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Abstract We have developed a statistical gap-filling method adapted to the specific coverage and prop-
erties of observed fugacity of surface ocean CO2 (fCO2). We have used this method to interpolate the Sur-
face Ocean CO2 Atlas (SOCAT) v2 database on a 2.5832.58 global grid (south of 708N) for 1985–2011 at
monthly resolution. The method combines a spatial interpolation based on a ‘‘radius of influence’’ to deter-
mine nearby similar fCO2 values with temporal harmonic and cubic spline curve-fitting, and also fits long-
term trends and seasonal cycles. Interannual variability is established using deviations of observations from
the fitted trends and seasonal cycles. An uncertainty is computed for all interpolated values based on the
spatial and temporal range of the interpolation. Tests of the method using model data show that it performs
as well as or better than previous regional interpolation methods, but in addition it provides a near-global
and interannual coverage.

1. Introduction

The world’s oceans absorb approximately 25% of the total anthropogenic emissions of carbon dioxide (CO2)
released into the atmosphere every year [MikalofFletcher et al., 2006; Le Qu�er�e et al., 2009]. Understanding oce-
anic fluxes of CO2 is critical to explain present and project future perturbations of the global carbon cycle caused
by human activities. The air-sea fluxes are driven primarily by the difference in the concentration of CO2 between
the atmosphere and the ocean surface. The concentration of CO2 in surface water is commonly expressed as
either the partial pressure (pCO2) or fugacity (fCO2) of carbon dioxide. Over 10 million surface ocean fCO2 meas-
urements have been collected since 1968 [Takahashi and Sutherland, 2013; Pfeil et al., 2013; Bakker et al., 2014].
The majority of these measurements have been obtained in the northern hemisphere (Figure 1a) during the
past 20 years (Figure 1b), which restricts in-depth analysis of global patterns and long-term trends.

The relatively limited distribution of surface ocean CO2 measurements has restricted most mapping efforts
to calculating climatological products of the seasonal cycle [Takahashi et al., 2002] or examining long-term
trends [e.g., Takahashi et al., 2003, 2009; Fay and McKinley, 2013], with little or no emphasis on variability at
other temporal scales. Until recently, only regional studies have focused on CO2 variability on subannual
time scales [e.g., Bates et al., 1998; Sarma, 2003; Shim et al., 2007; Olsen et al., 2008; Litt et al., 2010] and on
interannual variability [Bates et al., 1996; Gruber et al., 2002; Cosca et al., 2003; Wong et al., 2010]. Some spa-
tial and temporal interpolation efforts have been published using a variety of techniques based on har-
monic curve fitting [e.g., Schuster et al., 2009] or on empirical relationships between CO2 and proxy variables
such as sea surface temperature, salinity, chlorophyll and mixed layer depth [Boutin et al., 1999; Lefèvre and
Taylor, 2002; Cosca et al., 2003; Ono et al., 2004; Olsen et al., 2004; Lohrenz and Cai, 2006; Park et al., 2006;
Jamet et al., 2007; Watson et al., 2009; Park et al., 2010; Telszewski et al., 2009]. The geographic and temporal
scope of most of these studies has been limited to the relatively observation-rich regions. Furthermore, the
use of proxy variables creates additional uncertainties due to the assumption that the relationships between
CO2 and these proxy variables are constant in time [Boutin et al., 1999; Lefèvre and Taylor, 2002; Cosca et al.,
2003; Jamet et al., 2007; Park et al., 2010].

The recent release of two global databases of surface ocean CO2 observations compiled by the Lamont-
Doherty Earth Observatory (pCO2) [Takahashi et al., 2009] and by the Surface Ocean CO2 Atlas (SOCAT)
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project (fCO2) [Pfeil et al., 2013; Bakker et al., 2014] has provided opportunities for a more detailed global
analysis of surface ocean CO2 over multiple time scales. Interpolated products of surface ocean CO2 obser-
vations covering multiple years are valuable to characterize trends and variability. They can provide insights
into the response of oceanic CO2 to climate change and variability and the driving processes [Le Qu�er�e
et al., 2015], provide the prior estimates necessary for atmospheric inverse methods [e.g., Gurney et al.,
2002], and help validate ocean biogeochemical models [e.g., Le Qu�er�e et al., 2009].

A number of methods are currently being developed to globally interpolate surface CO2 observations using
a range of techniques, including neural networks [Sasse et al., 2013; Landsch€utzer et al., 2014; Zeng et al.,
2014], diagnostic inverse models [R€odenbeck et al., 2013], biogeochemical models [Valsala and Maksyutov,
2010], and multilinear regressions [Park et al., 2010]. Many of these methods are extensions of previous
regional scale interpolations [e.g., Schuster et al., 2009; Telszewski et al., 2009].

This paper presents a statistical gap-filling method to interpolate surface ocean fCO2 in space and time for the
entire global ocean south of 708N. The method interpolates fCO2 observations using a combination of spatial
autocorrelations of fCO2 observations within a ‘‘radius of influence’’ as used in the World Ocean Atlas [Jones et al.,
2012; Cressman, 1959; Barnes, 1964; Levitus, 1982], harmonic curve fitting as used in GLOBALVIEW [Keeling et al.,
1989; Masarie and Tans, 1995], and cubic spline fitting as used, for example, in Bacastow et al. [1985]. Our
approach does not rely on proxy data, but uses only fCO2 observations. The method includes an assessment of
the uncertainty for every interpolated value, both by considering the amount of interpolation performed, and by
carrying out a verification using model output, which provides information on the limitations of the interpolation.

2. Method

Our method uses the SOCAT v2 database [Bakker et al., 2014], which contains 10.1 million individual surface
fCO2 observations obtained between 1968 and 2011. We focused on the 1985–2011 time period, which
encompasses 99.7% of the observations.

2.1. Data Preparation
2.1.1. Gridding
The SOCAT v2 observations were binned into 2.5832.58 grid cells with daily temporal resolution. Leap years
were converted to 365 day duration by dividing the year into even lengths of 1 1

365 calendar days. The complete
data set was analyzed to remove any outliers that would adversely affect the subsequent curve and cubic spline
fitting routines: in each grid cell, observations falling outside three standard deviations of the mean daily fCO2

value were discarded in an iterative process, repeated until no further outliers were detected. 604 days’ outliers
(0.5% of the gridded observations) were eliminated in this manner. Setting the threshold to two standard devia-
tions would have removed 12.2% of observations, severely impacting the performance of the method.
2.1.2. Spatial Variability of fCO2

The radius of influence over which observations were interpolated was dependent on the spatial variability
of the fCO2 observations, which was measured using two metrics: a spatial autocorrelation analysis to

Figure 1. Density of the SOCAT v2 fCO2 data coverage. (a) The total number of measurements (gray bars; right axis) and the cumulative percentage of all measurements (black line; left
axis) from 1968 to 2011. (b) The number of total days between 1985 and 2011 with fCO2 measurements in each 2.5832.58 grid cell.
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quantify the spatial extent over which fCO2 observations are related, and the mean difference in fCO2

between all neighboring grid cells to assign a magnitude of difference between observations.

For the spatial autocorrelation analysis, autocorrelation functions (ACFs) were calculated for each grid cell
following the technique used in Jones et al. [2012]. A spatial ACF was calculated for each cruise in the SOCAT
database using the Moran’s I method [Moran, 1950], and the resulting e-folding length (i.e., the distance at
which the autocorrelation coefficient drops below 1/e) assigned to each cell through which the cruise
passed. This was used as a first guess of the decorrelation length for that cell, i.e. the distance beyond which
fCO2 observations were deemed unrelated. The cell’s decorrelation length was refined by calculating the
ACF for only those observations within a radius of five times the first guess ACF. The e-folding length of this
refined ACF was used as the final spatial decorrelation length for the cell. The mean e-folding length was
used where multiple cruises passed through a given cell. The decorrelation length for a given cell varied
with the compass direction of the ship’s heading as it passed through the cell, particularly in strong ocean
currents. To provide the greatest accuracy, four directional spatial decorrelation lengths were calculated for
each cell, one for each direction (i.e., north-south, east-west, northeast-southwest, and northwest-south-
east). The mean decorrelation length for each direction was calculated using only those cruises traveling in
the relevant direction. A ‘‘directionless’’ decorrelation length was calculated where there were insufficient
ACF data to construct directional decorrelation lengths, using all cruises regardless of their direction of
travel.

The difference in fCO2 between grid cells was calculated for each pair of grid cells in turn. Whenever obser-
vations were made in both grid cells within 7 days, the absolute difference between them was recorded.
The mean of these differences over the entire time period was recorded as the difference in fCO2 between
the two grid cells. This process was repeated for every pair of grid cells in the ocean.

The combination of these two metrics provided a dual assessment of the spatial variability of fCO2. For a
given grid cell, it was possible to estimate both the spatial autocorrelation with other grid cells (Figure 2,
red shading) and the magnitude of the difference in fCO2 with other grid cells (Figure 2, numbers). Both of
these metrics of spatial variability were used when spatially interpolating the observations (see section
2.2.3).

2.2. Gap Filling
The method developed here combined temporal [Masarie and Tans, 1995] and spatial [Cressman, 1959;
Barnes, 1964] interpolation techniques. No interpolation was attempted poleward of 708N as there were too
few observations available.

The interpolation technique developed here comprised a series of distinct stages applied iteratively on
each 2.5832.58 grid cell (hereafter referred to as the target cell). Here we provide an overview of the inter-
polation technique and detail the individual steps afterward.
2.2.1. Overview of the Gap-Filling Method
Figure 3 provides an overview of the complete process used to gap-fill the fCO2 data, applied in parallel to
each cell. For each target cell, its time series of observations was retrieved (Figure 3, box 1) and a temporal
curve fit was attempted (Figure 3, box 2; section 2.2.2). If the curve fit was not successful, the spatial interpo-
lations were performed (Figure 3, box 4; section 2.2.3) and the temporal curve fit attempted again. This was
repeated until either a successful curve fit was achieved or no new observations could be interpolated into
the target cell’s time series (Figure 3, box 6).

Even if a curve fit successfully passed the criteria for a valid fit (see section 2.2.2), it was possible that addi-
tional spatial interpolation could further constrain the fCO2 curve fit for the target cell. This was because a
time series with only a few data points may not have captured the full characteristics of the temporal varia-
tion of fCO2. The gap-filling method accounted for this by performing one more iteration of the spatial
interpolation to produce an extra curve fit (Figure 3, boxes 8–10). The two curves were then correlated. If
the correlation coefficient r2� 0.99 (an empirically determined limit), the curves were deemed to be identi-
cal for the purposes of the interpolation, and the original curve fit was used as the final output of the inter-
polation for the target cell (Figure 3, box 13). A correlation coefficient of r2< 0.99 indicated that the curve
fit benefitted from the extra interpolated observations. In this case the interpolation was repeated (Figure 3,
box 12) until either the correlation coefficients of two consecutive curve fits reached r2� 0.99 (Figure 3, box
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13) or no more observations could be added via spatial interpolation (Figure 3, box 9). The corresponding
steps are further detailed in the following sections.
2.2.2. Step I: Curve Fitting
Step I of the gap-filling method fits a curve to the time series of each target cell (Figure 3, boxes 2 and 10)
of the form:

f tð Þ5a01a1t1
Xn

k51
b2k-1sin 2pktð Þ1b2kcos 2pktð Þ½ � (1)

where t is the time in days since 1 January 1985, a0 the y-axis intercept, a1 the linear trend, and n the maxi-
mum number of harmonics used to represent the seasonal cycle. n is initially set to four to allow the fitted
curve to encompass deviations from a purely sinusoidal progression of the seasonal cycle that may be
caused by biological activity and temperature changes [e.g., L€uger et al., 2004; K€ortzinger et al., 2008]. Equa-
tion (1) is a simplified version of that used by Masarie and Tans [1995] for atmospheric CO2 mole fraction,
which includes a polynomial term to account for changes in the long-term trend. We omitted the polyno-
mial term here because there were insufficient observations to fit varying long-term trends over the time
period examined.

With no constraints beyond the fCO2 observations, the curve fitting algorithm frequently produced unrealis-
tic fits due to the relative lack of observations in any given cell. Each curve fit was therefore assessed against
a number of criteria to ensure that it produced a realistic result, as listed in Table 1. The criteria ensured that
the curve was based on data covering an extended time period with observations representing a large pro-
portion of the calendar year; that the fitted curve was representative of the range of fCO2 observations and
exhibited a plausible seasonal cycle; and that the trend of the fitted curve was within known reasonable

Figure 2. Example of the two metrics of spatial variability of fCO2 used in the gap-filling method calculated for a target cell centered on
163.738E 31.258N (marked with X). The red scale indicates the strength of the spatial autocorrelation for cells within the decorrelation
length. Numbers in each grid cell indicate the mean absolute difference (in matm) between each cell’s fCO2 measurements and those of
the target cell. Red cells without a number indicate that a cruise passed through both grid cells (allowing the spatial correlation to be
calculated) but measurements were not taken within 7 days of each other and so were excluded from the difference calculation.
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limits. If the fit failed to meet all crite-
ria, the number of harmonics, n, was
reduced by 1 and the curve fit
repeated until a good fit was achieved.
If no good fit was achieved after n was
reduced to 1, the curve fitting was
deemed to have failed. A flowchart
showing the progression of the curve
fit is presented in Figure 4.
2.2.3. Step II: Spatial Interpolation
Step II of the gap-filling method was
applied to target cells where a curve fit
could not be found using the target
cell’s own observations alone. In this
case, observations from nearby cells
were added to the target cell’s time
series (Figure 3, boxes 4 and 8) and the
curve fit was attempted again. Candi-
date cells for this spatial interpolation
were chosen based on the spatial
autocorrelation of the SOCAT database
(see section 2.1.2). Only cells within the
decorrelation length (i.e., whose spatial
autocorrelation coefficient was >5 1/e)
were included. These candidate cells
were then sorted in order of those
whose observations had the smallest
difference to the target cell’s fCO2 (see
section 2.1.2 and Figure 2). Any cell that
had no concurrent observations with
the target cell was excluded from the
interpolation. In the example shown in
Figure 2, only candidate cells with both
red shading (within the decorrelation
length) and a number (concurrent
observations) were used in the spatial
interpolation.

The observations from the first candi-
date cell were merged with the time
series of the target cell. For days where
the target cell’s time series contained
an observation, no interpolated value

was used. For the remaining time steps, the observations from the interpolated cells were added and given a
weighting according to the spatial autocorrelation value (i.e., between 1

e and 1). Original observations from
the target cell were given a weighting of 1. The merged time series was then used in the next iteration of the
temporal curve fitting algorithm.

If the new curve fit was still not successful according to the criteria in Table 1, the second candidate cell was
added to the time series. If this cell had any observations on the same days as the previously interpolated cell,
they were combined as a weighted mean according to the autocorrelation coefficient between the two grid cells.
Again, original observations from the target cell remained unchanged. The curve fit was then attempted a third
time. This was repeated until either a successful curve fit was achieved or no more candidate cells were available.

After one iteration 3,807 grid cells (54%) had successful curve fits. After nine iterations 4,736 cells (67%) had
successful curve fits and no further curve fits could be achieved. Those cells that could not be interpolated

Figure 3. Flow diagram of the steps used to gap-fill fCO2 data in a single grid cell.
A curve is fitted to the cell’s time series (2). If the fit cannot be made, or the fitted
curve does not meet the criteria in Table 1, spatial interpolation is performed (4)
and the curve fitting is repeated (2). If there are no new data points (5), then the
interpolation fails (6) and the grid cell is processed in the next iteration of the gap-
filling. If the curve fit succeeds, the fitted curve is stored (7) while more checks are
performed. Another spatial interpolation is made (8). If this adds more data points
(9), the subsequent curve fit is successful (10) and the new curve is significantly
different from the stored fit (12), then the new fit is stored (7) and the process
repeated. If the extra interpolation does not change the curve, the process reverts
to the original stored fit (13) and the interpolation is marked as successful (14).
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either lacked sufficient observations for a curve to be fitted, or the local spatial variability was too high
resulting in poor curve fits that were rejected based on the criteria in Table 1.
2.2.3.1. Uncertainty of Interpolated Observations
Original fCO2 observations in the target cell’s time series were given an uncertainty of 62.5 matm as the
default uncertainty for direct surface ocean CO2 observations [Takahashi and Sutherland, 2013]. Estimated

uncertainties in observations copied from candi-
date cells gap-filled fCO2 values were calculated as
the root mean squared sum of 62.5 matm plus the
variation in fCO2 from the target cell’s observations
(i.e., the numbers on the map in Figure 2) to
account for the spatial interpolation.
2.2.4. Step III: Conversion to Monthly Resolution
and Calculation of Uncertainties
Once all possible curve fits had been completed,
each cell was converted to monthly resolution and
uncertainties were calculated for the complete time
series. Each monthly time series was constructed
using the curve parameters established from the iter-
ations of Steps I and II (Figure 5a). In months where
original or interpolated observations were present,
the weighted mean of those observations (weighted
by the autocorrelation coefficient between the target
cell and the cell from which the observations were
interpolated) was inserted into the monthly time
series, replacing the fitted curve value. Original
observations from the cell were given a weighting of
1, while interpolated observations were weighted
according to the spatial autocorrelation coefficient
between the target and interpolated grid cell (red
shading in Figure 2). The uncertainty for these obser-
vations was calculated as the root mean squared
(RMS) uncertainty of the individual observations as in
section 2.2.3.1. Uncertainties for the fitted curve
where no observations were available were calcu-
lated for each month in the seasonal cycle in turn as
follows. Any observations taken in January of any

Table 1. Criteria Used to Determine Whether or Not a Curve Fitted to a Time Series of fCO2 Measurements is Plausible

Criterion Name Description Justification

Total time range The timespan covered by the earliest and latest
measurements in the time series must be at least 5 years.

Short timespans of measurements are unlikely to
reflect the long-term characteristics of pCO2.

Standard deviation The standard deviation of the available
measurements must not exceed 75 matm.

Curve fits applied to time series with only extreme low
and high measurements are frequently unrealistic.

Populated months Measurements must be available in at least eight of
the twelve calendar months at some point in the time series.

Unless at least three of the four annual seasons are
represented in the time series, the fitted curve is
unlikely to represent a realistic seasonal cycle.

Curve ratio The amplitude of the fitted curve must be between 50% and
150% of the range of values represented by the measurements.

The upper and lower limits of the curve must not exceed the
limits of the measurements by more than 75 matm.

A fitted curve whose amplitude is too small or too large
does not represent an accurate fit to the measurements.

Seasonal peaks Plankton blooms can produce a secondary peak in an otherwise
sinusoidal seasonal cycle. Only one such peak
should exist in the fitted curve. The size of the secondary
peak must not exceed 33% of the total magnitude of the
seasonal cycle.

Fits of multiple harmonics can produce an over-fitted
curve with multiple peaks in the seasonal cycle. This is
unrepresentative of the known annual cycles of pCO2

concentrations.

Linear trend The fitted linear trend (a1 in equation (1)) must be in the
range 22.5� a1� 4.75 matm yr21.

Linear trends outside these limits are unlikely to be realistic.

Figure 4. Flow diagram of the steps used to fit a curve to a single
grid cell’s time series (boxes 2 and 10 in Figure 3). Initially, a curve is
fitted of the form in equation (1), with four harmonics. If a curve is
fitted and it meets the criteria for a good fit (Table 1) then the fit is
considered successful. If not, the number of harmonics is reduced by
one and the fit tried again. If a successful fit cannot be made with
three, two or a single harmonic, the fit is deemed to have failed.
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year in the time series were collected together. For each of these observations, the distance between the obser-
vation and the fitted curve was added to the uncertainty of the observation itself using a root mean squared
sum (Figure 5b). This represents the uncertainty of the curve fit in relation to that observation. The root mean
square of the uncertainties for all January measurements was used as the uncertainty for the curve fit. This was
repeated for all other calendar months (Figure 5b, shaded area). If there were any months with no observations,
a linear interpolation was performed between neighboring months to fill in the missing uncertainty. The obser-
vations (with their uncertainties) from the target cell and the spatially interpolated values were overlaid on the
fitted curve to provide a complete time series (Figure 5c).
2.2.5. Step IV: Spline Fitting
The time series generated from the combination of fitted curve and interpolated observations occasionally
resulted in sharp and unrealistic discontinuities (Figure 5c). To eliminate these, each time series was
smoothed by fitting a cubic spline function (‘‘smooth spline’’) [Chambers and Hastie, 1991], with a smoothing
parameter (0.3) chosen to compromise between smoothing out the discontinuities and maintaining the var-
iability from the mean seasonal cycle that the observations represented (Figure 5d). Uncertainties for the
spline fit were calculated as the uncertainty of the original time series plus the difference between the series
and the fitted spline. The deviations of the spline fit (Figure 5d) from the fitted long-term trend and sea-
sonal cycle (Figure 5a) was used to determine the interannual variability in each grid cell where observa-
tions were present or had been spatially interpolated.
2.2.6. Step V: Completing the Gap Filling
The grid cells for which no valid curve fits could be found were filled by spatial interpolation of the com-
plete time series (original observations, interpolated observations and the fitted curve) from neighboring
cells where curve fits were successfully generated. The time series were only interpolated from directly
neighboring cells to reduce the uncertainty and likely errors in the interpolated values. If there was a large
area of grid cells to be filled, the area was filled using several iterations with the outer edges (i.e., those

Figure 5. Progression of curve fitting and assignment of uncertainties for a grid cell centered on 21.758S 53.758E. (a) The curve fitted to the original (red) and spatially interpolated (blue)
daily measurements. Error bars are shown for each measurement. (b) Uncertainty assigned (gray area) to the fitted mean seasonal cycle based on the anomalies of the monthly mean
measurements (red dots) from the fitted seasonal cycle (black curve). (c) The monthly resolution fitted curve combined with the monthly mean measurements from Figure 5a. The gray
area indicates the uncertainty, either from the measurements in Figure 5a or the uncertainty assigned to the mean seasonal cycle in Figure 5b where there are no measurements. Note
the discontinuities where the measurements are included. (d) Cubic spline (red) applied to the curve from Figure 5c (black dashed). The gray area indicates the combined uncertainty
from Figure 5c and the spline fit. See section 2.2.5 for full details of the method.
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with neighboring completed cells)
interpolated first and progressing
toward the center. Uncertainties for
the interpolated values in these grid
cells were calculated as for the spatial
interpolation of individual observations
described in section 2.2.3.1.

3. Method Evaluation

3.1. Reconstructing Model Output
We assessed the performance of the
gap-filling method by subsampling
model output and applying our gap-
filling method to these pseudo-data to
recreate a complete pCO2 field. We used
pCO2 output from a simulation of the
PlankTOM5 model (updated from Bui-
tenhuis et al. [2010]). pCO2 is very similar
to fCO2 (typical differences are on the
order of 1 matm), so it is an effective
measure to use for the method evalua-
tion. PlankTOM5 is an ocean biogeo-
chemical model forced with NCEP daily

reanalysis meteorological data [Kalnay et al., 1996]. We use the ORCA2-LIM version which has a spatial model
grid of 28 zonally and 0.58 to 28 meridionally [Madec and Imbard, 1996] and 15 time steps per day.

The PlankTOM5 output was regridded at 18318 spatial and daily temporal resolution. From this we recon-
structed the individual cruise tracks in the SOCAT database that took place in between 1985 and 2011.
The date and location of each observation in each SOCAT cruise was matched with the corresponding
value in the regridded PlankTOM5 output to produce an analogous model ‘‘cruise.’’ Where more than one
observation was taken within a PlankTOM5 grid cell on the same day, only one value was recorded to pre-
vent unrealistically strong spatial autocorrelations over short distances. The model ‘‘cruises’’ were then
used to calculate the spatial autocorrelation characteristics of the sampled PlankTOM5 output as they
were for the original SOCAT database (section 2.1.2). The PlankTOM5 decorrelation lengths were typically
longer than those found in the SOCAT observations by a mean of 250 6 500 km due to PlankTOM5’s 18

resolution (Figure 6). The observation locations were typically reported at much higher resolution (up to
0.0018), which means that much finer scales of variability could be detected in the actual observations.
The pattern of decorrelation lengths was broadly similar for both the observations and PlankTOM5. The
greatest differences were found in regions of high spatial variability, particularly the Indian Ocean and
Eastern Equatorial Pacific and coastal regions, all of which were influenced by the model resolution. The
coastal Southern Ocean was the only region with seemingly systematic differences in decorrelation
lengths.

The input to the gap-filling method was constructed by sampling the 18318 PlankTOM5 output at the same
spatial and temporal density as the SOCAT database (Figure 1), and then regridding this to the target reso-
lution of 2.5832.58 in the same manner as the observations (section 2.1.1). The resulting sampled Plank-
TOM5 data were interpolated by applying the gap-filling method.

We assessed the performance of our interpolation method by calculating the difference (error) between the
original PlankTOM5 output and the result of the gap-filling performed on the sampled PlankTOM5 output
at every month in each grid cell. Figure 7 shows the root mean square errors for each grid cell (Figure 7a)
and each time step (Figure 7b). The largest errors were typically concentrated around those areas with few
or no observations, namely the South Pacific, South Atlantic and Southern Ocean. These were caused by
the lack of observations rather than differences in the decorrelation lengths that influence the method’s
operation. Areas of high fCO2 variability such as the Eastern Equatorial Pacific and coastal regions also had

Figure 6. Decorrelation lengths (in km) calculated for each 2.5832.58 grid cell from
the PlankTOM5 model output compared to the equivalent decorrelation lengths cal-
culated from the SOCAT measurements. Darker shading indicates that multiple grid
cells had the same comparative decorrelation lengths. The gray square represents
the maximum decorrelation length between two neighboring grid cells (196.5 km).
Cells with decorrelation lengths within this square cannot be spatially interpolated
as they have no relationship to their neighbors.
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relatively large errors (Figure 7a). The magnitude of the differences was stable through time and not signifi-
cantly influenced by the density of observations in any given year (Figure 7b). 25% of the gap filled values
had an error of �3.31 matm. 50% had errors �7.62 matm, and 75% were within 12.99 matm (Figure 7c). In rel-
ative terms, 25% of gap-filled values were within 0.93% of the correct value; 50% were within 2.1%, and
75% within 4%.

This model evaluation also allowed us to assess the efficacy of the uncertainties calculated alongside the
gap-filled pCO2; they should be similar to the errors if they were truly representative of the limitations of
the method. The mean error for the gap-filled model output was 11.3 6 12.4 matm, while the mean calcu-
lated uncertainty was 10.5 6 9.5 matm. 50% of the calculated uncertainties were within 65.15 matm of the
interpolation error, and 75% were within 610.41 matm. Figure 7d shows a scatter plot comparing the
errors in the reconstruction to the assigned uncertainties. These results indicate that the majority of uncer-
tainty estimates calculated by our method are representative of the likely real errors in the estimate fCO2

values.

Trends in the original PlankTOM5 output and the gap-filled interpolation were calculated as the difference
between the 1985–1989 mean and the 2007–2011 mean divided by the 27 year period of the interpolation.
For the interpolation, trends were also calculated using the extreme upper and lower limits of the gap-filled
fCO2 values bounded by their uncertainty, to give the maximum and minimum trend across the possible
range of values. The range of these trends was used as the uncertainty range of the calculated trend. The
trend in each grid cell was subtracted from the atmospheric CO2 trend (calculated in the same manner, to
account for the nonlinearity of the atmospheric trend [Dlugokencky and Tans, 2014]). We examined the dif-
ference between the two sets of trends (Figure 8).

The global mean gap-filled trends during 1985–2011 were marginally higher than the original PlankTOM5
output (means of 20.07 matm yr21 relative to the atmospheric trend versus 20.03 matm yr21 respectively).
The gap-filled trends showed greater spatial variability than the trends of the PlankTOM5 output (0.55 matm

Figure 7. Root mean square errors between the original PlankTOM5 model data and the interpolated reconstruction using the gap-filling method applied with model data sampled at
the same times and locations as the SOCAT observations (in latm). (a) The mean error in each grid cell for the 1985–2011 time period. (b) The median error for each month (thick black
line), with 25%/75% (dark gray) and 5%/95% (light gray) percentiles. (c) Histogram of errors for every data point in the reconstructed data set. Black triangles indicate the 25%, 50%, 75%
and 95% quantiles. 0.3% of errors are larger than 75 latm. (d) Errors in the gap-filled reconstruction versus the uncertainties calculated for the corresponding data points. Contours indi-
cate regions encompassing 25% (white), 50% (yellow), 75% (orange) and 95% (red) of values in the plot. The blue dashed line indicates the 1:1 relationship. Both axes are truncated to
better show the most significant values.
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yr21 and 0.25 matm yr21 respectively), but the broad spatial patterns of positive and negative trends were
similar. As with the overall errors, the largest differences in trends occurred in those regions with the fewest
observations, namely the southern hemisphere oceans. Trends were also difficult to reconstruct in the East-
ern Equatorial Pacific because of high interannual variability from the El Ni~no Southern Oscillation (ENSO),
and the sparse sampling of the observations in a region of complex currents and water masses. The sea-
sonal cycle in the original PlankTOM5 output and the gap-filled data were also in good agreement in nearly
all regions (Figure 9). The global mean amplitude of the seasonal cycle is 36.8 matm in PlankTOM5 and 33.0
matm in the gap-filled reconstruction, with an RMS error of 17.9 matm. The correlation of amplitudes aver-
aged at each latitude band (the zonal correlation) gave r2 5 0.73.

The accuracy of the PlankTOM5 reconstruction was further tested by examining the relationship between
pCO2 and sea surface temperature (SST), and between pCO2 and chlorophyll a (Chla). The detrended and
deseasonalized time series of pCO2 and SST (Chla) from the original model data were correlated in each
2.5832.58 grid cell (Figures 10a and 11a). The same correlation was performed using the reconstructed
pCO2 field (Figures 10b and 11b), and the differences examined (Figures 10c and 11c). 75% of the recon-
structed correlations had an r value that is within 0.29 (0.23 for Chla) of the original correlations, and 95%
were within 0.59 (0.49 for Chla) (Figures 10c and 11c). The largest differences were in the Southern Ocean,
particularly with SST where the pattern of correlations along the Antarctic Circumpolar Current was not
captured. The South Atlantic and Eastern South Pacific showed similarly poor performance. In these
regions the sampling of the original model was such that the correlation between pCO2 and SST (Chla)
was not representative of the complete model, so it is unsurprising that the relationship could not be
reconstructed successfully. The other main region of difference was the Equatorial Pacific, which can be
fully explained by a lack of observations. Here, the interannual signal was larger than the seasonal cycle in
both pCO2 and SST. While the curve fitting process can reconstruct a seasonal cycle, it cannot accurately
reproduce interannual variability where there are missing observations. The corresponding difference in
the correlation with Chla was neither as strong nor as widespread as that seen in SST, but the effect was
still visible.

Figure 8. Trends of ocean minus atmosphere pCO2 (DpCO2) between 1985 and 2011 in latm yr21 for (top left) the PlankTOM5 model and (top right) the interpolated reconstruction.
Trends are calculated as the difference between the 1985–1989 mean and the 2007–2011 mean, and are relative to the trend in atmospheric CO2. The bottom map shows the difference
between the two (interpolated minus PlankTOM5). Black dots indicate cells where the difference is larger than the uncertainty in the interpolated trend.
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We assessed the efficacy of the gap-filling method in relation to previous regional interpolation techniques
by comparing the errors found in reconstructing the PlankTOM5 output with the errors reported for pub-
lished studies (Table 2). The errors reported in those studies ranged from 0.77 to 32 matm, while those found
in this study were in the range 0.99–20 matm for the corresponding times and regions, and were 4.2 matm
smaller on average. This shows that the global gap-filling method is comparable in performance to the
regional studies. The errors in our interpolation (Table 2, column 5) were smaller than the uncertainties
assigned to the interpolated values (Table 2, column 6) in the majority of cases.

3.2. Comparison to Other CO2 Data
3.2.1. Fixed Moorings
There are a number of oceanographic CO2 data sets from time series stations that are not included in the
SOCAT database. We compared our interpolated data calculated from the SOCAT observations to the pCO2

values from some of these stations. The SOCAT interpolated observations (Figure 12, red dots) in the corre-
sponding time series boxes show significant differences to the time series observations themselves (in
blue). These differences in the data were directly translated to the gap-filling method. Nevertheless the gap
filling method achieved a fit close to the uncertainty at the European Station for Time Series in the Ocean
(ESTOC) [Gonz�alez-D�avila and Santana-Casiano, 2009], at the TAO S2 170W in the Equatorial Pacific [Chavez,
2004], and to a lesser extent at the Hawaii Ocean Time-Series (HOT) [Dore et al., 2009]. At PIRATA 10 Lefèvre
et al. [2007], however, the amplitude of the SOCAT interpolated observations was much smaller than that of
the station observations, a bias which was translated in the gap-filling method to both the estimated values
and an underestimated uncertainty. Finally, both the Bermuda Atlantic Time Series (BATS) [Bates, 2007] and
Irminger station [Olafsson, 2007] have very large seasonal amplitudes of approximately 90 matm (Figures
12a and 12d). This leads to large differences between the gap-filled time series and the station observations,

Figure 9. Comparison of the mean seasonal amplitude of pCO2 in the PlankTOM5 model and the gap-filled reconstruction. (a) The amplitude
from the gap-filled reconstruction. (b) The range of possible amplitudes in each cell based on the limits of the uncertainties of the fCO2 val-
ues. This is typically twice as large as a normal 6 uncertainty, which is not representative of the true uncertainty in the amplitude. (c) The
amplitude from the PlankTOM5 model. (d) The zonal mean amplitude from PlankTOM5 (black) and the gap-filled reconstruction (red). The
red envelope indicates the range limit of gap-filled amplitude. In Figures 9a and 9b, black dots indicate cells where the gap-filled data are sig-
nificantly different from PlankTOM5, i.e., the PlankTOM5 value is not within the possible range of amplitudes in the gap-filled data.
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Figure 10. Correlations between pCO2 and SST in the PlankTOM5 model. (a) The original model pCO2 correlated with the model SST. (b) The reconstructed pCO2 correlated with the
original model SST. (c) Correlations from PlankTOM5 versus correlations from the reconstructed data. Contours indicate regions encompassing 25% (white), 50% (yellow), 75% (orange)
and 95% (red) of values in the plot. The blue dashed line is the linear regression showing the relationship between the two sets of correlations (r 5 0.53).

Figure 11. As for Figure 10, but showing correlations between pCO2 and Chloropyll a instead of SST. For the blue line in Figure 11c, r 5 0.31.
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because even small temporal offsets from the seasonal cycle fitted to the SOCAT observations can result in
differences of tens of micro-atmospheres.
3.2.2. Comparison With LDEO Data
The LDEOv2012 database [Takahashi and Sutherland, 2013] is another collection of global surface ocean
CO2 observations, constructed independently of SOCAT. This contains some observations that are not in
SOCAT, so it was possible to compare these to our interpolated values.

We took the observations between 1985 and 2011 from the LDEOv2012 database and binned them on to a
2.5832.58 monthly grid, to match the resolution and coverage of our interpolated data set. We did the same
for the complete SOCAT data set. We then removed from the gridded LDEO data any points where meas-
urements were present in SOCAT. This left the gridded LDEO measurements that were not present in
SOCAT. These were then compared to the corresponding points in the interpolated data set based on
SOCAT, and the differences between them were assumed to be errors in the interpolated data (Figure 13a).
25% of the gap-filled values had an error of �4.7 matm. 50% had errors �11.0 matm, and 75% were within
22.6 matm (Figure 13b). In relative terms, 25% of gap-filled values were within 1.3% of the true value, 50%
were within 3.1%, and 75% were within 6.3%. As with the model evaluation above, we compared the differ-
ences between the interpolated values with the uncertainties calculated during the interpolation (Figure
13c). 25% of the uncertainties were within 7.1 matm of the error, 50% were within 15.8 matm, and 75% were
within 30.2 matm.

There were four main areas where the differences between the interpolated SOCAT data and the LDEO data
were largest: the Equatorial Pacific, the Atlantic sector and coastal areas of the Southern Ocean, the Bering
Sea, and the North Pacific between 308N and 508N. In the case of the Equatorial Pacific, the method strug-
gles to capture the very high interannual variability in CO2, as also seen in the model-based evaluation. The
other regions also have very high variability [Naveira Garabato et al., 2004; Resplandy et al., 2014; Bates et al.,
2011], and also poor sampling (Figure 1b). In the Southern Ocean there are very few observations to be
used as input to the interpolation. In the Bering Sea there are a relatively high number of observations, but
they are focused in a very small region. These values are interpolated over the entire Bering Sea, and the
large spatial variability in this region means that the interpolated values do not reflect the true distribution

Table 2. Comparison of the Mean Errors From Interpolating the Sampled Model Output (See Text) With Error Estimates From Regional Interpolation Studies

Study (Region) Method Period Error (matm) This Study
Error (matm)

Uncertainty Estimate
(matm)

Wanninkhof et al. [1996]
(Equatorial Pacific)

NO3/SST regression 1985–1988a 1–32 4–13 6–18

Ono et al. [2004]
(North Pacific)

SST/Chl regression May 1997 21.0 9.0 9.0

Jamet et al. [2007]
(North Atlantic)

SST/Chl/MLD regression Winter 1994–1995 12.38–16.76b 6.0 7.9
Spring 1994–1995 13.35–14.53b 8.0 6.8
Summer 1994–1995 11.44–14.27b 8.0 8.9
Autumn 1994–1995 8.98–17.33b 7.7 8.7

Gledhill et al. [2009]
(Greater Caribbean Region)

Empirical CO2 gas solubility
equations (SST/SSS)

1997–2006 9.0 6.0 9.0

Zhu et al. [2009]
(Northern South China Sea)

SST regression July 2000 25.1 20.3 26.7
SST/Chl regression 4.6

Watson et al. [2009]
(North Atlantic)

SST/MLD regression 2000–2007c 1.8 1.0 7.9
Neural network (SST/MLD) 0.77

Telszewski et al. [2009]
(North Atlantic)

Neural network (SST/MLD/Chl) 2004 8.1 7.1 8.2
2005 12.6 7.1 8.4
2006 12.5 6.2 8.2

Friedrich and Oschlies [2009a]
(North Atlantic)

Neural network (SST/Chl) 2005 19.0 7.0 8.3

Friedrich and Oschlies [2009b]
(North Atlantic)

Neural network (SST/SSS) 2005 14.4d 6.7 8.3
15.9d

Chierici et al. [2012]
(Pacific Southern Ocean)

SST/Chl/MLD/PP regression Dec 2006 14.0 15.0 15.0

Shadwick et al. [2010]
(Scotia Shelf)

SST/Chl regression May 2007 to Jun 2008 13.0 8.0 10.0

aResults from several individual months and locations are combined.
bThree different regressions were used, giving a range of errors.
cAnnual mean values compared in both studies.
dTwo source data sets: VOS ship lines and Argo floats respectively.
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of fCO2. The range of errors between 20 and 25 matm in the North Pacific was unexpected, because there is
very good observation coverage here and the fCO2 should be well constrained. Our investigations showed
that the additional LDEO data in this region have much higher variability than the SOCAT data. The reason
for this difference is unknown.
3.2.3. Limitations of the Evaluation Techniques
Both of the evaluation techniques used above have limitations in their accuracy. Numerical models are
of relatively coarse resolution, and are therefore unable to reproduce fine details on spatial and tempo-
ral scales. However, since the gap-filling method also produces coarse resolution results (monthly
means on a 2.5832.58 grid), the problem has less impact that it would with a higher resolution
interpolation.

In the interpretation of the comparison of interpolation results to observations from fixed stations and the
LDEO database we need to consider that the comparison is between data from single geographical points
and times, with values that are averages over much larger spatial and temporal scales. The latter eliminates
the small scale variability captured by the former, and therefore cannot reproduce the observations
accurately.

Figure 12. Comparison of CO2 measurements from time series stations with the gap-filled values from the corresponding grid cell. Red dots are observations from time series data not
included in the SOCAT database. Blue dots are the SOCAT measurements used in the gap-filling analysis presented here. The black line is the result of the gap-filling for the grid cell,
with the calculated uncertainty in gray. ‘‘Uncertainty’’ text in each plot is the mean uncertainty calculated on the gap-filled values, and ‘‘RMS’’ is the root mean squared difference
between the gap-filled values and the station measurements.
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4. Results

The gap-filling method allows us to produce monthly fCO2 values for the years 1985–2011 on a 2.5832.58

grid south of 708N based on the SOCAT v2 database. Uncertainties assigned to the gridded data (Figure 14)
are predominantly in the range of 0 to 12 matm. The uncertainties are typically a function of the number of
available observations in each grid cell, with higher observation densities requiring less spatial interpolation
(on which the uncertainty estimates are based). The smallest uncertainties are therefore in the North Pacific
and North Atlantic. The uncertainties are largest in the Eastern Equatorial and South Pacific, South Atlantic
and Southern Ocean. One exception to this is the Southern Ocean in the Antarctic Circumpolar Current,
where strong zonal currents result in very similar fCO2 in neighboring grid cells. The spatial interpolations

Figure 13. Errors between the interpolated fCO2 data calculated from SOCAT and measurements from LDEOv2012 that are not in the SOCAT database. (a) The mean error in each grid
cell. (b) Histogram of all errors. 3.1% of errors are greater than 75 latm. (c) Errors in the gap-filled reconstruction versus the uncertainties calculated for the corresponding data points.
Contours indicate regions encompassing 25% (white), 50% (yellow), 75% (orange) and 95% (red) of values in the plot. The blue dashed line indicates the 1:1 relationship. Both axes are
truncated to better show the most significant values.

Figure 14. Mean uncertainty assigned to the interpolated values of each grid cell for the SOCAT database based on the distance over
which measurements are spatially interpolated, and the difference between measurements and the fitted harmonic curves (in latm). The
color scale is identical to that used for the RMS errors (Figure 7).
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therefore have very low uncertainty estimates there. The assigned uncertainties are typically larger than the
predicted errors computed from model output (Figure 7), although there are exceptions, such as the Medi-
terranean and some coastal areas such as the Western Pacific coastline.

4.1. Seasonality
Figure 15 shows the annual mean fCO2 for the year 2000, comparing our gap-filled results with the com-
monly used pCO2 climatology for the year 2000 constructed from the LDEO database of pCO2 observations
using trend-based adjustments and lateral transport equations [Takahashi et al., 2002; Takahashi et al.,
2009]. Again, we ignore differences between pCO2 and fCO2 as they are negligible (approximately 1 matm).
The gap-filled annual mean (Figure 15a) is very similar to the Takahashi climatology (Figure 15c): the two
products match within the bounds of uncertainty over the great majority of the globe (Figure 15b). The
RMS difference between the two maps is 9.7 matm, with an overall pattern correlation of r2 5 0.78. Examin-
ing the zonal mean concentration (Figure 15d) removes many of the effects of variability between individ-
ual cells, and provides a better picture of the coherence between the climatology and the gap-filled data.
This shows that the overall structure of the two is very similar, with a zonal mean correlation of r2 5 0.93.

We also analyzed the amplitude of the seasonal cycle in both data products (Figure 16). A traditional uncer-
tainty cannot be given for the amplitude in the gap-filled data, since the possible range of amplitudes is
defined by the uncertainties of the individual values. This is not evenly distributed, and so cannot be repre-
sented by a traditional 6 value. Instead, we show the range between the largest and smallest possible
amplitudes that could be calculated using the individual monthly values (Figure 16b). This is typically twice
as large as one would expect a traditional 6 uncertainty to be. The overall pattern is again similar between
the two data sets, although there are more areas where the Takahashi amplitude is outside the uncertainty
range of the gap-filled data (Figure 16a and 16b, black dots). The RMS error between the climatology and
the gap-filled data are 23.9 matm, with a zonal correlation of r2 5 0.56 (Figure 16d). While not necessarily

Figure 15. Comparison of the gap-filled annual mean fCO2 with the annual mean pCO2 from the Takahashi climatology [Takahashi et al.,
2009]. (a) The mean concentration from the gap-filled SOCAT data. (b) The mean uncertainty of the values in Figure 15a. (c) The mean con-
centration from the Takahashi climatology. (d) The zonal mean concentration from Takahashi (black) and the gap-filled data (red). The red
envelope indicates the uncertainty on the gap-filled values. In Figures 15a and 15b, black dots indicate cells where the gap-filled data are
significantly different from Takahashi, i.e., the Takahashi value is not within the uncertainty range.
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statistically significant, the regions of largest difference between the two data sets are the Equatorial Pacific,
the Eastern South Pacific and regions of the Southern Ocean. The differences in seasonal amplitude in the
Equatorial Pacific are large and account for some of the low correlation between the two methods. The
Takahashi climatology excludes observations obtained during El Ni~no periods, but they are included in our
method. Furthermore, the Equatorial Pacific has large uncertainty in our method because of the fine struc-
ture of ocean currents and relatively large interannual variability in this region [Cosca et al., 2003; Doney
et al., 2009]. The differences in South Pacific and Southern Ocean are mostly due to low observation density
(Figure 1), exacerbated in the Southern Ocean by its highly variable oceanic conditions [Naveira Garabato
et al., 2004; Resplandy et al., 2014] that will lead to errors in both our method and the Takahashi et al. clima-
tology. Amplitudes are more comparable elsewhere, with many consistent spatial structures in the North
Pacific and North Atlantic.

4.2. Long-Term Trends
It is difficult to assess the accuracy of long-term trends in any observation-based fCO2 database because
they are known to be sensitive to the temporal and spatial scales over which they are calculated [e.g.,
McKinley et al., 2011, Fay and McKinley, 2013]. For this study, we assessed the trends over the 27 year period
of the interpolation. Trends and their uncertainties (Figures 17a and 17b) were calculated for each grid cell
using the same method as for the model validation (section 3.1). Trends were deemed insignificant when
their uncertainty range crossed zero (Figure 17a, black dots). The fCO2 trends were compared against the
corresponding atmospheric trends (Figure 17c).

Much of the ocean fCO2 trend is slower than that of the trend in atmospheric CO2, although there is large
regional variability and uncertainty in the trends indicates that the difference is not significant in the majority of
cases (Figure 17c). The global mean relative trend (ocean trend minus atmospheric trend) is 20.18 6 0.76 matm

Figure 16. Comparison of the gap-filled seasonal amplitude of fCO2 with the seasonal amplitude pCO2 from the Takahashi climatology
[Takahashi, 2009]. (a) The seasonal amplitude from the gap-filled SOCAT data. (b) The range of possible amplitudes in each cell of Figure
16a, based on the limits of the uncertainties of the fCO2 values. This is typically twice as large as a normal 6 uncertainty, which is not repre-
sentative of the true uncertainty in the amplitude. (c) The seasonal amplitude from the Takahashi climatology. (d) The zonal mean ampli-
tude from Takahashi (black) and the gap-filled data (red). The red envelope indicates the range limit of gap-filled amplitude. In Figures 16a
and 16b, black dots indicate cells where the gap-filled data are significantly different from Takahashi, i.e., the Takahashi value is not within
the possible range of amplitudes in the gap-filled data.
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yr21. In the Atlantic between 358N and 608N there is some evidence of an east-west difference in the fCO2 trend,
with the eastern region (408W to 08; 0.04 6 0.56 matm yr21) increasing faster than the western (808W to 408W;
20.29 6 0.85 matm yr21). Similar but smaller effects have been observed in previous studies [Schuster et al.,
2009; Takahashi et al., 2009; Watson et al., 2009]. This pattern, along with the widespread low fCO2 trend in the
South Atlantic, is also evident in Landsch€utzer et al. [2014]. Trends in the North Pacific are almost exclusively
slower than the atmospheric trend. In the midlatitudes (108N to 358N) the trends are only slightly lower
(20.14 6 0.41 matm yr21), similar to those found by Midorikawa et al. [2006]. The difference is much greater in
the higher latitudes (358N–608N; 20.34 6 1.06 matm yr21), similar to Lenton et al. [2012] despite a region of very
rapid increase in the Sea of Okhotsk to the north of Japan. The Equatorial Pacific (108S to 108N) is the region
with least agreement with prior studies, reflecting its high uncertainty. We see significantly higher trends in the
Eastern Equatorial Pacific (1708E to 1208W) than anywhere else on the globe (0.32 6 0.75 matm yr21), in dis-
agreement with Feely et al. [2006]. Meanwhile, the Western Equatorial Pacific (1008E to 1708E) has slightly smaller
trends (20.37 6 0.29 matm yr21) than those seen in previous estimates [Feely et al., 2006; Ishii et al., 2009].

4.3. Interannual Variability
The interannual variability (IAV) in fCO2 is only captured in our method where original measurements are
used or interpolated, since the fitted curves will provide a climatological seasonal cycle and long-term trend
only. Consequently, IAV cannot be fully resolved and is almost certainly smaller in magnitude than the true
IAV. The spline fit applied in Figure 5d deviates from the harmonic curve fit where measurements are pres-
ent. The difference between the harmonic fit and the spline represents the IAV that the method is able to
capture. Averaging the IAV across ocean regions shows some key features of pCO2 variation (Figure 18). In
the Equatorial Pacific (Figure 18f), the progression of ENSO events is clearly visible. IAV of similar magnitude
can be seen in the Southern Ocean (Figure 18h). In the North Atlantic, IAV is consistently discernible only

Figure 17. (a) Linear trend of fCO2 (latm yr21) for each grid cell of the gap-filled SOCAT database over the period studied (1985–2011), calculated in the same manner as for Figure 8.
Black dots indicate cells where the uncertainty in the trend means that it is not significantly different from 0 latm yr21. (b) Uncertainties for each of the trends in (a). (c) Trends relative
to the trend in atmospheric CO2. Black dots indicate cells whose trend is significantly different from the atmospheric trend.
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after year 2000 (Figure 18a); There were no regular measurement programs prior to this, thus IAV could not
be resolved consistently.

The cubic spline fitting performed in Step IV of the method (section 2.2.5) eliminates discontinuities in the
data set, but also removes some of the IAV. The effect of this is negligible, however; the regional interannual
variability shown in Figure 18 is between 0.5% and 2% smaller than it would be without the spline fitting.

Figure 18. Interannual variability of fCO2 from the gap-filled SOCAT database in eight ocean regions: (a) North Atlantic (308N–708N); (b) Equa-
torial Atlantic (08N–308N); (c) South Atlantic (508S–08S); (d) Indian Ocean (North of 508S); (e) North Pacific (158N–708N); (f) Equatorial Pacific
(158S–158N); (g) South Pacific (158S–508S); (h) Southern Ocean (South of 508S). Blue stripes at the bottom of each plot indicate the relative
number of grid boxes with measurements in each month (darkest blue 5 2001 measurements). In (f), gray bars indicate El Ni~no events.

Journal of Advances in Modeling Earth Systems 10.1002/2014MS000416

JONES ET AL. STATISTICAL INTERPOLATION OF OCEAN CO2 19



4.4. Coastal fCO2

fCO2 in coastal regions is much more variable (and therefore difficult to predict) in coastal regions than in
the open ocean. However, at the 2.5832.58 used in this study individual grid cells are quite large (278 km
across at the equator). Eliminating these grid cells would remove a relatively large portion of the ocean.
While it would be possible to remove coastal measurements from the initial input to the interpolation by fil-
tering them from the original SOCAT data set, tests have shown that these values still have considerable
value in providing input to the seasonal curve fitting algorithms. The high variability of coastal fCO2 is auto-
matically incorporated into the uncertainty estimates for the method, since it is based partially on the differ-
ence between the observations and the fitted curve (section 2.2.4; Figure 5b). High variability therefore
leads to large uncertainties in many coastal regions (Figure 14).

5. Conclusion

We have presented a gap-filling method adapted to the available global observations coverage of surface
ocean fCO2 values over the 1985–2011 period south of 708N. The estimated accuracy of our results is com-
parable to or an improvement over estimates reported from other regional approaches (Table 2). The gap-
filled fCO2 data include gridded uncertainties based on the spatial and distance over which values have
been interpolated and the closeness of temporal curve fits to the observations. These uncertainties can
help guide data selection and interpretation in future studies using fCO2 observations. The output of this
method can be used to assess fCO2 variability over multiple temporal and spatial scales, to help establish
the optimal location and frequency for CO2 observation programs, and to reduce the uncertainties in our
knowledge of this key ocean variable. Our gap-filled data set can also provide prior estimates required by
atmospheric inversion models, and data to evaluate process model simulations.

The technique developed here provides an alternative approach to those currently available in the literature
as it relies neither on knowledge of other oceanic variables nor on the physical characteristics of the ocean.
The independent statistical nature of the technique means that it can be readily applied to other environ-
mental global data sets. It also means that the output directly depends on the quantity and quality of the
data input, and that the absence of data in many regions and months can lead to an underestimation of
the interannual variability and to excess spatial variability in the assessed trends. These biases would be
reduced with the increased collection and inclusion of observations.
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