
Counting Instances of Software Components

Marc Bezem and Hoang Truong

Department of Informatics, University of Bergen,
PB.7800, N-5020 Bergen, Norway

{bezem,hoang}@ii.uib.no

Abstract. Component software is software that has been assembled
from various pieces of standardized, reusable computer programs, so-
called components. Executing component software creates instances of
these components. For several reasons, for example, limited resources
and/or application requirements, it can be important to have control
over the number of such instances. Clearly, in cases where this is pos-
sible, design-time or compile-time control is to be preferred to run-time
control. We give an abstract component language and a type system
which ensures that the number of simultaneously active instances of any
component never exceeds a (sharp) bound expressed in the type. The
language features instantiation and reuse of components, as well as se-
quential composition, choice and scope. Alternatively one can view the
expressions in the language as denoting processes where the atomic ac-
tions are interpreted as either creating new, or reusing old instances.

1 Introduction

Component software is built from various components, possibly developed by
third-parties [11], [14]. These third-party components may in turn use other
components. Upon execution instances of all these components are created. The
process of creating an instance of a component c does not only mean the alloca-
tion of memory space for c’s code and data structures, the creation of instances
of c’s subcomponents (and so on), but possibly also the binding of other hard-
ware resources. In many cases, resources are limited and components are bound
to have only a certain number of simultaneously active instances. For example, a
serial output device can usually stand only one instance of a driver-component,
serialized ID generators should be unique [7], [6]. Most servers can have only a
certain number of clients.

When building component software it can easily happen that, unforseen by
the developer, different instances of the same component are created. Creating
more active instances than allowed can lead to errors. There are several ways to
meet this challenge, ranging from testing to dynamic instantiation schemes. Type
systems have traditionally been used for compile-time error-checking, cf. [3], and
recently for certifying important security properties, such as performance safety
[5] and memory safety [4]. In component software, typing has been studied in
relation to integrating components such as type-safe composition [13] or type-
safe evolution [10]. In this paper we explore the possibility of a type system which

2

allows one to detect statically, at development/composition time, whether or not
the number of simultaneously active instances of specific components exceeds the
allowed number.

For this purpose we have designed a component language where we have
abstracted away many aspects of components and have kept only those that are
relevant to instantiation.1 The main features we have retained are instantiation
and reuse, sequential composition, choice and scope. Reusing a component means
here to use an existing instance of the component if there is already one, and to
create a new instance only if there exists none. Alternatively one can view the
expressions in the language as denoting processes where the atomic actions are
interpreted as either creating new, or reusing old instances. Though abstract, the
strength of the primitives for composition is considerable. Choice allows us to
model both conditionals and non-determinism (due to, e.g., user input). Scope
is a mechanism to deallocate instances but it can also be used to model method
calls. Sequential composition is associative.

This paper extends [2] in three main ways. First, we generalized the single-
instance property to counting instances of components. Second, we have an ad-
ditional primitive for reusing instead of always creating a new instance of a
component. Third, we added a choice primitive to the language. All these aim
at bringing the language closer to practice.

The paper is organized as follows. Section 2 introduces the component lan-
guage with its operational semantics. In Section 3 we define types and the typing
relation. Properties of the type system and the operational semantics are pre-
sented in Section 4. Last, we outline a polynomial time type inference algorithm
in Section 5 and conclude in Section ??. Technical proofs of Section 4 are dele-
gated to the appendix.

2 A Component Language

2.1 Terms

We have two primitives (new and reu) for creating and (if possible) reusing
an instance of a component, and three primitives for composition (sequential
composition denoted by juxtaposition, + for choice and {. . .} for scope. Together
with the empty expression ε these generate so-called component expressions. A
declaration c−≺Exp states how the component c depends on subcomponents as
expressed in the component expression Exp. If c has no subcomponents then
Exp is ε and we call c a primitive component. Upon instantiation or reuse of
c the expression Exp is executed. A component program consist of declarations
and ends with an expression which sparks off the execution, see Section 2.2.

In the formal definition below, we use extended Backus-Naur Form with the
following meta-symbols: infix | for choice and overlining for Kleene closure (zero
or more iterations).

1 This should not be misunderstood as that other aspects are deemed uninteresting!

3

Definition 1 (Syntax). Component programs, declarations and expressions are
defined by the following syntax:

Prog ::= Decl ;Exp (Program)
Decl ::= Var−≺Exp ,Var−≺Exp (Declarations)
Exp ::= ε (Empty Expression)

| newVar (New Instantiation)
| reuVar (Reuse Instantiation)
| (Exp + Exp) (Choice)
| {Exp} (Scope)
| Exp Exp (Sequential Composition)

We use a, b, . . . , z for component names from a set Var and A, . . . , E for
expressions Exp. The following example is a well-formed component program:

d−≺ε, e−≺ε, a−≺ new d, b−≺(reu d{ new a}+ new e new a) reu d; new b .

In this example, d and e are primitive components. Component a uses one in-
stance of component d. Component b has a choice expression before reuse of
an instance of d. The first expression of the choice expression is reu d{ new a}.
We can view { new a} in this expression as function call f() (in traditional pro-
gramming languages). Function f then has body new a, which means f() needs
a new instance of a to do its job. We abstract from the details of this job, the
only relevant aspect here is that it involves a new instance of a which will be
deallocated upon exiting f .

2.2 Operational Semantics

The operational semantics is defined in terms of transitions between configura-
tions. A configuration is a stack ST of pairs (M, E) where M is a finite multiset
over the set of component names C = Var and E is an expression. A configu-
ration is terminal if it is of the form (M, ε), i.e. its stack contains only one pair
consisting of a multiset and an empty expression. Table 1 defines the one-step
transition relation Ã. As usual, Ã∗ denotes the reflective and transitive closure
of Ã. Note that we can view any non-empty expression as of one of the forms:
newxE, reuxE, (A + B)E and {A}E.

We use [ST] to denote the multiset of all active instances in ST , that is
[ST] =

⊎n
j=1 Mj for ST = (M1, E1) ◦ · · · ◦ (Mn, En). The push operator ◦ is left

associative, so that the rightmost pair (Mn, En) is the top of the stack. Multisets
are denoted by [. . .], where sets are denoted, as usual, by {. . .}. M(x) is the
multiplicity of element x in multiset M and M(x) = 0 if x /∈ M . The operation
∪ is union of multisets: (M ∪ N)(x) = max(M(x), N(x)). The operation] is
additive union of multisets: (M] N)(x) = M(x) + N(x). We write M + x for
M] [x] and when x ∈ M we write M − x for M − [x].

The example at the end of Section 2.1 is used to illustrate the operational
semantics. We have two possible runs. The first one is:

4

(osNew) if x−≺A ∈ Prog
ST ◦ (M, newxE) Ã ST ◦ (M + x, AE)

(osReu1) if x−≺A ∈ Prog x /∈ [ST]]M
ST ◦ (M, reuxE) Ã ST ◦ (M + x, AE)

(osReu2) if x−≺A ∈ Prog x ∈ [ST]]M
ST ◦ (M, reuxE) Ã ST ◦ (M, AE)

(osChoice1)
ST ◦ (M, (A + B)E) Ã ST ◦ (M, AE)

(osChoice2)
ST ◦ (M, (A + B)E) Ã ST ◦ (M, BE)

(osPush)
ST ◦ (M, {A}E) Ã ST ◦ (M, E) ◦ ([], A)

(osPop)
ST ◦ (M, E) ◦ (M ′, ε) Ã ST ◦ (M, E)

Table 1. Transition rules

([], new b)
Ã ([b], (reu d{ new a}+ new e new a) reu d)
Ã ([b], reu d{ new a} reu d) (reu d creates a d)
Ã ([b, d], { new a} reu d)
Ã ([b, d], reu d) ◦ ([], new a)
Ã ([b, d], reu d) ◦ ([a], new d)
Ã ([b, d], reu d) ◦ ([a, d], ε)
Ã ([b, d], reu d) (does not create a d)
Ã ([b, d], ε) (terminal)

The other is:
([], new b)

Ã ([b], (reu d{ new a}+ new e new a) reu d)
Ã ([b], new e new a reu d)
Ã ([b, e], new a reu d)
Ã ([b, e, a], new d reu d)
Ã ([b, e, a, d], reu d)
Ã ([b, e, a, d], ε) (terminal)

In this example there are two possible runs and the numbers of active in-
stances of each component are not the same during and at the end of the two
runs. There are two reu d’s in the first execution and only the first one creates
an instance of d. The maximum for d is 2, for the others 1.

3 Type System

Let R be the requirement that some components in C = Var can have at most
a certain number of simultaneous instances. R can be modelled as a total map

5

from C to N∪{∞}. Then R(c) ∈ N is the maximum allowed number of simulta-
neously active instances of c; R(c) = ∞ expresses that c can have any number
of instances. By convention n < ∞ for all n ∈ N. The map R partitions the set
of all components C into mutually disjoint classes C0,C1, . . . and C∞ such that
Ci = {c ∈ C | R(c) = i} for all i ∈ N ∪ {∞}. Note that Ci may be empty for
some i.

Definition 2 (Types). Types of component expressions are tuples

X = 〈Xi, Xo, Xj , Xp〉

where Xi, Xo, Xj and Xp are finite multisets over C. We let U, V, . . . , Z range
over types.

Let us first explain informally why multisets, which multisets and why four.
The aim is to have a sharp upper bound of the number of simultaneously active
instances of any component during the execution of the expression (Xi). Multi-
sets are the right datastructure to collect and count such instances. In addition
we want compositionality of typing, that is, we want the types to be computable
from types of subexpressions. Since subexpressions may be scoped, it is necessary
to have an sharp upper bound of the number of instances that are still active
after the execution of an expression (Xo). Pairs 〈Xi, Xo〉 sufficed for the purpose
of the paper [2]. Here we consider also reusing instances of components and this
depends on whether there is already such an instance or not. More concretely,
in a sequential composition EE′ the behaviour of reu ’s in E′ depends on the
instances that are active after the execution of E, which would violate compo-
sitionality. In order to save compositionality, we have to add two more multisets
to the types, denoted by Xj , Xp. These express the same bounds as Xi, Xo,
but with respect to executing the expression in a state where every component
has already one active instance. Finally, we have to explain the informal phrase
‘sharp upper bound’. Since we have choice, there can be different runs of the
same expression, with different numbers of active instances. Now ‘upper bound’
means an upper bound with respect to all possible runs and ‘sharp’ means that,
for any c ∈ C, the upper bound for c is attained in at least one such run.

Based on the above intuitions, the following typings are easy:
new d :〈[d], [d], [d], [d]〉, { new d} :〈[d], [], [d], []〉, reu d :〈[d], [d], [], []〉,
reu d{ new d} :〈[d, d], [d], [d], []〉, reu d{ new a} :〈[a, d, d], [d], [a, d], []〉,
where d−≺ε and a−≺ new d like in the example program in Section 2.1.

The intuitions from the above paragraph will be indispensable for under-
standing the typing rules later in this section, in particular the sequencing rule,
but we have to prepare with some preliminary definitions.

A basis or an environment is an list of declarations: x1−≺ A1, . . . , xn−≺ An

with distinct variables xi 6= xj for all i 6= j, as in [1]. Let Γ,∆, . . . range over
bases. When Γ = x1−≺A1, . . . , xn−≺An, the set of variables x1, . . . , xn declared
in Γ is the domain of Γ and is denoted by Dom(Γ). A type judgment is a triple
of the form

Γ `R A :X

6

and it asserts that expression A has type X in the environment Γ , with respect
to requirement R. We ignore subscript R in the judgment when R is clear from
the context or some requirement R is assumed in the context. We write ` A :X
if there exists a Γ such that Γ ` A :X.

Notation: for types X and Y , let X ⊆ Y , X+Y and X∪Y denote component-
wise multiset inclusion, additive union and usual union, respectively. For any
expression E, let FV (E) denote the set of variables occurring in E.

Definition 3 (Type judgments). Type judgments Γ ` A : X are derived by
applying the typing rules in Table 2 in the usual inductive way.

(Axiom)` ε :〈[], [], [], []〉 (Weaken)
Γ ` A :X Γ ` B :Y x /∈ Dom(Γ)

Γ, x−≺B ` A :X

(New)
Γ ` A :X x /∈ Dom(Γ)

Γ, x−≺A ` newx :〈Xi + x, Xo + x, Xj + x, Xp + x〉

(Reu)
Γ ` A :X x /∈ Dom(Γ)

Γ, x−≺A ` reux :〈Xi + x, Xo + x, Xj , Xp〉

(Seq)
Γ ` A :X Γ ` B :Y (Xo] Y j)(c) ≤ R(c) A, B 6= ε

Γ ` AB :〈Xi ∪ (Xo] Y j) ∪ Y i, (Xo] Y p) ∪ Y o, Xj ∪ (Xp] Y j), Xp] Y p〉

(Choice)
Γ ` A :X Γ ` B :Y

Γ ` (A + B) :X ∪ Y
(Scope)

Γ ` A :X

Γ ` {A} :〈Xi, [], Xj , []〉

Table 2. Typing Rules

In addition to the intuition given in the beginning of this section, some further
explanation of these typing rules is in order. The rule Axiom requires no premiss
and is used to take-off. The rules New and Reu allow us to type expressions
newx and reux, respectively. The rule Weaken is used to expand bases so that
we can combine typings in other rules. The side condition x /∈ Dom(Γ) prevents
ambiguity and circularity. The rules Choice and Scope are easy to understand
with the corresponding rules osChoice1/2 and osScope of the operational
semantics in mind.

The most critical rule is Seq because sequencing two expressions can lead
to an increase in instances of the composed expression. Let us start with the
first two multisets in the type quadruple for AB. After expression A is executed,
there are at most Xo(x) instances of component x. Executing B can create at
most Y i(x) instances of x if x is not in Xo. Otherwise Y j(x) instances of x will
be created, meaning that there are at most ((Xo] Y j) ∪ Y i)(x) instances of x
after the execution of A and during the execution of B. Furthermore, as there
are at most Xi(x) instances of x created during the execution of A, the first
multiset in the type of AB is the union of Xi and ((Xo]Y j)∪Y i). By a similar

7

reasoning we see that the surviving instances after executing AB are given by
the multiset (Xo] Y p) ∪ Y o.

Now let us consider executing AB in a state containing at least one instance
of every component. Then the maximum number of instances created by AB
is clearly the maximum of those created by A and the sum of those surviving
after A and those created by B, that is, Xj ∪ (Xp]Y j). The maximum number
surviving AB is obviously the sum of those surviving A and those surviving
B. This explains that the whole type for AB is 〈Xi ∪ (Xo] Y j) ∪ Y i, (Xo]
Y p)∪Y o, Xj ∪ (Xp]Y j), Xp]Y p〉. We require only Xo(x)+ Y j(x) ≤ R(x) for
each x ∈ Ck in the side condition since Xi ∪ Y i satisfies this bound already by
induction.

Using the example in Section 2.1 with assumption that C0 = {c, d}, C2 =
{a, b}, C3 = {e}, we derive type for new b. Note that we omitted some side
conditions as they can be checked easily and we shortened the rule names. The
rule Axiom is simplified. Also Γ = d−≺ ε, a−≺ new d, e−≺ ε and Γ ′ = Γ, b−≺
(reu d{ new a}+ new e new a) reu d in the following examples.

Wea

New
` ε :〈[], [], [], []〉

d−≺ε ` reu d :〈[d], [d], [], []〉 New
` ε :〈[], [], [], []〉

d−≺ε ` new d :〈[d], [d], [d], [d]〉
d−≺ε, a−≺ new d ` reu d :〈[d], [d], [], []〉

Sco

New

New
` ε :〈[], [], [], []〉

d−≺ε ` new d :〈[d], [d], [d], [d]〉
d−≺ε, a−≺ new d ` new a :〈[a, d], [a, d], [a, d], [a, d]〉
d−≺ε, a−≺ new d ` { new a} :〈[a, d], [], [a, d], []〉

Sequencing the above two derivation we have:
d−≺ε, a−≺ new d ` reu d{ new a} :〈[a, d, d], [d], [a, d], []〉.
We can weaken the above derivation to get:
Γ ` reu d{ new a} :〈[a, d, d], [d], [a, d], []〉 We can also derive:

Seq

. . .

Γ ` new e :〈[e], [e], [e], [e]〉
. . .

Γ ` new a :〈[a, d], [a, d], [a, d], [a, d]〉
Γ ` new e new a :〈[a, d, e], [a, d, e], [a, d, e], [a, d, e]〉

and we have: Γ ′ ` new b :〈[a, b, d, d, e], [a, b, d, e], [a, b, d, e], [a, b, d, e]〉.
In this example expression new b is typable. If d ∈ C1, the expression would

not be typable as the side condition when sequencing reu d and { new a} would
not be satisfied. Also, note that the above type derivation is not the only one
but, as we will see later, the type for any expression is unique.

4 Properties

We start by giving some definitions and then state some properties of our type
system. After that we will state some important properties relating types to
states in the operational semantics. Proofs are delegated to Appendix A in order
to improve the readability of this section.

Following [1] we fix some terminology on bases or environments.

Definition 4 (Bases). Let Γ = x1−≺A1, . . . , xn−≺An be a basis.

8

– Γ is called legal if Γ ` A :X for some expression A and type X.
– A declaration x−≺A is in Γ , notation x−≺A ∈ Γ , if x ≡ xi and A ≡ Ai for

some i.
– ∆ is part of Γ , notation ∆ ⊆ Γ , if ∆ = xi1−≺ Ai1 , . . . , xik

−≺ Aik
with

1 ≤ i1 < . . . < ik ≤ n. Note that the order is preserved.
– ∆ is an initial segment of Γ , if ∆ = x1−≺A1, . . . , xj−≺Aj for some 1 ≤ j ≤ n.

The following lemma collects a number of simple properties of a type judg-
ment. It states that if Γ ` A : X, then the elements of each multiset of X and
variables of A is in domain of Γ . It also shows some relations among multisets
of A and any legal basis always has distinct declarations.

Lemma 1 (Legal typing). If Γ ` A :X and c ∈ C, then

1. elements of FV (A), Xi, Xo, Xj and Xp are in Dom(Γ)
2. Γ ` ε :〈[], [], [], []〉
3. every variable in Dom(Γ) is declared only once in Γ
4. Xo(c) ≤ Xi(c) ≤ R(c), Xp(c) ≤ Xj(c) ≤ R(c)
5. 0 ≤ Xi(c)−Xj(c), Xo(c)−Xp(c) ≤ 1.

The following lemma is important in that it allows us to find a syntax-directed
derivation of the type of an expression and hence it allows us to calculate the
types of sub-expressions. This lemma is sometimes called the inversion lemma of
the typing relation [9]. Note that in the third clause the sequential decomposition
in A and B may not be unique.

Lemma 2 (Generation).

1. If Γ ` newx :X, then x ∈ Xp and there exists bases ∆, ∆′ and expression
A such that Γ = ∆,x−≺A,∆′, and ∆ ` A :〈Xi− x,Xo− x,Xj − x, Xp− x〉.

2. If Γ ` reux :X, then x ∈ Xo and there exists bases ∆, ∆′ and expression
A such that Γ = ∆,x−≺A, ∆′, and ∆ ` A :〈Xi − x,Xo − x,Xj , Xp〉.

3. If Γ ` AB :Z with A, B 6= ε, then there exists X, Y such that Γ ` A :X, Γ `
B :Y and Z = 〈Xi∪(Xo]Y j)∪Y i, (Xo]Y p)∪Y o, Xj∪(Xp]Y j), Xp]Y p〉.

4. If Γ ` (A + B) : Z, then there exists X, Y such that Γ ` A : X, Γ ` B : Y
and Z = X ∪ Y .

5. If Γ ` {A} :〈Xi, [], Xj , []〉, then there exists multisets Xo and Xp such that
Γ ` A :〈Xi, Xo, Xj , Xp〉.
The next lemma stresses the significance of the order of declarations in a

legal basis in our type system. The initial segment ∆ of a legal basis Γ is a legal
basis for the expression of the consecutive declaration after ∆. Besides, because
of the weakening rule, there can be many legal bases under which a well-typed
expression can be derived.

Lemma 3 (Legal monotonicity).

1. If Γ = ∆,x−≺E, ∆′ is legal, then ∆ ` E :X for some X.
2. If Γ ` E :X, Γ ⊆ Γ ′ and Γ ′ is legal, then Γ ′ ` E :X.

9

The following lemma can be viewed as the inverse of the previous legal mono-
tonicity lemma. Under certain conditions we can contract a legal basis so that
the expression is still well-typed in the new basis.

Lemma 4 (Strengthening). If Γ, x−≺ A ` B : Y and x /∈ FV (B), then
Γ ` B :Y and x /∈ Y i.

In our type system, when an expression has a type this type is unique. This
property is stated in the following proposition.

Proposition 1 (Uniqueness of types). If Γ ` A : X and Γ ` A : Y , then
Xi = Y i, Xo = Y o, Xj = Y j and Xp = Y p.

Now we are going to state an important invariant of our operational se-
mantics. We will use an approach inspired by Wright and Felleisen [12]. As our
safety property involves the number of instances for every components in the
stack, we define the notion of well-typed configuration, which includes both the
well-typedness of expressions in the configuration and safety of the whole stack.
Then we will state that the well-typedness of configurations is preserved during
transitions.

Definition 5 (Well-typed configuration). Let Γ be a legal basis. Configura-
tion ST = (M1, E1) ◦ · · · ◦ (Mn, En) is well-typed with respect to requirement R,
notation Γ, ST |= R, if it satisfies the followings:

1. Γ `R Ek :Xk for all 1 ≤ k ≤ n
2. (Xj

k]
⊎k

l=1 Ml)(c) ≤ R(c) for all 1 ≤ k ≤ n.

Theorem 1 (Preservation). If Γ, ST1 |= R and ST1 Ã ST2, then Γ, ST2 |=
R.

The following corollary allows us to safely execute well-typed component
programs. That is, during the execution of the programs the number of active
instances of any component never exceeds the allowed number.

Corollary 1 (Safety). Let Γ `R A :X. Then for every sequence of transitions
([], A) Ã∗ ST we have [ST](c) ≤ R(c) for all c.

Proof. Follows from Theorem 1, since ([], A) is a well-typed configuration.

5 Type Inference

So far we know that a well-typed program is safe to execute. Now, given a well-
formed program, how do we know it is well-typed and how do we find the type
of its starting expression? The problem of finding the type of an expression,
given a set of declarations, is called the type inference problem [3] or typability
problem [1]. Solving this problem relieves the programmer from giving the types
explicitly and having them checked. The types inferred give also information

10

about the resources (e.g., memory) a component program uses, and can hence
guide the design of the component system.

One may argue that we can test the behaviour of a component program
by executing all possible runs under our operational semantics. However, this
process could be exponential or even non-terminating (in the case of unforeseen
circular dependencies.)

Now let us see a polynomial solution for our type inference problem. Let Prog
be the component program and E be the expression we need to find the type of.
A necessary (but not sufficient) condition is that the declarations in Prog can be
reordered into a basis Γ such that for any declaration x−≺A in Γ , the variables
occurring in A are already declared previously in Γ . In other words:

if Γ = ∆,x−≺A,∆′ then FV (A) ⊆ Dom(∆) (1)

Such a reordering (if one exists) can be computed in polynomial time by an
analysis of the dependency graph associated with the declarations in Prog . From
now on we assume that Γ is a basis consisting of all declarations in Prog and
satisfying (1). The considerations below are independent of which particular
ordering is used as long as it satisfies (1).

The next step is that we reduce the problem of inferring a type for a given
expression E to finding the types of newx and reux for all x ∈ FV (E). First
write E as a sequential composition E1 . . . Ep for some p > 0 in such a way that
every Ei is of one of the following forms: newx, reux, (Exp + Exp), {Exp}.
The type of E (if any) can then be inferrred from the types of the Ei’s by the
rule Seq in Definition 3. For the last two forms we have to apply the procedure
recursively to the subexpressions, after which the type of the Ei in question
can be inferred by the rules Choice and Scope, respectively. The type inference
problem for E thus reduces to type inference problems for expressions newx and
reux.

Finally we systematically infer types for newx and reux for all x ∈ Γ ,
starting at the left. For the primitive components this is trivial. If we meet
a declaration Var−≺ Exp, then we know that all variables x ∈ FV (Exp) are
declared previously and we know the types of newx and reux. From these
types we can infer the type of Exp and hence of newVar and reuVar . Storing
all the types inferred underway keeps type inference polynomial.

If at some place the above type inference procedure breaks down because
the side condition of the rule Seq is violated, then there is no type. Here we
have taken the strict approach where all declarations in the program have to be
well-typed, even if they do not play a role, neither directly nor indirectly, in the
expression which sparks off the execution of the program. For a top-down type
inference procedure, where only the part of the program which is relevant for
the expression is taken into consideration, see [8]. This is in many cases more
efficient, but may hide ill-typed parts of the program that cause trouble in a
later stage of the design.

11

6 Conclusions and Future Research

We have defined an abstract component language, an operational semantics and
a type system such that every well-typed program can be executed safely in
the sense that the number of simultaneously active instances never exceeds the
maximum set for each component.

In a slightly more liberal approach one leaves out the side condition from
the typing rule Seq and takes the types as counting the maximum number of
simultaneously active instances of each component. These maxima can then be
compared to the available resources.

We are well aware of the level of abstraction of the component language and
plan to incorporate more language features. These include parallel composition
and various forms of communication.

References

1. H. Barendregt. Lambda Calculi with Types. In: Abramsky, Gabbay, Maibaum
(Eds.), Handbook of Logic in Computer Science, Vol. II. Oxford University Press.
1992.

2. M. Bezem and H. Truong. A Type System for the Safe Instantiation of Components,
In Proceedings of FOCLASA’03, Electronic Notes in Theoretical Computer Science,
September 2003.

3. L. Cardelli. Type systems. In A. B. Tucker, editor, The Computer Science and
Engineering Handbook, chapter 103, pages 2208-2236. CRC Press, 1997.

4. K. Crary, D. Walker, and G. Morrisett. Typed Memory Management in a Calculus
of Capabilities. In Twenty-Sixth ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages, pages 262-275, San Antonio, TX, USA, January
1999.

5. K. Crary and S. Weirich. Resource Bound Certification. In the Twenty-Seventh
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
pages 184-198, Boston, MA, USA, January 2000.

6. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns - Ele-
ments of Reusable ObjectOriented Software, Addison-Wesley, Reading, Mass., ISBN
0201633612, 1994.

7. E. Meijer and C. Szyperski. Overcoming Independent Extensibility Challenges,
Communications of the ACM, Vol. 45, No. 10, pp. 41–44, October 2002.

8. H. Nilsen. An Implementation of a Typing System for Counting Instances of Soft-
ware Components, MSc Thesis, Department of Informatics, University of Bergen,
January 2005.

9. B. Pierce. Types and Programming Languages. MIT Press, ISBN 0262162091,
February 2002.

10. J. C. Seco, Adding Type Safety to Component Programming, In Proceedings of The
PhD Student’s Workshop in FMOODS’02, University of Twente, the Netherlands,
March 2002.

11. C. Szyperski. Component Software: Beyond Object-Oriented Programming, 2nd edi-
tion, Addison-Wesley, ISBN 0201745720, 2002.

12. Andrew K. Wright and Matthias Felleisen, A Syntactic Approach to Type Sound-
ness, Information and Computation, Vol. 115, No. 1, pp. 38–94, 1994.

12

13. M. Zenger, Type-Safe Prototype-Based Component Evolution, Proceedings of the
European Conference on Object-Oriented Programming, Malaga, Spain, June 2002.

14. M. Zenger, Programming Language Abstractions for Extensible Software Compo-
nents, PhD Thesis, No. 2930, EPFL, Switzerland, March 2004.

A Proofs

In the sequel we use X∗ for any of Xi, Xo, Xj and Xp.

Lemma 1 (Legal typing). If Γ ` A :X and c ∈ C, then

1. elements of FV (A), Xi, Xo, Xj and Xp are in Dom(Γ)

2. Γ ` ε :〈[], [], [], []〉
3. every variable in Dom(Γ) is declared only once in Γ

4. Xo(c) ≤ Xi(c) ≤ R(c), Xp(c) ≤ Xj(c) ≤ R(c)

5. 0 ≤ Xi(c)−Xj(c), Xo(c)−Xp(c) ≤ 1.

Proof. By simultaneous induction on derivation. Recall that Lemma 1 has 5 clauses.

– Base case Axiom, ` ε :〈[], [], [], []〉 is trivial as FV (ε), X∗, Dom() are empty.

– Case Weaken,

(Weaken)
Γ ′ ` A :X Γ ′ ` B :Y x /∈ Dom(Γ ′)

Γ ′, x−≺B ` A :X

Clause 3 follows by the side condition. The remaining clauses follow by IH.

– Case New,

(New)
Γ ′ ` B :Y x /∈ Dom(Γ ′)

Γ ′, x−≺B ` newx :〈Y i + x, Y o + x, Y j + x, Y p + x〉

with Γ = Γ ′, x−≺B, X∗ = Y ∗ + x. Assume the lemma is correct for the premise
of this rule, so elements of FV (B), Y ∗ are in Dom(Γ ′). Clause 1 holds easily as
the new element x in FV (newx) and X∗ is in Dom(Γ) = Dom(Γ ′, x−≺ B) =
Dom(Γ ′) ∪ x. Clause 2 Γ ′, x−≺B ` ε :〈[], [], [], []〉 follows by applying Weaken:

(Weaken)
Γ ′ ` ε :〈[], [], [], []〉 Γ ′ ` B :Y x /∈ Dom(Γ ′)

Γ ′, x−≺B ` ε :〈[], [], [], []〉

Clause 3 follows by the side condition x /∈ Dom(Γ ′). Clause 4 follows by IH. The
last clause 5 holds since x /∈ Y i and x /∈ Y j .

– Case Reu,

(Reu)
Γ ′ ` B :Y x /∈ Dom(Γ ′)

Γ, x−≺B ` reux :〈Y i + x, Y o + x, Y j , Y p〉

with Γ = Γ ′, x−≺B, X = 〈Y i + x, Y o + x, Y j , Y p〉. The proof is analogous to case
New.

13

– Case Seq,

(Seq)
Γ ` B :Y Γ ` C :Z (Y o] Zj)(c) ≤ R(c) B, C 6= ε

Γ ` BC :〈Y i ∪ (Y o] Zj) ∪ Zi, (Y o] Zp) ∪ Zo, Y j ∪ (Y p] Zj), Y p] Zp〉

Clauses 1, 2 and 3 hold by IH. For clause 4 it is to see that: ((Y o]Zp)∪Zo)(c) ≤
(Y i ∪ (Y o]Zj)∪Zi)(c) ≤ R(c) holds since Zp ⊆ Zj , Zo ⊆ Zi and (Y o]Zj)(c) ≤
R(c) from side condition, Y i, Zi ≤ R(c) by IH. Similarly, (Y p] Zp)(c) ≤ (Y j ∪
(Y p]Zj))(c) ≤ R(c) holds since Zp ⊆ Zj and (Y p]Zj)(c) ≤ (Y o]Zj)(c) ≤ R(c).
For clause 5, as Y i(c) ≥ Y j(c) and Zo(c) ≥ Zp(c) for all c, we get 0 ≤ Xi(c)−Xj(c)
immediately. In addition,

Xi(c)−Xj(c) = max

8
<
:

Y i(c)− (Y j ∪ (Y p] Zj))(c),
(Y o] Zj)(c)− (Y j ∪ (Y p] Zj))(c),
Zi(c)− (Y j ∪ (Y p] Zj))(c)

9
=
;

each of the three cases is less then or equals 1 so Xi(c)−Xj(c) ≤ 1. Similarly, it
is easy to see that 0 ≤ Xo(c)−Xp(c) = (Y o] Zp) ∪ Zo)(c)− (Y p] Zp)(c) ≤ 1.

– Case Choice,

(Choice)
Γ ` C :Z Γ ` B :Y

Γ ` (C + B) :Z ∪ Y

Analogous to case Seq. First three clauses are easy.
Clause 4 holds since max(Zo(c), Y o(c)) ≤ R(c) and max(Zi(c), Y i(c)) ≤ R(c) by
IH. Clause 5 is also easy:

0 ≤ Xi(c)−Xj(c) = (Y i ∪ Zi)(c)− (Y j ∪ Zj)(c)

If Y i ⊇ Zi then Xi(c)−Xj(c) = Y i(c)− (Y j ∪ Zj)(c) ≤ Y i(c)− Y j(c) ≤ 1. The
other way around Zi ⊇ Y i is the same. The second part, 0 ≤ Xo(c)−Xp(c) ≤ 1,
is analogous.

– Case Scope,

(Scope)
Γ ` B :Y

Γ ` {B} :〈Y i, [], Y j , []〉
All clauses hold by IH or are trivial.

ut

Lemma 2 (Generation).

1. If Γ ` newx :X, then x ∈ Xp and there exists bases ∆, ∆′ and expression A such
that Γ = ∆, x−≺A, ∆′, and ∆ ` A :〈Xi − x, Xo − x, Xj − x, Xp − x〉.

2. If Γ ` reux :X, then x ∈ Xo and there exists bases ∆, ∆′ and expression A such
that Γ = ∆, x−≺A, ∆′, and ∆ ` A :〈Xi − x, Xo − x, Xj , Xp〉.

3. If Γ ` AB :Z with A, B 6= ε, then there exists X, Y such that Γ ` A :X, Γ ` B :Y
and Z = 〈Xi ∪ (Xo] Y j) ∪ Y i, (Xo] Y p) ∪ Y o, Xj ∪ (Xp] Y j), Xp] Y p〉.

4. If Γ ` (A + B) : Z, then there exists X, Y such that Γ ` A : X, Γ ` B : Y and
Z = X ∪ Y .

5. If Γ ` {A} : 〈Xi, [], Xj , []〉, then there exists multisets Xo and Xp such that Γ `
A :〈Xi, Xo, Xj , Xp〉.

Proof. By induction on derivation.

14

1. Γ ` newx : X can only be derived by the rule New or Weaken. If it is derived by
the rule New, then there is only one possibility:

(New)
∆ ` A :Y x /∈ Dom(∆)

∆, x−≺A ` newx :X

with X∗ = Y ∗ + x and Γ = ∆, x−≺A, so that ∆′ is empty.
If Γ ` newx :X is derived by the rule Weaken:

(Weaken)
Γ ′ ` newx :X Γ ′ ` B :Y y /∈ Dom(Γ ′)

Γ ′, y−≺B ` newx :X

then Γ ′ ` newx :X and by the IH applied to Γ ′ ` newx :X we have Γ ′ = ∆1, x−≺
A, ∆2 and ∆1 ` A :〈Xi−x, Xo−x, Xj −x, Xp−x〉 for some ∆1, ∆2, and A. With
∆ = ∆1, ∆′ = ∆2, y−≺B we have all the conclusions.

2. Case Γ ` reux :X: analogous to clause 1.
3. Γ ` AB :Z with A, B 6= ε can only be derived by the rule Seq or the rule Weaken.

If Γ ` AB :Z is derived by the rule Seq with two component expressions A and B
in the premise of the typing rule:

(Seq)
Γ ` A :X Γ ` B :Y (Xo] Y j)(c) ≤ R(c) A, B 6= ε

Γ ` AB :〈Xi ∪ (Xo] Y j) ∪ Y i, (Xo] Y p) ∪ Y o, Xj ∪ (Xp] Y j), Xp] Y p〉

then the proof is immediate.
If Γ ` AB :Z is derived by the rule Seq with two component expressions A1 6= A
and B1 6= B such that A1B1 = AB:

(Seq)
Γ ` A1 :X1 Γ ` B1 :Y1 (Xo

1] Y j
1)(c) ≤ R(c) A1, B1 6= ε

Γ ` A1B1 :〈Xi
1 ∪ (Xo

1] Y j
1) ∪ Y i

1 , (Xo
1] Y p

1) ∪ Y o
1 , Xj

1 ∪ (Xp
1] Y j

1), Xp
1] Y p

1 〉

then there are two possibilities:
– A = A1A2: then B1 = A2B and we have Γ ` A2B :Y1.

By the IH applied to Γ ` A2B : Y1 we get Γ ` A2 : X2 and Γ ` B : Y with
X = 〈Xi

2∪(Xo
2]Y j)∪Y i, (Xo

2]Y p)∪Y o, Xj
2∪(Xp

2]Y j), Xp
2]Y p〉. As the side

condition (Xo
1]Xj

2)(c) ≤ (Xo
1] (Xj

2 ∪ (Xp
2] Y j)))(c) = (Xo

1] Y j
1)(c) ≤ R(c)

holds, we can apply the rule Seq to Γ ` A1 :X1 and Γ ` A2 :X2 and get Γ ` A :
X with X = 〈Xi

1∪ (Xo
1]Xj

2)∪Xi
2, (X

o
1]Xp

2)∪Xo
2 , Xj

1 ∪ (Xp
1]Xj

2), Xp
1]Xp

2 〉.
We still need to show that Z = 〈Xi ∪ (Xo] Y j) ∪ Y i, (Xo] Y p) ∪ Y o, Xj ∪
(Xp] Y j), Xp] Y p〉, that is we need to prove four equations:

Xi ∪ (Xo] Y j) ∪ Y i = Xi
1 ∪ (Xo

1] Y j
1) ∪ Y i

1 ,
(Xo] Y p) ∪ Y o = (Xo

1] Y p
1) ∪ Y o

1 ,

Xj ∪ (Xp] Y j) = Xj
1 ∪ (Xp

1] Y j
1),

Xp] Y p = Xp
1] Y p

1

We have:

Xi ∪ (Xo] Y j) ∪ Y i

= (Xi
1 ∪ (Xo

1]Xj
2) ∪Xi

2) ∪ (((Xo
1]Xp

2) ∪Xo
2)] Y j) ∪ Y i

= Xi
1 ∪Xi

2 ∪ Y i ∪ (Xo
1]Xj

2) ∪ (((Xo
1]Xp

2) ∪Xo
2)] Y j)

= Xi
1 ∪Xi

2 ∪ Y i ∪ (Xo
1]Xj

2) ∪ (Xo
1]Xp

2] Y j) ∪ (Xo
2] Y j)

= Xi
1 ∪Xi

2 ∪ Y i ∪ (Xo
1] (Xj

2 ∪ (Xp
2] Y j))) ∪ (Xo

2] Y j)

= Xi
1 ∪ (Xo

1] (Xj
2 ∪ (Xp

2] Y j))) ∪ (Xi
2 ∪ (Xo

2] Y j) ∪ Y i)

= Xi
1 ∪ (Xo

1] Y j
1) ∪ Y i

1

15

so the first equation holds. Similarly,

(Xo] Y p) ∪ Y o

= (((Xo
1]Xp

2) ∪Xo
2)] Y p) ∪ Y o

= (Xo
1]Xp

2] Y p) ∪ (Xo
2] Y p) ∪ Y o

= (Xo
1] (Xp

2] Y p)) ∪ ((Xo
2] Y p) ∪ Y o)

= (Xo
1] Y p

1) ∪ Y o
1

so the second equation holds.

Xj ∪ (Xp] Y j)

= (Xj
1 ∪ (Xp

1]Xj
2)) ∪ ((Xp

1]Xp
2)] Y j)

= Xj
1 ∪ (Xp

1]Xj
2) ∪ (Xp

1]Xp
2] Y j)

= Xj
1 ∪ (Xp

1] (Xj
2 ∪ (Xp

2] Y j)))

= Xj
1 ∪ (Xp

1] Y j
1)

so the third equation holds. The last equation follows easily:

Xp] Y p = (Xp
1]Xp

2)] Y p = Xp
1] (Xp

2] Y p) = Xp
1] Y p

1 .

– B = B0B1: then A1 = AB0. By analogous reasoning as in the previous case
we get the conclusions.

If Γ ` AB :Z is derived by the rule Weaken:

(Weaken)
Γ ′ ` AB :Z Γ ′ ` C :V y /∈ Dom(Γ ′)

Γ ′, y−≺C ` AB :Z

with Γ = Γ ′, y−≺C then by the IH applied to Γ ′ ` AB : Z we have Γ ′ ` A : X,
Γ ′ ` B :Y , Z = 〈Xi ∪ (Xo] Y j) ∪ Y i, (Xo] Y p) ∪ Y o, Xj ∪ (Xp] Y j), Xp] Y p〉.
Now weakening Γ ′ ` A : X and Γ ′ ` B : Y to Γ = Γ ′, y−≺ C we have all the
conclusions.

4. Γ ` (A + B) :Z can only be derived by the rule Choice or the rule Weaken. If it is
derived by the rule Choice, then there is only one possibility:

(Choice)
Γ ` A :X Γ ` B :Y

Γ ` (A + B) :X ∪ Y

with Z = X ∪ Y . The conclusion follows immediately.

If Γ ` (A + B) :Z is derived by the rule Weaken:

(Weaken)
Γ ′ ` (A + B) :Z Γ ′ ` E :V x /∈ Dom(Γ ′)

Γ ′, x−≺E ` (A + B) :Z

then the proof is analogous to the proof of case Weaken in the previous clause.

5. Γ ` {A} :〈Xi, [], Xj , []〉 can only be derived by the rule Scope or the rule Weaken.
The proof is analogous to the proof of the previous clause.

ut

16

Lemma 3 (Legal monotonicity).

1. If Γ = ∆, x−≺E, ∆′ is legal, then ∆ ` E :X for some X.

2. If Γ ` E :X, Γ ⊆ Γ ′ and Γ ′ is legal, then Γ ′ ` E :X.

Proof. 1. The only way to extend ∆ to ∆, x−≺E in a derivation is by applying the
rule New, Reu or Weaken.

(New)
Γ ` E :X x /∈ Dom(Γ)

Γ, x−≺E ` newx :〈Xi + x, Xo + x, Xj + x, Xp + x〉

(Reu)
Γ ` E :X x /∈ Dom(Γ)

Γ, x−≺E ` reux :〈Xi + x, Xo + x, Xj , Xp〉

(Weaken)
Γ ` E :X Γ ` B :Y x /∈ Dom(Γ)

Γ, x−≺E ` B :Y

Each of the rules has ∆ ` E :X as a premise.

2. By induction on derivation of Γ ` E :X. We prove that for all Γ ′ legal such that
Γ ⊆ Γ ′ we have Γ ′ ` E :X.

– Base case Axiom, E = ε, then Γ ′ ` ε :〈[], [], [], []〉 since Γ ′ is legal.

– Case New, E = newx

(New)
∆ ` B :Y x /∈ Dom(∆)

∆, x−≺B ` newx :X

with X = 〈Y i + x, Y o + x, Xi + x, Xo + x〉 and Γ = ∆, x−≺B. Because Γ ⊆ Γ ′

with Γ ′ legal there exists ∆1, ∆2 such that ∆ ⊆ ∆1 and ∆1, x−≺B, ∆2 = Γ ′,
with all initial segments of Γ ′ are legal. By clause 1 we have ∆1 ` B :Y . As x
occurs only once in Γ ′ we have x /∈ Dom(∆1) and we can apply the rule New
to get ∆1, x−≺B ` newx :X. Since Γ ′ is legal we can iterate the rule Weaken
to get Γ ′ ` newx :X.

– Case Reu, E = newx: analogous to case New.

– Case Weaken,

(Weaken)
∆ ` E :X ∆ ` B :Y x /∈ Dom(∆)

∆, x−≺B ` E :X

with Γ = ∆, x−≺B. Because Γ ⊆ Γ ′ and Γ ′ legal, we have ∆ ⊆ Γ ′. By the IH
we get immediately Γ ′ ` E :X.

– Case Seq, E = BC with B, C 6= ε: by Generation Lemma we have Γ ` B :Y
and Γ ` C : Z. By the IH we have Γ ′ ` B : Y and Γ ′ ` C : Z. As the side
condition for Γ ` BC :〈Y i∪(Y o]Zj)∪Zi, (Y o]Zp)∪Zo, Y j∪(Y p]Zj), Y p]
Zp〉 holds we can apply the rule Seq we get the conclusion.

– Case Choice, E = (B + C): analogous to the case Seq.

– Case Scope, E = {B}: analogous to the case Seq.

ut

17

Lemma 4 (Strengthening). If Γ, x−≺A ` B :Y and x /∈ FV (B), then Γ ` B :Y
and x /∈ Y i.

Proof. By induction on derivation. Let Γ ′ = Γ, x−≺A

– Case Axiom, B = ε: does not apply since the basis is not empty.
– Case New, B = newx: does not apply since FV (B) = FV (newx) = {x}.
– Case Reu, B = reux: does not apply since FV (B) = FV (reux) = {x}.
– Case Weaken,

(Weaken)
Γ ` A :X Γ ` B :Y x /∈ Dom(Γ)

Γ, x−≺A ` B :Y

We have Γ ` B :Y in the premise and x /∈ Y i by IH.
– Case Seq, B = B1B2:

(Seq)
Γ ′ ` B1 :Y1 Γ ′ ` B2 :Y2 (Y o

1] Y j
2)(c) ≤ R(c) B1, B2 6= ε

Γ ′ ` B1B2 :〈Y i
1 ∪ (Y o

1] Y j
2) ∪ Y i

2 , (Y o
1] Y p

2) ∪ Y o
2 , Y j

1 ∪ (Y p
1] Y j

2), Y p
1] Y p

2 〉

with Y = 〈Y i
1 ∪ (Y o

1] Y j
2) ∪ Y i

2 , (Y o
1] Y p

2) ∪ Y o
2 , Y j

1 ∪ (Y p
1] Y j

2), Y p
1] Y p

2 〉. Since
x /∈ FV (B1B2) = FV (B1) ∪ FV (B2) we have x 6= FV (B1) and x /∈ FV (B2).
By IH we get Γ ` B1 : Y1 and x /∈ Y i

1 , Γ ` B2 : Y2 and x /∈ Y i
2 . As the side

condition does not change at all, we can apply the rule Seq to get the conclusion:
Γ ` B1B2 :Y .

– Case Choice, B = (B1 + B2): analogous to the case Seq.
– Case Scope, B = {C}: analogous to the case Seq.

ut

Proposition 1 (Uniqueness of types). If Γ ` A : X and Γ ` A : Y , then
Xi = Y i, Xo = Y o, Xj = Y j and Xp = Y p.

Proof. By induction on the derivation of Γ ` A :X.

– Base case Axiom, we have A = ε and Γ is empty, so that only Axiom is applicable.
Hence, X = Y = 〈[], [], [], []〉.

– Case New,

(New)
Γ ′ ` B :U x /∈ Dom(Γ)

Γ ′, x−≺B ` newx :X

with X∗ = U∗ + x and Γ = Γ ′, x−≺B. Assume this Proposition 1 holds for the
premise of this rule and let Γ ` newx : Y . By Generation Lemma 2, x ∈ Y ∗,
Γ = ∆1, x−≺C, ∆2 and ∆1 ` C :〈Y i − x, Y o − x, Y j − x, Y p − x〉 for some ∆1, ∆2,
C.
By Lemma 1, there is only one declaration of x in Γ . This means ∆1 = Γ ′, C = B
and ∆2 is empty, so Γ ′ ` B : 〈Y i − x, Y o − x, Y j − x, Y p − x〉. By IH we have
X∗ − x = Y ∗ − x, i.e. X = Y .

– Case Reu, analogous to case New.
– Case Weaken, let Γ = Γ ′, x−≺B such that:

(Weaken)
Γ ′ ` A :X Γ ′ ` B :Z x /∈ Dom(Γ ′)

Γ ′, x−≺B ` A :X

Assume this Proposition 1 holds for the two premises and let Γ ` A : Y . Since
Γ ′ ` A : X and x /∈ Dom(Γ ′) we have x /∈ FV (A). By Lemma 4 applied to
Γ ′, x−≺B ` A :Y we get Γ ′ ` A :Y . By IH we have the conclusion X = Y .

18

– Case Seq, let Γ ` B1B2 :X with B1, B2 6= ε such that:

(Seq)
Γ ` B1 :Y1 Γ ` B2 :Y2 (Y o

1] Y j
2)(c) ≤ R(c) B1, B2 6= ε

Γ ` B1B2 :〈Y i
1 ∪ (Y o

1] Y j
2) ∪ Y i

2 , (Y o
1] Y p

2) ∪ Y o
2 , Y j

1 ∪ (Y p
1] Y j

2), Y p
1] Y p

2 〉

By Generation Lemma 2 applied to Γ ` B1B2 :Y we have Γ ` B1 :V1, Γ ` B2 :V2,
Y = 〈V i

1 ∪ (V o
1] V j

2) ∪ V i
2 , (V o

1] V p
2) ∪ V o

2 , V j
1 ∪ (V p

1] V j
2), V p

1] V p
2 〉. By the IH,

we have Y1 = V1 and Y2 = V2. Hence, X = Y = 〈Y i
1 ∪ (Y o

1] Y j
2)∪ Y i

2 , (Y o
1] Y p

2)∪
Y o

2 , Y j
1 ∪ (Y p

1] Y j
2), Y p

1] Y p
2 〉.

– Case Choice, analogous to case Seq.
– Case Scope, analogous to case Seq. ut

Theorem 1 (Preservation). If Γ, ST1 |= R and ST1 Ã ST2, then Γ, ST2 |= R.

Proof. By case analysis on the all possible small-step transitions. In all cases we assume
Γ, ST1 |= R and ST1 Ã ST2, and we prove Γ, ST2 |= R. See Definition 5 for Γ, STi |= R
(STi well-typed wrt. Γ and R). See Table 1 for Ã. In most cases only the top of the
stack is affected, in some cases the stack is pushed or popped. We restrict our attention
to the parts of the stack that change.

– Case osNew,

(osNew) if x−≺A ∈ Prog
ST1 = ST ◦ (M, newxE) Ã ST ◦ (M + x, AE) = ST2

Since ST1 is well-typed, there exists X such that Γ ` newxE :X and ([ST]]M]
Xj)(c) ≤ R(c) for all c. We only need to prove that Γ ` AE :Z and ([ST]] (M +
x)] Zj)(c) ≤ R(c) for all c since the stack only changes at the top.
We prove AE well-typed as follows. From Γ ` newxE : X we get, by Generation
Lemma 2, Γ ` newx :X1 and Γ ` E :X2. Also by that lemma we have Γ ` A :Y
with Y ∗ = X∗

1 − x. So we can derive Γ ` AE : 〈Y i ∪ (Y o] Xj
2) ∪ Xi

2, (Y
o]

Xp
2)∪Xo

2 , Y j ∪ (Y p]Xj
2), Y p]Xp

2 〉 by applying the rule Seq as the side condition
(Y o]Xj

2)(c) ≤ R(c) holds by Y o ⊂ Xo
1 and (Xo

1]Xj
2)(c) ≤ R(c) for all c.

Next we prove that ([ST]] (M + x)] (Y j ∪ (Y p]Xj
2)))(c) ≤ R(c) for all c. We

have:

LHS = ([ST]] (M + x)] ((Xj
1 − x) ∪ ((Xp

1 − x)]Xj
2)))(c)

= ([ST]]M] (Xj
1 ∪ (Xp

1]Xj
2)))(c)

= ([ST]]M]Xj)(c)
≤ R(c) (as ST1 well-typed)

– Case osReu1,

(osReu1) if x−≺A ∈ Prog x /∈ [ST]]M
ST1 = ST ◦ (M, reuxE) Ã ST ◦ (M + x, AE) = ST2

Since ST1 is well-typed, there exists X such that Γ ` reuxE :X and ([ST]]M]
Xj)(c) ≤ R(c) for all c. As in case osNew we only need to prove that Γ ` AE :Z
and ([ST]] (M + x)] Zj)(c) ≤ R(c) for all c.
First we prove that AE is well-typed. From Γ ` reuxE :X we get, by Generation
Lemma 2, Γ ` reux :X1 and Γ ` E :X2. Also by that lemma we have Γ ` A :Y

19

with Y = 〈Xi
1 − x, Xo

1 − x, Xj
1 , Xp

1 〉. So we can derive Γ ` AE :〈Y i ∪ (Y o]Xj
2) ∪

Xi
2, (Y

o]Xp
2)∪Xo

2 , Y j ∪ (Y p]Xj
2), Y p]Xp

2 〉 as the side condition (Y o]Xj
2)(c) ≤

R(c) holds by Y o ⊆ Xo
1 and (Xo

1]Xj
2)(c) ≤ R(c) for all c.

Next we prove the second clause, ([ST]] (M + x)] Zj)(c) ≤ R(c) for all c. Note
that Zj = Xj

1 ∪ (Xp
1]Xj

2) = Xj so we have ([ST]] (M +x)]Zj)(c) ≤ R(c) holds
for all c 6= x by assumption. For c = x, as x 6∈ [ST]]M we have:

LHS = (x + Zj)(x)
= (x + Xj)(x)
= Xi(x) (Lemma 1, point 5, applied to Y)
≤ R(x) = R(c) (Lemma 1, point 4)

– Case osReu2,

(osReu2) if x−≺A ∈ Prog x ∈ [ST]]M
ST1 = ST ◦ (M, reuxE) Ã ST ◦ (M, AE) = ST2

Since ST1 is well-typed, there exists X such that Γ ` reuxE :X and ([ST]]M]
Xj)(c) ≤ R(c) for all c. As in case osNew we only need to prove that Γ ` AE :Z
and (M] [ST]] Zj)(c) ≤ R(c) for all c.
The proof of Γ ` AE :Z is verbatim the same as in the previous case, with again
Zj = Xj , which trivializes the second proof obligation.

– Case osChoice1,

(osChoice1)
ST1 = ST ◦ (M, (A + B)E) Ã ST ◦ (M, AE) = ST2

Since ST1 is well-typed, there exists X such that Γ ` (A+B)E :X and ([ST]]M]
Xj)(c) ≤ R(c) for all c. We prove that Γ ` AE :Z and ([ST]]M]Zj)(c) ≤ R(c)
for all c.
First we prove that AE is well-typed. By Generation Lemma 2 applied to Γ `
(A + B)E : X we have Γ ` (A + B) : X1, Γ ` E : X2. Also by that lemma
applied to Γ ` (A + B) : X1 we have Γ ` A : Y with Y ∗ ⊆ X∗

1 . So we can derive
Γ ` AE :〈Y i ∪ (Y o]Xj

2) ∪Xi
2, (Y

o]Xp
2) ∪Xo

2 , Y j ∪ (Y p]Xj
2), Y p]Xp

2 〉 as the
side condition obviously holds.
Next we prove the second clause ([ST]]M] Zj)(c) ≤ R(c) for all c. We have

LHS = ([ST]]M] (Y j ∪ (Y p]Xj
2)))(c)

≤ ([ST]]M] (Xj
1 ∪ (Xp

1]Xj
2)))(c)

= ([ST]]M]Xj)(c)
≤ R(c) (since ST1 well-typed)

– Case osChoice2, symmetric to case osChoice1.
– Case osPush,

(osPush)
ST1 = ST ◦ (M, {A}E) Ã ST ◦ (M, E) ◦ ([], A) = ST2

Since ST1 is well-typed, there exists X such that Γ ` {A}E :X and ([ST]]M]
Xj)(c) ≤ R(c) for all c. Because we have pushed the stack, we have two things to
check. For the well-typedness of the new configuration, we need to prove that (1)

20

Γ ` A : Y and ([ST]] M] []] Y j)(c) ≤ R(c) for all c, and (2) Γ ` E : X2 and
([ST]]M]Xj

2)(c) ≤ R(c) for all c.
We prove (1) as follows. From Γ ` {A}E : X we get, by Generation Lemma 2,
Γ ` {A} :X1 and Γ ` E :X2 with Xj = Xj

1 ∪ (Xp
1]Xj

2). Also by that lemma we
have Γ ` A : Y with Y = 〈Xi

1, Y
o, Xj

1 , Y p〉. The second requirement follows from
Y j = Xj

1 ⊆ Xj and ([ST]]M]Xj)(c) ≤ R(c) for all c.
For (2) the first requirement is proved in (1). The second requirement follows from
Xj

2 ⊆ Xp
1]Xj

2 ⊆ Xj and ([ST]]M]Xj)(c) ≤ R(c) for all c.
– Case osPop,

(osPop)
ST ◦ (M, E) ◦ (M ′, ε) Ã ST ◦ (M, E)

We immediately get ST ◦ (M, E) well-typed by ST ◦ (M, E) ◦ (M ′, ε) well-typed.
ut

