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Abstract 

The salmon louse Lepeophtheirus salmonis is a marine ectoparasitic copepod 

naturally infecting salmonid fishes in the Northern hemisphere. At present, salmon 

louse infections are the most severe disease problem in the salmon farming industry 

causing significant economical losses. Salmon louse infections on farmed fish have 

largely been treated with chemotherapeutants which in recent years have lead to the 

development of resistance towards the majority of available treatment methods. Cases 

of multi-resistance are reported as increasing, underlining the severity of the 

situation. Although non-therapeutic methods such as the use of cleaner fish have been 

implemented into the management of lice infestations, it is clear that new alternative 

methods are essential to gain control of the parasite in the future.  

 

The ecdysone hormone system and the ecdysone receptor/retinoid X receptor 

(EcR/RXR) complex are key regulators of molting, development and growth in 

arthropods. A wide range of studies has demonstrated the importance of this 

endocrine system in insects and to some extent in malacostraca, but knowledge about 

ecdysone signalling in copepods is limited. Therefore, we aimed to increase our 

knowledge about this hormone system in the salmon louse. In this study, the 

ecdysone receptor (EcR) and the key ecdysteroidogenic genes neverland (nvd), 

disembodied (dib) and shade (shd) were identified and functionally assessed using 

RNA interference studies. LsEcR transcripts were expressed in all life stages and in 

most tissues in both the copepodid (i.e. brain, muscle and immature intestine) and the 

adult female (i.e. ovaries, sub cuticula, intestine, oocytes and glandular tissue). The 

wide tissue distribution is expected due to the numerous physiological and biological 

processes that are regulated by EcR signalling. Interestingly, knock-down of LsEcR 

in nauplia I larvae did not cause immediate molting arrest, but developed into viable 

copepodids, indicating another partner of RXR. However, further incubation of the 

LsEcR knock-down copepodids on salmon resulted in severe tissue damage and 

increased mortality. During metamorphosis, an extensive range of tissues is 

remodelled concurrently with the molting process in order to adapt to the new life 
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stage. The results obtained from the studies indicate that LsEcR is a key regulator of 

developmental processes associated with tissue remodelling and molting in L. 

salmonis.  

 

Ecdysteroids regulate reproductive processes in arthropods such as vitellogenesis and 

oocyte maturation. In the salmon louse, vitellogenin and yolk production takes place 

in the subcuticula before being incorporated into the oocyte. These processes showed 

to be indirectly affected by knock-down of LsRXR which resulted in abnormal egg 

chambers and no egg-production. This is supported by knock-down studies of LsEcR 

in pre-adult females resulted in hypotrophy of tissues associated with yolk and 

vitellogenin synthesis, degeneration of the oocytes and termination of egg production. 

This demonstrates that LsEcR plays a key role in the reproduction of the salmon 

louse. We have not proven that ecdysteroid signalling has a direct effect on the 

oocytes. However, LC/MS/MS analysis of the ecdysteroid content during oocyte 

maturation in adult females showed higher levels of ecdysteroids in the 

abdomen/genital segment (Ab/G) compared to the cephalothorax (CT), suggesting 

that ecdysteroids may directly affect oocyte maturation and embryogenesis.  

 

The biosynthesis of the ecdysteroids is performed by members of the cytochrome 

P450 family through several enzymatic reactions. The last step in the pathway is the 

conversion of ecdysone to the active metabolite by Shd. Knock-down of the 

biosynthetic genes in other species is associated with embryonic defects and 

mortality. Interestingly, functional assessment of LsNvd, LsDib and LsShd in L. 

salmonis nauplia I larvae resulted in molting arrest only in the LsShd knock-down 

animals, while the LsNvd, LsDib developed normally into copepodids. Based on the 

knock-down results and the biology of the salmon louse, we hypothesize that 

ecdysone are incorporated into the oocytes during maturation and is further converted 

by LsShd into the active metabolite during development of the lecitotrophic stages. 

To our knowledge, no-loss of function phenotype has been observed in nvd and dib 

knock-down animals during early development in other arthropods, indicating a 

possible novel regulation pathway in L. salmonis.
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1. General introduction 

1.1 Background 

Norway is the largest producer of Atlantic salmon (Salmo salar) in the world. The 

production has more than doubled the last decade from 550 000 metric tons in 2004 

to more than 1.2 metric million tons in 20141 (www.fao.org; www.ssb.no). With intensive 

cultivation and a growing aquaculture industry, challenges concerning fish pathogens 

have become an increasing issue in terms of economical loss and negative 

environmental interactions. In Norway, the salmon louse (Lepeophtheirus salmonis) 

is one of the most severe pathogens in salmon farming estimated to cost the farming 

industry as much as 3-4 billion NOK in 2014 http://nofima.no/nyhet/2015/08/kostnadsdrivere-i-oppdrett/. 

Since the beginning of large-scale salmon farming in the 1970`s, salmon lice 

infestations have mainly been controlled using anti-sea lice medicaments. However, 

the efficacy of medical treatments has decreased due to development of lice 

populations with reduced sensitivity and resistance towards one or more of the anti-

parasitic drugs available [4-7]. In the south- and mid-west of Norway where the lice 

problems are most severe, occurrences of multi-resistance towards all available 

medicines, including hydrogen peroxide, have been reported [8]. The result has been 

an increase in the use of chemotherapeutants (e.g. chitinase inhibitors 

(fluobezurones), nerve toxins (emamectin benzoate, pyrthroids), organophosphates 

affecting the cholinergic nerve system (azamethiphos) and hydrogen peroxide) 

causing concerns due to potential negative impact on non-target organisms and the 

surrounding environment of the fish farm [9]. Additionally, lice larvae originating 

from fish farms can infect wild salmonids and influence post-smolt survival during 

costal and oceanic migration. Currently, high sea lice densities as well as escaped 

farmed salmon have been suggested to be the two most significant threats to the wild 

salmon populations in Norway. Due to the significant lice problems and reduced 

efficacy of the existing medicines available, alternative non-medical methods are 

under development and some of these methods are currently being implemented to 
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facilitate lice control in salmon farms. The use of cleaner wrasse [10], mechanical 

delousing and lice-skirts to reduce lice infestations are just a few alternative methods 

that have been applied by the aqua-culture industry the last few years. Regardless, 

salmon louse infestations remain persistent making it imperative to develop novel 

treatment methods to control the parasite population in order to sustain both farmed 

and wild salmon populations and a growing industry. However, most of these 

methods are not sufficiently efficient (or the capacity is too low) to bring the lice 

levels down to the limits enforced by the authorities alone and must be used in 

combination with other tools. Medical treatment of salmon louse has been the most 

important tool for parasite control. The last new medicine was introduced in 1999 

(SLICE®) and there is a strong demand for new efficient medicine. Increasing basic 

knowledge about key biological processes in the salmon louse is a long-term effort 

towards new treatment tools. In arthropods, ecdysone hormones regulate key steps in 

development, growth and reproduction. Hence, a highly relevant topic for research 

based innovation towards future sea lice control.  

1.2 Salmon louse  

Lepeophtheirus salmonis (Krøyer, 1837) is a marine ectoparasitic copepod on 

salmonid fishes from the genera Oncorhynchus (O. mykiss (Walbaum, 1792)), 

Salvelinus (S. alpinus (Linnaeus, 1758)) and Salmon (S. salar (Linnaeus, 1758) and 

S. trutta (Linnaeus, 1758) [11]. Two allopatric subspecies of Lepeophtheirus 

salmonis has been identified; Lepeophtheirus salmonis salmonis (Atlantic) and 

Lepeophtheirus salmonis onchorynchii (Pacific) [12]. The salmon louse has a 

northern circumpolar distribution and is naturally found on wild salmon populations 

[13]. The parasitic stages feed on mucus, skin and blood [14], causing local erosion in 

the epidermal tissue of the host, often on and near the head and dorsal fins [15]. At 

high infestation rates, chronic stress, lesions in the dermis and subcutaneous tissue 

can occur, compromising the osmoregulation of the host in which can lead to host 

mortality, especially to post-smolts [13, 15-17]. Salmon louse infestations has 

negative effects on the host`s reproduction, growth and quality. Damage to the skin 



 

 

16 

makes the fish more susceptible to secondary infections as the skin acts as their first 

line of defence against pathogens [18]. The salmon louse itself has also been 

suggested to be an important vector in transferring diseases between fish [19]. 

1.2.1 Salmon louse; biology, behaviour and host interactions 

The life cycle of the salmon louse (Fig. 1.) includes both a planktonic and a parasitic 

phase. It consists of eight developmental stages where each instar is separated by a 

molting event where the exoskeleton is shed [20-22]. The developmental rate is 

temperature dependent and at 10°C, it takes around 40(♂)-52(♀) days to complete the 

lifecycle on S. salar [23]. The planktonic stages after hatching, nauplius I and II and 

the free-living copepodid are lecithotrophic (feeding on yolk reserves only [24, 25]. 

Planktonic stages are passively dispersed by the ocean currents that enables them to 

spread over great geographic distances and infect farming sites up to 30 km away [26, 

27]. To increase host-parasite encounter, the infectious copepodid displays both 

positive phototactic and rheotaxic qualities. This allows the copepodid to seek 

towards the upper water column (> 27 ‰ salinity) where they react to pressure waves 

generated by a nearby swimming fish [28]. It is believed that the copepodids use 

chemo- and mechano sensors located on their frontal antennas to identify the right 

host [29, 30]. The copeodid attach to the host using the 2nd antennae which has hook 

like structures [13] and starts to feed instantly after attachment [31]. During molting 

into and through the two attached chalimus stages (Fig. 1.), the lice generate and 

remains attached to the host by a frontal filament [32]. Sexual dimorphism is apparent 

in the chalimus II stage [33]. After the chalimus stages, the louse molts into the 

mobile pre-adult I and II and, finally, the adult stage. In the mobile stages, the lice are 

able to feed over a larger area of the host and thereby increasing the virulence 

significantly [16]. Males become adults prior to the females and once males are adult, 

they locate immature pre-adult II female and engage in precopula. The male deposit 

spermatophores onto the genital complex of the female [34]. Despite deposition of 

the spermatophore and guarding of the females, polyandry is known to occur which 

can lead to multiple paternities [35, 36]. A female louse is thought to be able to 
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produce eggs throughout her lifetime (≤ 15.5 months in the lab) and each pair of egg 

strings can result in as much as 1200 eggs [36, 37].  

 

 

 

 

 

 

 

 

 

L. salmonis infestations and the degree of damage that is inflicted upon the host 

largely depend on the amount of lice present and host size leaving post-smolts 

particularly vulnerable to the parasite [15, 38]. In addition, the effects of salmon louse 

significantly vary between species due to natural resistance. Juvenile pink (O. 

gorbuscha) and coho (O. kisutch) salmon rejects L. salmonis copepodids faster than 

chum (O. keta) and Atlantic salmon [39, 40]. Atlantic salmon has been shown to 

Fig. 1. Representation of the life cycle of Lepeophtheirus salmonis. The generation time 

of adult male and females are 40-52 days.  Nauplia I/II and the free-swimming copepodid 

are nourished by yolk-reserved until the copepod becomes parasitic. The adult female 

generates a new pair of egg strings every ten days. Both development and reproduction is 

temperature dependent and the given time-points correspond to 10 °C. The figure is from 

Schram 1993 and adapted by The Marine Institute of Galtway. 
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possess a limited inflammatory response and epithelial hyperplasia compared to the 

coho and chinook (O. nerka) salmon [40]. Recent gene expression analysis of skin 

from susceptible and resistant species has found that the susceptible species have a 

lower expression of pro-inflammatory genes compared to more resistant species [39, 

41-44]. Additionally, Atlantic salmon has compared to the more resistant salmonids a 

lower concentration of protective mucosal lysozymes and proteases due to thinner 

epidermis and less mucosal cells [45]. In addition, some studies have indicated that 

the mucosa of susceptible hosts stimulates secretion of trypsin-like proteases and 

prostaglandin E2 (PGE2) from the salmon louse, which is thought to modulate host 

immunity [46-49].  

1.2.2 General anatomy of the salmon louse 

Cuticle 

The exoskeleton of arthropods consists of chitin, sclerotin and calcium carbonate, 

which pose a unique challenge for growth due to its rigid structural arrangement. In 

order to grow, arthropods must form a new skeleton before discarding the old cuticle 

(molt). Molting requires a series of physiological steps, which is initiated by 

separation of the old cuticula from the underlying epidermal layers. The newly 

created gap (exuvial space) is filled with molting fluid where the old exoskeleton is 

digested from underneath, and the protein components are absorbed and reused to 

build the new exoskeleton. The underlying tissue starts to secrete the new soft 

exoskeleton that is convoluted in order to expand when old exoskeleton is shed. After 

shedding, the new soft exoskeleton is inflated due to influx of water and hardening of 

the new exoskeleton (sclerotinization) begins. The new exoskeleton is folded 

allowing the animal to increase in size during the instar phase [33].  

Subcuticular tissue 

The subcuticular tissue (Fig. 2. black frame) is located underneath the exoskeleton 

(cuticula) and is found throughout the louse. The tissue is thought to perform 

functions similar to those of the liver and is the site of vitellogenin and yolk-
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production in adult females [25, 50]. In addition, genes involved in fatty-acid 

metabolism and amino acid degradation is associated with the tissue [51] Different 

types of glandular tissues are present with in the subcuticular tissue [32].  

Alimentary canal 

No functional gut is present in the nauplius stage but intestinal tissue fully develops 

during the copepodid stage. The gut stretches all the way from the mouth located 

anteriorly in the cephalothorax to the rectum of the animal located posterior in the 

abdomen (Fig. 2.) [52]. Not surprisingly, expression of digestive enzymes i.e. 

proteases and lysosomal genes are present in the intestine [51, 53]. It has been shown 

that pancreatic function is located to the intestine in salmon louse [53], which is 

different from members of the malacostracan, which have hepatopancreas where liver 

and pancreas function is co-localized.  

Reproductive organs 

The ovaries (Fig. 2. white frame) and testes are paired organs located on each side of 

the coalesced eyes in the anterior part of the cephalothorax. The ovaries continuously 

produce oocytes that are transported via the oviduct to the genital segment where the 

oocyte matures. Vitellogenesis takes place in the genital segment. Maturation of the 

oocytes is temperature dependent and takes approximately 10 days at 10 °C. 

Spermatozytes are produced in the male testes and are transferred to the female via 

spermatophores that are deposited on the female genital segment [34].  
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1.3 Nuclear receptors  

Nuclear receptors (NRs) make up an ancient superfamily of mostly ligand-dependent 

transcription factors for cell growth and differentiation, metabolism, homeostasis and 

embryonic development by directly linking extracellular signals and transcriptional 

response [54-56]. Mutations in NRs are associated with many common and lethal 

disorders hence extensive research focus on understanding and modulating the NR 

functions in order to develop pharmaceuticals that target NRs. Members of the NR 

superfamily are believed to be present in all metazoans and are classified into six 

subfamilies based on multiple sequence alignments and phylogenetic analysis of 

conserved domains [54, 57-61]. NRs like the thyroid receptor, retinoic X receptor and 

steroid receptors (i.e. glucocorticoid receptor and the oestrogen receptor) are well 

studied in vertebrates and have given important knowledge to the nature of NRs and 

their ability to directly regulate gene expression. In insects, the ecdysone receptor 

(EcR) and its partner ultraspiracle (USP) has been subjected to intensive studies. 

However, much remains to be learned about the role of NRs physiological pathways 

Fig. 2. L. salmonis adult female. The sub-cuticular tissue (black frame) is found 
underneath the cuticula around the edges of the cephalothorax (CT), abdomen/genital 
segment (Ab/G). The alimentary canal is blood filled and stretches from the CT to the 
anterior of the Ab/G. The ovaries (white frame) are situated in the front of the coalesced 
eye. Testes are found in the same position in male lice.  The oviducts reach from the 
ovaries to the Ab/G. Maturing oocytes can be seen in the Ab/G (marked with asterisk). 
Scalebar  = 5 mm  
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such as development and reproduction in other arthropods. In the human genome, 48 

different NRs are identified compared to the Drosophila genome containing 21 [62], 

while 23 NR or NR-like sequences are predicted from the L. salmonis genome 

(Licebase.org: unpublished). The primary feature distinguishing the NRs from other 

transcription factors is their ability to bind ligands. The ligands include a vide range 

of small hydrophobic compounds that are derivatives of vitamins, retinoids, fatty 

acids, lipophilic hormones and cholesterol.  

The NR genes presumably evolved from a common ancestor more than 700 million 

years ago and diversified and duplicated into the subfamilies known today. The 

evolved ability to bind ligands as well as the ability to homo- and heterodimerize and 

bind DNA, increased the possibilities and complexities of signal transduction and is 

considered a potential driving force in the evolution of higher organisms.  

In classical signal transduction, an external ligand bind to a membrane-bound 

receptor that initiates a cascade of events in the cytoplasm, eventually activating 

nuclear transcription factors. In contrast to these very complex and “time-consuming” 

pathways, the NRs can shorten the time of signal transduction by their simultaneous 

ligand and DNA binding ability. This capability allows for signals to be transferred in 

a one-step response that directly affects the expression of the target gene. Generally, 

the NR signalling pathway is initiated by diffusion of hydrophobic ligands through 

the nuclear membrane followed by receptor binding or binding of ligand to the 

receptor in the cytoplasm, dependent on the receptor. Following binding of a ligand, 

the receptor complex will translocate to the nucleus or, if already present in the 

nucleus, bind to specific hormone response elements (HRE) (reviewed in [55]). 

Regulation of gene expression of NRs is enabled by recruitment of co-activators and 

co-repressors, which modulate gene transcription by modifying the chromatin 

architecture 2 (Fig. 3.) [3].  

                                            

2 Chromatin structure is modified by ATP-dependent chromatin remodelling complexes and histone modifying complexes. 
Enzymatic modification includes acetylation, methylation, phosphorylation and ubiquitinylation (e.g. acetylation relax 
chromatin structure and recruits the transcription machinery in contrast to methylation which condense the chromatin 
structure and prevents transcription). 
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1.4 Discovery of the Ecdysone Receptor 

In 1974, Ashburner and his colleagues postulated a hierarchical genetic response 

model for the puffing of polytene chromosomes induced by ecdysone based on the 

work performed earlier by Peter Karlson [63]. The model was based on studies of 

salivary glands from Drosophila where “puffs” occurred at specific loci on the 

chromosomes when treated with ecdysone. The “early puff” response was rapid and 

peaked at four hours in the presence of protein synthesis inhibitors, suggesting the 

ecdysteroids to act directly on the chromosomes. A set of “late puffs” was observed 

to follow the “early puff” response, however, the late puffs did not occur in the 

presence of protein inhibitors. The observations lead Ashburner and his colleagues to 

suggest that the ecdysone bound to a cognate receptor protein that directly activated 

“early puff” expression and that the protein product of the initial response induced a 

larger set of “late puffs” expression [64].  

Fig. 3. Co-activator and co-
repressor complexes are 
required for nuclear receptor-
mediated transcriptional 
regulation. The figure illustrates 
the complexity of eukaryotic 
transcription. 
 
Copied from [3]. 
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Based on the work of Ashburner and his colleagues, Koelle et al., [65] isolated and 

characterized the ecdysone receptor (EcR) from Drosophila by screening cDNA 

libraries for members of the steroid receptor family. Although the gene product 

acquired the properties consistent with an ecdysone receptor binding both active 

steroid and DNA, the receptor was later found only to be fully functional when 

dimerized to a second NR, ultraspiracle (USP) a homolog of the retinoid X receptor 

(RXR) found in vertebrates and crustaceans [66, 67]. The EcR was initially 

recognized as the molting receptor but considerable research the last few decades has 

shown that it is also a central regulator of major developmental and biological 

processes across the arthropod phyla. A number of EcR orthologs have also been 

identified in nematodes, molluscs, leeches, squid and polychaete worms [68]. The 

discovery of the ecdysone receptor as a nuclear receptor and target for ecdysone did 

not only revolutionize the field of arthropod endocrinology but also showed that the 

NRs evolved prior to the divergence of protostomes and deuterostomes.  

1.4.1 Structural domains of the Ecdysone Receptor 

The EcR is the ortholog to the vertebrate farnesoid X receptor (FXR) [69] and shares 

a similar organisation of domains and core modular architecture common to the NRs 

(Fig. 4.) [70]. Flanked between a highly variable N-terminal (A/B-domain) that 

harbour a ligand-independent-activation function-1 (AF-1) and the hinge region (D-

domain) that plays a role in nuclear translocation [71] and subcellular distribution, is 

the central DNA-binding domain (DBD; C-domain). The DBD is highly conserved 

maintaining about 50 % identity between all NRs in the superfamily. The domain 

contains two zinc-finger motifs that facilitate both sequence-specific interaction with 

DNA and receptor complex-DNA dimerization [72]. Most importantly, in terms of 

function, is the ligand binding domain (LBD; E-domain) that includes the ligand-

dependent transcription activation function-2 (AF-2). Moreover, some NRs contain a 

highly variable C-terminal F-domain that may be involved in the in co-factor 

recruitment [73].  

 



 

 

24 

 

 

 

 

Ligand binding 

To date, the structure of five insect EcR-LBD/USP-LBD in complex with 

ecdysteroids or inhibitors have been determined by X-ray crystallography [74-77]. As 

expected, all EcR-LBD tertiary structures displays a canonical shape made up of 12 

α-helices and an anti-parallel β-sheet that pack together and facilitate the formation 

of a hydrophobic ligand binding pocket (LBP). Although EcR is capable of ligand-

binding in the absence of USP, the affinity for ecdysteroid binding increase 

significantly in the presence of its heterodimerization partner [78]. After binding of 

the ligand, dissociation of ligand-receptor complex is prevented by folding of Helix-

12 (also called AF-2) across the pocket. The conformational change of the helix 

exposes an interactive surface enabling recruitment of co-activator proteins and 

members of the transcription initiation complex beginning transcription. The LBD of 

EcR is flexible and capable of adapting the LBP to ligands with different chemistries 

[79]. This feature explains how some arthropods can utilize various ecdysteroids to 

regulate development at different life stages. The absence or presence of ligand 

determines how the ecdysone receptor binds to DNA and associates with either co-

activators or co-repressors (Fig. 3.) [80-82]. The USP receptor in insects is defined as 

an orphan receptor because it is locked in an antagonistic conformation preventing 

Fig. 4. Schematic overview of the primary structure of NRs- important properties is listed 
under the corresponding domain. The A/B domain (AF1) is associated with both ligand 
dependent and ligand independent transcriptional activation mediating crosstalk between 
signaling pathways. The C-domain (DNA-binding domain (DBD)) is primarily involved in 
DNA-dimerization and initiates binding of co-factors. The highly variable D-domain links the 
DBD and E/F region with the conserved ligand binding domain (LBD) which contributes to 
dimerization and recruitment of co-regulatory factors. The F part of the domain is highly 
variable and can be absent in some nuclear receptors. 



 

 

25

binding of ligand [83]. In contrast, crustacean RXRs has the ability to bind ligands 

including 9-cis retinoic acid, methyl farnesoate and neurotransmitters [84, 85].  

EcR/USP complex-DNA interactions  

The DBDs of the EcR/USP binds as a heterodimer to specific ecdysteroid response 

elements (EcREs) which are half-sites with a one base pair spaced inverted repeat 

(palindrome; IR1; 5`-AGGTCA-3`) located in the regulatory regions of target genes 

[86-88]. Upon binding of DNA, the EcR/USP heterodimer adopts an asymmetrical 

organization that induces a conformational change in the LBD of USP, which 

stabilises the EcR/USP/DNA complex and aid in the fine-tuning of gene regulation 

[89]. 

1.4.2 EcR mediated ecdysone signalling   

Ecdysone and ecdysone signalling has mostly been studied in holometabolous insects 

like the model organism Drosophila melanogaster due to the major transitional 

changes they undergo during metamorphosis. However, some crustacean species like 

shrimp, crabs, lobster and very recently the salmon louse has been increasingly 

investigated due to their commercial importance and, therefore, understanding of 

mechanisms regulating growth and reproduction has been the topics of investigation. 

Insects and crustaceans differ in many ways e.g. growth, sexual differentiation, 

reproduction and life cycles but common for both groups are that these biological 

events are regulated by ecdysteroids [90]. Additional neurohormones and peptide 

hormones such as hyperglycemic hormones (e.g. molt-inhibiting hormone among 

others) and farnesoic acids (e.g. methyl farnesoate) are important regulatory factors in 

addition to external environmental factors (e.g. temperature, nutrition and salinity). 

Crosstalk between signalling pathways regulated by these factors allows for 

adaptation of the hormonal response to meet the functional requirements of the target 

tissue (for more information please see reviews [90-93]). However, as these 

regulatory functions are beyond the scope of this study they will not be further 

addressed.  
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Just like the holometabolous insects, the molt cycle in crustaceans results in extensive 

physiological changes in addition to changes in the integument. Molting is not just 

restricted to shedding of the exoskeleton but also the series of events required for 

synthesis, degradation and exchange of the old exoskeleton to facilitate growth and 

metamorphosis3 [94-96]. During metamorphosis, an extensive remodelling takes 

place in organs like the hepatopancreas, muscles and neurological and adipose tissue 

in order to morphologically adapt into the new life stage. During this remodelling, 

some tissue is triggered to undergo programmed cell death and histolysis and some 

tissue will grow and differentiate while others will not respond at all [97]. All the 

processes associated with molting and metamorphosis, are triggered by pulses and 

fluctuating levels of circulating ecdysone (reviewed in [55]). During the molting 

cycle, the concentration of ecdysone can fluctuate dramatically (e.g. between < 10 

ng/ul and > 350 ng/ul) in juvenile lobster Homarus americanus [98] in a time-

dependent manner. The titer remains low during intermolt and postmolt stages but a 

peak is reached in the premolt stage with an abrupt drop in ecdysteroid concentration 

that triggers the shedding of the exoskeleton [55, 99].  

The extensive physiological and biological changes that take place during the life 

cycle is achieved by binding of ecdysone to the EcR/RXR complex, which results as 

proposed by Ashburner et al., [64] in the regulation of a conserved hierarchical 

cascade of hundreds of ecdysone-responsive early genes and early-late genes. The 

ecdysone derivative 20E has in both insects and found to be biologically active 

hormone during molting [100] in addition to ponasterone A (PonA) present in  

crustaceans. The gene products include but are not limited to the transcription factors 

E74, E75, Drosophila hormone receptor 3 (DHR3), Broad-Complex (Br-C) and FTZ 

transcription factor-1 (FTZ-F1) [101-105]. Products of the early genes subsequently 

regulate ecdysone responsive late-genes that determine the phenotypic effects of the 

ecdysteroids in a time and tissue specific manner [106]. In addition, in response to the 

                                            

3 Not all crustaceans go through complete metamorphosis. In addition, molting pattern may vary between species. 
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increase in ecdysone level, EcR provides an auto-regulatory loop and activate its own 

transcription thereby increasing its own expression [65].  

EcR is typically found in different forms that allows for differential regulation within 

time and space. The key role that EcR plays in this comprehensive diversity of 

physiological and morphological processes is partially due to the various isoforms. 

This allows for differences in the receptor`s ability to repress and activate expression 

of down-stream genes and hence influence separate physiological functions. Most of 

the EcR variants differ mainly in the N-terminal region which is associated with 

regulation of transcription [107-109], however, splice variations of the hinge region 

and the LBD has been identified in some crustaceans including, but not exclusive to 

the fiddler crab Uca pugilator [110], the kuruma prawn Marsupenaeus japonicus 

[111], the freshwater prawn Macrobrachium nipponense [112] and the water flea D. 

magna [113]. In Drosophila and Manduca sexta, three EcR isoforms (EcRA, EcRB1 

and EcRB2) differing in the length of their N-terminal have been identified with 

varying biological effects at different time-points [109, 114]. Mutations that block all 

three variants of EcR cause embryonic lethality while removal of one isoform cause 

effects in specific physiological processes. In Drosophila, EcRA is predominantly 

expressed in cells that proliferate and differentiate during metamorphosis of adult 

stages, whereas isoform EcRB1 and B2 are essentially expressed during larval stages 

in cells that enter apoptosis [115]. During arthropod development, the neuronal tissue 

undergo crucial remodelling of the mushroom bodies (MBs: the brain memory 

centre), olfactory circuits and neuromuscular junctions where axons and dendrites are 

pruned and regrown to fit their new functions. All neuronal remodelling events 

depend on the EcR, however, in an isoform-specific manner (reviewed in [116]).  

Growth and reproduction are two processes that are tightly regulated and connected 

in arthropods and ecdysteroids play a key role in both of them. The role of 

ecdysteroids in insect reproductive processes is well established and has shown to be 

important in vitellogenesis [117, 118], follicle development [119] and ovarian and 

oocyte development [120]. Depletion of the EcR level is associated with oogenic 

defects such as the presence of abnormal egg chambers and loss of vitellogenic stages 
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[120-124]. Although ecdysteroids are primarily considered to be molting hormones in 

crustaceans, it has become evident from recent studies that they also play a role in 

reproductive processes (e.g. vitellogenesis and ovarian maturation) [125, 126].  

The significant effect of ecdysteroids on gene regulation is also evident through 

several transcriptomic studies performed in Drosophila Kc cells. Consistent with the 

morphological changes during metamorphosis, genes encoding proteins involved in 

cell movement and organization associated with the cytoskeleton has shown to be 

regulated by 20E [127]. In addition, several members of the cytochrome P450 family, 

stress-response genes, lipid transporters, starvation-genes (i.e. peptidases) and Toll-

ligand response genes were regulated by 20E in an EcR- dependent manner [127, 

128]. These observations indicate that ecdysone signalling regulates many metabolic 

processes as well as the immune response. This is in accordance with microarray 

analysis of L. salmonis RXR knock-down lice where genes involved in fatty acid 

metabolism and transport, steroid biosynthesis and genes involved din different 

metabolic pathways (e.g. chitin metabolism and digestion) were regulated [129]. 

These studies demonstrate that ecdysteroids are associated with a large gene-

regulatory network, which illustrates the complexity involved in endocrine signalling. 

1.5 Biosynthesis of ecdysteroids  

Arthropods are incapable of synthesizing cholesterol de novo and are dependent on 

uptake of cholesterol or alkylated plant sterols through the diet for ecdysteroid 

synthesis. Ecdysteroids are polyhydroxylated steroid hormones that are synthesized 

by steroidogenic enzymes classified as members of the cytochrome P450 (CYP) 

family commonly known as the Halloween genes [1, 2, 130-133]. The biosynthesis of 

ecdysteroid hormones takes place in specific hormone producing tissues or glands 

such as the PG of insect larva [134], the ovarian follicle cells of adult insects  and the 

Y-organ (YO) in decapods crustaceans [135]. The ecdysteroids are then secreted into 

the circulatory system and transported to the peripheral tissue where conversion into 

the active metabolite by shade takes place. No tissue like the Y-organ has so far been 

identified in microcrustaceans such as the copepods. 
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The biosynthetic pathway of ecdysteroids is complex and can according to Mykles et 

al., [1] be divided into two stages: (1) conversion of cholesterol to 5β-diketol and (2) 

hydroxylation of 5β-diketol to the secreted steroid (Fig. 5.). The first part of the 

biosynthetic pathway where cholesterol is converted into 5β-diketol by the 7,8-

dehydrogenase neverland is similar in insects and crustaceans but the second part is 

more complex in crustaceans as they produce a broader range of ecdysteroids [136-

140]. The enzymatic conversion of 5β-diketol to the active metabolite is performed 

by the Halloween genes phantom (CYP306A1), disembodied (CYP302A1), shadow 

(CYP315A1) and shade (CYP314A1) where each gene is believed to perform one 

specific hydroxylation as mutations in these genes have resulted in low ecdysteroid 

levels, abnormalities in cuticula formation and embryonic death [130, 141-143]. 

Additional enzymes are contributing to the biosynthetic steps called “the Black box” 

which are a series of hypothetical reactions that results in the conversion of 7-

dehydrocholesterol to ketodiol. The precise intermediates in these steps are currently 

unknown, due to their chemical instability, however, the four enzymes 

CYP307A1/spook (spo) [144], CYP307A2/spookier (spok) [144, 145], CYP6T3 

[146] and non-molting glossy/shroud (nm-g/sro) [147] have been characterized and 

are considered to act during these steps. In decapod crustaceans, it has been suggested 

that the biosynthetic pathway has branching points at the conversion of diketol and 

ketodiol (see [1] for extensive description) resulting in four final ecdysteroid products 

that are converted to either 3-dehydro-20-hydroxyecdysone, 20E or PonA by shade 

dependent on the precursor steroid. For simplicity, only one pathway is presented in 

Fig. 5.  

Although the biosynthesis of ecdysteroids have mainly been investigated in insects 

and to some degree in decapod crustaceans, orthologs of the Halloween genes have 

been identified in microcrustaceans such as the branchiopod water flea Daphnia 

magna [148], the copepod Calanus finmarchicus [149] and the salmon lice Caligus 

rogercresseyi [150] and Lepeophtheirus salmonis  (present study).  
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Octopamine receptor 

It has been suggested that ecdysteroids are capable of interacting with G protein-

coupled receptors (GPCRs) thereby activating a broad range of signalling pathways. 

The GPCRs is recognized by a structural motif containing seven transmembrane 

domains that show considerable diversity in their sequences [151].  One such GPCR 

is the octopamine receptor (OctR), which is known to bind the biogenic amids 

octopamine and tyramine, which acts as neurotransmitters, neuromodulators and 

neurohormones in both vertebrates and invertebrates (reviewed in [152]). The OctR 

mediates attenuation of adenylyl cyclase, which induce responses of secondary 

messengers such as cyclic nucleotides (cAMP, cGMP), calcium ions (Ca2+) and 

inositol-1,4,5-triphosphate (IP3) that in turn regulates the activities of enzymes and 

nonenzymatic proteins in a wide variety of signalling pathways. Four different 

octopamine receptors (Oamb, Oct1βR, Oct2βR, Oct3βR) have been identified in 

Drosophila which all are expressed in the central nervous system but differ in their 

expression pattern in the peripheral tissues [153]. The presence of several octopamine 

receptors contributes to many behavioural and physiological reactions [154, 155] and 

more importantly for this thesis, the biosynthesis of ecdysteroids [156]. 
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1.6 RNA interference as an experimental tool 

RNA interference (RNAi) is a natural biological process in which small RNA 

molecules inhibit gene expression. It was first described by Fire et al., [157] in the 

nematode worm Caenorhabditis elegans and has since then been applied as an 

experimental tool to study the gene function in cell cultures and in vivo in different 

organisms. This is achieved by introducing double-stranded RNA (dsRNA) into an 

organism to manipulate gene expression. In this process, the complementary strand of 

the dsRNA becomes part of the RNA-induced silencing complex (RISC) a multi-

protein complex that identifies the corresponding target mRNA and cleaves it at a 

specific site. Next, the cleaved mRNA is targeted for degradation, which results in the 

loss of protein expression. The double-stranded RNA can be introduced in several 

ways such as RNAi vectors, soaking, through food or injection [157, 158].  

Since the discovery of RNAi as an analytical tool, a plethora of studies using dsRNA 

for gene knock-down has been applied in a variety of metazoan species to study the 

functionality of genes essential in development, growth and reproduction [50, 159-

161]. This includes genes involved in ecdysteroidogenesis and ecdysteroid signal 

transduction such as the EcR and RXR genes [123, 129, 162-164].  

Most RNAi studies in crustaceans have been performed on commercially important 

decapods but have very recently been employed to microcrustaceans such as the 

branchiopod Daphnia pulex [165, 166] and the copepod Lepeophtheirus salmonis 

[25, 167]. In the L. salmonis, protocols have been developed in order to perform 

functional studies both in larval [167] and pre-adult stages [25]. In larval stages, gene 

silencing is achieved by soaking nauplius I larva in dsRNA during their molt into the 

nauplius II stage. The experiments are normally terminated when the control animals 

reach the copepodid stage and potential phenotypes can be determined. Pre-adult 

animals, on the other hand, are injected with dsRNA in the CT and put on salmon for 

approximately 35 - 40 days. The knock-down effect has been detected two days after 

both treatment methods, however, the degree of knock-down decrease during the time 
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after treatment and has shown to cease between 14 - 40 days in the adult animals 

dependent on the gene [167, 168].  

RNAi provides an efficient tool to functionally assess genes within a genome and 

evaluate their role in signalling pathways or physiological processes. Dependent on 

the target gene, phenotypic traits be a direct effect of gene knock-down [25] however, 

it is important to keep in mind that phenotypes can be caused by indirect effects of 

decreased gene expression as reduced expression of some genes can affect many 

molecular processes. Moreover, it is crucial to distinguish between gene knock-down 

where gene expression is reduced as opposed to gene knock-out where gene 

expression is eliminated.  
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2. Aims of the study 

The overall objective of this research was to gain knowledge of the endocrine system 

in the salmon louse on a molecular level focusing on the ecdysone receptor (EcR). 

Ecdysone signalling through the EcR/RXR nuclear complex is well known to play 

vital roles in a multitude of biological processes in all arthropod species. Interference 

of the ecdysone signalling pathway is associated with molting arrest, embryonic death 

and disruption of reproductive processes. Therefore, it is of great interest to gain 

knowledge of the ecdysone signalling pathway in L. salmonis. Using RNA 

interference (RNAi) techniques we can get an in-depth understanding of the 

functionality of genes involved in the pathway, which in the future can be used in 

parasite control. The specific objectives for the present study were: 

• To characterize the LsEcR gene, describe the transcript expression pattern and 

study its functional role in reproduction using RNAi in adult female lice 

 
• To study the transcript pattern and function of the EcR during molting and 

development in salmon louse larvae through knock-down studies 

 
• To investigate the temporal expression pattern of the ecdysteroids: ecdysone, 

20-hydroxyecdysone and ponasterone A during molting and oocyte maturing 

using LC/MS/MS 

 
• To identify genes involved in the biosynthesis of ecdysteroids and investigate 

their function during early developmental stages 
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3. Abstract of papers 

3.1 Paper I: 

The salmon louse Lepeophtheirus salmonis (Copepoda, Caligidae) is an important 

parasite in the salmon farming industry in the Northern Hemisphere causing annual 

losses of hundreds of million US dollars worldwide. To facilitate development of a 

vaccine or other novel control measures to gain control of the parasite, knowledge 

about molecular biological functions of L. salmonis is vital. In arthropods, a nuclear 

receptor complex consisting of the ecdysone receptor (EcR) and the retinoid X 

receptor, ultraspiracle (USP) are well known to be involved in a variety of both 

developmental and reproductive processes. To investigate the role of the ecdysone 

receptor in the salmon louse, we isolated and characterized cDNA with the 

5´untranslated region of the predicted L. salmonis EcR (LsEcR). The LsEcR cDNA 

was 1608 bp encoding a 536 aa sequence that demonstrated high sequence 

similarities level to other arthropod EcRs including Tribolium castaneum and Locusta 

migratoria. Moreover, in situ analysis of adult female louse revealed LsEcR transcript 

to be localized in a wide variety of tissues such as ovaries, sub cuticula and oocytes. 

Knock down studies of LsEcR, using RNA interference, terminated egg production 

indicating that the LsEcR plays important roles in reproduction and oocyte 

maturation. This is the first report of on the ecdysone receptor in the economically 

important parasite L. salmonis. 

3.2 Paper II: 

The function of the ecdysone receptor (EcR) during development and molting has 

been thoroughly investigated in in some arthropods such as insects but rarely in 

crustacean copepods such as the salmon louse Lepeophtheirus salmonis (L. salmonis) 

(Copepoda, Caligidae). The salmon louse is an ectoparasite on Atlantic salmon that 

cause major economical expenses in aquaculture due to the cost of medical treatment 
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methods to remove lice from the fish. Handling of salmon louse infestations is further 

complicated by development of resistance towards available medicines. 

Understanding of basic molecular biological processes in the salmon louse is 

essential to enable development of new tools to control the parasite. In this study, we 

found L. salmonis EcR (LsEcR) transcript to be present in the neuronal somata of the 

brain, nuclei of muscle fibers and the immature intestine. Furthermore, we explored 

the function of LsEcR during development using RNA interference mediated knock-

down and through infection trials. Our results show that knock-down of LsEcR is 

associated with hypotrophy of several tissues, delayed development and mortality. In 

addition, combined knock-down of LsEcR/LsRXR resulted in molting arrest during 

early larval stages. 

3.3 Paper III: 

The salmon louse is a marine ectoparasitic copepod on salmonis fishes. Its lifecycle 

consists of eight developmental stages, each separated by a molt. In crustaceans and 

insects, molting and reproduction is controlled by circulating steroid hormones such 

as 20-hydroxyecdysone (20E). Steroid hormones are synthesized from cholesterol 

through catalytic reactions involving a 7,8-dehydrogenase neverland and several 

cytochrome P450 genes collectively called the Halloween genes. In this study, we 

have isolated and identified orthologs of neverland (nvd), disembodied (dib) and 

shade (shd) in the salmon louse L. salmonis genome. Tissue-specific expression 

analysis showed that the genes are expressed in intestine and reproductive tissue. 

Furthermore, knock-down studies using RNA interference in adult females showed 

that only shd terminates molting in larval stages. However, knock-down of nvd 

affected development of the ovaries and oocyte maturation. In addition, we 

performed knock-down studies of an ortholog of the Drosophila octopamine receptor 

(Oct3βR) a regulator of the Halloween genes, to determine its role during early 

development. Depletion of the Oct3βR ortholog in L. salmonis resulted in molting 

arrest, but did not down-regulate expression of all of the identified Halloween genes. 



 

 

38 

Our results show that ecdysone biosynthetic genes are present in L. salmonis and that 

ecdysteroids is necessary for both molting and reproduction in the lice.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 “The published papers are reprinted with permission from Elsevier. All rights reserved.” 
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4. General Discussion 

Steroid hormones have an essential role in regulating biological processes within all 

animals. In arthropods, one of the main steroid hormones is ecdysone (with its 

metabolic variants). Ecdysteroid signalling is crucial in arthropod physiology 

regulating a wide diversity of biological processes. Biologically active ecdysteroid 

hormones are synthesized from cholesterol via several enzymatic steps before it 

transducing its signal by binding to the EcR/RXR nuclear receptor complex. A wide 

range of studies have shown the importance of EcR/RXR signalling in hexapod 

insects but for many groups of arthropods like the copepods, very limited information 

exist about this basic biological system. In insects, it has been demonstrated that the 

ecdysteroid pathways has a key role in developmental transitions [123, 169-171] and 

reproduction [115, 119, 120, 124, 172, 173]. From arthropods other than hexapods 

the literature is more limited but some studies have been conducted in decapods, 

ticks, daphnia and copepods [110, 148, 174, 175] (present study). 

 In model organisms like Drosophila, detailed information exists about ecdysteroid 

function through a wide range of studies. This includes knock-out studies where it has 

been demonstrated that mutation and depletion of EcR are associated with embryonic 

lethality and disruption of reproductive processes. Hence, uncovering the functions of 

EcR as well as regulation of ecdysone production is an important step towards 

understanding basic physiological processes in the salmon louse. Emphasis is given 

to the function of the EcR during molting, development and reproduction through a 

range of experiments and functional studies (see paper I/II). To further understand 

ecdysteroid function, key genes involved in ecdysteroid biosynthesis and regulation 

(octopamine receptor) have been identified and functionally assessed (paper III).  
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4.1 Identification of ecdysteroidogenic genes and the 
ecdysone receptor 

4.1.1 Characterization of the ecdysone biosynthetic genes: 
neverland, disembodied and shade in L. salmonis 

Ecdysteroids are synthesized through several enzymatic steps performed by 

dehydrogenases and members of the cytochrome P450 family proteins coded by the 

so-called Halloween genes. In paper III, orthologs of the 7,8 dehydrogenase 

neverland (nvd) and transcripts from the Halloween genes disembodied (dib) and 

shade (shd) were cloned and sequenced from the L. salmonis genome. The amino 

acid (aa) sequence of all three enzymes showed low sequence identity to their 

orthologs, which is commonly seen in the CYP family. Only 33 – 40 % sequence 

identity is found between lepidopteran and dipterian Halloween gene orthologs but 

their functions are conserved [176]. However, it should be noted that one amino acid 

substitution of essential residues could change the catalytic specificity. As mentioned 

in the introduction, the ecdysteroid synthetic pathway is far more complex in 

crustaceans than insects. Both dib and shd can hydroxylate several different 

compounds (reviewed in [1]) indicating that the Halloween genes identified in L. 

salmonis could acquire the same competence. Only one transcript encoding one 

single ORF has so far been identified for each gene. However, successful sequencing 

of the 5`UTR was not accomplished in this study, hence, it cannot be excluded that 

several transcripts exist for the three genes.  

4.1.2 Characterisation of the L. salmonis EcR  

In paper I, three mRNA transcripts with highly different 5’ UTRs and alternative 

splicing, but encoding only one ORF of the L. salmonis EcR was identified based on 

sequencing and identity of conserved domains. Comparisons of L. salmonis EcR with 

other EcRs showed primary structural conservation across phyla (Fig. 2., paper I). 

Due to high degree of sequence similarities between the DBDs and to some extent the 

LBDs, we can assume that the LsEcR share similar functions as its homologs. Salmon 



 

 

41

louse has one copy of EcR and RXR (paper I and [129]) however, a minimum of 

three different ORF isoforms was identified for LsRXR.  

In mammals, variations of the 5`UTR of genes are relatively common and can either 

be expressed using different promoters [177, 178] or by alternative splicing within 

the UTR [179]. In L. salmonis it is evident that different levels of the EcR mRNA 

variants are present at different life stages. This suggests that EcR transcription is 

regulated by different promoters and/or alternative splicing during lice ontogeny. 

This could allow for rapid changes in gene expression in response to different stimuli 

e.g. during development and cell differentiation in a spatial and temporal manner 

(reviewed in [180-182]. However, in order to verify this, targeted studies 

investigating promoter function should be undertaken.  

4.2 Functional assessment of LsEcR during molting and 

development 

Developmental processes from embryogenesis to life stage transitions are under the 

influence of ecdysteroids in arthropods. In order to gain a deeper understanding of 

ecdysteroid signalling during molting of the salmon louse, attempts were made to 

measure the level of the three main steroid hormones known to be present in 

crustaceans: E, 20E and PonA, during the molting cycle of the copepod stage (paper 

III). This was challenging due to the combination of small sample sizes of the larval 

stages and technical difficulties with the LC/MS/MS. However, from the preliminary 

experiments, it was established that ecdysteroids are key regulators of molting in L. 

salmonis. PonA was present at higher levels compared to the other measured 

ecdysteroids in the pre-molting stage, which is in accordance with results from the 

shore crab Carcinus maenas [183]. Although we have not been able to successfully 

perform time specific measurements of ecdysteroid levels throughout the molting 

cycle in copepodids, the obtained data gives information of the ecdysteroid content in 

L. salmonis and provides valuable information to our understanding of the 

ecdysteroid regulatory system in the salmon louse.  
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Ecdysteroids exert their effect through the EcR/RXR receptor complex and reduced 

expression of EcR during early life stages is associated with molting defects and 

lethality [123, 169, 184, 185]. Surprisingly, RNAi knock-down of LsEcR in nauplia I 

larva did not cause immediate molting arrest, but resulted in viable copepodids 

identical to the control group even though significant knock-down of LsEcR was 

achieved (paper II). No deviation in swimming behaviour or histological aberrations 

(in sections) was detected in the LsEcR knock-down (LsEcRkd) copepodids. 

However, it should be noted that detection of LsEcR protein in the salmon louse has 

not been successful in this study and, therefore, we cannot rule out the possibility that 

residual protein sufficient to mediate ecdysone response is still present. Interestingly, 

similar results were observed in LsRXR knock-down larvae [167]. Although the 

ecdysone receptor is normally thought to act in a heterodimer with RXR, ligand 

binding without RXR has been reported [186]. These findings indicate that both 

members of the EcR/RXR complex can act as a receptor and function under certain 

conditions without its partner in other species. The same situation may apply in the 

salmon louse.  

However, further incubation of LsEcR knock-down animals (on fish) resulted in high 

mortality and the surviving lice exhibited severe tissue damage in their pre-adult 

stage (paper II). During Drosophila metamorphosis, extensive neuronal remodelling 

by pruning and regrowth of axons and neuronal cell death are essential in order to 

establish the fully mature brain architecture and connectivity between motor neurons 

and muscles necessary for muscle growth [187, 188]. Ecdysteroids play a key role in 

the regulation of neuronal remodelling through the EcR/USP receptor complex [189] 

hence, it is reasonable to assume that the severe degeneration of both neuronal and 

muscle tissue found in the LsEcRkd lice, is caused by silencing of LsEcR. In a recent 

study, Eichner et al., [129] showed that both an ortholog of advillin, a Ca2+-regulated 

actin binding protein important in nervous system development and motor neuron 

protein precursors involved in regulating motor neuron differentiation and survival 

was down-regulated in LsRXR knock-down lice. In addition, genes regulating muscle 

growth such as tropomyosin-2, twitchin and myosin heavy chain were down-regulated 
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accordingly, indicating that also muscle development is regulated, either directly or 

indirectly, by the ecdysteroid pathway in L. salmonis.  

Programmed cell death (PCD) has shown to be involved in both neuronal remodelling 

and organogenesis in insects in response to ecdysone [116, 119, 190]. RNAi studies 

in T. castaneum showed that EcRA plays a critical role in the 20E regulation of 

midgut remodelling through the EcR/RXR complex [191]. Midgut reorganisation is 

required in holometabolous insects and amphibians due to dietary changes between 

larval and adult stages [192]. The salmon louse shift from using yolk as the only 

energy source in the free-living stages to digesting host mucosa, skin and blood when 

they infect the host and initiate the parasitic phase of the life cycle. It is highly likely 

that differentiation of intestinal tissue occurs in order to adapt to the new diet and it is 

possible that ecdysteroids have a significant role in this process. The midgut 

epithelium in Drosophila and T. castaneum is replaced during metamorphosis by 

PCD and activation of caspases is triggered by induction of BR-C and E93 through 

ecdysone activation [190]. Eichner et al., [129] found that apoptosis regulating factors 

(inhibitor of apoptosis 2 protein) are down-regulated after knock-down of LsRXR. 

Considering that EcR and RXR to a large extent govern the same pathways, it is not 

unlikely that LsEcR knock-down could influence midgut development (e.g. through 

PCD) explaining the large developmental abnormalities found in pre-adults when 

LsEcR was silenced (paper II). However, to confirm if abnormal PCD activity 

creates these developmental aberrations further studies need to be performed (e.g. 

assess expression levels of caspases and other key genes important in PCD in 

LsEcRkd lice).  

We observed a striking difference in phenotype between individual knock-down of 

LsEcR and LsRXR compared to the combined knock-down of the receptors. The 

double knock-down animals (LsEcR/LsRXR) failed to enter the copepodid stage 

whereas single knock-downs successfully molted into apparently healthy infectious 

copepodids (paper II). In order to molt, arthropods are strictly dependent on the 

ability to remodel chitinous structures and malfunction in chitin metabolism leads to 

developmental disorders. Ecdysteroids have shown to be both positive and negative 
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regulators of chitin synthesis [193]. In Drosophila, it is indicated that ecdysone 

through the activation of EcR/RXR has a direct regulatory role of the chitin synthase 

genes as EcREs are found in their promoter region [194]. The promoter region for the 

two chitin synthases present in L. salmonis has not been examined for EcREs. 

However, down-regulation of sub-cuticular LsCHS2 in both LsEcR and LsEcR/LsRXR 

knock-down lice strongly suggests that they are regulated by the ecdysteroid pathway 

through the EcR/RXR complex (paper II). RNAi experiments in Drosophila embryo 

showed that the CHS1 gene krotzkopf-verkehrt (kkv) is essential for maintaining the 

structure of procuticula and stabilisation of the epicuticula as well as epidermal 

morphology. Sclerotization and melanization were additionally impaired in these 

animals, suggesting that the activity of chitin synthases regulate several enzymes in 

chitin metabolism [195]. It is indeed possible that the molting arrest of 

LsEcRkd/LsRXRkd animals is caused by disruption of chitin metabolism. 

Furthermore, even though no visible phenotype was observed in the LsEcRkd animals 

in the copepodid stage, several enzymes important in chitin metabolism (LsCP1, 

LsCHS2, LsChs1, LsChs2) were affected which could cause discrepancies in the 

molting process. This could account for the high mortality observed for the LsEcRkd 

lice during the infection trial (paper II).  

4.3 Functional assessment of LsEcR during reproduction  

Ecdysteroid signalling is essential for reproduction in L. salmonis. Transcript knock-

down of the ecdysone biosynthetic enzyme LsNvd (paper III) as well as the 

transcription factor LsEcR (paper I) inhibits the development of reproductive tissues, 

but more severely for the latter where egg production is completely abolished and 

females do not extrude any eggs.  

In D. magna, ovarian ecdysteroids are transferred into the oocytes as free 

ecdysteroids or as polar (mostly phosphate esters) or apolar (e.g. long chained fatty 

acid esters) ecdysteroid conjugates. It is suggested that the purpose of the conjugates 

is to act as inactive storage forms of maternally derived hormones that can be 
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hydrolyzed into active ecdysteroids during embryogenesis [125]. Transcripts of both 

LsNvd and very low levels of the two Halloween genes are found in the ovaries (In-

situ hybridization and Licebase.org; unpublished) of L. salmonis (paper III) 

suggesting that either complete and/or partial biosynthesis of ecdysteroids take place 

in the reproductive tissue. This is supported by the observed irregularities of the 

ovaries and follicular epithelium lining the oocytes in the adult female lice when 

LsNvd transcripts are significantly reduced (paper III). A complex network of 

signalling events acts to establish the lining of the follicular cell layer of the oocyte 

during maturation. In both Drosophila and T. castaneum, depletion of EcR disrupts 

development of the follicular cell layer necessary for oocyte maturation and loss of 

vitellogenic stages thereby preventing embryogenesis. Blocking of EcR signalling in 

follicular cells prevents proper organisation of the oocyte membrane presumably 

causing anomalies in the actin cytoskeleton in the microvilli [196]. Microvilli are 

important in the assembly of the vitelline membrane [197] which stored information 

of embryo patterning in Drosophila. Disruption of the vitelline membrane aborts 

embryonic development due to loss of eggshell function resulting in sterile females 

[198]. The only invertebrate where this is described in detail is for Drosophila and 

although the evolutionary distance to L. salmonis is large it is tempting to speculate 

that the lack of normal egg chamber generation and egg string formation in adult 

female LsEcRkd lice (paper I) is caused by aberrations in the cytoskeleton. This 

speculation is further supported by up-regulation of actin depolymerisation factors in 

LsRXRkd lice [129] that indicates impaired cytoskeleton function by increased 

depolymerisation. Dysfunction of the cytoskeletal components interferes with a 

cascade of events such as cell differentiation, vesicle/organelle trafficking and 

synaptic signalling. Based on this, it is possible that the extensive tissue damage 

observed in LsEcRkd animals in the infection trial (paper II) is linked to alterations 

in the actin filaments. In contrast to knock-down of LsEcR, knock-down studies of 

total LsRXR transcript in adult females showed that the females were able to generate 

and protrude egg strings, which either did not hatch or produced offspring that was 

not viable [129]. Even though LsEcR and LsRXR transcripts locate to the same tissue 

and the same degree of knock-down is achieved (~ 60 %), it appears that the absence 
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of LsEcR results in larger consequences for the reproductive processes than the 

absence of LsRXR. Histological assessment of the genital segment of both LsEcR and 

LsRXR knock-down lice shows the presence of individual oocytes in the LsRXRkd 

lice, whereas the oocytes are completely disintegrated in the LsEcRkd lice. As 

mentioned earlier, the presence of residual LsRXR protein or homo/ 

heterodimerization with an alternative partner has to be taken into account.  

The last molt of the L. salmonis life cycle occurs between the pre-adult II and adult 

stage hence possible variations in ecdysteroid level in the adult female lice is 

presumably related to reproductive processes. Since ecdysteroids are key regulators 

of arthropod reproduction, investigation of the ecdysteroid level in adult female lice 

was performed. In Paper III we demonstrated that the ecdysteroid level is 

significantly different between the CT and the Ab/G segment of gravid adult females. 

One explanation for this is that ecdysteroids in CT are important for oocyte 

production and maturation as well as yolk production while the high levels in the 

genital segments could serve as a source for maternally provided ecdysteroids. 

Presence of LsNvd, LsDib and LsShd mRNA transcripts in unfertilised oocytes 

suggests that the oocytes are capable of de novo synthesis from cholesterol, 

supporting the high level of ecdysteroids present at the end of L. salmonis oocyte 

maturation in. The rise in the ecdysteroid level confirms previous reports from other 

crustaceans where ecdysteroids are associated with promotion of the ovary [125, 175, 

199]. In adult Drosophila, ecdysteroids stimulate both proliferation and maintenance 

of germline stem cells through EcR signalling. It has also been shown that ecdysone 

signalling is required in follicle formation in somatic cells (review in [122]), which is 

the site for vitellogenin synthesis in adult insects. In L. salmonis, yolk production 

takes place in the sub-cuticular tissue. The yolk proteins are taken up by oocytes in 

the genital segment [25, 50] and are either directly or indirectly dependent on EcR-

transduced ecdysteroid signalling to occur (paper I). Knock-down of LsRXR had a 

similar effect on yolk protein production [129]. Since the salmon louse is 

lecitotrophic, the eggs must be supplemented with sufficient nutrition that ensures 

proper embryogenesis and development until the parasitic copepodid can take up 
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external food, which occurs after successful host settlement. Energy conservation by 

incorporation of nutrients (i.e. aa, lipids, carbohydrates, proteins and hormonal 

metabolites) into the maturing oocyte is, therefore, beneficial in order to prolong the 

free-living lifetime of the lice. The presence of ecdysteroids in the oocytes could also 

explain why only LsShd gives a significant phenotype upon larval knock-down 

whereas LsNvd and LsDib gave no phenotype (paper III: see below).  

4.4 Biosynthesis of ecdysteroids in L. salmonis 

Several enzymes are involved in the biosynthesis of ecdysteroids. In this study, three 

enzymes neverland, disembodied and shade were investigated that represents three 

parts of the biosynthetic pathway; the initial, middle and the last steps (paper III). 

The data obtained give us insight into the localisation and function of the enzymes 

during specific physiological processes. However, it should be mentioned that no 

functional enzyme assay was conducted in the present study.  

4.4.1 Functional assessment of ecdysteroid biosynthetic enzymes 
in L. salmonis early development 

In other species, knock-down of Nvd, Dib and Shd are associated with embryonic 

defects resulting in mortality [130, 141]. Functional assessment of the genes in L. 

salmonis indicates that, of the investigated ecdysteroidigenic genes, only the shade 

gene product is necessary for development during the lecitotrophic stages. The results 

obtained (paper III) indicate that the regulation of ecdysteroid synthesis in L. 

salmonis might differ from that described in previous literature. 

As mentioned, the salmon louse free-living larvae rely solely on yolk nutrition that is 

deposited into the eggs until it becomes parasitic during the copepodid stage. Nauplia 

I larvae with significant knock-down of LsNvd and LsDib molted through the 

nauplius II stage and into the copepodid stage and did not show any morphological 

aberrations. However, depletion of LsShd in nauplia I resulted in immediate molting 

arrest. We hypothesize that sufficient ecdysone is synthesized in the maturing oocytes 

and are stored as part of the food package. The ecdysone reserves are then converted 
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by LsShd into the active metabolite that is used by the LsEcR/LsRXR complex 

during embryogenesis and development from the free-swimming to the parasitic 

stage. The hypothesis is supported by the increase in ecdysteroid level observed at the 

end of oocyte maturation (paper III) prior to the extrusion of the eggs and initiation 

of embryogenesis. In addition, preliminary RNAi knock-down studies of the L. 

salmonis shadow (LsSad) (CYP315A1) ortholog showed the same results as those 

obtained by knock-down LsNvd and LsDib (data not shown). To the best of our 

knowledge, the no-loss of function phenotype observed in the LsNvd, LsDib and 

LsSad, has not been previously reported in arthropods and shows a novel regulation 

pathway that is most likely an adaptation to the lecitotrophic life stages of the parasite 

larvae. Whether this regulatory mechanism is unique to L. salmonis or similar in 

other lecitotrophic parasite larvae remains a topic for future studies.  

4.4.2 Functional assessment of L. salmonis Oct3ββR during early 
development  

Octopamine receptors are known to modulate an extensive variety of physiological 

processes including learning and memory responses, neuronal development [154], 

ovulation [200] and ecdysteroidogenesis [156]. We searched the salmon louse 

genome using the Drosophila melanogaster Oct3βR (DmOct3βR) sequence and 

identified a putative ortholog sequence (paper III). RNAi knock-down of LsOct3βR 

gene in nauplia I resulted in immediate molting arrest resembling the phenotype 

observed for the LsShdkd animals.        

     

Recent studies of DmOct3βR showed that depletion of the gene negatively regulated 

the ecdysone biosynthetic genes present in the PG [156]. Based on this study, we 

performed RT-qPCR on the identified biosynthetic genes LsNvd, LsDib and LsShd 

and the LsEcR and LsRXR nuclear receptors. Surprisingly, in the LsOct3βR RNAi 

animals, LsShd transcripts were significantly up-regulated while LsDib remained 

unregulated. These results contradict the observations from Drosophila, where dib 

was significantly down-regulated [156]. LsNvd was however regulated in a similar 
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manner in both L. salmonis and Drosophila. The findings in this study indicate that 

the ecdysteroid biosynthetic pathway in L. salmonis is different compared to that of 

insects, which is in agreement with observations from other crustaceans (review in 

[1]). Interestingly, the LsOct3βR appears to only regulate LsEcR and not its partner 

LsRXR, which remained unaffected by the LsOct3βR knock-down in the salmon 

louse. Originally, EcR and RXR are thought to act as heterodimeric partners. 

However, this study (Paper I, [129]) indicate that they are regulated in different ways 

dependent on the physiological/biological conditions. It is evident from the present 

study that the LsOct3βR is necessary for proper ecdysteroidogenesis and ecdysone 

signalling in L. salmonis.  

4.5 The ecdysone pathway and lice control 

From the aspect of applied biology, knowledge of the ecdysone receptor and the 

ecdysone biosynthetic enzymes may contribute to the development of novel treatment 

methods against the salmon louse. In insects, ecdysteroid-controlled mechanisms like 

molting and growth has been used as targets for development of pesticides with low 

environmental impact and vertebrate toxicity, therefore, there is a potential for novel 

medicines targeting the ecdysone hormone system in L. salmonis. The best prospect 

in the area is to exploit the susceptibility of the ecdysone receptor using 

antagonists/agonists, administered either by oral or bath treatment, that is specific to 

the LsEcR. However, this requires investigation of the shape and structure of ligand-

binding pocket of the LsEcR. Teflubenzuron and diflubenzuron are today used as an 

anti-lice medicine and targets the molting process, by interfering with the chitin 

synthesis. These chemicals are species unspecific and have shown to have a negative 

impact on other arthropods such as shrimp, lobster and copepods in the environment 

[201]. In addition, teflubenzuron and diflubenzuron only work on molting stages 

hence adult lice and egg strings are not affected. LsEcR specific of 

antagonists/agonists would reduce the probability of influencing other important 

marine arthropods in addition to targeting all life stages including reproductive 

processes.  
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Members of the P450 family are present in both vertebrates and invertebrates and 

even though their P450 enzyme systems differ, some xenobiotics (e.g. phenobarbital) 

can induce metabolism in both groups (reviewed in [202]). The Halloween genes are 

specific to arthropods but are related to vertebrate CYPs. Hence, it could be 

conflicting to target these enzymes in the salmon louse as the xenobiotics or their 

metabolites (formed through biotransformation) could have a negative effect on the 

salmon and other vertebrates.       
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5. Concluding remarks and future perspectives 

The present study has extended our knowledge of EcR-mediated ecdysone signalling 

in the salmon louse Lepeophtheirus salmonis with respect to its key role in the 

regulation of developmental and reproductive processes.  

In papers I-II, we identified and functionally assessed the LsEcR during early 

developmental and reproductive stages. From the results, it is concluded that the 

LsEcR play key roles during oocyte maturation and reproduction in adult female 

louse and loss of LsEcR function terminates egg production. Depletion of LsEcR did 

however, not cause molting arrest between nauplia II and the copepodid stage but 

resulted in high mortality and severe tissue damage in later stages of development, 

showing that EcR is essential in growth and survival of the parasitic life stages. 

Future studies should investigate the interaction between ecdysone biosynthesis and 

signalling and other potential hormonal regulators of salmon louse development. 

Future studies of the LsEcR should aim to determine potential subcellular localisation 

of the protein outside the nucleus. Detection of protein would also be beneficial in 

order to determine the half-life of protein after gene knock-down and the presence of 

residue protein. To get a better understanding of EcR-mediated ecdysone signalling in 

L. salmonis, protein-protein and protein-ligand interactions should also be 

investigated. This work has been initiated by master students at the Sea Lice Research 

Centre (SLRC), using a mammalian two-hybrid luciferase system. Although this is an 

artificial in vitro system it will undoubtedly give information of the L. salmonis 

EcR/RXR dimerization and ligand binding properties. Alternative partners for LsEcR 

(and LsRXR) should be investigated to give information about possible alternative 

regulation of ecdysone signalling pathways. Moreover, possible LsEcR 

agonist/antagonist can be tested for future parasite control.  

From the functional studies of the biosynthetic genes LsNvd, LsDib and LsShd in 

nauplia larvae (paper III), only reduction of LsShd transcripts caused developmental 

defects. This lead us to hypothesize that precursors of the active steroid hormones 
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20E and PonA is synthesized and stored in the maturing oocyte for utilization during 

embryogenesis and development of the lecitotrophic stages until entry into the 

parasitic stage. In order to verify our hypothesis, it would be necessary to measure the 

levels of the metabolites (e.g. cholesterol and diketol) converted by LsNvd and LsDib 

during embryogenesis (i.e. from the point of fertilization to hatching of the egg 

string) as well as the ecdysone level. In addition, infection trials using LsNvd and 

LsDib knock-down animals would be beneficial to determine the phenotype and 

viability of the lice in the parasitic stages when these genes are decreased. At present 

time, only the three genes involved in ecdysteroidogenesis of L. salmonis have been 

partially investigated. It is apparent that other enzymes of this pathway have to be 

functionally assessed in order to gain a better understanding of the ecdysone 

biosynthetic pathway in the salmon louse.  

Biogenic amines such as octopamine and tyramine have shown to play a role in the 

upstream regulation of ecdysteroidogenesis in insects through GPCRs. Recent studies 

by Ohhara et al., [156] showed that ecdysone biosynthesis is regulated by the GPCR 

Oct3βR, in Drosophila. From our LsOct3βR knock-down studies, it is apparent that 

the octopamine receptor also play a role in the regulation of ecdysoteroid biosynthesis 

in L. salmonis. Therefore, further studies of the LsOct3βR should, first and foremost, 

include proper identification and sequencing analysis as well as identification of 

possible paralogs present in the salmon louse genome. It would be beneficial to 

perform functional studies of LsOct3βR and/or possible paralogs using RNAi in adult 

female louse in addition to the RNAi in the nauplia stage. The octopamine receptor is 

well known to be a target for insecticides (e.g. amitraz), hence, the LsOct3βR is of 

great interest as a target for future salmon louse control. 
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a b s t r a c t

The salmon louse Lepeophtheirus salmonis (Copepoda, Caligidae) is an important parasite in the salmon
farming industry in the Northern Hemisphere causing annual losses of hundreds of millions of dollars
(US) worldwide. To facilitate development of a vaccine or other novel measures to gain control of the par-
asite, knowledge about molecular biological functions of L. salmonis is vital. In arthropods, a nuclear
receptor complex consisting of the ecdysone receptor and the retinoid X receptor, ultraspiracle, are well
known to be involved in a variety of both developmental and reproductive processes. To investigate the
role of the ecdysone receptor in the salmon louse, we isolated and characterised cDNA with the
50untranslated region of the predicted L. salmonis EcR (LsEcR). The LsEcR cDNA was 1608 bp encoding a
536 amino acid sequence that demonstrated high sequence similarities to other arthropod ecdysone
receptors including Tribolium castaneum and Locusta migratoria. Moreover, in situ analysis of adult female
lice revealed that the LsEcR transcript is localised in a wide variety of tissues such as ovaries, sub-cuticula
and oocytes. Knock-down studies of LsEcR using RNA interference terminated egg production, indicating
that the LsEcR plays important roles in reproduction and oocyte maturation. We believe this is the first
report on the ecdysone receptor in the economically important parasite L. salmonis.
� 2014 The Authors. Published by Elsevier Ltd. on behalf of Australian Society for Parasitology Inc. This is
an open access article under the CCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

1. Introduction

In arthropods, steroid hormones such as 20-hydroxyecdysone
(20-E) and ponasterone A (PonA) (hereafter referred to collectively
as ecdysone) initiate signalling through a multitude of pathways
that regulate different aspects of biological processes such as
development and reproduction. The effect of ecdysone is generally
mediated by binding to a nuclear receptor (NR) complex consisting
of two transcription factors; the ecdysone receptor (EcR, NR1H1)
and the retinoid X receptor homolog ultraspiracle (USP, NR2B)
(Yao et al., 1992, 1993; Thomas et al., 1993). The ligand–receptor
complex regulates the transcription of ecdysone-responsive early
and early-late genes such as E74, E75 and Broad Complex (Br-C)
(Thummel and Chory, 2002; Riddiford et al., 2003) by binding to
ecdysone response elements (EcREs) in the promoter region of
their DNA sequence. Activation of these transcription factors fur-
ther trigger the expression of ecdysone-responsive late genes,

which define the phenotypic effects of the steroid hormones in a
spatial and tissue-specific manner (Thummel, 2002; Qian et al.,
2014).

The EcR belongs to the NR protein superfamily that is character-
ised by five typical NR domains (Evans, 1988; Billas et al., 2009): (i)
a highly variable N-terminal (domain A/B) important in activation
of transcription, (ii) a highly conserved DNA binding domain (DBD)
(domain C) containing two C2C2 zinc finger motifs important in
heterodimerisation and recognition of EcREs, (iii) a flexible and
variable hinge region (domain D) involved in EcRE recognition
and heterodimerisation, (iv) a moderately conserved ligand bind-
ing domain (LBD) (domain E) including 12 a-helices and two
b-sheets making up a complex tertiary structure that is subjected
to conformational changes which enable involvement in ligand
binding and dimerisation with other transcription factors, and (v)
a highly variable C-terminal of unknown function (F domain)
(Hill et al., 2013). Different isoforms of the EcR are found in a selec-
tion of arthropods such as the marine copepod Amphiascus tenuire-
mis (Gaertner et al., 2012) and the freshwater decapod
Macrobrachium nipponense (Shen et al., 2013) that have three and
four isoforms, respectively. The temporal and spatial expression

http://dx.doi.org/10.1016/j.ijpara.2014.10.003
0020-7519/� 2014 The Authors. Published by Elsevier Ltd. on behalf of Australian Society for Parasitology Inc.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
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differ between isoforms, however the biological functions are
unknown. Recent studies on the Chinese freshwater prawn, M. nip-
ponense, showed that isoforms MnEcR-S1 and MnEcR-S2 were
mainly found in testes while isoforms L1 and L2 were predomi-
nantly detected in the ovaries, suggesting a sex-specific expression
pattern for the different isoforms. Knock-down studies of EcR per-
formed in Tribolium castaneum resulted in impairment of ovarian
growth and oocyte maturation as well as possible induction of
apoptosis in the follicular cells (Parthasarathy and Palli, 2007). In
addition, functional analysis performed in the fruit fly, Drosophila
melanogaster, revealed defects in ovarian differentiation when
EcR levels were reduced (Hodin and Riddiford, 1998).

The EcR sequence has been identified in crustacean species such
as the decapods Uca pugilator (Hopkins et al., 2008) and Homarus
americanus (Tarrant et al., 2011), the branchiopod Daphnia magna
(Kato et al., 2007), the copepods Tigriopus japonicus (Hwang
et al., 2010) and A. tenuiremis (Gaertner et al., 2012), and the mys-
ids Americamysis bahia (Hirano et al., 2009) and Neomysis integer
(De Wilde et al., 2013). Even though the receptor has been identi-
fied and sequenced in several crustacean species, few functional
studies have been performed, leaving the action of the EcR in spe-
cies other than insects poorly understood.

The endocrine system has been extensively studied in hexapods
where ecdysteroids are produced and secreted from the protho-
racic glands during metamorphosis (Gilbert et al., 1997) and from
ovarian follicle cells after adult female eclosion (reviewed by Belles
and Piulachs, 2014). In many crustaceans such as the American
lobster H. americanus, the hormones are produced and secreted
from the Y-organ (Mykles, 2011). In copepods, however, such an
organ has yet to be identified which renders the origin of steroid
secretion and distribution pathways, for example in the salmon
louse Lepeophtheirus salmonis (Krøyer, 1837), unknown. One
hypothesis suggests the ecdysone steroid is secreted from one
organ and transported with vitellogenins to the oocytes where it
is stored for use in embryogenesis.

The salmon louse, L. salmonis, is a marine ecto-parasite of
salmonid fishes (Salmo and Onchorhyncus) in the Northern Hemi-
sphere (Kabata, 1979). In the salmon farming industry, the salmon
louse has become an increasing problem due to the high number of
hosts available, which facilitates continuous re-infestation and the
spread of lice between farming sites (Heuch et al., 2005). A major
concern is the development of resistance to the currently approved
pesticides (Fallang et al., 2004; Espedal et al., 2013), which leads to
higher consumption of these drugs followed by the spread of resis-
tance within louse populations, thereby creating a loop of negative
effects.

The EcR has long been known as a site of action for ecdysteroid
agonists such as the bisacylhydrazines (BAH). Ligand binding
assays using recombinant EcRs have demonstrated that these
chemicals attain large variations in binding affinities between dif-
ferent phylogenetic groups, thus making them target-specific.
Their selective specificity and their non-toxic effect on vertebrates
have made these agonists important tools in integrated pest man-
agement as they have reduced the risk of affecting non-pest spe-
cies and of causing negative environmental effects (Dhadialla
et al., 1998; Hill et al., 2012). Understanding the EcR/USP heterodi-
mer complex and the endocrine signalling pathways in L. salmonis
could be of great importance for development of vaccines and/or
novel medicines against this important parasite.

Here we show that the L. salmonis EcR (LsEcR) gene codes for EcR
from a single exon but contains several alternative 50 untranslated
(UTR) exons that may determine in which organs of the adult
female louse the gene is expressed. Moreover, in female lice gene
silencing using RNA interference (RNAi) targeted to LsEcR gave a
distinct phenotype with no production of egg strings. This suggests
that signalling mediated by LsEcR, either directly or indirectly,

plays a key role in oogenesis and that disruption of this signalling
pathway may provide a means by which to control louse reproduc-
tion and, consequently, infestation.

2. Materials and methods

2.1. Animal culture and sampling

Eggs from the Atlantic salmon louse strain Lepeophtheirus sal-
monis salmonis (Skern-Mauritzen et al., 2014) were hatched and
cultivated to copepodid stage in flow-through incubators before
infection of Atlantic salmon Salmo salar (Hamre et al., 2009). Both
lice and fish were kept in seawater with a salinity of 34.5‰ and a
temperature of approximately 10 �C. The lice were kept on the fish
until they reached the desired developmental stage. Prior to sam-
pling, the salmon were either killed with a blow to the head or
anaesthetised in a mixture of methomidate (5 mg/l) and benzo-
caine (60 mg/l); thereafter lice were removed with forceps. Salmon
were held and treated in accordance with the Norwegian legisla-
tion for animal welfare.

2.2. Cloning and sequencing of LsEcR

For all stages of salmon lice, total RNA was isolated using TRI
Reagent� (Sigma–Aldrich, St Louis, MO, USA) according to the
manufacturer’s protocol. The total RNA was treated with Amp-
Grade DNase I (Invitrogen, Carlsbad, CA, USA) and reverse tran-
scribed for preparation of template cDNA using SMARTscribe
Reverse Transcriptase (Clontech, Takara Bio, CA, USA). 50-RACE
was performed using the SMARTer™RACE cDNA Amplification kit
(Clontech, TaKaRa) with kit primers and an EcR-specific primer
(EcR_specific_P1; Table 1), according to the manufacturer’s recom-
mendations (Sigma–Aldrich). The following PCR program was
used: initial denaturation step 94 �C for 2 min and subsequent 35
cycles of amplification (94 �C, 30 s; 68 �C, 30 s; 72 �C, 2 min). The
PCR products were run on a 1% agarose gel, purified using a GelE-
lute™ Gel Extraction Kit (Sigma–Aldrich), sub-cloned using a
pCR�4-TOPO� vector system (Invitrogen) and transformed into
Escherichia coli TOP10 cells. Clones were verified by PCR with
M13_f and M13_r primers (Table 1), grown overnight and purified
using a Miniprep Nucleospin� Plasmid Purification Kit (Macherey–
Nagel, Duren, Germany). Plasmids were sequenced using a BigDye�

Terminator v3.1 Cycle sequencing kit (Applied Biosystems�, Foster
City, CA, USA) and analysed in MacVector (MacVector Inc., North
Carolina, USA).

2.3. Sequence comparison and phylogenetic analysis

To investigate the phylogenetic position of the LsEcR protein,
homologous proteins were found by basic local alignment search
tool (BLAST) searches performed in GenBank (National Center for
Biotechnology Information (NCBI), Bethesda, USA). A total of 30
EcR protein sequences or EcR-like sequences from different species
covering the phyla Annelida, Arthropoda, Chordata, Mollusca,
Nematoda and Platyhelminthes were chosen. GenBank accession
numbers of selected sequences are listed in Table 2. Multiple
sequence alignment was performed using ClustalX2 (Thompson
et al., 1997) with the multiple alignment parameter settings of
10 for gap opening and 0.2 for gap extension. The alignment was
trimmed in MacVector by removal of parts of the highly variable
50-A/B domain and converted to Nexus format using Mesquite
(Maddison, W.P., Maddison, D.R., 2004. Mesquite: a modular sys-
tem for evolutionary analysis. v2.5. http://mequiteproject.org).
Phylogenetic analysis was performed using MrBayes v3.2
(Huelsenbeck and Ronquist, 2001; Ronquist et al., 2012) with the
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General time-reversal inverted gamma (GTR + I + G) amino acid
(aa) substitution matrix. The Monte Carlo Markov Chain (MCMC)
was run with two simultaneous runs and four simultaneous chains
for 1,000,000 generations to approximate the posterior probability.
The MCMC temperature was set to 0.5. FigTree v1.4 (A. Rambaut,
2007, http://tree.bio.ed.ac.uk/software/figtree/) was used to evalu-
ate the consensus tree with percent posterior probability values
estimated on each branch node. To root the tree, sequences from
vertebrates, S. salar, Xenopus tropicalis and Crotatus adamantus,
were used as outgroups.

2.4. Analysis of expression levels of the 50UTR mRNA splice variants of
LsEcR at different life stages using real-time quantitative PCR (RTq-
PCR)

Five parallels of different life stages of the salmon louse were
sampled prior to ontogenetic analysis; nauplia I/II (n � 150),
free-living copepodids (n � 150), parasitic copepodids (n = 10),
chalimus I (n = 10), chalimus II (n = 10), pre-adult male I/II
(n = 1), pre-adult female I/II (n = 1), adult male (n = 1), immature
adult female lice (n = 1) and gravid female lice (n = 1), and stored
on RNAlater™ (Ambion Inc., Austin, TX, USA). Total RNA was iso-
lated using TRI Reagent� (Sigma–Aldrich) according to the manu-
facturer’s protocol. Concentration and purity of RNA was
determined using a NanoDrop ND-1000 spectrophotometer (Nano-
Drop Technologies Inc., Thermo Fisher Scientific, Wilmington, DE,
USA). RNA quantity and quality was checked by standard O.D.

260/280 and O.D. 260/230. The normalised stocks (500 ng/ll) were
treated with DNase I (Amplification Grade, Invitrogen). Two paral-
lel cDNA synthesis reactions were set up using an AffinityScript
cDNA Synthesis Kit (Agilent Technologies, Santa Clara, CA, USA)
to a final concentration of 10 ng/ll. PCR was performed using
2.5 lg of cDNA, 5 lM LsEcR-specific TaqMan� probe (Table 1)
and 2� TaqMan� Universal PCR mix (Applied Biosystems�) in a
total volume of 10 ll. The RTq-PCR of the mRNA LsEcR variants
was carried out independently but simultaneously with the house-
keeping gene, elongation factor 1 alpha (EF1a; Frost and Nilsen,
2003) as the reference. RTq-PCR was performed with parallel series
of each sample. Standard curves (cycle at threshold (Ct) versus log
quantity), slope evaluation and transcription levels of the mRNA
LsEcR variants were compared with EF1a using the Applied Biosys-
tems 7500 Real-Time PCR System (Applied Biosystems�). Results
were analysed by the 2^�DDCt approach and presented with the
95% confidence interval calculated from the 2^�DDCt values.

2.5. Localisation of LsEcR transcript

Localisation of LsEcR mRNA in adult female lice was accom-
plished using in situ hybridisation carried out according to
Kvamme et al. (2004) with some modifications. PCR product with
T7 promoters generated from LsEcR-specific cDNA was used as a
template for a single stranded digoxigenin (DIG)-labelled RNA
probe (667 bp) synthesis (Table 1, primers: LsEcR_specific_f,
LsEcR_specific_r). Probe concentration and quality was determined

Table 1
Primer sequences and Taqman� assaysa used in this study.

Primer nameb Sequence (50–30) Method

EcR_specific_P1 GTTGATCCCTAAGGATCGAAGCTCAGTA 50-RACE
EcR_specific_P2 GAAAGTCGATAACGCAGAATACGCTCTC
M13_f GTAAAACGACGGCCAG TOPO cloning
M13_r CAGGAAACAGCTATGAC
LsEcR_specific_P3 CCGATTTGCCATTACGTAGGCTTGTAGAGC 30RACE/in situ/dsRNA
LsEcR_specific_P4 CCGCAGCTGCAGCCGACACAACTGTAGAT in situ/dsRNA
LsEcR_specific_P5 CGAGCGTTTCCACTTACTTGCCAT dsRNA
LsEcR_specific_P6 CGCCAACAACGACGACCC TCCACCAACAGCACT dsRNA
Cod_specific_T7f ATAGGGCGAATTGGGTACCG dsRNA
Cod_specific_T7r AAAGGGAACAAAAGCTGGAGC dsRNA
LsEF1a_f CATCGCCTGCAAGTTTAACCAAATT RTq-PCR
LsEF1a_r CCGGCATCACCAGACTTGA RTq-PCR
LsEF1a_TaqMan� ACGTACTGGTAAATCCAC RTq-PCR
mRNA LsEcR total_f TCGGGAGAAAGTCCCTCTTCT RTq-PCR
mRNA LsEcR total_r ACAGCTCCAGTAGGTGTTAAAGGA RTq-PCR
mRNA LsEcR total TaqMan� TCGCAGTCCATTCTC RTq-PCR
mRNA LsEcRa_f GTGTAGATGTGTTGTTGAAAGGGAAAAA RTq-PCR
mRNA LsEcRa_r CCTATCAATGCACCCTTTAATTTTCCAA RTq-PCR
mRNA LsEcRa TaqMan� AAACACGGCAAATATG RTq-PCR
mRNA LsEcRb_f AACGAAACAAAAAAGACAAGTGGAATGT RTq-PCR
mRNA LsEcRb_r TCACCCGTTGAGTGACTTCTTT RTq-PCR
mRNA LsEcRb TaqMan� CATCTCCGCAGAACTT RTq-PCR
mRNA LsEcRc_f CATCATCAGAGTCTCTGCAATCAAT RTq-PCR
mRNA LsEcRc_r TTTTGGACCAATCGTTCTAGAAAACTTTTT RTq-PCR
mRNA LsEcRc TaqMan� CCTCACCCACTTTTGC RTq-PCR
LsE75_f CCTTGACCAATTTTCAGAACGGTTT RTq-PCR
LsE75_r AATCCAGGGATCCGCTTGG RTq-PCR
LsE75_TaqMan� CACGTTCGCCAAGTTT RTq-PCR
LsBR-C_f CTCCATTGTACATAAAACAGAGTAGTGACT RTq-PCR
LsBR-C_f CAGTACCTCATCAACATCCTTTGCT RTq-PCR
LsBR-C_TaqMan� AATGCCTCGCAAATAG RTq-PCR
LsVit-1_P1 ACATCGACTACAAAGGAACTCAGAAC RTq-PCR
LsVit-1_P2 GGAAGCATGTAACGAATGAACTCA RTq-PCR
LsVit-1_TaqMan� AGATTTTCTTTAGCTTCTGGATACAAACCTGCTCCA RTq-PCR
LsVit-2_P1 AATGAGCAATTTAGTTGAGAAAACTTGT RTq-PCR
LsVit-2_P2 CAATCTCGCTTTGAGCATCACA RTq-PCR
LsVit-2_TaqMan� TGGATAAATCACGTCAAGTTACTTACCCTACCGC RTq-PCR

RACE, rapid amplification of cDNA ends; TOPO, DNA topoisomerase I; dsRNA, double-stranded RNA; RTq-PCR, real-time quantitative PCR.
a Taqman� assays were provided by Applied Biosystems, Branchurg, NJ, USA.
b All general primers were purchased from Sigma–Aldrich, St Louis, MO, USA.
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by spectrometry (Nanodrop ND-1000) and a spot test, respectively.
Briefly, paraffin sections were baked at 60 �C for a minimum of
20 min and treated with Histoclear (National Diagnostics, Atlanta,
GA, USA) prior to rehydration of tissue and proteinase K treatment
for 10 min, followed by tissue fixation in 4% formaldehyde in PBS,
acetic anhydride treatment and dehydration. Hybridisation mix
(100 ll) containing 20 ng of DIG-labelled RNA was added to the tis-
sue and left overnight in a vacuum chamber at 60 �C. DIG-labelled
probes were visualised using secondary antibody labelled with an
anti-DIG alkaline phosphatase-conjugated FAB fragment and a
chromogen substrate containing nitroblue tetrazolium (NBT)
(Roche Diagnostics GMbH, Mannheim, Germany) and 5-bromo-4-
chloro-3-indolyl phosphate (BCIP) (Roche Diagnostics). Sense
RNA was used as a negative control.

2.6. LsEcR knock-down using RNAi

Two primer pairs with and without a 50 T7 promoter extension
were used to generate PCR products of the LsEcR open reading
frame (ORF). Fragment 1 (667 bp; Table 1, primers: LsEcR_spe-
cific_P3 and LsEcR_specific_P4) and fragment 2 (815 bp; Table 1,
primers LsEcR_specific_P5 and LsEcR_specific_P6) localised to the
hinge and A/B region, respectively. An Atlantic cod (Gadus morhua)
gene fragment, CPY185 (850 bp), was used as a control (Table 1,
primers: Cod_specific_T7f and Cod_specific_T7r). The PCR products
were used as templates with T7 RNA polymerase to synthesise
dsRNA fragments as described by the MEGAscript� RNAi Kit
(Ambion Inc.). The concentrations of sense and anti-sense strands
were measured by spectrometry (NanoDrop Technologies Inc.)
before equimolar amounts of each strand were pooled to generate
dsRNA. A solution containing 50 ll of dsRNA was added to 5 ll of
saturated Trypan blue to the final concentration of 600 ng/ll of
dsRNA. Pre-adult female and male lice were collected with forceps
from anesthetised salmon. Pre-adult II female lice were then

injected with 1 ll of the dsRNA solution in the cephalothorax using
custom-made injection needles. These were pulled by utilising a
1 mm Borosilicate glass tube with an inner diameter of 0.5 mm
(Sutter Instrument, Novato, CA, USA) on the P-2000 laser-based
micropipette puller system (Sutter Instrument). Needles were
ground and opened using a Micropipette Grinder EG-44 (Tritech
Research, Los Angeles, CA, USA), and coupled to a microinjector
before use. By blowing air into the needle, the dsRNA fragments
were dispersed in the louse, visualised by dispersion of blue colour
within the cephalothorax. After injection, the lice were kept in sea-
water for 6 h before they were placed on anesthetised fish together
with male lice, in a 1:1 ratio (female n = 13). Three parallel exper-
iments were set up for each gene. Lice were kept on one salmon,
each in single fish tanks (50 L) with seawater for either 2, 4 or
12 days, or until the female adults had produced a second set of
egg strings (approximately 38 days), when the remaining lice were
removed from the fish. Lice were harvested at different time points
in order to detect any reduction in mRNA levels and to study the
function in sexually mature lice. Egg strings, when present, were
collected and placed in individual incubators for hatching. Live lice
were transferred and stored on either RNAlater™ (Ambion Inc.) for
RTq-PCR, fixed in phosphate buffered 4% formaldehyde at 4 �C
overnight for in situ hybridisation or fixed for light microscopy
(see Section 2.7). To confirm hatching, egg strings were observed
daily. Phenotypes were evaluated throughout nauplia and the
copepodid stages. The number of recovered lice from each experi-
ment is listed in Table 3.

2.7. Histology

Specimens for light microscopy were fixed by immersion in a
mixture of 10 ml of 10% formaldehyde (fresh from paraformalde-
hyde), 10 ml of 25% glutaraldehyde, 20 ml of 0.2 M cacodylate
buffer and 60 ml of PBS, and the pH was adjusted to 7.35. Thereaf-

Table 2
List of amino acid (aa) sequences from all species used to determine the phylogenetic relationship of Lepeophtheirus salmonis ecdysone receptor (LsEcR).

Classification Species EMBL Accession No. Product size (aa)

Annelida Platynereis dumerilii ACC94156 496
Chelicerata Liocheles australasia (Australian rainforest scorpion) AB297929 539

Agelena silvatica GQ281317 533
Ornithodoros moubata AB191193 567
Amblyomma americanum (Lone star tick) isoform1 AF020187 560

Crustacea L. salmonis KP100057 536
Tigriopus japonicus ADD82902.1 546
Penacus japonicus AB295492 499
Uca pugilator (Sand fiddler crab) AF034086 518
Amphiascus tenuiremis JF926564 458
Homarus americanus (American lobster) HQ335007 541
Daphnia magna (Water flee) isoform1 AB274821 693
Portunus trituberculatus (Gazami crab) JQ250795 503

Hexapoda Locusta migratoria (Migratory locust) AF049136 541
Gryllus firmus (Sand cricket) GU289704 416
Apis mellifera (Honey bee) AB267886 567
Drosophila melanogaster (Fruit fly) isoformB1 NP_724460 878
Tribolium castaneum (Flour beetle) isoformA CM000284 549
Aedes aegyptii (Yellow fever mosquito) AY345989 776
Diploptera punctata isoformA JQ229679 538

Mollusca Crassostrea gigas (Pacific oyster) EKC19773.1 471
Lymnaea stagnalis (Great pond snail) ADF43963.1 478

Nematoda Caenorhabditis elegans NP_492615.2 373
Trichinella spiralis XP_003376657.1 573
Ascaris suum ADY42534.1 496

Plathyhelminths Schmidtea mediterranea AFF18489 655
Schistosoma mansoni ARR29357.1 715

Vertebrata Salmo salar (Atlantic salmon) FJ470290 462
Xenopus tropicalis NP_001072853.1 441
Crotatus adamantus (Pit viper) AFJ50856.1 435
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ter specimens were rinsed in PBS and dehydrated in a series of eth-
anol solutions (50%, 70% and 96%), before being embedded in Tech-
novit 7100 (Heraeus Kulzer GmbH & Co, Germany). Sections (1–
2 lm) were stained with Toluidine blue.

Digital micrographs were acquired with a ColorView III camera
(Soft Imaging System GmbH, Münster, Germany) mounted on an
Olympus BX61 Microscope (Olympus, Tokyo, Japan), and processed
using Adobe Photoshop CS6 (Adobe Systems, San Jose, California,
USA).

2.8. Detection of transcript levels in dsRN- treated lice by RTq-PCR

RTq-PCRs using TaqMan� probes (Table 1) were used to detect
total expression of LsEcR, Vitellogenin-1 (LsVit-1), Vitellogenin-2
(LsVit-2), ecdysone induced protein 75 (LsE75) and Broad-Complex
(LsBr-C) from dsRNA-treated lice harvested from the RNAi experi-
ments (samples listed in Table 3). Total RNA was isolated and sam-
ples prepared as described in Section 2.4. Two micrograms of cDNA
from RNAi lice were added to the RTq-PCR mix (Applied Biosys-
tems�) to a total volume of 10 ll. Each louse was analysed sepa-
rately as described in Section 2.4. The number of lice analysed
from each RNAi experiment is listed in Table 3.

2.9. Statistical analysis

From the RNAi experiments, significant differences between the
control groups and the treated groups were determined using the
Kolmogrov–Smirnov test (non-parametric, un-paired: compared
cumulative distributions) by employing Prism6 software (Graph-
Pad Software, Inc., La Jolla, CA, USA). Statistical evaluation of the
mRNA LsEcR splice variant at specific life stages was performed
by two-way ANOVA analysis utilising SPSS software V. 21 (IBM�

SPSS� Statistics, Armonk, NY, USA).

3. Results

3.1. Sequence analysis and molecular phylogeny of the LsEcR

In order to obtain full-length LsEcR cDNA, 50 and 30 Rapid ampli-
fication of cDNA ends (RACE) PCR was run using EcR-specific prim-
ers (Table 1, EcR specific_P1 and EcR specific_P3) based on
expressed sequence tag (EST) sequences. A 2932 bp cDNA was
retrieved with a 50 UTR of 1044 bp, a 280 bp 30 UTR and a
1608 bp ORF consisting of one exon, encoding 536 aa. The pre-
dicted molecular weight was 60.4 kDa (Expasy, ProtParam Tool,
http://web.expasy.org/protparam/). Cloning and sequencing of
the RACE products revealed the existence of three mRNA variants,
LsEcRa, LsEcRb and LsEcRc, differing in their 50UTR (Fig. 1). A BLAST
search revealed the deduced protein sequence encodes the EcR of L.
salmonis and exhibits 61% identity to the full-length aa sequence
and 82% and 77% for the DBD and LBD, respectively, with the cope-
pod T. japonicus (ADD82902.1). The deduced aa sequence of LsEcR
contained domains characteristic of nuclear receptors, namely an
A/B domain associated with transcriptional activation, DBD
(C-domain, aa 170–261), a hinge region (D-domain) and a LBD
(E/F-domain, aa 303–535) containing a short aa sequence
(ATGMRA) recognised as the activation factor-2 domain (AF-2; aa
235–240). Alignments of the domains to conserved domains in
NCBI (Marchler-Bauer et al., 2011) proved the retrieved cDNA
sequence form L. salmonis encodes the nuclear receptor LsEcR.

Phylogenetic analysis of the aa sequence of LsEcR was per-
formed by conducting a Bayesian analysis of a full-length aa align-
ment of EcR and EcR-like receptors from a variety of species (listed
in Table 2). From the rooted bootstrap tree (Fig. 2), LsEcR grouped
together with the copepods T. japonicus and A. tenuiremis and was
separated from the decapods. The water flea D. magna (Branchio-
poda) EcR form a separate clade and is the closest sister group to
the copepods, followed by Hexapoda and Chelicerata.

Table 3
Summary of recovered lice and phenotypic traits observed using RNA interference experiments.

Recovered female lice Blood in intestine Lice producing egg strings RTq-PCRd

Control: Fragment 1: 2 daysa 10 Not registered – 9
dsRNA: Fragment 1: 2 daysa 10 Not registered – 6
Control: Fragment 1: 4 daysa 7 Not registered – 6
dsRNA: Fragment 1: 4 daysa 8 Not registered – 7
Control: Fragment 1: 12 daysa 13 11 – 10
dsRNA: Fragment 1: 12 daysa 19 6 – 17
Control: Fragment 1: 38 days 23 23 23 10
dsRNA: Fragment 1: 38 days 14 10 (7b) 1c 13
Control: Fragment 2: 38 days 16 16 16 10
dsRNA: Fragment 2: 38 days 16 5 (3b) 0 11

dsRNA, double-stranded RNA.
a Lice had not reached mature adult stage, hence no egg string production.
b Barely visible blood in intestine.
c Egg strings did not hatch.
d Number of lice submitted to real-time quantitative PCR (RTq-PCR).
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Fig. 1. Schematic representation of the genomic sequence of the Lepeophtheirus salmonis ecdysone receptor (LsEcR). Cloning and sequencing revealed the presence of three
different mRNA variations. The exons (Ex; depicted in light grey boxes) were mapped to the genomic DNA and show the gene to extend over 38.5 kbp. The open reading frame
(ORF) is depicted in dark grey and the translation start site is marked with an arrow. Introns are depicted as lines between exons with lengths in numbers of nucleotides. The
three mRNA variants are represented with connecting lines; mRNA LsEcRa consists of exons 1, 2 and 5; mRNA LsEcRb of exons 3 and 5 and mRNA LsEcRc of exons 4 and 5. All
mRNA variations share a common exon (Ex 5) linked directly to the coding sequence consisting of only one exon and no introns.
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3.2. Expression pattern analysis of 50UTR mRNA splice variants of
LsEcR

The expression pattern of the different mRNA splice variants of
LsEcR was evaluated in different developmental stages in L. salmo-
nis. Thus, ontogenetic analysis was performed using RTq-PCR on
RNA extracted from nauplia I/II, free-living copepodids, parasitic
copepodids, chalimus I, chalimus II, pre-adult male I/II, pre-adult
female I/II, adult male and immature adult female lice, and gravid
female lice. Specific Taqman� assays (Table 1) were designed to dis-
criminate between the three 50UTRmRNA splice variants (Fig. 3). In
general, the highest relative expression was detected in the nauplia
I/II and free-living copepodids for all three splice variants with LsE-
cRa and LsEcRc significantly more highly expressed compared with
LsEcRb. The expression pattern decreased from copepodid to the
chalimi stages before an increased expression occurred in the pre-
adult and adult stages, with the relative expression of LsEcRa being
significantly higher compared with LsEcRb and LsEcRc. The expres-
sion of LsEcRawas significantly higher in immature and gravid adult
female lice compared with pre-adult female/male and adult male
lice.

3.3. LsEcR transcript is expressed in a variety of tissues

In situ hybridisation analysis performed on paraffin sections of
an adult female louse demonstrated that LsEcR transcript was
present in most tissues except for the muscle tissue (Fig. 4B–E).
Expression was observed in the ovaries, immature/mature eggs
present in the genital segment (Fig. 4B), different glandular tissues
of unknown function present in the legs (Fig. 4C) and the anterior
part of the cephalothorax, intestine (Fig. 4D) and in the sub-
cuticular tissue (Fig. 4E). Unspecific colouring of the outer cuticular
tissue was observed both for the sense and anti-sense probes.

3.4. Down-regulation of LsEcR by RNAi inhibits the production of
offspring

Functional studies using RNAi were performed to assess the
effect of LsEcR in reproduction of the salmon louse. First, an exper-
iment was set up using fragment 1 (Table 1) to determine the
degree of down-regulation in L. salmonis. In total, 39 pre-adult II
female lice were injected with a dsLsEcR fragment and 39 were
injected with dsRNA from a cod and left on the fish for 2, 4 and
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Fig. 3. Quantitative real-time PCR (RTq-PCR) analysis of relative expression of the three mRNA Lepeophtheirus salmonis ecdysone receptor (LsEcR) variants (a, b, c) in different
developmental stages. Each point represents the mean and confidence intervals (n = 5 parallels of approximately 150 animals for the nauplia and free-living copepodid (Free.
Cop.) stages, 10 animals for the parasitic copepodid (Par. Cop.), chalimus I (Chal. I) and chalimus II (Chal. II.) and one animal for each of the pre-adult male (Pre-A. M.), pre-
adult female (Pre-A. F.), adult male (Adult M.), adult female (Adult F.) and gravid adult female (Adult F. gravid)) stages. The relative expression of LsEcRb at the chalimus II
stage was set to 1.

Fig. 4. Localisation of Lepeophtheirus salmonis ecdysone receptor (LsEcR) transcripts in an adult female louse. (A) Light microscope image of gravid adult female louse. Letters
and asterisks are guides to the corresponding photos of individual tissues. A part of the sub-cuticular tissue is framed to better visualise localisation. (B–E) In situ
hybridisation using LsEcR-specific anti-sense RNA was used for detection of transcript. Negative controls (sense RNA) are shown (insets). Positive staining was seen in mature
eggs (B), unidentified glandular and surrounding tissue in the legs (C), intestine (D) and sub-cuticular tissue (E). Unspecific colouring of the outer cuticular layer was seen
using both sense and anti-sense probes. Scale bar = 5 mm (A); 200 lM (B, D, E) and 100 lM (C).
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12 days. No phenotype or reduced survival rate was observed for
the immature female animals compared with the control group;
however, RTq-PCR showed that the LsEcR-gene was significantly
knocked down (by 53% at day 12; Fig. 5B). At days 2 and 4, how-
ever, no significant knock-down was observed (Fig. 5A). A second
experiment was set up using two different fragments in order to
exclude any non-target effects. Fragments 1 and 2 were injected
and run in two separate experiments for 38 days under the same
criteria as the first experiment. RTq-PCR analysis of the second
experiments terminated at 38 days and did not detect any signifi-
cant regulation of the LsEcR (Fig. 5C). However, at 38 days the dsL-
sEcR-treated lice showed a characteristic phenotype where no
production of offspring was observed. Female lice injected with
dsRNA from cod had no phenotype and produced viable offspring
(Fig. 6A, D). We also observed that dsLsEcR-treated lice were found
with less blood in the intestine (Table 3 and Fig. 6D), which

deviates from what is observed to be normal in adult female lice
in our laboratory system, where most females have a blood-filled
gut (Table 3 and Fig. 6A). Histological sections from dsLsEcR-
treated lice revealed that the oocytes did not display a normal
stacking pattern like the control lice and an individual ova could
not be detected (Fig. 6B, E). The lining of the developing oocytes
was disintegrated, leaving the area filled with a mesh of fat and
yolk granules. The cellular structure of the sub-cuticular tissue
was observed to be hypotrophic compared with the control lice
(Fig. 6C, F) giving an impression of a reduction in tissue.

The binding of ecdysone to the EcR/USP complex is known to
regulate several down-stream genes. The expression level of the
known down-stream genes LsE75 and LsBr-C was evaluated in lice
after dsRNA from LsEcR was injected. No significant regulation was
detected for LsE75 or LsBr-C from the dsLsEcR-treated lice after
12 days (Fig. 5B). In contrast, both LsE75 and LsBr-C were up-
regulated in dsLsEcR-treated lice after 38 days (Fig. 5C) (Kolmogo-
rov–Smirnov, P < 0.05). RTq-PCR analysis was also conducted on
LsVit-1 and LsVit-2 from lice treated for 38 days and both genes
were significantly knocked down (Fig. 5C) (Kolmogorov–Smirnov,
P < 0.05). The expression of the two vitellogenins was only evalu-
ated in lice treated for 38 days as LsVit-1 and LsVit-2 are only
expressed in mature female lice (Eichner et al., 2008).

4. Discussion

In the present study, we isolated a cDNA for the EcR in L. salmo-
nis. The genetic composition of LsEcR proved to be similar to the
EcR gene found in T. japonicus (Hwang et al., 2010) with only one
exon spanning the ORF and with introns only detected in the UTRs.
Putative full-length protein sequence alignment (Table 1) and phy-
logenetic analysis (Fig. 2) cluster the LsEcR together with the cope-
pods T. japonicus and A. tenuriemis in the Malacostraca group, with
the water flee D. magna (Branchiopoda) as the closest sister group.
Identical aa found in the LBD of EcRs between species are
consistent with the widespread use of ecdysone as the hormone
initiating developmental processes. Identity searches and determi-
nation of phylogenetic position of the retrieved L. salmonis cDNA
sequence classify it as an ecdysone receptor.

The 50UTR region of the retrieved cDNA revealed the existence
of three LsEcR mRNA splice variants, all starting from different
exons. This suggests that those are regulated by different promoter
regions. Selective promoter regions are well known from steroid
hormone receptors such as the human oestrogen receptor (ER)
(Kwak et al., 1993; Bockmuhl et al., 2011) and have been shown
to possess different tissue specificity and to be activated by differ-
ent signals (Ayoubi and VanDeVen, 1996). The mechanisms
involved in 50UTR mediated regulation is poorly understood and
has to our knowledge not been studied in crustaceans. It is possible
that the LsEcR mRNA splice variants are expressed in different tis-
sues or regulated by specific signals in the salmon louse. However,
further studies are required in order to understand how the differ-
ent LsEcR mRNA splice variants are regulated.

The existence of multiple EcR isoforms that differ in their spatial
and temporal expression are common in many crustacean species
(Durica et al., 1999; Tarrant et al., 2011; Verhaegen et al., 2011).
Expression profiling using RTq-PCR, performed on embryos and
adults of the water flea (D. magna), revealed that the EcRB isoform
was expressed at a higher level during embryogenesis compared
with EcRA, while the opposite expression pattern was observed
in adult fleas during molting (Kato et al., 2007). In the salmon
louse, of the three variants of LsEcR mRNA transcripts present,
the LsEcRb variant had relatively low expression throughout all life
stages compared with LsEcRa and LsEcRc that were observed to
have the highest relative expression in the nauplia I/II and the
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Fig. 5. Transcript level of selected ecdysone receptor (EcR) target genes after
injection of double-stranded (ds)RNA. Lepeophtheirus salmonis EcR (LsEcR) adult
female lice were removed from anesthetised fish and analysed after (A) 2, 4, (B) 12
or (C) 38 days (d.) post treatment (i.e. dsEcR injection; d.p.i.). Quantitative real-time
PCR (RTq-PCR) analysis of the relative expression of LsEcR and selected downstream
genes LsE75 and LsBroad-complex (LsBr-C) (B, C) LsVitellogenin-1 (LsVit-1) and
LsVitellogenin-2 (LsVit-2) (C) was evaluated. (C) The graph is representative of two
experiments. The expression levels of the respective genes in the control groups
were set to 1. Mean ± confidence interval of treated lice is shown. Each louse was
analysed separately and confidence intervals represent individual differences.
Numbers of lice analysed are listed in Table. 3. ⁄Statistically significant (P < 0.05).
Statistical analysis was performed using a Kolmogorov–Smirnov test.
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free-living copepodid stage (Fig. 3). A similar expression pattern
was observed for the EcR in the free-living copepod T. japonicus
(Hwang et al., 2010). A second peak in expression was observed
for LsEcRa in immature (T1) and mature females (T6) (classification
of maturing female louse after Eichner et al. (2008)) which could
indicate that the LsEcRa transcript is used more predominantly in
female maturation and reproduction. Overall, the differential
expression of the three LsEcR mRNAs could suggest that those play
different roles in different biological processes.

To investigate the spatial distribution of LsEcR transcript in the
adult female louse, we performed in situ hybridisation. With our
protocol, the presence of LsEcR transcript was, with the exception
of muscle tissue, evident in most tissues such as glandular and
sub-cuticular tissues and oocytes (Fig. 4A–E). The wide distribution
of EcR transcripts has similarly been demonstrated in the kuruma
prawn Marsupenaeus japonicus (Mj) and the soft tick Ornithodoros
moubata (Om) using RTq-PCR and RT-PCR, respectively (Asazuma
et al., 2007). In contrast to our results, MjEcR and OmEcR were also
detected, in low quantities, in muscle tissue (Asazuma et al., 2007),
however this may be explained by the difference in sensitivity
between the methods.

From our knock-down studies of LsEcR in reproducing female
lice, it has become apparent that the nuclear receptor either
directly or indirectly affects a variety of biological processes. In
the salmon louse, the sub-cuticular region has been demonstrated
to be an active tissue with functions similar to the liver (Edvardsen
et al., in press). Yolk proteins such as the vitellogenins are pro-
duced in the sub-cuticular tissue before they are incorporated into
the oocyte during oocyte maturation (Dalvin et al., 2009, 2011).
The reduction of vitellogenin 1 and 2 transcripts observed in dsL-
sEcR knock-down lice (Fig. 5C) could most likely be explained by
the major changes occurring in the sub-cuticular tissue (Fig. 6F).
At the same time, when depriving the female lice of LsEcR, repro-
duction was halted and eggs failed to mature in the genital seg-
ment. Similar observations were reported from EcR knock-down
studies of T. castaneum, where a 50–75% reduction in the vitello-
genin transcript level resulted in a decrease in egg development

(Xu et al., 2010). Moreover, development of a follicular cell layer
necessary for oocyte maturation was disrupted, resulting in an
arrest of the oocyte in the pre-vitellogenic stage (Parthasarathy
et al., 2010). The same observations had previously been recorded
in D. melanogaster where EcR deficiency resulted in abnormal egg
chamber development and loss of vitellogenic stages (Carney and
Bender, 2000). Loss of egg production in L. salmonis is presumably
not a function of reduced yolk production, but either a direct or
indirect of effect of LsEcR depletion in the oocytes.

In insects, eggs mature in the ovaries to gametes that contain all
the proteins and maternal mRNA needed to initiate and maintain
metabolism and development of the eggs before fertilisation. From
work performed in D. melanogaster and T. castaneum, it was shown
that components of the ecdysone hierarchy such as EcR were
expressed and required in germline cells for progression through
oogenesis (Buszczak et al., 1999; Carney and Bender, 2000;
Freeman et al., 1999). The observation of LsEcR transcript in the
oocyte implies the presence of maternal transcript in the eggs.
The absence of normal egg development in dsLsEcR-treated lice
provides a good indication that the Ec-EcR pathway plays an
important role in reproduction and development of offspring in
the salmon louse. The specific mechanism for loss of egg develop-
ment is currently unknown and further studies are necessary to
understand the complexity of the Ec-EcR hormonal pathway.

RNAi is a well established genetic tool for functional studies in
different organisms. However, with the exception of plants and the
nematode Caenorhabditis elegans, little is known about the sys-
temic RNAi response mechanisms in non-traditional model organ-
isms (Miller et al., 2012). In the dsLsEcR-treated lice, significant
down-regulation of LsEcR was not observed until 12 days after
injection. Our results deviate from knock-down studies performed
on the putative prostaglandin E synthase 2 (LsPGES2) in L. salmonis,
where reduction in the transcript level was most prominent after
48–72 h (Campbell et al., 2009). However, it should be noted that
the optimal requirements for knock-down differ among genes
depending their locations and turnover rates. After 38 days, the
RNAi effect had ceased but a distinct phenotype, only observed

Fig. 6. Functional assessment of the Lepeophtheirus salmonis ecdysone receptor (LsEcR) by RNA interference (RNAi). The control lice produced normal egg strings (A) that
hatched and produced viable offspring. LsEcR dsRNA-treated lice (D) showed a distinct phenotype with no production of eggs. It was also observed that the LsEcR dsRNA-
treated lice attained a thicker genital segment as well as less blood in the intestine (marked with arrow, D), compared with the control (marked with arrow, A). (B and C, E and
F) Toluidine stained sections showed the normal stacking pattern of the eggs seen in the control (B) which was lost in the dsRNA LsEcR-treated lice (E). The sub-cuticular
tissue was hypotrophic in the LsEcR dsRNA-treated lice (F) compared with the control lice (C). Scale bar = 5 mm (A, D), 200 lM (B, E) and 1000 lM (C, F).
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after the prolonged period of LsEcR knock-down in adult females,
was evident. At the same time, the LsEcR response genes LsE75
and LsBr-C were significantly up-regulated in the dsLsEcR-treated
lice compared with the control lice. The increased expression of
the response genes could be a secondary response as a cause of
LsEcR depletion and disruption of several biological processes.
However, as these genes naturally have very irregular expression
patterns, further studies are necessary in order to determine the
relation between ecdysone pathway and the response genes in L.
salmonis.

In summary, we report the identification of an EcR from the sal-
mon louse L. salmonis and demonstrate the presence of the LsEcR
transcript in all life stages of the parasite. In situ hybridisation,
together with functional knock-down studies, indicates that the
LsEcR plays a key role in regulation of female reproduction and
oocyte maturation. The Ec-EcR hierarchy is a very complex system
with a multitude of factors interacting through different pathways.
The essential role EcR plays in this hierarchy makes it a good target
for pesticide development, as knock-down of EcR results in severe
physiological changes in the animal, including the termination of
egg production. However, further studies are necessary in order
to elucidate the functional role of LsEcR and to fully understand
the complexity of the Ec-EcR hierarchy in the salmon louse.
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