
LIPIcs Leibniz International Proceedings in Informatics

Subexponential Algorithms for Partial
Cover Problems

Fedor V. Fomin1, Daniel Lokshtanov1, Venkatesh Raman2 and
Saket Saurabh2

1 Department of Informatics, University of Bergen,
N-5020 Bergen, Norway.

{fedor.fomin|daniello}@ii.uib.no

2 The Institute of Mathematical Sciences,
Chennai, India.

{vraman|saket}@imsc.res.in

ABSTRACT. Partial Cover problems are optimization versions of fundamental and well studied
problems like VERTEX COVER and DOMINATING SET. Here one is interested in covering (or dom-
inating) the maximum number of edges (or vertices) using a given number (k) of vertices, rather
than covering all edges (or vertices). In general graphs, these problems are hard for parameterized
complexity classes when parameterized by k. It was recently shown by Amini et. al. [FSTTCS 08]
that PARTIAL VERTEX COVER and PARTIAL DOMINATING SET are fixed parameter tractable on large
classes of sparse graphs, namely H-minor free graphs, which include planar graphs and graphs of
bounded genus. In particular, it was shown that on planar graphs both problems can be solved in
time 2O(k)nO(1).
During the last decade there has been an extensive study on parameterized subexponential algo-
rithms. In particular, it was shown that the classical VERTEX COVER and DOMINATING SET problems
can be solved in subexponential time on H-minor free graphs. The techniques developed to obtain
subexponential algorithms for classical problems do not apply to partial cover problems. It was left
as an open problem by Amini et al. [FSTTCS 08] whether there is a subexponential algorithm for
PARTIAL VERTEX COVER and PARTIAL DOMINATING SET. In this paper, we answer the question
affirmatively by solving both problems in time 2O(

√
k)nO(1) not only on planar graphs but also on

much larger classes of graphs, namely, apex-minor free graphs. Compared to previously known
algorithms for these problems our algorithms are significantly faster and simpler.

1 Introduction and Motivation
A generic instance of a covering problem consists of a family of sets over an universe and
the objective is to cover the universe with as few sets from the family as possible. Cover-
ing problems are basic problems not only in combinatorial optimization and algorithms but
occur naturally in variety of applications. One of the prominent covering problems is the
classical SET COVER problem. Other classical problems in the framework of covering in-
clude well known problems like VERTEX COVER, DOMINATING SET, FACILITY LOCATION,
k-MEDIAN, k-CENTER problems, on which hundreds of papers have been written.

As the name suggests, in partial cover problems one is interested in covering as much
of the universe, if not the entire universe. This makes the partial cover problems natural

c© Fomin, Lokshtanov, Raman and Saurabh; licensed under Creative Commons License-NC-ND.
Foundations of Software Technology and Theoretical Computer Science (Kanpur) 2009.
Editors: Ravi Kannan and K. Narayan Kumar; pp 193–201
Leibniz International Proceedings in Informatics (LIPIcs), Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany.
Digital Object Identifier: 10.4230/LIPIcs.FSTTCS.2009.2318

194 SUBEXPONENTIAL ALGORITHMS FOR PARTIAL COVER PROBLEMS

generalizations of the well known covering problems. More precisely, in the partial covering
problem, for a given integer t ≥ 0, we want to cover at least t elements using as few objects
(vertices or edges) as possible. For an example, in PARTIAL VERTEX COVER (PVC), the
goal is to cover at least t edges with the minimum number of vertices while in PARTIAL

DOMINATING SET (PDS) the goal is to dominate at least t vertices of the input graph with
the minimum number of vertices.

Partial cover problems have been investigated extensively and are well understood in
the context of polynomial time approximation [2, 4, 3, 5, 16, 18] and parameterized com-
plexity [1, 4, 24, 25, 23, 27]. In this paper we study partial cover problems defined on graphs
namely PARTIAL VERTEX COVER and PARTIAL r-DOMINATING SET from the view point of
parameterized algorithms. PARTIAL VERTEX COVER is defined as follows.

PARTIAL VERTEX COVER (PVC): Given a graph G = (V, E) and positive integers
k and t, check whether there exists a set of vertices C ⊆ V such that |C| ≤ k and
there are at least t edges incident to C.

The PARTIAL r-DOMINATING SET is a generalization of DOMINATING SET and is defined as
follows.

PARTIAL r-DOMINATING SET (P-r-DS): Given a graph G = (V, E) and positive
integers k, r and t, determine whether there exists a set of vertices D ⊆ V such
that |D| ≤ k and there are at least t vertices at distance at most r from some
vertex in D.

In parameterized algorithms, for decision problems with input size n, and a parameter k,
the goal is to design an algorithm with runtime f (k) · nO(1), where f is a function of k alone.
Problems having such an algorithm are said to be fixed parameter tractable (FPT). There
is also a theory of hardness using which one can identify parameterized problems that are
not amenable to such algorithms. This hardness hierarchy is represented by W[i] hierarchy
for i ≥ 1. For an introduction and more recent developments see the books [13, 14, 29]. In
this paper, we always parameterize a problem by the size of the cover, that is, the positive
integer k.

Most of the research on partial cover problems in parameterized complexity has con-
sidered the number of objects to be covered (t) as a parameter rather than the the size of
the cover (k). Bläser [4] initiated the study of partial cover problems parameterized by
t and obtained a randomized algorithm with running time 5.45tnO(1) for PDS. Kneis et
al. [25] improved this algorithm and obtained a randomized algorithm with running time
(4 + ε)tnO(1) for every fixed ε > 0. Recently, Koutis and Williams [27] obtained an even
faster randomized algorithm for PDS, which runs in time 2tnO(1). Kneis et al. [24] studied
the PVC problem when parameterized by the number edged to be covered (t) and obtained
a randomized algorithm running in time 2.0911tnO(1). The algorithm for PVC was recently
improved by Kneis et al. [23]. They obtain a randomized algorithm with running time
1.2993tnO(1) and a deterministic algorithm with running time 1.396tnO(1) for PVC. When
parameterized by the size of cover k, PVC is known to be W[1]-complete [17]. The P-r-
DS problem being a generalization of DOMINATING SET is also known to be W[2]-hard on
general graphs when parameterized by the cover size. Amini et al. [1] considered these
problems with the size of the cover k being the parameter and initiated a study of these
problem on sparse graphs namely planar graphs, apex minor free graphs and H-minor

FOMIN, LOKSHTANOV, RAMAN AND SAURABH FSTTCS 2009 195

free graphs. They obtained algorithms with running time 2O(k)nO(1) for PVC and P-r-DS
and left an open question of whether these problems have an algorithm with running time
2o(k)nO(1), like their non partial counterpart on planar graphs or more generally on H-minor
free graphs. In this paper we answer this question in affirmative and obtain algorithms with
running time 2O(

√
k)nO(1) for PVC and P-r-DS on planar graphs and more general classes of

sparse graphs, namely, apex-minor free graphs.
Most of the known sub-exponential time algorithms on planar graphs, graphs of bounded

genus, apex minor free graphs and H-minor free graphs are based on the meta-algorithmic
theory of bidimensionality, developed by Demaine et al. [7]. The bidimensionality theory is
based on algorithmic and combinatorial extensions to various parts of Graph Minors The-
ory of Robertson and Seymour [30] and provides a simple criteria for checking whether a
parameterized problem is solvable in subexponential time on sparse graphs. The theory ap-
plies to the graph problems that are bidimensional in the sense that the value of the solution
for the problem in question on k× k grid or “grid like graph” is at least Ω(k2) and the value
of solution decreases while contracting or sometime deleting the edges. Problems that are
bidimensional include k-FEEDBACK VERTEX SET, k-EDGE DOMINATING SET, k-LEAF SPAN-
NING TREE, k-PATH, k-rDOMINATING SET, k-VERTEX COVER and many others. We refer to
surveys by Demaine and Hajiaghayi [10] and Dorn et al. [12] for further details on bidimen-
sionality and subexponential parameterized algorithms. But neither PVC nor P-r-DS are
bidimensional problems. This is because an optimum solution to PVC or P-r-DS need not
cover all the edges (or the vertices respectively) of a k× k grid, and hence its value need not
be large on such a grid. Hence this theory is not amenable to our problems.

Our subexponential time algorithms for PVC and P-r-DS are based on a technique used
to solve the classical DISJOINT PATH problem in the Graph Minors Theory of Robertson and
Seymour [31], called irrelevant vertex argument. The technique can be described as follows,
in polynomial time we find a vertex which is irrelevant for the solution and hence can be
deleted and when we can not find an irrelevant vertex, we show that the reduced instance
has bounded treewidth. This technique has recently been used to solve several problems
around finding disjoint paths [19, 20, 21, 22, 26]. To obtain subexponential time algorithms
for PVC and P-r-DS we introduce a notion of “lexicographically smallest” solution and use
its properties to obtain an irrelevant vertex in the graph. When we can not find any irrel-
evant vertex then we are able to show that that the treewidth of the reduced graph is at
most O(

√
k). Once we have a sublinear bound on the treewidth of the input graph, we can

solve the problem in 2O(
√

k)nO(1) time using dynamic programming over graphs of bounded
treewidth. Our results are based on a simple but powerful observation relating lexicograph-
ically least solutions and r-dominating sets of size at most k.

2 Preliminaries
Let G = (V, E) be an undirected graph where V is the set of vertices and E is the set of edges.
We denote the number of vertices by n and number of edges by m. For a subset V ′ ⊆ V, by
G[V ′] we mean the subgraph of G induced by V ′. By N(u) we denote (open) neighborhood
of u that is set of all vertices adjacent to u and by N[u] = N(u) ∪ {u}. Similarly, for a subset
D ⊆ V, we define N[D] = ∪v∈D N[v]. The distance dG(u, v) between two vertices u and v of

196 SUBEXPONENTIAL ALGORITHMS FOR PARTIAL COVER PROBLEMS

G is the length of the shortest path in G from u to v. For a given vertex v ∈ V by ∂(v) we
denote the set of edges which are incident with v. For a subset X ⊆ V, ∂(S) = ∪v∈S∂(v).

Given an edge e = (u, v) of a graph G, the graph G/e is obtained by contracting the
edge (u, v) that is we get G/e by identifying the vertices u and v and removing all the loops
and duplicate edges. A minor of a graph G is a graph H that can be obtained from a subgraph
of G by contracting edges. A graph class C is minor closed if any minor of any graph in C is
also an element of C. A minor closed graph class C is H-minor-free or simply H-free if H /∈ C.
A graph H is called an apex graph if the removal of one vertex makes it a planar graph.

A tree decomposition of a graph G = (V, E) is a pair (X, T) where T is a tree on vertex set
V(T) whose vertices we call nodes and X = ({Xi | i ∈ V(T)}) is a collection of subsets of V
such that

1.
⋃

i∈V(T) Xi = V,
2. for each edge (v, w) ∈ E, there is an i ∈ V(T) such that {v, w} ∈ Xi, and
3. for each v ∈ V the set of nodes {i | v ∈ Xi} forms a subtree of T.

The width of a tree decomposition ({Xi | i ∈ V(T)}, T) equals maxi∈V(T){|Xi| − 1}. The
treewidth of a graph G is the minimum width over all tree decompositions of G. We use
notation tw(G) to denote the treewidth of a graph G.

Given a graph G = (V, E) a set of vertices D of V is called an r-dominating set for G
if Nr(D) = V. For r = 1 the set D is called a dominating set. In the r-DOMINATING SET

problem, we are given a graph G = (V, E) and the objective is to find the smallest sized D
such that Nr(D) = V.

3 Subexponential algorithm for Partial Vertex Cover
In this section we consider the PVC problem. In fact we will solve a slightly more general
problem, that is, given an undirected graph, a non negative integer k, we find the maximum
number of edges that can be covered by a subset of at most k vertices. The decision version
of the problem is precisely PVC. If the maximum number of edges covered by any vertex
set of size at most k is at least t then we return “yes” else we return “no”.

The key idea of the algorithm is to identify a set of irrelevant vertices, I, which can
be deleted without destroying at least one set C ⊆ V such that |C| ≤ k and |∂(C)| ≥ t,
if such a set exists. Then we will show that the tw(G[V \ I]) ≤ O(

√
k) and hence the

dynamic programming over graphs of bounded treewidth can be applied. To identify a set
of irrelevant vertices we introduce the notion of lexicographically smallest solution.
Definition 1 Given a graph G = (V, E), an ordering σ = v1 . . . vn of the vertices in V and subsets
X and Y of V, if X is lexicographically smaller than Y then we denote it by X ≤σ Y. We call a set
C ⊆ V the lexicographically smallest solution for PVC if for any other solution C′ for the PVC
we have that C ≤σ C′.

Let σ = v1v2 . . . vn be an ordering of the vertices such that the vertices are in non in-
creasing order of their degrees, with ties being broken arbitrarily. That is,

d(v1) ≥ d(v2) · · · ≥ d(vn−1) ≥ d(vn).

Throughout this section, we will assume that the vertex set of the input graph is ordered
by this fixed ordering σ and denote the graph by G = (Vσ, E) to emphasize the fact that the

FOMIN, LOKSHTANOV, RAMAN AND SAURABH FSTTCS 2009 197

vertex set is order with respect to σ. By Vi
σ we denote the vertex set v1 . . . vi. Our goal will

be to find the lexicographically smallest solution for PVC. The algorithm is based on the
following properties of the lexicographically smallest solution for PVC.

LEMMA 1. Let G = (Vσ, E) be a yes instance to PVC, C = {ui1 , . . . , uik} be the lexicograph-
ically smallest solution for PVC and uik = vj for some j. Then C is a dominating set of size

at most k for G[V j
σ].

PROOF. Let us assume to the contrary that C is not a dominating set for G[V j
σ]. Then there

exists a vertex vi, 1 ≤ i < j such that N[vi] ∩ C = ∅. Set C′ := C \ {vj} ∪ {vi}. We claim
that C′ covers at least as many edges as are covered by C. That is, |∂(C′)| ≥ |∂(C)|. Since
d(vi) ≥ d(vj), we have that

|∂(C′)| ≥ |∂(C)| − d(vj) + d(vi) ≥ |∂(C)|.

This is because the edges covered by vi are not covered by any element of C− {vj}. Hence,
|C′| = |C|, C′ is lexicographically smaller than C and |∂(C′)| ≥ |∂(C)| a contradiction to the
choice of C.

We also need the following results for our algorithm.

LEMMA 2. Let G be a n-vertex graph excluding an apex graph H as a minor. If G has an
r-dominating set of size at most k, then G has treewidth at most cHr

√
k = O(r

√
k), where

cH is a constant depending only on the size of H.

Lemma 2 follows from the fact that the size of r-dominating set is a “contraction bidi-
mensional” parameter and that if a contraction bidimensional parameter has value at most
k on a graph G which excludes an apex graph H as a minor then tw(G) ≤ O(r

√
k) [6, 8, 15]

. We will use the following known algorithm to solve PVC on graphs of bounded treewidth.

LEMMA 3.[28] Let G be an undirected graph such that the treewidth of G is at most w. Then
in time 2wnO(1) we can find a subset C of at most k vertices that cover the maximum number
of edges of G.

For our proof we also need the following result by Demaine and Hajiaghayi to obtain a
polynomial time approximation scheme (PTAS) for r-DOMINATING SET.

LEMMA 4.[9] There is a PTAS for r-DOMINATING SET on apex minor free graphs.

NsV \ N

Figure 1: The Algorithmic Schema

The basic schema of the algorithm is as follows. We start with the vertex set Vσ and scan
the vertices in the reverse order of σ = v1v2 . . . vn. That is, we scan the vertices in the order
vnvn−1 . . . v2v1. The algorithm can be viewed as having a stick, initially positioned to the

198 SUBEXPONENTIAL ALGORITHMS FOR PARTIAL COVER PROBLEMS

ALGO-PC(G = (Vσ, E), k, ε, N)
(Here G is a graph with vertices ordered in non increasing order σ of their degrees
, k a non negative integer, ε > 0 is an arbitrary fixed constant, N is a set of vertices
(initially ∅), and the goal is to find a subset of V \ N of size at most k that covers
the maximum number of edges of G = (V, E).)

1. Let p := n.
2. While there does not exist a dominating set of size at most (1 + ε)k for G[Vp

σ] (deter-
mined using Lemma 4)
• set N := N ∪ {vp} and p := p− 1.

endwhile
3. Let I = {u | u ∈ N, N(u) ⊆ N} and set V′ = V \ I. Find a tree-decomposition (U, T)

of G[V′] using the constant factor approximation algorithm of Demaine et al. [11] for
computing the treewidth of H-minor free graph.

4. Apply Lemma 3 to find a subset C′ of size at most k of G[V′] which covers the maxi-
mum number of edges.

Figure 2: Description of the partial cover Algorithm

right of vn which we slide towards its left if the vertex to its left satisfies certain properties.
See Figure 1. At any intermediate stage, we have a vertex set N which are the vertices in
the original order σ, to the right of the stick. The vertex set s is the first vertex to the left of
the stick. The stick represents the fact that the lexicographically smallest solution C we are
looking for lies completely in V \ N, that is, C ⊆ V \ N. To slide the stick we do as follows.
Let s = vj for some j. Now we check whether G[V j

σ] has a dominating set of size “roughly k”.
If not, we slide the stick to one position left. Else we find an appropriate induced subgraph
G′ = (V ′, E′) of G such that tw(G′) ≤ O(

√
k) and G has a set C of size at most k such that

|∂(C)| ≥ t if and only if there exists a set C′ ⊆ V ′ such that |C′| ≤ k and |∂(C′)| ≥ t. A
formal description of our algorithm for partial vertex cover is given in Figure 2. The ALGO-
PC is called with the parameter (G = (Vσ, E), k, ε, ∅). Now we state our main theorem for
this section.

THEOREM 5. Let G = (V, E) a graph that excludes an apex graph H as a minor and k and
t be a positive integers. Then in 2O(

√
k)nO(1) time we can determine whether there exists a

subset C ⊆ V of size at most k such that |∂(C)| ≥ t.

PROOF. We argue the correctness of the algorithm. In the first part of the algorithm we try
to identify the subset N of vertices such that it does not intersect with the lexicographically
least solution C we are looking for. We iteratively run through the vertices in the reverse
order and try to maintain the invariant that N is a subset of the vertices that does not inter-
sect with the lexicographically least solution. Initially N is empty, so the invariant trivially
holds. The set N only grows if in any step, the PTAS algorithm of Lemma 4 finds a dom-
inating set of G[V \ N] of size more than (1 + ε)k. Let vp be the largest indexed vertex in
V \ N, that is, vp is to the left of the set N in the ordering σ. Now by Lemma 1, we know
that if vp ∈ C then G[V \ N] has a dominating set of size at most k and hence the PTAS from
Lemma 4 would find an approximate dominating set of size at most (1 + ε)k. This implies
that vp /∈ C and hence we can safely place vp in N. This proves the correctness of the first
part.

FOMIN, LOKSHTANOV, RAMAN AND SAURABH FSTTCS 2009 199

Note that edges in G[N] will not be covered by C, and hence vertices in N that have
neighbors only in N are collected in the set I and deleted at the end. The set I is the irrelevant
set of vertices we were looking for. Let V ′ = V \ I. Thus we have shown that G has a set
C of size at most k such that |∂(C)| ≥ t if and only if there exists a set C′ ⊆ V ′ such that
|C′| ≤ k and |∂(C′)| ≥ t. Now applying Lemma 3 we find a subset C′ of size at most k of
G[V ′] which covers the maximum number of edges. So if |∂(C′)| ≥ t then we return “yes”
else we return “no”. The correctness of this step follows from Lemma 3.

Now we analyze the time complexity of the algorithm. We know that when the algo-
rithm exits the while loop, G[V \ N] has a dominating set of size at most (1 + ε)k. Let D be
a dominating set of G[V \ N] of size at most (1 + ε)k. This implies that D is a 2-dominating
set of G[V ′] as every vertex v ∈ (N ∩ V ′) has a neighbor in V \ N. Hence by Lemma 2,
tw(G′) ≤ O(

√
(1 + ε)k) = O(

√
k). Now using the constant factor approximation algo-

rithm of Demaine et al. [11] for computing the treewidth of H-minor free graph, we find a
tree-decomposition of G[V ′] of width O(

√
k) in time nO(1). Finally, the dynamic program-

ming algorithm mentioned in Lemma 3 runs in time 2wnO(1) on graphs of treewidth w and
hence our algorithm has running time 2O(

√
k)nO(1).

4 Partial dominating set problems
In this section we consider PARTIAL r-DOMINATING SET problem. We first modify Lemma
1 to prove the following.

LEMMA 6. Let G = (V, E) be a graph and let σ be the ordering of the vertices in non
increasing order of their sizes of Nr(v), that is, if vi < vj in σ, then |Nr(vi)| ≥ |Nr(vi+1)|with
ties being broken arbitrarily. Let G = (Vσ, E) be a yes instance to P-r-DS, C = {ui1 , . . . , uik}
be the lexicographically smallest solution for P-r-DS and uik = vj for some j. Then C is a

2r-dominating set of size at most k for G[V j
σ].

PROOF. Let Nr(C) =
⋃

s∈C Nr(s) be the set of vertices of V j
σ that are r-dominated by

C, and suppose that C is not a 2r-dominating set of V. Let vi, i < j be a vertex of V j
σ

that is not 2r-dominated by C (vi /∈ N2r(C)). Then Nr(vi) ∪ Nr(s) = ∅ for every s ∈ C
as otherwise if for some vertex s ∈ C, the intersection is non empty, then vi will be 2r
dominated by s. Let C′ = C− vj ∪ {vi}, then |C′| = |C|, C′ is lexicographically smaller than
C and |Nr(C′)| ≥ |Nr(C)|+ |Nr(vi)| − |Nr(vj)| ≥ Nr(C) a contradiction to the choice of C.

We also need a lemma similar to Lemma 3 which we state below.

LEMMA 7.[7] Let G be an undirected graph such that the treewidth of G is at most w. Then
in time (2r + 1)1.5wnO(1) we can find a subset C of at most k vertices that r-dominate the
maximum number of vertices of G.

With all these ingredients, the subexponential algorithm for the P-r-DS is very similar
to our algorithm for PVC. The only difference is in the while loop where instead of finding a
dominating set of size (1 + ε)k, we find a 2r-dominating set of size (1 + ε)k, and in the final
step, use the dynamic programming algorithm of Lemma 7 to find a subset C of at most k
vertices that r-dominate the maximum number of vertices of G. Thus we have

200 SUBEXPONENTIAL ALGORITHMS FOR PARTIAL COVER PROBLEMS

THEOREM 8. Let G = (V, E) a graph that excludes an apex graph H as a minor and k and t
be a positive integers. Then in 2O(r(log r)

√
k)nO(1) time we can determine whether there exists

a subset C ⊆ V of size at most k such that |Nr(C)| ≥ t.

5 Conclusion

We have given the first subexponential algorithms for PARTIAL VERTEX COVER and PAR-
TIAL r-DOMINATING SET problems on planar and apex minor free graphs, answering an
open problem in [1]. Our results were based on a simple but powerful observation relating
lexicographically least solutions and r-dominating sets of size at most k. This allowed us to
significantly improve the running time of several algorithm presented in [1] in an elegant
way. Through this process, we have also expanded the list of problems tractable using the
irrelevant vertex argument and it would be nice to apply this technique for other problems
in planar and other classes of sparse graphs.

References

[1] O. Amini, F. V. Fomin, and S. Saurabh. Implicit branching and parameterized partial
cover problems (extended abstract). In FSTTCS, 2008.

[2] S. Arora and G. Karakostas. A 2+epsilon approximation algorithm for the -mst prob-
lem. In SODA, pages 754–759, 2000.

[3] R. Bar-Yehuda. Using homogenous weights for approximating the partial cover prob-
lem. In SODA, pages 71–75, 1999.

[4] M. Bläser. Computing small partial coverings. Inf. Process. Lett., 85(6):327–331, 2003.
[5] M. Charikar, S. Khuller, D. M. Mount, and G. Narasimhan. Algorithms for facility

location problems with outliers. In SODA, pages 642–651, 2001.
[6] E. D. Demaine, F. V. Fomin, M. T. Hajiaghayi, and D. M. Thilikos. Bidimensional pa-

rameters and local treewidth. SIAM J. Discrete Math., 18(3):501–511, 2004.
[7] E. D. Demaine, F. V. Fomin, M. T. Hajiaghayi, and D. M. Thilikos. Subexponential

parameterized algorithms on bounded-genus graphs and -minor-free graphs. J. ACM,
52(6):866–893, 2005.

[8] E. D. Demaine and M. Hajiaghayi. Linearity of grid minors in treewidth with applica-
tions through bidimensionality. Combinatorica, 28(1):19–36, 2008.

[9] E. D. Demaine and M. T. Hajiaghayi. Bidimensionality: new connections between fpt
algorithms and ptass. In SODA, pages 590–601, 2005.

[10] E. D. Demaine and M. T. Hajiaghayi. The bidimensionality theory and its algorithmic
applications. Computer Journal, 51(3):292–302, 2008.

[11] E. D. Demaine, M. T. Hajiaghayi, and K. Kawarabayashi. Algorithmic graph minor
theory: Decomposition, approximation, and coloring. In FOCS, pages 637–646, 2005.

[12] F. Dorn, F. V. Fomin, and D. M. Thilikos. Subexponential parameterized algorithms.
Computer Science Review, 2(1):29–39, 2008.

[13] R. G. Downey and M. R. Fellows. Parameterized complexity. Springer-Verlag, New York,
1999.

FOMIN, LOKSHTANOV, RAMAN AND SAURABH FSTTCS 2009 201

[14] J. Flum and M. Grohe. Parameterized Complexity Theory. Texts in Theoretical Computer
Science. An EATCS Series. Springer-Verlag, Berlin, 2006.

[15] F. V. Fomin, P. A. Golovach, and D. M. Thilikos. Contraction bidimensionality: the
accurate picture. In ESA 09, LNCS, Berlin Heidelberg, 2009. Springer-Verlag.

[16] R. Gandhi, S. Khuller, and A. Srinivasan. Approximation algorithms for partial cover-
ing problems. J. Algorithms, 53(1):55–84, 2004.

[17] J. Guo, R. Niedermeier, and S. Wernicke. Parameterized complexity of vertex cover
variants. Theory Comput. Syst., 41(3):501–520, 2007.

[18] E. Halperin and A. Srinivasan. Improved approximation algorithms for the partial
vertex cover problem. In K. Jansen, S. Leonardi, and V. V. Vazirani, editors, APPROX,
volume 2462 of Lecture Notes in Computer Science, pages 161–174. Springer, 2002.

[19] K. Kawarabayashi. An improved algorithm for finding cycles through elements. In
IPCO, volume 5035 of Lecture Notes in Computer Science, pages 374–384, 2008.

[20] K. Kawarabayashi and Y. Kobayashi. The induced disjoint paths problem. In IPCO,
volume 5035 of Lecture Notes in Computer Science, pages 47–61, 2008.

[21] K. Kawarabayashi and B. A. Reed. A nearly linear time algorithm for the half integral
disjoint paths packing. In SODA, pages 446–454, 2008.

[22] K. Kawarabayashi and B. A. Reed. A nearly linear time algorithm for the half integral
parity disjoint paths packing problem. In SODA, pages 1183–1192, 2009.

[23] J. Kneis, A. Langer, and P. Rossmanith. Improved upper bounds for partial vertex
cover. In WG, volume 5344 of Lecture Notes in Computer Science, pages 240–251, 2008.

[24] J. Kneis, D. Mölle, S. Richter, and P. Rossmanith. Intuitive algorithms and t-vertex
cover. In ISAAC, volume 4288 of Lecture Notes in Computer Science, pages 598–607, 2006.

[25] J. Kneis, D. Mölle, and P. Rossmanith. Partial vs. complete domination: t-dominating
set. In SOFSEM (1), volume 4362 of Lecture Notes in Computer Science, pages 367–376,
2007.

[26] Y. Kobayashi and K. Kawarabayashi. Algorithms for finding an induced cycle in planar
graphs and bounded genus graphs. In SODA, pages 1146–1155, 2009.

[27] I. Koutis and R. William. Limits and applications of group algebras for parameterized
problems. In ICALP 09, LNCS, Berlin Heidelberg, 2009. Springer-Verlag.

[28] H. Moser. Exact Algorithms for Generalizations of Vertex Cover. Master’s thesis, Insti-
tut für Informatik, Friedrich-Schiller-Universität Jena, Germany, 2005.

[29] R. Niedermeier. Invitation to fixed-parameter algorithms, volume 31 of Oxford Lecture
Series in Mathematics and its Applications. Oxford University Press, Oxford, 2006.

[30] N. Robertson, P. Seymour, and R. Thomas. Quickly excluding a planar graph. Journal
of Combinatorial Theory Series B, 62:323–348, 1994.

[31] N. Robertson and P. D. Seymour. Graph minors .xiii. the disjoint paths problem. J.
Comb. Theory, Ser. B, 63(1):65–110, 1995.

This work is licensed under the Creative Commons Attribution-
NonCommercial-No Derivative Works 3.0 License.

