
 Procedia Computer Science   37  ( 2014 )  481 – 488 

Available online at www.sciencedirect.com

1877-0509 © 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/3.0/).
Peer-review under responsibility of the Program Chairs of EUSPN-2014 and ICTH 2014.
doi: 10.1016/j.procs.2014.08.072 

ScienceDirect

1st International Workshop on Metamodelling for Healthcare Systems (MMHS–2014)

Model Checking Healthcare Workflows using Alloy

Xiaoliang Wanga, Adrian Rutlea,∗
aBergen University College, Bergen, Norway

Abstract

Workflows are used to organize business processes, and workflow management tools are used to guide users in which order these

processes should be performed. These tools increase organizational efficiency and enable users to focus on the tasks and activit-

ies rather than complex processes. Workflow models represent real life workflows and consist mainly of a graph-based structure

where nodes represent tasks and arrows represent the flows between these tasks. From workflow models, one can use model trans-

formations to generate workflow software. The correctness of the software is dependent on the correctness of the models, hence

verification of the models against certain properties like termination, liveness and absence of deadlock are crucial in safety critical

domains like healthcare. In previous works we presented a formal diagrammatic framework for workflow modelling and verifica-

tion which uses principles from model-driven engineering. The framework uses a metamodelling approach for the specification of

workflow models, and a transformation module which creates DiVinE code used for verification of model properties. In this paper,

in order to improve the scalability and efficiency of the verification, we introduce a new encoding of the workflow models using the

Alloy specification language, and we present a bounded verification approach for workflow models based on relational logic. We

automatically translate the workflow metamodel into a model transformation specification in Alloy. Properties of the workflow can

then be verified against the specification; especially, we can verify properties about loops. We use a running example to explain

the metamodelling approach and the encoding to Alloy.
c© 2014 The Authors. Published by Elsevier B.V.

Peer-review under responsibility of the Program Chairs of MMHS-2014.

Keywords: Workflow modelling, Efficient verification, Alloy, Model checking, Model-driven engineering.

1. Introduction

Healthcare is the domain which cost states and local governments a considerable portion of their budgets. Further-

more, mistakes in almost any aspect of a healthcare-related system may cause severe damages. This has lead to an

increasing pressure on making processes and procedures in healthcare safer and more effective. Clinical guidelines,

dictating how processes should be organized, have been provided by health authorities to guide and unify healthcare

processes across institutions. These guidelines are in constant changes due to updates in regulations and advances

in treatment methods and medications. Unfortunately, the guidelines are traditionally written in natural languages,

which can run to hundreds of pages, incorporating heavily annotated diagrams which use non-standard and confusing

notations1.

∗ Corresponding author. Tel.: +47-5558-7791 ; fax: +47-5558-7789.

E-mail addresses: xwa@hib.no (Xiaoliang Wang)., aru@hib.no (Adrian Rutle).

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/3.0/).
Peer-review under responsibility of the Program Chairs of EUSPN-2014 and ICTH 2014.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2014.08.072&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2014.08.072&domain=pdf


482   Xiaoliang Wang and Adrian Rutle  /  Procedia Computer Science   37  ( 2014 )  481 – 488 

Workflow models may be used to formally structure clinical guidelines. A workflow model consists mainly of

a graph-based structure where nodes represent tasks and arrows represent the flows between these tasks. In earlier

work2,3,4 we proposed a diagrammatic framework (called DERF) for the specification of workflow models using

model-driven engineering (MDE)5,6 techniques. The diagrammatic models are easily understood by domain-experts,

and the metamodelling approach allows models to be easily customized to deal with new treatment procedures and

other changes in clinical guidelines.

From workflow models, one can use model transformations to generate workflow software. Workflow software

are used to guide users in which order these processes should be performed, and to resolve dependencies between

tasks. These tools improve organizational efficiency and enable users to focus on the tasks and activities rather than

complex processes. The correctness of the software is dependent on the correctness of the models, hence verification

of the models against certain properties like termination, liveness and absence of deadlock are crucial in safety critical

domains like healthcare. In7 we proposed a verification approach for models specified in DERF, in which the workflow

models were transformed to DVE, the language of the DiVinE model checker. The approach also incorporated a user-

friendly editor for specification of model properties, as well as a module for visualization of counter-examples in case

some properties did not hold. In this paper, we extend upon our earlier work, and introduce a new, efficient encoding

of the workflow models using the Alloy specification language. Furthermore, we present a bounded verification

approach for workflow models based on relational logic. We automatically translate the workflow metamodel into a

model transformation specification in Alloy. Properties of the workflow can then be verified against the specification;

especially, we can verify properties about loops. In case a property does not hold, a counter-example is generated

automatically by the Alloy and visualized as a graph. We use a running example (adopted from7) to explain the

metamodelling approach and the encoding to Alloy.

In Section 2 we review our workflow modelling language. In Section 4 we discuss correctness of workflow models,

explain our encoding to the Alloy specification language, and visualize counter-examples. Sections 5 and 6 present

some related and future work and conclude the paper.

2. Metamodeling for Healthcare Workflows

Workflow models may be used to document and analyse complex work processes in clinical guidelines and to en-

sure their formal correctness. In previous work, we presented a diagrammatic modelling framework used for workflow

modelling2,3,4,7. A design goal of the framework has been to make the modelling tools intuitive enough to be used by

healthcare practitioners and formal enough to be used to specify and verify interesting properties of healthcare work-

flows. Here, we only present the most important details of the framework, the details can be found in the references

above. This short presentation of the modelling language and the running example are adopted from7.

The workflows are represented as graph-based structures describing in which order specific tasks should be ex-

ecuted. Each task is represented by a node. If there is an arrow T1
e−→ T2 from a task T1 to a task T2, then task T1

must be performed before task T2. Special binary constraints on forks (joins) specify splits (respectively, merges) of

workflow branches. In fact, joins and forks can be extended in the standard way to arbitrary triples, quadruples, etc.

The most used splits (e.g. [and_split], [or_split] or [xor_split]) and merges (e.g. [and_merge],

[xor_merge] or [or_merge]) are formulated as predicates in our framework. The meaning of these constraints

are as usual: both branches have to be executed in an [and_split]; exactly one branch has to be executed in an

[xor_split] and one or two branches have to be executed in an [or_split].

Fig. 1 shows a sample of a workflow from the healthcare domain. The workflow illustrates a simplified scenario for

cancer treatment. After an initial examination, the patient will have an MRI examination and a blood test. According

to the results of the two tests, the physician will decide which procedure the patient should follow (either Procedure A

or Procedure B). After finishing the chosen procedure, the result shall be evaluated to determine whether the patient

should use drug treatment or not. If drug treatment is chosen, then when the drugs are finished a blood test is taken

and the result is evaluated to determine whether the patient should be given further drug treatment or not. Hence if

the drug treatment is repeated, the blood test and the evaluation will be repeated as well; i.e., the workflow will be in

a loop. The workflow ends when the evaluation shows that the drug treatment should terminate.

The syntax and semantics of the workflow modelling language is given in2,3,4,7; here we only recall some of the

details. The modelling language is defined using the Diagram Predicate Framework (DPF)8 and implemented using

the DPF Workbench9. In DPF, a modelling language is given by a metamodel and a diagrammatic predicate signature



483 Xiaoliang Wang and Adrian Rutle  /  Procedia Computer Science   37  ( 2014 )  481 – 488 

Figure 1: Sample workflow model. Adopted from 7.

(see Fig. 2). The metamodel defines the types and the signature defines the predicates that are used to formulate

constraints by the users. A model in DPF consists of an underlying graph, and a set of constraints. DPF supports a

multi-level metamodelling hierarchy, in which a model at any level can be regarded the metamodel for models at the

level below it. In DERF, we have three modelling levels: M2, M1 and M0. The metamodel of our workflow modelling

language (which is at level M2) consists of a node Task and an arrow Flow. This means that we can define a set of

tasks together with the flows between these tasks. The signature Σ2 of the workflow modelling language consists of

a set of routing predicates such as [and_split], [and_merge], [xor_merge], etc. Tasks which are involved

in a cycle in the workflow are marked with a predicate [NodeMult,n] where n specifies how many instances that

task can have at most. We call these tasks "loop tasks", and we call flows within a loop for "loop flows".

2

1

Figure 2: Workflow modelling hierarchy: dashed arrows indicate types of

some model elements, dotted arrows indicate relations between signatures

and models. Adopted from 7.

From the metamodel at level M2 and the sig-

nature Σ2 with routing predicates, we can create

a modelling language for the definition of “work-

flow models”. These workflow models, which

conform to the metamodel at level M2, are loc-

ated at level M1. Given a specific workflow model

at level M1 (like the one in Fig. 1) and the predic-

ates <E>, <R> and <F> (where <E>, <R>, and <F> de-

notes that a task instance is enabled, running, and

finished, respectively) collected in a signature Σ1
(see Fig. 2) We refer to <E>, <R> and <F> as “task

states”. Note that in an earlier version of the lan-

guage2,3 we had 4 states, <D>, <E>, <R> and <F>,

thereof the name DERF. These workflow states are

located at level M0, and conform to the workflow

model. Beginning with a state at level M0 (that

may be referred to as an instance of the work-

flow model) we generate states by applying model

transformation rules (see Tables 1 and 2). For ex-

ample rule t1 takes an instance of a task from <E>

to <R> and rule t2 takes an instance of a task from

<R> to <F>. A workflow run is represented by an

execution path in the state space of the workflow

model; i.e., by a sequence of rule applications. The state space which can be generated by the transformation rules

comprises the dynamic semantics of the workflow.

3. Encoding of workflow model
In this section, we will cover how to encode a workflow model and its corresponding transition system as an Alloy

specification. The specification represents a model transformation system which simulates the dynamic semantics

(each task can change from a state to another). However, the state information is not represented in the generated

specification. The encoding procedure is adapted based on our encoding of model transformation systems detailed

in10. It is implemented as a code generation module in DPF and can derive the Alloy specification automatically from

a workflow model and the coupled transformation rules. Before presenting the encoding procedure, we give a brief

introduction to Alloy.



484   Xiaoliang Wang and Adrian Rutle  /  Procedia Computer Science   37  ( 2014 )  481 – 488 

Table 1: The coupled transformation rules t1 and t2 of our transition system

t (L0 ��� L1) (K0 ��� K1) (R0 ��� R1) t (L0 ��� L1) (K0 ��� K1) (R0 ��� R1)
t1 X

x
<E>

��
X

x

��
X

x <R>

��
t2 X

x
<R>

��
X

x

��
X

x <F>

��

Table 2: Some coupled transformation rules for the transition system, adopted from 4

t (L0 ��� L1) = (K0 ��� K1) (R0 ��� R1) t (L0 ��� L1) = (K0 ��� K1) (R0 ��� R1)
t3 X A ��

B
��

Y

Z

<F> x

ix

��
[and]

X A ��

B
��

Y

Z

<F> x

ix

��

a ��

b
��

y
<E>

iy

��

z
<E>

iz

��

[and]

t4 X A

[c]
��

B

[!c] ��

Y

Z

<F> x

ix

��
[xor]

X A

[c]
��

B

[!c] ��

Y

Z

<F> x

ix

��

a

<�>
�� y

<E>

iy

��
[xor]

Alloy11 is a structural modelling language, based on first-order logic, for expressing complex structure and con-

straints. The Alloy Analyzer is a constraint solver translating Alloy specifications written in relational logic to a

boolean satisfiability problem which is automatically evaluated by a SAT solver. For a given specification F , the

Alloy Analyzer attempts to find an instance which satisfies F or find a counterexamples which violates F by running

run or check command within a use-defined scope. The instance or counter-example is displayed graphically, and

their appearance can be customized for the domain at hand.

3.1. Encoding of the metamodel at M2 level

Recall that each model in DPF (and also in DERF) consists of an underlying graph and a set of constraints. Given

a workflow model, for the underlying graph, each task t:Task is encoded as a task signature St; each flow f :Flow is

encoded as a flow signature Sf with two fields src and trg denoting the source task and the target task of the flow.

The encoding procedure handles the loop tasks specially. In order to count how many times the task is performed, a

field count is added to the loop task’s signature. Thus the workflow model can be encoded as a graph signature SG

containing two fields: the field nodes denoting the tasks; the field arrows denoting the flows. Since the structure is a

graph, it should satisfy that if a flow is contained by a graph g, its source and target tasks should also be contained by

g. The structure encoding is shown in the following listing: (assuming the structure contains m tasks and n flows.)

1 sig Sti{count:one Int//The field is optional depending if the task is a loop task or
within a loop.

2 }//For each task ti, i ∈ {1..m}
3 sig Sfj{src:one Ss

fj
, trg:one St

fj
}{//For each flow fj, j ∈ {1..n}, Ss

fj
/St

fj
is the flow’s

source/target task
4 sig SG{nodes:set St1+. . .+Stm,edges:set Sf1+. . .+Sfn}
5 fact{all g:SG|all e:g.edges|(e.src in g.nodes and e.trg in g.nodes)}

Besides the structural information, the workflow model contains also constraints restricting the set of valid in-

stances. The constraints are of two types:



485 Xiaoliang Wang and Adrian Rutle  /  Procedia Computer Science   37  ( 2014 )  481 – 488 

General Constraints These constraints are implicitly contained in each workflow model and must be satisfied by

all workflow states. In DPF, we specify these constraints using universal constraints8.

1. Each task instance may enable at most one instance of the same subsequent task. This is forced by a multiplicity

constraint mult[0..1] on each flow in workflow models. Similarly, two instances of the same task cannot

enable the same instance of a subsequent task. This is forced by injective constraint [inj] on each flow.

2. A task instance cannot be enabled before its preceding task is finished. To specify this constraint, when a task has

only one incoming flow, the flow will be constrained with surjective constraint [surj]. However, if the task

has multiple incoming flows and the model designer has not put any routing constraint on these, the constraint

[or_merge] is put on the flows.

3. If a task has incoming flows mixing loop flows and ordinary flows, two separate [or_merge] (or [sur] if the

sets contain only one) are put on each of these two sets.

Specific Constraints These constraints are specified in a workflow model explicitly by designers. These constraints

are formulated using predicates from Σ2. Since there is a limited number of predicates for the workflow modelling

language, these predicates are hard-coded in the implementation and used to formulate different constraints in the

models. For example, the [xor_split,c] constraints in Fig. 1 are encoded as:

1 pred fact_E1_xor_split[g:Graph]{//For Evaluation1
2 all n:NE1&g.nodes|not ((some e:AE1_PB&g.arrows|e.src=n) and (some e:AE1_PA&g.

arrows|e.src=n))
3 }
4 pred fact_E2_xor_split[g:Graph]{//For Evaluation2
5 all n:NE1&g.nodes|not ((some e:AE1_PB&g.arrows|e.src=n) and (some e:AE1_PA&g.

arrows|e.src=n))
6 }

3.2. Encoding of model transformation

In DERF, we use coupled transformation rules to define the dynamic semantics of workflow models. We adopt

a variant of the encoding procedure for transformation rules detailed in10. First, we derive the graph transformation

rules by finding the matching of each coupled transformation rule. For example, for the rule t4 in Table 2 defining

the semantics of [xor_split,c], two matches are found: one on Evaluation1 and one on Evaluation2 (See rules

E11
xs, E12

xs, E21
xs, E22

xs in Table 3). Note that this step of deriving the graph transformation rules is performed im-

plicitly in the encoding procedure. Then each derived rule r is encoded as a predicate pred apply_r[tran:Trans] as

in10 stating that a transformation applies the rule. The signature Trans, as in10, encodes the direct model transforma-

tions which contains 7 fields: the rule applied rule, the source workflow source, the target workflow target, and, the

deleted and added elements during the transformation dnodes, anodes, darrows, aarrows. Assuming there are nr
derived rules, the following fact asserts that every transformation should apply exactly one of the derived rules.

1 fact {all t:Trans | apply_r1[t] or . . . or apply_rnr[r]}

Since in the workflow modelling language loops are represented as tasks with predicate [MultNode,n], the loop

tasks can be repeated a finite number n of times. That is, the loop tasks may have up to n instances. Therefore, when

deriving the graph transformation rules for this case, several points should be considered:

• For the incoming flows of a loop task which are not loop flows, the rule creates a new instance of the loop task

with count = 0 (see rules E21
xm and E22

xm in Table 3).

• For the flow loops which are not coming into a loop task, the rule creates a new instance of the flow’s target task

with count equals to the flow’s source task. In addition, for the flow coming out of a loop task, a precondition

should check if its count is less than the upper limit n in [MultNode,n] (see rule E22
xs in Table 3).

• For the loop flows coming into a loop task, the rule shall create a new instance of the loop task with count =
count′ + 1, where count′ is the count of the flow’s source task (see rule Flow11 in Table 3).



486   Xiaoliang Wang and Adrian Rutle  /  Procedia Computer Science   37  ( 2014 )  481 – 488 

Table 3: Derived graph transformation rules for t4 in Table 2

Rule L K R

E1 1
xs :E1 :E1 :E1 �� :PA

E1 2
xs :E1 :E1 :E1 �� :PB

E2 1
xs :E2 :E2 :E2 �� :End

E2 2
xs :E2c<5 :E2c<5 :E2c<5 :TD��

E2 1
xm :PA :PA :PA :E2�� c=0

E2 2
xm :PB :PB :PB :E2�� c=0

Flow11 :BT2c :BT2c :BT2c :E2�� c+1

Flow10 :TDc :TDc :TDc :BT2�� c

4. Verification of Healthcare Workflow

After a workflow is encoded as an Alloy specification, the Alloy Analyzer can be used to verify its properties. In

this work, we want to verify whether the workflow model satisfies generic properties such as: 1) absence of deadlocks,

and, 2) termination (when loops are present). The Alloy Analyzer performs a bounded check and can prove whether

the workflow system is without error w.r.t. the properties within a user-defined scope. Hence, the approach can find

bugs in a workflow model efficiently. In addition, the Alloy Analyzer can visualize the counterexamples if they exist.

Before verifying these generic properties, we firstly verify a pre-property that the encoded Alloy specification

correctly stimulates the dynamic semantics of the workflow model. It means that every instance of the Trans encodes

a transition between states in the state space of the workflow model. Note that the pre-property implies that each

instance of the SG encodes a valid state of the workflow model. If this is verified correct, then we can examine the

derived Alloy specification to verify other properties of the workflow model; in addition, it means that each workflow

instance contains path information; i.e., there exists a sequence of transformations applied on the start state to get such

an instance. Otherwise, it means that the modeling of the workflow is not correct and we need to revises the workflow

model or the rules to fix the problem.

To verify the pre-property, we check the Direct Condition10 to show that each transformation from a valid source

state can produce a valid target state. In addition, a similar condition should also be verified: if the target of a

transformation is a valid state that the source is also a valid state. Similar to the verification method in10, these two

properties are verified by running the commands in the following listing. The scope we use is for 10 but exactly
1 Trans, exactly 2 Graph. It means that in each workflow instance, at most 10 instances of each task (such as

Evaluation1 and Evaluation2) are present.

1 check{all trans:Trans|valid[trans.source] and not valid[trans.target]} for 10 but
exactly 1 Trans, exactly 2 Graph

2 check{all trans:Trans|not valid[trans.source] and valid[trans.target] and not
isStart[trans.target]} for 10 but exactly 1 Trans, exactly 2 Graph

Trans
($t)

AE2_TD0

aarrows

NTD1

anodes

Graph0

source

Graph1

target

rule_E2_xor_split_1

rule

trg

NE2
($fact_E2_TD_multi_0_1_n)

src

ABT1_E1

arrows

ABT2_E2

arrows

AE1_PA

arrows

AE2_TD1

arrows

AIE_BT1

arrows

AIE_MRI

arrows

AMRI_E1

arrows

APA_E2

arrows

ATD_BT2

arrows

NBT1

nodes

NBT2

nodes

NE1

nodesnodes

NIE

nodes

NMRI

nodes

NPA

nodes

NTD0

nodes

srctrg

arrows

nodes

arrowsarrows arrowsarrows arrowsarrowsarrowsarrows arrows

nodesnodes nodesnodes nodesnodesnodes nodes

srctrg srctrgsrc trg trg srcsrctrgtrg srctrg src trg src

Figure 3: Counterexample of xor_split

The verification result shows several counterexamples; e.g. the [xor_split,c]constraint is violated. One

violation is shown in Fig. 3. To correct this problem the rule for [xor_split,c]should use the two split branches

as NAC to avoid reapplying the rules multiple times (see Table 3). The errors and counterexamples disappear after



487 Xiaoliang Wang and Adrian Rutle  /  Procedia Computer Science   37  ( 2014 )  481 – 488 

that some rules are revised. This means that the encoded Alloy specification correctly simulates the dynamics of the

workflow model.

Now we can prove the properties like absence of deadlock or termination for loops. To verify the absence of

deadlock property, we try to find a transformation where the source state is valid valid[trans.source], the target

state is not in finished state not finished[trans.target] (which means the workflow terminates,) and no rule can be

applied on the target model not rules_applicable[trans.target]. If such transformation is found, it means there is

deadlock in the workflow model. The Alloy Analyzer finds an instance by the command in the following listing.

1 run{all trans:Trans|valid[trans.source] and not finished[trans.target] and not
rules_applicable[trans.target]} for 10 but exactly 1 Trans, exactly 2 Graph

We can verify that a workflow will terminate although it contains a loop. It means each time a workflow enters a loop,

it will terminate in the future. We can use the Alloy Analyzer to find counterexamples. That is, a workflow has entered

a loop but have not finished or have further applicable rule. Actually, this is a special case of deadlock verification.

The result shows there is no deadlock or loop without termination for the workflow model.

1 run{all trans:Trans|has_enter_loop[trans.source] and valid[trans.source] and not
finished[trans.target] and not rules_applicable[trans.target]} for 10 but
exactly 1 Trans, exactly 2 Graph

5. Related Work

We shortly present some efforts using model checking for verification of safety critical systems. Pérez et al. 12 use

MDE-based tool chain semi-automatically to process manually created clinical guideline specifications and generate

the input model of a model checker from the specifications. The approach uses Dwyer patterns13 to specify com-

monly occurring types of properties. In14 the authors propose an approach to the verification of clinical guidelines,

which is based on the integration of a computerized guidelines management system with a model-checker. Advanced

Artificial Intelligence techniques are used to enhance verification of the guidelines. The approach is first presented as

a general methodology and then instantiated by loosely coupling the guidelines management system GLARE15 and

the model checker SPIN16. A similar approach was presented by Rabbi et al. 17 to model compensable workflows

using the Compensable Workflow Modelling Language (CWML) and its verification by an automated translator to

the DiVinE model checker. In18 a method to minimize the risk of failure of business process management systems

from a compliance perspective is presented. Business process models expressed in the Business Process Execution

Language (BPEL) are transformed into pi-calculus and then into finite state machines. Compliance rules captured

in the graphical Business Property Specification Language (BPSL) are translated into linear temporal logic. Thus,

process models can be verified against these compliance rules by means of model checking technology.

Most of these works use model checking to verify the workflow system while we use Alloy, based on relation logic

and a satisfiability solver. These works are complete since the model checker work on the whole state space. However,

our approach is bounded and incomplete, i.e., the properties verified is only valid in some scope. But our approach

can find bugs in the system more efficiently. In addition, the above mentioned works have their own patterns and

languages to specify the properties and verify different kinds of properties, while in our work, we only verify those

mentioned properties if they are expressed in first-order logic. Furthermore, we can also derive the model checker

input file (semi-)automatically.

6. Conclusion and Future Work

In this paper, we apply a bounded verification approach based on Alloy to the verification of healthcare workflow

models. We build on our MDE-based workflow modelling language for the definition of diagrammatic workflow

models. In order to verify a workflow, the dynamic semantic of the workflow is simulated as a model transformation

system, encoded as a specification in Alloy. Then the Alloy Analyzer is used to verify general properties of the

workflow by finding counterexamples. If such counterexamples are found, they are visualized by the Alloy Analyzer

showing how a property is violated.



488   Xiaoliang Wang and Adrian Rutle  /  Procedia Computer Science   37  ( 2014 )  481 – 488 

One of the main contributions of the paper is that we use a new technique to verify workflow models. Comparing

with other approaches with model checking techniques, the approach is bounded and incomplete. But the approach

enable the designer quickly find the bugs in the models and correct them with the feedback from the verification result.

In10, the verification approach based on Alloy encounter a scalability problem when the relations in metamodel or

transformations rules are too complex. But as we can see from the workflow metamodel and the derived transformation

rules, this may not be a problem; because the arity of the relations in the coupled model transformations are at most 2.

In this work, we only applied the approach to one workflow model. In the future, larger models will be used to study

the performance of the approach. Right now, limited properties are verified with the approach. More study should

be continued to see whether other properties can be verified. In7 we used a user-friendly editor for the specification

of properties. We plan on translating properties defined in this editor so that they can be verified against the Alloy

specifications using Alloy Analyzer. Furthermore, we abstract out the state information in the encoding procedure.

Actually, some flows, like TakeDrug to Evaluation2, can be also omitted. We will check if any systematical

approach can make the encoding result simpler.

References

1. D. Méry, N. Singh, Medical protocol diagnosis using formal methods, in: Z. Liu, A. Wassyng (Eds.), Foundations of Health Informatics

Engineering and Systems, Vol. 7151 of Lecture Notes in Computer Science, Springer Berlin Heidelberg, 2012, pp. 1–20. doi:10.1007/
978-3-642-32355-3_1.

2. H. Wang, A. Rutle, W. MacCaull, A Formal Diagrammatic Approach to Timed Workflow Modelling, in: Proceedings of TASE 2012: 6th

International Conference on Theoretical Aspects of Software Engineering, Vol. 0, IEEE Computer Society, 2012, pp. 167–174.

3. A. Rutle, H. Wang, W. MacCaull, A Formal Diagrammatic Approach to Compensable Workflow Modelling, in: Z. Liu, A. Wassyng (Eds.),

Foundations of Health Informatics Engineering and Systems, Vol. 7789 of Lecture Notes in Computer Science, Springer Berlin Heidelberg,

2013, pp. 194–212.

4. A. Rutle, W. MacCaull, H. Wang, Y. Lamo, A Metamodelling Approach to Behavioural Modelling, in: Proceedings of BM-FA 2012: 4th

Workshop on Behavioural Modelling: Foundations and Applications, ACM, 2012, pp. 5:1–5:10.

5. B. Selic, The pragmatics of model-driven development, IEEE Softw. 20 (5) (2003) 19–25. doi:10.1109/MS.2003.1231146.

6. T. Stahl, M. Völter, Model-Driven Software Development: Technology, Engineering, Management, Wiley, 2006.

7. A. Rutle, F. Rabbi, W. MacCaull, Y. Lamo, A user-friendly tool for model checking healthcare workflows, Procedia Computer Science 21 (0)

(2013) 317 – 326, the 4th International Conference on Emerging Ubiquitous Systems and Pervasive Networks (EUSPN-2013) and the 3rd

International Conference on Current and Future Trends of Information and Communication Technologies in Healthcare (ICTH). Best paper
award. doi:/10.1016/j.procs.2013.09.042.

8. A. Rutle, Diagram Predicate Framework: A Formal Approach to MDE, Ph.D. thesis, Department of Informatics, University of Bergen,

Norway (2010).

9. Y. Lamo, X. Wang, F. Mantz, W. MacCaull, A. Rutle, DPF Workbench: A Diagrammatic Multi-Layer Domain Specific (Meta-)Modelling

Environment, in: R. Lee (Ed.), Computer and Information Science 2012, Vol. 429 of Studies in Computational Intelligence, Springer Berlin

Heidelberg, 2012, pp. 37–52. doi:10.1007/978-3-642-30454-5_3.

10. X. Wang, Y. Lamo, F. Büttner, Verification of graph-based model transformation using alloy, in: In: Proc. of GTVMT, 2014.

11. Alloy, Project Web Site, http://alloy.mit.edu/community/.

12. B. Pérez, I. Porres, Authoring and verification of clinical guidelines: A model driven approach, Journal of Biomedical Informatics 43 (4)

(2010) 520–536.

13. M. B. Dwyer, G. S. Avrunin, J. C. Corbett, Patterns in property specifications for finite-state verification, in: Proceedings of the 21st interna-

tional conference on Software engineering, ICSE ’99, ACM, New York, NY, USA, 1999, pp. 411–420.

14. A. Bottrighi, L. Giordano, G. Molino, S. Montani, P. Terenziani, M. Torchio, Adopting model checking techniques for clinical guidelines

verification, Artificial Intelligence in Medicine 48 (1) (2010) 1 – 19. doi:10.1016/j.artmed.2009.09.003.

15. L. Anselma, A. Bottrighi, G. Molino, S. Montani, P. Terenziani, M. Torchio, Supporting knowledge-based decision making in the medical

context: The glare approach, IJKBO 1 (1) (2011) 42–60.

16. SPIN, Project Web Site, http://spinroot.com/.

17. F. Rabbi, H. Wang, W. MacCaull, Compensable Workflow Nets, in: Proceedings of ICFEM 2010: 12th International Conference on

Formal Engineering Methods, Vol. 6447 of Lecture Notes in Computer Science, Springer, 2010, pp. 122–137. doi:/10.1007/
978-3-642-16901-4_10.

18. Y. Liu, S. Müller, K. Xu, A static compliance-checking framework for business process models, IBM Syst. J. 46 (2) (2007) 335–361.


