prev{20}=prev{4} ([3 2 1],:);
prev{24}=prev{4} ([3 1 2],:);
p(l:3,:)=prev{l};
p(4:6,:)=prev{2};
p(7:9,:)=prev{3};
p(10:11, :)=prev{4d} (2:3,:);
disp(' ');
fprintf ('Iteration = %g',il);
disp(' ");
disp(' ");
fprintf ('Number of distinct arrays = %g',11);
disp(' '");
fprintf ('Number of unique sequences = %g',11);
disp(' ");

dlmwrite ('array-
di3.txt',p,'delimiter', '\t', 'precision',2)
dlmwrite ('sequence-
di3.txt',p,'delimiter', '"\t', 'precision', 2)
else
k=1;
for §=1:24"(i1)
if §>1
if mod(j-1,4"1il)==
k=k+3*4711;
end
end

O{k}=[prev{j}(1,:) O*prev{j}(2,:) O*prev{j} (3,:);0*prev{j}(1,:)

prev{j}(2,:) O*prev{j}(3,:);0*prev{j}(1l,:) O*prev{j}(2,:)

prev{j}(3,:)1;
prev2{k}=0{k} ([2
prev3{k}=0{k} ([1
prevé4{k}=0{k} ([2
(I3
(I3

~e

I

2R3

]
]
1,:
]
]

o e

prev5{k}=0{k}
preve{k}=0{k}

~e

PN P W W
N WD
~

4
4

~e

Q{k+47il}=[prev{j} (1,:) prev{j}(2,:) prev{j}(3,:)iprev{j}(l,:)
a*prev{j}(2,:) a"2*prev{j}(3,:);prev{j}(l,:) a"2*prev{j} (2, :)

a*prev{j} (3,:)1;
prev2{k+47il1}=Q{k+471i1} ([2
prev3{k+471i1}=0{k+471i1} ([1
prevd{k+4711}=Q{k+47i1} ([2
([3
([3

~
.

~ 0~
.

prevS{k+471i1}=0{k+4711}
prev6o{k+4711}=0{k+4711}

~

NP W W
N W DN =

~

O{k+2*4~il}=[prev{j} (1, :) a*prev{j}(2,:)

a*prev{j} (3,:);prev{j}(l,:) a*2*prev{j} (2,:)

prev{j} (3,:);prev{j} (1,:) prev{j}(2,:) a2*prev{j} (
prev2{k+2*47i1}=0{k+2*4711} ([2 3 1
prev3{k+2*47i1}=0{k+2*4711} ([1 3 2

Ne Ne Ne N

~e

3
]
]

4

4

4

)
)
)

]

I
’

r

78 Appendix 2: Program Sources

99 prev4 {k+2*4711}=Q{k+2*4711} ([2 1 3],:);
100 prev5{k+2*471i1}=Q{k+2*4711} ([3 2 1],:);
101 preve{k+2*4711}=0Q0{k+2*4711} ([3 1 2],:);
102
103

104 Q{k+3*47il}=[prev{j}(1l,:) a’2*prev{i}(2,:)
a”2*prev{j} (3,:);prev{j} (1,:) prev{j}(2,:)

a*prev{j} (3,:);prev{j} (1,:) a*prev{j} (2,:) prev{j}(3,:)];
105 prev2{k+3*4°i1}=Q{k+3*47il} ([2 3 11,:):
106 prev3{k+3*47i1}=0{k+3*4711} ([1 3 21,:);
107 prevd{k+3*4711}=0Q0{k+3*4711} ([2 1 31,:):
108 prev5{k+3*471i1}=Q0{k+3*4711} ([3 2 1],:);
109 preve{k+3*47i1}=Q{k+3*47il} ([3 1 2],:);
110
111 k=k+1;
112 end

113 k=(k+3*4711)-1;

114 prev=[Q,prev2,prev3,prevd,prevd,prev6];
115

116 pl(l:k*factorial (i1+1),1:3"(1i1+1))=a;
117 p2(l:k*factorial (11+1),1:3"(1i1+1))=a;
118 p3(l:k*factorial (1i1+1),1:3"(1i1+1))=a;
119

120 33 =j3+factorial (il) ;

121 s=size(Q,2);

122 p=zeros(3*s,3"(11+1));

123 r=-2;

124 k1=0;

125 for jj=1l:k

126 kl=k1l+1;

127

128 if §i3>1

129 if mod(jj-1,4" (il+1))==
130 k1l=1;

131 end

132 end

133 if Q{jjl==zeros (3,37 (il+1))
134 else

135 if wl(kl,:)=='0"

136 Q{jjlt=zeros (3,37 (il1+1)) ;
137 else

138 d2{1}=d1(Q{33} (1, :)==1);

139 d2{2}=d1(Q{jj} (1,:)==0);

140 d2{3}=d1(Q{jj} (1, :)==a"2);
141

142 d2{4}=d1(Q{33} (2, :)==1);

143 d2{5}=d1(Q{jj}(2,:)==0);

1aa d2{6}=d1(Q{jj}(2,:)==a"2);
145

146 d2{7}=d1(Q{jJj}(3,:)==1);

147 d2{8}=d1(Q{jj} (3,:)==0);

148 d2{9}=d1(Q{Jj} (3,:)==a"2);
149

150 74=0;

151

152 for j2=33: ((factorial (i1+1)+33)-1)

153 §5=95+1;

154 if dl == d5{j2}

155

156 pl(35,:)=0{33}(1,:);

157 p2(j5 1) =0{33} (2 .)'

158 p3(j5,:)=Q{jj}(3,:);

159

160 else

lo61l for 11=1:9

162 j4=74+1;

163 Neg3{j4}=find (ismember (d5{j2},d2{11}));
164 end

165 pl(J5, [Neg3{1}])=1;

166 pl (35, [Neg3{2}])=0;

le7 pl(Jj5, [Neg3{3}])=a"2;

168

169 p2 (35, [Neg3{4}])=1;

170 p2 (35, [Neg3{5}]1)=0;

171 p2(J5, [Neg3{6}])=a"2;

172

173 p3 (35, [Neg3{7}])=1;

174 p3 (35, [Neg3{8}])=0;

175 p3(J5, [Neg3{9}])=a"2;

176 34=0;

177 for s=jj+size(wl,1l) :size(wl, 1) :k
178

179 p7=[pl(J5,:);p2(J5,:);p3(35,:)1;
180 sl= ismember (Q{s},p7(1:3,:), 'rows");
181 Q{s} (sl,:)=0;

182 s4= ismember (Q{s},Q{jj}, 'rows"');
183 Q{s} (s4,:)=0;

184

185 end

186 if jjy>sizw

187 pd= [p2<35),p1<j5,:)];
188 if Q{j3} (1 :)==p4(1:2,:)
189 Q{jj}t (2 =0¢

190 P2 (35, .) O;

191

192 end

193 =[@3 (35, 3) gl (35, 8) 1 ¢
194 if Q{jj}([31,:)==p5(1:2,:)
195 0{331}(1,:)=0;

196 pl (35, :)=0;

197 end

198 p6=[p3(j5,:):p2(J5,:)1;
199 if 0f{33J} ([2 3],:)==p6(1:2,:)
200 Q{331 (3,:)=0;

201 p3(j5,:) =0;

202 end

203 end

204 end

205 end

206 r=r+3;

207 p(r:r+2,:)=0{jj};

208 end

80 Appendix 2: Program Sources

209 end

210 end

211 p = plany(p,2),:);

212

213 disp (" ");

214 fprintf ('Iteration = %g',1il);
215 disp (" ");

216 Numarrays=size(p,1);

217 disp(' ");

218 fprintf ('Number of distinct arrays = %g', Numarrays);
219 disp (' ");

220 dlmwrite('array-di3.txt',p,'-
append', 'delimiter', '\t', "precision', 1)

221

222 univar2 = unique (pl, 'rows');

223 univar3 = unique (p2, 'rows');

224 univar4 = unique (p3, 'rows');

225

226 s8=ismember (univar2,univar3 , 'rows');
227 univar2(s8,:)=[1;

228 s9=ismember (univar2,univard , 'rows');
229 univar2(s9,:)=[1;

230 slO=ismember (univar3,univard ,'rows');
231 univar3(sl1l0,:)=[];

232

233 Numsequencesl=size (univar2,1);
234 Numsequences2=size (univar3, 1) ;
235 Numsequences3=size (univar4,1l);
236 totalsize=Numsequencesl+Numsequences2+ Numsequences3-2;
237
238 fprintf ('Number of unique sequences = %g', totalsize);
239 disp (' ");
240 dlmwrite ('sequence-di3.txt',univar2, '-
append', 'delimiter', '\t', "precision', 2)
241 dlmwrite ('sequence-di3.txt',univar3, '-
append', 'delimiter', '\t', 'precision', 2)
242 dlmwrite ('sequence-di3.txt',univar4, '-
append', 'delimiter', '\t', "precision', 2)

243 end
244 35=0;
245 end

246 end

81

B-2 Function all__permutation__di3

]2 Appendix 2: Program Sources

B-3 Function used__matrices_ di3

1 % This function produces all possible combinations of the four
matrices (I, F, FD, FD"2)

2 $through different iterations without symmetric combinations.

3 % n=1i+1

4 % Line 9-20 have been originally written by Abdulrahman Ikram
Siddiqg.

5 % Two lines must be added to use this function: assigning value to

n and wl=used matrices (n)
6 function m=used matrices di3(n)
7 alphabet=["'I' 'F' 'Q' 'R'];
8 L=length (alphabet) ;
9 for i=n:-1:1

10 v=[];

11 for j=1:L

12 v=[v alphabet (j) *ones (1,L"(i-1))1;
13 end

14 cv=[1;

15 Lv=length (v) ;

16 for k=1:(L”n)/Lv

17 cv=[cv Vv];

18 end

19 m(l:L"n,n-i+l)=cv’';

20 end

21 m=char (m) ;

22

23 for el=1:4"n

24 if m(el,n)~="1"

25 N = fliplr(m(el,:));

26 N3=N;

27 N2 = find(N =='I1");

28 for e2=1:1length (N2)

29 N3 (N2 (e2))=N3 (N2 (e2)-1) ;
30 N3 (N2 (e2)-1)="1";

31 end

32 if N(1,n)~="'1"

33 N1 =find (ismember (m,N, 'rows'));
34 if Nl~=el

35 m(N1l,:)='0";

36 end

37 end

38 N4=find (ismember (m,N3, 'rows"')) ;
39 if N4~=el

40 m(N4,:)='0";

41 end

42 end

43 end

44 end

B-4 Function
construct__arrays_ sequences_ without__linearoffset_ di3

1 $This function produces all distinct arrays and sequences for
dimension 3 without linear offset

2 function construct arrays sequences without linearoffset di3
3 iter = input ('Enter your iteration: ');
4 35=0;

5 j3=1;

6 a=exp (2*pi*11i/3)

7 [d5,m]=all permutation di3(iter);

8 Neg3=cell (1,8);

9

10 for 11=0:iter

11 if 1l==

12 di=[1 2 4];

13 else

14 k1=11;

15 dl=[dl m(kl+1).*dl (m(kl+1))"2.*d1l];
16 end

17 O=cell (1,4*24"1i1);
18 n=il+1;

19 wl=used matrices di3(n);
20
21 if il==
22
23 prev{l}=[1 0 0;0 1 0;0 O 1];
24
25 prev{2}=[1 1 1;1 a a*2;1 a"2 al;
26
27 prev{3}=[1 a a;1 a®2 1;1 1 a"2];
28
29 prev{4}=[1 a2 a*2;1 1 a;1 a 1];
30
31 p(l:3,:)=prev{l};
32 p(4:6,:)=prev{2};
33 p(7:9,:)=prev{3};
34 p(10:11, :)=previ{4d} (2:3,:);
35 dlSp(' ')I
36 fprintf ('Iteration = %g',il);
37 disp(' ');
38 disp(' ");
39 fprintf ('Number of distinct arrays = %g',11);
40 disp(' ");
41 fprintf ('"Number of unique sequences = %g',11);
42 disp(' ');
43 dlmwrite ('array-
di3.txt',p, 'delimiter','"\t', 'precision',2)
44 dlmwrite ('sequence-
di3.txt',p,'delimiter', '"\t', 'precision',2)
45
46 else
47 k=1;
48
49 for j=1:4"(il)

50

84 Appendix 2: Program Sources

51 O{k}=[prev{j}(1,:) O*prev{j}(2,:) O*prev{j} (3,:);0*prev{j}(1,:)
prev{j}(2,:) O0*prev{j}(3,:);0%*prev{j} (1,:) O*prev{j}(2,:)
prev{j}(3,:)];

52

53 O{k+4”~il}=[prev{j} (1, :) prev{j}(2,:) prev{j}(3,:);prev{j}(1,:)
a*prev{j}(2,:) a"2*prev{j}(3,:);prev{j} (l,:) a*2*prev{j}(2,:)
a*prev{j}(3,:)1;

54

55 Q{k+2*47il}=[prev{j} (1l,:) a*prev{j}(2,:)
a*prev{j}(3,:);prev{j}(1l,:) a*2*prev{j} (2,:)
prev{Jj}(3,:);prev{j} (1,:) prev{j}(2,:) a"2*prev{j}(3,:

56

57 Q{k+3*4~il}=[prev{j} (1,:) a’2*previ{j} (2, :)
a*2*prev{j} (3,:);prev{j} (1,:) prev{j}(2,:)
a*prev{j} (3,:);prev{j} (l,:) a*prev{j}(2,:) prev{j}(3,:

58

59 k=k+1;

60 end

6l k=(k+3*4711)-1;

62 prev=Q;

63 pl (l:k*factorial (i1+1),1:3"(i1+1))=a;

64 p2 (l:k*factorial (i1+1),1:3"(i1+1))=a;

65 p3(l:k*factorial (i1+1),1:37(il1+1))=a;

66 j3 =j3+factorial (il);

67 s=size (Q,2);

68 p=zeros (s/4,37 (i1+1));

69 r=-2;

70 k1=0;

71 for jj=1:k

72 kl=k1+1;

73

74 if wl(kl,:)=='0"

75 Q{jjl=zeros (3,37 (il1+1));

76 else

77 d2{1}=d1(Q{3jj}(1,:)==1);

78 d2{2}=d1(Q{jj}(1,:)==0);

79 d2{3}=d1(Q{jj}(1,:)==a"2);

80

81 d2{4}=d1(Q{jj}(2,:)==1);

82 d2{5}=d1(Q{jj}(2,:)==0);

83 d2{6}=d1(Q{jj}(2,:)==a"2);

84

85 d2{7}=d1(Q{33}(3,:)==1);

86 d2{8}=d1(Q{jJj}(3,:)==0);

87 d2{9}=d1(Q{Jjj}(3,:)==a"2);

88

89 74=0;

90

91 for j2=33: ((factorial (11+1)+33)-1)

92 35=735+1;

93 if dl == d5{j2}

94 p1(35,:)=0{3j} (1,:);

95 P2 (35,:)=0{33} (2,:);

96 P3(35,:)=0{33}(3,:);

97 else

98 for 11=1:9

99 J4=94+1;

100 Neg3{j4}=find (ismember (d5{j2},d2{11}));
101 end

102 pl (35, [Neg3{1}])=1;
103 pl (35, [Neg3{2}])=0;
104 pl(j5, [Neg3{3}])=a"2;
105

106 P2 (35, [Neg3{4}])=1;
107 P2 (35, [Neg3{5}]1)=0;
108 p2 (35, [Neg3{6}1)=a"2;
109

110 p3(J5, [Neg3{7}])=1;
111 p3 (35, [Neg3{8}]1)=0;
11z p3 (35, [Neg3{9}])=a"2;
113 34=0;

114 end

115 end

116 r=r+3;

117 p(r:r+2,:)=0{Jj};

118 end

119 end

120 p = p(any(p,2),:);

121 disp(" ");

122 fprintf('Iteration = %g',il);
123 disp(' ");
124 Numarrays=size(p,1);
125 disp (' ");
126 fprintf ('Number of distinct arrays = %g', Numarrays);
127 disp(' ");
128 dlmwrite('array-di3.txt',p,'-
append', 'delimiter', '\t', 'precision', 2)

129

130 wunivar2 = unique (pl, 'rows');
131 univar3 = unique (p2, 'rows');
132 univar4 = unique (p3, 'rows');

133 s8=ismember (univar2,univar3 , 'rows');

134 univar2(s8,:)=[1;

135 s9=ismember (univar2,univar4 , 'rows');

136 univar2(s9,:)=[1;

137 slO0=ismember (univar3,univar4 , 'rows'):;

138 univar3(sl1l0,:)=[];

139

140 Numsequencesl=size (univar2,1);

141 Numsequences2=size (univar3,1l);

142 Numsequences3=size (univaré,1l);

143 totalsize=Numsequencesl+Numsequences2+Numsequences3-2;

144

145 fprintf ('Number of unique sequences = %g', totalsize);

146 disp(' ");

147 dlmwrite ('sequence-di3.txt',univar2,'-
append', 'delimiter', '\t', 'precision', 2)

148 dlmwrite ('sequence-di3.txt',univar3, '-
append', 'delimiter', '\t', 'precision', 2)

149 dlmwrite ('sequence-di3.txt',univar4, '-
append', 'delimiter', '\t', 'precision', 2)

150 end

86 Appendix 2: Program Sources

151 j5=0;
152 end
153 end

