
Dissertation for the degree of philosophiae doctor (PhD)

at the University of Bergen

Dissertation date:

2

Scientific Environment

The work of this thesis was done at the department of informatics, University of
Bergen in the ICT Research School. I was under the supervision of Professor Marc
Bezem.

i

ii SCIENTIFIC ENVIRONMENT

Acknowledgements

I am deeply indebted to my supervisor, Marc Bezem. He has patiently listened
to all my ideas, thoroughly examined and questioned my every thought, and
meticulously read everything I have written. I deeply enjoyed working together
with Marc and consider myself very fortunate to have had him as my supervisor.

I also wish to thank the members of my evaluation committee in advance—
Prof. Peter Dybjer, Dr. Mart́ın Escardó, and Dr. Uwe Egbert Wolter—for reading
and evaluating my thesis.

I would like to thank my coauthors, Marc Bezem and Thierry Coquand.

I also want to thank Micha�l Walicki, for whom I have had the fortune of being
a teaching assistant for most of my PhD. He teaches the introductory course in
logic which made me first love logic 8 years ago, and he sent the crucial email
recruiting me to study logic at the Master’s level. My life would have been very
different without these interventions.

There is a long list of friends and coworkers who deserve thanks. First, I want
to thank Dr. P̊al Grøn̊as Drange for the previous 9 years. Both life inside and
outside of academia would have been less fun without you. The acknowledgement
I wrote you in my Master’s thesis still stands.

I also want to thank Eivind Jahren, Markus S. Dregi, Dr. Pim van ’t Hof,
and Hannah A. Hansen for the many lunches and conversations we have had. I
also want to thank Ida Rosenlund for chatting with me when I needed a break,
smørbukk, and some tea.

A big thanks to the modal logic gang (the majority of which no longer lives in
Bergen, unfortunately): Dr. Truls A. Pedersen, Dr. Piotr Kaźmierczak, and Dr.
Sjur Dyrkolbotn, for both work and pleasure.

Outside of the computer science faculty, Øyvind Døskeland, Øystein Rolland
and Eilin Erevik have all worked hard to keep me sane these years. Thank you.
And a big thanks to Martin, Morten and Adam for the all good times.

A big thanks to my whole family, and a special thanks to my parents, Øystein
and Nina Parmann. They have managed to strike a balance between encouragement
and generosity; encouraging me to work hard while at the same time leaving me
safe in the knowledge that they would be proud of me independently of where I

iii

iv ACKNOWLEDGEMENTS

ended up.
Thanks to ma belle-mère Michèle Jaakson, who took time off during her

vacation to proofread my introduction.
Finally, I would like to thank my girlfriend Maja Maria Dawn Jaakson for not

only being an amazing girlfriend, but also for proofreading my whole thesis. She
changes between commas, semicolons and “—”, between “is” and “are”, between
“which” and “who”, and she insists on putting the period inside the parenthesizes.
She is—at the time of submission—the only person in addition to Marc and me
who have read the whole thesis. All except this paragraph that is; all the mistakes
will surely drive her mad (and if not—the following period will).

Thank you all.

Abstract

The common theme in this thesis is the study of constructive provability: in
particular we investigate aspects of finite sets and Kan simplicial sets from a
constructive perspective.

There are numerous definitions of finiteness which are classically equivalent
but not constructively so. In other words, constructive mathematics is able to
distinguish between more notions of finiteness. We start by investigating some
relationships between several ways of defining finiteness for sets of natural numbers.
As a new result, we give strictly bounded a precise placement in a hierarchy of
definitions of finiteness.

We also investigate streamless sets, which constitutes another notion of finite-
ness. Streamless sets require neither decidable equality nor that the set is a subset
of an enumerable set, and they are as such more general than strictly bounded
sets. It is an open problem whether the Cartesian product of two streamless
sets is itself streamless. We show that this holds if at least one of the sets has
decidable equality or is of bounded size. The problem remains open for the case
where both streamless sets have undecidable equality and fail to be of bounded
size. We also show that—in certain constructive systems—the addition of function
extensionality makes equality within streamless sets decidable.

Another notion of finiteness is Noetherian. Both streamless and Noetherian can
be generalized to properties of binary relations, whereby such sets are those where
equality is respectively streamless or Noetherian. We provide a proof that all
Noetherian relations are streamless—notably, in a type system without inductively
defined equality. This result immediately entails that all Noetherian sets are
streamless within that type system.

We proceed to investigate aspects of Kan simplicial sets, a notion coming from
topology. Kan simplicial sets have recently caught the eye of the type theory
community since they can be used to build models of Martin-Löf type theory
that validate the Univalence axiom. All known proofs of the following well-known
theorem use classical logic: if simplicial sets X and Y are Kan simplicial sets
then Y X is also a Kan simplicial set. This theorem plays an important role in
the Kan simplicial set model of type theory. We investigate whether this theorem

v

vi ABSTRACT

also holds constructively. The classical definition of the Kan property has at least
two non-equivalent constructive interpretations, and we provide countermodels
showing the constructive non-provability of the classical theorem above for both
of these definitions of Kan simplicial sets.

List of Papers

Erik Parmann. Strictly Bounded Sets. Manuscript.

Erik Parmann. Investigating Streamless Sets [Par15]. In 20th International
Conference on Types for Proofs and Programs (TYPES 2014), volume 39 of
Leibniz International Proceedings in Informatics (LIPIcs), pages 187–201. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, 2015.

Erik Parmann. A proof that Noetherian relations are streamless in a type theory
without identity. Manuscript.

Marc Bezem, Thierry Coquand, and Erik Parmann. Non-Constructivity in Kan
Simplicial Sets [BCP15]. In 13th International Conference on Typed Lambda Cal-
culi and Applications (TLCA 2015), volume 38 of Leibniz International Proceedings
in Informatics (LIPIcs), pages 92–106. Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik, 2015.

Erik Parmann. Functional Kan Simplicial Sets: Non-Constructivity of Exponen-
tiation. Submitted to 21th International Conference on Types for Proofs and
Programs (TYPES 2015).

vii

viii LIST OF PAPERS

Contents

Scientific Environment i

Acknowledgements iii

Abstract v

List of Papers vii

I Introduction and preliminaries 1

1 Introduction 3
1.1 The fundamentals of logic . 3
1.2 Intuitionistic logic . 5

1.2.1 Propositional logic . 5
1.2.2 First-order logic . 9
1.2.3 The BHK interpretation 12

1.3 Constructive mathematics . 13
1.4 Overview of the thesis . 17

II Scientific results 19

2 Strictly Bounded Sets 21
2.1 Introduction . 22
2.2 Preliminaries . 22
2.3 Strictly bounded . 24
2.4 Conclusion . 29

3 Investigating Streamless Sets 31
3.1 Introduction . 32

3.1.1 Notation . 34

ix

x CONTENTS

3.2 Introduction to streamless sets . 35
3.3 Products of streamless sets . 37
3.4 Streamlessness and decidable equality 41
3.5 Formalization in Coq and HoTT 42

3.5.1 Coq: Prop and Set . 42
3.5.2 HoTT . 44

3.6 HAω . 45
3.7 Related work . 46
3.8 Remaining questions . 48
3.9 Conclusion . 49

4 Noetherian Relations Are Streamless Even Without Identity
Types 51
4.1 Introduction . 52
4.2 Preliminaries . 52
4.3 Streamless and Noetherian . 54
4.4 Noetherian implies Streamless . 55

4.4.1 Proof using equality . 55
4.4.2 Proof avoiding equality . 57

4.5 Conclusion . 59

5 Non-Constructivity in Kan Simplicial Sets 61
5.1 Introduction . 62
5.2 Preliminaries . 64
5.3 Examples of simplicial sets . 66

5.3.1 Standard simplicial k-simplex Δk 66
5.3.2 The k-horns Λk

j . 66
5.3.3 Cartesian products . 66
5.3.4 Function spaces . 67
5.3.5 The simplicial set defined by a reflexive multigraph 67

5.4 Edge reversal . 68
5.4.1 Edge reversal, definition and classical proof 69
5.4.2 Edge reversal, the Kripke countermodel 70

5.5 Edge composition . 71
5.6 Evaluation of the results . 73
5.7 Kan graphs with explicit filler functions 75
5.8 Conclusions and Future Research 78

6 Functional Kan Simplicial Sets: Non-Constructivity of Exponen-
tiation 81
6.1 Introduction . 82

CONTENTS xi

6.2 Simplicial sets . 84
6.2.1 Examples of simplicial sets 88

6.3 Hypergraphs as simplicial sets . 89
6.4 Function spaces between hypergraphs 93
6.5 Kripke countermodel . 94

6.5.1 Day 1 . 95
6.5.2 Day 2 . 98
6.5.3 Non-existence of F− . 99

6.6 Formal verification of the Kripke model 100
6.6.1 Encoding the Kripke model 100
6.6.2 Verifying the encoded model 102

6.7 Conclusion . 103

Appendices 105
A Theorems proved in Coq . 105
B Triangles in Y . 111

xii CONTENTS

List of Figures

1.1 Natural deduction system for intuitionistic propositonal logic. . . 6
1.2 Kripke countermodel falsifying the law of excluded middle. 7
1.3 Natural deduction system for intuitionistic first-order logic. 10
1.4 Kripke countermodel falsifying ¬∀xP (x) → ∃x¬P (x). 11

2.1 The relationship between LPO, MP, and WLPO. 25

3.1 The stream g2 of duplicates in g 36
3.2 Calculating f 3 from f 2. 37

5.1 Kripke (counter)model for edge reversal, day 1. 72
5.2 Kripke (counter)model for edge reversal, day 2. 72
5.3 Kripke (counter)model for edge composition, day 1. 73
5.4 Kripke (counter)model for edge composition, day 2. 74
5.5 Summary of the results in Chapter 5. 74
5.6 Reversing F . 77
5.7 Filling the horn Λ2

1. 78

6.1 A single triangle. 86
6.2 An edge e and the degenerate triangle s10(e). 86
6.3 An example of two compatible edges getting filled. 87
6.4 Kripke (counter)model for edge reversal, day 1. 95
6.5 Kripke (counter)model for edge reversal, day 2. 98

xiii

xiv LIST OF FIGURES

Part I

Introduction and preliminaries

1

Introduction

This chapter provides an introduction to logic and constructive mathematics. We
begin by explaining the absolute fundamentals, hopefully making these under-
standable for even the most novice reader. Readers with some experience in logic
might want to skip to Section 1.2 for an introduction to intuitionistic logic, or all
the way to Section 1.3, where we discuss constructive mathematics. In Section 1.4,
we give a brief overview of the results covered in this thesis.

1.1 The fundamentals of logic

It is no easy feat to define what logic is. Although the following quote from
[BdRV01] concerns modal logic, it certainly rings true of logic in general:

Ask three modal logicians what modal logic is, and you are likely to
get at least three different answers. The authors of this book are no
exception, so we won’t try to start off with a neat definition.

Given this, we will give readers a sense of what logic is by taking a “hands-on”
approach, introducing logic through actual examples.

There are a multitude of logics, but these (typically) have a few things in
common. Firstly, they use a well-defined language. This means that it is properly
specified what one can, and what one cannot write in the logic. As a simple
example, “9+4” is a meaningful expression of arithmetic, while “4 6++” is not.
Most of us have learned through experience what counts as meaningful expressions
of arithmetic, while with logics we usually define—in a formal and exact way—
the language of the logic. For example, we can formally define a very simple
language Play containing terms and formulae. The terms are given by the following
grammar:

t := 0 | s(t)
The grammar says that 0 is a term, and that if you have a term you obtain a
new term by putting parentheses around it and an “s” in front of it. So s(0) is a

3

4 CHAPTER 1. INTRODUCTION

term, as is s(s(s(0))) and so on. The formulae of Play are all strings of the form
a ◦ b = c where a, b, c are terms.

Both “5+2=7” and “5+2=9” are sentences of arithmetic, but the first is special.
It is not only a sentence of arithmetic, but a true sentence of arithmetic. In the
same way, many (but not all) logics have a notion of truth. It is also quite common
to have several notions of truth for the same language; then we say that the
different notions of truth correspond to different logics.

To give a logic a semantics is to give it a notion of meaning: and we often
build a notion of truth on top of this. The language Play is made with a particular
semantic in mind, where the term 0 is interpreted as the number 0, and s(a)
is interpreted as 1 plus the interpretation of a. So s(0) is interpreted as 1 and
s(s(s(0))) as 3. A formula a ◦ b = c is true if the interpretation of a plus the
interpretation of b equals the interpretation of c. So both s(0) ◦ 0 = 0 and
0 ◦ s(s(0)) = s(s(0)) are formulae of Play, but only the latter is a true formula.

There is another subset of the formulae which often interests us, and that is
the set of deducible formulae. These are formulae which we are able to create using
a specified set of rules and axioms. We can, for instance, define a very simple
deductive system for the language Play containing one axiom and two rules. An
axiom is a sentence which is deducible by assumption—axioms form the starting
point of any deduction—while rules allow the deduction of new sentences from
already deduced sentences. Knowing this, we can start by introducing our only
axiom:

0 ◦ 0 = 0 (1.1)

In addition to the axiom, we provide two rules:

a ◦ b = c

s(a) ◦ b = s(c)
(L)

a ◦ b = c

a ◦ s(b) = s(c)
(R) (1.2)

The symbols “a”, “b” and “c” are meta-variables ranging over the terms of Play.
The rules are to be read as follows: “if we have deduced the expression above the
line we can deduce the expression below the line”. The rules are named “L” and
“R” respectively. Below, we show an example of how one can deduce 1 ◦ 2 = 3 by
using a line of deductions. We start our deductions with the axiom at the top and
write which rule was applied on the left.

0 ◦ 0 = 0
L

1 ◦ 0 = 1
R

1 ◦ 1 = 2
L

1 ◦ 2 = 3

Our simple deduction system is such that all of the sentences it can deduce are
also true sentences with regard to the semantics given above. Deduction systems

1.2. INTUITIONISTIC LOGIC 5

with this property related to a semantics are said to be sound with relation to that
semantics. Play also has the beautiful property that all of its true formulae are
deducible; the system is thus complete with respect to the semantics. So the logics
defined by the true and deducible formulae of Play turn out to be the same! This
is no coincidence; most deduction systems are made with a particular semantics
in mind, and Play is no different in this regard. As we will see later, having a
corresponding semantics and deduction system for a logic can be quite useful, as
it is sometimes significantly easier working with one rather than the other.

1.2 Intuitionistic logic

We are now ready to move on from the simple, “baby” logic presented in the
previous section to real logic. In this section we will present intuitionistic logic, in
both its propositional and first-order form.

1.2.1 Propositional logic

Starting with the propositional language, we assume that we have some set Σ of
propositional variables, usually denoted as p, q, p1, The language of proposi-
tional logic is given by the following grammar, where p ∈ Σ:

φ, ψ := p | φ ∨ ψ | φ ∧ ψ | φ→ ψ | ⊥

In addition we use ¬φ as an abbreviation for φ→ ⊥.

Natural deduction system for intuitionistic propositional logic

We can construct many different deduction systems for the language of propositional
logic, yielding (possibly) different logics. We will now define the deduction system
of intuitionistic propositional logic (IPC). There exist several equivalent definitions;
the one we provide is found in [SU06]. The rules are given in Figure 1.1, and they
are applicable for every propositional formula φ, ψ, χ. A judgment consists of a
pair, one part being a finite set of formulae Γ, the other being a single formula φ.
We write the judgment as Γ
 φ, to be read as “Γ proves φ”. We will use certain
conventions when writing the set on the left; instead of writing Γ ∪ {φ}
 ψ we
just write Γ, φ
 ψ, and instead of ∅
 φ we write
 φ. A proof of Γ
 φ consists of
a finite tree of judgments satisfying certain requirements; the root of the tree must
be Γ
 φ, all the leaves must be empty, and each step must be the application of
one of the rules in Figure 1.1. We write these proof-trees with the root at the
bottom.

6 CHAPTER 1. INTRODUCTION

(AX)
Γ, φ
 φ

Γ, φ
 ψ
(→I)

Γ
 φ→ ψ

Γ
 φ ∧ ψ
(∧E1)

Γ
 φ

Γ
 φ ∧ ψ
(∧E2)

Γ
 ψ

Γ
 ⊥ (⊥E)
Γ
 φ

Γ
 φ Γ
 φ→ ψ
(→E)

Γ
 ψ

Γ
 φ Γ
 ψ
(∧I)

Γ
 φ ∧ ψ

Γ
 φ
(∨I1)

Γ
 φ ∨ ψ

Γ
 ψ
(∨I2)

Γ
 φ ∨ ψ

Γ, φ
 χ Γ, ψ
 χ Γ
 φ ∨ ψ
(∨E)

Γ
 χ

Figure 1.1: Natural deduction system NJ for intuitionistic propositonal logic.

Definition 1.1 (IPC). The logic IPC consists of all propositional formulae φ such
that
 φ, the so-called validities of IPC. We sometimes write
IPC φ instead of

 φ.

As an example of a proof, we show
IPC (p→ r) → (p→ (q → r)):

(AX)
p→ r, p, q
 p (AX)

p→ r, p, q
 p→ r
(→E)

p→ r, p, q
 r
(→I)

p→ r, p
 q → r
(→I)

p→ r
 p→ (q → r)
(→I)
 (p→ r) → (p→ (q → r))

Notice how each of three branches ends in an application of the AX-rule, this
is the only rule giving an empty leaf.

Kripke semantics for intuitionistic propositional logic

We now present a semantic for intuitionistic propositional logic. This gives a
completely different way of defining a set of propositional formulae, but we will
see that it actually corresponds with the set of deducible formulae defined above.

A Kripke model for the propositional language over the alphabet Σ consists of
a triple 〈W,≤, V 〉 where W is a set of states (sometimes called “days”), ≤ is a

1.2. INTUITIONISTIC LOGIC 7

preorder (i.e., a reflexive and transitive binary relation) over W , and V : W → P(Σ)
is an assignment from states to the set of propositional letters holding in that
state. We demand monotonicity of V ; for every w,w′ ∈ W and p ∈ Σ, if p ∈ V (w)
and w ≤ w′ then p ∈ V (w′).

We then define when a propositional formula is true at a point in a Kripke
model M = 〈W,≤, V 〉 by induction on the shape of the formula:

Definition 1.2 (Truth of propositional formulae in a pointed Kripke model).

M,w |=p iff p ∈ V (w)

M,w |=⊥ never holds

M,w |=φ ∨ ψ iff M,w |= φ or M,w |= ψ

M,w |=φ ∧ ψ iff M,w |= φ and M,w |= ψ

M,w |=φ→ ψ iff ∀u ≥ w, if M,u |= φ then M,u |= ψ

A propositional formula φ is said to hold in a model M = 〈W,≤, V 〉, written
M |= φ when M,w |= φ for all w ∈ W , and we write |= φ if M |= φ for all Kripke
models. The set of all propositional formulae φ such that |= φ forms a logic,
and—amazingly—it is exactly the logic IPC.

Notice how the truth-condition for φ → ψ is different from the classical
condition; the implication must not only hold in the current state, but in all
following states as well.

Theorem 1.1 (Soundness and completeness of propositional Kripke Semantics).
For all propositional formulae φ we have |= φ if and only if
IPC φ.

This way of seeing the same logic from two different viewpoints can be quite
useful, and in this thesis we use a similar correspondence to show unprovability; if
we can provide a Kripke model where the formula ψ is not true, then the above
theorem says that ψ cannot be provable in IPC.

As an example, we provide a very simple model M = 〈W,≤, V 〉 demonstrating
the non-provability of p ∨ ¬p, shown in Figure 1.2. The nodes in the picture are
the states in W , with their names written inside the node, and the arrow from w
to u means that we have w ≤ u. Next to the state we have the set of propositional
letters true in that state (the output of V on the state).

w{} u {p}

Figure 1.2: Kripke countermodel falsifying the law of excluded middle.

Evaluating M,w |= p∨¬p we see see that it holds when M,w |= p or M,w |= ¬p.
M,w |= p certainly does not hold, since p �∈ V (w). But we also don’t have

8 CHAPTER 1. INTRODUCTION

M,w |= ¬p since this is the same as M,w |= p→ ⊥, which would require ∀u ≥ w,
if M,u |= p then M,u |= ⊥. But we have u ≥ w with M,u |= p but not M,u |= ⊥
(since no state satisfies ⊥).

One way of thinking about Kripke models is as representing possible states,
where there is an arrow from one state to another, if the latter state is seen as
possible from the first. For something to be provable it needs to hold in all possible
states. The monotonicity of V can be understood as capturing the intuition that
we can only regard a state as possible if it satisfies the basic things which we know
are true in the current state.

Classical propositional logic

As seen above, p ∨ ¬p is not deducible in IPC. In light of the correspondence
between provability in IPC and the Kripke semantics for IPC, this can be viewed
in two different ways. One way is that the rules given in Definition 1.1 are too
weak to deduce p ∨ ¬p without further assumptions, and the other way is that we
are so liberal with what we count as a model that we also have models in which
p ∨ ¬p is false. If we want, we can add the axiom scheme φ ∨ ¬φ to IPC, giving
classical propositional logic (CPC).

Definition 1.3 (CPC). The logic CPC consists of the propositional formulae
which are provable using the rules in Figure 1.1 with the additional rule:

(LEM)
Γ
 φ ∨ ¬φ

The law of excluded middle provides us with a new way to construct empty
leaves to “close off” our proof trees. Adding the law of excluded middle has two
effects; more formulae are provable, and the logic has fewer models.

An example of a formula which is provable with the law of excluded middle is
¬¬φ→ φ. Remember that ¬φ is shorthand for φ→ ⊥, and for sake of brevity we
have left out the label AX on the three leaves where it is used.

¬¬φ, φ
 φ

¬¬φ,¬φ
 ¬φ ¬¬φ,¬φ
 ¬¬φ
(→E) ¬¬φ, φ→ ⊥
 ⊥

(⊥E) ¬¬φ, φ→ ⊥
 φ (LEM)¬¬φ
 φ ∨ ¬φ
(∨E) ¬¬φ
 φ

(→I)
 ¬¬φ→ φ

CPC is not sound and complete with respect to Kripke models, but it is sound
and complete with respect to 1-point Kripke models. When thinking about Kripke
models as representing possible states, this is not surprising; the law of excluded
middle lets us remove any ambiguity regarding the state of the world, so there are
no other possible states.

1.2. INTUITIONISTIC LOGIC 9

1.2.2 First-order logic

Propositional logic is interesting, but for certain use its expressive power is too
limited. For example, when attempting to capture the reasoning of Aristotle’s
syllogism, the lack of quantification (“All” and “Exists”) becomes a problem:

All men are mortal.
Socrates is a man.

Therefore, Socrates is mortal.

Intuitionistic first-order logic is an extension of the propositional version: it
has a significantly more expressive language which can quantify over variables.
This enables us to express more complicated notions, but it does so at the expense
of making reasoning more complicated.

The first-order language

First-order languages are defined with respect to a signature—a family of function
and relation symbols with a designated arity—and set of variables. All the variables
are terms, as are expressions of the form f(t1, . . . , tn), where t1, . . . , tn are terms
and f is an n-ary function symbol.

An atomic formula is either the logical symbol ⊥ or an expression of the form
P (t1, . . . , tn), where P is an n-ary relation symbol and t1, . . . , tn are terms.

The first-order formulae are given by the following grammar, where Q is an
atomic formula and a is a variable:

φ, ψ := Q | φ ∨ ψ | φ ∧ ψ | φ→ ψ | ∀aφ | ∃aφ | ⊥

Natural deduction system for intuitionistic first-order logic

To extend the natural deduction system for intuitionistic propositional logic such
that it also handles the first-order formulae, one simply needs to add four new
rules, given in Figure 1.3. To understand the rules, we need to introduce a bit of
notation. A variable x is free in a formula if there is no occurrence of ∃x or ∀x
which ranges over it, and FV (Γ) collects all variables occurring freely in at least
one of the formulae in Γ. φ[a := t] means φ with all occurrences of a replaced
with t.

We define a logic of the deducible formulae.

Definition 1.4 (IQC). If we can prove a first-order formula
 φ using the rules in
Figure 1.1 and Figure 1.3 we write
IQC φ. The logic IQC consists of all first-order
formulae φ such that
IQC φ, and we then say that φ is valid in the logic IQC.

10 CHAPTER 1. INTRODUCTION

Γ
 φ[a := t]
(∃I)

Γ
 ∃aφ
Γ
 ∀aφ

(∀E)
Γ
 φ[a := t]

Γ
 φ
(∀I), (a �∈ FV (Γ))

Γ
 ∀aφ

Γ
 ∃aφ Γ, φ
 ψ
(∃E), (a �∈ FV (Γ, ψ))

Γ
 ψ

Figure 1.3: Natural deduction system NJ for intuitionistic first-order logic.

Kripke semantics for intuitionistic first-order logic

Kripke semantics for intuitionistic first-order logic is based on Kripke semantics
for intuitionistic propositional logic, but it is somewhat more complex.1 A Kripke
model for a first-order language Σ is a triple M = 〈W,≤, {Nw}w∈W 〉 where W is
a set of states/days, ≤ is a preorder over W and {Nw}w∈W is a family of classical
Σ-structures satisfying a number of requirements. Being a classical Σ-structure
means that each Nw must contain a domain and give an interpretation to each of
the relations symbols and functions in Σ. The additional requirements are that
these interpretations are monotone in the following sense: For all u, v ∈ W , if
v ≤ u then

• the domain of Nv must be a subset of the domain of Nu,

• the interpretation of function symbols in Nv and Nu must agree on the
domain of Nv, and

• the interpretation of relations symbols in Nv and Nu must agree on the
domain of Nv.

We can now evaluate a first-order formula in a point w in a Kripke model
M = 〈W,≤, {Nw}w∈W} under a evaluation e, mapping variables to elements the
domain of w.

1For those familiar with classical semantics of first-order logic, Kripke semantics is a pre-order
of classical models with a similar monotonicity requirement as the one for the propositional case.

1.2. INTUITIONISTIC LOGIC 11

Definition 1.5 (Truth of first-order formulae in a pointed Kripke model).

M,w |=P (t1, . . . , tn)[e] iff P (t1, . . . , tn)[e] holds in Nw

M,w |=⊥ never holds

M,w |=(φ ∨ ψ)[e] iff M,w |= φ[e] or M,w |= ψ[e]

M,w |=(φ ∧ ψ)[e] iff M,w |= φ[e] and M,w |= ψ[e]

M,w |=(φ→ ψ)[e] iff ∀u ≥ w, if M,u |= φ[e] then M,u |= ψ[e]

M,w |=(∃xφ)[e] iff there exists an a ∈ Nw such that: M,w |= φ[e(x �→ a)]

M,w |=(∀xφ)[e] iff for every u ≥ w and every a ∈ Nu : M,u |= φ[e(x �→ a)]

Again we write M |= φ for a Kripke model M = 〈W,≤, {Nw}w∈W 〉 if M,w |= φ
for all w ∈ W , and |= φ if M |= φ for all Kripke models M .

In addition to implication, it is particularly the truth-conditions for ∀xφ which
differs in an interesting way from the classical semantics: for ∀xφ to hold, it is
not enough that every element in the present state satisfies φ—it must hold in
all future states as well, even for elements not yet introduced. Thinking about
Kripke semantics in terms of possible worlds, this means that ∀xφ must hold not
only for elements we know about, but for all elements we see as possible.

As with the propositional case, we have a beautiful correspondence between
deduction system and semantics, shown in [Kri65], which we can use to show the
unprovability of first-order formulae in quantified intuitionistic logic.

Theorem 1.2 (Soundness and completeness of first-order Kripke Semantics). For
all first-order formulae φ, we have |= φ if and only if
IQC φ.

NvDomain={a}, P = {a} Nu Domain={a, b}, P = {a}

Figure 1.4: Kripke countermodel falsifying ¬∀xP (x) → ∃x¬P (x).

We will use this correspondence to show the unprovability of the classic
tautology ¬∀xP (x) → ∃x¬P (x) in IQC by means of a Kripke countermodel. The
model, shown in Figure 1.4, goes over two days, u and v, with v ≤ u. The domain
of Nv is {a}, and the interpretation of P in Nv is {a}. The domain of Nu is
{a, b}, and the interpretation of P in Nu is also {a}, crucially not containing b.
Expanding the definition of truth, we see that M, v |= ¬∀xP (x) is the same as
M, v |= ∀xP (x) → ⊥; and this holds, since we have both M, v �|= ∀xP (x) and
M,u �|= ∀xP (x). The latter follows directly from the fact that we have an element
b in the domain of Nu such that we don’t have it in the interpretation of P in Nu.
We also have M, v �|= ∀xP (x), since M, v |= ∀xP (x) would require ∀xP (x) to hold

12 CHAPTER 1. INTRODUCTION

in all following states—including u—but as we have shown, this is not the case. But
we don’t have M, v |= ∃x¬P (x), since all elements of Nv are in the interpretation
of P . Thus, we have a model M such that M �|= ¬∀xP (x) → ∃x¬P (x), giving
�|= ¬∀xP (x) → ∃x¬P (x), which again gives �
IQC ¬∀xP (x) → ∃x¬P (x) by
soundness.

Classical first-order logic

Adding the law of excluded middle to IQC, in the same way as we did to IPC, we
get classical first-order logic.

Definition 1.6 (FOL). The logic FOL consists of all first-order formulae which
are provable using the rules in Figure 1.3, with the additional rule:

(LEM)
Γ
 φ ∨ ¬φ

Adding the law of excluded middle restricts us in certain ways. With IPC, we
can include assumptions which are incompatible with the law of excluded middle.
We could, for example, add that all functions are computable and see what would
follow from this, essentially investigating the models where this is satisfied. If
we try adding the same assumption to classical logic however we introduce a
contradiction.

We also have—as in the propositional case—that the addition of the law of
excluded middle means that IPC is no longer sound with respect to Kripke models.
But—as earlier—IPC is sound and complete with respect to 1-point Kripke models,
also called Tarski semantics.

1.2.3 The BHK interpretation

Intuitionistic logic can be understood through the Brouwer–Heyting–Kolmogorov
interpretation of what a proof consists of, explaining proofs as algorithms. This
gives a third way to read the formulae, in addition to the formal “explanation”
given by semantic and deduction systems.

• A proof of φ ∨ ψ consists of a pair 〈k, p〉 where either k is 0 and p is a proof
of φ, or k is 1 and p is a proof of ψ.

• A proof of φ ∧ ψ consists of a pair 〈a, b〉 such that a is a proof of φ and b is
a proof of ψ.

• A proof of φ→ ψ consists of an algorithm transforming any proof of φ to a
proof of ψ.

1.3. CONSTRUCTIVE MATHEMATICS 13

• ⊥, has no proof.

• A proof of ¬φ is a proof of φ→ ⊥, i.e., a transformation from a hypothetical
proof of φ into a proof of ⊥.

• A proof of ∀x, φ(x) consists of an algorithm transforming any a ∈ S into a
proof of φ(a).

• A proof of ∃x, φ(x) consists of a pair 〈a, b〉 such that a ∈ S and b is a proof
of φ(a).

Note that the BHK interpretation does not give a precise notion of what construc-
tive logic is. It does not, for example, define what it means to be an “algorithm”,
and it does not account for what constitutes a proof of a propositional letter or a
predicate applied to terms. Several different constructive systems adhere to the
BKH interpretation to different degrees and in different ways: we will talk about
a couple of these in the next section.

The BHK interpretation provides us with a new, computational way to read
formulae. Let us look at, for instance, the following intuitionistic provable formula

(p ∧ z) → (q → p)

The BHK reading of this is that, given a proof of p ∧ z—let’s call such a proof
“proof 1”—we can transform that proof into one of q → p. A proof of q → p is
just a transformation which, given a proof of q, returns a proof of p. A proof of p
can be found by turning our attention to proof 1, which, according to the BHK
interpretation, consists of a pair 〈a, b〉 where a is a proof of p and b is a proof of
z. The “transformation” which ignores q but returns a is a proof of q → p; so we
have shown (p ∧ z) → (q → p).

Remember that ¬∀xP (x) → ∃x¬P (x) is not provable in intuitionistic logic.
When given a BHK reading, this seems reasonable; the antecedent gives a procedure
which transforms ∀xP (x) into ⊥, but you will be hard-pressed to construct—from
this procedure alone—a concrete element a such that ¬P (a).

Similarly for ¬¬p → p, which is the same as ((p → ⊥) → ⊥) → p; a way of
transforming (p→ ⊥) into ⊥, does not provide a way to construct a proof of p.

1.3 Constructive mathematics

This thesis concerns itself with constructive proofs, contrary to non-constructive
proofs. The major difference lies in the interpretation of disjunction and existence:
constructive proofs of an existential contain a way of constructing or computing
the witness, and constructive proofs of a disjunction tell us which of the disjuncts

14 CHAPTER 1. INTRODUCTION

hold. As classical mathematics can be built on top of classical logic, constructive
mathematics can be built on a constructive logic. We have seen one example of a
constructive logic already, the logic of intuitionistic first-order logic IQC. Although
the two words “intuitionistic” and “constructive” have had different meanings
historically, in this thesis, we will use them synonymously.

There is not only one formal system in which all of constructive mathematics is
done, there are several different systems with different properties. Two important
ones are Intuitionistic Zermelo-Fraenkel set theory (IZF) and Martin-Löf Type
Theory (MLTT) [ML75]. IZF is set theory built on top of IQC—as defined above—
and it is one of the stronger constructive systems. MLTT is a relatively modern
system which has gained much attention in the last decades, and has a semantics
quite close to the BHK interpretation of formulae. A proper introduction to MLTT
is outside of the scope of this section (see [Cro15], [Coq15] and [BP13, Section
3.4] for good introductions), but some points are worth mentioning. MLTT takes
the computational reading of constructive mathematics to its heart, and proofs
are actual programs. These programs/proofs are first class citizens of the system,
and proofs of implications are actual programs which take a proof (program) of
the assumption as an argument and transform it into a proof of the antecedent.
The prominent proof assistant Coq [CDT12] is based on MLTT and we make
extensive use of Coq in this thesis. See [TVD88] for an overview of constructive
mathematics in general.

To avoid getting too bogged down in the details of a particular constructive
framework, it is not uncommon to present constructive proofs in a rigorous but
informal matter consistent with the BHK interpretation, in such a way that it
can readily be expressed in several of the constructive frameworks. We follow this
style in this thesis, but most of the results are either additionally formalized in
Coq, or accompanied by a sketch of how to formalize them in a formal system.

To illustrate the differences between constructive and non-constructive proofs
we will provide two examples. The first example is used so extensively that it
can almost be regarded as compulsory in any introduction text on constructive
mathematics. It probably appeared in print for the first time in [Jar53].

Lemma 1.7. There exist irrational numbers a and b such that ab is rational.

Non-constructive proof:
√

2
√
2

is either rational or irrational. If it is rational, our

statement is proved. If it is irrational, (
√

2
√
2
)
√
2 =

√
2
√
2∗√2

=
√

2
2

= 2 proves our
statement.

Constructive proof. Let a =
√

2, b = log2 9. Using well-known logarithmic identi-
ties we can conduct the following line of reasoning:

√
2
log2 9

= 2log2(
√
2)×log2 9 = 2log2(log2 9×

√
2) = 9log2

√
2 = 9log2(2

0.5) = 90.5 =
√

9 = 3

1.3. CONSTRUCTIVE MATHEMATICS 15

Notice the difference between these two proofs. The first shows the truth of
the statement, but does not provide us with actual witnesses for a and b. It could

be that a = b =
√

2 or it could be that a =
√

2
√
2

and b =
√

2; the proof gives us
no information in this regard. It is the use of the law of excluded middle which

lets us divide the proof into two cases, depending on whether
√

2
√
2

is rational or
irrational.

The constructive proof consists of actual witnesses, and then simple high-school
arithmetic shows that they satisfy the desired properties. To complete the proof
we need to show constructively that

√
2 and log2 9 are irrational numbers. But

the standard proof that
√

2 is irrational is constructive, and the irrationality of
log2 9 is also constructively deducible.2

The second example is a bit more involved, but highlights the very compu-
tational nature of constructive proofs. This example uses notions which we will
discuss in greater detail in Chapter 2. A stream over Boolean is a function from
natural numbers into the values {True,False}, and we define two properties of
streams: eventually always false and bounded. A stream f is eventually always
false when we have an index i such that we can guarantee that every index above
i has the value False:

∃i : N, ∀m : N, ((m ≥ i) → (f(m) = False)).

A stream f is bounded by n when we know that there are no more than n true
positions in the stream.

∃n : N, ∀k : N,#Truef (k) ≤ n.

#Truef(k) is a function which counts the number of true positions in f from
position 0 up to k.

Both constructively and classically, we have that any stream that is even-
tually always false is bounded. Constructively, we can see this by constructing
a terminating algorithm, a procedure, which converts a proof of a stream be-
ing eventually always false into a proof that the same stream is bounded. We
are given an eventually always false stream f , and the constructive reading of
this is that we are then given a stream f and an i : N with the guarantee that
∀m : N, (m ≥ i) → (f(m) = False). Our goal is to provide an n : N, together with
a guarantee that ∀k : N,#Truef(k) ≤ n. We simply let n be the i we received

2If log2 9 were representable as a rational number p
q then 2log2 9 = 9 iff 2

p
q = 9, iff (2

p
q)q =

2p = 9q, but 9q = 2p is impossible since 9 = 32, and 3n is always odd while 2m is always even.

16 CHAPTER 1. INTRODUCTION

as an argument. There cannot be any more true positions than i, since we are
guaranteed that all values after i are false.

The interesting question is whether we can also go the other way. Can we
show that all bounded streams are eventually always false? Classically, we can:
assuming a bounded stream f , we can show that it is impossible that f is not
eventually always false. Since ¬¬φ→ φ holds classically (but not constructively),
this shows that f is eventually always false.

But can we provide a constructive proof, a terminating algorithm? This seems
difficult; we are given a bound k on the number of true positions, and we can
start counting true positions from 0, but when do we stop? Since the bound is
not strict, there is no way of knowing—when we have found some number of true
positions—whether there will be another position with True. We cannot guarantee
that all following positions will be false until we have found the kth true position,
but we are not guaranteed that there even is such a position.

More specifically, if we had an algorithm implementing this implication we
could solve the halting problem. The halting problem asks whether one can
decide, for every possible program, whether it will halt, and this was shown to be
impossible by Alan Turing [Tur36]. Given a program we make a stream which is
True on position n if the program halts after being run for exactly n steps, and
False otherwise. This stream clearly has a bounded number of true positions:
either 0 or 1. But by getting a position after which every position after is false
we can check in finite time whether the whole stream is false or not, determining
whether the program halts or not.

To show that the implication is not provable in a specific constructive system,
one can provide a falsifying Kripke model as in Section 1.2.2—which would show
that the implication is not provable in IQC—or show that if we had the implication,
then we would get some consequence which we already know are not constructively
provable, as done in [BNU12].

These two notions are the same classically, but algorithmically they are not.
Constructive mathematics allows one to work in a framework where these algorith-
mically nonequivalent notions remain nonequivalent. One can of course investigate
these notions algorithmically using classical logic by carefully refraining from doing
anything non-computational, but constructive mathematics provides a framework
where this comes naturally. As an added bonus, most constructive frameworks
provide a way to extract algorithms directly from proofs.

In [Ric90], Richman defends the view that constructive mathematics should
be seen as a generalization of classical mathematics which “accommodates both
classical and computational models”, and not as something inferior. Richman
separates between what he calls “Type 1” and “Type 2” theories. The first—
exemplified by arithmetic—has one intended model; the axiomatization is an

1.4. OVERVIEW OF THE THESIS 17

attempt at characterizing this one model and the inability3 to do so perfectly is
seen as a defect of the formalization. In the second type of axiomatic theory—
group theory being a prominent example—the power lies exactly in the number
of different models. Constructive set theory has more models than classical set
theory; all that is provable constructively (without further assumptions) hold
classically as well. When viewing set theory as a Type 2 theory, this is a virtue.

Constructive mathematics not only allows for more models than classical
mathematics; it also allows one to pick axioms which directly contradict classical
mathematics, but which hold in other models. In this way, one can “zoom” into
these models—e.g., models where all functions are computable—and investigate
them. But it is a mistake to think that constructive mathematics is about these
models—it merely allows them to exist and for us to investigate them. This
axiomatic freedom makes constructive mathematics go hand-in-hand with reverse
mathematics, the program of exactly establishing which axioms are needed to
prove theorems of mathematics.

I want to mention a property of constructive mathematics which is neglected
far too often: constructive mathematics is both beautiful and fun. Restraining
from using the law of excluded middle forces one to work in a radically different
way, but in a way which feels quite natural to a computer scientist. The proofs
can end up taking unexpected turns—when seen from a classical perspective—but
they are often beautiful and hold in more models.

1.4 Overview of the thesis

In this thesis, we investigate aspects of finite sets and simplicial sets from a
constructive perspective. In this chapter we have already looked at two notions
which can be used to define finiteness: bounded gives us one way to characterize
a set of true positions as finite, while eventually always false gives us another.
Chapter 2 investigates a third notion, strictly bounded sets, and how this notion
relates to the two previous ones. We find that it falls nicely between them; it is
strictly stronger than bounded but strictly weaker than eventually always false,
and we discover exactly which assumptions are needed to make them equivalent.
All of these results are formalized in Coq.

In Chapter 3, we continue our exploration of constructive finiteness and examine
streamless sets. Contrary to the previous notions of finiteness, streamlessness
does not presume the set to have (decidable) equality, nor to be a subset of an
enumerable set. One possible use case for this is finite sets of real numbers; the
equality of real numbers is undecidable. We investigate whether streamless sets

3Gödel showed in 1931 that any consistent axiomatizations of arithmetic must be incomplete.

18 CHAPTER 1. INTRODUCTION

are closed under Cartesian products: if A and B are streamless sets, is A × B
necessarily streamless? We also see how the assumption of function extensionality
gives streamless sets decidable equality in certain constructive frameworks. These
results have appeared in [Par15].

Another notion of finiteness is Noetherian. In Chapter 4, we generalize the
notion of streamless and Noetherian to binary relations; streamless and Noetherian
sets are then sets where equality is a streamless or Noetherian relation, respectively.
We provide two proofs that Noetherian relations are streamless, where one of these
proofs can be expressed in a type system without inductively defined equality.

In Chapters 5 and 6, we move on to simplicial sets; in particular, those
satisfying the Kan condition. This notion, coming from topology, has piqued the
interest of the type theory community, as Kan simplicial sets can be used to build
models of Martin-Löf type theory that validate the Univalence Axiom.

The following theorem holds classically: if Y and X are Kan simplicial sets, then
Y X is also a Kan simplicial set. This theorem is important for the Kan simplicial
set model of type theory. We investigate the non-constructivity of this theorem
for several interpretations of what it means to be Kan in a constructive setting,
and provide Kripke counter models showing that the result is not constructively
provable for any of the interpretations. This has consequences for homotopy
type theory, had it been constructively provable, it could have led the way to a
computational interpretation of the Univalence Axiom. Some of these results have
appeared as [BCP15], and others are under review.

Part II

Scientific results

19

Strictly Bounded Sets

Erik Parmann

In this report we investigate the relationship between several kinds of finiteness.
In particular, we are interested in the finiteness of decidable subsets of natural
numbers. We start by recalling two definitions given by Bezem et al. [BNU12],
and we formulate a natural version of finiteness lying strictly between the two.
All results are formulated and verified in the Coq proof assistant.

22 CHAPTER 2. STRICTLY BOUNDED SETS

2.1 Introduction

Constructive logic can prove fewer logical equivalences than classical logic; or,
alternatively, it allows for more distinctions. This also holds with respect to
finiteness; there are several notions of finiteness which are classically equivalent,
but which can be separated constructively. This report looks at a few such notions.

We look at some ways to constructively define the set of true positions in
a Boolean stream as finite. Since Boolean streams can be seen as representing
decidable sets of natural numbers, we can also be seen as defining decidable sets
of natural numbers as finite. In particular, the notions of finiteness we investigate
here are applicable to sets which:

• have an enumerable superset with decidable equality; and

• have decidable membership.

It should be noted that the present report has significance for any such set, not
only for decidable subsets of the natural numbers.

We extend work done by Bezem, Nakata and Uustalu [BNU12] by identifying
a new formalization which lies between two known ones, and we show reductions
“downwards” and “upwards” in the hierarchy. We show that the two upward
reductions are equivalent to Markov’s principle and the weak limited principle of
omniscience, respectively. Both of these principles are constructively consistent
weak forms of the law of excluded middle, but not constructively provable, showing
that the different notions of finiteness form a proper, non-collapsing hierarchy
constructively. All new results in this report have been formalized and verified
using the Coq [CDT12] proof assistant.

We start in Section 2.2 by introducing the needed machinery and the two
preexisting notions of finiteness. In Section 2.3, we introduce the new notion of
finiteness and place it in the hierarchy, before we sum up in Section 2.4.

2.2 Preliminaries

We start by providing the basic definitions. A stream over A is a function of
type N → A. For a stream f : N → bool, we define the complement stream
f− : N → bool as f−(x) = ¬f(x). For a stream f : N → bool, #Truef : N → N is
the function which on input k returns the number of natural numbers i such that
i ≤ k and f(i) = True; that is,

#Truef (k) = |{i | i ≤ k ∧ f(i) = True}|.

2.2. PRELIMINARIES 23

Given a stream g : N → bool we construct the stream TrueOnFirstg, which is
true on at most the first index where g is true and false everywhere else:

TrueOnFirstg(n) =

{
g(n) ∀i < n, g(i) = False

False otherwise

The condition ∀i < n, g(i) = False is constructively checkable, since it is a bounded
search down from n. It is easy to both see and show that:

∀n : N,#TrueTrueOnFirstg(n) ≤ 1

The following three principles are all constructively consistent, but not provable.
Markov’s principle (MP) states that, for any decidable predicate P over natural
numbers, if it is impossible that there is no such number satisfying P , then there
exists a natural number satisfying P .

Definition 2.1 (Markov’s principle, MP).

(∀n : N, P (n) ∨ ¬P (n)) → (¬¬(∃n : N, P (n)) → ∃n : N, P (n))

Intuitively, Markov’s principle is realized by an unbounded search, which we
can convince ourself (from outside the system) will terminate since it is impossible
that it will have to run forever.

The weak limited principle of omniscience (WLPO) states that any decidable
predicate P is everywhere true or not everywhere true.

Definition 2.2 (Weak limited principle of omniscience, WLPO).

(∀n : N, P (n) ∨ ¬P (n)) → ((∀n : N, P (n)) ∨ ¬∀n : N, P (n))

The even stronger limited principle of omniscience (LPO) states that every
decidable predicate is either everywhere true, or we have an n : N falsifying P .

Definition 2.3 (Limited principle of omniscience, LPO).

(∀n : N, P (n) ∨ ¬P (n)) → ((∀n : N, P (n)) ∨ ∃n : N,¬P (n))

It is rather easy to see that

(MP ∧ WLPO) ⇒ LPO,

and in fact we even have the stronger equivalence

(MP ∧ WLPO) ⇐⇒ LPO.

24 CHAPTER 2. STRICTLY BOUNDED SETS

Since the predicate P in WLPO, MP, and LPO is a decidable predicate over
N, the above formulations have equivalent formulations for Boolean streams. For
example, Markov’s principle states that, for any Boolean stream f , we have

¬¬(∃n : N, f(n) = True) → ∃n : N, f(n) = True .

We will freely switch between the two formulations, depending on which is easier
to work with.

We now provide two properties that can hold of Boolean streams, both given
in [BNU12]. A function f : N → bool is eventually always false, written eaf(f),
when there is some index such that every index above it is false:

Definition 2.4 (Eventually always false (eaf(f))).

∃n : N, ∀m : N,m ≥ n→ f(m) = False .

Next, we say that a stream f : N → bool is bounded, written bounded(f),
when there is a bound to the number of true positions:

Definition 2.5 (Bounded (bounded(f))).

∃n : N, ∀k : N,#Truef (k) ≤ n.

Bezem et al. refer to bounded(f) as both “Equation (2)” and ”∃n. lenn s”, and
to eaf(f) as both “Equation (1)” and “F(G blue)s”.

2.3 Strictly bounded

In this section we introduce a natural strengthening of bounded, expressing that
we not only have a bound on the number of true positions, but a strict bound.
Formally we say that a stream f : N → bool is strictly bounded, written sb(f),
when:

Definition 2.6 (Strictly bounded (sb(f))).

∃n : N, (∀k : N,#Truef (k) ≤ n ∧ ¬(∀k : N,#Truef (k) < n)).

An equivalent formulation to sb(f), easily provable equivalent by induction, is
the following.

∃n:N, (∀k:N,#Truef (k) ≤ n ∧ (∀m : N,m < n→ (¬∀k : N,#Truef (k) ≤ m))).

We will switch freely between the two formulations. In the following, we will
investigate how strictly bounded relates to both bounded and eventually always
false.

2.3. STRICTLY BOUNDED 25

It is clear that sb(f) ⇒ bounded(f), and eaf(f) ⇒ sb(f) is also easily proven,
as the bound on the index in eaf(f) gives us a bound where all the true values
must reside, letting us find the exact number of them in finite time. Furthermore,
Bezem et al. show that (∀f : N → bool, bounded(f) ⇒ eaf(f)) ⇐⇒ LPO. LPO
is consistent but not provable constructively, so the same holds for (∀f : N →
bool, bounded(f) ⇒ eaf(f)).

The main result in this report is that the new notion of strictly bounded falls
neatly between the two previous notions, completing the picture. The relationships
are summed up in Figure 2.1, where the solid lines are the new results in this
report and the dashed lines were shown in [BNU12]. As neither Markov’s principle,
WLPO nor LPO hold constructively, we get a strict hierarchy where eaf ⇒ sb and
sb ⇒ bounded holds constructively, but none of the other directions hold without
further assumptions.

eaf

bounded

LPO sb
MP

WLPO

Figure 2.1: The relationship between different properties of Boolean streams.
Dashed lines were known; solid lines are new results.

We start by showing the equivalence

(∀f : N → bool, sb(f) ⇒ eaf(f)) ⇐⇒ MP.

Before we give the formal proof, however, we provide some intuition. For the
direction right to left we must be able to get—from a strict bound on the number
of true elements—the concrete index of the last true element. With a strict bound,
we are able to show that it is impossible that there is no index which is the index
of the last true position, which combined with Markov’s principle gives us the
concrete index of the last true position.

For the left to right direction, we get the antecedent of Markov’s principle—a
proof that ¬¬(∃n : N, g(n) = True) for a stream g : N → bool—and we must
provide an n : N such that g(n) = True. We use the stream TrueOnFirstg, which is
true on the first true position of g (if this exists), and is false everywhere else. From
the assumption ¬¬(∃n : N, g(n) = True), we are able to show that TrueOnFirstg
has more than 0, so exactly 1, true position, giving a strict bound on the number of
true positions. Since this, by assumption, implies that TrueOnFirstg is eventually
always false, we are able to find the concrete index of the first true position, which
is an n : N such that g(n) = True.

26 CHAPTER 2. STRICTLY BOUNDED SETS

Theorem 2.1. (∀f : N → bool, sb(f) ⇒ eaf(f)) ⇐⇒ MP.

Proof. (⇐): We assume Markov’s principle, and an arbitrary stream f : N → bool
such that we have sb(f):

∃n : N, (∀k : N,#Truef (k) ≤ n∧ (∀m : N,m < n→ (¬∀k : N,#Truef (k) ≤ m))),

and we proceed to find the n witnessing the statement

∃n : N, ∀m : N,m ≥ n→ f(m) = False . (2.1)

From the assumption sb(f) we get a nr : N such that

∀k : N,#Truef (k) ≤ nr ∧ ¬(∀k : N,#Truef (k) < nr), (2.2)

and we proceed to show that there is an index i : N such that #Truef(i) = nr .
For this we apply Markov’s principle, so we need to deduce a contradiction from
the assumption

¬(∃i : N,#Truef (i) = nr).

From this assumption, we immediately get ∀n : N,#Truef (n) �= nr . Then, using
the left conjunct of assumption 2.2, we get ∀n : N,#Truef(n) < nr . But this
contradicts the right conjunct of assumption 2.2, giving us

¬¬(∃i : N,#Truef (i) = nr),

which by Markov’s principle gives us

∃i : N,#Truef (i) = nr .

We set i+ 1 as the witness needed for eaf(f), and we are left showing

∀m : N,m ≥ i+ 1 → f(m) = False . (2.3)

This is an easy consequence from the monotonicity of #Truef combined with the
following property:

∀n : N, (f(n+ 1) = True → (#Truef (n+ 1) = (#Truef (n)) + 1))

(⇒): We assume that we have

∀f : N → bool, sb(f) ⇒ eaf(f),

and that we have
¬¬(∃n : N, g(n) = True)

2.3. STRICTLY BOUNDED 27

for a Boolean stream g, which is equivalent to ¬∀n : N, g(n) = False.
Recall that we have ∀n : N,#TrueTrueOnFirstg(n) ≤ 1. It is fairly easy to see

that from ¬∀n : N, g(n) = False, we get

¬∀n : N,#TrueTrueOnFirstg(n) = 0.

This means that we have

(∀k : N,#TrueTrueOnFirstg(k) ≤ 1) ∧ (¬∀k : N,#TrueTrueOnFirstg(k) < 1),

giving sb(TrueOnFirstg) with the witness 1. From the main assumption, we get

∃l : N, ∀m : N,m ≥ l → TrueOnFirstg m = False,

giving, by a bounded search downwards from l:

(∀m : N,m ≤ l → TrueOnFirstgm = False) ∨ (∃m : N,TrueOnFirstgm = True).

Since the left implies ∀n : N,#TrueTrueOnFirstg(n) = 0, which is a contradiction,
we can conclude ∃m : N,TrueOnFirstg m = True, giving the index m : N such
that g(m) = True.

We proceed to show informally

(∀f : N → bool, bounded(f) ⇒ sb(f)) ⇐⇒ WLPO.

For the right to left direction, we need to find a strict bound for f from a (weak)
bound, with the help of WLPO. We define the predicate B(n) which holds for an
n if n is a bound on the number of true elements in f ; that is,

B(N) := ∀m : N,#Truef (m) ≤ n.

Importantly, we have B(n) ∨ ¬B(n) with the help of WLPO. We then simply
perform a search downwards from the bound we got from the hypothesis that f is
bounded, checking each smaller number until we find a strict bound.

For the direction left to right, we have to decide (∀n : N, g(n) = True)∨¬(∀n :
N, g(n) = True) for a g : N → bool. We solve the following equivalent formulation:

(∀n : N, g−(n) = False) ∨ ¬(∀n : N, g−(n) = False).

We use the TrueOnFirst construction, and observe that TrueOnFirstg− has at most
1 true position, so TrueOnFirstg− is bounded. By the assumption we get a strict
bound. If the strict bound of TrueOnFirstg− is 1 then ¬(∀n : N, g−(n) = False); if
it is 0, then (∀n : N, g−(n) = False).

28 CHAPTER 2. STRICTLY BOUNDED SETS

Theorem 2.2. (∀f : N → bool, bounded(f) ⇒ sb(f)) ⇐⇒ WLPO.

Proof. (⇐): We assume WLPO

(∀n : N, P (n)) ∨ (¬∀n : N, P (n)),

and an arbitrary bounded Boolean stream f :

∃n : N, ∀k : N,#Truef (k) ≤ n.

We first note that we can prove the following theorem for decidable predicates P
over the natural numbers by a simple induction over the witness in the antecedent.

(∃n : N, P (n)) → (¬P (0) → ∃n : N, P (n) ∧ ¬P (n− 1)) (2.4)

By applying the functional version of WLPO on the complement stream of f , we
can decide whether all indexes of f are False (i.e., whether ∀k : N,#Truef (k) = 0.)
If yes, then we have the witness for sb(f), and we are done. So for the rest of the
proof, assume otherwise:

¬∀k : N,#Truef (k) = 0. (2.5)

We define the predicate B over natural numbers, holding when n is a bound on
the number of true positions:

B(n) := ∀m : N,#Truef (m) ≤ n,

and we note that B is decidable with WLPO: given an n we can apply WLPO to
decide whether ∀m : N,#Truef(m) ≤ n or ¬∀m : N,#Truef(m) ≤ n. From the
fact that f is bounded we know that ∃n : N, B(n), and from 2.5 above we know
that ¬B(0), giving us from 2.4

∃n : N, (∀m : N,#Truef (m) ≤ n) ∧ ¬(∀m : N,#Truef (m) ≤ n− 1),

which is equivalent to

∃n : N, (∀m : N,#Truef (m) ≤ n) ∧ ¬(∀m : N,#Truef (m) < n),

giving us the witness for sb(f).

(⇒): We will show the functional version of WLPO, so we assume a Boolean
stream g, looking to decide whether (∀n : N, g(n) = True)∨¬(∀n : N, g(n) = True).
This is equivalent with deciding

∀n : N, g−(n) = False∨¬∀n : N, g−(n) = False .

2.4. CONCLUSION 29

Observe that we have ∀k:N,#TrueTrueOnFirstg−
(k) ≤ 1, so TrueOnFirstg− is

bounded, and by the main assumption we get a witness for sb(TrueOnFirstg−):

∃n:N, ((∀k:N,#TrueTrueOnFirstg−
(k) ≤ n) ∧ ¬(∀k:N,#TrueTrueOnFirstg−

(k) < n)).

Now observe that we have ∀k : N,#TrueTrueOnFirstg−
(k) = 0 if and only

if ∀n : N, g−(n) = False, and by inspecting whether the n : N witnessing
sb(TrueOnFirstg−) is 0 or 1 we are done.

Notice how the final proof can be modified easily to show

(∀f : N → bool, bounded(f) ⇒ eaf(f)) ⇒ LPO.

Instead of sb(TrueOnFirstg−) we would get eaf(TrueOnFirstg−), which would tell
us not only whether there were true elements in g−, but provide us with the actual
last index. Since ∀i : N, g−(i) = True ⇔ g(i) = False, this allows us to decide
(∀n : N, g(n) = True) ∨ (∃n : N, g(n) = False).

All of the above results are verified in Coq.1 The formalization is a straightfor-
ward transcript of the proofs given here.

2.4 Conclusion

We have provided a formalization of finiteness which fits robustly between the
two existing notions of eventually always false and bounded. We placed it firmly
in the hierarchy, and showed that the reductions one way are provable without
assumptions, while reductions upwards are equivalent with well-known constructive
principles.

1See https://github.com/epa095/strictly-bounded-streams for the Coq script.

30 CHAPTER 2. STRICTLY BOUNDED SETS

Investigating Streamless Sets

Erik Parmann

In this paper we look at streamless sets, recently investigated by Coquand
and Spiwack [CS10]. A set is streamless if every stream over that set contain
a duplicate. It is an open question in constructive mathematics whether the
Cartesian product of two streamless sets is streamless.

We look at some settings in which the Cartesian product of two streamless
sets is indeed streamless; in particular, we show that this holds in Martin-Löf
intentional type theory when at least one of the sets have decidable equality.
We go on to show that the addition of functional extensionality give streamless
sets decidable equality, and then investigate these results in a few other
constructive systems.

32 CHAPTER 3. INVESTIGATING STREAMLESS SETS

3.1 Introduction

One of the interesting aspects of working in constructive mathematics is that
notions often become more nuanced than they do in classical mathematics. This
holds for the notion of finiteness, for instance; there are a multitude of possible
definitions of a set being finite which would be equivalent classically, but are
different constructively.

In this paper, we will look at a particular definition of finite sets in a constructive
context, given in terms of streamless sets. This is essentially a constructive version
of the classical statement that a set is finite if there are no injections from N into
it. It is formulated positively: a set A is streamless when

∀f : N → A, ∃i, j : N, i < j ∧ f(i) = f(j).

It is not known who first looked at finiteness in a constructive setting, but
it was recently investigated by Coquand and Spiwack [CS10], who look at four
different definitions of a set being finite. These four are, in decreasing order of
strength:

• Enumerated: there is a list containing all the elements in the set;

• Bounded: there is an n : N such that every list with more than n elements
has duplicates;

• Noetherian: no matter how one adds elements from the set to a list, one
eventually gets duplication in the list; and

• Streamless: every stream over the set contains duplicates.

They show that these notions form a strict hierarchy, except in the streamless and
noetherian cases (where strictness is left open): they show that any noetherian set
is streamless, and conjecture that the converse does not hold.

It is relatively easy to see that not all bounded sets are enumerated: with
enumerated sets we actually have all of its elements, while with bounded sets
we only know a bound on the size of the set. In fact, emptiness is in general
undecidable for bounded sets, but decidable for enumerated sets. Coquand and
Spiwack[CS10] cite an example offered by F. Richman of a way to generate subsets
of natural numbers with the property that one cannot a priori know the size of
the subset, but if one gets any element in the set then one knows the size of the
set. These sets are noetherian but not bounded.

Marc Bezem and other authors have a model of Martin-Löf Type Theory [MLS84]
in which there is a streamless set which is not provably noetherian, thus showing
that the noetherian property is strictly stronger than streamlessness (personal

3.1. INTRODUCTION 33

communication, September 2014). This model is rather complicated and has yet
to be published. The authors construct a set parameterized by a undecidable
predicate on N. Equality on this set is decidable, which is important for the
proof that it is streamless. They assume Markov’s principle, and use that as the
“engine” which finds duplicates in the streams. They are also able to show that
this set cannot be noetherian. In this way they show—since Markov’s principle is
consistent with Type Theory—that it is not possible to prove that streamlessness
implies noetheriannes.

In addition to giving the hierarchy, Coquand and Spiwack [CS10] also prove
several closure properties of the different notions of finiteness. They show that all
four are closed under sum; that is, for any of the notions of finiteness, the sum of
two finite sets is itself finite by the same notion. The situation is more complicated
for Cartesian products. The two strongest notions, enumerated and bounded, are
shown to be closed under products, and noetherian sets are closed under products,
as long as one of the sets has decidable equality. The use of decidable equality in
one of the sets in the proof in [CS10] was first pointed out in [BNU12]. Whether
streamless sets are closed under Cartesian products was left as an open problem.

Our main result will be the following: in Martin-Löf intentional type theory
(ITT)[ML75] streamlessness is closed under Cartesian products, granted that one
of the sets has decidable equality or is bounded.

An important feature of ITT is strong Σ-elimination. Consequently, from a
proof of ∀x∃y.φ(x, y) we are able to get, for any x, an actual y which can be used
in the construction of new functions/streams. This plays an important role in
the proof of our main result. In other systems, like HA which we will look at in
Section 3.6, we need to assert a axiom of choice to get the same.

In Coq we have the choice of formalizing statements either in Set, which enjoy
strong Σ-elimination, or Prop which does not. The proof we provide here will, on
the face of it, only hold when streamlessness is formalized in Set; but we will see
that, as long as both sets have decidable equality, the two formalizations actually
correspond.

Decidable equality plays an important role in our proof, and we conjecture
that streamlessness is not closed under products when both sets have undecidable
equality. We show that, in ITT with functional extensionality, streamless sets have
decidable equality, meaning that a potential counter-model must reject functional
extensionality.

The main motivation behind this work is curiosity as to the strength of stream-
less sets, but there is also potential for practical applications. One such example is
outlined in Coquand and Spiwack [CS10], namely automaton reachability testing.
They give the regular depth-first graph algorithm for finding reachable states,
and then proceed to show that if one assumes that the set of states in the au-

34 CHAPTER 3. INVESTIGATING STREAMLESS SETS

tomaton is finite in the sense of streamless, then this algorithm terminates. It
is not uncommon to take the Cartesian product of two automata to create one
which has as its language the intersection of the two original languages. Given
that streamlessness is closed under product, one can show that the reachability
algorithm also terminates on this new automaton.

In Section 3.2, we introduce streamless sets and some machinery which lets us
find any number of duplicate elements. In Section 3.3, we prove the main theorem:
that streamless sets with decidable equality are closed under Cartesian products in
ITT. In Section 3.4, we see that adding functional extensionality gives streamless
sets decidable equality. Section 3.5 relates our findings to Coq and its Set vs Prop
distinction; it also briefly touches upon Homotopy Type Theory with Univalence.
In Section 3.6, we relate our finding to Heyting arithmetic in the systems (E-) HAω.
Section 3.7 provides a brief overview of related works; Section 3.8 highlights some
remaining questions; and we conclude in Section 3.9.

3.1.1 Notation

We work in Martin-Löf intensional type theory (ITT)[ML75], where both proposi-
tions and sets are modeled as types.

We assume a inductive type N for the natural numbers, and we have the
usual type constructors: If A is a type and B is a type family over A then both
Πx:AB(x) and Σx:AB(x) are types, the dependent function type and the dependent
pair type with the usual computation rules. We use π1 : (Σx:AB(x)) → A and
π2 : Πp:Σx:AB(x)B(π1(p)) as the two projections of dependent pairs. In the special
cases where B(x) does not depend on x, we abbreviate Πx:AB(x) as A→ B and
Σx:AB(x) as A×B, the latter being the Cartesian product of A and B. If A and B
are types, then A+B is their disjoint union with the constructors inl : A→ A+B
and inr : B → A+B.

We will use the notation Dec =A to stand for the type Πx:AΠy:A(IA(x, y) +
¬IA(x, y)), where IA(x, y) is the inductive identity type. We will use =A as an
infix version of IA, or just = if the type A is clear from context. With A having
decidable equality we mean that we have an inhabitant of Dec =A.

A stream over a set A is any function of type N → A. Given a stream g : N → A
we also have “cut” streams g|n : N → A for every n : N defined by

g|n(x) := g(x+ n).

When we say that we have duplicates in a stream g : N → A, we mean that we
have two indices i < j such that g(i) =A g(j).

Given a stream g over A × B, we can project out two streams g1 : N → A
and g2 : N → B being gi = πi ◦ g. As usual, two elements in A× B are equal if

3.2. INTRODUCTION TO STREAMLESS SETS 35

both their first and second projection are equal. We also say that two elements
in A× B are A-equal (resp. B-equal) if their first (resp. second) projections are
equal.

3.2 Introduction to streamless sets

A set A is streamless if all streams over it contains duplicates; that is, for all
streams g : N → A, we have indices i < j with g(i) =A g(j). Formally, it means
that we have a inhabitant of the type

Streamless(A) := Πf :N→AΣp:N×N(π1(p) < π2(p) × f(π1(p)) =A f(π2(p))).

In what follows we will mostly be interested in the pair p : N×N, and not the
proof that it has the desired features. To avoid having to project out the number
and clutter up the construction more than needed, we will assume that if we have
a streamless set A, we have a witness

MA : (N → A) → N× N,

which, given a stream g over A, gives out two indices i < j such that g(i) = g(j).
First, we show that if we have a stream over a streamless set B, we can find

not only duplicates, but for any n we can find elements occurring at least n times.
This is clear classically; we just have to look at the first |B| × n elements in the
stream. Constructively it is less clear, as we do not know the actual size of the
set— only that it is streamless. As seen in the introduction, one cannot, in general,
deduce the size of a set from the fact that it is streamless. The first part of this
construction, for n = 2, is also used to prove that streamless is closed under sum
in [CS10].

Given a stream g over streamless B, we make a new stream g2 over B×N×N,
such that for every 〈b, i, j〉 we have i < j and g(i) = g(j) = b, and for all
g2(n) = 〈b, i1, j1〉 and g2(n+ 1) = 〈c, i2, j2〉 we have j1 < i2. We get this by letting
g2 begin with 〈g(j), i, j〉 where 〈i, j〉 = MB(g), and then continue likewise on the
stream g|j+1.

Formally, g2 is defined as follows, where indicates a value which we do not
use (and thus prefer not to name).

Definition 3.1 (g2 : N → B × N× N).

g2(0) =〈g(j), i, j〉 where 〈i, j〉 = MB(g),

g2(n+ 1) =〈g(j + p), i+ p, j + p〉 where 〈 , , p〉 = g2(n)

and 〈i, j〉 = MB(g|p+1)

36 CHAPTER 3. INVESTIGATING STREAMLESS SETS

Figure 3.1 contains a visual representation of g2, the top being g and the
bottom g2. The two blue boxes make up the first duplicate pair found by MB(g).
The vertical red line indicates that this is where we “cut” the stream, and by using
MB again on this new stream we get a new duplicate pair, the purple diamonds.
This process continues, defining a new stream of representatives of duplicates in g.

. . .

. . .

〈1, 3〉 〈6, 7〉 . . .

Figure 3.1: g2, the stream of duplicates in g.

The first projection of g2 is itself a B-stream, and we can then use the same
process on this stream. This provides duplicate duplicates, giving us elements
which occur four times in g.

We can iterate this process and, for every n : N and stream g : N → B, we get
a stream gn : N → B × (List N) such that every element in the new stream gives
a 〈b, l〉 such that b occurs at least n times in g, at the n different indices given in l.

To formally define gn it is easiest to first define a slightly stronger function
fn : N → B × (List N) × N. The last natural number is used when defining
fm+1(n+ 1), it tells it where in (fm)1 the nth duplicate was found, enabling us to
cut (fm)1 at the right place.

f 2(n) =〈b, [i1, i2], i2〉 where 〈b, i1, i2〉 = g2(n)

fm+1(0) =〈(fm)1(i), (f
m)2(i) + +(fm)2(j), j〉 where 〈i, j〉 = MB((fm)1),

fm+1(n+ 1) =〈(fm)1(i), (f
m)2(i) + +(fm)2(j), j〉 where 〈 , , p〉 = fm+1(n)

and 〈i, j〉 = MB((fm)1|p)
This process is illustrated in Figure 3.2, where we show how to calculate f 3

from f 2.
Having fn we define gn by simply dropping the third number:

Definition 3.2 (gn : N → B × List N).

gn(x) =〈e, l〉 where 〈e, l, 〉 = fn(x)

3.3. PRODUCTS OF STREAMLESS SETS 37

. . .

〈1, 3〉 〈6, 7〉 〈9, 11〉〈12, 15〉〈16, 17〉〈21, 23〉〈25, 29〉〈31, 32〉〈35, 39〉 . . .

0 1 2 3 4 5 6 7 8 . . .

. . .

[1, 3, 9, 11] [16, 17, 25, 29] [31, 32, 35, 39] . . .

2 6 8 . . .

Figure 3.2: Calculating f 3 from f 2.

The attentive reader notices that this does not actually produce linearly many
indices, but exponentially many. g3 is actually a stream of items occurring 4 times,
and g4 is a stream of objects occurring 8 times. We will not make use of this
property, and we will, for the sake of simplicity, assume that gn contains elements
that occur n times.

Observe that we use strong ∃ elimination for this construction. Not only do we
know that there are indices, but we know what they are; we are also free to use
them in the construction of a new stream, to which we can apply MB once more.
As mentioned above, [CS10] uses a stream which is the first projection of g2 in
the proof that streamless is closed under sum. We do not know of a proof that
streamlessness is closed under sum which does not assume strong ∃ elimination.

3.3 Products of streamless sets

This section applies the machinery developed in the previous section to the product
of streamless sets.

We will first see that the Cartesian product of a bounded set with a streamless
set is streamless. It is worth noting that this is independent of whether any of the
sets has decidable equality or not.

Lemma 3.3. In ITT we have: If at least one of A and B is bounded and the
other is streamless then A× B is streamless.

38 CHAPTER 3. INVESTIGATING STREAMLESS SETS

Proof. We assume that A is bounded by n. (If it were B then the construction
below would be “mirrored”.) Given the stream g : N → A × B we look at
g2 : N → B, its second projection. By looking at (g2)

n+1(0) we get a pair
〈b, [i0, . . . , in]〉 such that b occurs at all the indices i0, . . . , in in g2. Note that
g1(i0), . . . , g1(in) are n+ 1 elements of A, so since A is bounded by n, there must
be at least two indices ik < il such that g1(ik) = g1(il). As g2(ik) = b = g2(il), we
get g(ik) = g(il).

We now show that Markov’s principle and decidable equality of one of the sets
imply that streamlessness is closed under product. This result is a warm up for
the later, more general result shown in Theorem 3.1. The proofs have interesting
similarities, especially in how we can use the streamlessness of a set to “emulate”
Markov’s principle.

First a reminder of Markov’s principle.

Definition 3.4 (Markov’s principle). For decidable predicates P on N we have
¬¬Σx:NP (x) → Σx:NP (x) .

Markov’s principle has a quite computational flavour, which unsurprisingly
makes it easier to prove a set streamless. All we need to do to find the duplicate
indices is to show that it cannot be the case that they do not exist.

Lemma 3.5. In ITT with MP we have: If at least one of A and B has decidable
equality and A and B are both streamless then A× B is streamless.

Proof. We assume a stream g : N → A × B. We also assume, without loss
of generality, that A is the set with decidable equality. (If it were B then the
construction below would be “mirrored”.)

We define the following predicate on N:

P (n) := For 〈 , [i0, . . . , in−1]〉 = (g2)
n(0) we have duplicates in [g1(i0), . . . , g1(in−1)].

Remember that g2 gets the B-stream, and (g2)
n finds n indices with equal elements.

Note that if A has decidable equality, P (n) is decidable.
We now proceed to show that (1) ¬¬∃nP (n) and that (2) from ∃nP (n) we

can get 〈i, j〉, with i < j and g(i) = g(j).

Proof of (1). We assume ¬∃nP (n) and proceed to produce a contradiction. ¬∃nP (n)
implies ∀n¬P (n), which says that for any n we have that for 〈b, [i0, . . . , in−1]〉 =
(g2)

n(0) the list [g1(i0), . . . , g1(in−1)] has no duplicates. Notice that the list
[g1(i0), . . . , g1(in−1)] has n elements, all from A.

We now make a duplicate-free stream f : N → A; that is, for every n : N, we
have for all j < n that f(n) �= f(j), contradicting that A is streamless. Defining

3.3. PRODUCTS OF STREAMLESS SETS 39

f(n) we first find n+1 indices with the same b element, 〈 , [i0, . . . , in]〉 = (g2)
n+1(0).

We now let

f(n) = ([g1(i0), . . . , g1(in)] \ [f(0), . . . f(n− 1)])(0).

That is, f(n) is the first element in the list resulting from removing any element
from [g1(i0), . . . , g1(in)] that the stream already contains. As [g1(i0), . . . , g1(in)])
contains n+ 1 different elements from A, we know that the resulting list is non-
empty. Since this stream only outputs elements which have not been output up
until that point, it will never introduce a duplicate pair. Thus we have contradicted
that A is streamless, enabling us to conclude ¬¬∃nP (n).

Proof of (2). From ∃nP (n) we have that there is an n such that for 〈b, [i0, . . . , in−1]〉 =
(g2)

n(0) the list [g1(i0), . . . , g1(in−1)] has duplicates. Let those indices be ik < il.
Since every element in g(i0), . . . , g(in−1) has b as its second coordinate, we get
that g(ik) = g(il).

Having proved ¬¬∃nP (n), we apply Markov’s principle and get ∃nP (n). By
(2) above, this gives us the indices 〈i, j〉 with i < j and g(i) = g(j).

We will now proceed to get rid of Markov’s principle. Several parts of the
previous proof will be recognisable, but we use the streamlessness of the two
underlying sets to do the work that Markov’s principle did in the previous proof.

Theorem 3.1. In ITT we have: If at least one of A and B has decidable equality
and A and B are both streamless, then A× B is streamless.

Proof. We assume that A is the set with decidable equality, and we want to
construct

MA×B : (N → A× B) → N× N,

which, given any A×B-stream g, finds a pair of indices i < j such that g(i) = g(j).
Given an A×B-stream g, we inductively define an A-stream f by letting f(n)

first look at f(m) for all m < n, and see if two equal elements are outputted. This
can be done since A has decidable equality. If there is a duplicate element, f(n)
outputs it. If there are no duplicates outputted so far, we let f(n) look at all
the A-elements corresponding to the n B-elements given by (g2)

n(0). Remember,
(g2)

n(0) = 〈b, l〉 where l = [i0, . . . , in−1] is a list of n indices. Looking up these
indices in g1 gives us a list la : List A of n A-elements.

By using the decidability of A, we can check whether there are duplicate
elements in la. In the case of no duplicates, we know that there must be at least
one of the n elements which does not already occur in f so far (as we have only
produced n − 1 elements so far). We can check which one this is, as we have

40 CHAPTER 3. INVESTIGATING STREAMLESS SETS

already defined f up to n− 1. We then let f(n) be one of those elements which
has not occurred in f so far. More precisely,

f(n) = ([g1(i0), . . . , g1(in−1)] \ [f(0), . . . f(n− 1)])(0).

If, on the other hand, there is some duplicate element in the list, we let f(m)
be that element for all m ≥ n. Notice that if this is the case, this is the first time
a duplicate is introduced in f . This completes the construction of f : N → A, and
we will now use f to find duplicates in g : N → A× B.

From the construction of f , we have the following property:

Lemma 3.6. For the smallest i such that f(i) = f(i+ 1) we have duplicates in
the list [g(l0) . . . , g(li−1)], where 〈b, [l0 . . . , li−1]〉 = (g2)

i(0).

As A is streamless and f is a A-stream, we can use MA to find indices k < d
of duplicates in f . Since A had decidable equality, we can do a bounded search
downward from k to find the first index i such that f(i) = f(i+ 1). By Lemma 3.6,
we have duplicates in [g(l0) . . . , g(li−1)] where 〈b, [l0 . . . , li−1]〉 = (g2)

i(0). Thus, we
have two indices lk < lm in l such that g1(lk) = g1(lm). By construction all the
indices in [l0 . . . , li−1] are B-equal, so g2(lk) = g2(lm), giving g(lk) = g(lm).

Finally observe that if it were B and not A that had decidable equality, the
construction above would be “mirrored”; f would have to be a B-stream, and we
would use (g1)

n(0) instead of (g2)
n(0).

As an example of the construction, let us look at a particular calculation of
f(4), where no duplicates have been found so far. That means that so far f looks
like

f = a0, a1, a2

with none of them being equal any other.
(g2)

4(0) is 〈b, [n0, n1, n2, n3〉], giving four indices in g with the same b-element.
This means that g looks somewhat like

g = . . . , 〈b, a′0〉 . . . , 〈b, a′1〉, . . . , 〈b, a′2〉, . . . , 〈b, a′3〉, . . .

By the decidability of A, we can check whether there is a duplicate among
[a′0, a

′
1, a

′
2, a

′
3]. If not, then we know that there is some element in [a′0, a

′
1, a

′
2, a

′
3] \

[a0, a1, a2], and we let f(4) be the first such element. If there are duplicates, e.g
a′1 = a′3, we let f(n) = a′1 for all n ≥ 4.

Comparing this proof with the proof using Markov’s principle we see that
we can use the streamlessness of one of the underlying sets to search for the n
which gives us A-duplicates. The trick is to control exactly when duplicates are

3.4. STREAMLESSNESS AND DECIDABLE EQUALITY 41

introduced in the f -stream, and then use the streamlessness of A to recover this
point.

We combine Lemma 3.3 and Theorem 3.1 to get the following corollary.

Corollary 3.7. In ITT we have: If at least one of A and B has decidable equality
or is bounded, and A and B are both streamless, then A× B is streamless.

3.4 Streamlessness and decidable equality

It should be clear by now that decidable equality of the underlying set is quite
important for the ability to produce streamless sets; we will see another indication
of this in this section. We will show that in ITT, functional extensionality give
streamless sets decidable equality. In addition to showing the close relation between
finiteness and decidable equality, it is relevant to the search for a potential counter-
model to the claim that streamlessness is closed under Cartesian products even
without decidable equality.

As a warm-up, we look at the situation where the set is not only streamless,
but bounded. Remember that this means that we have an n : N such that, for
every A-list of more than n elements, we can find a duplicate pair. Formally, this
means that we have an inhabitant of the type

Bounded(A) := Σn:N(Πl:listA(len(l) > n→ Σi,j:N(i < j × l[i] = l[j]))).

If we want to determine whether a1 is equal to a2 we make a list l of n + 1
instances of a1, and get a pair of indices i1 < j1 with duplicates in this list. We
then proceed to swap the element at l[i1] with a2, giving a new list. The original
list is equal the new list if and only if a1 = a2.

We then proceed to get two indices i2 < j2 of duplicate elements in this new
list. If this process is assumed to be a function, and thus provide equal outputs
for equal inputs, we get 〈i1, j1〉 = 〈i2, j2〉 if and only if a1 = a2; and since equality
on N is decidable, we are done.

Our proof turned on the facts that (1) the second projection of a witness of
Bounded(A) is a function, (2) this function can be assumed to respect equality on
its input, and (3) two lists are equal if and only if they are pointwise equal.

We will now mirror this with streamless sets. One major difference between
lists and streams is the following: while lists are equal whenever their elements
are equal, this only holds for streams if we assume so. It is consistent to assume
an inhabitant of the following type in ITT, and if we do so for all types, we say
that we have functional extensionality.

Definition 3.8 (FunExt(A)).

FunExt(A) := Πf,g:N→A(Πn:N(f(n) =A g(n)) → f =N→A g)

42 CHAPTER 3. INVESTIGATING STREAMLESS SETS

Lemma 3.9. In ITT with functional extensionality we have: If A is streamless
then it has decidable equality.

Proof. We assume an inhabitant of FunExt(A) and two elements a, b : A, and we
proceed to determine their equality. Let the stream fa be the constant A-stream
consisting of only a, and let 〈i, j〉 be the indices returned by MA(fa). We now
make the stream f ′

a which is constantly a, except at index i, where it is b:

f ′
a(n) =

{
b if n =N i

a otherwise

Notice that if a =A b we have Πn:Nfa(n) =A f
′
a(n), so from functional extensionality

we then have fa = f ′
a. So, by functionality of MA, we get a = b → MA(fa) =

MA(f ′
a), and thus

MA(fa) �= MA(f ′
a) → a �= b.

Concluding, if MA(f ′
a) �= 〈i, j〉 then a �= b, and if MA(f ′

a) = 〈i, j〉 then a = b (as
f ′
a(i) = b and f ′

a(j) = a), and since equality on N is decidable we are done.

Lemma 3.9 is relevant for the search of a counter-model to the general claim
that streamlessness is closed under product. From section 3.3, we know that such
a counter-model must have two streamless sets with undecidable equality. This
section shows that the model must also reject functionality extensionality for us
to have a streamless set with undecidable equality.

It also highlights some of the difficulty of defining finiteness for sets with
undecidable equality in a computational setting, and since the other notions of
finiteness given in [CS10] imply streamlessness, this result also covers them. All the
definitions of finiteness have some sort of equality/duplication check at their core.
Given this it seems plausible that a proof of finiteness can, in certain situations,
lead to decidability. On the other hand, it is quite unsatisfactory that, in certain
settings, we are unable to define finite sets of elements with undecidable equality.

In the next section we look at how to formalize both this and the previous
results in Coq.

3.5 Formalization in Coq and HoTT

3.5.1 Coq: Prop and Set

In this section we will relate the above results to the proof assistant Coq [CDT12],
where we have to deal with the distinction between Prop and Set. Functions,
which is how we defined streams, live in the universe Set, while there is a separate
universe Prop for propositions. The intention is, roughly, to separate between

3.5. FORMALIZATION IN COQ AND HOTT 43

types where we care about the internal structure of the inhabitants (Set) and
where we care only about the existence of the inhabitant (Prop).

Given a inhabitant of a type in Prop one is generally not allowed to eliminate
on it to construct elements in Set; thus we can not build the new stream g2 of
duplicates using indexes found from a witness of a type in Prop. This means that
the constructions given in this paper can not be implemented in Coq as they stand
if streamless is written as follows:

Definition StreamlessEx(A:Set):= forall g:nat → A,
exists i j, i<j ∧ g(i) = g(j).

One way to remedy the situation is to define the notion of a set being streamless
in the following way, closer to the way it was encoded in ITT. The notation
“{x : nat | P (x)}” is Coq’s notation for Σx:NP (x).

Definition StreamlessSig (A:Set):= forall g:nat→ A,
{ij : nat∗nat | fst ij < snd ij ∧ g(fst ij)=g(snd ij)}.

StreamlessSig enables us to use the proof of a set being streamless in a
computation; in particular it enables us to construct the stream g2 needed to prove
Corollary 3.7 in Coq. The disadvantage is that it can make it harder to prove sets
to be streamless in the first place. There is reason to believe that there are fewer
sets satisfying StreamlessSig than StreamlessEx.

In general, whether one wants the statement in Prop or in Set reflects whether
one wants to work proof relevant or not; formalizing it as StreamlessSig enables
us to use the proof (of a set being streamless) in a computation.

StreamlessSig A implies StreamlessEx A, while the provability of the converse
implication is unknown. Interestingly, it is know for sets with decidable equality,
since we are able to prove the following lemma in Coq for A with decidable
equiality, making the two notions of streamless coincide in those cases.

Lemma streamlessExToStrSig(A:Set)(A_dec: DecidableEq A) :
StreamlessEx A → StreamlessSig A

Essential for the proof is the following lemma, holding for decidable predicates
P on N, and shown in the Coq library Coq.Logic.ConstructiveEpsilon1.

Lemma constructive_indefinite_ground_description_nat :
(exists x : nat, P x) → {x : nat | P x}.

With the indefinite ground description the proof is straightforward. We assume
that we have some pairing/decoding functions enabling us to encode pairs of
natural numbers as single natural numbers. We then define versions of both
StreamlessEx and StreamlessSig using single numbers, prove that the single and

1http://coq.inria.fr/library/Coq.Logic.ConstructiveEpsilon.html

44 CHAPTER 3. INVESTIGATING STREAMLESS SETS

paired versions are equivalent, and then it is a simple application of the indefinite
ground description given above.

The conclusion is the following corollary:

Corollary 3.10. In Coq we can prove that StreamlessEx (and StreamlessSig) of
sets with decidable equality is closed under Cartesian products.

A natural question is whether we can strengthen this to say that StreamlessEx
is closed under Cartesian products as long as at least one of the sets have decidable
equality. Unfortunately, this does not follow from the current construction. To see
this, assume an A× B-stream g. The construction in Proof 3.3 uses (g2)

n to find
n-indices with B-equal elements. But for this to be definable in Coq using the
technique above, B needs decidable equality. The proof then uses the decidability
of A to eliminate on whether there are duplicates among the resulting A-elements
or not. It does not seem possible to manipulate the construction such that it is
enough for only one of the sets to have decidable equality.

We are also able to reproduce Lemma 3.9 in Coq for StreamlessSig, the proof
is simply a direct Coq formalization of the proof given in Section 3.4.

Lemma strSigAndFuncExtImpliesDecA (A:Set) (Ma:StreamlessSig A)
(fext: functional_extensionality nat A): forall a b :A, {a=b}+{not(a=b)}.

Again, we are not able to simply adapt the proof to StreamlessEx, since the proof
crucially uses the indexes returned from MA in the construction of new functions.

All the Lemmas in this section have been formalized and proved in Coq2.

3.5.2 HoTT

Closely related to the Prop/Set distinction is the truncated and non-truncated
statements one encounters in Homotopy Type Theory (HoTT). Truncation is a
type former which “truncates” a type — removing all information contained in
the inhabitants of that type except their existence — and it is written as ||A||
for a type A. (For more information we refer the reader to the freely available
book [Uni13].) We will not go further into HoTT here; but what is relevant for us
is that we have a HoTT version of the indefinite ground description above. For
decidable predicates P we have

||Σn:NP (n)|| → Σn:NP (n)

as stated by exercise 3.19 in [Uni13]. One should be able to reproduce a version of
Corollary 3.10 in this setting, getting that for the non-truncated version of stream-
less it is enough for one of the sets to have decidable equality for streamlessness
to be closed under Cartesian products.

2The Coq script can be found at https://github.com/epa095/streamless-in-coq.

3.6. HAω 45

With our current knowledge we need both sets to have decidable equality
for the truncated version to be closed under Cartesian products without further
assumptions, and we conjecture that this is in fact a strict requirement. If we
choose to assume the HoTT-version of the axiom of choice,

(Πx:X ||Σa:A(x)P (x, a)||) → ||Σg:Π(x:X)A(x)Πx:XP (x, g(x))||,

we can show that truncated-streamless sets are closed under products as long as
one of the sets has decidable equality.

In HoTT we can also assume the Univalence axiom, giving that isomorphic
structures can be identified. Importantly, the univalence axiom implies functional
extensionality. Lemma 3.9 makes it clear that — unless we want every streamless
set to have decidable equality—we must use the truncated version of streamlessness
in this setting.

3.6 HAω

It is natural to ask how closely coupled the above results are to the particular
constructive setting we are working in, and whether we can reproduce them in a
different setting. We will now look at how the results fit in the system HAω, an
extension of Heyting Arithmetic to the language of finite types, see [TVD88] for
more information on HAω.

HAω is proof-irrelevant and does not have strong Σ elimination; instead, we
have to use the axiom of choice to extract a function, giving the witnesses which
we can then use as terms in the logic.

The set of finite types T is built from the basic type 0 (N) and is closed under
× and →. HAω is “neutral” in the terminology of [TVD88]; we do not assume
decidability of =τ for any other types than 0, nor do we assume that equality
between functions is extensional.

Sets are not a primitive notion in HAω, so when talking about sets we mean
functions of the type A : τ → 0; such functions represent the set of elements on
which it returns 1. This means that all sets will have decidable membership and
sets can only contain elements of one and the same type. For a set A : τ → 0, we
call τ the enclosing type of A. Following [TVD88] we will write a < b in place of
< (a, b) = 1, where the latter is the characteristic function of the less-than relation.
With “a stream over A” we mean a function f 0→τ where τ is the enclosing type of
A such that ∀n0(A(f(n)) = 1).

Streamlessness of Aτ in this setting is expressed as

Streamless(Aτ) := ∀g0→τ ((∀n0A(g(n)) = 1) → ∃i0j0(i < j ∧ g(i) = g(j))).

46 CHAPTER 3. INVESTIGATING STREAMLESS SETS

In order to formalize our results in HAω, we first need to define some axioms.
ACσ,τ is the following axiom schema,

ACσ,τ := ∀xσ∃yτφ(x, y) → ∃zσ→τ∀xσφ(x, zx),

and AC is the axiom schema consisting of ACσ,τ for all types σ, τ ∈ T . EXTσ,τ is
the following axiom schema,

EXTσ,τ := ∀yσ→τzσ→τ ((∀xσ, yx = zx) → y = z),

and if we add EXTσ,τ for all types σ, τ ∈ T we get the system E-HAω.
To reproduce the proof of Lemma 3.5 in HAω, we need to construct the function

g2 of duplicates, and for this we need access to, for every stream, a pair of indexes
with duplicate elements in that stream. The following instance of AC for every
type τ enclosing a streamless set is enough to mirror Lemma 3.5 in HAω.

AC0→τ,0 := ∀x0→τ∃y0φ(x, y) → ∃z(0→τ)→0)∀xσφ(x, zx)

Let the φ(x, y) stand for the predicate “(∀i0A(x(i)) = 1) → y encodes a pair
of indexes i < j such that x(i) = x(j)”. Then the antecedent of AC0→τ,0 follows
immediately from A being streamless, and the result is the function MA, needed
to reconstruct the machinery in the proof of Lemma 3.5.

Corollary 3.11. In HAω + AC we have that streamless sets are closed under
products.

Encoding sets by their characteristic functions yields decidable membership,
but in general not decidable equality. The extensionality of E-HAω, giving that
streams are equal when they are pointwise equal, enables us to mirror Lemma 3.9:

Corollary 3.12. In E- HAω + AC we have that streamless sets have decidable
equality.

Note that E- HAω + AC does not prove the law of excluded middle, as it is
conservative over HA. For further details, see [Bee79].

3.7 Related work

One of the first investigations of streamlessness known to the author is by Richman
and Stolzenberg [RS93]. In their terms, a streamless set is called 2-good, where 2
is the set of two-element subsets of the natural numbers. They show that the sum
of two B-good sets, of which 2-good is an instance, is B-good, but leave it open for
products. This paper does not resolve any of their open questions, as they work in

3.7. RELATED WORK 47

a more general setting than equality. They also give another notion, that of a set
being bar-good, and they show that the Cartesian product of a bar-good set with
a B-good set is B-good. It is not clear what the relation between streamlessness
and bar-good is, and whether there are natural axioms one can assume to make a
streamless set bar-good.

Veldman and Bezem [VB93] investigate the constructive content of the Ramsey
theorem [Ram30], giving a constructive proof of a reformulation of it. For this,
they use what they call almost-full binary relations; relations R on N where, for
every increasing function f : N → N,

∃m,n : N,m < n ∧R(f(m), f(n)).

They postulate the axiom of bar-induction, and with it they prove that almost-full
relations are closed under intersection. They name this the Intuitionistic Ramsey
Theorem, and show that it is classically equivalent to Ramsey’s Theorem.

Using equality as the relation R, one gets a notion which comes quite close to
streamlessness, apart from Veldman and Bezem’s requirement that the functions
are increasing, and the fact that streamlessness is a concept applicable for any
type (not only N), possibly with undecidable equality.

In light of this, it is natural to ask whether the proofs in this paper can be
generalized to relations other than equality. We define what it means for a reflexive
and transitive relation R on A to be a well-quasi-ordering:

WqoA(R) := ∀g : N → A, ∃i, j : N, i < j ∧R(g(i), g(j)).

Note that a set A is streamless exactly when we have WqoA(=A). We can ask
if the intersection of two such relations is itself a Wqo and whether the proof of
Lemma 3.1 suggest how this could be shown. Unfortunately, we do not see how.
We are still able to use the construction gn to find n elements a1, . . . an such that
a1Ra2 . . . Ran, but we do not have the property that with n elements b1, . . . bn
such that none of them are R-related, and n − 1 elements b′1, . . . b

′
n−1 such that

none of them are R-related, there must be one of the b1, . . . bn which is not R
related to any of the b′1, . . . b

′
n−1. We have this property when the relation R is

equality, and this is used in the proof of Lemma 3.1.

If we did have that Wqo relations were closed under intersection we would
immediately get that streamless sets are closed under products: define the relation
R1 on A × B as (a1, b1)R1(a2, b2) if and only if a1 =A a2, and likewise for R2,
looking at the second projections. If A and B are streamless sets, then R1 and R2

are Wqo relations and their intersection is equality on A× B.

Vytiniotis, Coquand and Wahlstedt [VCW12] provide an inductive formulation
of almost full relations on arbitrary types. They show—if we instantiate their

48 CHAPTER 3. INVESTIGATING STREAMLESS SETS

proofs with the relation being equality—that it implies streamlessness, and show
that almost-full relations are closed under intersection.

Streamlessness works in a quite general setting, with few assumptions on the
underlying set. Bezem et al. [BNU12] impose further restrictions, and the result
is a interesting hierarchy of finiteness notions. The restrictions imposed are that
equality is decidable; that the subset is defined by some decidable predicate; and
that the set is a subset of some set that can be enumerated. This holds for
decidable subsets of natural numbers in particular. The authors find six different
formalizations and put them into a hierarchy.

3.8 Remaining questions

There are several questions remaining. The main one is whether one can show
that streamlessness is closed under Cartesian products in ITT without assuming
decidable equality. Secondly, to what degree can one show similar results in
systems without strong Σ elimination— for example, for StreamlessEx in Coq
or the truncated statement in HoTT? And what is the relationship between
StreamlessEx and StreamlessSig for sets with undecidable equality?

We conjecture that there exists a model showing that, in ITT, the product of
two streamless sets with undecidable equality is not necessarily streamless. From
Lemma 3.9 we know that such a model must reject functional extensionality, and
from Lemma 3.3, we know that neither of the sets can be bounded.

At this point there are, to this author’s knowledge, only two sets which are
known to be streamless but not bounded. One is the set presented in [CS10],
originally suggested by F. Richman, showing that not all noetherian sets are
bounded. As noetherian sets are streamless, this is also a streamless set. But this
set has the interesting property that, once one looks at any of the elements in the
set, one knows the size of the set! So it is not bounded a priori, but if one is given
a stream of elements from the set, one can deduce its size and then continue as in
the proof of Lemma 3.3.

The second set, presented in the still unpublished article by Bezem et al. showing
that not all streamless sets are noetherian, does not have this property. On the
other hand, it has decidable equality, rendering it useless as a counter-model.
There does not seem to be an easy way to tweak the model to get rid of this
decidable equality; it is essential for the proof that the set is streamless as the
authors use Markov’s Principle to find the duplicate pair, and Markov’s Principle
is only applicable for decidable predicates.

To conclude, we currently have no good candidate for a streamless set with a
non-streamless Cartesian product. Constructing a suitable streamless set, non-
bounded and with undecidable equality, appears to be quite complicated. Neither

3.9. CONCLUSION 49

of the ways used to prove a set streamless—that is, by gathering information
about the size of the set encoded in the elements themselves, or using Markov’s
principle—is likely to work. It seems the most promising route to a counter-model
involves finding novel ways to construct streamless sets.

Lastly, we would like to encourage other to look for new notions of finiteness,
especially trying to find notions that works nicely and robustly for sets with
undecidable equality.

3.9 Conclusion

We showed that, in Martin-Löf intensional type theory, if at least one of the
streamless sets A and B has decidable equality or is bounded, then the Cartesian
product A×B is streamless. We also saw that adding functional extensionality
to ITT gives streamless sets decidable equality; and we mirrored these results in
both (E-) HAω + AC and in Coq.

Acknowledgements I want to thank Arnaud Spiwack and Thierry Coquand
for their valuable feedback and questions after my presentation on this topic at
TYPES 2014, and Marc Bezem for both introducing this problem to me and
discussing it with me. I also wish to thank the anonymous reviewers for their
challenging feedback which led to significant changes to this paper, and Maja
Jaakson which kindly proofread it.

50 CHAPTER 3. INVESTIGATING STREAMLESS SETS

Noetherian Relations Are Streamless
Even Without Identity Types

Erik Parmann

We give two proofs showing that all Noetherian relations are streamless. The
first proof is simple, but uses a notion of equality on lists and substitution of
equal elements in types. The second proof avoids these requirements and is
expressible in type systems without equality.

52 CHAPTER 4. NOETHERIAN RELATIONS ARE STREAMLESS

4.1 Introduction

In a yet unpublished paper by Bezem, Coquand, Nakata, and Parmann [BCNP],
we present a realizability model for Martin-Löf dependent type theory and use
this model to show that not all streamless relations are Noetherian, even though
the converse holds. The type theory does not have the usual, inductively defined
identity types, which simplifies the soundness proof. But as a result, no known
proof that Noetherian relations are streamless was expressible in the type theory
since all known proofs use equality. In that paper, streamless and Noetherian
are properties applicable to arbitrary binary relations, not only equality; so this
state of affairs was rather unsatisfactory, in that we seemingly needed to introduce
equality to show that all Noetherian relations are streamless.

The following note constitutes my main contribution to the aforementioned
paper; it shows that all Noetherian relations are streamless even in a type theory
without identity types, giving a proof that is expressible in our weak type theory.

This note begins with a presentation of the type theory in question in Section 4.2,
followed by a presentation of Noetherian and streamless relations in Section 4.3.
In Section 4.4 we give two proofs, one using equality and one expressible without
equality, before we conclude in Section 4.5.

4.2 Preliminaries

We work in Martin-Löf dependent type theory without inductively defined identity,
and with one universe U. In addition, we will use a number of types needed to
express Bar induction and the two notions streamless and Noetherian. Notably,
the type theory does not have an inductively defined equality.

We use the following indutive types, which are standard (A and B are arbitrary
types).

• N0 is the empty type with no constructor and elimination rule ExF : N0 → A;

• N is the type of natural numbers with constructors 0 : N and S : N → N,
and elimination rule ind : C 0 → (Πn:N. C n→ C(Sn)) → Πn:N. C n for
C : N → U;

• [A] is the type of lists over A, with constructors nil : [A] and cons : A →
[A] → [A]. We usually write a :: l for cons a l;

• A + B is the sum type over A and B, with constructors Inl : A → A + B
and Inr : B → A+ B, and elimination rule Case : (A→ C) → (B → C) →
A+B → C for C : U;

4.2. PRELIMINARIES 53

• Σx:A.D is the dependent-pair type over type A and a type-family D over
A, and with the constructor “(,)” given by (W,P) : Σx:A.D when
Σx:A.D is a type, W : A and P : D(W), and elimination rule sInd :
(Πx:A.Πp:D.C(x, p)) → Πy:(Σx:A.D). C y for C : (Σx:A.D) → U.

We also have a few types specifically needed to express the notion of streamless
and Noetherian relations. We fully explain these, since they are less known than
the standard types given above.

Given a predicate P on A and a list l : [A], we define existsP l to be true when
there is an element in l satisfying P :

Γ
 A : U
Γ
 exists : (A→ U) → [A] → U

with ι-reduction given by:

existsP nil = N0

existsP (a :: l) = P a+ existsP l

We also define the predicate goodR l for a relation R : A → A → U and a list
l : [A] to be true when l contains elements that are related by R in the order
“head” to “tail”:

Γ
 A : U
Γ
 good : (A→ A→ U) → [A] → U

with ι-reduction given by:

goodR nil = N0

goodR (a :: l) = exists (Ra) l + goodR l

We define f2l f n, which, given a function f : N → A, gives a list of the first n
elements in f :

Γ
 A : U
Γ
 f2l : (N → A) → N → [A]

with ι-reduction given by:

f2l f 0 = nil

f2l f (Sn) = fn :: (f2l f n)

We will use f as a notation for f2l f . Note that f “reverses” the order of the
elements; earlier elements of the stream (indexed by a lower number) occur later
in the resulting list. We also have the length function on lists:

54 CHAPTER 4. NOETHERIAN RELATIONS ARE STREAMLESS

Γ
 A : U
Γ
 length : [A] → N

with ι-reduction given by:

length nil = 0

length (h :: t) = S(length t)

Finally, we have the type for Bar induction:

Γ
 A : U
Γ
 bar : ([A] → U) → [A] → U

Γ
 A : U Γ
 l : [A] Γ
 P : [A] → U Γ
 X : Pl

Γ
 baseX : barP l

Γ
 A : U Γ
 l : [A] Γ
 P : [A] → U Γ
 Y : Πa:A. barP (a :: l)

Γ
 stepY : barP l

The elimination principle for Bar induction is given by:

Γ
 A : U Γ
 P : [A] → U Γ
 C : [A] → U

Γ
 barInd:(Πl:[A]. P l → C l) → (Πl:[A]. (Πa:A.C(a::l)) → C l) → Πl:[A]. barP l → C l

4.3 Streamless and Noetherian

Both streamless and Noetherian have the type ((A → A → U) → U), so they
are properties of binary relations. But they can also be used to define finiteness
of sets, see e.g. [CS10], where a set is Noetherian (or streamless) when equality
on the set is Noetherian (or streamless). In this note, we will work in the more
general setting of arbitrary binary relations.

A relation is Noetherian when the empty list is a bar for goodR. Note that,
Bar induction gives us an induction principle for Noetherian relations.

Definition 4.1 (Noetherian relation). A relation R : A→ A→ U on a type A : U
is Noetherian when bar (goodR) nil holds.

There are several definitions of streamless relations in the literature. Some of
these are given below, where R−1 is the inverse relation of R.

Πf :N → A.Σi j:N. i < j ∧R(f(i), f(j)) (4.1)

Πf :N → A.Σi j:N. i < j ∧R−1(f(i), f(j)) (4.2)

Πf :N → A.Σn:N. goodR (fn) (4.3)

Πf :N → A.Σn:N. goodR−1 (fn) (4.4)

4.4. NOETHERIAN IMPLIES STREAMLESS 55

For symmetric relations, all of the above formalizations are equivalent; but for
non-symmetric relations, formalisation 4.1 and formalisation 4.4 are equivalent, as
are 4.2 and 4.3.

With the definition of Noetherian relations used in this note, we cannot expect
Noetherian relations to be streamless in the form of formalisation 4.1. The relation
R : N → N → U given by

R(a, b) := a ≥ b

is Noetherian; lists grow to the left and there are no infinite descending chains of
natural numbers. But R is certainly not streamless in terms of formalisation 4.1
above, as a constantly increasing stream falsifies it.

This note makes use of formalisation 4.3:

Definition 4.2 (Streamless relation). A relation R : A→ A→ U on a type A : U
is streamless if every function f : N → A from natural numbers to A has a initial
segment that is R-good, i.e., Πf :N → A.Σn:N. goodR (fn).

Coquand and Spiwack [CS10] sketch a proof that Noetherian sets are streamless,
and show this for formalization 4.1. Since equality is symmetric, all the different
formalizations become equivalent in the context of streamless sets. Even if we
change the notion of streamless to one suiting a non-symmetric relation, it is not
clear how to express their proof without using equality and substitution.

4.4 Noetherian implies Streamless

We now present two proofs that Noetherian relations are streamless. The first proof
requires a theory with equality on lists and substitution. We cannot express this
proof in our weak type theory, since we don’t have these notions; but the proof is
still interesting as an intuitive and straightforward proof. Our final proof—which is
expressible in our type theory—is based on the former proof, but replaces equality
with weaker notions.

In addition to the presentation here, both proofs are formalized in Coq.1 Coq
has a significantly stronger theory than the type theory we work in here, so the
formalization only shows that the final proof is correct, not that it is expressible
in our type theory. By manually examining the final proof however, we can see
that it only uses features of our type theory.

4.4.1 Proof using equality

For this proof, we assume a bit of extra machinery—in particular, inductively
defined equality. We write
e in place of
 to indicate that we are working in the

1See https://github.com/epa095/noetherian-implies-streamless for the Coq script.

56 CHAPTER 4. NOETHERIAN RELATIONS ARE STREAMLESS

extended type theory. We start with identity types:

Γ
e A : U

Γ, a : A, a′ : A
e eqA a a
′ : U

Γ
e A : U Γ
e a : A

Γ
e refl a : eqA a a

with the eliminator allowing us to substitute equal terms in types:

Γ
e A : U Γ, a : A, a′ : A,α : eqA a a
′
e C(a, a′, α) : U

Γ
e eqInd : (Πa:A.C a a (refl a)) → Πa a′:A.Πα:eqA a a
′. C a a′ α

Note that from the recursor above, known as the J-combinator, we can get the
Leibniz property of equality which we will use in the proof.

Γ
e A : U Γ
e a : A Γ
e P : A→ U

Γ
e eqInd
′ : Pa→ (Πa′:A. eqA a a′ → Pa′)

We define the abbreviation initialP to be true of a stream f : N → A and a list
l : [A] when l is equal to the initial segment of length length l of f :

initialP l f := eq[A] (f (length l)) l.

Lemma 4.3. There is a proof M such that

A : U, R : A→ A→ U, f : N → A
e

M :
[
Πl:[A]. ((bar (goodR) l) →initialP l f → Σm:N. goodR (f m))

]
Proof. We perform induction on bar (goodR) l using the elimination principle
barInd, with P being λl:[A].goodR l and C being

λl:[A].initialP l f → Σm:N. goodR (f m).

We show both the base case Hb : Πl:[A]. P l → C l and the induction step
Hi : Πl:[A]. (Πa:A.C(a :: l)) → C l, with the consequence that barIndHbHi is
the desired M and hence prove the lemma.

To construct Hb assume l : [A] such that goodR l and initialP l f .2 Since the
latter is eq[A] (f (length l)) l we get goodR (f length l) immediately by eqInd′.

For Hi we assume l : [A], and Πa:A.C(a :: l), and proceed to show C(l). The
latter expands to initialP l f → Σm:N. goodR (f m), so we assume initialP l f .

Expanding Πa:A.C(a :: l) gives

Πx:A. (initialP (x :: l) f → Σm:N. goodR (f m)).

2With this we mean that we have inhabitants of the types goodR l and initialP l f . We will
mostly avoid the phrase “an inhabitant of”, except in situations where giving the inhabitant a
name eases the reading of the proof. The formalization in Coq contains all inhabitants.

4.4. NOETHERIAN IMPLIES STREAMLESS 57

We apply this to f(length l), which after expanding initialP leaves us with showing

eq[A] (f (length (f(length l) :: l))) (f(length l) :: l),

which ι-reduces to

eq[A] (f (length l) :: f (length l)) (f(length l) :: l),

which we get by eqInd′ and the assumption initialP l f , completing the proof.

Since initialP nil f holds for all f : N → A, we immediately get that all Noethe-
rian relations are streamless.

Corollary 4.4. There is a proof M such that

A : U, R : A→ A→ U
e M : Noetherian R → streamless R

4.4.2 Proof avoiding equality

In this section, we present a proof which is expressible even without a notion
of equality on lists and substitution of equal terms in types, making this proof
expressible in our weak type theory.

We first define two abbreviations, both applicable to R : A → A → U,
f : N → A and l : [A]:

subGRf l := goodR l → goodR (f (length l))

subExRf l := Πa:A. (exists (Ra) l → exists (Ra) (f (length l)))

Intuitively, these capture what is needed to show the desired implication, and
nothing more. subGRf l is used to show the base case of the induction, while
subExRf l is used to show the induction step. Also note that they both hold
trivially for nil.

Lemma 4.5. There is a proof M such that

A : U, R : A→ A→ U, f : N → A

M :Πl:[A].bar (goodR) l → (subGRf l → (subExRf l → Σm:N. goodR (f m))).

Proof. We perform induction on bar (goodR) l using the elimination principle
barInd, with the predicate P being λl : [A].goodR l, and the predicate C be-
ing λl : [A].subGRf l → subExRf l → Σm:N. goodR (f m). We show Hb :
Πl:[A]. P l → C l and Hi : Πl:[A]. ((Πa:A.C(a :: l)) → Cl), with the consequence
that barIndHbHi is the desired M , and hence prove the lemma.

58 CHAPTER 4. NOETHERIAN RELATIONS ARE STREAMLESS

To construct Hb assume l : [A] such that goodR l, subGRf l, and subExRf l.
From subGRf l and goodR l we immediately get the goal goodR (f (length l)).

For Hi we assume l : [A] with (Πa:A.C(a :: l)), and proceed to show C l. The
latter expands to subGRf l → subExRf l → Σm:N. goodR (f m), so we assume
subGRf l, and subExRf l, and proceed to show Σm:N. goodR (f m). Expanding
the induction hypotheses (Πa:A.C(a :: l)) gives

Πx:A. (subGRf (x :: l) → (subExRf (x :: l) → Σm:N. goodR (f m)))

We apply this to f(length l), which yields the goal if we can populate the two
assumptions. Starting with the first, we need to show (where we have expanded
the abbreviation subG):

goodR (f(length l) :: l) → goodR (f (length (f(length l) :: l)))

Since (length (f(length l) :: l)) reduces to S(length l), the conclusion of the above
formula reduces to goodR (f(length l) :: f (length l)), which again reduces to the
sum-type

exists (R (f(length l))) (f (length l)) + goodR (f (length l)),

which we proceed to show.
The antecedent goodR (f(length l) :: l) reduces to exists (R (f (length l))) l +

goodR l, and we apply Case, the eliminator for sum. If exists (R (f (length l))) l
then we apply the proof of subExRf l to f(length l), and get the left part of
the goal directly. In the case of goodR (f(length l) :: l) from goodR l, we get
goodR (f (length l)) from subGRf l, giving the right part of the goal and finishing
the proof of subGRf (x :: l).

The second assumption, subExRf (x :: l), expands to:

Πa:A.exists (Ra) (f(length l) :: l) →
exists (Ra) (f (length (f(length l) :: l)))

We assume an a : A with exists (Ra) (f(length l) :: l). Since (f (length (f(length l) ::
l))) reduces to f(length l) :: f (length l), the goal reduces to the sum-type

(Ra (f(length l))) + exists (Ra) (f (length l)).

If exists (Ra) (f(length l) :: l) stems from Ra (f (length l)) then we have left part
of the goal directly. If we have exists (Ra) (f(length l) :: l) from exists (Ra) l, then
applying the proof of subExRf l to a gives exists (Ra) l → exists (Ra) f (length l),
giving the right part of the goal. This finishes the proof of subExRf (x :: l),
finishing the construction of Hi, and we are done.

4.5. CONCLUSION 59

Since subGRf nil and subExRf nil holds for all f : N → A, we get that all
Noetherian relations are streamless.

Corollary 4.6. There is a proof M such that

A : U, R : A→ A→ U
M : Noetherian R → streamless R

4.5 Conclusion

In this note, we have presented a proof that all Noetherian relations are streamless,
even without a notion of identity. Avoiding equality makes it easier to construct a
model of the type theory in question, which again can be used to show that the
converse implication is not provable in type theory.

60 CHAPTER 4. NOETHERIAN RELATIONS ARE STREAMLESS

Non-Constructivity in Kan Simplicial
Sets

Marc Bezem, Thierry Coquand, and Erik Parmann

We give an analysis of the non-constructivity of the following basic result: if
X and Y are simplicial sets and Y has the Kan extension property, then Y X

also has the Kan extension property. By means of Kripke countermodels we
show that even simple consequences of this basic result, such as edge reversal
and edge composition, are not constructively provable. We also show that our
unprovability argument will have to be refined if one strengthens the usual
formulation of the Kan extension property to one with explicit horn-filler
operations.

62 CHAPTER 5. NON-CONSTRUCTIVITY IN KAN SIMPLICIAL SETS

5.1 Introduction

Brouwer’s Programme is the constructive reformulation of (as much as possi-
ble of) classical mathematics. In [BC15] it has been shown that the following
theorem, though classically true (cf. [May93, Corollary 7.11]), cannot be proved
constructively.

Theorem 5.1 (classical). The fibers of 0 and 1 of a Kan fibration p : E → Δ1

are homotopy equivalent.

In this paper we show that the following basic theorems cannot be proved con-
structively.

Theorem 5.2 (classical). If X and Y are Kan simplicial sets, then any edge in
Y X can be reversed.

Theorem 5.3 (classical). If X and Y are Kan simplicial sets, then compatible
edges in Y X can be composed.

The above two theorems follow immediately and constructively from the
following.

Theorem 5.4 (classical). If X and Y are Kan simplicial sets, then also Y X is so.

Hence we obtain that also Theorem 5.4, though classically true even without
requiring that X is Kan (cf. [May93, Theorem 6.9]), cannot be proved construc-
tively.

The importance of these results is twofold. First, it is of evident importance
for Brouwer’s Programme to understand which results of classical mathematics
already are constructive and which results are not. Second, Theorem 5.4 plays a
crucial role in the construction of models of type theory with the Univalence Axiom,
see [KLV12]. The use of classical logic in proving this crucial property implies in
particular that the model construction cannot be used to give a computational
interpretation of univalence. Actually, Theorem 5.4 is a necessary step in the
semantics of the simply typed λ-calculus based on Kan simplicial sets. In what
follows we expand on these points; for more motivation we refer to [BC15].

We would like to use the occasion to say a few not-too-technical words on the
role of the Kan extension property of simplicial sets in relation to univalence. Let
MLTT be Martin-Löf type theory with universe U and inductive equality =U on
U . Assume we have two distinct copies of the natural numbers, inductively defined
by constructors 0 : N (0′ : N ′) and S : N → N (S ′ : N ′ → N ′). MLTT proves
N =U N and N ′ =U N

′, but not N =U N
′. The Univalence Axiom (UA) implies

that (homotopy) equivalent types are equal, and in particular N =U N
′. By the

5.1. INTRODUCTION 63

Leibniz property of inductive equality, this implies that N and N ′ have the same
properties and that all structure on N can be transported to N ′ and vice versa.
This holds even uniformly, for example, ΠP : U → U. (PN → PN ′) is inhabited
under UA. On the other hand, without UA, ΠP : U → U. (PN → PN ′) is not
inhabited in MLTT. (One reason is that MLTT has models in which N �= N ′, so
one can take P ≡ λX : U. (N =U X) and get PN but not PN ′).

The above observation concerns not only the rather artificial type N ′ but also
any other type that is equivalent to N , such as the type of lists over a unit type
with one object. In fact the observation concerns all equivalent types. A less
artificial example is perhaps the equivalence of the unit type to Σx : A. (a =A x)
for given a : A : U . The upshot is that validating UA requires an interpretation
of =U that carries much more information than in MLTT without UA, since the
elimination rule for =U (roughly, the Leibniz property, or substitutivity of equals
for equals) has to be much stronger. In our simple example, the interpretation of
=U must be leveraged to give an inhabitant of ΠP : U → U. (PN → PN ′).

Simplicial sets can be used to build a presheaf-style [Hof97] model of MLTT. In
this model the interpretation of =U does not validate UA. It turns out that if one
builds a model of MLTT based on Kan simplicial sets, then it is possible to validate
UA. The crucial notion here is that of a Kan fibration. A Kan fibration p : E → B
is a map of simplicial sets with a specific lifting property. This lifting property
lifts a path from b0 to b1 in B to a transport function from the fiber p−1(b0) to
the fiber p−1(b1). In the model based on Kan simplicial sets, an inhabitant of
N =U N

′ is interpreted as a path from N to N ′ in U . (Here and below we omit
the correct but tedious phrase the interpretation of N,N ′, U, . . .). Any P : U → U
is interpreted as a Kan fibration with fibers PT for any T : U . (NB the fibration,
being a projection on the base type, has a direction opposite to the arrow in
P : U → U). Then the transport function obtained from the lifting property is the
desired function PN → PN ′. In short, one can say that the transport functions
interpret substitutivity of equals by equals.

Finally, to come back to the topic of this paper: if all types are to have Kan
structure, one has to prove this inductively following the rules of type formation.
One of the induction steps is Theorem 5.4. The unprovablility of Theorem 5.4
shows that, from the constructive point of view, there is a problem with using the
exponent Y X in the category of Kan simplicial sets to interpret function types
X → Y .

The type theoretic (synthetic) formulation of homotopy equivalence and the
Univalence Axiom, as well as the model of MLTT plus UA using Kan simplicial sets
are all due to Voevodsky [Voe09, KLV12]. This model confirms the homotopical
interpretation proposed by Awodey and Warren [AW09].

Theorem 5.4 (without requiring that X is Kan) has an interesting history. The

64 CHAPTER 5. NON-CONSTRUCTIVITY IN KAN SIMPLICIAL SETS

first appearance seems to be [Moo56, Appendix A, p. 1A-8, Theorem 3]. Moore
credits A. Heller for the definition of the function space Y X on page 1A-4. Moore’s
proof is combinatorial, using the excluded middle in distinguishing the cases a
non/degenerate on page 1A-9, l. 17ff. (Typo: on page 1A-7, l. 12 and 15, the map
F is missing on the rhs; evidently F(μ,ν) was intended to depend on F .) The proof
in [May93, Theorem 6.9] is much the same as the one by Moore (with the F ’s in
place). Several variations of this argument can be found in the literature.

An essentially more abstract proof using anodyne extensions is given by Gabriel
and Zisman in [GZ67, Chapter Four, 3.1.2] (take B = Δ0). Here the classical
reasoning shows up when in 2.1.2 amalgamated sums over sets of non-degenerate
simplices are taken.

The results of Moore and Heller imply that Kan simplicial sets form a cartesian
closed category, which can be seen as a germ of the fact that they model dependent
type theory.

The rest of the paper is structured as follows. In Section 5.2 we give an
introduction to simplicial sets, and in Section 5.3 we provide several examples of
simplicial sets which will be in use in the rest of the article. In Section 5.4 we take a
closer look at Theorem 5.2, and provide a Kripke model showing that a constructive
consequence, Lemma 5.10 cannot be proven constructively. Section 5.5 deals with
edge compostion, much in the same way as Section 5.4 deals with edge reversal.
A summary and evaluation of the results obtained so far is given in Section 5.6.
In Section 5.7 we strengthen the Kan condition and prove constructively a weak
version of Lemma 5.10. This shows that our unprovability argument will have to
be refined for the stronger Kan condition. We sum up our findings and discuss
further research in Section 5.8.

5.2 Preliminaries

Definition 5.1 (Simplicial set). A simplicial set A is a collection of sets A[i]
for i ∈ N such that for every 0 < n and j ≤ n we have a function (face map)
dnj : A[n] → A[n−1], and for every 0 ≤ n and j ≤ n we have a function (degeneracy
map) snj : A[n] → A[n + 1], satisfying the following simplicial identities for all
suitable superscripts, which we happily omit:

didj = dj−1di if i < j (5.1)

disj = sj−1di if i < j (5.2)

disj = id for i = j, j + 1 (5.3)

disj = sjdi−1 if i > j + 1 (5.4)

sisj = sjsi−1 if i > j (5.5)

5.2. PRELIMINARIES 65

An element of A[i] is called an i-simplex, or just simplex when we don’t wish to
stipulate the dimension. A degenerate element is any element a ∈ A[i+ 1] in the
image of a degeneracy map.

Note that a simplicial identity like, e.g., dni d
n+1
j = dnj−1d

n+1
i actually means

∀x ∈ A[n+ 1]. dni (dn+1
j (x)) = dnj−1(d

n+1
i (x)).

With a countably infinite signature, the above definition can be expressed com-
pletely in many-sorted first-order logic. That means that we can see first-order
models which satisfy the above requirement as simplicial sets, and instead of simpli-
cial sets we could talk about first-order models satisfying the above requirements.

Simplicial sets form a category. For two simplicial sets A and B, HomS(A,B)
is the set of all natural transformations from A to B. A natural transformation is
a collection of maps g[n] : A[n] → B[n] commuting with the face and degeneracy
maps of A and B: g[n]si = sig[n − 1] for all 0 ≤ i < n and g[n + 1]di = dig[n]
for all 0 ≤ i ≤ n + 1. We freely omit the dimension [n] when it can be inferred
from the other arguments. For more information on simplicial sets we refer to, for
example, [May93, GJ09, Fri08].

Definition 5.2 (Kan simplicial set). A simplicial set Y satisfies the Kan condition
if for any collection of simplices y0, . . . , yk−1, yk+1, . . . , yn in Y [n−1] such that diyj
= dj−1yi for any i < j with i �= k and j �= k, there is an n-simplex y in Y such
that diy = yi for all i �= k. The Kan condition is also called the Kan extension
property, and a simplicial set is called a Kan simplicial set if it satisfies the Kan
condition.

Definition 5.3 (Kan graph). A reflexive multigraph consists of C1, C0, d0, d1, s
where C0 is a set of points, C1 a set of edges, di : C1 → C0, d1 the source and
d0 the target function, and s : C0 → C1 the function mapping each c ∈ C0 to a
selfloop of c. We write e : a → b if e is in C1 such that d1(e) = a and d0(e) = b
(note the direction!). In particular we have di(s(c)) = c for all c ∈ C0. A Kan
graph is a reflexive multigraph having the property that for all a, b, c in C0, if
e : a→ b and f : a→ c, then there exists an edge g : b→ c in C1.

Kan graphs can be viewed as truncated Kan simplicial sets, modelling a
truncated proof-relevant equality relation. Note that we don’t require the Kan
graph to have explicit functions giving the required edges like in [BC15], we merely
require that the edges exists. We discuss this distinction further in Section 5.7.
The special requirement of the edges for the Kan graph is in the literature often
called Euclidean. Euclidean combined with reflexivity gives both transitivity and
symmetry.

66 CHAPTER 5. NON-CONSTRUCTIVITY IN KAN SIMPLICIAL SETS

5.3 Examples of simplicial sets

We give some examples of simplicial sets that are used in the sequel.

5.3.1 Standard simplicial k-simplex Δk

Δk is the simplicial set with Δk[j] consisting of all non-decreasing sequences of
numbers 0, . . . , k of length j + 1. Equivalently, Δk[j] is the set of order-preserving
functions [j] → [k], where [i] denotes 0, . . . , i with the natural ordering. Examples
are Δ1[0] = {0, 1}, Δ1[1] = {00, 01, 11}, Δ2[1] = {00, 01, 02, 11, 12, 22} and

Δ2[2] = {000, 001, 002, 011, 012, 022, 111, 112, 122, 222}.

The degeneracy map sjk : Δi[j] → Δi[j+ 1] duplicates the k-th element in its input.
So, sjk(x0 . . . xk . . . xj+1) = x0 . . . xkxk . . . xj+1. The face map djk : Δi[j] → Δi[j−1]
deletes the k-th element. So, djk(x0 . . . xj) = x0 . . . xk−1xk+1 . . . xj.

5.3.2 The k-horns Λk
j

Λk
j is the j’th horn of the standard k-simplex Δk, and defined by Λk

j [n] = {f ∈
Δk[n] | [k] − {j} �⊆ Im(f)}. Alternatively, it is Δk[n] except every element must
avoid some element not equal to j. For example, Λ2

0[1] = {00, 01, 02, 11,��12, 22} =
Δ2[1] − {12} (excluding 12, since 12 does not avoid any element not equal to 0).
We also have:

Λ2
0[2] = {000, 001, 002, 011,��012, 022, 111,��112,��122, 222}.

The Kan extension condition for a simplicial set Y can also be formulated as:
every map F : Λk

j → Y can be extended to a map F ′ : Δk → Y . This is equivalent
to Definition 5.2.

5.3.3 Cartesian products

For two simplicial sets A and B, A×B is the simplicial set given by (A×B)[i] =
A[i] ×B[i], and the structural maps d and s use dA and dB component-wise (and
likewise for sA and sB). So if a ∈ A[i] and b ∈ B[i] then (a, b) ∈ (A × B)[i],
and di((a, b)) = (dAi (a), dBi (b)). In particular, the degenerate simplices of A× B
are pairs (sAj (a), sBj (b)) ∈ (A × B)[i + 1]. (Caveat: this is stronger than both
components being degenerate.)

5.3. EXAMPLES OF SIMPLICIAL SETS 67

5.3.4 Function spaces

We give the standard definition [Moo56, p. 1A-4]: Y X is the simplicial set
given by Y X [i] = HomS(Δi × X, Y), where HomS denotes morphisms (natu-
ral transformations) of simplicial sets, and structural maps as follows. The face
maps dk[i] : Y X [i] → Y X [i − 1] need to map elements of HomS(Δi × X, Y)
to HomS(Δi−1 × X, Y) and the degeneracy maps vice versa. For their defini-
tion it is convenient to view a k-simplex in Δi as an order-preserving function
a : [k] → [i]. Let d∗k be the strictly increasing function on natural numbers such
that d∗k(n) = n if n < k and d∗k(n) = n+ 1 otherwise (d∗k ‘jumps’ over k). Given
F ∈ HomS(Δi ×X, Y), define (dkF)[i](a, x) = F [i](d∗ka, x). For the degeneracy
maps, let s∗k be the weakly increasing function on natural numbers such that
s∗k(n) = n if n ≤ k and s∗k(n) = n− 1 otherwise (s∗k ‘duplicates’ k). Then define
(skF)[i](a, x) = F [i](s∗ka, x).

5.3.5 The simplicial set defined by a reflexive multigraph

The following definition from [BC15] gives the general construction of a simplicial
set from a reflexive multigraph. It is important to note that, even if the reflexive
multigraph is transitive, its simplicial set is not the same as the nerve [GJ09,
Example 1.4] of the category defined by the multigraph. The difference is subtle: if
we have edges f : x→ y, g : y → z, h, h′ : x→ z, where the composition gf = h,
then the nerve does not contain the 2-simplex with f, g, h′, in contrast to below.

Definition 5.4. Given a reflexive multigraph C we define the simplicial set S(C)
as follows. S(C)[0] = C0, S(C)[1] = C1 and S(C)[n], for n ≥ 2, consisting of all
tuples of the form (u0, . . . , un; . . . , eij, . . .) such that

eij : ui → uj in C1 for all 0 ≤ i < j ≤ n.

The maps dk in S(C) are defined by removing from (u0, . . . , un; . . . , eij, . . .) the
point uk and all edges eik and ekj . The maps sk in S(C) are defined by duplicating
the point uk in (u0, . . . , un; . . . , eij, . . .), adding an edge ek(k+1) = s(uk), and
duplicating edges and incrementing indices of edges as appropriate. This completes
the construction of the simplicial set S(C).

We now see why Kan graphs are named as they are: the S construction above
turns them into Kan simplicial sets.

Lemma 5.5. S(Y) is a Kan simplicial set whenever Y is a Kan graph.

Proof. Consider Λn
k for some n ≥ 1 and 0 ≤ k ≤ n and let f : Λn

k → S(Y). We
have to define a lifting h : Δn → S(Y). Δn consists of elements in every dimension,

68 CHAPTER 5. NON-CONSTRUCTIVITY IN KAN SIMPLICIAL SETS

but we only need to specify h for every element in Δn[n]. This since both the
higher and lower dimensional objects are the (possibly repeated) si or dj images of
objects in Δn[n], and h must commute with both si and dj, which determines h.

If n = 1, note that that Λ1
k only consists of one point, and degenerations of

that point in the higher dimensions. E.g., if k = 0 then Λ1
0[0] = {0}, Λ1

0[1] = {00}
etc. In that case we extend f to h : Δ1 → S(Y) by mapping h(1) = h(0) = f(0),
which determines h in higher dimensions.

If n = 2 we use the fact that Y is a Kan graph, so for any two edges f : a→ b
and g : a→ c there is an edge from b to c. The 2-horn gives two edges in the graph
with at least one common point, and the fact that the graph is both reflexive,
symmetric and transitive (because of the Kan property) enables us to find a third
edge with compatible endpoints. The procedure depends on the value of k. We
will here give the procedure for k = 2; k = 0, 1 are just simple adaptations.

Given f : Λ2
2 → S(Y) we have edges f(02) : f(0) → f(2) and edges f(12) :

f(1) → f(2), and we need to find a value for h(01) : f(0) → f(1) such that
d1h(01) = d1f(02) and d0h(01) = d1f(12). In other words, we need to find that
the dotted edge in the diagram actually exists (self-loops are not displayed).

f(2)

f(0) f(1)

f(02)
f(12)

e3

e1
e2

Recall that S(Y)[1] = Y [1], so both f(01) and f(12) are actual edges in Y . By
applying the Kan property on s(f(0)) and f(02) we get an edge e1 : f(2) → f(0).
Similarly we get an edge e2 : f(2) → f(1). Now, by using the Kan property on e1
and e2 we get an edge e3 : f(0) → f(1), and we put h(01) = e3.

Finally, if n ≥ 3 we observe that the horn Λn
k contains all points and edges of

Δn, and we define the lifting by

h(q) = (f[0](q(0)), . . . , f[0](q(m)); . . . , f[1](eij), . . .).

Here q : [m] → [n] is order-preserving and eij is the edge from q(i) to q(j) in
Δn[1] = Λn

k [1].

5.4 Edge reversal

In this section we give the classical proof of Theorem 5.2 and show that there is
no constructive proof.

5.4. EDGE REVERSAL 69

5.4.1 Edge reversal, definition and classical proof

Definition 5.6 (Edge reversal). A simplicial set Y is said to have edge reversal
when for every edge e ∈ Y [1] there exists an edge f ∈ Y [1] with d1(f) = d0(e) and
d0(f) = d1(e).

Lemma 5.7. Kan simplicial sets have edge reversal.

Proof. Given an arbitrary Kan simplicial set Y and an edge e ∈ Y [1] we can make
a map G : Λ2

0 → Y by letting G(0) = G(2) = d1(e), G(1) = d0(e), G(01) = e and
G(02) = s(d1(e)). Since Y is Kan we can extend G to G : Δ2 → Y , giving us a
value for G(12) ∈ Y [1], which must be an edge between G(1) and G(2) = G(0),
giving the reverse edge.

We introduce some convenient ad-hoc terminology for later use.

Definition 5.8 (Y X-good). Let X and Y are reflexive multigraphs and F01 :
X[1] → Y [1]. Define F0 = d1F01s : X[0] → Y [0] and F1 = d0F01s : X[0] → Y [0].
We say that F01 is Y X-good when the following two requirements hold for i = 0, 1:

• For all e, e′ ∈ X[1], if di(e) = di(e
′) then diF01(e) = diF01(e

′);

• For all e ∈ X[1], Fid0(e) = Fid1(e).

The first requirement expresses that F01, F0, F1 respect endpoints, that is, if
e : a → b in X[1], then F01(e) : F0(a) → F1(b) in Y [1]. The second requirement
ensures that F0 and F1 are constant on each weakly connected component of X.
(Notice that F01s(y) for y ∈ Y [0] does not need to map to a degenerate edge, so
F0 and F1 are not necessarily identical.)

Lemma 5.9. If X and Y are reflexive multigraphs and F01 : X[1] → Y [1] is
Y X-good, then we can extend F01 to a 1-simplex in S(Y)S(X).

Proof. To be a map in S(Y)S(X) we need to extend F01 : X[1] → Y [1] to a family
of maps F ′

01[n] : (Δ1×S(X))[n] → S(Y)[n] which commute with di and sj . Recall
the definitions F0 = d1F01s and F1 = d0F01s. We define F ′

01[n] depending on n. If
n = 0 then the input will have the form (i, x) where 0 ≤ i ≤ 1 and x ∈ X[0], and
we put F ′

01[0](i, x) = Fi(x). If n = 1 the input will have the form (ij, e) where
0 ≤ i ≤ j ≤ 1 and e ∈ X[1]. If i = j we put F ′

01(ij, e) = sFi(d0(e)). Note that
since F01 is Y X-good, we know that Fi(d0(e)) = Fi(d1(e)), justifying our choice of
the degenerate edge as the output. If i < j we let F ′

01(01, e) = F01(e). If n > 1
any input to F ′

01[n] will have the form (0a1b, (x0, . . . , xn; . . . eij, . . .)) such that
a+ b = n+ 1. We let F ′

01[n] map this element to the tuple

(F0(x0), . . . , F0(xa−1), F1(xa) . . . , F1(xa+b−1); . . . e
′
ij, . . .),

70 CHAPTER 5. NON-CONSTRUCTIVITY IN KAN SIMPLICIAL SETS

where e′ij = s(F0(xa)) if i < j < a, e′ij = F01(eij) if i < a ≤ j, and e′ij = s(F1(xa))
if a ≤ i < j. That is, the F ′

01[n] images are sequences of a number of F0 images
followed by b number of F1 images, with all edges being degenerate, except the
bridges between the two nodes. Since each of the derived Fi functions are constant
on each connected component, and the input consists exactly of sequences of nodes
in the same connected component, all of the elements F0(x0), . . . , F0(xa−1) are the
same element in Y [0], and likewise for F1(xa) . . . , F1(xa+b−1). This justifies our
choice of e′ij as the degenerate edges.

It should be clear that this map does indeed commute with di and sj , completing
the proof.

Lemma 5.10 (classical). For all Kan graphs Y and X, if F01 : X[1] → Y [1]
is Y X-good, then there is an F10 : X[1] → Y [1] such that d0F01 = d1F10 and
d1F01 = d0F10.

Proof. Let X and Y be Kan graphs. The S(Y) and S(X) are Kan simplicial sets
by Lemma 5.5. By applying the classical Theorem 5.2 we get that S(Y)S(X) has
edge reversal. Since F01 is Y X-good we extend F01 to an edge F ′

01 ∈ S(Y)S(X)[1]
as defined in the proof of Lemma 5.9. By edge reversal in S(Y)S(X) we get an
F ′
10 ∈ S(Y)S(X)[1] satisfying d1(F

′
10) = d0(F

′
01) and d0(F

′
10) = d1(F

′
01). We put

F10(x) = F ′
10(01, x). By expanding the definition of dk from Section 5.3.4, we

get the following properties: F ′
10(00, e) = F ′

01(11, e) and F ′
10(11, e) = F ′

01(00, e),
giving F ′

10(0, di(e)) = F ′
01(1, di(e)) and F ′

10(1, di(e)) = F ′
01(0, di(e)). We calculate

d0F01(e) = d0F
′
01(01, e) = F ′

01(1, d0(e)) = F1d0(e). Since F01 is Y X-good (2nd
requirement) we have F1d0(e) = F1d1(e). We continue the calculation: F1d1(e) =
F ′
01(1, d1(e)) = F ′

10(0, d1(e)) where the last step is justified above. We continue:
F ′
10(0, d1(e)) = d1F

′
10(01, e) = d1F10(e). In total we have proved d0F01(e) =

d1F10(e) for all e ∈ X[1]. Hence d0F01 = d1F10. The other equation is proved
symmetrically.

Kripke [Kri65] showed that constructive logic is sound for Kripke models, so
the existence of a Kripke countermodel of a statement gives the non-existence of
a constructive proof of that statement. We will now, by the means of a Kripke
model, see that Lemma 5.10 does not hold constructively.

5.4.2 Edge reversal, the Kripke countermodel

We describe a Kripke model containing a Y X-good F01 such that there cannot be
a function F10 : X[1] → Y [1] with d0F01 = d1F10 and d1F01 = d0F10, even though
X and Y are Kan graphs.

5.5. EDGE COMPOSITION 71

Day 1
X0 {x, x′}
X1 {s(x), s(x′)}
Y0 {y0, y1, y′0, y′1}
Y1 {s(y0), s(y1), s(y′0), s(y′1), y0y1 : y0→y1, y

′
0y

′
1 : y′0→y′1, a : y1→y0, b : y′1→y′0}

Day 2
X0 {x=x′}
X1 {s(x)=s(x′)}
Y0 {y0 = y′0, y1 = y′1}
Y1 {s(y0) = s(y′0), s(y1) = s(y′1), y0y1 = y′0y

′
1, a, b}

Input Output
F0 x y0
F0 x′ y′0
F1 x y1
F1 x′ y′1
F01 s(x) y0y1
F01 s(x′) y′0y

′
1

Table 5.1: Kripke (counter)model for edge reversal.

For clarity, the functions F0 = d1F01s and F1 = d0F01s as defined in Defini-
tion 5.8 are also made explicit in this model. Face maps are part of the model,
but not made explicit.

The model consists of two days, with an X and a Y part each. On day 1 both
X and Y consist of two separate components, which get merged on day 2. We
give the model both in Table 5.1 and, graphically, in Figure 5.1 and 5.2.

It is easy to see that both X and Y are Kan graphs by simply observing that
each of their two components are strongly connected. It is also clear that we
cannot define a consistent F10. In day 1 we would have to set F10(s(x)) = a and
F10(s(x

′)) = b to satisfy the requirement that d0F01 = d1F10 and d1F01 = d0F10.
The problem occurs in day 2, where we have that s(x) = s(x′), but a �= b, making
it impossible for F10 to respect equality. Note that all other functions, F0, F1,
F01, s, d0, and d1 remain consistent after collapsing, that is, they still map equal
elements to equal elements.

5.5 Edge composition

In this section we give the classical proof of Theorem 5.3 and show that there is
no constructive proof.

Definition 5.11 (Edge composition). A simplicial set Y is said to have edge
composition when for every edge e1, e2 ∈ Y [1], if d0(e1) = d1(e2) then there exists
an edge f ∈ Y [1] with d1(f) = d1(e1) and d0(f) = d0(e2).

72 CHAPTER 5. NON-CONSTRUCTIVITY IN KAN SIMPLICIAL SETS

x y0 = F0(x) y1 = F1(x)

x′ y′0 = F0(x
′) y′1 = F1(x

′)

s(x)

s(x′)

s(y0)

y0y1 = F01(s(x))

a

s(y1)

y′0y
′
1 = F01(s(x

′))

s(y′0)

b

s(y′1)

Figure 5.1: Kripke (counter)model for edge reversal, day 1.

Lemma 5.12. Kan simplicial sets have edge composition.

Proof. Given an arbitrary Kan simplicial set Y and edges e1, e2 ∈ Y [1] with
d0(e1) = d1(e2), we can make a map G : Λ2

1 → Y by putting G(0) = d1(e1),
G(1) = d0(e1), G(2) = d0(e2) G(01) = e1 and G(12) = e2. Since Y is Kan we can
extend G to G : Δ2 → Y , giving us a simplex G(02) : G(0) → G(2) in Y [1], the
composition of e1 and e2.

By a proof essentially identical to the proof of Lemma 5.10 we get the following
lemma

x = x′ y0 = y′0 y1 = y′1

s(x) = s(x′)

F01(s(x)) = F01(s(x
′))

s(y0) = s(y′0)

a

b

s(y1) = s(y′1)

Figure 5.2: Kripke (counter)model for edge reversal, day 2.

5.6. EVALUATION OF THE RESULTS 73

Lemma 5.13 (classical). For all Kan graphs Y and X, if F01 : X[1] → Y [1] and
F12 : X[1] → Y [1] are Y X-good maps satisfying d0F01 = d1F12, then there is an
F02 : X[1] → Y [1] such that d0F01 = d0F02 and d1F12 = d1F02.

In Figure 5.3 and 5.4 we see that Lemma 5.13 is not constructively provable.
We have two Y X-good functions F01 and F12, satisfying the requirement, and
both X and Y are Kan graphs. If S(Y)S(X) had edge composition we would get
a function F02 that d1F01 = d1F02 and d0F12 = d0F02. However, such a function
is not definable in the Kripke model. The reason is analogous to the case of
edge-reversal: from day 1 to day 2 we have equated objects in the domain of
F02 while keeping the images distinct. Specifically, on day 1 we are forced to set
F02(s(x)) = a and F02(s(x

′)) = b, but on day 2 we have s(x) = s(x′), but a �= b.

x y0 = F0(x) y1 = F1(x) y2 = F2(x)

x′ y′0 = F0(x
′) y′1 = F1(x) y′2 = F2(x

′)

s(x)

s(x′)

F01(s(x))

a

F12(s(x))

c d

e

s(y0) s(y1) s(y2)

F01(s(x
′))

b

F12(s(x
′))

c′ d′

e′

s(y′0) s(y′1) s(y′2)

Figure 5.3: Kripke (counter)model for edge composition, day 1.

5.6 Evaluation of the results

The results up to now are summarized in Figure 5.5. Having concrete, finite Kripke

74 CHAPTER 5. NON-CONSTRUCTIVITY IN KAN SIMPLICIAL SETS

x = x′ y0 = y′0 y1 = y′1 y2 = y′2

s(x) = s(x′)

F01(s(x))

a

F12(s(x))

c = c′ d = d′

e = e′

b

s(y0) = s(y′0) s(y1) = s(y′1) s(y2) = s(y′2)

Figure 5.4: Kripke (counter)model for edge composition, day 2.

Theorem 5.4

Theorem 5.2

Theorem 5.3

Lemma 5.10, not valid in Kripke model Fig. 5.1-5.2

Lemma 5.13, not valid in Kripke model Fig. 5.3-5.4

Figure 5.5: Summary of results, all implications constructive.

countermodels against Lemma 5.10 and 5.13 allows for a further simplification:
everything remains valid under the condition that X has at most two points.
Likewise, explicit bounds read off from the Kripke models can be imposed on the
number of points of Y and on the number of edges in X and in Y . The simplified
results are denoted by postfixing the number of the result by a ‘b’ for bounded, so
Lemma 5.10b is the bounded version of Lemma 5.10.

With explicit bounds on the size of the domain, functions are completely
determined by a finite number of function values. For example, if we have
∀z ∈ X. (z = x ∨ z = x′) for x, x′ ∈ X, then the binary predicate fun(y, y′) ≡
(x = x′ → y = y′) on Y completely describes all functions X → Y , in evidence
x �→ y, x′ �→ y′. With this in mind it is not difficult to express Lemma 5.10b as a
first-order classical tautology Φ that is not true in all Kripke models.

Now fix a constructive framework that is sufficiently expressive for the results
in Figure 5.5. For example, IZF (Zermelo-Fraenkel set theory in IPL, intuitionistic
predicate logic) will do. Let [|Φ|] be the Tarski interpretation of Φ expressed in
IZF. The following fundamental property of IZF could be called the semantic
conservativity of IZF over IPL:

If [|Φ|] is provable in IZF, then Φ is true in all Kripke models.

Lubarsky [Lub15] and McCarty [McC15] independently provided constructive

5.7. KAN GRAPHS WITH EXPLICIT FILLER FUNCTIONS 75

proofs of the above conservativity property of IZF. We gratefully acknowledge
their prompt answers to our question.1

Empowered by the proofs of Lubarsky and McCarty we can now conclude that
Lemma 5.10b cannot be proved in IZF. The same is true for Lemma 5.13b, and
for all other results in Figure 5.5, as well as for their bounded versions.

5.7 Kan graphs with explicit filler functions

Let us first give an intuitive explanation of our countermodels. They actually
exploit the undecidability of equality: on day 1 we don’t know what will be equal
on day 2. (This is different from the decidability of degeneracy, but the two are
related: for example, an edge e is degenerate iff e = s0(d1(e)).) In Figure 5.1 and
5.2, the point is that y0 �= y′0 on day 1, so one cannot put F10(s(x)) = F10(s(x

′)) = a
since this conflicts with d0F10 = d1F01. One is thus forced to a choice that turns
out to be wrong on day 2.

One attempt to deal with this lack of information is to give Kan simplicial
sets more structure. One could for example change Definition 5.2 of a Kan
simplicial set into one where we not only know that the required n-simplex exists,
but actually have functions producing them. In the formulation using horns
as in Section 5.3.2 this would amount to a dependent function fill(k, j, F) such
that fill(k, j, F) : Δk → Y extends F : Λk

j → Y , for any k, j, F . This form of
Kan simplicial set has been introduced by Nikolaus in [Nik11] under the name
of algebraic Kan complex. The definition with explicit fill-functions has certain
advantages, both classically and constructively, as we will see below. However,
one should be careful in defining Y X : morphisms in the category of algebraic Kan
complexes are required to map chosen fillers in X to chosen fillers in Y . As a
consequence, there are less maps from X to Y as algebraic Kan complexes than as
just simplicial sets. What we propose could be called a functional Kan simplicial
set, with explicit fill-functions but with maps as for ordinary simplicial sets. As a
consequence the exponential Y X of simplicial sets can be used.

To be able to prove an analogue of Lemma 5.5 we have to strengthen the
notion of Kan graph to also include such filler functions, cf. [BC15].

Definition 5.14 (Kan fill-graph). A Kan fill-graph is a reflexive multigraph with a
partial function fill : Y [1]×Y [1] → Y [1] such that for all e1, e2 ∈ Y [1], if e1 : a→ b
and e2 : a→ c, then fill(e1, e2) : b→ c.

1Strengthening the semantic conservativity to syntactic conservativity, that is, concluding
that Φ is provable in intuitionistic predicate logic, by using the completeness of the Kripke
semantics implicates some classical logic. Although not needed for this paper, we think there
is some general interest in a constructive proof that IPL
 Ψ whenever IZF
 [|Ψ|], for any
first-order sentence Ψ.

76 CHAPTER 5. NON-CONSTRUCTIVITY IN KAN SIMPLICIAL SETS

As noted earlier, the Kan property together with reflexivity implies symmetry
and transitivity. We can now define the corresponding functions.

Definition 5.15 (Edge reversal). For all e ∈ Y [1] where Y is a Kan fill-graph let

e−1 = fill(e, sd1(e)).

If e : a→ b, then sd1(e) : a→ a, and fill(e, sd1(e)) : b→ a.

Note that we in general don’t have (e−1)−1 = e, but we do have that di((e
−1)−1) =

di(e).

Definition 5.16 (Edge composition). Using the inverse for edges in Y we define
the composition of two edges e1 : a→ b and e2 : b→ c as

trans(e1, e2) = fill(e−1
1 , e2).

Again we are in no way guaranteed that trans(e1, s(b)) = e1 or trans(s(x), s(x)) =
s(x).

We immediately see that the addition of explicit functions adds power, as we
can now prove constructively and trivially an analogue of Lemma 5.10.

Lemma 5.17. For all Kan fill-graphs Y,X and for every F : X[1] → Y [1], the
function F−1 : X[1] → Y [1] defined by F−1(e) = F (e)−1 satisfies d0F = d1F

−1

and d1F = d0F
−1.

Note how using explicit functions rules out the Kripke counter-example we
gave of Lemma 5.10. If s(x) = s(x′) on day 2, then we immediately get a =
F−1
01 (s(x)) = F−1

01 (s(x′)) = b since equality has to be preserved.
We can even use the above fact to show that:

Lemma 5.18. For any reflexive multigraph X and Kan fill-graph Y , S(Y)S(X)

has edge reversal.

Proof. Assume an edge F ∈ S(Y)S(X)[1], we proceed to define F−1 such that
d0(F) = d1(F

−1) and d1(F) = d0(F
−1). As F ∈ S(Y)S(X)[1] we have F [n] :

Δ1[n] ×X[n] → Y [n]. We start with n = 0, defining F−1[0] : (Δ1 ×X)[0] → Y [0]
by letting F−1[0](0, x) = F [0](1, x) and F−1[0](1, x) = F [0](0, x). Likewise for
n = 1 we define F−1(00, e) = F (11, e) and F−1(11, e) = F (00, e), these are directly
enforced by d0(F) = d1(F

−1) and d1(F) = d0(F
−1). For the case of F−1(01, e) we

need to find an edge F−1(01, e) : F−1(0, d1e) → F−1(1, d0e), which from the way
we defined F−1[0] is the same as an edge

F−1(01, e) : F (1, d1e) → F (0, d0e).

5.7. KAN GRAPHS WITH EXPLICIT FILLER FUNCTIONS 77

d0(e)

d1(e)

F (1, d0(e))

F (0, d1(e))

F (1, d1(e))

F (0, d0(e))

e F (01, e)

F (00, e)

F (11, e)

F−1(01, e)

Figure 5.6: Reversing F .

The diagram in Figure 5.6 shows e ∈ S(X)[1] with its endpoints on the left,
and the nodes and edges we have directly reachable in S(Y) using only F on the
right. Reading off the figure we can define F−1(01, e) as follows:

F−1(01, e) = trans(F (11, e)), fill(F (01, e), F (00, e)))

Note that F−1 is well-defined since the functions involved in the definition are.
Moreover, F−1 commutes with s0, d0, d1 by construction.

Having defined F−1 for dimension 0 and 1, F−1 is also determined in higher
dimensions, because of the truncation in S(X), S(Y). In the case of n > 1 any
input to F−1[n] will have the form

F−1(0a1b, (x0, . . . , xn; . . . eij, . . .))

where a+ b = n+ 1. We let F−1[n] map this element to the tuple

(F−1(0, x0), . . . , F
−1(0, xa−1), F

−1(1, xa) . . . , F
−1(1, xa+b−1); . . . e

′
ij, . . .),

where e′ij = F−1(00, eij) if i < j < a, e′ij = F−1(01, eij) if i < a ≤ j, and
e′ij = F−1(11, eij) if a ≤ i < j. This commutes with face and degeneracy maps.

Using the same techniques we can constructively prove the following variant of
Lemma 5.13.

Lemma 5.19. For any Kan graph X and Kan fill-graph Y , if F01 : X[1] → Y [1]
and F12 : X[1] → Y [1] satisfy d0F01 = d1F12, then there is a F02 : X[1] → Y [1]
such that d1F01 = d1F02 and d0F12 = d0F02.

78 CHAPTER 5. NON-CONSTRUCTIVITY IN KAN SIMPLICIAL SETS

Lemma 5.20. For any reflexive multigraph X and Kan fill-graph Y , S(Y)S(X)

has edge composition.

Proof. Assume edges F01 ∈ S(Y)S(X), F12 ∈ S(Y)S(X) such that d0(F01) = d1(F12),
and we proceed to define F02 ∈ S(Y)S(X) such that d1(F02) = d1(F01) and d0(F02) =
d0(F12).

As was the case in the proof of Lemma 5.18, we are forced on F02(0, x) =
F01(0, x), F02(1, x) = F12(1, x), F02(00, e) = F01(00, e), and F02(11, e) = F12(11, e).

For the case of F02(01, e) we need to find an edge F02(01, e) : F02(0, d1e) →
F02(1, d0e), which from the way we defined F02[0] is the same as an edge

F02(01, e) : F01(0, d1e) → F12(1, d0e).

We note that d0(F01) = d1(F12) enforces F01(11, e) = F12(00, e), which again
enforces F01(1, di(e)) = F12(0, di(e)). This gives the diagram in Figure 5.7, enabling
us to read off:

F02(01, e) = fill(trans(F01(11, e), F01(01, e)−1), F12(01, e)).

d0(e)

d1(e) F01(0, d1(e))

F01(1, d0(e)) F12(0, d1(e))

F01(1, d1(e)) =

F12(0, d0(e))

e F01(01, e)

F01(11, e)

F12(01, e)

F02(01, e)

Figure 5.7: Filling the horn Λ2
1.

5.8 Conclusions and Future Research

We have given a thorough analysis of the non-constructivity of the basic result that
the Kan extension property is preserved under the usual operation of exponentiation

5.8. CONCLUSIONS AND FUTURE RESEARCH 79

of simplicial sets. An important step in this analysis, also employed in [BC15],
is the truncation of simplicial sets to dimension 1. This allows us to study the
basic result in the simplified situation of Kan graphs. Once one has shown the
constructive unprovability of the basic result in the situation of Kan graphs, one
obtains a fortiori its unprovability for Kan simplicial sets.

The much simpler notion of Kan graph (as compared to Kan simplicial set)
invites to further thought experiments. One of those is the study of simple,
constructive consequences of the Kan extension property, such as edge reversal
and edge composition. It turns out that already these consequences cannot be
proven constructively.

Another experiment is to strengthen the Kan extension property from existence
of an n-simplex as in Definition 5.2 to having a function, called a filler, yielding
these n-simplices. This makes quite a difference. None of the Kripke models
we have introduced is able to deal with such fillers, since equating objects in X
and Y implies that filler-values such as a and b in Figure 5.1 also have to be
equal. The question arises whether this is necessary so, or just coincidental in the
particular Kripke model. This question is answered in Section 5.7, where we prove
constructively that, if X is a graph and Y a Kan-fill graph, then S(Y)S(X) has
edge reversal and edge composition. This result may be of independent interest.
It suggests that showing the (expected) constructive unprovability of Theorem 5.4
for algebraic Kan complexes as in [Nik11] will require more complicated structures
than graphs. The above expectation is based on an analysis of filling a 2-horn in
Y X , which requires defining F (001, t). As F has to commute with s0, one must
know whether the 2-simplex t is an s0-image or not. This can in general only be
decided by an appeal to classical logic. We have to leave this to future research.

80 CHAPTER 5. NON-CONSTRUCTIVITY IN KAN SIMPLICIAL SETS

Functional Kan Simplicial Sets:
Non-Constructivity of Exponentiation

Erik Parmann

Functional Kan simplicial sets are simplicial sets in which the horn-fillers
required by the Kan extension condition are given explicitly by functions.
We show the non-constructivity of the following basic result: if B and A
are functional Kan simplicial sets, then AB is a Kan simplicial set. This
strengthens a similar result for the case of non-functional Kan simplicial
sets shown by Bezem, Coquand and Parmann [BCP15]. Our result shows
that—from a constructive point of view—functional Kan simplicial sets are,
as it stands, unsatisfactory as a model of even simply typed lambda calculus.
Our proof is based on a rather involved Kripke countermodel which has been
encoded and verified in the Coq proof assistant.

82 CHAPTER 6. FUNCTIONAL KAN SIMPLICIAL SETS

6.1 Introduction

In this paper, we show that the following theorem cannot be constructively proven
in Intuitionistic Zermelo-Fraenkel (IZF) set theory.

Theorem 6.1 (classical). If B and A are functional Kan simplicial sets, then AB

is a Kan simplicial set.

We showed a similar result in [BCP15]1, but for non-functional Kan simplicial
sets. We will introduce (functional Kan) simplicial sets properly in the next section;
for now, we will explain what is needed to characterize the crucial difference between
functional and non-functional Kan simplicial sets.

A simplicial set consist of a family of sets A[i], i ∈ N with certain functions going
between them, such that these functions satisfy the so-called simplicial identities.
A Kan simplicial set is a simplicial set which is, in some sense, “full”: it satisfies
that, for every compatible n-tuple of elements in A[n−1], there exists a compatible
element in A[n], using the meaning of “compatible” given in Definition 6.2.

Functional and non-functional Kan simplicial sets differ only in that the
expression “for every. . . there exists. . . ” is given a constructive interpretation.
Although classical mathematics easily passes—by applying the axiom of choice—
from elements existing to functions giving those elements, constructive mathematics
does not take this so lightly. Constructively, all functional Kan simplicial sets are
Kan simplicial sets, but the converse does not hold unless we adopt the axiom of
choice, which—depending on the context—makes the logic classical [Dia75].

Theorem 6.1 is true classically, even without requiring that B is Kan (cf.
[Moo56, Appendix A, Theorem 3] or [May93, Theorem 6.9] for a more modern
approach), and plays an important role when using Kan simplicial sets as a model
of type theory. The way we prove that Theorem 6.1 cannot be constructively
proven is to show that the following constructive consequence of it cannot be
constructively proven.

Theorem 6.2 (classical). If B and A are functional Kan simplicial sets, then any
edge in AB can be reversed.

In [BCP15] we gave a Kripke counterexample to the constructive provability
of Theorem 6.1 for non-functional Kan simplicial sets, showing that the appeal to
classical logic in the proofs is essential. We did this by showing that certain graph-
like, first-order structures can be constructively extended to Kan simplicial sets;
and by using the corresponding version of Theorem 6.2 on the resulting simplicial
set, we got that the graphs have a particular feature we can call function-space

1Recall that [BCP15] occurs as Chapter 5 in this thesis.

6.1. INTRODUCTION 83

edge reversal. We then showed that the same class of structures does not have
function-space edge reversal constructively.

Unfortunately, the countermodel only yields a non-functional Kan simplicial
set, and we showed that if we assume explicit filler functions, then the simplicial
sets induced by graphs always have function-space edge reversal. This shows that
a simple tweak of the model is not sufficient; we need structures other than simple
graphs. More precisely, we conjectured that a countermodel must be a hypergraph
containing at least three dimensions of a simplicial set—not only points and edges,
but also triangles—and this might significantly increase the complexity.

The present paper provides such a Kripke countermodel. In addition to the
extra complexity of the new dimension, it also contains explicit filler functions
respecting equality (the equality relation must be a congruence). Since this Kripke
model equates elements (as the one in [BCP15]), ensuring congruence turns out
to be quite involved. To validate correctness, we have encoded and verified the
model in the Coq [CDT12] proof assistant.

The simplicial set AB in Theorem 6.1 is not claimed to functional Kan. This
makes Theorem 6.1 weaker than if we had required AB to be functional Kan,
strengthening the non-provability result in this paper. It also means that the
present paper properly generalizes [BCP15].

In [BC15] it was shown that the homotopy equivalence of the fibers of a
functional Kan fibration over a connected base cannot be proved constructively.
The techniques used in the present paper are strongly inspired by [BC15].

The first section of [BCP15] provides a introduction as to why Kan simplicial
sets are interesting from a type-theoretical perspective. In short, Kan simplicial
sets can be used to build a model of Martin-Löf Type Theory(MLTT)[KLV12]
with the homotopy theoretic interpretation of equality, and in this construction,
Theorem 6.1 is important for the interpretation of function types. The results
in [BC15] show that this construction, with equality interpreted as homotopy
equivalences, is fundamentally non-constructive. This result closes one of the
possible paths to finding a computational interpretation of the Univalence Axiom.

In [BCP15] we showed that an even more fundamental part of the Kan simplicial
set model of Type Theory—the interpretation of function types—is fundamentally
non-constructive for non-functional Kan simplicial sets. The present paper shows
the same for functional Kan simplicial sets. As a result the Kan simplicial set
model is shown to presently be, from a constructive perspective, unsatisfactory as
a model of even simply typed lambda calculus.

An alternative to interpreting type theory in Kan simplicial sets is to use
cubical sets with a uniform Kan condition, as in [BCH14]. The results of the
present paper suggests that using cubical sets with the uniform Kan condition is
more promising than using Kan simplicial sets.

84 CHAPTER 6. FUNCTIONAL KAN SIMPLICIAL SETS

In addition to its type-theoretical implications, we think the result in this
paper is valuable in its own right: we prove that a basic result in homotopy theory
is not constructively provable.

The rest of the paper is organized as follows. In Section 6.2, we introduce
simplicial sets and provide several examples of simplicial sets which will be used
later. In Section 6.3, we define hypergraphs which we can constructively interpret
as simplicial sets. In Section 6.4, we use that interpretation, in combination with
Theorem 6.1, to formulate a theorem about graphs. In Section 6.5, we provide a
Kripke model rejecting the constructive provability of this theorem. In Section 6.6,
we explain how we used the proof assistant Coq to verify the Kripke model, before
concluding in Section 6.7.

6.2 Simplicial sets

We start by recalling the formal definition of simplicial sets and Kan simplicial
sets from [BCP15]. We also introduce functional Kan simplicial sets, before we
provide a more intuitive explanation intended for those new to simplicial sets.

Definition 6.1 (Simplicial set). A simplicial set A is a collection of sets A[i]
for i ∈ N such that, for every 0 < n and j ≤ n, we have a function (face map)
dnj : A[n] → A[n − 1], and for every 0 ≤ n and j ≤ n, we have a function
(degeneracy map) snj : A[n] → A[n+1], satisfying the following simplicial identities
for all suitable superscripts, which we happily omit:

didj = dj−1di if i < j (6.1)

disj = sj−idi if i < j (6.2)

disj = id for i = j, j + 1 (6.3)

disj = sjdi−1 if i > j + 1 (6.4)

sisj = sjsi−1 if i > j (6.5)

An element of A[i] is called an i-simplex. A degenerate element is any element
a ∈ A[i+ 1] in the image of a degeneracy map.

Note that a simplicial identity, such as, dni d
n+1
j = dnj−1d

n+1
i , actually means

∀x ∈ A[n+ 1]. dni (dn+1
j (x)) = dnj−1(d

n+1
i (x)).

Simplicial sets form a category. For two simplicial sets A and B, HomS(A,B)
is the set of all natural transformations from A to B. A natural transformation is
a collection of maps g[n] : A[n] → B[n] commuting with the face and degeneracy
maps of A and B: g[n]si = sig[n−1] for all 0 ≤ i < n and g[n+1]di = dig[n] for all

6.2. SIMPLICIAL SETS 85

0 ≤ i ≤ n+ 1. We freely omit the dimension [n] when it can be inferred from the
other arguments. For more information on simplicial sets, see [May93, GJ09, Fri08].

Definition 6.2 (Functional Kan simplicial set). A simplicial set Y satisfies the
Kan condition if for any collection of simplices y0, . . . , yk−1, yk+1, . . . , yn in Y [n−1]
such that diyj = dj−1yi for any i < j with i �= k and j �= k, there is an n-simplex
y in Y such that diy = yi for all i �= k. The Kan condition is also called the Kan
extension property, and a simplicial set is called a Kan simplicial set if it satisfies
the Kan condition.

If we have functions filln−1
k : Y [n− 1]× . . . Y [n− 1] → Y [n] giving the required

n-simplex, then we say that Y is a functional Kan simplicial set.

A similar notion to functional Kan simplicial sets has been introduced by
Thomas Nikolaus [Nik11] as algebraic Kan complexes (AlgKan). The difference
between AlgKan and functional Kan simplicial sets lies in the notion of morphisms
(maps) in the corresponding category. For functional Kan simplicial sets, the mor-
phisms are the same as between simplicial sets—they are natural transformations
commuting with face and degeneracy maps—while for AlgKan, the morphisms
must also send fillings to fillings. While the category of simplicial sets have a
well-behaved exponential object, there is, to the author’s knowledge, no good
notion of exponentiation for AlgKan. Exponentiation is used to interpret the
function type.

We will now provide some intuition of Kan simplicial sets by inspecting how
they work in the lower dimensions. Readers who are already familiar with simplicial
sets can skip ahead to Notation 1.

A simplicial set is an algebraic model of a topological space. It can also be
seen as generalizations of reflexive directed multigraphs with countably infinite
many dimensions. The first four dimensions of a simplicial set A can be viewed
as points, edges, triangles and tetrahedrons. There are two functions going from
edges to points—d10 : A[1] → A[0] and d11 : A[1] → A[0]—and we say that d11
gives the startpoint and d10 gives the endpoint of an edge. Likewise, there are
three functions from triangles to edges, d20, d

2
1, d

2
2 : A[2] → A[1] (giving the three

edges a triangle consists of); and there are four similarly-named functions from
tetrahedrons to triangles (giving the four triangles of the tetrahedron.)

It is important to note that elements are not necessarily equal when their
components are; there can be several different edges going from one point to
another, there can be several triangles having the exact same edges components,
and so on.

Figure 6.1 shows a triangle t consisting of three edges, e0, e1 and e2, with
d2i (t) = ei. Since the triangle is built up by three edges, we expect certain relations
between the endpoints of those edges; for example, that the endpoint of e2 matches
the startpoint of e0. This is precisely what is enforced by simplicial identity 6.1.

86 CHAPTER 6. FUNCTIONAL KAN SIMPLICIAL SETS

b

a c

e2

e1

e0

Figure 6.1: A single triangle.

In addition to the face maps dnj , there are the degeneracy maps snj : A[n] →
A[n+1]. These give degenerate elements: elements which are, so to say, constructed
solely from a lower-dimensional object. For points, s00 gives a reflexive edge on
that point, and this edge is called the degenerate self-loop of the point. For
edges, s10 gives a triangle where two of the sides are the original edge and the
third side is the degenerate self-loop of the startpoint of the edge, as shown in
Figure 6.2. The function s11 gives a triangle with the degenerate edge built on the
endpoint. These properties are enforced by the simplicial identities 6.2-6.4, while
simplicial identity 6.5 enforces the natural constraint that certain different ways
of degenerating lead to the same degenerate element. The latter is most easily
exemplified by first taking the degenerate edge on a point, and then either s11 or
s10 of this edge, both provide the same degenerate triangle (with all three faces
degenerate.)

a b

a

a b

e

s00(a)

e

e

Figure 6.2: An edge e and the degenerate triangle s10(e).

Kan simplicial sets are special insofar as they are guaranteed to contain certain
elements. One intuition is that they are simplicial sets satisfying the following
condition: Whenever we have n + 1 elements in A[n] such that we lack exactly
one element in A[n] to have all the faces of an element in A[n + 1], then we
have this extra element in A[n], and we have the element in A[n+ 1] containing
them all. For example, if we have two edges as in the left of Figure 6.3 where we
lack only one edge to have all the edges of a triangle, then that edge exists (the
edge g in the figure), and there is a triangle such that its faces are exactly e, f
and g. For triangles, the Kan condition ensures that if we have three triangles

6.2. SIMPLICIAL SETS 87

b

a c

b

a c

f

e e

f

g

Figure 6.3: An example of two compatible edges getting filled.

such that we only lack a fourth to form a tetrahedron, then we have both that
triangle and the tetrahedron. The relatively unwieldy condition on the sequence
of elements y0, . . . , yk−1, yk+1, . . . , yn given in Definition 6.2 express precisely that
we lack exactly one element in A[n] to have all the faces of an element in A[n+ 1].

Notation 1. We introduce some notation for describing elements in the lower
dimensions of a simplicial set A. We write e : a → b if e ∈ A[1], d11(e) = a, and
d10(e) = b (note the direction). We write

t :
e2 e0

e1

for a triangle t ∈ A[2] with d2i (t) = ei. We say that a triangle t contains an
edge e if d2i t = e for some 0 ≤ i ≤ 2. The simplicial identities enforce that all

triangles t ∈ A[2] satisfy that, if t :
e2 e0

e1
, then d10e2 = d11e0, d

1
1e2 = d11e1 and

d10e0 = d10e1. This justifies writing

t :

b

a c

e2 e0

e1

for a triangle t with d1i t = ei and e2 : a→ b, e0 : b→ c, and e1 : a→ c.

Before moving on to some examples of simplicial sets, we show a property of
Kan simplicial sets which will be important later: they have edge reversal.

Definition 6.3 (Edge reversal). A simplicial set Y is said to have edge reversal
when, for every edge e ∈ Y [1], there exists an edge f ∈ Y [1] with d1(f) = d0(e)
and d0(f) = d1(e). We say that a simplicial set has functional edge reversal when
we have a function giving, for every edge e ∈ Y [1], the edge f ∈ Y [1] as above.

Lemma 6.4. Functional Kan simplicial sets have functional edge reversal, and
Kan simplicial sets have edge reversal.

88 CHAPTER 6. FUNCTIONAL KAN SIMPLICIAL SETS

Proof of functional edge reversal. For all e ∈ Y [1] where Y is a functional Kan
fill-graph, let

f = d0(fill1,0(s(d1(e)), e)).

If e : a→ b, then s(d1(e)) : a→ a, and

fill1,0(s(d1(e)), e) :

b

a a

e

s(d1(e))
,

so d0(fill1,0(s(d1(e)), e)) : b→ a.

Proof of non-functional version. As above, but instead of using the fill function
we can only claim that the edge exists.

6.2.1 Examples of simplicial sets

In this section we give some examples of simplicial sets which will be useful later.
This section contains standard definitions, and is taken from [BCP15].

Standard simplicial k-simplex Δk

Δk is the simplicial set with Δk[j] consisting of all non-decreasing sequences of
numbers 0, . . . , k of length j + 1. Equivalently, Δk[j] is the set of order-preserving
functions [j] → [k], where [i] denotes 0, . . . , i with the natural ordering. Examples
are Δ1[0] = {0, 1}, Δ1[1] = {00, 01, 11}, Δ2[1] = {00, 01, 02, 11, 12, 22} and

Δ2[2] = {000, 001, 002, 011, 012, 022, 111, 112, 122, 222}.
The degeneracy map sjk : Δi[j] → Δi[j+ 1] duplicates the k-th element in its input.
So, sjk(x0 . . . xk . . . xj+1) = x0 . . . xkxk . . . xj+1. The face map djk : Δi[j] → Δi[j−1]
deletes the k-th element. So, djk(x0 . . . xj) = x0 . . . xk−1xk+1 . . . xj.

The k-horns Λk
j

Λk
j is the j’th horn of the standard k-simplex Δk, and defined by Λk

j [n] = {f ∈
Δk[n] | [k] − {j} �⊆ Im(f)}. Alternatively, it is Δk[n] except every element must
avoid some element not equal to j. For example, Λ2

0[1] = {00, 01, 02, 11,��12, 22} =
Δ2[1] − {12} (excluding 12, since 12 does not avoid any element not equal to 0).
We also have:

Λ2
0[2] = {000, 001, 002, 011,��012, 022, 111,��112,��122, 222}.

The functional Kan extension condition from Definition 6.2 for a simplicial set
Y can also be formulated as: we have a dependent function fill(k, j, F) such that
fill(k, j, F) : Δk → Y extends F : Λk

j → Y , for any k, j, F .

6.3. HYPERGRAPHS AS SIMPLICIAL SETS 89

Cartesian products

For two simplicial sets A and B, A×B is the simplicial set given by (A×B)[i] =
A[i] ×B[i], and the structural maps d and s use dA and dB component-wise (and
likewise for sA and sB). So if a ∈ A[i] and b ∈ B[i] then (a, b) ∈ (A × B)[i],
and di((a, b)) = (dAi (a), dBi (b)). In particular, the degenerate simplices of A× B
are pairs (sAj (a), sBj (b)) ∈ (A × B)[i + 1]. (Caveat: this is stronger than both
components being degenerate.)

Function spaces

Y X is the simplicial set given by Y X [i] = HomS(Δi×X, Y), where HomS denotes
morphisms (natural transformations) of simplicial sets, and structural maps as
follows. The face map dk[i] : Y X [i] → Y X [i − 1] need to map elements of
HomS(Δi ×X, Y) to HomS(Δi−1 ×X, Y) and the degeneracy maps vice versa.
For their definition it is convenient to view a k-simplex in Δi as a non-decreasing
function a : [k] → [i]. Let d∗k be the strictly increasing function on natural numbers
such that d∗k(n) = n if n < k and d∗k(n) = n + 1 otherwise (d∗k ‘jumps’ over k).
Given F ∈ HomS(Δi ×X, Y), define (dkF)[j](a0 . . . aj, x) = F [j](d∗ka0 . . . d

∗
kaj, x).

For the degeneracy maps, let s∗k be the weakly increasing function on natural
numbers such that s∗k(n) = n if n ≤ k and s∗k(n) = n− 1 otherwise (s∗k ‘duplicates’
k). Then we define (skF)[i](a, x) = F [i](s∗ka, x).

6.3 Hypergraphs as simplicial sets

We now define graph classes corresponding to (functional Kan) simplicial sets.
The meaning of “corresponding” is made precise in Lemma 6.8; these are graphs
which can be constructively interpreted as (functional Kan) simplicial sets.

Definition 6.5 (Reflexive hypergraph). A reflexive hypergraph consists of C2, C1,
C0, d

1
0, d

1
1, d

2
0, d

2
1, d

2
2, s, s0, s1 where C0 is a set of points, C1 a set of edges and C2

a set of triangles. For d1i : C1 → C0, d
1
1 is the source and d10 the target function,

and s(c) is a degenerate self-loop. Each d2i : C2 → C1 is an edge function, giving
an edge of a triangle; and each si : C1 → C2 is a function mapping an edge to a
degenerate triangle. These are all subject to different restrictions, which are given
below.

We will use the notation introduced in Notation 1 for reflexive hypergraphs

as well. We require that all triangles t ∈ C2 satisfy that, if t :
e2 e0

e1
, then

90 CHAPTER 6. FUNCTIONAL KAN SIMPLICIAL SETS

d20e2 = d21e0, d
2
1e2 = d21e1 and d20e0 = d20e1, justifying writing

t :

b

a c

e2 e0

e1

for a triangle t with d2i t = ei, e2 : a→ b, e0 : b→ c, and e1 : a→ c.
We require d1i (s(c)) = c for all c ∈ C0, and we require that the functions

s0 and s1 satisfy the following: for all e : a → b, s0(e) :

a

a b

s(a) e

e
and

s1(e) :

b

a b

e s(b)

e
, and that for all v, s0(s(v)) = s1(s(v)) :

v

v v

s(v) s(v)

s(v)
.

The definition above is not much more than a specialization of Definition 6.1
to the first three dimensions, so it is not particularly surprising that we can extend
any reflexive hypergraph to a simplicial set. The method is a natural extension of
the one used in [BCP15] and [BC15], but extended in such a way that triangles
are not necessarily equal when they have equal faces.

Definition 6.6 (S(C)). Given a reflexive hypergraph C, we can construct a
simplicial set S(C) in the following way:

S(C)[0] = C0, S(C)[1] = C1, S(C)[2] = C2 and S(C)[n], for n ≥ 3, consisting
of all tuples of the form (u0, . . . , un; . . . , eij, . . . ; . . . , tijl, . . .) such that

eij : ui → uj in C[1] for all 0 ≤ i < j ≤ n, and

tijl :

uj

ui ul

eij ejl

eil
in C[2] for all 0 ≤ i < j < l ≤ n.

The maps dnk in S(C) are defined for n > 3 by removing from the input tuple

(u0, . . . , un; . . . , eij, . . . ; . . . , tijl, . . .)

the point uk, all edges eik and ekj, and all triangles containing either of those
edges. For n = 3, if we do this on an element q in S(C)[3], the result is a
tuple (u0, u1, u2; e01, e02, e12; t012) containing only one triangle t012, and we let
d3k(q) = t012.

The maps snk in S(C) for n > 3 are defined by duplicating the point uk in the
tuple (u0, . . . , un; . . . , eij, . . . ; . . . , tijl, . . .), adding an edge ek(k+1) = s(uk) , and

6.3. HYPERGRAPHS AS SIMPLICIAL SETS 91

duplicating edges and incrementing indices of edges as appropriate. In addition,
we add tk(k+1)j = s0(ekj) for every ekj and tik(k+1) = s1(eik) for every eik, and
duplicating triangles and incrementing indices as needed. For n = 3, we are given

a triangle t :

b

a c

e2 e0

e1
, and we perform the above construction on the tuple

(a, b, c; e2, e1, e0; t).
This completes the construction of the simplicial set S(C), and it is fairly easy

to see that it satisfies the simplicial identities.

Similarly, we can specialize Definition 6.2 to the first three dimensions, giving
us a first-order structure we can extend to a functional Kan simplicial set.

Definition 6.7 (Kan fill-hypergraph). A Kan fill-hypergraph is a reflexive hy-
pergraph where we have functions fill1,i : C[1] × C[1] → C[2] for 0 ≤ i ≤ 2 and
fill2,i : C2 × C2 × C2 → C2 for 0 ≤ i ≤ 3, satisfying the following requirements.

For all e1, e2 ∈ C[1], fill1,i : C[1] × C[1] → C[2] must satisfy:

If e1 : a→ c and e2 : a→ b, then fill1,0(e1, e2) :

b

a c

e2

e1
.

If e0 : b→ c and e2 : a→ b, then fill1,1(e0, e2) :

b

a c

e2 e0

.

If e0 : b→ c and e1 : a→ c, then fill1,2(e0, e1) :

b

a c

e0

e1
.

For all t1, t2, t3 ∈ C[2], fill2,i : C2 × C2 × C2 → C2 must satisfy:

If t1:

c

a d

e1 e5

e3
, t2:

b

a d

e2 e4

e3
and t3:

b

a c

e2 e0

e1
, then fill2,0(t1, t2, t3):

c

b d

e0 e5

e4
.

If t1:

c

b d

e0 e5

e4
, t2:

b

a d

e2 e4

e3
and t3:

b

a c

e2 e0

e1
, then fill2,1(t1, t2, t3):

c

a d

e1 e5

e3
.

If t1:

c

b d

e0 e5

e4
, t2:

c

a d

e1 e5

e3
and t3:

b

a c

e2 e0

e1
, then fill2,2(t1, t2, t3):

b

a d

e2 e4

e3
.

If t1:

c

b d

e0 e5

e4
, t2:

c

a d

e1 e5

e3
and t3:

b

a d

e2 e4

e3
, then fill2,3(t1, t2, t3):

b

a c

e2 e0

e1
.

Note that the above requierments can be translated from the visual description

92 CHAPTER 6. FUNCTIONAL KAN SIMPLICIAL SETS

above into first-order logic, and this is the intended reading of the above definition.
For example, the requirement for fill1,0 is:

∀e1, e2 ∈ C[1], d11(e1) = d11(e2) → d21(fill1,0(e1, e2)) = e1 ∧ d22(fill1,0(e1, e2)) = e2.

Lemma 6.8. If C is a Kan fill-hypergraph, we can extend S(C) to a functional
Kan simplicial set.

Proof. We have to define the functions filln,k in S(C). We write fillSn,k for the

functions in S(C) and fillCn,k for the functions in C.

If n = 0, we simply let fillS0,i : C0 → C1 be s. If n = 1 we put fillS1,i = fillC1,i, and

it is easy to see that fillC1,i satisfies the requirements given in Definition 6.2.

If n = 2, we use fillC2,k; but we cannot use it directly, as it provides an element
of S(C)[2], not an element in S(C)[3] as needed. Instead, we use it to construct
an element of S(C)[3]. We show the procedure for k = 1; the other cases proceed
analogously. We are given t0, t2, t3 ∈ S(C)[2] = C[2], such that ditj = dj−1ti for
any i < j ≤ 3 with i �= 1 and j �= 1, and we proceed to construct an r ∈ S(C)[3]
such that d2i r = ti for i = 0, 2, 3. Expanding this and naming the resulting edges
gives the equations

d0t2 = d1t0 = e4

d0t3 = d2t0 = e0

d2t3 = d2t2 = e2

Naming the three remaining edges e1, e3 and e5 we get that t0 :

c

b d

e0 e5

e4
,

t2 :

b

a d

e2 e4

e3
, and t3 :

b

a c

e2 e0

e1
, giving fillC2,1(t1, t2, t3) :

c

a d

e1 e5

e3
.

Observe that the tuple

r = (a, b, c, d ; e2, e1, e3, e0, e4, e5 ; t3, t2, fillC2,1(t0, t2, t3), t0)

satisfies the form given in Definition 6.6 for elements in S(C)[3], so r ∈ S(C)[3],
while also satisfying dir = ti for i = 0, 2, 3, giving us the value for fillC2,1(t0, t2, t3).

For higher values of n, we observe that any sequence of tuples applicable to
fillSn,k contains all the components of a satisfying element; it is just a matter of
extracting the right triangles, edges and points from the arguments.

6.4. FUNCTION SPACES BETWEEN HYPERGRAPHS 93

6.4 Function spaces between hypergraphs

In this section, we identify a class of functions between reflexive hypergraphs which
we can extend to edges in the function space between the corresponding simplicial
sets. This enables us to formulate a constructive consequence of Theorem 6.1
which we will give a countermodel to in the next section.

Remember that the function space between two simplicial sets A and B has as
the ith dimension HomS(Δi×A,B), so its edges are elements of HomS(Δ1×A,B).

Definition 6.9 (Δi|m). We define Δi|m to be the family of m sets given by
removing from Δi every dimension larger than m. The functions sj and dj+1 for
0 ≤ j < m are kept as is, while they are discarded for j > m.

Definition 6.10. For reflexive hypergraphs X and Y , we say that an F : Δi|2 ×
X → Y is commuting when it commutes with dn and sm for 0 ≤ m ≤ 1 ≤ n ≤ 2,
where both work on the product Δi|2[n]×X[n] component-wise, similar to Cartesian
products of simplicial sets as described in Section 6.2.1.

Lemma 6.11. For reflexive hypergraphs X and Y , any commuting F : Δ1|2×X →
Y can be extended to an edge in S(Y)S(X).

Proof. We need to extend F to an F ′ ∈ HomS(Δ1×S(X), S(Y)); that is, a family
of functions F ′[n] : (Δ1 × S(X))[n] → S(Y)[n] for n ∈ N commuting with sij and
dij. For 0 ≤ n ≤ 2, we let F ′[n] = F . For n > 2, any input to F ′[n] will have the
form

(0a1b, (x0, . . . , xn; . . . eij, . . . ; . . . , tijl, . . .))

such that a+ b = n+ 1. We define the function gta : N → {0, 1} as gta(x) = 1 if
x ≥ a and gta(x) = 0 otherwise, and we then let F ′[n] map the input to the tuple

(F (0, x0), . . . , F (0, xa−1), F (1, xa) . . . , F (1, xa+b−1); . . . e
′
ij, . . . ; . . . t

′
ijl, . . .),

where e′ij are given by e′ij = F (gta(i)gta(j), eij), and t′ijl are given by t′ijl =
F (gta(i)gta(j)gta(l), tijl).

It should be clear that this map does indeed commute with di and sj . It holds
in the lower dimensions since we assume F to be commuting. It also holds in the
higher dimensions since we apply F uniformly to every element in the tuple; if we
remove an particular element and then apply F , we get the same result as if we
first apply F to all elements in the tuple and then remove the particular element.

Now we are ready to formulate the constructive consequence of Theorem 6.1—
which is essentially Theorem 6.2, reformulated as a property of Kan fill-hypergraphs.

94 CHAPTER 6. FUNCTIONAL KAN SIMPLICIAL SETS

Theorem 6.3 (Classical). For any Kan fill-hypergraphs X and Y , for any com-
muting F : Δ1|2 × X → Y we can find a commuting F− : Δ1|2 × X → Y such
that for all p ∈ X[0], l ∈ X[1] and t ∈ X[2] we have

F−(0, p) = F (1, p) F−(1, p) = F (0, p)

F−(00, l) = F (11, l) F−(11, l) = F (00, l)

F−(000, t) = F (111, t) F−(111, t) = F (000, t)

Proof. We first extend F to an edge in S(Y)S(X) by Lemma 6.11 and note that, by
Lemma 6.8, S(Y) is a functional Kan simplicial set. We then apply the classical
Theorem 6.2, giving that S(Y)S(X) is a Kan simplicial set, enabling us to reverse
the edge by Lemma 6.4, giving an F− in S(Y)S(X)[1] satisfying d0(F) = d1(F

−)
and d1(F) = d0(F

−). We discard every dimension of F− above 2. Being an
element of HomS(Δ1 × S(X), S(Y)) means that F− commutes, and expanding
the definition of di from Section 6.2.1 we calculate:

F−(0, p) = F−(d∗1(0), p) = d1(F
−)(0, p) = d0(F)(0, p) = F (d∗0(0), p) = F (1, p),

F−(1, p) = F−(d∗0(0), p) = d0(F
−)(0, p) = d1(F)(0, p) = F (d∗1(0), p) = F (0, p)

The other dimensions go the same way, showing that F− is as desired.

Observe that the only non-constructive step in the proof of Theorem 6.3 was
the application of Theorem 6.2.

The reasoning in our constructive proofs can be formalized in IZF (Intuitionistic
Zermelo-Fraenkel set theory), so IZF proves that Theorem 6.1 implies Theorem 6.2,
and that Theorem 6.2 implies Theorem 6.3. We also have that if IZF proves
Theorem 6.3, then Theorem 6.3 holds in any Kripke model. This result has been
further elaborated in Section 6 of [BCP15]. For this, it is vital that Theorem 6.3
can be expressed in first-order logic. So finally, by giving a Kripke model falsifying
Theorem 6.3, we show that IZF cannot prove Theorem 6.1, and we will provide
exactly such a model in the next section.

6.5 Kripke countermodel

In this section we present a Kripke model falsifying the first-order sentence
representing Theorem 6.3. Recall that a Kripke model is a partially ordered set of
classical models—often called states or days—where the domains and relations
are monotone, and a formula holds in a state if it holds (classically) at that state
and all of its successors. For further elaboration, see [Kri65].

We have two classical models in our Kripke model, and we will call them “day 1”
and “day 2”, with day 1 before day 2. Each consists of an X-part and a Y -part,

6.5. KRIPKE COUNTERMODEL 95

both satisfying the requirements on Kan fill-hypergraphs. In addition, our Kripke
model contains a commuting family of functions F : Δ1|2[n] ×X[n] → Y [n] for
0 ≤ n ≤ 2.

The only change from day 1 to day 2 is the interpretation of equivalence;
we equate more elements in day 2. As we equate elements, we have to ensure
that all functions respect equivalence; that is, that they send equal elements to
equal elements. In addition, by equating elements, more elements may satisfy the
antecedents in Definition 6.7, and we need to ensure that these formulae remain
satisfied for our X and Y -parts to be valid Kan fill-hypergraphs.

We first present X and Y in day 1. We then present the family of functions
F : Δ1|2[n] ×X[n] → Y [n] for 0 ≤ n ≤ 2, before we present X and Y day 2.

6.5.1 Day 1

The two first dimensions of X and Y are both shown below, with triangles and fill
functions further described below. Different edges in the figure are non-equated,
and an edge e in the figure from a to b represents an edge e in the model with
d10(e) = b and d11(e) = a.

x y0 = F (0, x) y1 = F (1, x)

s(x)

e

s(y0) = F (00, s(x)) = F (00, e)

y0y1 = F (01, s(x)) = F (01, e)

y1y0

k = F (11, e)

s(y1) = F (11, s(x))

Figure 6.4: Kripke (counter)model for edge reversal, day 1.

Triangles in X, Day 1

X[2] consists of exactly all eight combinations of s(x) and e as faces. So we have
the following triangles, where the names are given as the concatination of d2i of

96 CHAPTER 6. FUNCTIONAL KAN SIMPLICIAL SETS

the triangle for 0 ≤ i ≤ 2.

sss :

s(x) s(x)

s(x)
sse :

e s(x)

s(x)

...
...

ees :

s(x) e

e
eee :

e e

e

The functions s1i are forced by the simplicial identities to be:

s10(s(x)) =s11(s(x)) = sss

s10(e) =ees :

s(x) e

e

s11(e) =see :
e s(x)

e

Finally, we define the functions fillX1,i : X[1] ×X[1] → X[2] and fillX2,i : X[2] ×
X[2] × X[2] → X[2]. For the former, we have a choice; the two arguments
determine two of the edges in the resulting triangle, but the third edge can be
either s(x) or e. We chose, rather arbitrary, for it to always be s(x), resulting in
only one possible triangle. For fillX2,i, there are no options; its three arguments
determine the three edges of the resulting triangle, describing it completely.

Triangles in Y , Day 1

We construct Y [2] in two stages. First, it consists of all compatible triples of edges
from Y [1]. That is, for all edges e0, e2, e1 such that e0 : b → c, e1 : a → c, and

e2 : a→ b, we add exactly one triangle e0 e1 e2 :

b

a c

e2 e0

e1
to Y [2]. This result

in 18 triangles, and as with X[2] we name then according to their faces. This
means that we have a triangle

y1y0 y1y0 s(y1) : (y1, y1, y0; s(y1), y1y0, y1y0) ∈ Y [1],

and we will call it Tde. The second stage of the construction is simply to add an
additional triangle Tfi of the form

Tfi : (y1, y1, y0; s(y1), y1y0, y1y0)

6.5. KRIPKE COUNTERMODEL 97

to Y [2]. It is no coincidence that Tfi has identical faces to Tde; this enables us to
use Tfi as a substitute of Tde in certain situations. All triangles of Y [2] at day 1
are listed in Table B.1.

We define s1i : Y [1] → Y [2] before concluding with the fill functions. In most
cases, there is only one compatible triangle to which s1i can map, forcing

s10(y0y1) = y1y0 y1y0 s(y0) :

y0

y0 y1

s(y1) y0y1

y0y1

s11(y0y1) = s(y0) y1y0 y1y0 :

y1

y0 y1

y0y1 s(y1)

y0y1

and similar for the other edges. The exception is s10(y1y0), which we can map to
both Tde and Tfi. We set

s10(y1y0) = Tde,

and this concludes the definition of s1i . The complete listing of s1i can be found in
Table B.2.

Finally, we define the functions fill1,i : Y [1] × Y [1] → Y [2] and fill2,i : Y [2] ×
Y [2]× Y [2] → Y [2]. They are, in the same way as s1i , in most cases determined by
the fact that there is exactly one compatible triangle. There are some exceptions.
For fill1,i, we have certain inputs where we can choose if the third edge in the
resulting triangle is s(y1) or k, and in those cases we choose for it to be s(y1); and
when there is a choice between mapping to Tfi and Tde, we map to Tfi. If we want
fill2,i to be total, we map every non-compatible pair of edges to y0y0 y0y0 y0y0.

For fill2,i, there are inputs where the output can be either Tde or Tfi, and in these
cases we map to Tfi. In addition, we have the choice of how to map the triangles
which do not satisfy the requirements in Definition 6.7. Equating elements in
day 2 will have the effect of making more triangles satisfy the requirements for
fill2,i, so the choices we make now must be compatible with this. We show this for
fill2,1; the other cases are similar. Recall that the requirement for fill2,1 is:

If t1:

c

b d

e0 e5

e4
, t2:

b

a d

e2 e4

e3
and t3:

b

a c

e2 e0

e1
, then fill2,1(t1, t2, t3):

c

a d

e1 e5

e3
.

Given three triangles t1, t2, t3, if there is a triangle with the signature

c

a d

e1 e5

e3
—

where e5 = d20(t1), e1 = d21(t3) and e3 = d21(t2)—we map fill2,1(t1, t2, t3) to it (and
to Tfi if there is a choice between Tfi and Tde.) If there is no such triangle, we map
fill2,1(t1, t2, t3) to y0y0 y0y0 y0y0.

98 CHAPTER 6. FUNCTIONAL KAN SIMPLICIAL SETS

F

We define the commuting family F : Δ1|2[n] ×X[n] → Y [n] for 0 ≤ n ≤ 2. Both
F0 : Δ1|2[0] ×X[0] → Y [0] and F1 : Δ1|2[1] ×X[1] → Y [1] are completely given in
Figure 6.4, only F2 : Δ1|2[2] ×X[2] → Y [2] is in need of further description. But
it is completely locked by the requirement that it should commute with di (since,
besides Tfi and Tde, we have exactly one triangle per compatible triple of edges).
Note that F1 does not map anything to the edge y1y0, since this goes from F (1, x)
to F (0, x); similarly, F2 maps to neither Tde nor Tfi, relieving us from having to
choose which of these to map to.

6.5.2 Day 2

Moving from day 1 to day 2, we equate a number of elements, but make no changes
otherwise. This means that we only need to ensure that the defined functions
still respect equality, and verify that the filling-conditions in Definition 6.7 remain
satisfied.

First, we present the equating for the first two levels of both X and Y ;
following this we equate triangles. In X[1], we set s(x) = e; and in Y [1], we set
s(y1) = y1y1 = k. Other edges are as they were in day 1. The first two dimensions
are shown in Figure 6.5. In X[2], we equate every triangle, leaving us with only

x y0 = F (0, x) y1 = F (1, x)

s(x) = e

s(y0) = F (00, s(x) = e)

y0y1 = F (01, s(x) = e)

y1y0

s(y1) = F (11, s(x) = e) = k

Figure 6.5: Kripke (counter)model for edge reversal, day 2.

one degenerate triangle. Having only one point, one edge and one triangle means
that all functions with both domain and co-domain inside X trivially respect
equality.

In Y [2], we equate exactly those triangles which have identical faces after the
equation of elements in Y [1], except that we keep Tde distinct from any other
triangle. Since the only edge-eqation in Y [1] was y1y1 = k, we only equate
triangles containing this edge. The complete list of equated triangles can be found
in Table B.3; the list of the remaining, non-equated triangles can be found in

6.5. KRIPKE COUNTERMODEL 99

Table B.4. Note that we can keep Tde distinct from every other triangle, since Tde
is only in the image of s10 (it is, crucially, not in the image of fill2/3,i), and then as
the value of s10(y1y0). The edge y1y0 is not equated with any other edge, thus we
are not forced through s10 to equate Tde with any other triangle.

This clearly does not enforce any further equations in Y [1]. We also claim
that this keeps all functions consistent. It should be clear from Figure 6.5 that
both F0 : Δ1|2[0] ×X[0] → Y [0] and F1 : Δ1|2[1] ×X[1] → Y [1] remain consistent.
F2 : Δ1|2[2] × X[2] → Y [2] is consistent since F commutes with di and as
F1 : Δ1|2[1] ×X[1] → Y [1] is consistent, so any two triangles mapped to in Y [2]
(with the same argument from Δ1|2[2]) now must have identical faces, giving that
they are also equal.

It is important for fill1/2,i that Tde is not in their image, and that all other
triangles are equal exactly when they have equal faces. So if e1 = e′1 and e2 =
e′2, then fill1,i(e1, e2) and fill1,i(e

′
1, e

′
2) have identical faces, giving fill1,i(e1, e2) =

fill1,i(e
′
1, e

′
2).

For fill2,i, observe that the output is a triangle containing one edge from each
of its inputs. So if we have t1 = t′1, t2 = t′2, and t3 = t′3 then fill2,i(t1, t2, t3) will
have identical faces to fill2,i(t

′
1, t

′
2, t

′
3), so they are also equal. Also observe that all

requirements in Definition 6.7 remain satisfied. Three triangles which now satisfy
one of the antecedents are already sent to a satisfying triangle by the way we
defined fill2,i.

Finally, we observe that all the simplicial identities are still satisfied, since we
have not changed si/di, and the equivalence relation is monotone.

6.5.3 Non-existence of F−

We will now see that we cannot consistently define the commuting reverse function
F− : Δ1|2 × X → Y , prescribed by Theorem 6.3, such that for all p ∈ X[0],
l ∈ X[1] and t ∈ X[2] we have:

F−(0, p) = F (1, p) F−(1, p) = F (0, p)

F−(00, l) = F (11, l) F−(11, l) = F (00, l)

F−(000, t) = F (111, t) F−(111, t) = F (000, t).

Assume towards a contradiction that there is such an F−. We will expand on
the values of F−(001, eee) and F−(001, sss). Applying commutativity of the face
maps in combination with the above requirements, we see that F− would have to
satisfy the following two requirements:

d22(F
−(001, eee)) = F−(d22(001), d22(eee)) = F−(00, e) = F (11, e) = k

d20d
2
0(F

−(001, eee)) = F−(d20d
2
0(001), d20d

2
0(eee)) = F−(1, x) = F (0, x) = y0.

100 CHAPTER 6. FUNCTIONAL KAN SIMPLICIAL SETS

This forces F−(001, eee) = y1y0 y1y0 k, since this is the only triple in Y [2] satisfying
the above requirements.

Given that sss = s10(s(x)) and 001 = s0(01), commutativity with s0 forces
F−(001, sss) = s10(F

−(01, s(x))). The only compatible edge for F−(01, s(x)) is
y1y0. Since s10(y1y0) = Tde we get F−(001, sss) = Tde.

In day 2, we have that eee = sss; but we also have that Tde �= y1y0 y1y0 k,
showing that there can be no consistent F− satisfying the desired requirements.

6.6 Formal verification of the Kripke model

The Kripke model from Section 6.5 is quite complex. Verifying that it has the
properties claimed is not a trivial task; it is for this reason that we have formally
verified it using the Coq proof assistant.2 Using Coq in this way—essentially, as a
model checker—is not very common, but it worked quite well. The reason is the
nature of our model checking problem; we have a model with relatively few states
and we want to prove many properties. Encoding the model in Coq makes it easy
to read the statements of the theorems, verifying that they indeed prove what we
need to prove.

The model checking is divided into two separate parts. The first part is the
encoding of the Kripke model and the second part consists of the proofs that the
encoding satisfies the desired properties.

Section A contains the complete list of Theorems (sans proofs) and definitions.

6.6.1 Encoding the Kripke model

The encoding of the Kripke model from Section 6.5 is quite direct. First, we define
that there are two days:

Inductive Days := d1 | d2.

We then define each of the sorts in the Kripke model—points, edges and triangles—
for both X and Y , as finite inductive types. Here we show it for Y ; the definitions
are similar for X.

Inductive VY := y0 | y1.
Inductive EdgeY := y0y0 | y0y1 | y1y0 | y1y1| k.

Inductive TriangleY :=
| y0y0_y0y0_y0y0

| y0y1_y0y1_y0y0

2See https://github.com/epa095/funKanPowCounterModel-coq for the Coq script.

6.6. FORMAL VERIFICATION OF THE KRIPKE MODEL 101

...
| fi

| de.

The names of the triangles are given by d0 d1 d2 of the triangle, so as an example
d2(y0y1 y0y1 y0y0) = y0y0. We then encode the functions d10, d

1
1, d

2
0, d

2
1, d

2
2, s, s0, s1,

which we name sY, d0Y, d1Y, se0Y, se1Y, dp0Y, dp1Y, and dp2Y. They are all
defined explicitly for all possible inputs, as shown in the following example.

Function sY (v1 :VY) := match v1 with

| y0 ⇒ y0y0

| y1 ⇒ y1y1

end.

We are using an explicitly defined equivalence relation for each sort. In day 1,
two elements are equal exactly when they have the same constructors. In day 2,
the edge y1y1 is equated with k; otherwise, edges are equal when they have the
same constructor. Two triangles are equal when their faces are equal, except de,
which is only equal to itself:

Function eqTriangleY (day : Days)(t1 t2 :TriangleY) :=
match day with

| d1 ⇒ sameConstructorTriangleY t1 t2

| d2 ⇒
match t1,t2 with

| de,de ⇒ true

| de,_ | _,de ⇒ false

| _,_ ⇒ andb (eqEdgeY d2 (dp0Y t1) (dp0Y t2))
(andb (eqEdgeY d2 (dp1Y t1) (dp1Y t2))

(eqEdgeY d2 (dp2Y t1) (dp2Y t2)))
end

end.

Finally, we define the filler functions, fill1,i : EdgeY × EdgeY → TriangleY

and fill2,i : TriangleY × TriangleY × TriangleY → TriangleY. We implement
them according to Section 6.5.1, making sure that e.g fill1,i(y1y0, y1y1) = fi
instead of de, and similarly for the other inputs. For fill2,i, we make use of a
function edgesToTriangle which maps three edges d0, d1, d2 to a triangle t, such
that dp0Y (t) = d0, dp1Y (t) = d1 and dp2Y (t) = d2. There are two things to
notice. First, edgesToTriangle maps to fi and not de when it has a choice; and
since it needs to be total, it also maps every non-compatible triple of edges to the
triangle y0y0 y0y0 y0y0. The implementation of fill2,i consists of just picking out
the right edges from its argument, as exemplified by fill2,0:

Function fill20Y (t1 t2 t3 :TriangleY) := (edgesToTriangle (dp0Y t1)

102 CHAPTER 6. FUNCTIONAL KAN SIMPLICIAL SETS

(dp0Y t2)
(dp0Y t3)).

This concludes the definition of Y and its associated functions. The encoding of
X is slightly simpler, since it has exactly one triangle per compatible triple of edges,
eliminating the fi vs de distinction. In addition, we encode Δ1|2[n], 0 ≤ n ≤ 2
with face and degeneracy maps in the same explicit way, with Delta10, Delta11
and Delta12 being points, edges and triangles respectively. This lets us define the
function F : Δ1|2[n] ×X[n] → Y [n] for 0 ≤ n ≤ 2 from Section 6.5.1 explicitly,
ending the definition of the Kripke model.

Function Fv (delt:Delta10) (v:VX) := . . .
Function Fe (delt:Delta11) (e:EdgeX) :=. . .
Function Ft (delt:Delta12) (t:TriangleX) :=

6.6.2 Verifying the encoded model

The encoding above is straightforward, but tedious to verify. In this section, we
will explain how we used Coq to show that the encoded model has the properties
desired.

A useful feature for doing this is Coq’s type classes. These enables us to define
a collection of properties—parameterized on types and functions—and give several
instantiations of those types and functions, ensuring that each instance satisfies
the properties specified in the type class.

We define two type classes: one for reflexive hypergraphs, and another for Kan
fill-hypergraphs. We show that X, Y and Delta are instances of the first class,
and that X and Y are instances of the second. In what follows, we will describe
the properties encoded by these type classes.

We begin by defining what it means for a function eqFun: Days → A → A → bool

to be an equivalence, before going on to define what it means for a unary, binary
and tertary function to respect equality on its domain and co-domain.

Definition EquivalenceFun {A:Type}(eqFun: Days → A → A → bool):=
ReflexiveFun eqFun ∧ SymetricFun eqFun ∧ TransitiveFun eqFun.

Definition binaryFunctionRespectsEquality {Domain CoDomain:Type}
(eqDomain: Days → Domain → Domain → bool)
(eqCoDomain: Days → CoDomain → CoDomain → bool)
(function: Domain→ Domain → CoDomain):= . . .

We now define the class giving the basic properties of X, Y and Delta. It
expresses that all of the face and degeneracy maps respect equality, that the
equality functions are monotone equalities, and that the simplicial identities

6.7. CONCLUSION 103

hold between the face and degeneracy maps. The whole class can be found in
Appendix A. Giving Y , X and Delta as instances leaves the properties that need
to be shown as obligations, which are all pretty straightforward to close.

The next step consists of verifying the filling functions. We construct a type
class once more, this time parameterized on a member of the previously defined
type class and all seven fill functions. The type class specifies that all of the fill
functions must respect equality, in addition to encoding each of the properties the
fill functions must respect, as the following example for fill1,0:

fill10Prop: forall (d:Days)(e1 e2:Edges),
((eqV d (d1E e1) (d1E e2))=true)→

(eqEdges d (d1T (fill10 e1 e2)) e1)=true ∧
(eqEdges d (d2T (fill10 e1 e2)) e2)=true

Finally, we verify that our encoding of the family of functions F is correct,
and that the argumentation from Section 6.5.3 holds. We start by formalizing the
notion of a family of functions F : Δ1|2[n] ×X[n] → Y [n] commuting with both
the face and degeneracy maps in X, Delta and Y according to Definition 6.10,
before showing that F , as encoded above, commutes.

We then encode that an inverse of F is a family F− : Δ1|2 ×X → Y such that,
for all p ∈ X[0], l ∈ X[1] and t ∈ X[2], we have

F−(0, p) = F (1, p) F−(1, p) = F (0, p)

F−(00, l) = F (11, l) F−(11, l) = F (00, l)

F−(000, t) = F (111, t) F−(111, t) = F (000, t).

We finish by showing that all commuting reverses of F must satisfy F−(001, eee) =
y1y0 y1y0 k and F−(001, sx sx sx) = de, and that these two images remain
distinct in both days.

6.7 Conclusion

In this paper, we provided a model showing that we cannot constructively prove
that the Kan property is preserved under exponentiation. This means, from a
constructive perspective, that Kan simplicial sets are currently unsatisfactory
as models of simply typed lambda calculus. The result was shown for a strong
interpretation of Kan simplicial sets requiring explicit functions for the horn fillings,
closing the gaps from previous work on a similar problem for Kan simplicial sets
without explicit filler functions. The model has been encoded and verified using
the Coq proof assistant.

104 CHAPTER 6. FUNCTIONAL KAN SIMPLICIAL SETS

Appendix A. Theorems proved in Coq

Definition ReflexiveFun {A:Type}(eqFun: Days → A → A → bool):=
forall (d:Days)(el:A), (eqFun d el el) = true.

Definition SymetricFun {A:Type}(eqFun: Days → A → A → bool):=
forall (d:Days)(elem1 elem2:A),
((eqFun d elem1 elem2)=true)→ (eqFun d elem1 elem2)=true.

Definition TransitiveFun {A:Type}(eqFun: Days → A → A → bool):=
forall (d:Days)(elem1 elem2 elem3:A),
((eqFun d elem1 elem2)=true ∧ (eqFun d elem2 elem3)=true) →
(eqFun d elem1 elem3)=true.

Definition EquivalenceFun {A:Type}(eqFun: Days → A → A → bool):=
ReflexiveFun eqFun ∧ SymetricFun eqFun ∧ TransitiveFun eqFun.

Definition unaryFunctionRespectsEquality {Domain CoDomain:Type}
(eqDomain: Days → Domain → Domain → bool)
(eqCoDomain: Days → CoDomain → CoDomain → bool)
(function: Domain→ CoDomain):=

forall d:Days, forall (elem1 elem2: Domain),
(eqDomain d elem1 elem2)=true →
(eqCoDomain d (function elem1) (function elem2))=true.

Definition binaryFunctionRespectsEquality {Domain CoDomain:Type}
(eqDomain: Days → Domain → Domain → bool)
(eqCoDomain: Days → CoDomain → CoDomain → bool)
(function: Domain→ Domain → CoDomain):=

forall d:Days, forall (elem1 elem1p elem2 elem2p: Domain),
(eqDomain d elem1 elem1p)=true ∧ (eqDomain d elem2 elem2p)=true
→ (eqCoDomain d (function elem1 elem2) (function elem1p elem2p))=true.

Definition tertaryFunctionRespectsEquality {Domain CoDomain:Type}
(eqDomain: Days → Domain → Domain → bool)

105

106 APPENDIX A. THEOREMS PROVED IN COQ

(eqCoDomain: Days → CoDomain → CoDomain → bool)
(function: Domain→ Domain→ Domain → CoDomain):=

forall d:Days, forall (elem1 elem2 elem3 elem1p elem2p elem3p: Domain),
((eqDomain d elem1 elem1p)=true ∧
(eqDomain d elem2 elem2p)=true ∧
(eqDomain d elem3 elem3p)=true)
→ (eqCoDomain d (function elem1 elem2 elem3)

(function elem1p elem2p elem3p))=true.

Definition EqFunctionMonotone {Domain:Type}
(eq: Days → Domain → Domain → bool):=
forall (elem1 elem2: Domain),
(eq d1 elem1 elem2)=true → (eq d2 elem1 elem2)=true.

Class twoDayKripke (Points Edges Triangles :Type)
:= {

sP : Points → Edges;
d0E : Edges → Points;
d1E : Edges → Points;
s0E : Edges → Triangles;
s1E : Edges → Triangles;
d0T : Triangles → Edges;
d1T : Triangles → Edges;
d2T : Triangles → Edges;
eqV : Days → Points → Points → bool;
eqEdges : Days → Edges → Edges → bool;
eqTriangles : Days → Triangles → Triangles → bool;
eqVisEq : EquivalenceFun eqV;
eqEdgessisEq : EquivalenceFun eqEdges;
eqTrianglesisEq : EquivalenceFun eqTriangles;
_ : EqFunctionMonotone eqV;
_ : EqFunctionMonotone eqEdges;
_ : EqFunctionMonotone eqTriangles;
sPRespectsEq : unaryFunctionRespectsEquality eqV eqEdges sP;
d0ERespectsEq : unaryFunctionRespectsEquality eqEdges eqV d0E;
d1ERespectsEq : unaryFunctionRespectsEquality eqEdges eqV d1E;
s0ERespectsEq : unaryFunctionRespectsEquality eqEdges eqTriangles s0E;
s1ERespectsEq : unaryFunctionRespectsEquality eqEdges eqTriangles s1E;
d0TRespectsEq : unaryFunctionRespectsEquality eqTriangles eqEdges d0T;
d1TRespectsEq : unaryFunctionRespectsEquality eqTriangles eqEdges d1T;
d2TRespectsEq : unaryFunctionRespectsEquality eqTriangles eqEdges d2T;
(* Simplicial identity 1 *)

_: forall t: Triangles, d0E(d1T(t)) = d0E(d0T(t));
_: forall t: Triangles, d0E(d2T(t)) = d1E(d0T(t));

107

_: forall t: Triangles, d1E(d2T(t)) = d1E(d1T(t));
(* Simplicial identity 2 *)

_: forall e: Edges, d0T(s1E(e)) = sP(d0E(e)) ;
(* Simplicial identity 3 *)

_: forall p: Points, d0E(sP(p)) = p;
_: forall p: Points, d1E(sP(p)) = p;
_: forall e: Edges, d0T(s0E(e)) = e;
_: forall e: Edges, d1T(s0E(e)) = e;
_: forall e: Edges, d1T(s1E(e)) = e;
_: forall e: Edges, d2T(s1E(e)) = e;
(* Simplicial identity 4 *)

_ : forall e:Edges, d2T(s0E(e)) = sP(d1E(e));
(* Simplicial identity 5 *)

_: forall p: Points, s1E(sP(p)) = s0E(sP(p))
}.

Class fillableModel {Points Edges Triangles:Type}
{m: twoDayKripke Points Edges Triangles} := {

fill10: Edges → Edges → Triangles;
fill11: Edges → Edges → Triangles;
fill12: Edges → Edges → Triangles;
fill20: Triangles → Triangles → Triangles → Triangles;
fill21: Triangles → Triangles → Triangles → Triangles;
fill22: Triangles → Triangles → Triangles → Triangles;
fill23: Triangles → Triangles → Triangles → Triangles;

fill10RespectEquality: binaryFunctionRespectsEquality eqEdges eqTriangles fill10;
fill11RespectEquality: binaryFunctionRespectsEquality eqEdges eqTriangles fill11;
fill12RespectEquality: binaryFunctionRespectsEquality eqEdges eqTriangles fill12;
fill20RespectsEqualty: tertaryFunctionRespectsEquality eqTriangles eqTriangles fill20;
fill21RespectsEqualty: tertaryFunctionRespectsEquality eqTriangles eqTriangles fill21;
fill22RespectsEqualty: tertaryFunctionRespectsEquality eqTriangles eqTriangles fill22;
fill23RespectsEqualty: tertaryFunctionRespectsEquality eqTriangles eqTriangles fill23;

fill10Prop: forall (d:Days)(e1 e2:Edges),
((eqV d (d1E e1) (d1E e2))=true)→

(eqEdges d (d1T (fill10 e1 e2)) e1)=true ∧
(eqEdges d (d2T (fill10 e1 e2)) e2)=true;

fill11Prop: forall (d:Days)(e1 e2:Edges),
((eqV d (d1E e1) (d0E e2))=true)→

(eqEdges d (d0T (fill11 e1 e2)) e1)=true ∧
(eqEdges d (d2T (fill11 e1 e2)) e2)=true;

108 APPENDIX A. THEOREMS PROVED IN COQ

fill12Prop: forall (d:Days)(e0 e1:Edges),
((eqV d (d0E e0) (d0E e1))=true)→

(eqEdges d (d0T (fill12 e0 e1)) e0)=true ∧
(eqEdges d (d1T (fill12 e0 e1)) e1)=true;

fill20Prop: forall (d:Days)(t1 t2 t3:Triangles),
(eqEdges d (d1T t1) (d1T t2))=true ∧
(eqEdges d (d2T t1) (d1T t3))=true ∧
(eqEdges d (d2T t2) (d2T t3))=true →
((eqEdges d (d0T t1) (d0T (fill20 t1 t2 t3)))=true ∧
(eqEdges d (d0T t2) (d1T (fill20 t1 t2 t3)))=true ∧
(eqEdges d (d0T t3) (d2T (fill20 t1 t2 t3)))=true);

fill21Prop: forall (d:Days)(t1 t2 t3:Triangles),
(eqEdges d (d1T t1) (d0T t2))=true ∧
(eqEdges d (d2T t1) (d0T t3))=true ∧
(eqEdges d (d2T t2) (d2T t3))=true →
((eqEdges d (d0T t1) (d0T (fill21 t1 t2 t3)))=true ∧
(eqEdges d (d1T t2) (d1T (fill21 t1 t2 t3)))=true ∧
(eqEdges d (d1T t3) (d2T (fill21 t1 t2 t3)))=true);

fill22Prop: forall (d:Days)(t1 t2 t3:Triangles),
(eqEdges d (d0T t1) (d0T t2))=true ∧
(eqEdges d (d2T t1) (d0T t3))=true ∧
(eqEdges d (d2T t2) (d1T t3))=true →
((eqEdges d (d1T t1) (d0T (fill22 t1 t2 t3)))=true ∧
(eqEdges d (d1T t2) (d1T (fill22 t1 t2 t3)))=true ∧
(eqEdges d (d2T t3) (d2T (fill22 t1 t2 t3)))=true);

fill23Prop: forall (d:Days)(t1 t2 t3:Triangles),
(eqEdges d (d0T t1) (d0T t2))=true ∧
(eqEdges d (d1T t1) (d0T t3))=true ∧
(eqEdges d (d1T t2) (d1T t3))=true →
((eqEdges d (d2T t1) (d0T (fill23 t1 t2 t3)))=true ∧
(eqEdges d (d2T t2) (d1T (fill23 t1 t2 t3)))=true ∧
(eqEdges d (d2T t3) (d2T (fill23 t1 t2 t3)))=true)

}.

Definition FCommutesS (Fpoint: Delta10 → VX → VY)
(FEdge: Delta11 → EdgeX → EdgeY)
(FTriangle: Delta12 → TriangleX → TriangleY):=

(forall (deltp:Delta10) (p:VX), FEdge (s deltp) (sX p) = sY (Fpoint deltp p))
∧ (forall (d:Days) (delt:Delta11) (e:EdgeX),

109

eqTriangleY d (FTriangle (s0 delt) (se0X e))
(se0Y (FEdge delt e)) = true)

∧ (forall (d:Days) (delt:Delta11) (e:EdgeX),
eqTriangleY d (FTriangle (s1 delt) (se1X e))

(se1Y (FEdge delt e)) = true).

Definition FCommutesD (Fpoint: Delta10 → VX → VY)
(FEdge: Delta11 → EdgeX → EdgeY)
(FTriangle: Delta12 → TriangleX → TriangleY) :=

(forall (delt:Delta11) (e:EdgeX),
Fpoint (dv0 delt) (d0X e) = d0Y (FEdge delt e)) ∧

(forall (delt:Delta11) (e:EdgeX),
Fpoint (dv1 delt) (d1X e) = d1Y (FEdge delt e)) ∧

(forall (delt:Delta12) (e:TriangleX),
FEdge (dp2 delt) (dp2X e) = dp2Y (FTriangle delt e)) ∧

(forall (delt:Delta12) (e:TriangleX),
FEdge (dp1 delt) (dp1X e) = dp1Y (FTriangle delt e)) ∧

forall (delt:Delta12) (e:TriangleX),
FEdge (dp0 delt) (dp0X e) = dp0Y (FTriangle delt e).

Definition FCommutes (Fpoint: Delta10 → VX → VY)
(FEdge: Delta11 → EdgeX → EdgeY)
(FTriangle: Delta12 → TriangleX → TriangleY) :=

(FCommutesS Fpoint FEdge FTriangle) ∧ (FCommutesD Fpoint FEdge FTriangle).

Theorem FOrdCommutesS: FCommutesS Fv Fe Ft.
Theorem FOrdCommutesD: FCommutesD Fv Fe Ft.

Theorem FVRespectsEq: forall (delt:Delta10),
unaryFunctionRespectsEquality eqVX eqVY (Fv delt).

Theorem FERespectsEq: forall (delt:Delta11),
unaryFunctionRespectsEquality eqEdgeX eqEdgeY (Fe delt).

Theorem FTRespectsEq: forall (delt:Delta12),
unaryFunctionRespectsEquality eqTriangleX eqTriangleY (Ft delt).

Theorem allFInverseInconsistentEEE:
forall (FIpoint: Delta10 → VX → VY)

(FIEdge: Delta11 → EdgeX → EdgeY)
(FITriangle: Delta12 → TriangleX → TriangleY),
Finverse FIpoint FIEdge FITriangle →
FCommutesS FIpoint FIEdge FITriangle →
FCommutesD FIpoint FIEdge FITriangle →
FITriangle delta001 e_e_e = y1y0_y1y0_k.

110 APPENDIX A. THEOREMS PROVED IN COQ

Theorem allFInverseInconsistentsss:
forall (FIpoint: Delta10 → VX → VY)

(FIEdge: Delta11 → EdgeX → EdgeY)
(FITriangle: Delta12 → TriangleX → TriangleY),
Finverse FIpoint FIEdge FITriangle →
FCommutesS FIpoint FIEdge FITriangle →
FCommutesD FIpoint FIEdge FITriangle →
FITriangle delta001 sx_sx_sx = de.

Theorem deNotEqualToThatOtherEdge: forall (d:Days),
(eqTriangleY d y1y0_y1y0_k de)=false.

Appendix B. Triangles in Y

111

112 APPENDIX B. TRIANGLES IN Y

y0y0 y0y0 y0y0:

y0

y0 y0

y0y0 y0y0

y0y0
y1y1 k y1y1:

y1

y1 y1

y1y1 y1y1

k

y0y1 y0y1 y0y0:

y0

y0 y1

y0y0 y0y1

y0y1
k y1y1 y1y1:

y1

y1 y1

y1y1 k

y1y1

y1y0 y0y0 y0y1:

y1

y0 y0

y0y1 y1y0

y0y0
k k y1y1:

y1

y1 y1

y1y1 k

k

y1y1 y0y1 y0y1:

y1

y0 y1

y0y1 y1y1

y0y1
y1y0 y1y0 k:

y1

y1 y0

k y1y0

y1y0

k y0y1 y0y1:

y1

y0 y1

y0y1 k

y0y1
y1y1 y1y1 k:

y1

y1 y1

k y1y1

y1y1

y0y0 y1y0 y1y0:

y0

y1 y0

y1y0 y0y0

y1y0
y1y1 k k:

y1

y1 y1

k y1y1

k

y0y1 y1y1 y1y0:

y0

y1 y1

y1y0 y0y1

y1y1
k y1y1 k:

y1

y1 y1

k k

y1y1

y0y1 k y1y0:

y0

y1 y1

y1y0 y0y1

k
k k k:

y1

y1 y1

k k

k

Tde:

y1

y1 y0

y1y1 y1y0

y1y0
Tfi:

y1

y1 y0

y1y1 y1y0

y1y0

y1y1 y1y1 y1y1:

y1

y1 y1

y1y1 y1y1

y1y1

Table B.1: Triangles in Y.

113

s0(y0y0) = y0y0 y0y0 y0y0:

y0

y0 y0

y0y0 y0y0

y0y0

s1(y0y0) = y0y0 y0y0 y0y0:

y0

y0 y0

y0y0 y0y0

y0y0

s0(y0y1) = y0y1 y0y1 y0y0:

y0

y0 y1

y0y0 y0y1

y0y1

s1(y0y1) = y1y1 y0y1 y0y1:

y1

y0 y1

y0y1 y1y1

y0y1

s0(y1y0) = Tde:

y1

y1 y0

y1y1 y1y0

y1y0

s1(y1y0) = y0y0 y1y0 y1y0:

y0

y1 y0

y1y0 y0y0

y1y0

s0(y1y1) = y1y1 y1y1 y1y1:

y1

y1 y1

y1y1 y1y1

y1y1

s1(y1y1) = y1y1 y1y1 y1y1:

y1

y1 y1

y1y1 y1y1

y1y1

s0(k) = k k y1y1:

y1

y1 y1

y1y1 k

k

s1(k) = y1y1 k k:

y1

y1 y1

k y1y1

k

Table B.2: Degenerate triangles in Y.

114 APPENDIX B. TRIANGLES IN Y

y1y1 y1y1 y1y1:

y1

y1 y1

y1y1 y1y1

y1y1

y1y1 k y1y1:

y1

y1 y1

y1y1 y1y1

k

k y1y1 y1y1:

y1

y1 y1

y1y1 k

y1y1

k k y1y1:

y1

y1 y1

y1y1 k

k

y1y1 y1y1 k:

y1

y1 y1

k y1y1

y1y1

y1y1 k k:

y1

y1 y1

k y1y1

k

k y1y1 k:

y1

y1 y1

k k

y1y1

k k k:

y1

y1 y1

k k

k

y1y1 y0y1 y0y1:

y1

y0 y1

y0y1 y1y1

y0y1

k y0y1 y0y1:

y1

y0 y1

y0y1 k

y0y1

y0y1 y1y1 y1y0:

y0

y1 y1

y1y0 y0y1

y1y1

y0y1 k y1y0:

y0

y1 y1

y1y0 y0y1

k

y1y0 y1y0 k:

y1

y1 y0

k y1y0

y1y0

Tfi:

y1

y1 y0

y1y1 y1y0

y1y0

Table B.3: Equated triangles in Y day 2.

115

y0y0 y0y0 y0y0:

y0

y0 y0

y0y0 y0y0

y0y0
y0y1 y0y1 y0y0:

y0

y0 y1

y0y0 y0y1

y0y1

y1y0 y0y0 y0y1:

y1

y0 y0

y0y1 y1y0

y0y0
y0y0 y1y0 y1y0:

y0

y1 y0

y1y0 y0y0

y1y0

Tde:

y1

y1 y0

y1y1 y1y0

y1y0

Table B.4: Non-equated triangles in Y day 2.

116 APPENDIX B. TRIANGLES IN Y

Bibliography

[AW09] Steve Awodey and Michael Warren. Homotopy theoretic models of
identity types. Mathematical Proceedings of the Cambridge Philosophical
Society, 146:45–55, 2009.

[BC15] Marc Bezem and Thierry Coquand. A kripke model for simplicial sets.
Theoretical Computer Science, 574:86 – 91, 2015.

[BCH14] Marc Bezem, Thierry Coquand, and Simon Huber. A Model of Type
Theory in Cubical Sets. In Ralph Matthes and Aleksy Schubert, edi-
tors, 19th International Conference on Types for Proofs and Programs
(TYPES 2013), volume 26 of Leibniz International Proceedings in In-
formatics (LIPIcs), pages 107–128, Dagstuhl, Germany, 2014. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik.

[BCNP] Marc Bezem, Thierry Coquand, Keiko Nakata, and Erik Parmann. A
Realizability model for type theory. Work in progress.

[BCP15] Marc Bezem, Thierry Coquand, and Erik Parmann. Non-Constructivity
in Kan Simplicial Sets. In Thorsten Altenkirch, editor, 13th Interna-
tional Conference on Typed Lambda Calculi and Applications (TLCA
2015), volume 38 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 92–106, Dagstuhl, Germany, 2015. Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik.

[BdRV01] Patrick Blackburn, Maarten de Rijke, and Yde Venema. Modal logic.
Cambridge University Press, New York, NY, USA, 2001.

[Bee79] Michael Beeson. Goodman’s theorem and beyond. Pacific Journal of
Mathematics, 84(1):1–16, 1979.

[BNU12] Marc Bezem, Keiko Nakata, and Tarmo Uustalu. On streams that are
finitely red. Logical Methods in Computer Science, Volume 8, Issue 4,
October 2012.

117

118 BIBLIOGRAPHY

[BP13] Douglas Bridges and Erik Palmgren. Constructive mathematics. In
Edward N. Zalta, editor, The Stanford Encyclopedia of Philosophy.
Winter 2013 edition, 2013.

[CDT12] The Coq Development Team. The Coq Reference Manual, version 8.4,
August 2012. Available electronically at http://coq.inria.fr/doc.

[Coq15] Thierry Coquand. Type theory. In Edward N. Zalta, editor, The
Stanford Encyclopedia of Philosophy. Summer 2015 edition, 2015.

[Cro15] Laura Crosilla. Set theory: Constructive and intuitionistic zf. In
Edward N. Zalta, editor, The Stanford Encyclopedia of Philosophy.
Summer 2015 edition, 2015.

[CS10] Thierry Coquand and Arnaud Spiwack. Constructively finite? In
Contribuciones cient́ıficas en honor de Mirian Andrés Gómez, pages
217–230. Universidad de La Rioja, 2010.

[Dia75] Radu Diaconescu. Axiom of choice and complementation. Proceedings
of the American Mathematical Society, 51(1):176–178, 1975.

[Fri08] Greg Friedman. An elementary illustrated introduction to simplicial
sets. Preprint, http://arxiv.org/abs/0809.4221, 2008.

[GJ09] Paul G. Goerss and John F. Jardine. Simplicial Homotopy Theory.
Modern Birkhäuser Classics. Birkhauser Verlag GmbH, 2009. Reprint
of Vol. 174 of Progress in Mathematics, 1999.

[GZ67] Peter Gabriel and Michel Zisman. Calculus of fractions and homotopy
theory. Springer, 1967.

[Hof97] Martin Hofmann. Syntax and semantics of dependent types. In An-
drew M. Pitts and Peter Dybjer, editors, Semantics and logics of com-
putation, volume 14 of Publ. Newton Inst., pages 79–130. Cambridge
University Press, Cambridge, 1997.

[Jar53] Dov Jarden. A simple proof that a power of an irrational number to an
irrational exponent may be rational. Scr. Math, 19:229, 1953.

[KLV12] Chris Kapulkin, Peter LeFanu Lumsdaine, and Vladimir Voevodsky.
The simplicial model of univalent foundations. Preprint, http://arxiv.
org/abs/1211.2851, 2012.

BIBLIOGRAPHY 119

[Kri65] Saul Kripke. Semantical analysis of intuitionistic logic I. In M. Dummett
and J.N. Crossley, editors, Formal Systems and Recursive Functions,
pages 92–130. North–Holland, Amsterdam, 1965.

[Lub15] Bob Lubarsky. Personal communication, March 2015.

[May93] Jon Peter May. Simplicial Objects in Algebraic Topology. Chicago
Lectures in Mathematics. University of Chicago Press, 2nd edition,
1993.

[McC15] Charles McCarty. Two questions about IZF and intuitionistic validity.
Pdf file, personal communication, March 2015.

[ML75] Per Martin-Löf. An intuitionistic theory of types: predicative part.
In H.E. Rose and J.C. Shepherdson, editors, Logic Colloquium ’73,
Proceedings of the Logic Colloquium, volume 80 of Studies in Logic and
the Foundations of Mathematics, pages 73–118. North-Holland, 1975.

[MLS84] Per Martin-Löf and Giovanni Sambin. Intuitionistic type theory, vol-
ume 17. Bibliopolis Naples, 1984.

[Moo56] John C. Moore. Algebraic homotopy theory. Lectures at Princeton,
http://faculty.tcu.edu/gfriedman/notes/aht1.pdf, 1956.

[Nik11] Thomas Nikolaus. Algebraic models for higher categories. Indagationes
Mathematicae, 21(1–2):52 – 75, 2011.

[Par15] Erik Parmann. Investigating Streamless Sets. In Hugo Herbelin, Pierre
Letouzey, and Matthieu Sozeau, editors, 20th International Confer-
ence on Types for Proofs and Programs (TYPES 2014), volume 39
of Leibniz International Proceedings in Informatics (LIPIcs), pages
187–201, Dagstuhl, Germany, 2015. Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik.

[Ram30] Frank P. Ramsey. On a problem of formal logic. Proceedings of the
London Mathematical Society, 2(1):264–286, 1930.

[Ric90] Fred Richman. Intuitionism as generalization. Philosophia Math, 5:124–
128, 1990.

[RS93] Fred Richman and Gabriel Stolzenberg. Well quasi-ordered sets. Ad-
vances in Mathematics, 97(2):145 – 153, 1993.

120 BIBLIOGRAPHY

[SU06] Morten Heine Sørensen and Pawel Urzyczyn. Lectures on the Curry-
Howard Isomorphism, Volume 149 (Studies in Logic and the Foundations
of Mathematics). Elsevier Science Inc., New York, NY, USA, 2006.

[Tur36] Alan Turing. On computable numbers, with an application to the
entscheidungsproblem. Proceedings of the London Mathematical Society,
43(230-265), 1936.

[TVD88] Anne Sjerp Troelstra and Dirk Van Dalen. Constructivism in mathe-
matics, volume 2. Elsevier, 1988.

[Uni13] The Univalent Foundations Program. Homotopy Type Theory: Univa-
lent Foundations of Mathematics. http://homotopytypetheory.org/
book, Institute for Advanced Study, 2013.

[VB93] Wim Veldman and Marc Bezem. Ramsey’s theorem and the pigeon-
hole principle in intuitionistic mathematics. Journal of the London
Mathematical Society, 2(2):193–211, 1993.

[VCW12] Dimitrios Vytiniotis, Thierry Coquand, and David Wahlstedt. Stop
when you are almost-full. In Interactive Theorem Proving, pages 250–
265. Springer, 2012.

[Voe09] Vladimir Voevodsky. Notes on type systems. http:

//www.math.ias.edu/~vladimir/Site3/Univalent_Foundations_

files/expressions_current.pdf, 2009.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.7
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages false
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages false
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

