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ABSTRACT
Changes in the deposition of fine-grained rock-flour in glacier-fed lakes reflect glacier variability.
This meltwater-driven signal is, however, often overprinted by other processes. To constrain the
signature of lacustrine sedimentation, we mapped the catchment of glacier-fed Lake Hajeren in
northwest Spitsbergen, identifying sediment sources and linking them to surface processes. To
this end, we employed a combined approach of aerial image interpretation and field mapping.
Our map comprises sediment–landform assemblages commonly found in pro-, peri- and
paraglacial landsystems on Spitsbergen, including weathered moraines outboard Little Ice
Age limits. Based on the presented map, we argue that mass-wasting does not directly
impact lake sedimentation. Also, due to the scarcity of fines in historical glacial deposits, we
suggest that modified glacigenic sediments only briefly affect a recorded glacier signal,
following retreat. These findings highlight the value of geomorphological maps as tools to
constrain catchment processes, improving the interpretation of lake sediment records.
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1. Introduction

Glaciers are highly sensitive to climate change as
demonstrated by their rapid retreat in response to cur-
rent warming (WGMS, 1988–2011). Apart from geo-
morphological evidence, changes in glacier size are
continuously recorded by variations in erosion rates
and the flux of fine-grained (1–63 μm) minerogenic
rock flour into distal glacier-fed lakes (Karlén, 1981;
Leemann & Niessen, 1994). As such, sedimentary
archives extracted from these lakes are widely used
proxies of past climate variability (Bakke et al., 2010;
Guyard, Chapron, St-Onge, & Labrie, 2013; McKay &
Kaufman, 2009).

However, sedimentation in glacier-fed lakes is fre-
quently affected by other sediment sources that leave
a similar imprint in the lacustrine sediment record
(Rubensdotter & Rosqvist, 2009; Vasskog et al.,
2011). These commonly include reworked glacigenic
sediments that have been modified by non-glacial pro-
cesses (Ballantyne, 2002; Dahl, Bakke, Lie, & Nesje,
2003). In addition to such paraglacial modification
(Church & Ryder, 1972), mass-wasting can overprint
the signature of a glacier signal (Vasskog et al., 2011).
The impact of these processes should be understood
to ensure an accurate reconstruction of a glacier varia-
bility (Jansson, Rosqvist, & Schneider, 2005; Rubens-
dotter & Rosqvist, 2009).

Here, we present a 1:8000 scale geomorphological
map of the glaciarized catchment of lake Hajeren in

northwest Spitsbergen (79°15’N: 11°31’E) (Figures 1
and 2), based on aerial photographs and ground-
truthing. Mapping enables us to identify sediment
sources and transport mechanisms that may affect
the lacustrine sediment record (Carrivick & Tweed,
2013). We aim to assess the relationship between
the morphology of mapped landforms and their
genesis to gain a process-based understanding of
sediment transport in the catchment. This infor-
mation will help validate the robustness of a separ-
ately published glacier activity reconstruction, based
on sediments from Lake Hajeren (van der Bilt et al.,
2015).

2. Study site

The 2.96 km2 Hajeren watershed, mapped for this
study, is located on the Mitra peninsula in northwest
Spitsbergen (79°15’N: 11°31’E) (Figures 1 and 2). The
catchment is unvegetated and covered by unconsoli-
dated sediments and Grenvillian age schist bedrock
belonging to the Signehamna formation (Ohta et al.,
2002). The mean annual air temperature is approxi-
mately −5°C (Førland, Benestad, Hanssen-Bauer,
Haugen, & Skaugen, 2011) and the area falls within
the zone of continuous permafrost (Nelson, Anisi-
mov, & Shiklomanov, 2002). At present, two small
glaciers occupy cirques in the Southeast sector of
the Hajeren catchment, the North Glacier (0.08
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km2) and South Glacier (0.17 km2). Both glaciers
drain into Lake Hajeren in the northwest sector of
the catchment. Aerial photographs show the glaciers
of the Hajeren catchment reached a historical maxi-
mum during the early twentieth century culmination
of the Little Ice Age (LIA) (Norwegian Polar Institute
[NPI], 1936), like most Svalbard glaciers (Glasser &
Hambrey, 2014; Hagen, Melvold, Pinglot, & Dowdes-
well, 2003; Salvigsen & Høgvard, 2006). Also, docu-
mented front positions show that the North and
South glaciers have subsequently been retreating
(NPI, 2015).

3. Map compilation

3.1. Mapping methods

The presented map was compiled using a combination
of aerial image interpretation and field mapping. The
former was carried out using a 195.8 megapixel aerial
photograph from the NPI with a 40–50 cm ground
sampling distance, taken with a Microsoft Vexcel
UltraCam-Xp in July 2009 (NPI, 2009). This image
was provided in a digital.tiff format and was neither
ortho- nor georectified. Also, the image was not sup-
plied with a set of Rational Polynomial Coefficients

Figure 1.Map showing the Svalbard archipelago and an inset of the study area in the Hajeren catchment. Lake Hajeren is indicated
in blue in the left panel, while present-day glacier extent is shown in grey (NPI, 2015).

Figure 2. Oblique view of the Hajeren catchment toward the west (NPI, 2009, 2013). North as well as South glaciers are indicated
and the catchment outline is delineated by a red line.
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(RPCs) and could therefore not be readily orthorecti-
fied (Faste Aas, personal communication). Instead, to
put the file into a known coordinate system, it was
georeferenced, establishing tie-points with geographi-
cal information system (GIS) data of the 2009 outline
of lakes and glaciers as well as a 20 m Digital Elevation
Model (DEM), all provided by the NPI (|NPI, 2013,
2014). This projection was later verified against field-
logged Ground Control Points (GCP), recorded with
a handheld Global Positioning System (GPS) receiver
at easily identifiable features.

The 2009 aerial photograph was georectified using
Esri ArcMap 10.2, applying a first-order polynomial
transformation. To this end, we selected 18 control
points on polygons of Lake Hajeren and both North
and South Glaciers from 2009 (NPI, 2014), projected
to universal transverse Mercator (UTM) zone 33N on
the WGS84 ellipsoid.

Next, to correct for distortion caused by catchment
relief, we selected additional summit control points on
a 20 m resolution DEM of Svalbard. We then draped
the rectified aerial photograph over the 20 m DEM in
ArcScene 10.2 to highlight topographic features
(Figure 2). We subsequently used this visualization
for a preliminary survey of the sediment cascade
between glaciers and lake, identifying sediment sources
that may affect the lacustrine sediment record.

Mapping was mostly carried out during a 2-day field
survey on 5 and 6 September 2014. As the study area
falls outside existing differential GPS (DGPS) net-
works, we used a regular Garmin GPSMAP 62S with
an indicated 5 m accuracy. Even though the outlined
pre-fieldwork survey enabled us to target our field
effort, some sections could not be mapped on site.
These comprise high-lying steep terrain above 250 m
a.s.l., either covered by bedrock, weathered material,
the upper reaches of talus cones or glacier ice. These
easily identifiable units were mapped using the dis-
cussed georectified 2009 aerial photograph. As out-
lined, this visualization was ground-truthed prior to
mapping, using GPS-logged GCPs of mapped and
photographed features (Figure 4). Based on the corre-
spondence between these datasets, we argue that geo-
correction errors fall within the measurement
uncertainty of the GPS device.

3.2. Map production

The presented map was produced in Esri ArcMap 10.2
and Adobe Illustrator CS6. First, GPS tracks and way-
points of field-logged landforms were imported, con-
verting the former to points and the latter to
polylines or polygons. Information on glacier and
lake extent was taken from an NPI GIS database
(NPI, 2014). To delineate the Hajeren catchment, we
applied the hydrology toolset in the ArcGIS 10.2.
Aerial-mapped landforms were traced using heads-up

digitization. For this purpose, shadowed sections of
the image were first processed using the shadows and
highlights adjustment in Adobe Photoshop CS6. To
warrant compatibility with other regional maps, fea-
tures were drawn following the standardized symbol-
ogy of the Geological Survey of Norway (NGU)
(Bergstrøm, Reite, Sveian, & Olsen, 2001). In the text,
we occasionally deviate from this generalized scheme
to provide more specific morphological details. The
ensuing map was displayed on an A3 format data
frame and overlain by a 100m kilometer-rounded
UTM grid, using a 1:8000 reference scale and then
exported to Adobe illustrator CS6 for formatting.

4. Mapped sediment–landform assemblages

In total, we identified 29 separate landforms and fea-
tures on the presented map (Main Map). The catch-
ment is dominated by expanses of highly weathered
material, concentrated around Lake Hajeren. These
often appear modified by periglacial processes as
demonstrated by the presence of polygonal ground,
solifluction lobes and frost-shattered surfaces. Glacier
forelands are predominantly covered by tills and (mar-
ginal) moraine deposits with frequent occurrences of
large boulders and kettle holes. Fan-shaped mass
movement deposits are located on the steeper moun-
tain sides and often associated with rock glaciers. Gla-
ciofluvial deposits are found in forelands and valley
floors as floodplains (Sandurs). Lacustrine deposits
are concentrated around Lake Hajeren as well as a
small lake found in front of the North glacier. Catch-
ment hydrology, which plays a vital role in sediment
transport, as well as weathered surfaces and exposed
bedrock surfaces are also indicated on the map. Follow-
ing Evans, Twigg, and Orton (2010), we categorized the
surficial geology of the catchment into sediment–land-
form assemblages to allow discussion of their genesis
and their role in the catchment sediment cascade
(Paragraph 5).

4.1. Till and moraines

Marginal moraines are found in front of both North
and South glaciers and were categorized into Stage 1
and Stage 2 deposits. However, stage 1 deposits were
solely observed at the North Glacier and Stage 2 depos-
its are most prominent here (Figure 3).

4.1.1. North Glacier
Stage 1 moraines were deposited as a complex of
mounds. In total, we discerned 12 westward facing
10–20 m high mounds, mainly comprising boulders
(Figure 3). Extensive frost-shattering and lichen-cover-
age indicates heavy weathering. The most distal of
these lies approximately 140 m in front of Stage 2
deposits. Also, both deposits intersect at around 177
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m a.s.l. (Figure 4(a)). Stage 2 moraines in front of the
North glacier comprise a moraine-mound complex
(Glasser & Hambrey, 2014; Hambrey, Huddart, Ben-
nett, & Glasser, 1997), consisting of marginal compo-
site ridges that are transversely aligned with the
glacier front and not uniformly pronounced. The
outer 50 m of the system is characterized by small-
scale ridges with ± 1 m high crests (Figure 4(b)). The
inner part is composed of 3 large-scale 40 m high
ridges that are strewn with frequent large boulders.
The gravelly material of the innermost ridge is draped
with silt and appears recently exposed. Fresh deposits,
inside the North Glacier’s Stage 2 moraines, comprise a
series of near conical mounds, oriented parallel to the
glacier front. Based on large amounts of supraglacial
debris in combination with abundant unconsolidated
material and the presence of kettle holes, we interpret
these as ice-cored moraines (mapped as ‘till’). Finally,
a pair of fairly symmetrical rounded ridges is identified
along both sides of the glacier. These are interpreted as
lateral moraines, smoothed by material delivered from
the slopes surrounding the glacier.

4.1.2. South glacier
The foreland of the South Glacier is delineated by an
undulating boulder-strewn Stage 2 moraine ridge
(Figure 4(c)). Additionally, a pronounced 30 m high
lateral moraine flanks the South side of the glacier. A
ridge of bouldery diamict, interpreted as a frontal mor-
aine, nudges the massive lateral moraine complex of
adjacent Karlbreen. The foreland itself is covered by
± 2 m high mounds of bouldery diamict. Based on
the high concentration of supraglacial debris on the
glacier front, we suggest these are ablation moraines,
following the definition of Bennett and Glasser
(2009). In general, moraines outside of the present
South glacier are much less pronounced than those
seen at the North Glacier (Figure 4(c)).

4.2. Lacustrine deposits

In the field, old lake shorelines, marked by sets of peb-
bly pavement features, were identified ± 1.5 m above
contemporary water level at Hajeren. These run paral-
lel to the present-day shore and can be discerned

Figure 3. A close-up of the foreland of the North glacier, showing the discussed Stage 1 and 2 moraine deposits, with an aerial
image in the background (NPI, 2009).
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around most of the lake’s perimeter. Their presence is
accentuated by visible differences in vegetation cover
and the degree of weathering. Areas between the for-
mer and present shoreline were mapped as lacustrine
deposits. Along the southwest of Lake Hajeren, we
mapped a bouldery spillway that drains the lake. The
elevation of this presently dry outlet corresponds to
that of the set of old shorelines. Finally, a 600 m2

pro-glacial lake sits between the North Glacier and its
Stage 2 moraines (Figure 4(d)). Based on the interpret-
ation of the surrounding terrain as ice-cored deposits,
this lake is described as an ice-contact lake after Ashley
(1995). Silt-draped exposed shorelines suggest a recent
drop in water level.

4.3. Periglacial features

Large swaths of mapped weathered surfaces in the
Hajeren catchment are covered by periglacial features,
mostly patterned ground (Main Map). These

predominantly consist of contiguous sorted polygons
with an average diameter of ± 1 m. Frost-shattering of
weathered bouldery deposits is mainly restricted to
deposits of former (in-active) meltwater channels (c.f.
‘4.5 glaciofluvial deposits’). Solifluction lobes are
restricted to a moderately gentle (16.5°) exposed south-
west facing slope in the southern part of the watershed.
Here, 10–30 m wide lobes group together in sheets
along a stepped profile on the vegetated soil that
characterize the area. We also classify the rock glaciers
of the Hajeren watershed as periglacial features due to
their previously acknowledged association with
upslope colluvium (Barsch, 1977; Johnson, 1974).
Rock glaciers in the Hajeren catchment share a set of
morphological characteristics. Fronts terminate around
the 225 m contour line, are approximately 15 m high
and originate from individual talus cones (Figure 4
(e)). As such, only termini are mapped as rock glaciers.
Moreover, all termini were snow covered both on aerial
photographs and in the field (Figure 4(e)). Judging by

Figure 4. Field pictures of (a) the contact between Stage 1(blue) and 2 (red) deposits at the North glaciers (facing east), (b) com-
posite ridges on Stage 2 moraines in front of the North glacier (facing North), (c) Stage 2 moraines of the South glacier (view toward
the northwest), (d) ice-contact lake fronting the North glaciers with exposed shorelines indicated by the yellow dashed line (facing
south), (e) snow-covered rock glacier termini and associated talus fans (view toward the northeast) and (f) in-active outwash plain
draining the North Glacier (facing east).
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steep snouts and unvegetated unstable surfaces, we
assume that these rock glaciers are active (Martin &
Whalley, 1987). This is also supported by the fact
that the mapped area falls well within the zone of con-
tinuous permafrost (Nelson et al., 2002). Surface
material is dominated by open angular boulder-sized
debris, while snow is concentrated in voids (Martin &
Whalley, 1987). Finally, all mapped rock glaciers have
a south-westerly aspect to the leeside of prevailing east-
erly winds (Beine, Argentini, Maurizi, Mastrantonio, &
Viola, 2001).

4.4. Slope deposits

The stratigraphy of slope deposits could not be investi-
gated in full detail during our field survey. Hence, we
were not able to distinguish between processes of
downslope wasting with certainty and grouped these
deposits on our map as mass movement deposits.
Slope deposits are mostly found below steep rock fall
areas where periglacial processes such as frost wedging
may detach bedrock. Here, colluvium accumulates near
the rock fall shadow and mantles concave slopes in
lobate-shaped talus sheets. All mapped fans terminate
far from the shores of Lake Hajeren (Main Map).
Often, these fans comprise fining upward sequences
with a downslope concentration of large boulders
known as out-runners (Blikra & Nemec, 1998). In gen-
eral, the surface of slope deposits appears fresh com-
pared to surrounding deposits, suggesting regular
activation. This notion is supported by the previously
mentioned large supply of supraglacial debris as both
glaciers are flanked by colluvial fans. Based on their
consistent co-occurrence (Figure 4(e)), we suggest
that talus cones extend into downslope rock glaciers
following Ballantyne (2002).

4.5. Glaciofluvial deposits

In the Hajeren catchment, glaciofluvial deposits are
concentrated in the foreland of the South Glacier and
on the valley floor. At both glaciers, these glacial and
pro-glacial systems are connected by high-gradient
channels that cross the steep terrain between cirques
and valley floor. Here, meltwater has carved 20 m
deep ravines into the erosive marble found in the
upper part of the catchment (> 140 m a.s.l.). Moreover,
the channel coming from the South Glacier has cut a
glaciofluvial scarp into the moraine complex of Karlb-
reen, bordering the Hajeren watershed to the west. At
the South Glacier, outwash emerges from a single
supraglacial channel that has incised a laterally con-
strained ( ± 30 m wide) ice-proximal fan into the adja-
cent till deposits. In contrast, no outwash emerges in
the foreland of the North Glacier. From both cirques,
Sandurs radiate out onto the valley floor toward the
shores of Lake Hajeren. The southernmost plain is

particularly extensive, with a width of 130 m at its dis-
tal end. Up-valley, it develops into a valley Sandur,
hemmed in by mountainsides. Cross-cutting relations
are apparent at its southern edge, where fluvial erosion
has cut into severely frost-shattered weathered deposits
with traces of currently inactive meltwater channels.
Similar channel deposits are found adjacent to the pre-
viously discussed Stage 1 mounds in front of the North
Glacier. The gently sloping surface (2.75°) of the
southern Sandur is covered by an alternation of grav-
elly bars and both active as well as inactive pebbly
braided meltwater channels. The Sandur in the north-
ern part of the catchment is smaller and characterized
by coarser material (pebbles-boulders), suggesting a
high energy level during deposition. Active meltwater
channels appear over-dimensioned in relation to pre-
sent flow. This is also attested by a minor inactive out-
wash plain that branches off from the main Sandur
(Figure 4(f)). These deposits are frost-shattered and
lichen-covered, indicating prolonged inactivity (Figure
4(f)).

5. Discussion

Following the identification of sediment–landform
assemblages, we use the ensuing geomorphological
(Main Map) to assess sediment delivery to Lake Haje-
ren. As previously stressed, a process-based under-
standing of landforms is critical to understand the
signature of lacustrine sedimentation in glacier-fed
sites (Carrivick & Tweed, 2013; Dahl et al., 2003). In
the case of Lake Hajeren, this insight will help evaluate
the robustness of the separately published glacier
activity reconstruction, based on the lacustrine sedi-
ment record (van der Bilt et al., 2015).

The observed difference in the degree of weathering
between Stage 1 and Stage 2 moraines suggests that gla-
cial erosion has repeatedly affected sedimentation in
the catchment. Based on the discussed 1936 aerial
photograph (NPI, 1936), as well as a similar relation
to present ice extent as nearby glacier systems (Evans,
Strzelecki, Milledge, & Orton, 2012; Hambrey et al.,
2005; Hodson et al., 1998; Røthe et al., 2015), Stage 2
moraines are assumed to have been deposited during
the LIA Although chronological control is lacking, a
high degree of weathering and deposition outside of
Stage 2 deposits indicates that Stage 1 moraines at
the North Glacier represent a Holocene glacier maxi-
mum that predates the LIA. Based on a minimum
age of 6.7 ka BP for an ice-cored moraine fronting adja-
cent Karlbreen (Røthe et al., 2015), we propose an Early
Holocene age.

The combination of composite ridges and ice-cored
moraines, observed at Stage 2 deposits fronting the
North Glacier, often indicate glacial deformation of
permafrozen material on Svalbard (Boulton, Van der
Meer, Beets, Hart, & Ruegg, 1999; Etzelmüller &
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Hagen, 2005). Based on this landsystem signature, we
infer erosive polythermal basal conditions for the
North Glacier with temperate ice and a frozen snout
as described for Spitsbergen glaciers (e.g. Evans et al.,
2012; Hambrey et al., 2005). The observed composite
ridges are grouped in small- and large-scale features.
We suggest that the former are the result of seasonal
glacier fluctuations whereas the latter reflect persistent
glacier advances following Bennett and Glasser (2009).
Based on the dominance of supraglacial meltwater
drainage (Hodson et al., 1998) and a lack of glacigenic
sediments (Fitzsimons, 2003), we tentatively infer a
non-erosive cold-based regime for the South Glacier.
Though geomorphological evidence is lacking, we can-
not exclude the possibility of a regime shift due to
recent thinning as reported by Björnsson et al.
(1996). To conclude, we argue that only the North Gla-
cier is capable of producing significant amounts of gla-
cigenic sediments through glacial erosion.

Large areas of the catchment were mapped as peri-
glacial deposits, mainly comprising patterned ground,
particularly around Lake Hajeren. Patterned ground
exclusively consists of polygonal ground, suggesting
formation by lateral squeezing and confinement of
rock material as suggested by Kessler and Werner
(2003). In contrast, more dynamic periglacial features
(i.e. solifluction lobes and rock glaciers) are concen-
trated in steeper sections of the catchment, particularly
on the forelands of both glaciers (Main Map). The
same is true for associated slope deposits (paragraph
4.4). We argue that the combination of comparatively
stable features around the lake and dynamic deposits
in steeper sections shields the lacustrine record against
mass-wasting processes.

Our map demonstrates that glacifluvial drainage
couples glacial, pro-glacial and lacustrine environ-
ments in the catchment. We therefore argue that gla-
ciofluvial transport is the dominant sediment delivery
pathway to Lake Hajeren. In addition to the transfer
of glacial and pro-glacial sediments, streams also act
as agents of erosion, cutting through bedrock in the
steep transition between foreland and Sandur of the
North Glacier`s debris cascade (Benn & Evans, 2014).

Moreover, meltwater streams rework older glaci-
genic deposits in the catchment. Near the South Gla-
cier, for example, meltwater incises diamict deposits.
The potential for paraglacial reworking is particularly
great for the fresh (post)-LIA sediments stored in the
Stage 2 foreland of the erosive North Glacier. However,
fine-grained reworked deposits, which may leave a
similar imprint on the lacustrine sediment record as
fresh glacial flour (Jansson et al., 2005; Rubensdotter
& Rosqvist, 2009), are scarce in the catchment (para-
graph 4.1). As both glaciers were more active in the
recent past (NPI, 1936), this observation favors a
rapid exhaustion of fine-grained glacigenic sources, in
line with the findings of Harbor and Warburton

(1993) for similar small catchments. Still, we cannot
rule out that postglacial processes, like melt-out of
the ice-cored moraines near the North Glacier, may
remobilize glacigenic sediments over longer timescales
as suggested by Etzelmüller and Hagen (2005). How-
ever, following Leonard (1997), we argue that the sedi-
ment record of Lake Hajeren is mainly affected by
paraglacial modification during transition phases sub-
sequent to retreat or advance.

The observed presence of inactive and over-sized
meltwater channels and Sandur sections, in combi-
nation with raised old lake shorelines, is indicative of
past hydrological change. Previous monitoring studies
in glaciarized catchments have demonstrated a strong
correlation between glacier melt and run-off (Leemann
& Niessen, 1994; Liermann, Beylich, & van Welden,
2012). Based on the large degree of past glacier activity,
indicated by Stage 1 and 2 moraines, we tentatively
attribute these inferred episodic discharge changes to
glacier variability. Nevertheless, we cannot exclude
the possibility that these features result from channel
migration as suggested by Williams and Rust (1969),
redepositing glacifluvial material in the process. More-
over, fill/drain cycles of ephemeral lakes similar to the
ice-contact lake fronting the North glacier may have
contributed to run-off pulses, in addition to trapping
glacial flour (Carrivick & Tweed, 2013).

6. Conclusions

The presented map enables us to gain a process-based
understanding of sedimentation in the Hajeren catch-
ment. This, in turn, helps constrain the impact of
mass-wasting and paraglacial modification on the
lacustrine sediment record, validating the findings of
van der Bilt et al. (2015). In summary, we identify gla-
ciofluvial transport as the dominant sediment delivery
pathway in the catchment, coupling lake Hajeren and
the catchment’s main depositional zones in the fore-
lands of North and South glaciers. Most observed land-
form assemblages are solely found in these areas, as
shown on our map (Main Map). In contrast, the area
around Lake Hajeren is covered by gently sloping
expanses of weathered material, minimizing the impact
of mass-wasting on the lacustrine sediment record.
Based on its discussed land system signature, we
claim that the North Glacier is the dominant producer
of glacigenic sediments in the catchment. However,
due to an observed lack of fines, we propose a short
paraglacial period, characteristic for comparable small
catchments (Harbor & Warburton, 1993). Following
Leonard (1997), we argue that paraglacial modification
only affects the lacustrine record briefly after glacier
retreat or advance. In conclusion, this study underlines
the value of geomorphological mapping as a tool to
constrain lacustrine sedimentation. Similar exercises
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could therefore contribute to the robustness of attend-
ant lake sediment studies.

Software

Mapping was carried out using Esri ArcMap 10.2. In
addition to the editor, we used both georeferencing
and spatial analyst toolbars. The resulting map was edi-
ted using Adobe illustrator CS6.
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