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gene by the LightCycler® instrument:
Identification of unexpected nucleotide
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Abstract. Preeclampsia is a serious disorder affecting nearly 3% of all pregnancies in the Western world. It is associated
with hypertension and proteinuria, and several lines of evidence suggest that the renin-angiotensin system (RAS) may be
involved in the development of hypertension at different stages of a preeclamptic pregnancy. In this study, we developed
rapid genotyping assays on the LightCycler® instrument to allow the detection of genetic variants in the renin gene (REN) that
may predispose to preeclampsia. The method is based on real-time PCR and allele-specific hybridization probes, followed by
fluorescent melting curve analysis to expose a change in melting temperature (T ). Ninety-two mother-father-child triads (n =
276) from preeclamptic pregnancies were genotyped for three haplotype-tagging single nucleotide polymorphisms (htSNPs)
in REN. All three htSNPs (rs5705, rs1464816 and rs3795575) were successfully genotyped. Furthermore, two unexpected
nucleotide substitutions (rs11571084 and rs61757041) were identified within the selected hybridization probe area of rs1464816
and rs3795575 due to aberrant melting peaks. In conclusion, genotyping on the LightCycler® instrument proved to be rapid
and highly reproducible. The ability to uncover additional nucleotide substitutions is particularly important in that it allows the
identification of potentially etiological variants that might otherwise be overlooked by other genotyping methods.
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1. Introduction duced placental perfusion, oxidative stress, activa-
tion of thrombosis and the renin-angiotensin system
(RAS) are probably involved at different stages of a
preeclamptic pregnancy [2-5]. Family studies have
shown that genetic factors contribute to the develop-
ment of preeclampsia, but the exact mechanism is still

unknown despite extensive studies [6-8]. The presence

Preeclampsia is a heritable complication affecting
nearly 3% of all pregnancies in Western populations [1].
Although the etiology remains to be elucidated, re-
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of renin (REN) in the placenta indicates a local synthe-
sis and suggests that REN may be involved in the reg-
ulation of maternal blood pressure [9,10]. Therefore,
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analysis of the gene coding for REN might contribute
to an improved understanding of the underlying causes
of preeclampsia.

A wide range of genotyping techniques have been
described over the years, including gel-based restric-
tion fragment length polymorphism (RFLP) [11,12],
“closed tubes” assays such as the 5’ fluorogenic nu-
clease assay (TagMan®assay), single-base extension
(minisequencing), Pyrosequencing ™, and amplifica-
tion refractory mutation system (ARMS) [12]. Some
genotyping techniques combine real-time PCR with
continuous fluorescence monitoring during amplifica-
tion; an example is the LightCycler®instrument, which
uses fluorescence resonance energy transfer (FRET)
and real-time PCR. This technology quantifies an en-
ergy transfer between oligonucleotide fluorophores la-
beled with different dyes. The donor fluorophore is la-
beled at the 3’-end with Fluorescein (FL), while the oth-
er probe labeled at the 5’-end (LC-Red 640 or LC-Red
705) serves as an acceptor. If there is a mismatch be-
tween the target DNA and the hybridization probes, the
melting temperature (T,,,) will tend to decrease com-
pared with a perfectly matched probe. Thus, this tech-
nology is also capable of detecting a particular SNP
within the hybridization probe area as a result of a shift
in T,, [13,14].

Here, we present three rapid and reliable genotyp-
ing assays based on this widely used method on the
LightCycler® instrument. As a demonstration, DNA
samples from 92 preeclamptic nuclear families (n =
276) were genotyped for three htSNPs in REN. We also
report on the unexpected discovery of two additional
nucleotide substitutions within the selected hybridiza-
tion probe areas for two of the three htSNPs.

2. Materialsand methods
2.1. Biological samples

Ninety-two women who delivered at the Stavanger
University Hospital in Norway in the period January
1993 to December 1995 and who fulfilled the diagnostic
criteria for preeclampsiawere included in the study [11,
15]. Umbilical cord blood was collected from delivered
neonates and peripheral blood was drawn from mothers
and fathers post partum [11]. The study was approved
by the Regional Committee for Ethics in Medical Re-
search and the Norwegian Data Inspectorate. Written
informed consent was obtained from the parents. The
present work was undertaken as a part of a larger study
examining genetic risk factors for preeclampsia [16].

2.2. SNP selection and DNA extraction

A 40 kb-long region containing REN on chromosome
1932 (NT 004487.18) was downloaded from HapMap
(http://www.hapmap.org) and imported into Haploview
v.3.0[17] for the selection of htSNPs and the evaluation
of marker metrics. Three htSNPs on chromosome 1
(rs5705, rs1464816, and rs3795575) were chosen using
the “pairwise tagging” algorithm. All nucleotide posi-
tions are according to the National Center for Biotech-
nology Information (NCBI) assembly 34 of the human
genome (Table 1). To capture the genetic variation
encompassing REN, we used a minor allele frequency
(MAF) cut-off of at least 10% and an r2 greater than
0.8 for linkage disequilibrium within haplotype blocks.
Genomic DNA from 276 samples was extracted using
the QlAamp DNA Blood Mini Kit (Qiagen, Hilden,
Germany).

2.3. PCR primers and hybridization probes

PCR primers and hybridization probes were de-
signed and synthesized by TIB MOLBIOL (Berlin,
Germany). Details are provided in Table 1.

2.4. Genotyping

To genotype rs5705, rs1464816 and rs3795575,
three separate real-time PCR reactions were performed
followed by fluorescent melting curve analyses on
the LightCycler® 2.0 instrument (Roche Diagnostics,
Mannheim, Germany). The reaction mixtures con-
tained 2.5 puL of DNA (approximately 10-50 ng),
4 pL of LightCycler FastStart DNA Master”LUS
HybProbe (Roche Diagnostics), PCR primers, hy-
bridization probes and sterile water to a final volume of
10 pL. Asymmetric PCR conditions were used. PCR
primers and hybridization probes were added at the fol-
lowing concentrations: for rs5705, 0.2 uM RENe2S,
0.4 uM RENe2A, 0.2 uM sensor C, and 0.4 uM An-
chor REN; for rs1464816, 0.2 M RENI4S, 0.4 uM
RENI4A, 0.2 uM Sensor wt and 0.4 M of Anchor
REN; and, finally, for rs3795575, 0.2 uM RENI8A, 0.5
1M RENI8S,0.2 uM REN mutand 0.4 M of REN LC.
Cycling conditions were 95°C for 10 min, followed by
45 cycles of 95°C for 5 s, 52°C, 56°C and 58°C for
10 s for rs5705, rs1464816 and rs3795575 respectively,
then 72°C for 15 s, with a ramp rate of 20°C/s. Melt-
ing curve analysis was performed as follows: 95°C for
10 s, cooling to 55°C and 45°C for 30 s each, 40°C
for 2 min, then heating to 75°C (0.2°C/s). Thirty pa-
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Table 1
PCR primers and hybridization probes used for genotyping REN

SNP Nucleotide Alleles PCR primers (5°-3") Hybridization probes (5’-3")*
position*
rs5705 202397809 A/C RENe2S: CAAGAGAATGCCCTCAATCC Sensor C: ATGAAGAGGCTGACCCTTGGC-FL
RENe2A: CAAGCACTCACGTCCATGTAG Anchor REN: 640-ACACCACCTCCTCCGTGATCCTCACC-p
rs1464816 202395477 G/T RENi4S: GCTTTTCTTTTGCTGCTTGG Sensor wt: TGCAGGGTTGAGGCAATAC-FL
RENi4A: TCCTTGGTTGGAATCTGGTC  Anchor REN: 640-CTTACCCCGATTTCTGTACCCTGGA-p
rs3795575 202391712 C/T RENIi8S: AAGAAGCCAAAGAGGGAAGG REN mut: GCCTTCTTGAGTATGGAAGACATCTCAGC-FL
RENi8A: GAAAGAGATGTCGGGGAGTG REN LC: 640-GACAAGGAGTCCTGCGCTGGTGGC-p

*Nucleotide positions according to the National Center for Biotechnology Information (NCBI) human assembly 34.
**The position of the polymorphic site is underlined.

Table 2
Genotype distribution of rs5705, rs1464816 and rs3795575 in the human renin
gene (REN) among 92 preeclampsia mother-father-child triads

SNP Genotype Count (%) T5.C (£ SD)* AT C
rs5705 AJA 217 (78.6) 58.4 (0.24)
AlC 59 (21.4) 58.4(0.24) and 66.4 (0.23) 8.2
c/IC 0
rs1464816 GIG 112 (40.6) 63.0 (0.40)

GIT  139(50.4) 63.0(.040)and53.1(0.44) 10.1

T 25 (9.0) 53.1 (0.44)

1s3795575  C/C 212 (76.8) 65.0 (0.38)
CIT  64(232) 650(0.38)and70.0 (0.27) 5.1
T 0

Tm, melting temperature; (AT,,; difference in T,, between the wild-type

and mutant genotype).
*Mean T,,, = standard deviation.

tient samples, one positive (heterozygous target) and
one negative (no-template) control (n = 32) were ana-
lyzed simultaneously. All samples (276 in total) were
analyzed in duplicate. The wild-type and mutant geno-
types were differentiated by their characteristic melting
peaks, which were generated by plotting the negative
derivative of the fluorescence signal with temperature
versus temperature (T) [(-dF/dT) versus T].

2.5. Sequencing

To assess genotyping consistency, DNA from 30 ran-
domly selected individuals was sequenced for each ht-
SNP (PCR primers are provided in Table 1). Ampli-
fication products were electrophoresed on 2% agarose
gel and visualized by ethidium bromide staining. PCR
fragments were purified using QIAquick® PCR Pu-
rification Kit (Qiagen) followed by cycle sequencing
using ABI PRISM® BigDye® Terminator v1.1 Cycle
Sequencing Kit (AB Applied Biosystems, Foster City,
CA, USA) according to the manufacturer’s recommen-
dations. Finally, the sequencing reactions were cleaned
using Centri-Sep spin columns (Princeton Separations,
Inc, Adelphia, NJ) according to the manufacturer’s in-

structions and analyzed onan ABI PRISM®310 Genet-
ic Analyzer instrument (AB Applied Biosystems). Re-
sulting sequences were aligned in BLAST (http://blast.
ncbi.nlm.nih.gov/Blast.cgi) for confirmation.

3. Results

DNA samples from preeclamptic women, their part-
ners and children (276 subjects in total) were genotyped
for three htSNPs in REN. Each of the htSNPs showed a
clear difference in T,,, between the wild-type and mu-
tant genotype (between 5.1°C and 10.1°C). All three
genotyping assays were performed in duplicate and no
inconsistencies between the genotypes were observed.
The results are summarized in Table 2. When geno-
types from the LightCycler® analysis were compared
with the results of DNA sequencing in a random set of
30 patient samples, identical genotypes were obtained
for each htSNP.

During fluorescent melting curve analysis, unusu-
al melting peaks around rs1464816 (Fig. 1) and
rs3795575 (Fig. 2) were observed. For rs1464816,
seven of the patient samples revealed atypical melting
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rs1464816
Melting Peaks
0,616
05561 < Atypical melting peak
e Wild-t type (G/G)
- 04363 ild-type genotype
g 0375 Atypical melting peak
8 03153
S 0,256 Homozygous mutant genotype (T/T)
e
= 01989
E 0,136 —— Heterozygous genotype (T/G)
0,076
0,016
40 45 50 55 80 65 70 75
Temperature (°C)
AGGJAATACTCTTACCCCGATTTCTTACCC

115 121 127 133

139

New variant rs11571084 Heterozygous genotype (G/A)
Heterozygous genotype (ASC)

Fig. 1. Typical melting peaks obtained after genotyping rs1464816 by the LightCycIer® instrument. Patients carrying the homozygous mutant
T/T genotype revealed one single melting peak with a T,,, of 53.1°C (green), whereas those with the wild-type G/G genotype revealed a single
peak with a T, of 63.0°C (red). Heterozygous carriers with the T/G genotype revealed two melting peaks (black), one at 53.1°C and the other
at 63.0°C. Atypical melting peaks are shown in blue and pink, with a T,,, of 61.1°C. A no-template control is shown in dark green. The DNA
sequence (reverse direction) is from a patient who is heterozygous A/C for rs1464816 (blue arrow) and simultaneously heterozygous G/A for

rs11571084 (highlighted by the black arrow).

peaks, with a T,,, of 61.1°C, 1.9°C + 0.12 (mean +
SD) lower than the T,,, of the wild-type genotype G/G
(Fig. 1). For rs3795575, 16 samples revealed atyp-
ical melting peaks, with a T,, of 59.8°C, 5.2°C +
0.28 lower than the T,,, of the wild-type genotype C/C
(Fig. 2). To confirm that the atypical melting peaks
were not due to error, we reanalyzed DNA from patients
exhibiting atypical melting peaks. Identical results
were observed. When we sequenced these samples,
additional nucleotide substitutions were discovered in
the hybridization probe areas; namely, rs11571084
[A/G] (Chrl: 202395455), 22 nucleotides upstream of
rs1464816,and rs61757041[A/G] (Chrl: 202391716),
4 nucleotides downstream of rs3795575, respectively.

4. Discussion
Detection of etiologically relevant SNPs is a power-

ful diagnostic test for inherited disorders. In this study,
we developed genotyping assays for REN by allele-

specific hybridization probes followed by fluorescent
melting curve analysis on the LightCycler®instrument.
The technique proved to be rapid and reliable. Thir-
ty patient samples, together with positive and negative
controls, were genotyped in less than an hour, and the
results were highly reproducible when cross-checked
against direct sequencing.

Genotyping on the LightCycler® instrument is par-
ticularly advantageous compared with other traditional
genotyping techniques [11,12] in that it does not re-
quire any post-PCR sample processing, no hazardous
reagents are involved, and the entire reaction takes
place in a close-tube system, which minimizes the risk
of contaminations. All these factors are important
to consider in a moderate-sized lab-facility. Further-
more, the unanticipated detection of rs11571084 and
rs61757041 within the hybridization probes areas de-
signed for rs1464816 and rs3795575 demonstrates the
ability of the technique to distinguish patient samples
with additional nucleotide substitutions. Samples from
patients carrying these unexpected nucleotide substitu-
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rs3795575
Melting Peaks

1,064
0,964
0,569

0,764
0,58
0,56
0,484
0,36
0,264
018
0,064

-{d/dT) Fluorescence (640)

40 45 S0 5 B0 65 0 75
Temperature (*C)

CGCAGGACTCCTTGTCTGC TJ,GI-.E GTCTTCCATA

83 150 197 204 211

Wild-type genotype (C/C)

Atypical melting pealt

— Heterozygous genotype (C/T)

Wild-type genotype (C/C)
New variant rs61757041 Heterozygous genotype (A/G)

Fig. 2. Typical melting peaks obtained after genotyping rs3795575 by the LightCycIer® instrument. Patients with the wild-type C/C genotype
revealed a single melting peak with a T,,, at 65.0°C (red) and patients with the heterozygous C/T genotype revealed two melting peaks, one at
65.0°C and the other at 70.0°C (blue). An atypical melting peak with T, at 61.1°C is shown in green, and the no-template control is shown in
black. The DNA sequence (forward direction) is from a patient who is homozygous wild-type C/C for rs3795575 (blue arrow) and simultaneously

heterozygous A/G for rs61757041 (highlighted by the black arrow).

tions (rs11571084 and rs61757041) affected our geno-
typing assays by generating atypical melting peaks.

Itis possible to accommodate known nucleotide sub-
stitutions located close to the actual SNP in the assay
design by modifying the location or the size of the hy-
bridization probe sequence [18,19]. Alternatively, this
can be achieved by using a “masking technique”, in
which hybridization probes are designed as a “mask”
over a non-target sequence. That is, an artificial mis-
match with all possible alleles adjacent to the mutations
is created as described by Margraf and co-workers [19].
In our case, however, all three genotyping assays were
designed without prior knowledge of rs11571084 and
rs61757041.

The impact of these two nucleotide substitutions on
the development of preeclampsia is unknown and fu-
ture studies are warranted to determine the frequen-
cy and association of these variants with disease de-
velopment and progression. The sample size clear-
ly needs to be increased in order to gauge the impact
of these additional nucleotide substitutions on the risk
of preeclampsia. According to the dbSNP database
(www.ncbi.nlm.nih.gov/sites/entrez), two other SNPs
(rs11571116 and rs61757042) have recently been re-

ported in the vicinity of rs1464816 and rs3795575.
rs11571116 has not been typed in the CEPH sample of
Northern-European origin, while data for rs61757042
have not yet been released in all the HapMap test pop-
ulations (www.hapmap.org).

Several diagnostic assays have been developed on the
LightCycler® instrument, enabling the identification
of genotypes by characteristic melting peaks and T,
shifts [20-22]. Some of these well-established diag-
nostic assays have reported atypical melting peaks due
to the presence of new nucleotide substitutions in the
hybridization probe area beside those the assays were
originally designed for. These additional nucleotide
substitutions have shown varying clinical effects [23-
26]. Atypical melting peaks are usually detected by
T,,, shifts of 5-6°C or higher and may therefore be eas-
ily overlooked if the T,,, shifts are less than 1°C, or if
there is an overlap in T,,, [27,28]. However, if the hy-
bridization probe area is particularly ambiguous or has
not been reported in the public databases, validation
with an alternative method and/or direct sequencing of
patient samples in diverse populations is warranted.

In conclusion, genotyping using the LightCycler®
instrument allows highly specific detection of SNPs in
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the targeted DNA sequence. In particular, the discovery
of new nucleotide substitutions within the hybridization
probe area represents a significant advance over oth-
er conventional genotyping platforms. This, coupled
with relatively low cost and minimum hands-on time,
makes the LightCycler® technique particularly attrac-
tive for cost-effective and rapid genotyping in smaller
lab-facilities.

Acknowledgements

This work was supported from the Western Norwe-
gian Health Authorities and by The Norwegian Society
of Engineers and Technologists (NITO).

Conflict of interest

There are no conflicts of interest.

References

[1]
[2]
[3]

(4]
[5]
[6]

[7]

(8]

[]

[10]

C.W. Redman and I.L. Sargent, Latest advances in understand-
ing preeclampsia, Science 308 (2005), 1592-1594.

R. Arngrimsson, Epigenetics of hypertension in pregnancy,
Nature Genetics 37 (2005), 460-461.

G.A. Dekker and B.M. Sibai, Etiology and pathogenesis of
preeclampsia: Current concepts, American Journal of Obstet-
rics and Gynecology 179 (1998), 1359-1375.

P. Parham, NK cells and trophoblasts: partners in pregnancy,
Journal of Experimental Medicine 200 (2004), 951-955.
J.M. Roberts and D.W. Cooper, Pathogenesis and genetics of
pre-eclampsia, Lancet 357 (2001), 53-56.

AM.A. Lachmeijer, G.A. dekker, G. Pals, J.G. Aarnoudse,
L.P. ten Kate and R. Arngrimsson, searching for preeclampsia
genes: the current position, European Journal of Obstetrics
and Gynecology an Reproductive Biology 105 (2002), 94-113.
E. Nilsson, H.S. Ros, S. Cnattingius and P. Lichtenstein,
The importance of genetic and environmental effects for
pre-eclampsia and gestational hypertension: a family study,
BJOG: an International Journal of Obstetrics and Gynaecol-
ogy 111 (2004), 200-206.

R. Skjeerven, L.J. Vatten, A.J. Wilcox, T.Rgnning, L.M. Ir-
gens and R.T. Lie, Recurrence of pre-eclampsia across gener-
ations: exploring fetal and maternal genetic components in a
population based cohort, British Medical Journal 331 (2005),
877.

C. Li, R. Ansari, Z. Yu and D. Shah, Definitive molecular
evidence of renin-angiotensi system in human uterine decidual
cells, Hypertension 36 (2000), 159-164.

E. Takimoto, J. Ishida, F. Sugiyama, H. Horiguchi, K. Muraka-
mi and A. Fukamizu, Hypertension induced in pregnant mice
by placental renin and maternal angiotensinogen, Science 274
(1996), 995-997.

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

H. Vefring, R.T. Lie, R. @degrd, M.A. Mansoor and S.T.
Nilsen, Maternal and fetal variants of genetic thrombophilias
and the risk of preeclampsia, Epidemiology 15 (2004), 317-
322.

C.D. Mamotte, Genotyping of single nucleotide substitutions,
Clinical Biochemist Reviews 27 (2006), 63-75.

P.S.Bernard, G.H. Pritham and C.T. Wittwer, Color multiplex-
ing hybridization probes using the apolipoprotein E locus as
a model system for genotyping, Analytical Biochemistry 278
(1999), 221-228.

C.T. Wittwer, K.M. Ririe, R.V. Andrew, D.A. David, R.A.
Gundry and U.J. Balis UJ, The LightCycler™: A microvol-
ume multisample fluorimeter with rapid temperature control,
BioTechniques 22 (1997), 176-181.

CLASP (Collaborative Low-dose Aspirin Study in Pregnan-
cy) Collaborative Group, CLASP: a randomized trial of low-
dose aspirin for the prevention and treatment of preeclampsia
among 9364 pregnant women, Lancet 343 (1994), 893-901.
H.K. Vefring, L. Wee, A.Jugessur, H.K. Gjessing, S.T.Nilsen
and R.T. Lie, Maternal anigitensinogen (AGT) haplotypes, fe-
tal rennin (REN) haplotypes and risk of preeclampsia; estima-
tion of gene-gene interaction from family-triad data, accepted
in BMC Medical genetics 11 (2010).

J.C. Barrett, B. Fry, J. Maller and M.J. Daly, Haploview: anal-
ysis and visualization of LD and haplotype maps, Bioinfor-
matics 21 (2005), 263-265.

C.T. Wittwer, M.G. herrmann, C.N. Gundry and K.S.J.
Elentitoba-Johnson, Real-time multiplex PCR assays, Meth-
ods 25 (2001), 430-442.

R.L. Margraf, R. Mao and C.T. Wittwer, Masking selected
sequences variation by incorporating mismatches into melting
analysis probes, Human mutation 27 (2006), 269-278.

N. von Ahsen, E. Schiitz, V.W. Armstrong and M. Oellerich,
Rapid detection of prothrombotic mutations of prothrombin
(G20210A), factor V (G1691A), and methylenetetrahydrofo-
late reductase (C677) by real-time fluorescence PCR with the
LightCycler, Clinical Chemistry 45 (1999), 694-696.

V. Bach, M.J. Barcelo, A. Altés, A. Remacha, J. Félez and J.
Baiget, Genotyping the HFE gene by melting point analysis
with the LightCycler system: Pros and Cons, Blood Cells,
Molecules, and Diseases 36 (2006), 288—291.

G. Bodlaj, M. Stocher, P. Hufnagl, R. Hubmann, G. Biesen-
bach, H. Stekel and J. Berg, Genotyping of the lactase-
phlorizin hydrolase -13910 polymorphism by LightCycler
PCR and implications for the diagnosis of lactose intolerance,
Clinical Chemistry 52 (2006), 148-151.

C.G Tag, M.C. Schifflers, M. Mohnen, A.M. Gressner and
R.Weiskirchen, A novel proximal -13914G > A base replace-
ment in the vicinity of the common-13910T/C lactase gene
variation results in an atypical LightCycler melting curve in
testing with the MutaREAL Lactase test, Clinical Chemistry
53(2007), 146-148.

M. Wylenzek, C. Geisen, L. Stapenhorst, K. Wielckens and
K.R. Klingler, A novel point mutation in the 3’ region of
the prothrombin gene at position 20221 in a Lebanese/Syrian
family, Thrombosis and haemostasis 85 (2001), 943-944.

I. Warshawsky, C. Hren, L. Sercia, B. Shadrach, S.R. Deitch-
er, E. Newton and K. Kottke-Marchant, Detection of a nov-
el point mutation of the prothrombin gene at position 20209,
Diagnostic Molecular Pathology 11 (2002), 152-156.

C.G. Tag, M.C. Schifflers, M. Mohnen, A.M. Gressner and R.
Weiskirchen, Atypical melting curve resulting from genetic
variation in the 3’ untranslated region at position 20218 in
the prothrombin gene analyzed with the LightCycler factor 11



[27]

L. Wee et al. / Identification of unexpected nucleotide substitutions within the selected hybridization probe area 249

(prothrombin) G20210A assay, Clinical Chemistry 51 (2005),
1560-1561.

E. Lyon, A. Millson, T. Phan and C.T. Wittwer, Detection
and ldentification of Base Alterations Within the Region of
Factor V Leiden by Fluorescent Melting Curves, Molecular
Diagnosis 3 (1998), 203-209.

[28] C.G. Tag, C. Oberkanins, G. Kriegshauser, C.J. Ingram,
D.M. Swallow, A.M. Gressner, M. Ledochowski and R.
Weiskirchen, Evaluation of a novel reverse-hybridization Stri-
pAssay for typing DNA variants useful in diagnosis of adult-
type hypolactasia, Clinica Chimica Acta 392 (2008), 58-62.



MEDIATORS

INFLAMMATION

The SCientiﬁc Gastroentero\ogy & . Journal of )
World Journal Research and Practice Diabetes Research Disease Markers

International Journal of

Endocrinology

Journal of
Immunology Research

Hindawi

Submit your manuscripts at
http://www.hindawi.com

BioMed
PPAR Research Research International

Journal "’f
Obesity

Evidence-Based

Journal of Stem CGHS Complementary and L o' ‘ Journal of
Ophthalmology International Alternative Medicine & Oncology

Parkinson’s
Disease

Computational and . z
Mathematical Methods Behavioural AI DS Oxidative Medicine and
in Medicine Neurology Research and Treatment Cellular Longevity



