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Abstract

Model-driven engineering (MDE) is a model-centric software development
methodology. It promotes models as first-class entities in software de-
velopment. Models are used to represent software along software devel-
opment process and to finally generate software automatically by model
transformations. Thus, the quality of software is highly dependent on
models and model transformations. This thesis devotes to construct cor-
rect models and model transformations in Diagram Predicate Framework
(DPF), which provides a formal diagrammatic approach to (meta)modelling
and model transformation based on category theory.

The thesis presents the DPF Model Editor, a graphical (meta)modelling
editor for DPF which supports diagrammatic (meta)modelling. In addi-
tion, we propose bounded verification approaches of models and model
transformations respectively by using Alloy. Alloy consists of a model-
ling language and the Alloy Analyzer to examine Alloy specifications. The
verification approaches proposed in the thesis translate models and model
transformations into Alloy specifications, which are passed to the Alloy
Analyzer to verify whether the models and model transformations satisfy
some desired properties.

Because of the inherent limitation of Alloy, the verification approaches
also encounter a scalability problem: it may take quite long time or be-
come intractable to verify larger models or complex model transforma-
tions. To tackle the problem, the thesis also presents several techniques to
optimize the approaches. The first technique splits models into submod-
els and reduces the verification of the models into the verification of some
submodels. The other two techniques are proposed for the verification of
model transformations: one technique uses a modelling approach to sim-
plify model transformations; while the other one optimizes the translation
of model transformation rules. Experimental results show that these tech-
niques alleviate the scalability problem.
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CHAPTER 1
Introduction

In this chapter, we will present the background information that is needed
for the thesis. That is to give a brief introduction to Model-Driven Engin-
eering (MDE), a software development methodology, and its main con-
cepts: models and model transformation.

1.1 Model-Driven Engineering (MDE)

Software researchers and developers have made their efforts continuously
to construct reliable software faster and more efficiently. They promoted
the development of faster, cheaper and easier programming languages from
machine code to assembly language, then to the 3rd generation languages1,
e.g., Java [6], C++ [7] etc. In addition, they also upgraded the underlying
computing environment, e.g., from earlier CPU, to operating systems, then
to application frameworks (e.g., J2EE [8],.NET [9], and CORBA [10]), to de-
crease programming complexities. These techniques have increased the
productivity of programming by raising the abstraction level of program-
ming languages and platforms.

However, these abstractions mainly occurred in the solution domain,
i.e., the computing techniques which are used to construct a software, rather
than in the problem domain, i.e., the application fields where the soft-
ware will be used (e.g., web and mobile applications, financial services).
Therefore, the present mainstream development methodologies, e.g., wa-
terfall [11], Rapid Application Development (RAD) [12], and Agile soft-
ware development [13], are all code-centric where programmers represent
concepts in the problem domain as elements in the solution domain.

1Machine code and assembly language are called the 1st and the 2nd generation lan-
guages respectively
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1. Introduction

Software development using these methodologies is associated with
several problems. Firstly, software developers spend considerable time on
mapping the concepts from the problem domain to the elements in the
solution domain [14]. Thus, they cannot focus on the requirements of the
problem domain. This may cause that they cannot fully and correctly un-
derstand the requirements of the problem domain. Secondly, it may cause
misunderstandings among users, designers and developers because users
and designers may not be familiar with languages in the solution domain.
As a consequence, it may lead to the fact that the software constructed
does not satisfy the desired requirements of the problem domain. Lastly,
along with the growing complexity of software and platforms [15], the
developers need to spend long time on techniques, e.g., to migrate soft-
ware to a new version or a different platform, or to learn new Application
Programming Interfaces (API)s or new features to program properly. This
hinders the productivity of software development [14].

Model-Driven Engineering (MDE) [14, 16], also referred as model-driven
development (MDD) or model-driven software development (MDSD) in
the literature [17], is an endeavor to tackle these problems by separating
the problem domain and the solution domain during software develop-
ment. The methodology is model-centric, i.e., models are the first-class en-
tities in software development. Software designers use models to describe
the structure, behavior and requirements of the problem domain. After-
wards, software can be (partially) derived from the models by automatic
execution of model transformations which map concepts in the problem
domain to elements in the solution domain.

MDE has been promoted in last decades [16]. Many industrial stand-
ards implementing MDE have emerged during its development, such as
model-driven architecture (MDA). MDA is initiated by the Object Man-
agement Group (OMG) [18] since 2001 [19, 20, 21, 22]. It aims to provide a
set of guidelines for the structuring of models [23]. A main MDA standard
is the Unified Modelling Language (UML) [24], a general-purpose model-
ling language. It intends to provide a standard language to visualize the
design of systems. In addition, two other standards, Meta-Object Facil-
ity (MOF) [25] and XML Metadata Interchanges (XMI) [26], are used to
specify type systems and store models which can be expressed in MOF.
Eclipse Modelling Framework (EMF) [27] is an existing implementation of
the MDA standards. It is an Eclipse [27]-based modelling framework and
provides code generation facility for building tools from structural models
which are specified based on MOF. Moreover, OMG provides also a model
transformation standard Query/View/Transformation (QVT) [28].

MDE offers many advantages over code-centric methodologies [14]. On
one hand, software designers can focus on the problem domain and easily
express their design intentions in domain specific languages. This also fa-
cilitates efficient communication among users, designers and developers,
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1.1. Model-Driven Engineering (MDE)

thus software designers can correctly and easily identify the requirements
of the problem domain. On the other hand, the automatic model trans-
formations relieve software programmers from tedious coding and con-
struct software automatically with higher productivity and higher qual-
ity. In addition, model transformations make it easier to maintain or de-
ploy software. For example, when the requirements of the problem do-
main change, software developers can adjust models, and then regenerate
software by using model transformations. Similarly, when software shall
be deployed onto a new environment, software developers can construct
a corresponding model transformation which generates a new version of
software which is compatible to the new environment.

Additional benefits with MDE are their reliability and quality of soft-
ware, e.g., software fulfills the requirements of the problem domain, and
whether software is free of bugs. This is normally ensured by verification
of programs using either some informal approach, e.g., testing, or formal
techniques, e.g., abstract static analysis, model checking [29], etc. However,
testing usually involves manual construction of test cases. Even though
some researchers are working on automatic generation of test cases [30],
the testing results can still not ensure the absence of bugs. Formal veri-
fications can avoid this problem, but usually require manual construction
of a high-level model of source programs [31]2. Nevertheless, such veri-
fications have scalability problems because it involves the complexity of
the problem domain which is caused by the concepts and relationships
between them, and the complexity of the solution domain which is caused
by the structures, programming language and related techniques [33, 34].
This restricts which systems that can be efficiently verified [35].

In MDE, since software is generated from models by model transform-
ations, the reliability and quality of software can be ensured by the verific-
ation of models and model transformations. Such verification offers two
advantages over the verification of software. Firstly, because models are
specified in the problem domain, the verification of models avoids the
complexity of the solution domain. Therefore, the complexity of verific-
ation of models is significantly reduced in contrast to verification of code.
Secondly, the verification of models can be performed before or without
implementation. The software designers can find design mistakes early
in the modelling phase. This will help in building better software at a
lower cost. In this thesis, we will study verification of models and model
transformations. Before delving into the main topic, we firstly present the
background information of the thesis; then we will introduce models and
model transformations in MDE.

2Some works, e.g., [32], applied verification techniques directly on code.
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1. Introduction

1.2 Model

The term model can be interpreted distinctively within different contexts.
The general meaning of model, as in dictionary [36], is “a representation
of something, either as a physical object which is usually smaller than the
real object, or as a simple description of the object which might be used
in calculations”. In formal method, a system is usually specified as a spe-
cification using formal logics, e.g., FOL (First Order Logic – also known
as predicate logic). In mathematical languages, a specification is a logical
formula with a set of variables in a logical language. Within this context, a
model of the specification means an interpretation of the variables where
the formula is evaluated to true. In software engineering, a model denotes
“an abstraction of a (real or language-based) system allowing predictions
or inferences to be made” [37]. In this thesis, we use the term model with
the same meaning as in software engineering. Note that, the term model
here corresponds to the term specification in formal method.

In software engineering, systems contain a collection of elements which
are related and interact with each other [38]. The interactions among these
elements result in changes of the systems, e.g., adding or deleting of some
elements, or the change of relations among these elements. Given a system,
its state is the snapshot of the system at a given moment of time, i.e., all the
elements which are contained at that time and the relations among them.
It represents the system before or after an interaction.

Example 1 (Human Creation System) The Lord creates Adam first and then
create Eve to accompany Adam.

Let us take the human creation system as an example. The system con-
tains the elements: the Lord, Adam and Eve, and the relations: Adam is
the husband of Eve and Eve is the wife of Adam. In addition, the system
evolves; at the beginning, it has only the Lord; then Adam and Eve are
added successively as a result of creation.

1 class Person{
2 public Person wife, husband;
3 public static void main(String[] ps){
4 Person Adam=new Person();
5 Person Eve=new Person();
6 Adam.wife=Eve;
7 Eve.husband = Adam;
8 }
9 }

Listing 1.1: A program in Java

Adam Eve

Adam Adam
w ��

Eve
h
��

(1) (3)

(2) (4)

Figure 1.1: State changes

Models are abstractions of systems. According to [39], it means that, de-
pending on the usage of models, only the relevant elements and relations
are projected into models while the other irrelevant ones are just omitted.
For example, to describe the human creation system, we only care about
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1.2. Model

whom are created but dismiss who create them and how they are created.
The system can be represented as the Java program in Listing 1.1 or the
4 models in Figure 1.1. The Java program constructs Adam and Eve, and
then they become a couple. The 4 models in dashed lines depict the 4
corresponding states of the system. Elements are depicted as nodes, e.g.,
Adam , while relations are depicted as arrows between the nodes.

Software systems are usually complex [33]; they contain hardware, soft-
ware, people, facilities and processes, which collaborate with each other [38].
It is difficult or impossible to project all the relevant information into one
model [40]. In addition, software development is a process which consists
of a sequence of phases, e.g., requirement analysis, design etc. Each phase
has its own objective. For example, models in the requirement analysis
phase identify the structure, behavior and requirements from the problem
domain; models in the design phase represent the architecture, including
the structural and functional features of the software to be built. Thus,
various models are used to represent different aspects of software systems
throughout the development process.

According to the relationship of models and systems, two different kinds
of models, token models and typed models, are distinguished [37]. Elements
and relations in token models capture singular aspects of the elements and
the relations in systems. It means that all the relevant elements and rela-
tions of systems are represented one-to-one as elements in token models.
Token models can be used to represent the states of systems. For example,
each figure in Figure 1.1 is a token model for the human creation system
since each person contained by the system at a time has a corresponding
node in the model. In comparison, type models capture universal aspects
of a system’s elements and relations by classification. It means that the
elements and relations of systems are classified into concepts and relation-
ships, respectively, of type models; these concepts and relationships rep-
resent elements and relations which are classified as equal with respect to
certain properties. For example, in the Java program, Adam and Eve are
classified as class Person while the relations between them as the fields
wife and husband. Since type models represent systems in a many-to-one
way, they are more concise compared to the one-to-one representation in
token models. Moreover, with this concise form, model designers can fo-
cus on general properties of concepts rather than individual objects. In
MDE, most models are typed models [37]. Hereafter, the models men-
tioned in this thesis are typed models.

In software engineering, modelling, i.e., to design a model representing
a system, can be textual, diagrammatic or hybrid. Textual modelling is to
design models with text, e.g., the human creation system can be modelled
as a program in Java. There are some textual modelling languages, e.g.,
Extensible Markup Language (XML) [41], Alloy [42], which are oriented
to design models. Some other textual modelling approaches add annota-
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1. Introduction

tions in a program which is written in a specific programming language,
e.g., Java Modelling Language (JML) [43] in Java, Spec# [44] and.NET con-
tracts [45] in C#. In contrast, diagrammatic modelling approaches repres-
ents models with visualization as graphs or graph-based structures, called
diagrammatic models. Diagrammatic modelling has already been widespread
used in software engineering for decades. Flowcharts in the 70s were used
to describe behavioral aspects of software systems; Petri nets in the 80s
were used to represent discrete distributed systems; Entity-Relation (ER)
diagrams [46] in 80s gained popularity as the conceptual representation of
data structures; In the 90s, UML diagrams became the de facto standard
to represent structural and behavioral aspects of software systems. There
are fundamental practical differences between textual modelling and dia-
grammatic modelling [47]. But both approaches have their advantages and
limitations. Petre [48] pointed out that diagrammatic modelling won over
textual modelling because it provided richer information, intuitive repres-
entation of complex structure, direct mapping to domain elements, access-
ibility and comprehensibility, fitness to human visual system and a higher
level of abstraction. But she also emphasized that textual modelling had
advantages when considering clarity, the quality of annotation and recog-
nition. Thus, some researchers proposed to use both approaches [49, 50].
Since most models specified in text can be represented as an abstract syn-
tax tree (AST) which can be viewed as a diagrammatic model, in this thesis,
we focus on diagrammatic models without loss of generality.

Several diagrammatic modelling languages have appeared during the
last decades, e.g., Business Process Modelling Notation (BPMN) [51] for
process modelling, Architecture description language (ADL) [52] for sys-
tem architecture modelling, and the ones mentioned earlier. Within these
languages, UML became the de-facto standard and state-of-the-art lan-
guage in MDE. UML [53] is a general-purpose modelling language which
consists of 8 different diagrams, e.g., Class Diagrams, Activity Diagrams, Ob-
ject Diagram3 etc. Each diagram is oriented to describe an aspect of a soft-
ware system. A class diagram describes a system by representing the con-
cepts and relationships among these concepts which are involved in the
system; while object diagrams are used to represent the states of a sys-
tem. Since software systems could be inherently complex, modelling them
involves in most cases description of two main aspects: Structure and Con-
straints. In the following paragraphs, we will present an example in UML
to explain these two aspects.

1.2.1 Structure

Example 2 (A Civil Status System) A civil status system describes the marital
relations between persons. The system should satisfy the following requirements:

3Note that Object Diagrams are excluded since UML 2.4
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1.2. Model

1. A person has at most one wife or husband

2. If a person A has another person B as his wife, then B should have A as her
husband

3. A person cannot have him/herself as wife or husband

Recall that models contain concepts and relationships which denote ele-
ments and relations of corresponding systems. For instance, from the de-
scription as in the Example 2, we can identify one concept, Person, which
denotes all the persons in the system. In addition, two relationships, wife
and husband, are used to denote the wife and the husband relations between
two persons in the system.

Given a model, its concepts and relationships can be described as a
graph-based structure. In UML, class diagrams can be used to describe
such structures. A class diagram is depicted as a graph where nodes rep-
resent classes and edges represent associations between these classes. The
classes and associations represent concepts and relationships in a model.
For example, we specify a model to describe the civil status system in the
Example 2. Its structure is depicted as the class diagram in Figure 1.2.
The node Person denotes persons. There is only one reflexive edge which
connects Person to itself. Each end of the edge are labelled with wife and
husband. The edges can be read as "a person may have another person as
wife" and "a person may have another person as husband". The edge, as
well as the two labels, which is called bidirectional association in UML,
denotes relations between persons. Notice the two 0..1 on the two edges.
They are the constraints which we will discuss in the next section.

Person
0..1

wife husband

0..1

Figure 1.2: A civil status system in UML

1.2.2 Constraints

In addition to elements and relations, a system has some requirements
which restrict its elements and relations. For example, the civil status sys-
tem in Example 2 has three requirements. The structure in Figure 1.2 only
denotes the elements and relations of the civil status system, but not such
requirements. Usually, models contain constraints which are used to spe-
cify these requirements. In UML, some simple requirements, such as car-
dinality restrictions on relationships, can be specified as structural con-
straints, e.g. multiplicity constraints directly on the structure. For example,
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1. Introduction

the requirement 1 can be specified as the multiplicity constraints 0..1 on
both ends of the edge in Figure 1.2. However, the expressiveness of struc-
tural constraints are quite limited, some requirements, e.g., the require-
ment 2 and 3, cannot be expressed with structural constraints. Thus, ad-
ditional constraint languages are needed to specify these requirements as
propositions on structures.

One popular additional constraint language is the Object Constraint
Language (OCL) [54]. It was firstly initiated by IBM, then gained popular-
ity in industry and became the standard constraint language used with
UML. OCL is a typed specification language which expresses query or
specifies invariants over objects in a model [54]. Following the termino-
logy in [55], the constraints specified in additional constraint languages
are hereafter called additional constraints. In the civil status system, the
requirement 2 and 3 can be expressed as the following invariants on the
class Person. The invariant on Line 2 states that, if a person has a wife (hus-
band), the person is the husband (wife) of his (her) wife (husband); while
the invariant on Line 3 states that the wife or the husband of a person is
not the person herself/himself.

1 context Person
2 inv: self.wife <> null implies self.wife.husband=self and
3 self.husband <> null implies self.husband.wife=self
4 inv: self.wife <> self and self.husband <> self

Listing 1.2: Additional constraints in OCL

1.2.3 Diagram Predicate Framework (DPF)

The traditional modelling approaches, using diagrammatic modelling lan-
guages to specify structures while textual languages to define constraints,
are adopted by software developers. However, there are two main prob-
lems with this solution [55]. The first problem is caused by mixing dia-
grammatic and textual modelling approaches. This mixture makes it chal-
lenging to update and synchronize structures and constraints. For instance,
if a minor change occurs in a structure, e.g. change a name of an element
or remove an element, the expressions in the corresponding constraints
which refer to the element will cause a syntax error. Another problem is
about the abstraction level of the adopted constraint language. OCL is a
general constraint language; it is not oriented to a specific domain. To ex-
press constraints in a domain, the software designer still need to customize
the language. Modelling can become complex and error-prone in this way.
In addition, it is complex and difficult to reason about models at such a
low level of abstraction.

To solve these problems, Diagram Predicate Framework (DPF) proposes
a formal diagrammatic approach of (meta)modelling and model transform-
ation based on category theory [56]. This framework is initialized by a joint
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1.2. Model

Person
[0..1]

wife

[irr]

��

[inv]

��
[irr]

husband

[0..1]

Figure 1.3: A civil status system in UML

research project between Bergen University College and University of Ber-
gen. It is an extension of the Generalised Sketches formalism developed
by Diskin et al. in [57, 58, 59]. Several researchers have further made their
contribution to enrich the features of the framework. Adrian Rutle form-
alized the theoretical foundation of the modelling framework [55]; Aless-
andro Rossini focused on model versioning and deep modelling frame-
work [60]; while Florain Mantz studied model migration [61]. Please refer
to dpf.hib.no for more background information.

p αΣ(p)
Proposed

Visualization

Semantic

Interpretation

multi(n, m) 1
f �� 2 X

f
[n..m]

�� Y ∀x ∈ X : n ≤ |f(x)| ≤
m∧ 0 ≤ n ≤ m∧m ≥ 1

inverse 1

f

��
2

g

�� X

f
		

Y
g



 [inv]
∀x ∈ X , ∀y ∈ Y : y ∈
f(x) iff x ∈ g(y)

irreflexive 1 f�� X f�� ∀x ∈ X : x /∈ f(x)

Table 1.1: A sample signature Σ

With DPF, the structures of models are depicted as directed graphs
while constraints are formulated diagrammatically on the directed graphs
based on predicates. For example, the civil status system can be specified as
the DPF model in Figure 1.3. The structure of the model is depicted as a
direct graph. The graph is similar to the one in Figure 1.2 except that, both
relationships, wife and husband, are depicted as two directed arrows, in-
stead of bidirectional associations in UML. In addition, instead of using
the textual OCL invariants, five diagrammatic constraints over the graph
(depicted within [] on edges and dashed lines between edges) are used to
specify the requirements 1, 2 and 3. These diagrammatic constraints over
the graph are formulated based on predicates multi(n,m), inverse and
irreflexive in Table 1.1. Each predicate has a name p, an arity αΣ(p), a
proposed visualization and a semantic interpretation. The arity of a pre-
dicate specifies on which kind of graphs a constraint can be formulated
based on the predicate. A constraint over a structure which is formulated
based on a predicate implies a graph morphism from the arity of the pre-
dicate to the structure. For example, the constraint between the edges wife

11



1. Introduction

Constraint based on inverse δ : αΣ(inverse)→ S

Person
wife ��

[inv]

�� husband X
f ��

Y
g



 Person������

��
δ �� wife �� �� husband

Table 1.2: Diagrammatic constraint based on predicate

and husband are formulated based on the inverse predicate, as shown in
Table 1.2. The red dashed arrows indicate the implicit graph morphism
δ : αΣ(p)→ S.

Figure 1.4: A model in the DPF Model
Editor

Figure 1.5: inverse defined in
the Signature Editor

In order to support modelling in DPF, we have implemented a DPF
workbench using Eclipse modelling technologies [62]. The workbench con-
sists of the DPF Model Editor for creating models. For example, the model
in Figure 1.3 can be created in the editor as shown in Figure 1.4. Using the
workbench, model designers can construct the structure of the model us-
ing the provided concepts, e.g., Arrow and Node in the figure; constraints
are formulated on the structure by clicking on an applicable predicate;
when a subgraph is selected, a list of applicable predicates will appear,
i.e., the predicates from the arity of which there exists a graph morphism
to the selected subgraph. Several predefined predicates, including the pre-
dicates listed in Table 1.1, are shipped with the editor. In addition, we also
implemented the Signature Editor, a tool to specify customised predic-
ates. Model designers can employ the tool to define their own predicates.
For example, the predicate inverse can be specified in the tool as shown
in Figure 1.5. The syntax of the predicates is specified graphically; while
the semantics can be specified in different languages, e.g. Java, OCL or Al-
loy. Then these predicates, along with the predefined predicates, can be
loaded into the DPF Model Editor to formulate constraints. This work is
presented in Paper A.

12



1.3. Instance

1.3 Instance

A modelS = (S,CS)which consists of a structureS and constraintsCS

defines its instances. For diagrammatic models, each instance is a graph
or graph-based structure well-typed by the structures of models; moreover,
it also satisfies all the constraints of the models. Formally, for graph-based
structures, when we say that a structure I is well-typed by another struc-
ture S, denoted as I :S, it means that there is a graph morphism ι : I →
S. While we say that a structure I satisfies a constraint c, denoted as I �c, it
means that I satisfies c according to the semantic of c. In addition, we say
that a structure I conforms to a modelS, denoted as I �S, if the structure is
an instance of the model. In the following example, we illustrate instances
which are depicted as UML Object Diagram and DPF instance respectively.

Adam : Person
:husband

:wife
Eve : Person

UML

Adam : Person

:wife ��
Eve : Person

:husband

��

DPF

Figure 1.6: An instance of the civil status models in UML and DPF

Example 3 (Instance) Figure 1.6 shows two instances of the models in Figure 1.2
and 1.3. The two instances are depicted as a UML object diagram and DPF in-
stance respectively. The UML object diagram contains two objects Adam and Eve of
type Person, and one link between the two objects. The link represents the relations
between the two persons: Adam’s wife is Eve and Eve’s husband is Adam. The
instance is represented similarly in DPF. The only difference is that relations are
represented as directed edges.

Problem

Domain
MDE Formal Method Mathematics

System Model Specification Formula
State Instance Interpretation Model

Table 1.3: Terms correspondences among different contexts

Note that we use a model to represent a system which contains elements
and their relations. In each instance, a node represents an element in the
system while an edge represents that the two elements have relations. Thus,
an instance establishes a one-to-one mapping of system elements. From
this consideration, an instance can be viewed as a token model of the sys-
tem; it can be used to represent a state of the system. Recall also that the
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1. Introduction

term model in MDE corresponds to the term specification in formal lo-
gics. Thus, an instance of a model corresponds to an interpretation of a
specification, i.e., a model of a formula in mathematical language. The
correspondences among these contexts are shown in Table 1.3.

1.4 Metamodel

When developers build a software system, they use a programming lan-
guage, e.g., Java, to write the code which is compliant with the syntax
and the semantics of the language. Similarly, when designers construct
a model, they also need a modelling language to design the model which
is compliant with the syntax and the semantics of the language. For in-
stance, UML class diagrams and UML object diagrams are constructed
according to UML [63]. Following the “everything is a model”, vision
of MDE [64], a modelling language can be described by a metamodel at a
higher level of abstraction. In other word, “a metamodel is a model of a
modelling language” [65]. In addition to being a model, metamodel has
its distinguished features. It captures the essential features of a language
by describing its abstract syntax, concrete syntax and semantics [65]. The
abstract syntax defines modelling concepts, their attributes and their rela-
tionships, as well as rules to specify valid models [24]; the concrete syntax
provides a notation which is used to visualize models; the semantics inter-
prets the meaning of the concepts and the relationships in the language. If
we consider only the abstract syntax, a metamodel defines the construct-
ors to specify a valid model. It means that models specified in a modelling
language should conform to the metamodel of the language. From this
view, “a model is an instance of a metamodel” [24] and each model has
a metamodel. The following figure presents a simplified metamodel for
UML class diagram, which is adopted from [55].

Figure 1.7: A simplified metamodel for UML class diagram

Example 4 (A simplified metamodel for UML Class Diagram) Figure 1.7
shows a metamodel for UML Class diagram. The metamodel contains three con-
cepts: Class, Association and Property. The concepts are used to create elements
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1.4. Metamodel

M3 MOF

M2 UML

conforms to

��

M1

�

�

�

�

UML class diagram

Person

conforms to

��

�

�

�

�

UML object diagram

Adam:Person

conforms to

��

M0 Adam

represented by
��

conforms to ��

Figure 1.8: OMG’s 4-layered hierarchy

in a model. Each element in a model is typed by a concept in the metamodel. The
red dashed arrows are used to indicate the typing relation between the civil status
model and its metamodel.

Metamodel, being a model, in turn, has its own metamodel. This pattern
will repeat until a model has itself as metamodel, called reflexive model.
Thus, for diagrammatic models, there is a modelling hierarchy where each
model at a layer has the model at the layer above as its metamodel and
is the metamodel of the model at the layer below. OMG envisions a 4-
layered hierarchy. At the top layer, M3 is the reflexive model MOF, which
is also the metamodel of UML. At the layer blowM2, it contains the models
specified in MOF. The prominent model at this layer is UML. At the layer
M1 is the models specified in the language defined in M2, e.g., UML. At
the bottom layer M0 are the real world objects. In Figure 1.8, we illustrate
the idea of the OMG modelling hierarchy.

This modelling hierarchy has several problems [66, 67]. Firstly, it is ne-
cessary to recognize and support two classification: linguistic, i.e., model-
ling from language perspective, and ontological, i.e., modelling from con-
ceptual perspective, in a modelling hierarchy [37, 68, 69]. However, this
modelling hierarchy emphasize only the linguistic classification. For ex-
ample, in Figure 1.9, elements on the layer M2 are just instances of lan-
guage elements on the layer M1. Secondly, in order to specify model con-
ceptually, a type-instance relation has to be introduced in the metamodel
layerM2. This violates the strict metamodelling doctrine. As a consequence,
the multilayer hierarchy collapse into a single layer [70]. DPF tackles the is-
sues by introducing a multi-layer modelling hierarchy, which is illustrated

in Paper A. At the top of the hierarchy is the reflexive model Node Edge�� .

Models at each layer, except the top layer, conforms to a model at the layer
above. With this hierarchy, in DPF, the two classifications are formalized [55].
In addition, there is no type-instance introduced in layers. Furthermore,
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M2

Class Instance
Specification

type instance∗

M1

Person

lingustic

��

Adam:Person

lingustic

��

ontological
��

Figure 1.9: Linguistic and ontological conformance; adopted from [55]

in theory, it is possible to construct modelling hierarchies with infinite lay-
ers. This relieves the limitation that modelling hierarchies are restricted to
4 layers as in OMG. Since the topic of modelling hierarchy is beyond the
scope of the thesis, please refer to [55, 65] for further information.

1.5 Model Transformation

In addition to models, the first-class entity in MDE, model transformations
are also equally important. It is the heart and soul of MDE [71]. As we
stated earlier, model transformations can be used to translate models into
code automatically. This increases the productivity and quality of software
development. Moreover, they have more applications in MDE [71]. For
example, they can be used to

1. refine models along software development processes

2. optimize the structure of models while ensuring their behavior fea-
tures unchanged

3. migrate software from one language or platform to another

4. integrate several models which represent different aspects of a soft-
ware system into one model

Model transformations are the generation of target models from source
models [21, 72]. If we view everything as a model, model transformations
appear in computer science before MDE. Data in a format, e.g., arrays, can
be transformed into another form, e.g., lists. In a compiling process, a lex-
ical analyzer transforms source code in a programming language into ab-
stract syntax trees, according to a grammar. Even compliers can also be
viewed as a transformation from a higher view, since they translate source
code in a higher level programming language to a lower level program-
ming language, e.g., assembly language or machine code. These trans-
formations are text-to-model or text-to-text. Since MDE is a model-centric
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1.5. Model Transformation

methodology, transformations in MDE are mainly model-to-text or model-
to-model transformation. Code generation from a model is a typical model-
to-text transformation. In this thesis, we will mainly consider model-to-
model transformations.

Model transformations are executed automatically by a transformation
engine. The engine performs transformations according to a set of trans-
formation rules which describe how one or more constructs in a source
language can be transformed into one or more constructs in a target lan-
guage [21, 72]. The transformation rules are specified in a transformation
language at the metamodel layer. We depict the overview of model trans-
formation in Figure 1.10. In the thesis, the source/target metamodels and
the transformation rules are called model transformation system. In Figure 1.2,

Metamodel

Source
metamodel

Transformation
Rules

source�� target �� Target
metamodel

Transformation
engine

��

Model

Source
model

conforms to

��

Model
transformations

source�� target �� Target
model

conforms to

��

Figure 1.10: Model transformation overview

we presented the civil status system as a UML class diagram with bidirec-
tional association. We will describe model-to-model transformations to
translate this model into a model in DPF.

Example 5 (Transformation of UML Class Diagram to DPF model) In Fig-
ure 1.11, we shows two transformation rules: Association-to-EReference and Class-
to-Class, which are used to transform UML class diagrams to DPF models. The
first rule transforms each Class in UML to a Node in DPF; while the second rule
transforms each (binary) Association in UML to a pair of Edges. Both rules are
denoted by blue dashed rectangle. Note that we do not present transformation
rules in a specific transformation language as shown in the sequel. Here, we
just present conceptually which concepts/relationships in the source metamodel
are transformed into which concepts/relationships in the target metamodel. The
model elements which are present in the rules, such as Class and Node, exist in the
source and target metamodels, respectively. We use the reflexive model in DPF as
the target metamodel.

Given a source UML class diagram (e.g., the one in the bottom left of Fig-
ure 1.11), for each model elements of type Class, e.g. the Person in red dashed
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Figure 1.11: Transformation of a UML class diagram to an DPF model

rectangle, a transformation engine executes a transformation by creating a corres-
ponding model element of type Node, e.g. the Person in green dashed rectangle in
the target model. A similar transformation is executed by using the second rule
which translates a bidirectional association in UML into two edges in DPF. Notice
that, after the transformations, the target model is not consistent with the source
model, since the requirements 1-3 which are specified as constraints disappear in
the target model in DPF. To make the target model consistent with the source model,
additional constraints should be added to explicitly specify the requirements.

1.5.1 Classification of model transformation

According to the features listed in [73], model transformation can also
be classified into different categories. Based on whether the source me-
tamodel and the target metamodel are same, model transformations are
homogeneous (same metamodel) and heterogeneous (different metamodels).
Moreover, model transformations are out-place if the target model is created
separately from the source model, or in-place if the target model is derived
by updating the source model. This feature concerns how a transformation
is performed by a transformation engine. Furthermore, model transform-
ations could be bidirectional if the transformations can be performed from
the source model to the target model and the opposite direction (usually
for model synchronization [74]), or unidirectional if they can be performed
only in one direction. Bidirectional transformations can be achieved by
defining two separate complementary unidirectional rules, one for each
direction [75]. These classifications are orthogonal, e.g., a transformation
specified in a declarative approach can be executed in either in-place or
out-place way. In this thesis, we will consider homogeneous, in-place and
unidirectional model transformation.
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1.5. Model Transformation

Another classification is based on the languages which are used to spe-
cify transformation rules [73]. In this classification, model transformations
are either imperative/operational, e.g., QVT Operational Mappings, or
declarative, e.g., graph-based transformation. Imperative languages spe-
cify explicit control flows about how a transformation should be executed;
while declarative languages focus on what should be changed by the trans-
formation [76]. In comparison, declarative model transformations have
several advantages over imperative ones [55]. First, they are formally spe-
cified. Second, they support bidirectional transformation definition. Third,
they share a simpler semantic model and hide procedure information from
transformation definition. Thus, the order of execution, traversal of source
models, as well as generation of target models are implicit; the semantic
preservation between models can defined declaratively. However, oper-
ational approaches have advantages in execution, e.g., increase efficiency
through incrementally updating models and control over the order of ex-
ecution. In this thesis, we focus on declarative approaches, especially on
graph-based transformation approaches.

1.5.2 Graph-based Transformation

The graph-based transformation approach is inspired by the theoretical
work of graph transformations on different types of graphs [77]. In this
approach, (meta)models are specified as graphs; the graph which repres-
ents a model is typed by the graph which represents the metamodel of
the model. Model transformation rules are defined as typed graph pro-
ductions on the model layer. Model transformations are executed based
on these typed graph productions. The graph-based transformation ap-
proach is declarative and formal, and allows for composition; even though
it has some scalability problems, lacks tool support and is incompatible
to other approaches [72, 75]. Some tools, e.g., AGG, AToM3, VIATRA2,
GReAT [78, 79, 80] adopt this approach. Hereafter, model transformations
implicitly mean graph-based transformations unless explicitly stated oth-
erwise. In the following paragraphs, we will illustrate typed graph pro-
ductions and discuss how they define model transformations.

Typed graph productions generally describe how to transform a typed
graph by deleting and adding some elements. Formally, a typed graph
production is specified as p : L ← K → R. L, K and R are graphs
well-typed by a graph; l : K → L and r : K → R are two typed graph
morphisms. Note that these two morphisms are required to be injective. K
represents the unchanged elements; L\K represents the deleted elements;
R\K represents the added elements. A model transformation rule can be
specified as a typed graph production where L, K and R are graphs well-
typed by the graph which represents a metamodel. For example, the two
rules in Example 5 can be specified as the two typed graph production in
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Figure 1.12. The rule Class-to-Node adds a Node for each Class. The rule
Association-to-Edge adds Edges for each Association. Notice that we use :
to denote the typing information. In addition, in the figure, we depict L,
K and R using colors for simplicity. For example, we use black to denote
K, green to denote R\K and red to denote L\K. Thus, L (R) contains
all the elements in red (green) and black. In these two rules, there are no
elements deleted hence no element is in red; it means L = K.

Figure 1.12: Graph productions

With graph productions, one can specify adding and deleting of graph
elements, but cannot specify merging and splitting of graph elements. In [81],
Lamo et al. proposed to specify model transformation rules based on in-
tegration models and co-span. In this approach, transformation rules are
specified as co-spans r : L→ I ← R where I is the integration model of
L and R. r contains two non injective graph morphisms. In this way, they
can specify adding, deleting, merging and splitting of graph elements. In
this thesis, we focus on graph productions.

Typed graph productions can be used to transform a source typed graph
to a target typed graph. Such a transformation can be executed by apply-
ing a typed graph production to a typed source graph based on different
formal theoretical mechanisms, e.g., double pushout (DPO) approach [77].
In the sequel, we will use the DPO approach to show how a model trans-
formation is executed by applying a typed graph production.

Given a typed graph production p and a typed graph G, a direct trans-
formationG⇒ H is an application of the production via a matchm : L→
G, i.e., a typed graph morphism from L to G. Such a transformation can
be formally described as two pushout operations, called double pushout,
shown as diagrams (1)(2) in Figure 1.13. The transformation first deletes
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Figure 1.13: Double Pushout (DPO)
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Figure 1.14: Direct model transformation using DPO

elements m(L\K) from G, thus derives a graph D. Then the graph H
can be generated by adding the elements n(R\K) to D. This mechan-
ism can be used to specify how a direct model transformation is executed,
i.e., to transform a model by applying a model transformation rule. For
example, a direct model transformation is executed by applying the rule
Class-to-Node on the civil status model in Figure 1.2. The transforma-
tion is shown in Figure 1.14, in which no element is deleted and only one
Person:Node is added, depicted in green.

Given a typed graphG, a typed production can be applied to transform
the graph based on DPO approach if there exists a match m : L → G
and the gluing condition [77] is satisfied. The gluing condition states that
the identification points, i.e., elements identified by m (i.e., e1 and e2 in L
whose images are the same m(e1) = m(e2)), and the dangling points,
i.e., the nodes ns in L whose image m(n) is the source or target of some
deleted edges, are not changed.

The gluing condition is mandatory for DPO; it means that the condi-
tion must be satisfied when using DPO approach. In contrast, application
conditions can be used to restrict the application of graph productions in-
tentionally. For example, the Class-to-Node can be applied to the target
graph in Figure 1.14 and generate another Node. This is what we want to
avoid since the transformation aims to generate exactly one Node for each
Class. Here, we use a negative application condition (NAC) on L to avoid the
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situation. A NAC on L is a graph morphism nac : L→ N where N is a
graph. A graph production can be applied to a graph if the NAC on L is
not satisfied, i.e., there exists no inject graph morphism from p : N → G
such that nac; p = m, as shown in Figure 1.13. For the two rules in Fig-
ure 1.12, N equals to R. Another kind of application condition is positive
application condition (PAC). PAC is different from NAC in that a graph
production can be applied to a graph if the PAC is satisfied. Note that,
PAC/NAC can be specified on the right side R of graph productions too.

Model transformation from a source model S1 to a target model Sn is

a sequence of direct model transformation S1
r1−→ . . .

rm−−→ Sn. Each step

Si
rj−→ Si+1 is an application of certain graph production rj on Si. The

models Si for 1 < i < n which are generated during the transformation
are called intermediate models.

Single Pushout (SPO) approach [82] is another well-known approach
to perform transformations. The difference between the two approaches
is that DPO performs a transformation with two pushouts while SPO uses
one pushout. Moreover, DPO is more strict since it requires the gluing
condition when a graph production is applied to perform a transformation.
It implies that, given a match of a graph production, the production may
not be used to transform a graph. In comparison, SPO requires not the
gluing condition and every graph production can be used to transform a
graph if there exists a match of the production. However, a transformation
using DPO can be invertible, which is not the case when using SPO. In
addition, there exist other approaches which perform transformations. For
example, the double-pullback approach is similar to the DPO approach
except that the (1) and (2) in Figure 1.14 are pullbacks but not necessarily
pushouts [83]; in the sesqui-pushout approach, the production morphisms
l and r may be not injective and (1) is a pullback but not necessarily a
pushout [84]. In this thesis, we will focus on transformations using DPO.

Until now, model transformation can transform a source model to a
target model by deleting or adding nodes and edges. However, it is neces-
sary to translate constraints from a source model into constraints in a target
model to maintain the consistence between the two models. For example,
in Example 5, we only created two direct edges in the DPF model for the
bidirectional association in the UML model. However, in the UML model,
there are constraints which specify requirement 1-3. In order to make the
generated DPF model contains the same information as the original UML
model, several corresponding constraints should be added, i.e., two mul-
tiplicity constraints and two irreflexive constraints on the two edges wife
and husband, and an inverse constraint between the two edges. However,
the previously mentioned model transformation approaches cannot spe-
cify this kind of transformation. In DPF, a constraint-aware model transform-
ation [85] proposed a solution to this dilemma. With this approach, the
diagrammatic constraints in the source models can be transformed into
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suitable diagrammatic constraints in the target models. In this thesis, we
will not consider this kind of transformation. Therefore, we just mention
this approach here. For interested readers, please refer to [55] for further
details.

In addition to being used to specify model transformation rules, graph
productions can also be used to specify graph constraints , which are prop-
erties of graphs. These graph properties can formulate whether a graph G
contains (or not) a certain subgraph G′, or whether a graph G contains a
subgraph G1 providing it contains (or not) a subgraph G2. A graph con-
straint P ← L→ R (N ← L→ R) consists of three components, which
are the PAC N (NAC P ), the left-hand side L and the right-hand side R,
and two injective graph morphism. The three components are graphs well-
typed by the structure of a model. Its semantics, i.e., whether a given graph
satisfies the constraint, is depicted in the Figure 1.15. Given a graph con-
straint gc, a graph G satisfies gc if, for each match m : L→ G which sat-
isfying the application condition NAC/PAC, there is a match n : R→ G
where m = r;n. When we say that a match m : L → G satisfies a
PAC pac : L → P (a NAC nac : L → N ), we mean that there is
a (no) morphism p : P → G (p : N → G) such that pac; p = m
(nac; p = m). Rensink [86] generalized graph constraints as nested condi-
tion on simple graphs; Pennemann [87] lifted the application of nested con-
dition to weak adhesive HLR categories. In addition, it is proven that the
nested conditions on graph are equivalent to graph formula in First-Order
Logic (FOL) [88]. In DPF workbench, we also implemented an editor to
specify graph constraints, which will be discussed in Paper B.
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Figure 1.15: The semantics of graph constraints

In the end, we will discuss the relation of models and model transform-
ations. Recall that a model specifies the structural information of a soft-
ware system; an instance of a model can be viewed as a state of a software
system. Since a model transformation translates a source model to a target
model, which are the instances of the corresponding metamodels, a model
transformation can thus be viewed as a transition between the states of the
software system which the metamodels represent. From this perspective,
a metamodel and a set of model transformation rules define a transition
system in which, the states are the models while the transitions between
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the states are the model transformations which are executed based on the
transformation rules. The transition system can be viewed as a semantic
behavior of the metamodel. Regarding to this, the model transformation
rules specify or "model" a dynamic behavior of the software system which
are represented as the metamodel. There exist some approaches, e.g., Petri
Net, Activity Diagram and Sequence Diagram in UML, and Business Pro-
cess Model and Notation (BPMN) which are oriented to behavior model-
ling. In a general context, the specifications defined with those approaches
are also called models. In this thesis, we distinguish two types of mod-
els: structural models, or static models referred in [89], which are used
to identify the concepts and their relationships in a software system, and
behavior models, or dynamic models, which are used to specify the dy-
namic behavior of a software system. We will focus on structural models.
Hereafter, models are used to denote structural models unless special con-
siderations are mentioned.
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CHAPTER 2
Verification in MDE

Models and model transformations are of great importance in MDE; mod-
els are the first-class entities in MDE while model transformations are the
heart and soul of the methodology. In addition, software can be derived
from models by model transformations. Therefore, the reliability and qual-
ity of software is highly dependent on the correctness of models and their
corresponding model transformations, i.e., they fulfill some desired prop-
erties. In other word, it is a significant factor of the success of MDE to
ensure that models and model transformations are correct. Thus, it is ne-
cessary and important to verify the correctness of models and model trans-
formations in MDE. This is also the main topic of the thesis. In this chapter,
we will firstly introduce the concepts related to verification in MDE. Then
we will review the state-of-the-art of verification in MDE to illustrate veri-
fication techniques and properties that can be verified.

2.1 Introduction

The meaning of the term verification varies in different contexts. In [36],
it means “to prove that something exists or is true, or to make certain
that something is correct”. In software engineering, verification means
“confirmation by examination and provisions of objective evidence that
specified requirements have been fulfilled” [90]. Informally, verification
is about “are we building the product correctly” [91]. Another similar
concept for software quality assurance is validation. It means “confirma-
tion by examination and provisions of objective evidence that the particu-
lar requirements for a specific intended use are fulfilled” [90]. Informally,
validation is about “are we building the correct product” [91]. By com-
parison, in other words, verification ensures that software has been built
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2. Verification in MDE

according to some specifications, while validation ensures that software
actually meets the needs of users, and that specifications are correct in the
first place. From the technical view, verification involves static methods for
verifying design while validation involves dynamic methods for checking
and testing the real product [92]. In this thesis, we will not distinguish the
two terms and use verification uniformly.

2.1.1 Verification Techniques

There exist different verification techniques in software engineering, in-
formal or formal. Testing is an informal verification technique to find bugs
in software by running test cases against some desired results, called or-
acles. If a test case cannot produce the same result as its oracle, a bug is
found. Test cases are usually designed manually. In the last few decades,
researchers have been promoting automatic test case generation [93, 94,
95]. In order to test software more thoroughly, the test cases should have
high degree of code coverage [96]. It means that the more parts of software
are tested, the less chance that software contain bugs. The technique is
widely used in software development to ensure the quality of software.
However, “Program testing can be used to show the presence of bugs, but
never to show their absence” [97]. In addition, since testing is performed
by running software, this technique can only be applied after (part of) the
software is implemented.

Similar to testing, runtime verification is also performed after a sys-
tem is implemented. It checks whether a system satisfies a given prop-
erty by monitoring of executions of the system with respect to the prop-
erty [98]. The properties to be verified are usually specified in LTL or its
variants [99, 100]. This technique is usually applied to verify systems of
dynamic nature, e.g., service oriented systems, adaptive and self-healing
systems etc, where other verification techniques cannot be applied [101].
Typically, runtime verification is performed by a monitor which answers
whether an execution of a system satisfies the property. Monitors can be
generated automatically from formal specifications. However, how to gen-
erate efficient monitors from specifications is a main challenge to apply this
technique [98, 101].

In contrast, formal verification techniques, e.g., model checking [102] and
deductive verification [103], can be applied before implementation and without
running the software. These techniques can be used to verify systems
by analyzing their mathematical representations. They can detect errors
which cannot be found by tests, thus guarantee a higher level of quality.
Model checking is an automatic technique to verify reactive systems which
have finite state spaces [104]. The properties to be verified are usually spe-
cified in some temporal logics, e.g., linear temporal logic (LTL) or compu-
tational tree logic (CTL) [105]. A model checking algorithm exhaustively
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explores the state space of a system to check whether the system satisfies
a property. The technique gains success in hardware verification and has
also been applied to verify programs. However, the technique has the well-
known state explosion problem: the state space of systems grows exponen-
tially along with the size of systems. To handle this problem, several tech-
niques are used to reduce the state space of systems. However, the problem
remains still an obstacle to the use of the verification technique [102, 106].

Another formal verification technique, deductive verification, can be
applied to verify systems which may have infinite state spaces by using
logical reasoning [103, 107]. Using this technique, a system and the prop-
erty to be verified are encoded as logical formulae in some formal logic,
e.g., First Order Logic (FOL), Higher Order Logic (HOL). Thus, a verific-
ation problem, whether a system satisfies a property, is transformed to a
logical reasoning problem: whether the formula representing the prop-
erty can be derived from the formula representing the system by deduc-
tion procedures of the underlying logic [108]. The logical reasoning prob-
lem can be solved by using Constraint Satisfaction Problem (CSP) solv-
ers, Boolean Satisfiability Problem (SAT) solvers (e.g. SAT4J [109], Min-
iSAT [110], zChaff [111]), satisfiability modulo theories (SMT) solvers (e.g.,
Yices [112], Z3 [113]) or theorem provers (e.g., HOL4 [114], ACL2 [115] Isa-
belle [116] and Coq [117]). Since most of the formalisms and languages are
undecidable, e.g., OCL and FOL, these tools trade off between automation
and expressiveness of the underlying logics [106]. For example, proposi-
tional logic (PL) is decidable, thus a logical reasoning problem in PL can be
solved automatically by SAT solvers. However, the formulae in this logic
is limited in expressiveness. In comparison, FOL is more expressive but
is undecidable. Thus, SMT solvers can automatically solve some, but not
all, logical reasoning problems in the logic; SMT solvers may produce the
"UNKNOWN" result when the solver cannot find a proof for a formula.
With theorem provers, it is possible to solve a logical reasoning problem
in HOL, which is more expressive than FOL. But the approach usually re-
quires manual interaction of the experts who acquire the knowledge of the
formalism [104].

In the last decades, due to the advances in SAT-solvers and other satis-
fiability solvers, e.g., CSP solvers, the bounded verification approach [118]
has become more promising. This approach reduces verification prob-
lems in a more expressive logic, usually undecidable, into logic reasoning
problems which can be solved by SAT/CSP solvers automatically. How-
ever, such verification approaches usually impose a finite bound over the
domains of system variables. Thus, the verification result can only hold
within this bound, not for all the cases [106]. In addition, the verification
approaches have the scalability problem: it becomes intractable or takes
quite long time when large systems are verified.
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2. Verification in MDE

Figure 2.1: Verification of models and model transformations

The verification of models and model transformations can be performed
by using the above-mentioned techniques and approaches. In general,
models and model transformations are specified in the design domains,
i.e., the syntax and semantics of the modelling languages, and the formal-
ization underlying the languages. Meanwhile, verification techniques and
approaches work in the analysis domains, i.e., the formalizations and lo-
gics that they use, and the tools and prototypes which implement them.
The two domains are usually oriented to different users. For instance, UML
and OCL are oriented for model designers. In contrast, model checkers,
theorem provers and constraint solver have their own specification lan-
guages which are oriented to experts. Because of this difference, verific-
ation of models and model transformations is usually performed in two
phases, as shown in Figure 2.1. In the first phase, models and model trans-
formations constructed in the design domain and the properties to be veri-
fied are translated or encoded to corresponding specifications in the ana-
lysis domain. Then, in the second phase, different techniques or tools in
the analysis domain can be used to verify the models and the model trans-
formations by analysing the derived specifications.

In the following two sections, we will present an overview of verifica-
tion approaches of models and model transformations separately. In each
section, we firstly discuss the properties which are of importance. Then the
existing verification approaches will be presented according to the verific-
ation techniques used in the analysis domain.

2.2 Verification of Models

The verification of models aims to check whether they are correct with re-
spect to some requirements. For example, one may be concerned about
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whether some constraints in a model contradict each other; the contradic-
tion among constraints will result in inconsistency in the model. Moreover,
one may wonder whether some requirements have been already included
or specified as constraints in a model. In the context of verification, we
use the term property to denote such requirements. Cabot et al. [119] pro-
posed several properties of models which are interesting to model design-
ers. Most of the studies which will be discussed verify such properties. In
general, the properties can be divided into the following two kinds [89].

Satisfiability Given a model and a proposition, whether some instance
of the model satisfies the proposition. Examples of satisfiability are:

• strong satisfiability A model has at least one instance such that, for
every type t in the model, there exists at least one element in the
instance which is typed by t. Formally, the property is expressed as:
∃I|I �M∧(∀t ∈M, ∃e ∈ I|e : t), where M , I , t and e represent a
model, an instance, a type in a model and an element in an instance,
respectively. In addition, e : t denotes that e is typed by t. The
formulae below use the same notation.

• weak satisfiability A model has at least one non-empty instance. Form-
ally, this is expressed as: ∃I|I �M ∧ (∃t ∈M, ∃e ∈ I|e : t).

• liveliness of a type t A model has at least one instance in which at least
one element is typed by t. Formally, the property can be expressed
as: ∃I|I �M ∧ (∃e ∈ I|e : t).

Validity Given a model and a proposition, whether every instance of the
model satisfies the proposition. Examples of validity are:

• lack of constraint subsumption Given a model M with a set of con-
straints {c1, . . . , cn}, a constraint ci subsumes another constraint
cj where i 	= j if, for every instance I of the model M ′, if I satisfies
ci then I satisfies cj too, denoted as ci ⇒ cj . M ′ is the same as
M except that M ′ excludes the constraint cj . Formally, the property
can be expressed as: ∀I �M ′|I �cj

• lack of constraint redundancy Two constraints c1 and c2 are redundant
if c1 subsumes c2 and vice versa, denoted as c1 ⇔ c2.

In [119], constraints are considered redundant only if they subsume each
other. Recall that constraints are used to describe requirements in the prob-
lem domain. From the modelling prospective, if c1 subsumes c2, the re-
quirement specified by c2 has already been described by c1 implicitly. Thus,
c2 is redundant if both c1 and c2 exist. In the thesis, we consider a con-
straint redundant if another one subsumes it.
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Note that constraints specify requirements too, but they are used in
modelling context. Recall that model designers use constraints to define
which structures can be considered as instances of the model under design.
From this context, constraints are used to answer the question: given a
model and a structure, whether the structure is an instance of the model? That
is whether the structure satisfies the requirements specified by the con-
straints. In comparison, in verification context, properties are used to an-
swer the question: given a model, whether some or all instances of the model
satisfy some proposition?

Model designers are interested in satisfiability and validity of models.
However, since the underlying formalisms of constraints/properties lan-
guages, e.g., OCL, may be undecidable, it is not possible to find an auto-
matic procedure to verify arbitrary properties of models. Therefore, most
verification approaches of models use different strategies which choose
between automation and the expressiveness of underlying formalisms. In
this section, we will give an overview of the literatures on the verification
approaches of structural models. Most of the approaches verify structural
models specified as UML class diagrams with attached OCL invariants
(The two together are called UML class models hereafter). The approaches
are categorized according to the strategies which they use.

2.2.1 Decidable Verification

Some formalisms or logics are decidable. For example, Description Logics
(DL)s are logics to represent a domain of interest as concepts, which denote
classes of objects, and roles, which denote relations between objects. DLs
are used to formalize ontological models in databases and Semantic Web.
Most DLs are decidable fragments of FOL. If verification problems can be
formalized in these logics, they can be solved automatically [120].

Caoli et al. [121, 122, 123] proposed a verification approach of UML
class diagrams. In their studies, they focused only on multiplicity con-
straints. They showed that UML class diagrams with such constraints can
be formalized as knowledge bases in DLs. The knowledge bases are trans-
lated into linear inequalities, which can be resolved by some CSP solvers.
They could verify finite properties of UML class models, e.g., checking
whether a class is forced to have either zero or infinitely many objects.

Queralt et al. [124, 125] focused also on a subset of OCL in their verifica-
tion approach of UML class models. The difference is that, they identified a
decidable subset of OCL, called OCL-Lite, rather than just the multiplicity
constraints as Caoli et al. focused on. They showed that their approaches
ensured termination and completeness for verifying UML class diagrams
with OCL-Lite constraints. Such UML class models could be encoded into
DL knowledge bases, which are then analyzed by the DL reasoner, Pel-
let [126]. This approach can check properties like satisfiability and lack of
constraint redundancy.
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In two other studies, Queralt et al. [127, 128] proposed another ap-
proach to analyze database schemas, which were specified as UML class
models, to verify properties like the liveliness of types and satisfiability.
The authors firstly determined whether a model had any infinite instance.
If not, a property could be checked by using a reasoning procedure which
tries to construct an instance satisfying the property. The studies are im-
plemented in the standalone tool AuRUS. This is more usable than the pre-
viously mentioned approaches in [121, 122, 123, 124, 125] where no tool or
prototype were implemented. Moreover, Rull et al. [129] extended AuRUS
by providing users a hint about how to change models to fix a problem
when a model does not satisfy a property.

2.2.2 Bounded Verification

All the verification approaches mentioned in 2.2.1 can be performed auto-
matically. However, the properties and the models which can be veri-
fied are limited. In comparison, the verification approaches which use
bounded verification techniques can verify arbitrary models and proper-
ties automatically by using CSP solvers or SAT solvers. Usually, such ap-
proaches set limitation or bound on the structures of the models.

Constraint programming [130, 131] is a declarative programming para-
digm in which the problem to be solved is described as a constraint satisfac-
tion problem (CSP) and a solution to the problem can be given by a general
constraint solver. A CSP represents a set of variables where each variable
is associated with a finite domain. In addition, CSPs contain constraints,
i.e., relations among the variables. A solution of a CSP is an interpretation
which assigns a value to each variable and, at the same time, satisfies all
constraints. A constraint solver finds a solution by exploring the search
space, i.e., all the possible interpretation of the variables. Since each vari-
able is associated with a finite domain, the search space is finite.

Cabot et al. [119] presented a bounded verification approach of UML
class models by using constraint programming. In this work, the authors
provided a transformation which translated a UML class model and the
property to be verified into a CSP. Then the constraint solver called ECLiPSe

[132] is used to find a solution to the CSP. If a solution is found, it means
the UML class model satisfies the property. The verification approach is
bounded, i.e., for each class or association in a class diagram, a number
restricts how many objects or links an instance may have. Note that the
numbers for various classes or associations may be different. In this way,
the bound restricts the search space in which the constraint solver finds
a solution to a CSP. However, the drawback of the approach is its incom-
pleteness. If a solution is found, the verification result, i.e., the UML class
model satisfies the property, is valid for all the cases. In other word, no
matter how large the search space is, the UML class model always satisfies
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the property. Otherwise, it can only guarantee that the UML class model
does not satisfy the property within the bound, because it is not certain
whether a solution can be found within a larger search space.

The approach is implemented as a standalone Java application UM-
LtoCSP [133]. The tool loads a class diagram in XMI format which is cre-
ated in the modelling tool ArgoUML [134] and OCL invariants in a separ-
ate file. It also allows users to set bounds for the classes and associations
in the class diagram and choose the properties to be verified. If the solver
finds a solution for the corresponding CSP within a bound, an image of
an instance will be presented. Otherwise, it only shows that the property
is unsatisfiable but presents no further information. The tool is outdated;
it has not been updated since 2009. In addition, since the tool is not in-
tegrated into any modelling framework, the compatibility with the latest
version of ArgoUML is not maintained; a class diagram created by the cur-
rent version of ArgoUML cannot be loaded into the tool.

Two studies extended [119] from different perspectives. One of the ex-
tensions is the application of the verification approach on EMF models by
González et al. [135]. This study is similar to [119] except that it verifies
EMF models rather than UML class models. Therefore, constraints can be
embedded into EMF models rather than being specified in a separate file.
The work is implemented as a plugin EMFtoCSP in Eclipse [27] which is
similar to UMLtoCSP [133]. If a model satisfies a property, the tool shows
a real instance of the model rather than an image. As [119], the verification
approach is bounded and provides no feedback when the model does not
satisfy a property. The other extension is a slicing technique [136] which
splits a model into several submodels based on the constraints and the
property to be verified (mainly strong satisfiability and week satisfiabil-
ity). The structure of a model can be split into several parts according
to dependencies between classes. In this way, the technique reduces the
verification of a whole model into the verification of its submodels. The
authors present experimental results to show that the technique can make
verification more efficient. However, the authors did not present a formal
proof of the techniques. Moreover, the constraints are mainly multiplicity
constraints and the properties to be verified are only satisfiability. In this
thesis, a similar but formal technique will be presented to split models
into submodels. The technique can handle arbitrary constraints other than
multiplicity constraints and more properties, and is presented in Paper B.

There are also many researchers who proposed approaches to verify
models based on the Boolean satisfiability problem (SAT) solvers due to
the recent advances in SAT-solvers [137]. SATs are a subset of CSPs where
all variables are boolean. SAT solvers check whether a boolean formula
in proposition logic is satisfiable. That is, whether an assignment to the
variables of the formula makes the formula true. SAT solvers are generally
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more efficient than CSP solvers [138]. In the following paragraphs, we will
list some works which verify models by using SAT solvers.

Anastakasis et al. [139] presented an approach which was implemen-
ted in the tool UML2Alloy to check the satisfiability of UML class models.
With their approach, UML class models and the property to be verified
are translated into an Alloy specification. Then the Alloy Analyzer exam-
ines the specification by translating it into a SAT problem which is solved
by a SAT solver. Since there exist differences between the formalisms of
UML/OCL and Alloy, only a subset of UML/OCL can be translated into
Alloy specification. In addition, the verification approach using Alloy is
bounded, in similar manner as the approaches UMLtoCSP and EMFtoCSP;
users must set bounds, which is called scope in Alloy, for the search space.
Shah et al. [140] further extended [139] by translating instances of Alloy
specifications into UML object diagrams. With this extension, it is possible
to translate back and forth between UML and Alloy. However, there is no
useful information provided when a model does not satisfy a property.
For example, when a model is inconsistent, it should provide information
about which elements cause such inconsistency.

Another bounded verification approach which uses SAT solvers is pro-
posed by Kuhlmann et al. [141]. The approach is integrated into the USE
framework [142]. USE was originally used to examine UML class models
by generating arbitrary instances of the models (in USE, these generated
instances are called snapshots). Instances of models are generated manu-
ally at first, then automatically by using a scripting language [142]. Later,
Kuhlmann extended the tool by providing a technique to translate UML
class models into formulae in FOL with relation features. These formulae
are solved by the SAT-based constraint solver Kodkod [143]. Thus, USE has
the feature of verifying satisfiability and constraint dependency of UML
class diagrams. The verification in USE is bounded, and the bounds for
classes and associations are configured in a separated file.

Both of the above mentioned approaches verify UML class models by
using SAT solver. They are similar in many aspects: both perform bounded
verification approach and present an instance if a model satisfies a prop-
erty but provide no feedback otherwise. But the translations from the UML
class models to SAT are different. UML2Alloy uses a formal model trans-
formation which translate UML class models into Alloy specifications. The
specifications are then translated into Kodkod structures by the Alloy Ana-
lyzer. While USE translates elements in the original UML class models into
Kodkod structures directly. Moreover, the translation in USE can handle
more concepts of UML class models than the one in UML2Alloy, e.g., as-
sociation classes, OCL sequences and bags. In addition, UML2Alloy loads
models in XMI file while in USE models are defined as specifications in
plain text. The previous two groups of works verify models by indirect
use of SAT solvers. In contrast, Soeken et al. [144] proposed a verifica-
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tion approach which uses SAT solver directly; UML class models and the
property to be verified are translated into bit vectors. Then the vectors are
translated into boolean expressions and passed to a SAT solver.

2.2.3 Interactive Verification

The previously mentioned verification approaches of models are all auto-
matic, but they are also incomplete in the sense that they cannot verify ar-
bitrary models and properties and some verification results are valid only
within a bound. In comparison, the verification approaches using theorem
provers are able to verify more expressive models and properties. In ad-
dition, verification results are also valid for all the cases. But this kind of
approaches are interactive and require manual interference.

Egea et al. [145] proposed a formalization of metamodels, models (which
are instances of the metamodels) and conformance relations between me-
tamodels and models. With this formalization, metamodels and models
are translated into specifications in membership equational logic (MEL),
which can be analyzed by the validation tool ITP/OCL [146] to verify if a
model is well-formed with regard to a metamodel.

HOL-OCL [147] is an interactive proof environment for verification of
UML class models. It is integrated into a MDE toolchain [148] which sup-
ports a formal model-driven software engineering process. Models in the
framework can be specified in different metamodels, e.g., UML, Dresden
OCL2 or SecureUML [149]. With this verification approach, these mod-
els are encoded into theories in HOL-OCL, which are then analyzed in the
interactive theorem prover Isabelle [116] to verify properties, e.g., the satis-
fiability of class invariants and no contradiction between postconditions of
methods and class invariants. The verification process requires the know-
ledge and expertise of HOL and the Isabelle prover.

Rahim [150] analysed models by using the theorem prover Prototype
Verification System (PVS). PVS is based on HOL and has its own specific-
ation language. The author proposed a set of rules which were specified
in the Epsilon Transformation Language. The rules are used to transform
a UML class model into a PVS specification. Then the specification is ex-
amined by PVS to verify the model. Since the focus of the work is the
transformation from UML class diagram and OCL constraints into a PVS
specification, no verification result is given.

Clavel et al. [151] proposed an approach to verify the unsatisfiablity of
OCL invariants within a class diagram, i.e., there are no object diagrams
that satisfy the OCL invariants. This property is the negation of consist-
ency. In this work, they present a mapping from subsets of OCL to FOL.
Then the derived FOL expression can be passed to an automated theorem
prover or a SMT solver to verify the unsatisfiablity of these OCL invariants.
The verification approach is unbounded, but can only handle subsets of
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OCL. Furthermore, since this is a preliminary work, no tool or prototype
of the approach is implemented.

Beckert et al. [152] formalized UML class models in dynamic logic,
a multi-modal extension of FOL for reasoning about properties of pro-
grams. The formalization is implemented in Java and integrated into the
KeY framework [153], which targets to provide a software development
environment, including design, implementation, formal specification and
verification. The verification is performed by an internal semi-automatic
theorem prover, which requires manual interaction.

2.2.4 Set based Approaches

There also exist some studies which focus on mapping models into spe-
cifications in set based formalisms. Even though verification is not covered
or not emphasized in their work, their formalization may lead to verific-
ation potentials in the future. Roe et al. [154] and Kim et al. [155] ini-
tialized works to translate UML class models into Object-Z (an extension
of Z [156] to construct specifications in an object-oriented way) specifica-
tions. However, these studies either provide no tools, e.g., in [155], or need
special expertise or knowledge of existing tools for Z and Object-Z [154].
Moreover, Marcano et al. [157] proposed a verification approach of UML
class models by using B [156]. In this approach, a class model is trans-
lated to a formal specification in B. Then the specification is analyzed by
Atelier-B (a tool which aims to develop quality-ensured software by rigor-
ous mathematical reasoning) to verify consistency of UML diagrams and
detect contradiction between invariants. However, when an error is found
in the model, it requires special knowledge to understand B specifications
to find the problem. Szlenk [158] proposed a mathematical formalization
of the semantics of UML class diagrams using notions from sets and partial
functions. Based on this, they presented an approach to verify consistence
of UML class diagrams. However, the approach did not consider any con-
straints.

2.2.5 Summary

Feature 2.2.1 2.2.2 2.2.3
Logic DL FOL HOL

Decidable � × ×
Automatic � � ×
Bounded × � ×
Analyzer DL reasoner constraint solver theorem provers

Table 2.1: Features of verification approaches
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From the overview, we can see that most of the works verify models by
using deductive verification techniques. They formalize the models to be
verified into specifications in some logics. Then the specifications are ana-
lyzed by logical reasoning tools to verify properties. But these verification
approaches have distinctive features since they use different verification
techniques. Table 2.1 summarizes the features of the aforementioned veri-
fication approaches in each category1. It shows that the approaches trade
off between automation, expressiveness of the underlying logics and com-
pleteness of verification results. Some automatic approaches can verify
properties specified in less expressive logic, e.g., DL, and can ensure that
verification results are valid for all cases. Other automatic approaches can
verify some properties specified in a more expressive logic, e.g., FOL, but
verification results may not be valid, since they are bounded. The other
approaches can verify properties specified in very expressive logic, e.g.,
HOL, where verification results are valid for all cases. But this is at the
expense of losing automation.

As stated before, the modelling and the verification are proceeded in
different domains. From the perspective of model designers, the automatic
verification approaches are preferable over the ones which require manual
intervention since the former requires little or no knowledge in the ana-
lysis domain. In addition, the approaches which are shipped with tools
gain more favor than the ones without tools. Most of the verification ap-
proaches are supported by tools. However, since most of the tools are ori-
ented to verification purposes, they are not integrated into modelling en-
vironments; (EMFtoCSP is integrated into Eclipse but the tool is not well
maintained; the latest version does not work: the generated CSP specific-
ations cannot be read by ECLiPSe.) We have identified three challenges
related to existing verification approaches.

1. In order to verify models, model designers have to commute between
modelling tools and verification tools to verify a model. This is not
convenient to verify models specified in the modelling domain. In
this thesis, we will present a bounded verification approach by using
Alloy which is integrated into the DPF workbench [1]. The work is
presented in Paper B.

2. If a model satisfies a property, most of the verification approaches
present a result, e.g., an instance of an UML model. Otherwise, they
will present no more information than claiming that the model does
not satisfy the property. In our verification approach, when a model
does not satisfy a property, the problematic part of the model will be
highlighted.

1The works in subsection 2.2.4 only provided encoding approaches but no verification
approach. Therefore, they are not list in the Table 2.1
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3. Automatic verification approaches usually have scalability problems.
When a larger model is verified, the approaches become intractable
or take quite long time. To solve the problem, we present a technique
to split models into submodels such that the verification of models
can be reduced to the verification of submodels. This technique is
also present in Paper B.

2.3 Verification of model transformations

The verification of model transformations aims to check whether the model
transformations or the generated target models satisfy some properties.
For example, given a model transformation system, one may be interested
in whether model transformations from every source model will termin-
ate, whether the generated target model is well-formed with regard to the
target metamodel, etc. There are also many other properties which are
studied in the literature. In [159, 160], the authors reviewed and classified
the properties to be verified of model transformation into two categor-
ies: language-related and transformation-related. Language-related proper-
ties concern model transformations from a computational perspective [159].
From this perspective, a transformation can be viewed as a computation
which is executed by a transformation engine according to transformation
rules. Typical properties in this category are:

1. termination guarantees that the execution of model transformations
will terminate

2. determinism guarantees that model transformations will generate a
unique target model. Termination and determinism together are called
confluence.

3. typing ensures that transformation specifications are well-formed with
regards to their transformation languages

4. preservation of execution semantics ensures that the execution of trans-
formations is performed according to the semantics of the corres-
ponding transformation languages. For example, some languages
may not allow that an element in the source model to be matched
twice.

The properties in the transformation-related category examine model trans-
formations from a modelling perspective [159]. From this perspective, model
transformations are viewed as transitions between different models. These
properties concern the semantics of:

1. the source and target metamodels; an example property is conform-
ance of target models. It means that model transformations always
generate target models which are instances of the target metamodels
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2. model syntax relations which ensure that certain structures of the source
models will be transformed into other structures of the target mod-
els. These relations connect the patterns of the source models with
the patterns of the target models

3. model semantic relations which connect the meaning of the source mod-
els to the meaning of the target models. An example property is
bisimulation where both models “are able to simulate each other from
an observation point of view” [159]

In the thesis, we focus on conformance of target models. Given a meta-
model and a model, it is trivial to examine whether the model is an in-
stance of the metamodel by checking the model against the structure and
constraints of the metamodel. However, it is not trivial to verify the con-
formance of target models from model transformations, since this involves
transitions of models according to model transformation rules [161]. We
propose two solutions to verify conformance. One solution is to check a
direct condition in which each direct model transformation from an in-
stance of the source metamodel can generate an instance of the target me-
tamodel. Another solution is to check a sequential condition in which each
model transformation from an instance of the source metamodel can gen-
erate an instance of the target metamodel after the application of a number
of transformation rules. The sequential condition is weaker than the direct
condition since it does not require that the intermediate models in a model
transformation conform to the target metamodel. The study is presented
in Paper C.

Different approaches have been proposed in the literature to verify such
properties. In this section, we will review the literature and categorize the
approaches according to the techniques they use.

2.3.1 Manual Mathematical Proof

Some studies have tried to verify properties of model transformations by
constructing manual mathematical proof, rather than using verification
techniques, e.g., testing, model checking, theorem proving, as shown in the
sequel. Such verification requires related theory background and mathem-
atical knowledge. But the studies usually can guarantee certain properties
for all transformations [159].

Some researchers have proposed some criteria and proved that if model
transformations fulfill the criteria, the model transformations satisfy the
desired properties. Bruggink [162] proposed some criteria to verify ter-
mination of graph transformation systems. The author observed the fact
that, transformations included creation chains, i.e., chains of edges where
each edge involved in the creation of the next edge. The existence of infin-
ite creation chains was the source of infinite rule applications. They also
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presented an algorithm to prove the absence of infinite creation chains by
recording the length of creation chains. If the length was bounded, there
was no infinite creation chains, thus proved termination. Based on the
same idea, Küster [163] also established a set of criteria to verify termina-
tion and confluence of model transformation systems with control condi-
tions.

Varró et al. [164] also proposed criteria to verify termination of graph
transformation systems. But these criteria were based on Petri net using
algebraic techniques. A simple Petri net was derived to simulate a graph
transformation system; the Petri net abstract from the structure of instance
models and only count the number of elements of a certain type. The graph
transformation system was proved terminating if the Petri net run out of
tokens after limited number of steps.

Heckel et al. [165] proposed some criteria to verify whether a graph
transformation system is confluent. They analyzed graph transformation
rules and generated critical pairs which were two parallel dependent trans-
formations, i.e., the intersection of their matches did not consist of common
gluing points. Such transformations may result in violation of confluence.
They proved that a graph transformation system was confluent if it was
terminating and every critical pair was strictly confluent. The critical ana-
lysis is implemented and integrated into the modelling tool AGG [166].

There are also some researchers who have proposed approaches to con-
struct model transformation systems. They proved that a model trans-
formation system satisfies some desired properties if it is constructed with
their approaches. Ehrig et al. [167] introduced a mechanism, called layered
graph grammar, which group rules into different layers according to dele-
tion and nondeletion layer conditions. The application of rules are ordered
by the layers. In this way, the transformation steps which create elements
are separated from the ones which delete elements. The authors showed
that a layered graph grammar with injective matches terminates. Barroca
et al. [168] proposed a transformation language DSLTrans to specify model
transformation systems. The language also uses layered transformation
rules which guarantees confluence and termination of model transforma-
tions by construction. Different from layered transformation rules, Lamo
et al. [81] proposed to specify model transformation rules based on integra-
tion models and co-span. In this approach, transformations are performed
by rule amalgamation [169] instead of applying rules one by one. They
showed that the approach guarantees confluence and termination.

The two studies above proposed approaches to construct general model
transformation systems. Some other similar approaches are oriented to
special intentions, e.g., refactoring, refinement, etc. Baar et al. [170] pro-
posed a mechanism to construct graph transformation rules for refactor-
ing of UML class models. This mechanism is proved to preserve semantics
before and after refactoring, i.e., the semantics of models before refactor-
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ing coincides with the semantics of models after refactoring. Hermann
et al. [171] proposed a model synchronization framework generated from
TGG with bidirectional update propagation operations. The operations are
proved to preserve consistency and are invertible to each other. Padberg et
al. [172] proposed a formal rule-based refinement technique of algebraic
Petri nets. The technique preserves safety properties combined with the
introduced place preserving morphism. Massoni et al. [173] proposed an
approach to develop model refactorings that preserve semantics by con-
struction for UML class diagrams. A set of basic, semantic-preserving
transformation laws were used to compose more complicated model re-
factorings. The laws were verified by translating them and the class dia-
grams into Alloy to reason about the soundness.

In summary, the studies in this category mainly concern termination
and confluence. They examine model transformations from the computa-
tional perspective. Since termination and confluence of graph transforma-
tions are proved undecidable [174, 175], the works trade off between the
expressiveness of the transformation language and the desired proper-
ties [159]; some studies allow powerful transformation languages but can
only promise that the properties are satisfied if their criteria are fulfilled;
The others promise that the desired properties are always satisfied but re-
strict the expressiveness of transformation languages.

2.3.2 Testing

Testing, as an informal verification approach in software engineering, is
to “exercise software with test cases to find failures or demonstrate correct
execution” [176]. The traditional testing techniques can be applied to verify
model transformations but face three challenges: 1. automatic generation
of test models (the source models which are transformed and tested), 2. the
specification of test oracles which is used to check whether transformations
produce desired target models, 3. the comparison of the test models and
test oracles [177].

Numerous studies tried to generate test models with guaranteed meta-
model coverage, i.e. each source metaclass should be instantiated at least
once in at least one test model and, properties of metaclasses (e.g., meta-
attributes) should take several representative values [178]. For example,
Fleurey et al. [179] used equivalence partitioning to achieve coverage. They
manually identified equivalence classes for a source metamodel. Then a
tool is used to automatically generate a test model for each class. Strüer-
mer [180] proposed a similar approach but used a classification method to
identify equivalence classes. However, the equivalence partitioning tech-
nique may produce numerous test models; many of these models are un-
related since model transformations may only affect a part of the meta-
model. To solve the problem, some researchers also computed effective

40



2.3. Verification of model transformations

metamodel [179, 181], i.e., the fragment of the source metamodel actually
affected by the transformations; other researchers [179, 182] proposed us-
ing mutation-testing techniques to generate test models semi-automatically;
some test models are provided manually by testers and then a tool gener-
ated comprehensible test models using mutation testing techniques. Dif-
ferent from these techniques, Sen et al. [183] proposed an approach to gen-
erate test models using the Alloy Analyzer.

As for generation of test oracles, four methods can be used for testing
transformations as summarized by Mottu [184]: reference transformation,
inverse transformation, expected output models and constraints. Most
works in the literature use the last method, where the outputs of trans-
formations are checked against constraints, e.g., post-conditions of trans-
formations or invariants of target meta models. Guerra [185] proposed
a visual contract language to specify correctness requirements for model
transformations; Baudry [177] specified constraints in modified OCL; Ko-
lovos et al. [186] proposed a special language, the Epsilon Comparison
Language (ECL), which can be used to specify constraints between source
and target models. In addition, graph patterns can be used to specify
constraints among models where target models are checked whether they
match these patterns. Moreover, Orejas et al. [187] used the graph patterns
approach to specify constraints.

There exist also testing tools which implement the above mentioned
approaches. The tools generally can construct test cases which consist of
test models and test oracles. A testing engine is also included to perform
transformations and check the produced models against the test oracles.
Moreover, optionally, a testing analyzer can be used to examine the test res-
ult. For example, Lin et al. [188] proposed a testing framework which used
C-SAW model transformation engine to run test specifications. The spe-
cifications contain transformation rules, test models and test oracle. The
framework has a test analyzer to highlight the test result in the target mod-
els. Giner et al. [189] performed testing similarly, except they used the EP-
SILON tool which generates test models from the HUTN description and
uses the EVL script to verify target models. The tool has no test analyzer.
The two works do not consider metamodel coverage when generating test
cases. In comparison, Darabos et al. [190] provided metamodel coverage
support by using mutations.

Even though the mentioned works make progress in testing of model
transformations, verification with testing is an informal approach which
is not complete; it tries to obtain verification confidences through test case
coverage. As pointed out in [161], verification with testing is sensitive to
the implementation of model transformations and the previous works are
most specific to certain model transformation languages. Moreover, the
properties are mainly static constraints on the target metamodel.
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2.3.3 Model Checking

Model checking is an automatic technique to verify finite state systems.
It searches exhaustively through the state space of a given system to de-
termine if the system holds some behavior properties which are usually
expressed in temporal logics. It was firstly used successfully in verify-
ing hardware systems, e.g. complex sequential circuit, and is also used
to verify software [102].

In [191], Heckel initialized the application of model checking to veri-
fication of graph-based model transformations. The idea is to interpret
a graph transformation system as a transition system in which states are
graphs and transitions are given by applications of transformation rules.
Thus, properties of graph transformations can be verified by using the
model checking technique.

In [192, 193, 194], Rensink presented the tool GRaphs for Object-Oriented
VErification (GROOVE). It attempts to construct the state space of graph
transformation systems using an abstraction technique. GROOVE uses
simple edge-labelled graphs 2 to denote states while the transitions between
states are generated by the application of graph transformation rules with
negative application condition by using the single-pushout approach. Thus,
the existing model checking algorithms can be applied to verify linear tem-
poral properties of model transformations by automatically analysing the
generated state space [196]. However, the tool encounters the state explo-
sion problem; the state space constructed from the tool is usually large,
even though some abstraction techniques are applied [197]. Another tool,
Henshin [198], uses the same approach to generate state spaces but focuses
on in-place model transformations. It encounters the same problem.

Lúcio et al. [199] presented a symbolic model checker to verify model
transformations specified in the DSLTran language. The model checker
constructs the state space from model transformation rules. Since model
transformations in DSLTran are confluent and terminating by construction,
each state in the state space corresponds to a target model by applying all
the possible transformation rules in a given layer. In addition, each trans-
ition corresponds to transformations between two adjacent layers. The
properties to be verified are the relation between source and target models,
e.g., providing a certain structure appears in the source model, whether
another structure is presented in the target model. They are also specified
as transformation rules in the DSLTran language. Such a property is satis-
fied if the property holds in every path of the state space. If the property
is not satisfied, a counterexample can be presented to assist the designer
to fix the problem.

These studies tried to construct model checker for graph-based model
transformations. In contrast, there are also some studies which verify model

2The tool is extended to support attributed graphs by Kastenberg [195]
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transformations by using existing model checkers. Schidt et al. [200, 201]
presented a tool CheckVML which translated graph transformation sys-
tems into Promela models. Such models can be analyzed by the model
checker SPIN [202]. Troya et al. [203] proposed a formalization for the
semantic of ATLAS Transformation Language (ATL) [204] in rewriting lo-
gic. ATL is a domain-specific language for model-to-model transformation
specification based on OCL formalism. The language provides a mixture of
declarative and imperative constructs. Based on this, they used the model
checking tool Maude [205] to simulate and analyse transformations. The
approach can verify such properties as whether an interesting target model
can be derived, or whether every source model can be transformed. Gracia
et al. [206] presented an approach to verify model transformations which
are specified as transformation algorithms in +CAL [207] to manipulate
models. +CAL is an algorithm language to write high-level descriptions
of algorithms. Such algorithms can be translated into formal specifications
which can be analyzed by model checkers. In this work, the models are spe-
cified using Essential MOF (EMOF) and OCL. To verify such transforma-
tions, EMOF and OCL are formalized as a specification in +CAL. Thus,
the specification along with the transformation algorithms in +CAL can
be fed into the model checker TLC [208] to verify two properties:

1. transformation can produce valid target models for every valid source
model;

2. the generated target models satisfy certain constraints.

Boronat et al. [209] proposed an approach for verifying endogenous
model transformations. The approach is implemented in MOMENT2 in
which model transformation systems can be defined in EMF and verified in
Maude [205]. In the approach, models specified in MOF/OCL and model
transformation rules specified in QVT are formalized into a specification in
rewriting logic. The specification can be analyzed by a LTL model checker
in Maude to verify different properties, e.g., safety and liveness properties.

In summary, the verification approaches in this category either con-
struct a special model checker or use an existing model checker to verify
model transformations. But the model checking technique has an inherent
problem: the state explosion problem, which hinder the application of the
technique. In addition, since model checking is used to analyze finite state
systems, it is difficult to use the technique to verify the model transforma-
tion systems which have infinite state spaces.

2.3.4 Theorem Proving

“Theorem proving is a technique where both the system and its desired
properties are expressed as formulas in some mathematical logic. This lo-
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gic is given by a formal system, which defines a set of axioms and a set of in-
ference rules. Theorem proving is the process of finding a proof of a prop-
erty from the axioms of the system.” [210]. There are bunches of studies
which verify model transformations by using theorem proving [161]. Gen-
erally, the model transformations specified in a language or other forms are
translated into the specifications used in theorem provers. Then properties
to be verified are checked by finding a proof with the theorem provers.

Asztalos et al. [211] proposed a first-order logic based formalization
of model transformations with control flows. This formalization uses as-
sertions in Assertion Description Language (ADL) to describe the con-
straints of source models, model transformation rules, the pre- and post-
conditions of model transformations and properties to be verified. These
assertions are added onto the control flow graph of model transforma-
tions. In addition, the authors also proposed deduction rules which can be
used to derive new assertions from initial assertions. The deduction rules
are general and not dependent on model transformations. Thus, they can
verify whether model transformations satisfy some properties by checking
whether the assertions for the properties can be derived from the initial as-
sertions for the model transformations by using the deduction rules. The
verification approach is integrated in the Visual Modelling and Transform-
ation System (VMTS) [212] which is an n-level metamodelling and model
transformation specification framework. The initial assertions can be de-
rived automatically from model transformation specifications within the
framework. The verification part is implemented in the logic program-
ming tool SWI-Prolog [213]; the initial assertions and the deduction rules
are specified as a program; the verification of properties can be executed
as queries of the program. The approach can be used to verify properties
like termination and confluence.

Calegari et al. [214] also proposed a verification approach of model
transformations by using the type theory, Calculus of Inductive Construc-
tion (CIC) [215]. But the approach aims to verify transformations which
were specified in ATL [204]. With this approach, ATL transformations are
formalized as CIC specifications which are then analyzed by the theorem
prover Coq [215] to verify whether the generated target models always sat-
isfy postconditions if the source models satisfy preconditions.

Lano et al. [216] presented UML Reactive System Development Sup-
port (UML-RSDS), a subset of UML to specify model transformations. In
this work, UML class diagrams are used to specify model transformation
rules. The control flows of model transformations, i.e., the conditions and
the order of the model transformation execution, are specified as an UML
activity diagram. Moreover, the pre- and post-conditions of each trans-
formation rule can be specified as OCL expressions. In addition, they also
presented toolsets to verify and analyse such transformations. Depend-
ing on the properties to be verified, different verification techniques are
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integrated into the toolsets. For example, to verify syntactic correctness
and language-level semantic correctness of rules, the model transforma-
tion specifications are translated automatically into B [217] specifications
which are verified by internal consistency proof in B. The tool can also be
used to verify other properties, e.g., confluence, by syntactic analysis of
transformation rules.

Cabot et al. [218] proposed an approach for verifying declarative model-
to-model transformations, which is transformed to the verification of mod-
els. Given a declarative description of transformations, e.g., in Triple Graph
Grammars (TGG) [219] and QVT, a set of OCL invariants can be automatic-
ally generated. The invariants state under what conditions source models
and target models can represent transformations according to the trans-
formation rules. The invariants, as well as the source metamodel and the
target metamodel, are treated as static UML/OCL class diagrams, called
transformation models [220]. Thus, the existing verification tool for mod-
els, e.g., UMLtoCSP [133] or HOL-OCL [147], can be used to analyse the
transformation models to verify some properties of the transformations,
e.g. whether all valid source models can be transformed. These properties
can be encoded as consistency properties of the transformations models.

Some researchers proposed verification approaches for model-to-code
transformations which are formalized as model-to-model transformations.
Stenzel et al. [221] presented a framework by using the interactive theorem
prover KIV [222] to verify Java code generation. In this framework, Java
code generation is specified as QVT transformations from some source
models, e.g., UML models or Ecore models, to the Java annotated abstract
syntax tree (JAST). Then the QVT transformations and the semantics of
JAST are formalized as a formal calculus in KIV. The calculus is fed into
KIV to check whether the generated Java code is type correct and satisfies
some semantic properties. Based on the same idea, Giese et al. [223] also
proposed verification of model-to-code transformations. The difference is
that, the transformations are formalized as TGG in Fujaba tool suite [224].
In addition, they use the theorem prover Isabelle/HOL [116].

In summary, the verification of model transformations by using the-
orem proving can check various properties, from termination to the con-
formance of target models. However, usually, the process to find a proof
is semi-automatic; it requires manual assistance. This implies that the one
who verify model transformations should acquire required mathematical
knowledge, which is not usually met by software engineers. Furthermore,
none of the studies in the referred literature generate counterexamples
when the properties to be verified are false. In this case, it is difficult to
know what causes such failure.
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2.3.5 Automatic Reasoning

Due to the advancement in automatic reasoning techniques, e.g., SAT solv-
ers and SMT solvers, some studies applied these techniques to verify model
transformations automatically.

Inaba et al. [225] proposed to verify the conformance of target models
by using Mona [226], a decision procedure in Monadic Second-Order Lo-
gic. In this study, they focused on model transformation rules specified in
Core UnCAL, a subset of the graph transformation language UnQL [227].
The verification problem in the subset of the language can be reduced to
the validity of monadic second-order logic formula over trees, which is
decidable and can be solved by Mona. However, the expressiveness of the
model transformation language is restricted, e.g., only the typing of graphs
can be described.

Büttner et al. [228] proposed a verification approach of ATL model trans-
formations by using SMT solvers. They contributed a formalization for a
subset of ATL. This enables to encode ATL transformations into first-order
logic formulae. Then the formulae were passed to SMT solvers to verify
whether the model transformation can always generate instances of target
metamodels from instances of source metamodels. If an invalid instance of
target metamodels is generated, a counterexample can be presented to as-
sist the designer to fix the problem. However, it requires expert knowledge
to understand the counterexamples. Even though the approach is oriented
to a subset of ATL, the approach is incomplete, i.e., it cannot verify all prop-
erties. SMT solvers may generate an "UNKONWN" result to indicate that
the properties cannot be verified.

In [229], Büttner et al. proposed an algorithm which translated model
transformation rules specified in a subset of ATL into a transformation
model [220]. The transformation model merged all the related informa-
tion, e.g., the source/target metamodels and OCL invariants of transform-
ations. Then the existing verification approach of models can be applied to
verify whether the target models satisfied some desired properties. For ex-
ample, UML2Alloy [139] can be used to translate the transformation model
into an Alloy specification which is examined by the Alloy Analyzer. This
approach is applied to verify an industrial case in [230]. Büttner et al. [231]
also proposed a similar verification approach which was aimed to ana-
lyze refinement. These approaches translated model transformations into
intermediate transformation models and then to Alloy specifications. In
contrast, Baresi et al. [232] translated model transformation rules specified
using AGG [166] into Alloy specifications directly and verify properties
like whether a specific target model can be generated after a finite model
transformation steps by using the Alloy Analyzer. The studies provided
no general translation between model transformation rules and Alloy spe-
cification. Based on the same idea, Anastakasis [233] proposed a verifica-
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tion approach which simulated model transformations as Alloy specifica-
tion directly. Then the Alloy Analyzer can be used to verify whether each
transformation can generate target models which conform to the target me-
tamodel. If not, a counterexample will be given by the Alloy Analyzer. By
contrast, the counterexample is easier to understand than the one given by
SMT solvers. The author illustrated the approach with a running example,
but provided no systematic translation from model transformation to Al-
loy specifications. The verification approaches using Alloy are bounded.
Users need to set a bound for the model transformations. The bound may
restrict how many elements that are included in the source models, or how
many model transformation steps are examined. As applying bounded
verification approaches on models, the approaches are also incomplete. It
means that the verification result may be valid within the bound.

By using automatic reasoning techniques, researchers can formally verify
model transformation automatically. This is different from the approaches
with theorem provers, where the verification is usually performed inter-
actively. However, since properties of model transformations are gener-
ally undecidable [88], most of the studies deployed two strategies to verify
the properties: they either aimed to verify model transformations in (a
subset of) a specific language, or used bounded verification approaches
to verify general model transformations. In addition, the approaches also
have scalability problem: it takes longer time or becomes intractable when
larger model transformation systems are verified.

2.3.6 Summary

Feature Mathematical
Proof

Testing Model
Checking

Theorem
proving

Automatic
Reasoning

Formal � × � � �
Automatic × × � × �
Problem Require

expert
Informal,
Expensive

The state
explosion
problem

Require
expert

Incompleteness

Property LR TR TR LR& TR TR

LR: Language related

TR: Transformation related

Table 2.2: Features of verification approaches

Various verification techniques can be used to verify model transforma-
tions. Because of inherent difference of the underlying techniques, the veri-
fication approaches have their pros and cons. Table 2.2 shows the features
of the aforementioned verification approaches. Mathematical manual proof
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can guarantee verification result for all the transformations. But this re-
quires expertise knowledge of mathematics. Testing is popular in industry,
but it is expensive and informal; it requires construction of test cases and
cannot find all the bugs in the model transformations. The formal verific-
ation techniques can examine model transformations, but they have lim-
itations. Model checking can be performed automatically. But the state
explosion problem hinders its application; it may take long time or be-
come intractable to verify a model transformation system. With theorem
provers, complex properties can be verified, but it usually needs interac-
tion with the users. This requires special knowledge of the provers and the
underlying formalisms. Automatic reasoning is incomplete in that either
some properties cannot be verified or the verification result is valid within
a bound.

In this thesis, we choose automatic reasoning with Alloy for two reas-
ons. Firstly, it inherits merits of formal verification. Model transforma-
tions are formalized as Alloy specifications. Secondly, it promises termin-
ation for all properties to be verified since verification by the Alloy Ana-
lyzer is bounded. In addition, it gives designers quick feedback when they
construct model transformation rules. For example, when a property is
not satisfied, the counterexample may warn designers and hint how to fix
the problem. In Paper C, we present the bounded verification approach
of model transformations. We propose a transformation from graph pro-
ductions to Alloy specifications Then we use the Alloy Analyzer to verify
whether the target models generated always conform to the target meta-
model. This is similar to the approaches [232, 233]. But we presented a
systematic translation from model transformations to Alloy specifications,
which is not given by the two studies. In addition, to solve scalability
problems, we also proposed some techniques which are present in Pa-
per D. Moreover, in Paper E, we applied the verification approach to ana-
lyse workflow in healthcare domain. We demonstrate the application by
verifying properties of the workflow modelling language DERF [234] and
general properties of workflow models, e.g., termination and absences of
deadlocks.
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CHAPTER 3
Contribution

In this chapter, we will illustrate the contributions of the thesis. The main
contributions consist of three parts: 1. Enhanced tool support for diagram-
matic (meta)modelling. 2. Verification of structural models. 3. Verification
of model transformations. In the next subsections, we will detail each of
these parts and use a running example from the health care domain to
demonstrate them. This example describes a blood transfusion workflow
used in a joint project between Bergen University Hospital and Bergen Uni-
versity. In this project, the hospital decided to develop an app to improve
patient security in blood transfusion workflow. We specified the workflow
as a workflow model as a high level design of this app by using DPF frame-
work. The app is later implemented based on the model. Moreover, we
verified the model by using the verification approaches in the thesis. This
ensured that the model satisfied some desired properties in the require-
ment.

3.1 The Running Example: Blood Transfusion

We will first introduce the running example which is about blood trans-
fusion workflow in the healthcare domain. This example will be used
throughout this chapter to illustrate the contributions of the thesis. The
blood transfusion workflow presented in this section is described in the
guidelines used at Haukeland University Hospital in Bergen, Norway1.

1The PhD candidate joined a project at the Haukeland University Hospital in which he
developed a blood transformation app to assist nurses during blood transfusion.
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(a) (b) (c)

Figure 3.1: Screenshots of blood transfusion application

Blood transfusion is a common medical procedure in which patients
receive blood products to replace lost blood, e.g., during a surgery or in-
jury. The complete blood transfusion workflow includes many tasks to
ensure the quality of blood products and the safety of the recipients. For
example, blood is collected from different blood donors; blood donations
are screened against infections, e.g., HIV, prior to use; blood collections
can be processed into different components, e.g., red blood cells, white
blood cells or plasma, for more effective usage; blood products are stored
in a blood bank which stores and preserves blood in hospitals; the blood
of recipients must be typed and screened to ensure compatibility before
transfusion [235].

Since blood transfusion is such a highly complex and safety-critical
procedure, it is necessary to have computer-based applications that assist
health personnel to perform the task. The Haukeland University Hospital
requires therefore an application running on handheld devices to assist
nurses in performing blood transfusion tasks. Some screenshots of the ap-
plication are shown in Figure 3.1. Figure 3.1a shows the initial state of the
application; Figure 3.1b shows that a nurse have logged into the applica-
tion; Figure 3.1c shows that a blood transfusion is successfully performed.

We will now introduce a typical blood transfusion scenario in order
to clarify the tasks which the application should support. For the sake of
simplification, the application only considers a part of the blood transfu-
sion procedure. That begins with obtaining blood products from the blood
bank with a completed blood transfusion at the end.

Assume Dr. Danielsen will perform a surgery on Mr. Gundersen (pa-
tient) in a few days and blood transfusion is needed during the operation.
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Dr. Danielsen asks Miss Olsen (nurse) to order blood from the blood bank.
Firstly, Miss Olsen will log into the application by scanning her employee
card. Then she identifies the patient information by scanning the bar code
on the wristband of Mr. Gundersen. Afterwards, Miss Olsen should send
two items to the blood bank: two blood samples of Mr. Gundersen and a
blood order. The blood bank uses the samples to identify the blood type of
the patient, if it is unknown, and to perform some pre-transfusion screen-
ing for infection test. The blood samples must be labelled with the pa-
tient information before being sent out. The blood order should contain
information about how many units of different blood products should be
ordered, which departments should pay for the ordering and when the
blood products will be used. The blood order must be authorised by Dr.
Danielsen before being sent out.

When the two items are sent out, the nurse waits for the blood products.
We assume that the blood products arrive on time. During the surgery
and before the transfusion of each blood product, Miss Olsen should check
whether the product is prepared for Mr. Gundersen by scanning and com-
paring the bar codes on the wristband and the blood product. If the blood
product is for Mr. Gundersen, then the blood transfusion can be performed.
Otherwise, the blood transfusion procedure must be interrupted and Miss
Olsen should contact the blood bank. During blood transfusion, the condi-
tions of Mr. Gundersen, e.g., blood pressure, pulse, etc., can be recorded.
If some reactions happen, the nurse must stop the transfusion and send
relevant information to the blood bank.

3.2 Diagrammatic (Meta)modelling

With respect to tool support for diagrammatic modelling, the contribu-
tion of this thesis could be divided into three tasks: improving the storage
format and the metamodel of DPF and adding the Signature Editor. The
following subsections describe these tasks.

3.2.1 Storage Format

The DPF Workbench [236] had already have support for diagrammatic
(meta) modelling and conformance checking of instances against their mod-
els. However, DPF specifications were stored as a binary format which
contained structure, visualisation, constraints, and the predicates used to
define these constraints. Mixing all this information in one single file leads
to certain challenges, among them:

• the metamodel could not be updated, thus the smallest change in the
metamodel would require creating the models from scratch.
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• the signature could not be customised, thus only a few hard coded
predicates could be supported.

• the concrete syntax of the specifications could not be customised,
thus only a hard coded visualisation was supported.

To solve these challenges, we re-implemented most of the workbench
and modularised the storage format by separating visualisation informa-
tion and the signature from the DPF specifications. The following example
illustrates these changes.

Figure 3.2: Comparison of the old and new storage formats

Example 6 (Modularisation of DPF specifications) We create a metamodel
MM and its instance, the model M, using both old and new DPF Workbench. A
comparison of the storage formats of the two (meta)models is shown in Figure 3.2.
In the old version of the workbench, the model M is stored in a binary file M.dpf.
It contains all the information, including structure, constraints, visualisation and
the metamodel. In addition, the workbench was generating two XMI files: M.xmi
and sign.xmi. While M.xmi was used as a potential metamodel for creating in-
stances of the model M, sign.xmi was only used for showing the predicates of the
hard-coded signature; it was not possible to customise the sign.xmi file.

In comparison, the model M in the new DPF Workbench is stored in differ-
ent files. The visualisation information of the model M is now stored in M.dpf
while the structure and constraints are stored in the file M.xmi. In addition, the
information of the metamodel MM is not stored in M.dpf and M.xmi anymore.
Instead, we refer to the elements of the metamodel by using remote links. Thus,
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Figure 3.3: Model evolution support

when the metamodel MM is changed, the changes can be detected when the model
M is opened next time. For instance, we have a model M1 which contains a node
A, as shown in Figure 3.3. After creating an instance I1 of the model M1, we add
another element B in M1 (we call the new model M2). If we use the old version
of the DPF Model Editor, we have to create I1 from the scratch; the element a:A

have to be created again. In contrast, after modularisation of DPF specifications,
we can continue constructing the instance I , e.g., adding a new element b:B typed
by B, without creating a:A. Furthermore, the signature stored in sign.xmi is now
possible to be customised using the Signature Editor (see below).

3.2.2 Signature Editor

Paper A presents the DPF Model Editor, which supports diagrammatic
(meta)modelling in the DPF framework. The tool is implemented in Java
and as a plugin for Eclipse. With this tool, model designers can construct
models in a fully diagrammatic way: model structure is specified as a
graph while constraints are formulated using pre-defined predicates from
a diagrammatic signature. In the DPF Workbench, a default signature is
provided, which consists of predicates that are common for object oriented
modelling. In most cases, this set of predicates is not sufficient for express-
ing all requirements of the problem domain. Therefore, we developed the
Signature Editor as a tool for extending this default signature and a sup-
port for domain specific constraints.

Before explaining the Signature Editor, we present the following ex-
ample, which illustrates how the DPF Workbench is used to define a meta-
modelling hierarchy for the blood transfusion workflow from Section 3.1.
Note that the details of how the DPF Workbench is used to create a meta-
modelling hierarchy are explained in Paper A. The general idea of the pro-
cess is that, the DPF Model Editor generates an editor from a model and a
customised signature, which in turn can be used to create instances of the
model, as shown in Figure 3.4.

Example 7 (Metamodel for Blood Transfusion Workflow in DPF) The blo-
od transfusion workflow can be specified as a diagrammatic workflow model by us-
ing the DPF Model Editor, which is presented in Paper A. This is accomplished
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Figure 3.4: Metamodelling hierarchy in DPF
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Figure 3.5: An excerpt of the blood transfusion workflow hierarchy

by constructing a modelling hierarchy which consists of 3 layers as shown in Fig-
ure 3.5. In order to specify the workflow model, we define a modelling language
represented by the metamodel M1 at level 1. Note that the definition of the meta-
model is done only once and could be reused for the definition of other workflow
models, such as admission of patients, assignment of doctors to patients, etc.

The level 0 shows the default metamodel M0 of DPF Workbench. Recall that
the DPF Workbench comes with a default top level metamodel M0 (consisting
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Figure 3.6: Workflow metamodel M1 in the DPF Model Editor

of Node and Arrow) and a default signature Σ1 (consisting of predicates which
are common for object oriented modelling). We use this metamodel to construct
the workflow metamodel M1 in the DPF Model Editor as shown in Figure 3.6.
In M1, we introduce the concepts Task and Service; relationships Flow, request,
response and exception. The concepts are depicted as nodes while the relationships
are depicted as arrows between the nodes. Task represents ordinary tasks, e.g.,
scanning the wristband of a patient. Service represents special tasks that require
communication with other systems, e.g., scanning the bar code on the wristband of
Mr. Gundersen requires communication with a Electronic Health Record (EHR)
system called DIPS which stores information about patients. The request repres-
ents the data which is sent to a service; the response represents the data which is
replied from a service while the exception represents the errors that may happen
during executing the service.

In addition, we require that each Service must be requested by one Task, and that
each Task can request at most one Service. We formulate these requirements as two
constraints [surj] and [0..1] on the edge request by using the predicates from the de-
fault signature. The mapping between the arity of a predicate to the corresponding
constraint is indicted by red dotted lines in Figure 3.5.

In the DPF Model Editor, the typing relation between M1 and M0 is guar-
anteed by construction of model elements. This typing is depicted as dotted gray
lines in Figure 3.5.

It should be mentioned that, when some model elements are selected,
the applicable predicates will be shown in the Palatte area of the editor,
highlighted in a red frame. The applicability of predicates is determined by
the possibility of creating a graph homomorphism between the arity of the
predicates to the selected model elements. Furthermore, the constraints
are visualised with colour to distinguish with other structure elements2.

Next we show how the metamodel in Example 7 is used to define a
particular workflow model, in this case, the blood transfusion from Sec-
tion 3.1. We will also demonstrate the use of the Signature Editor.

2In Paper A, the applicable predicates are shown in the toolbar while the constraints are
in black.
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Table 3.1: The excerpt of signature Σ2

Example 8 (Modelling of Blood Transfusion Workflow in DPF) With the
workflow metamodel M1 in hand, we are ready to specify the blood transfusion
workflow as a workflow model. As in the previous example, the metamodel M1 is
used by the DPF Model Editor to specify the workflow model M2. Note that for
the sake of clarity, in Figure 3.5 we only show a part of the actual workflow model;
the complete model is explained in Section 3.2.3.

The predicates in the default signature are not enough for specifying all the
requirements in the blood transfusion workflow. For example, the following re-
quirements should be considered when the workflow is modelled.

1. After a nurse logins the system, she can order blood or order sample, but not
both

2. If a blood order is sent out exactly before sending out blood samples, then
blood samples should be collected before sending out blood samples

3. If blood order is sent out after sending out sample order, it means that the
nurse chooses to order sample after logining the system

4. If blood order is sent out after sending out samples, it means that the nurse
chooses to order sample after logining the system

The requirement 2 cannot be described by existing predicates in the default sig-
nature. Thus, we need new predicates to specify the blood transfusion workflow.
Some of these predicates are shown in the user-defined signature Σ2 in Table 3.1.
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Figure 3.7: Workflow signature Σ2 in the Signature Editor

For example, the requirement 2 can be specified as a constraint by using the pre-
dicate imply. We use the Signature Editor to define the predicates, e.g., the pre-
dicate imply as shown in Figure 3.7. We specify the name, the arity αΣ(p), and
semantics of predicates. The arity is shown in the Graph Details area while the
semantics is shown in the Validator area. The semantics can be specified in Java,
Alloy or OCL. Here, we specify the semantics in Alloy and use it for verification
purpose in the sequel.

Notice that the predicates whose names start with @ are used for an-
notation purposes. Such a predicate denotes the system responsible to
perform a task. For example, as shown in Figure 3.5, we use [@APP] on
Scan Sample and Send Blood Order; these tasks are performed on application.
Furthermore, the service Get Sample Info is annotated with [@DIPS]; this means
that the service is performed on the EHR system DIPS.

Note that due to the modularisation of the storage format explained in
Section 3.2.1, it is possible to visualise elements in M2 differently, e.g., ser-
vices are visualised as blue ellipses and tasks are visualised as rectangles.
This is accomplished by assigning elements in M1 with concrete syntax
configurations. We have implemented this configuration mechanism as an
Eclipse plugin. The plugin defines some interfaces that users can imple-
ment to draw their own nodes and arrows. However, the interfaces are
highly dependent on the underlying implementation framework, Graph-
ical Editing Framework (GEF) [237].
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Graph Constraints

In addition to constraints based on DPF predicates, graph constraints may
be used to define dependencies among constraints and/or the structures

of a model [55]. Given a model, a graph constraint N
n←− L

u−→ R con-
sists of three graphs: left L, right R and application condition N (PAC or
NAC); and two injective graph homomorphismsn andu (see [55, 77]). The
components L, R and N are graphs typed by the underlying graph of the
model.

Example 9 (Graph Constraints) For example, the requirements 3 and 4 can
be specified as two graph constraints respectively, as shown in Table 3.2. The
components L, R and N are graphs typed by the underlying graph S, denoted by
L :S, R :S and N :S in the table.

Table 3.2: Graph constraints of the blood transfusion model M2

N :S L :S R :S
OrderBloodAfterOrderSample

t1:Send Sample Order

��
t2:Order Blood

t1:Send Sample Order

��

t3:Show Patient Info

��
t2:Order Blood t4:Order Sample

OrderBloodAfterSendSample

t1:Send Sample

��
t2:Order Blood

t1:Send Sample

��

t3:Show Patient Info

��
t2:Order Blood t4:Order Sample

Figure 3.8: Graph constraints ofM2 in the Universal Constraint Editor

In the DPF workbench, we have designed an editor to specify graph
constraints (see Figure 3.8). The Constraints field lists all the graph con-
straints for a model while the right part of the editor shows the details for
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the selected graph constraint. Since we assume that both n and u are in-
jective, inspired by Henshin [238], the graph constraints are specified with
the following colour coding: red elements belong to N minus L; green
elements belong to R minus L; and gray elements belong to L. In other
words, N is the sum of gray and red elements; R is the sum of gray and
green elements; and L is the gray elements.

Remark 1 Note that in DPF, graph constraints are generalised as universal con-
straints [239] such that L and R are DPF specifications instead of graphs. How-
ever, in this thesis, we only consider classical graph constraints and leave the case
with universal constraints to future work.

3.2.3 The Running Example: Revisited

Figure 3.9: Blood transfusion workflow M2 in the DPF Model Editor

In the previous sections we illustrated how the DPF Workbench was
used to define the metamodelM1. Moreover, we showed how the Signature
Editor was used to extend the default DPF signature. In this section we
will revisit the Blood Transfusion Workflow form Section 3.1 and demon-
strate how the DPF Workbench is used to model the workflow.

As Figure 3.4 depicts, the metamodelM1 and the signatureΣ2 are used
to generate a model editor (see Figure 3.9), which in turn is used to con-
struct the model M2. In the figure, we only show part of M2 while the
complete model M2 is shown in Figure 3.10. In the editor, the concepts
and relationships in M1 are presented as types in the Palette area. These
types are used to create elements in M2 which are typed by elements in
M1. The typing relation between M1 and M2 are guaranteed by creation.
For example, as shown in Figure 3.9, we create Scan Sample, Send Blood Order
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and Collect Sample that are typed by Task, and arrows between them which
are typed by Flow. We also create Get Sample Info typed by Service represent-
ing a service; the arrow Scan Sample→ Get Sample Info typed by request rep-
resenting the request of the service by sending the barcode of sample; the
arrow Get Sample Info→ Scann Patient Wristband typed by response representing
receiving the information of a sample.

In addition to structural information, there are many constraints which
are used to specify the requirements of the blood transfusion workflow.
For simplicity, we request that a workflow run does not contain two start-
ing tasks, i.e., the tasks that have no preceding tasks. Therefore, we have
the multiplicity constraint [multi] (min:0;max:1) on Init as shown in Figure 3.10.

Moreover, on every arrow S
E−→ T , there is a constraint [0..1] (not shown in

Figure 3.10). It states that, on the next level, for each s typed by S, there
is at most one outgoing arrow e typed by E. These constraints are used to
specify that, after each task (or service), at most one task (or service) of the
consecutive type is running (or requested) in the next step. For example,
the constraint [0..1] on the arrow Scan Nurse Card → Get Nurse Info states that,
after Scan Nurse Card, at most one service Get Nurse Info is requested. Further-
more, in the blood transfusion workflow, the sequence of sending sample
and sending blood order does not matter; nurse can send sample first and
send blood order afterwards, or vice versa. In order to enable both of
these flows, we create flows Send Sample→ Order Blood and Send Blood Order
→ Order Sample. Since we require that a nurse can only send sample and
blood order once, we specify the constraints [xorsurj] and [xor3surj] on the in-
coming flows of Order Sample and Order Blood to avoid the two tasks are per-
formed more than twice.

The conformance between M1 and M2 is guaranteed by first checking
that the elements in M1 are correctly typed by the elements in M2 and
then checking whether all constraints in M2 are respected by M1 (form-
ally, existence of a graph homomorphism fromM1 andM2 which satisfies
all constraints presented in M2). If some constraints are violated, the ele-
ments that cause the violation will be marked as an error. For example, the
node Service0 in Figure 3.9 violates the constraint [surj] on the arrow request
in M1, therefore, the node is marked as an error. Furthermore, the pre-
dicates in Σ2 are also available in the Palette and are used to formulate
constraints on the model M2.

Remark 2 Notice that, the workflow model M2 only describes the structural in-
formation of the blood transfusion workflow, e.g., the tasks included in the work-
flow, the order among the tasks, their relations to services, etc. It does not contain
information about the dynamic behavior of the workflow model that concerns about
the transition among the states in a workflow run. On the fourth layer of the hier-
archy in Figure 3.5, we show an excerpt of an instance of the workflow model M2.
In Section 3.3.2, we will use model transformation rules to specify its dynamic
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behavior and verify its dynamic behavior to demonstrate another contribution of
the thesis, namely, verification of model transformations.

Remark 3 In M2, some edges are named in special format. These names are
used to generate service specifications from health workflow. For example, the
request Scan Nurse Card → Get Nurse Info is named as (Barcode); the response

Get Nurse Info→ Show Nurse Info is named as (Nurse{name}). These names are
used to generate a service specification for the Service Get Nurse Info: the input is a
Barcode and the output is the name of a Nurse. It may throw an exception Nurse
is not found if error happens.

3.3 Verification

In the previous sections, we presented the tool support for (meta)modelling
in DPF. We will now illustrate the last two contributions of the thesis which
focus on verification of models and model transformations. Since both of
the contributions use Alloy as the underlying verification technique, we
will first give a brief introduction to Alloy.

Alloy consists of a structural modelling language and a tool to analyse
specifications. The modelling language is a declarative textual language,
suited for describing complex model structures and constraints based on
relational logic. Model analysis is performed by a constraint solver called
Alloy Analyzer. It analyses a specification by first translating it into a SAT
problem and then solving the problem by using some off-the-shelf SAT
solvers, e.g., SAT4J [109]. The analyzer verifies whether a specification sat-
isfies or violates a property by searching for instances (or counterexamples)
which satisfy (or violate) the property. The Alloy Analyzer uses a bounded
verification approach; it finds the instances or counterexamples within a
search space which is determined by a user-defined scope. Bounded veri-
fication approaches can promise automation and termination. However, as
a side effect, the verification with Alloy is incomplete, i.e., it cannot guaran-
tee that a model does not satisfy (violate) a property if no instance within
a search space satisfies (violates) the property. In addition, the verification
approach encounters the scalability problem. It means that, when com-
plex specifications (which consist of large number of concepts and rela-
tionships) are verified within a large scope, the verification may take quite
long time or become intractable [97].

3.3.1 Verification of Models

In addition to tool support for (meta)modelling, we have provided tool
support for verification of models. This is convenient for model design-
ers, since they may want to know whether some constraints cause con-
tradiction, or whether there exist redundant constraints; i.e. whether a

62



3.3. Verification

constraint is already implied by or can be induced from other constraints.
These features are especially crucial when models become large like the
blood transfusion workflow model in Figure 3.10. Thus, it is necessary to
provide verification functionality to assist model designers. Motivated by
this requirement, the second contribution of the thesis presented in Paper
B, focuses on a verification approach using Alloy. It includes three parts:

• encoding DPF models in Alloy,

• presenting verification result in Alloy to feedback in DPF, and

• providing an optimization technique.

1 //Signatures of nodes
2 sig NInit{}
3 sig NScanNurseCard{}
4 sig NGetNurseInfo{}
5 sig NScannPatientWristband{}
6 sig NGetSampleInfo{}
7 sig NShowPatientInfo{}
8 . . .
9
10 //Signatures of edges
11 sig ENInitNScanNurseCard{src:one NInit, trg:one

NScanNurseCard}
12 sig EBarcode6{src:one NScanNurseCard , trg:one NGetNurseInfo

}
13 sig ENurseisnotfound{src:one NGetNurseInfo , trg:one

NScanNurseCard}
14 sig ENursename{src:one NGetNurseInfo , trg:one

NShowNurseInfo}
15 sig EPatientisnotfound{src:one NGetPatientInfo , trg:one

NScanPatientWristband}
16 sig ENShowNurseInfoNScanPatientWristband{src:one

NShowNurseInfo , trg:one NScanPatientWristband}
17 . . .

Listing 3.1: Alloy Signatures for the workflow model M2

Encoding of DPF Models

There is a formalisation difference between DPF and Alloy. DPF uses a dia-
grammatic language to specify models while Alloy is a declarative textual
language for structural modelling. In order to verify DPF models using
Alloy, we construct an automatic encoding of DPF models as Alloy spe-
cifications. Given a DPF model, its nodes and arrows are translated as
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node signatures and arrow signatures, respectively. Node signatures have
no field and arrow signatures have two fields: src and trg representing
the source and target nodes of the arrow, respectively.

Example 10 (Encoding of the structure of M2) Recall the running example
in Section 3.1. The structure of the workflow model M2 is translated into the
signatures in Listing 3.1. The nodes, e.g., Init, Scan Nurse Card, etc, are encoded as
node signatures on line 2-8. While the arrows, e.g., Init→Scan Nurse Card, etc, are
encoded as edge signatures on line 11-17.

1 //The definition of surjective predicate
2 fact surj_$XY${
3 all n:($Y$)| some e:($XY$)| e.trg=n
4 }
5 //surjective on (Barcode):Scan Patient Wristband ->Get Patient Info
6 fact surj_EBarcode{
7 all n:(NGetPatientInfo)| some e:(EBarcode)| e.trg=n
8 }
9 //surjective on :Show Nurse Info->Scan Patient Wristband
10 fact surj_ENShowNurseInfoNScanPatientWristband{
11 all n:(NScanPatientWristband)| some e:(

ENShowNurseInfoNScanPatientWristband)| e.trg=n
12 }

Listing 3.2: Alloy Facts for the workflow model M2

The constraints in DPF models are encoded as facts when verifying
consistency, while they are encoded as preds when searching for redund-
ant constraints. The encoding of constraints is based on the semantics of
predicates; the semantics of a predicate p is defined as a parameterised
Alloy fact in the Signature Editorwhere the parameters arg are the ele-
ments in the arity of the predicate (see Figure 3.9). Given a constraint which
is formulated based on a predicate p, the constraint can be encoded as a
fact by substituting the parameters arg with the Alloy signature name of
δ(arg), where δ is the mapping from the arity of the predicate to the struc-
ture of the model (see Section 1.2.3). The following example shows how the
constraints based on predicates are encoded as facts in Alloy.

Example 11 (Encoding of constraints of M2) The semantics of the predicate
surjective is defined as the expression on Line 2-4 in Listing 3.2. Two [surj] con-
straints in the workflow model M2 are encoded as facts on line 5-12 in Listing 3.2
when verifying consistency. The [surj] on the arrow Scan Patient Wristband→Get

Patient Info can be encoded as a fact on line 5-8 by replacing $XY$ with EBarcode
and $Y$ with NGetPatientInfo.
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Presenting Verification Results in DPF

After DPF models are encoded as Alloy specifications, we can check the
specifications by using the Alloy Analyzer to verify properties, e.g., con-
sistency and lack of redundant constraints. However, the verification res-
ults in Alloy are presented as relations. To understand these results, model
designers have to translate them into some representation in the design
space. The representation difference between the design space and the
verification space is another gap that our verification approach tries to
bridge, as shown in Figure 3.12. We translate the verification results of
Alloy as feedback in the DPF Workbench, hence the design choice of in-
tegrating the verification approach with the DPF Model Editor and the
hiding of the underlying verification in Alloy.

If a model is verified consistent, an arbitrary instance will be produced
by the Alloy Analyzer. We translate this instance to a DPF instance and
present it as feedback in DPF Model Editor.

Figure 3.12: Bridge the gap between modelling and verification

Example 12 (Checking Consistency) The blood transfusion workflow model
M2 (see Figure 3.10) is checked to be consistent, thus the Alloy Analyzer produces
an arbitrary instance of M2 in Alloy as shown in Figure 3.11a. The instance in
Alloy is quite large, thus we just show part of the instance. Its corresponding
instance in DPF is shown in Figure 3.11b.

It should be mentioned that, if no instance of a model can be found,
it means that there are contradictory constraints in the model. Alloy can
collect a set of expressions which cause contradiction. In this approach,
we use this information to find the corresponding constraints in DPF and
highlight them. Thus, the model designers can also see the verification
result in their domain or find the problematic part of the model quickly by
using the feedback.
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Figure 3.13: Highlighting the contradictory constraints in M2

Example 13 (Result of Contradiction) Assume that the model designer erro-
neously adds a constraint [mult1] (min:2, max:2) on task Send Sample. If we now check
the consistency of M2, the Alloy Analyzer can not find an instance of the work-
flow model. This indicates that the model is not consistent anymore due to con-
tradiction of the multiplicity constraint with some other constraints. In this case,
we will highlight the constraints that contradict to the multiplicity constraint on
Send Sample as shown in Figure 3.13, and the model designer can use this as a
guideline to fix the problem.

Remark 4 (Consistency checking as property verification) Note that the con-
sistency checking mechanism above could also be used for property verification.
For example in the model M2, we require that the task Send Sample can be per-
formed at most once. To verify this property, we add a multiplicity constraint
[mult1] (min:2, max:2) on task Send Sample for verification intention. If we can find an
instance of the model, it means that there is a workflow run in which Send Sample

is performed twice. Otherwise, no such workflow run exists. In this case, we
will highlight the constraints that contradict with the multiplicity constraint on
Send Sample as shown in Figure 3.13.

In Paper B, we also showed how to find redundant constraints. The pro-
cess of finding redundant constraints is similar to the process of checking
consistency; DPF models (structure and constraints) are encoded as Alloy
specification; then an Alloy run command is used to execute the verifica-
tion. However, there exists two fundamental differences:

• constraints are encoded as preds. These preds are used in the run
command to check whether a constraint is redundant. Given a set of
constraints c1, c2, . . . , cn, they are encoded as preds pc1 , pc2 , . . . ,
pcn . We use the command run{pc1 and pc2 and . . . and not pci and

. . . and pcn} to check whether a constraint ci where 1 ≤ i ≤ n is
redundant. The command is used to find an instance which satisfies

67



3. Contribution

c1, c2, . . . , cn but violates ci. If such an instance is found, it means
that the constraint cn cannot be induced from other constraints. Thus
the constraint is not redundant. Otherwise, we can claim that the
constraint is redundant.

• we will list all the redundant constraints of a model in a dialogbox.
In addition, for each redundant constraint c, we will show which
constraints can induce c.

In the following example, we will use the blood transfusion workflow model
M2 to demonstrate the above mentioned differences.

1 pred xor_Ebloodtypeisunknownorscreeningisnotdoneorinvalidscreen
2 isvalidwithin4days_ENShowPatientInfoNOrderBlood[]{
3 //XOR constraint between Show Patient Info->Order Sample and :

Show Patient Info->Order Blood
4 all n:(NShowPatientInfo)|let e1=(some e:

Ebloodtypeisunknownorscreeningisnotdoneorinvalidscreenis
5 validwithin4days|e.src=n), e2=(some e:

ENShowPatientInfoNOrderBlood|e.src=n)|(e1 or e2) and not(e1
and e2)

6 }
7
8 run{not xor_Ebloodtypeisunknownorscreeningisnotdoneorinvalidscreen
9 isvalidwithin4days_ENShowPatientInfoNOrderBlood[] and

mult1_ENperformtransfusionNIdentifynurselogtransfusion[] and
xor3surj_Eouttimelessthan4h_EMoreblood_Eouttimelessthan4h6[] and
. . . and imply_ENCollectSampleNScanSample_ESampleshavenotbeensent
[]} for 3

10
11 [xor] on Arrows{:Show Patient Info->Order Sample, :Show Patient Info

->Order Blood} can be induced by
12 [imply2] on Arrows{:Send Sample->Order Blood, :Show Patient Info

->Order Sample}
13 . . .
14 [surj] on Arrows{(Doctor):Get Doctor Info->Select Department , }
15 [xor] on Arrows{(Patient):Get Patient Info->Send Sample, :Get

Patient Info->Scan Sample}
16 [surj] on Arrows{(Patient):Get Patient Info->Send Sample, }
17 [surj] on Arrows{(Label*):Print Sample Label->Collect Sample, }

Listing 3.3: Alloy Preds for the workflow model M2

Example 14 (Finding redundant constraints in M2) When we find redund-
ant constraints in M2, all the constraints are encoded as preds. For example, the
constraint [xor] on the arrows Show Patient Info→ Order Sample and Show Patient Info

→ Order Blood is encoded as the pred as shown on lines 1-6 in Listing 3.3. The
preds can be used in the run command, e.g., on line 9 to check whether the con-
straint [xor] is redundant. The constraint [xor] is checked to be redundant. In this
case, there will be a dialogbox as shown in Figure 3.14 displaying messages about
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Figure 3.14: The feedback for redundant constraints

which constraints can induce this constraint. The message for the [xor] is shown on
line 11-17 in Listing 3.3.

Remark 5 Notice that, in the dialogbox in Figure 3.14, we will list all the redund-
ant constraints. Since these redundant constraints may depend on each other, we
cannot simply delete all the constraints to remove redundant informations. The
model designer is responsible to figure out which constraints should be removed
or kept.

Optimization Technique

As mentioned, verification with Alloy encounters the scalability problem.
In order to tackle this problem, we introduce a model partition technique
(see Paper B). We use this technique to reduce the verification of a model
into the verification of its submodel. The technique can be applied to veri-
fication of properties which can be expressed as graph formula in First-
Order Logic (FOL) [88]. In this part, we will demonstrate the technique by
showing how to reduce the consistency checking of M2 to the consistency
checking of a submodel of M2.

Remark 6 We have also developed another optimisation technique using scope
graphs based on the syntax of the constraints to determine the maximum scope
needed by Alloy [240]. This technique works in practise, however, the formal proof
is left for future work.

A model can be split into submodels based on the factors of the con-
straints, i.e., the model elements which are affected by the constraints. It
means that if two elements are contained in the factor of a constraint, they
cannot belong to different submodels. Since the splitting technique is used
for verification, we do not need to consider the annotations (e.g., [@APP]
on Scan Nurse Card). For example, some submodels of the model M2 are
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(M1
2 )

(M2
2 )

Figure 3.15: Some submodels of M2

Figure 3.16: Extension of instance of submodels

shown in Figure 3.15. Notice that, we will have a hierarchy of submod-
els, i.e., some submodels may be split to other submodels. For example,
M1

2 ∪M2
2 is a submodel which can be split into M1

2 and M2
2 .

Within these submodels, we are interested in left-total submodels, i.e.
the submodels of which every instance may be extended as instances of
the whole model. Given an instance of a submodel, the instance can be
extended by adding elements typed the types in other submodels. If a
modelM can be split into two submodelsM ′ andM ′′ whereM ′∪M ′′ =
M , an instance of M ′ can be extended by adding elements typed by the
types in M ′′ −M ′.

Example 15 (Extension of Instance) Consider M1
2 ∪M2

2 in Figure 3.15 as
a model M . M1

2 and M2
2 are the two submodels of M . I1 in Figure 3.16 is an

instance of M1
2 . An extension of I1 can be obtained by adding elements typed by

Scan Nurse Card
(Barcode)−−−−−→ Get Nurse Info which is M2

2 −M1
2 . I1 can be extended

to I2 in Figure 3.16 which is an instance of M by adding two arrows typed by the
arrow (Barcode). The two added arrows are depicted in dashed arrows. However,
if I1 has three elements typed by Get Nurse Info, it can never be extended to an
instance of M . This is because each service Get Nurse Info must be requested by a
task Scan Nurse Card ([surj] on the arrow (Barcode)) while each task Scan Nurse Card

can request at most one service Get Nurse Info ([0..1] on the arrow (Barcode)). In
contrast, every instance of M2

2 can be extended as an instance of M . Thus, M2
2

is a left-total submodel of M .

In order to find left-total submodels, we outline an approach based on
forbidden patterns of constraints. Given a constraint c on a structure S, a
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(a) (b)

Figure 3.17: Forbidden patterns

forbidden pattern of c is a graphFP which is well-typed byS but violates
c. In addition, any graph containing the graph FP violates c.

Example 16 (Forbidden Pattern) For the constraint [xorsuj] on the arrows Init

→ Scan Nurse Card and Get Nurse Info → Scan Nurse Card, a forbidden pattern of
[xorsuj] is shown in Figure 3.17a. For the constraint [mult1] (min:1;max:1), its forbidden
pattern is shown in Figure 3.17b.

In Paper B, we showed that, if a model M can be split into two sub-
models M ′ and M ′′ where M ′ ∪M ′′ = M and the intersection of their
structures (denoted as S′ ∩ S′′) contains no more than one node, M ′ is a
left-total submodel if

1. M ′ is not consistent, otherwise,

2. M ′′ is consistent and every forbidden pattern of M ′ which is typed
by the intersection of M ′ and M ′′ is also a forbidden pattern of M ′′.

1 Model findLeftTotalSubmodel(Model M){
2 for each split of M where M = M ′ ∪ M ′′

3 S′=structure(M ′)
4 S′′=structure(M ′′)
5 if(consistent(M ′) && ! hasFPTypedBy(M ′, S′ ∩ S′′))
6 return findLeftTotalSubmodel(M ′′);
7 return M;
8 }

Listing 3.4: An algorithm to find left-total submodels

In other words, if the submodel M ′ is consistent and has no such for-
bidden pattern that is typed by S′ ∩ S′′, then the submodel M ′′ is a left-
total model. Based on this observation, we present an algorithm in List-
ing 3.4 to find left-total submodels. We try to find such a submodel M ′

(line 2-6). If we find the M ′ successfully, then M ′′ can be used as a left-
total submodel. In order to find smaller sized left-total submodel, we in-
voke the algorithm again onM ′′ (line 6). If we cannot find such aM ′, then
we just return the model itself (line 7).
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Figure 3.18: Submodels in M2

Example 17 (Finding left-total submodels of M2) Based on the algorithm
in Listing 3.4, we can find the submodel of M2 in Figure 3.10. For simplicity, we
only consider theM ′ andM ′′ where the intersection structure of the two submod-
els, S′∩S′′, contains no more than one node. The result is shown in Figure 3.18.
First, we find M ′ = M3

2 and M ′′ = M0
2 ∪M1

2 ∪M2
2 ∪M4

2 since M3
2

is consistent and has no forbidden pattern typed by Identify nurse, log transfusion.
Then we can further find the submodel of M ′′ by identifying M ′ = M4

2 and
M ′′ = M0

2 ∪M1
2 ∪M2

2 since M4
2 is consistent and has no forbidden pattern

typed by Collet Blood. We invoke the algorithm to find the submodel of M ′′ and
find that it has no left-total submodels. M0

2 and M1
2 cannot be used as M ′ even

they are consistent, since they have forbidden patterns. For example, M0
2 has a

forbidden pattern which contains two tasks typed by Show Nurse Info. The forbid-
den pattern is typed by Show Nurse Info, which is the intersection of the M0

2 with
other submodels. Thus, the consistency verification of M2 can be reduced to the
verification of M0

2 ∪M1
2 ∪M2

2 .

We have proven that the verification of a model can be reduced to the
verification of its left-total submodels in Paper B. The splitting technique
can alleviate the scalability problem.
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Table 3.3: Experiment result for splitting technique

Scope
M2 M0

2 ∪M1
2 ∪M2

2

T V T+V T V T+V
3 99 82 181 68 73 141
4 205 156 361 92 111 203
5 208 442 650 149 260 409
6 261 582 843 132 478 610
7 384 788 1172 183 667 850
8 402 1035 1437 265 866 1131
9 695 1756 2451 310 1382 1692

10 645 2159 2804 378 2062 2440
11 968 3904 4872 534 2756 3290

T: Translation Time; V: Verification Time

Example 18 (Experimental Result) Table 3.3 shows the performance difference
in time (ms) before and after splitting. At scope 11, the total time (V+T) is reduced
from 4872ms to 3290 ms (32.47 % improvement).

Remark 7 We should emphasise that we have not found s systematic approach
to derive forbidden patterns. Given a simple constraint, we can specify its forbid-
den patterns according to its semantics. But for a complex constraint or a set of
constraints, its semantics may imply some forbidden patterns. For example, in
Figure 3.10, there is a constraint [multi1] (min:0;max:1) on Init. The constraint and
other constraints can imply [multi1] (min:0;max:1) on Show Patient Info. The implied
constraint has a forbidden pattern. We will study how to derive forbidden patterns
from constraints in the future. For now, the technique is performed manually. We
will consider how to automate the technique in future work.

3.3.2 Verification of Model Transformations

In this section, we will first give a short description of the semantics of
workflow models. A workflow is used to describe a guideline to complete a
procedure containing a sequence of tasks. Actors involved in the workflow
follow the guidelines in order to achieve a certain goal described by the
workflow. For example in the blood transfusion domain, nurses start the
procedure and perform tasks (e.g., login to the system, scanning patient
wristband, etc.) according to the workflow until all the required tasks are
performed. Performing the tasks according to a workflow description is
called a workflow run.
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A workflow model represents a real-life workflow and its semantics is
given by all possible runs of the workflow3. These runs constitute the state
space of the model. Formally, we define the state space of a transition sys-
tem which is derived by a set of transformation rules (see Paper E). A state
is basically an instance of the model which is reachable from the initial state
of the model by applying a sequence of transformation rules; these rules
describe how a state of the model may evolve into another one. Relating
it to a workflow run, an instance represents a snapshot in which certain
tasks may have been performed. On the fourth layer of the hierarchy in
Figure 3.5, we show an excerpt of an instance of the workflow model M2.

Representing Dynamic Behaviour as Model Transformation

Paper C presents the verification of model transformations using Alloy. In
this work, we focus on the model transformations which are executed ac-
cording to the DPO approach. Take the workflow model M2 in Figure 3.10
as an example. It is a structural model; it does not cover the dynamic be-
havior of a workflow. In order to specify this feature, we use a variant of
the workflow modelling framework (so called DERF) in [234, 241, 242]. In
this framework, workflow models are specified in a modelling hierarchy
which is similar to the one in Figure 3.5, except that

1. in the workflow metamodel M1 we have also services;

2. in the workflow model M2 we have annotation constraints to show
where a service will be running.

In DERF, a workflow modelling language is created from a metamodel, a
set of routing predicates and a set of transformation rules which describe
the dynamic behavior of workflow models. A workflow run can be per-
formed by applying these rules to instances of workflow models defined
by the language.

In DERF, the authors use coupled model transformation rules which
are generic in the sense that they can be applied to instances of all work-
flow models defined in the language [242]. For instance, the coupled model
transformation rules for the routing predicate optional-and-merge can be spe-
cified as the two rules in Table 3.4. According to the semantics of these
rules, this routing predicate is interpreted as follows:

• t1 whenever an instance x : X is found, regardless the name of X , if
X , Y and Z are related as in L = K, then in the next step we create

x : X
a−→ y : Y

3A model usually also prescribes a software system which supports the actors in execut-
ing the workflow e.g. guiding the actors to perform the right tasks at the right time; a possible
run of the workflow is given by an execution of the software system.
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Table 3.4: The coupled transformation rules for the routing predicate
[optional-and-merge]
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• t2 whenever the instances x : X and z : Z are found, regardless the
names of X and Z, if X , Y and Z are related as in L = K, then in

the next step we create x : X
a−→ y : Y

b←− z : Z

In this thesis, we derive a set of transformation rules from the coupled
transformation rules provided in DERF for each occurrence of the routing
predicates. For instance, the routing predicate optional-and-merge has 3 occur-
rences in M2:

1. the arrows Select Book pre-examination→ Send Sample Order and Select Blood
Typing→ Send Sample Order

2. the arrows Send Blood Order → Scan Sample and Collect Sample → Scan
Sample

3. the arrows Send Sample→ Collect Blood and Order Blood Product→ Collect
Blood
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Figure 3.19: Rules describing the dynamic behavior of M2

For the 3 occurrences of optional-and-merge, we will generate 3×2 = 6 rules by
replacingx, y, z with corresponding task names. Some derived transform-
ation rules for M2 are shown in Figure 3.19, where we only show the de-
rived rules for the first occurrence of the routing predicate optional-and-merge.

Example 19 (Transformation rules for M2) An arrow Init→ Scan Nurse Card

in M2 specifies that Scan Nurse Card is performed exactly after Init; some rout-
ing predicates, e.g., xor-split, optional-and-split and optional-and-merge, are used to for-
mulate constraints which specify splits or merges of workflow branches. For in-
stance, [xor-split] on node Show Patient Info specifies that, after showing patient in-
formation, exactly one of the branches (Order Sample or Order Blood) is performed;
[optional-and-split] on node Order Sample specifies that, after ordering sample, either
both branches are performed or only a designated branch, Select Book pre-examination

(indicated by the arrow), is performed. The NACs are used to control the applica-
tion of transformation rules. In same cases, the NAC of a rule may be used to avoid
nondeterminism between rule applications. For example, for optional-and-merge, the
NAC of the second rule requires that there is no task typed by Select Blood Typing

in a workflow running. This avoids that both rules become applicable at the same
time. In addition, a NAC which is equal to the right side of a rule can be used to
ensure that the rule can be applied only once via a match.
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Verification of Dynamic Behaviour

1 sig Graph{
2 nodes: set NScanPatientWristband+NSendSampleOrder+. . .+

NOrderBloodProduct+NInit,
3 arrows: set ANOrderSampleNSelectBookpreexamination+. . .+

ASampleLabelFile+ALabel+ANInitNScanNurseCard
4 }
5 sig Trans{
6 rule:one Rule,
7 source,target:one Graph,
8 dnodes, anodes:set NScanPatientWristband+

NSendSampleOrder+. . .+NOrderBloodProduct+NInit,
9 darrows, aarrows:set

ANOrderSampleNSelectBookpreexamination+. . .+
ASampleLabelFile+ALabel+ANInitNScanNurseCard

10 }
11 fact{
12 all trans:Trans|(
13 rule_GetNurseInfoScanNurseCard[trans] or

rule_CollectBloodScanBloodProduct[trans] or . . .
14 or rule_performtransfusionRegisterReaction[trans] or

rule_performtransfusionScanBloodProduct[trans])
15 }
16 pred rule_InitScanNurseCard[trans:Trans]{
17 some trans.rule&InitScanNurseCard{
18
19 some e0:ANInitNScanNurseCard&trans.aarrows|let n0=e0.

src,n1=e0.trg|
20 (n0 in (trans.source.nodes-trans.dnodes) and n1 in

trans.anodes and (no nac:ANInitNScanNurseCard&(trans
.source.arrows-trans.darrows)|nac.src=n0))

21
22 #NScanNurseCard&trans.anodes=1
23 #ANInitNScanNurseCard&trans.aarrows=1
24 no trans.dnodes
25 no (NScanPatientWristband+NSendSampleOrder+. . .+

NOrderBloodProduct+NInit)&trans.anodes
26 no trans.darrows
27 no (ANOrderSampleNSelectBookpreexamination+. . .+ALabel+

ANInitNScanNurseCard)&trans.aarrows
28 }

Listing 3.5: Encoding of Transformations

Given a set of transformation rules, we are interested in target con-
formance, i.e., for every source model, is it possible to produce a target
model after transformations? In order to verify this property in Alloy, we
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propose an automatic encoding of metamodels and model transformation
rules as Alloy specifications. The transformation can be viewed as an ex-
tension of the encoding in Paper B. In addition to encoding metamodels
(encoding nodes, arrows and constraints as node signatures, edge signa-
tures and facts/preds), direct model transformations are encoded as signa-
tures which record the changes during the transformations based on trans-
formation rules.

Example 20 (Encoding of M2 with transformation rules) An excerpt of the
encoding generated from M2 and its transformation rules is presented in List-
ing 3.5. Models are encoded as the signature Graph containing nodes and arrows
(line 1-4). Direct model transformations between models are encoded as the signa-
ture Trans which has a pair of graphs representing models before and after trans-
formation (source and target on line 7); deleted or added nodes and arrows are
encoded as the four fields, dnodes, anodes, darrows and aarows on line 8-9, of the
signature Trans; each transformation is an application of a transformation rule
(line 11-15). Each transformation rule is specified as a pred in Alloy to check
whether a transformation applies the rule. For example, the rule derived from the
arrow Init→ Scan Nurse Card (the rule in the first row in Figure 3.19) can be en-
coded as the pred on line 16-28. The pred states which rule is applied (line 17), the
matching of the left and right sides of the rule (line 19-20) and the changes caused
by applying the rule (line 22-27).

After encoding transformations in Alloy, we can verify target conform-
ance by checking two conditions: direct condition, i.e., every direct model
transformation produces a valid target model from a valid source model,
and sequential condition, i.e., if a direct model transformation t produces
an invalid target model from a source model, then there exists a sequence
of direct model transformations succeeding the transformation t that pro-
duces a target model. The direct condition can be checked automatically
in Alloy while the sequential condition must be performed manually.

We use check commands in Alloy to check the direct condition; that is
to check whether the target model after each transformation satisfies a con-
straint. If a counterexample is not found within the given scope, it means
that the target model of every transformation satisfies the constraint. Oth-
erwise, it means that some transformation may generate a target model
which violate the constraint. For the latter case, we can use Alloy to further
check the sequential condition. When checking the sequential condition,
we need to consider a path consisting of a sequence of transformations. In
addition, users have to specify manually how a constraint is violated and
how to fix the violation.

Example 21 (Verifying the Dynamic Behaviour of M2) The check command
on line 1-7 in Listing 3.6 is used to check whether the target model after each trans-
formation satisfies the constraint[imply2] on edges Order Sample Task→ Select Blood

Typing and Select Blood Typing→ Send Sample Order.
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1 check{
2 all trans: Trans|//imply2 Blood have not been ordered

bloodtype is unknown or screening is not done or
invalid(screen is valid within 4 days)

3 all y1:NOrderBlood&trans.target.nodes, y2:NOrderSample&
trans.target.nodes|let e1=(some e:ABloodhavenot

4 beenordered4&trans.target.arrows|e.trg=y1),
5 e2=(some e:

Abloodtypeisunknownorscreeningisnotdoneorinv
6 alidscreenisvalidwithin4days &trans.target.arrows|e.trg

=y2)| e1 implies e2
7 }for 4 but exactly 1 Trans, exactly 2 Graph, exactly 1 Rule

8 sig Path{trans0, trans1:Trans}{trans0.target=trans1.source}
9 fact{
10 all path:Path|some n:NGetNurseInfo&path.trans0.target.

nodes|(no e1:ANursename&path.trans0.target.arrows|e1
.src=n) and (no e1:ANurseisnotfound&path.trans0.
target.arrows|e1.src=n)

11
12 all path:Path|some n:NGetNurseInfo&path.trans1.source.

nodes|(some e1:ANursename&path.trans1.target.aarrows
|e1.src=n) or (some e1:ANurseisnotfound&path.trans0.
target.aarrows|e1.src=n)

13 }
14 check{all path:Path|all n:NGetNurseInfo&path.trans1.target.

nodes|let b1=(some e1:ANursename&path.trans1.target.
arrows|e1.src=n), b2=(some e1:ANurseisnotfound&path.
trans1.target.arrows|e1.src=n)| (b1 or b2) and not (b1
and b2)}

Listing 3.6: Verficiaton Commands

Most of the constraints on M2 are satisfied after transformations except some
[xor-split] constraints, e.g., on the arrows Get Nurse Info→ Show Nurse Info and edges
Get Nurse Info→ Scan Nurse Card. The constraint requires that for each Get Nurse Info,
there should be one of the workflow branches, but not both. However, after Scan Nurse

Card, the task Get Nurse Info is performed. At this point, there is no branch after
Get Nurse Info, which violates [xor-split]. For this case, we can use the command on
line 14 in Listing 3.6 to check the sequential condition. Here we consider a path
consisting of two consecutive transformations (line 8). In addition, we specify that
the constraint [xor-split] is violated because there is no branch typed by Get Nurse Info

→ Show Nurse Info and Get Nurse Info→ Scan Nurse Card (line 10) and the viola-
tion can be fixed by adding the corresponding branches typed by the two arrows
(line 13). Notice that, we do not specify which rules should be applied to fix the vi-
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olation. Instead, we only specify the possible solution to fix the violation by adding
or removing elements. In the way, we can check whether some rules in Figure 3.19
can be applied in the second step to generate an instance satisfying [xor-split] con-
straints. For the workflow model M2, the sequential condition is verified correct.
It means that there exists a sequence of transformation which can fix the violation
of the constraint [xor-split].

We have to manually specify how a constraint is violated and how to
fix the violation when checking the sequential condition. In the following
section, we present an approach to automatically derive such information
from constraints as repair rules.

Repair Rules

When an instance does not conform to its model, we want to repair the
instance such that the repaired instance conforms to its model. Here, we
proposed an approach to repair instance by using transformation rules. In
this approach, we specify semantics of predicates as graph constraints and
generate these transformation rules, called repair rules, from the graph
constraints. For the constraints based on these predicates, these repair
rules can be used to specify how the constraints are violated and how the
violation can be fixed. This may enable the automatic checking the se-
quential condition in the future. Currently, we only consider the graph
constraints which conform to two syntactic formats: gc1 : L → R and
gc2 : L → ¬R. A structure satisfies gc1 (gc2) if for each match of L,
m : L→ S, there is (not) a match ofR,n : R→ S, such thatm = gc1;n
(m = gc2;n). According to the semantics, the two kinds of graph con-
straints can be written as ∀L→ ∃R and ∀L→ ¬∃R respectively.

Example 22 (Predicates Specified as Graph Constraints) Table 3.5 shows sev-
eral predicates of which the semantics can be specified as graph constraints. For
example, the semantics of surjective is specified as a graph constraint in the form of
∀L→ ∃R (in the first row). It says that for each node y typed by Y, there should
be an arrow typed by X→ Y where the target of the arrow is y. The predicate inverse
has also its semantics specified as a graph constraint in the form of ∀L → ∃R
while the other two predicates have semantics specified as graph constraints in the
form of ∀L→ ¬∃R.
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Table 3.5: The semantics of predicates in graph constraints

p αΣ(p)
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Visualization
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Algorithm 1 (The algorithm to derive repair rules from graph constraints)

if the graph constraints is of the form ∀L→ ∃R then

for each subgraph r of R where L ⊆ r ⊂ R do
create REP a

r = NACa
r ← La

r → Ra
r where

NACa
r = R

La
r = r

Ra
r = R

end

for each subgraph r of R where r ⊂ R do

create REP d
r =NACd

r ← Ld
r → Rd

r where
NACd

r = R
Ld

r = L
Rd

r = r
end

end

if the graph constraints is of the form ∀L→ ¬∃R then

for each subgraph r of R where r ⊂ R do

create REP d
r =NACd

r ← Ld
r → Rd

r where
NACd

r = ∅
Ld

r = L
Rd

r = r
end

end
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Table 3.6: Repair rules for graph constrains ∀L∃R
Graph Constraint Repair rules

L R Nr = R
L ⊆ LA

r ⊂ R
LD
r = L

RA
r = R
RD

r ⊂ L

:Y :X
:f �� :Y :X

:f �� :Y

:Y ∅
:Y

:X
:f �� :Y

:X :Y

:X
:f �� :Y :X

:f
		

:Y

:g


 :X

:f
		

:Y

:g




:X
:f �� :Y

∅
:X :Y

:X

:Y

:X
:f �� :Y :X

:f
		

:Y

:g




We proposed an algorithm as shown in Algorithm 1 to derive repair
rules for the graph constraints in the mentioned two forms. According to
the semantics of gc1, if a structure S violates the constraint, there exists
some match m : L → S where no match n : R → S exists such that
gc1;n = m. In this case, we can fix the violation by adding some elements
into S to match R or deleting some elements from S to make such a match
m disappear. Based on this observation, for each subgraph r of R where
L ⊆ r ⊂ R, we create a rule REPa

r = R ← r → R; for each subgraph

r of R where r ⊂ R, we create a rule REPd
r = R ← L → r. As for

gc2, if a structure S violates the constraint, there exists some match m :
L→ S and a match n : R→ S such that gc2;n = m. For this case, the
algorithm creates rules, for each subgraph r of R where r ⊂ R, REPd

r

= ∅ ← L → r. These rules delete elements to make the matching n
disappear.

Example 23 (Repair Rules for Graph Constraints) Based on the algorithm,
we can derive repair rules for the graph constraints in Table 3.5. These repair rules
are shown in Table 3.6 and Table 3.7 for the graph constraints in the form of∀L∃R
and ∀L¬∃R respectively.

Optimization for Verification of Model Transformations

In Paper C, the verification approach is illustrated by verifying a small
model transformation system. The result shows that the verification ap-
proach encounters a performance problem. In order to solve the problem,
in Paper D, we proposed two techniques to improve the performance of
the verification of model transformation systems. The performance of the
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Table 3.7: Repair rules for graph constrains ∀L¬∃R
Graph Constraint Repair rules

L R Nr = ∅ LD
r = L RD

r ⊂ R

∅
¬ 1:X

1:f �� :Y

2:X

2:f
��

∅
1:X

1:f �� :Y

2:X

2:f
��

∅
1:X

1:f �� :Y

1:X :Y

1:X :Y

2:X

1:X
1:f �� :Y

2:X

1:X

2:X

1:X

:Y

verification is highly affected by the complexity of the metamodel, i.e., the
number of nodes and edges (or relations). Since most of the edges in our
sample were used to define state information, one technique is to give a
more efficient representation of the metamodels by using annotations in-
stead of relations.

Another optimisation technique is to change the encoding of transform-
ation rules. Among deleted or added elements in model transformations,
there are unique elements whose types are different from the types of other
deleted or added elements. If more than two unique elements are con-
nected, the match of one unique element can be derived from the match
of other unique elements. Based on this observation, the encoding of the
match of transformation rules can be split based on the unique elements.

We applied the two techniques mentioned above to the verification of
the same example in Paper C. The result shows that the techniques improve
the performance of verification. However, both techniques cannot be ap-
plied to the verification of the workflow model M2 in Figure 3.10, since
this model does not have state information and each rule in Figure 3.19
has no more than two unique elements.

In Paper E, we applied the verification approach to analyse workflow
in healthcare domain. This paper is similar to what we present in this sec-
tion 3.3.2; workflows are specified as workflow models in the workflow
modelling language DERF [234]. The dynamic semantics of the workflow
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models are specified as coupled model transformation rules. To analyse
workflow models by using the verification approach of model transforma-
tions, we translate workflow models and their dynamic semantics into Al-
loy specifications. Then some properties of the DERF language and general
properties of workflow models, e.g., absences of deadlocks and termina-
tion are verified by finding counterexamples. If such counterexamples are
found, they are visualized by the Alloy Analyzer showing how a property
is violated.
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CHAPTER 4
Conclusion

In this chapter, we will summarize the thesis and discuss some research
directions in the future.

4.1 Summary

In this thesis, we firstly presented the DPF Model Editor which imple-
mented Diagram Predicate Framework (DPF). The Signature Editorwas
also provided to specify user-defined predicates. In addition, an editor
could be generated to construct instances of models. The typing and con-
formance between models and instances could also be checked. Further-
more, the modelling environment supported multi-level modelling.

The thesis also presented an automatic bounded verification approach
of structural models by using Alloy. The approach is integrated into the
DPF Model Editor such that model designers can verify their models un-
der construction without knowing underlying verification techniques. We
also presented a splitting technique which reduces verification of models
into verification of submodels. Experimental results showed that the tech-
nique tackled the scalability problem to some extent.

The last part in the thesis was about a bounded verification approach
of model transformations by using Alloy. We provided an automatic trans-
formation of metamodels and model transformation rules into Alloy spe-
cifications. Then the Alloy Analyzer was used to verify the conformance
of target models with respect to their metamodels by checking two con-
ditions: direct condition and sequential condition. In order to tackle the
scalability problem, we optimized the transformation from model trans-
formation systems to Alloy specifications by decomposing patterns of trans-
formation rules into subpatterns and applying annotation to specify state
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information. We also applied the approach to verification of workflow
models.

4.2 Future Work

The DPF modelling workbench supports diagrammatic (meta)modelling.
But many features still remain unexplored. From (meta)modelling aspect,
inheritance between classes are quite common. However, it is not suppor-
ted in the DPF Model Editor. We will explore this feature in DPF in the
future. From the tooling aspect, the first desired task in order to improve
usability is to customize visualization of model elements. They are depic-
ted as rectangles and arrows uniformly now. In addition, we have a web
version with the DPF workbench. In the future, we will integrate the two
versions together.

The DPF Model Editorhas integrated the verification approach of struc-
tural models as presented in the thesis. However, we only allow users to
verify consistence of models and find redundant constraints. In the future,
we will provide solutions such that users can specify arbitrary properties
to be verified. In addition, we have proposed a technique to split models
into submodels. But we have not found a suitable solution to automate
the process. We will study algorithms to implement the technique and in-
tegrate it into the tool. In order to automate further the process, we shall
consider how to automatically derive repair rules from graph constraints.
Another direction of model verification using Alloy is to consider how to
derive a suitable scope to verify a model.

There are also some interesting research directions for the verification
approach of model transformations. The direct condition can be checked
automatically. But to check the sequential condition, users have to specify
manually how a constraint is violated and how to fix the violation. In the
future, we will study how to derive this information automatically from
constraints. In addition, currently, we encode model transformation steps.
Since some model transformation steps can be executed concurrently, we
will investigate how to encode concurrent model transformation encoding.
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Abstract

Workflows are used to organize business processes, and workflow management tools are used to guide users in which order these

processes should be performed. These tools increase organizational efficiency and enable users to focus on the tasks and activit-

ies rather than complex processes. Workflow models represent real life workflows and consist mainly of a graph-based structure

where nodes represent tasks and arrows represent the flows between these tasks. From workflow models, one can use model trans-

formations to generate workflow software. The correctness of the software is dependent on the correctness of the models, hence

verification of the models against certain properties like termination, liveness and absence of deadlock are crucial in safety critical

domains like healthcare. In previous works we presented a formal diagrammatic framework for workflow modelling and verifica-

tion which uses principles from model-driven engineering. The framework uses a metamodelling approach for the specification of

workflow models, and a transformation module which creates DiVinE code used for verification of model properties. In this paper,

in order to improve the scalability and efficiency of the model checking approach, we introduce a new encoding of the workflow

models using the Alloy specification language, and we present a bounded verification approach for workflow models based on

relational logic. We automatically translate the workflow metamodel into a model transformation specification in Alloy. Properties

of the workflow can then be verified against the specification; especially, we can verify properties about loops. We use a running

example to explain the metamodelling approach and the encoding to Alloy.
c© 2014 The Authors. Published by Elsevier B.V.

Selection and peer-review under responsibility of Elhadi M. Shakshuki.

Keywords: Workflow modelling, Efficient verification, Alloy, Model checking, Model-driven engineering.

1. Introduction

Healthcare is the domain which cost states and local governments a considerable portion of their budgets. Further-

more, mistakes in almost any aspect of a healthcare-related system may cause severe damages. This has lead to an

increasing pressure on making processes and procedures in healthcare safer and more effective. Clinical guidelines,

dictating how processes should be organized, have been provided by health authorities to guide and unify healthcare

processes across institutions. These guidelines are in constant changes due to updates in regulations and advances

in treatment methods and medications. Unfortunately, the guidelines are traditionally written in natural languages,

which can run to hundreds of pages, incorporating heavily annotated diagrams which use non-standard and confusing

notations1.
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Workflow models may be used to formally describe clinical guidelines. A workflow model consists mainly of

a graph-based structure where nodes represent tasks and arrows represent the flow between these tasks. In earlier

work2,3,4 we proposed a diagrammatic framework (called DERF) for the specification of workflow models using

model-driven engineering (MDE)5,6 techniques. The diagrammatic models are easily understood by domain-experts,

and the metamodelling approach allows models to be easily customized to deal with new treatment procedures and

other changes in clinical guidelines.

From workflow models, one can use model transformations to generate workflow software. Workflow software

are used to guide users in which order these processes should be performed, and to resolve dependencies between

tasks. These tools improve organizational efficiency and enable users to focus on the tasks and activities rather than

complex processes. The correctness of the software is dependent on the correctness of the models, hence verification

of the models against certain properties like termination, liveness and absence of deadlock are crucial in safety critical

domains like healthcare. In7 we proposed a verification approach for models specified in DERF, in which the workflow

models were transformed to DVE, the language of the DiVinE model checker. The approach also incorporated a user-

friendly editor for specification of model properties, as well as a module for visualization of counter-examples in case

some properties did not hold. In this paper, we extend upon our earlier work, and introduce a new, efficient encoding

of the workflow models using the Alloy specification language. Furthermore, we present a bounded verification

approach for workflow models based on relational logic. We automatically translate the workflow metamodel into a

model transformation specification in Alloy. Properties of the workflow can then be verified against the specification;

especially, we can verify properties about loops. In case a property does not hold, a counter-example is generated

automatically by the Alloy and visualized as a graph. We use a running example (adopted from7) to explain the

metamodelling approach and the encoding to Alloy.

In Section 2 we review our workflow modelling language. In Section 4 we discuss correctness of workflow models,

explain our encoding to the Alloy specification language, and visualize counter-examples. Sections 5 and 6 present

some related and future work and conclude the paper.

2. Metamodeling for Healthcare Workflows

Workflow models may be used to document and analyse complex work processes in clinical guidelines and to

ensure their correctness. In previous work, we presented a diagrammatic modelling framework used for workflow

modelling2,3,4,7. A design goal of the framework has been to make the modelling tools intuitive enough to be used

by healthcare practitioners and formal enough to be used to specify and verify interesting properties of healthcare

workflows. Here, we only present the most important details of the framework, the details can be found in the

references above. This short presentation of the modelling language and the running example are adopted from7.

The workflows are represented as graph-based structures describing in which order specific tasks should be ex-

ecuted. Each task is represented by a node. If there is an arrow T1
e−→ T2 from a task T1 to a task T2, then task T1

must be performed before task T2. Special binary constraints on forks (joins) specify splits (respectively, merges) of

workflow branches. In fact, joins and forks could be extended in the standard way to arbitrary triples, quadruples, etc.

The most used splits (e.g. [and_split], [or_split] or [xor_split]) and merges (e.g. [and_merge],

[xor_merge] or [or_merge]) are formulated as predicates in our framework. The meaning of these constraints

are as usual: both branches have to be executed in an [and_split]; exactly one branch has to be executed in an

[xor_split] and one or two branches have to be executed in an [or_split].

Fig. 1 shows a sample of a workflow from the healthcare domain. The workflow illustrates a simplified scenario for

cancer treatment. After an initial examination, the patient will have an MRI examination and a blood test. According

to the results of the two tests, the physician will decide which procedure the patient should follow (either Procedure A

or Procedure B). After finishing the chosen procedure, the result shall be evaluated to determine whether the patient

should use drug treatment or not. If drug treatment is chosen, then when the drugs are finished a blood test is taken

and the result is evaluated to determine whether the patient should be given further drug treatment or not. Hence if

the drug treatment is repeated, the blood test and the evaluation will be repeated as well; i.e., the workflow will be in

a loop. The workflow ends when the evaluation shows that the drug treatment should terminate.

The syntax and semantics of the workflow modelling language is given in2,3,4,7; here we only recall some of the

details. The modelling language is defined using the Diagram Predicate Framework (DPF)8 and implemented using

the DPF Workbench9. In DPF, a modelling language is given by a metamodel and a diagrammatic predicate signature
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Figure 1: Sample workflow model. Adopted from7.

(see Fig. 2). The metamodel defines the types and the signature defines the predicates that are used to formulate

constraints by the users. A model in DPF consists of an underlying graph, and a set of constraints. DPF supports a

multi-level metamodelling hierarchy, in which a model at any level can be regarded the metamodel for models at the

level below it. In DERF, we have three modelling levels: M2, M1 and M0. The metamodel of our workflow modelling

language (which is at level M2) consists of a node Task and an arrow Flow. This means that we can define a set of

tasks together with the flow relations between these tasks. The signature Σ2 of the workflow modelling language

consists of a set of routing predicates such as [and_split], [and_merge], [xor_merge], etc. Tasks which

are involved in a cycle in the workflow are marked with a predicate [NodeMult,n] where n specifies how many

instances that task can have at most. We call these tasks "loop tasks", and we call flows within a loop for "loop flows".

2

1

Figure 2: Workflow modelling hierarchy: dashed arrows in-

dicate types of some model elements, dotted arrows indicate

relations between signatures and models. Adopted from7.

From the metamodel at level M2 and the sig-

nature Σ2 with routing predicates, we can create

a modelling language for the definition of “work-

flow models”. These workflow models, which

conform to the metamodel at level M2, are loc-

ated at level M1. Given a specific workflow model

at level M1 (like the one in Fig. 1) and the predic-

ates <E>, <R> and <F> (where <E>, <R>, and <F> de-

notes that a task instance is enabled, running, and

finished, respectively) collected in a signature Σ1
(see Fig. 2) We refer to <E>, <R> and <F> as “task

states”. Note that in an earlier version of the lan-

guage2,3 we had 4 states, <D>, <E>, <R> and <F>,

thereof the name DERF. These workflow states are

located at level M0, and conform to the workflow

model. Beginning with a state at level M0 (that

may be referred to as an instance of the work-

flow model) we generate states by applying model

transformation rules (see4 for the complete set of

rules). For example rule r1 takes an instance of a

task from <E> to <R> and rule r2 takes an instance

of a task from <R> to <F>. A workflow run is rep-

resented by an execution path in the state space of the workflow model; i.e., by a sequence of rule applications. The

state space which can be generated by the transformation rules comprises the dynamic semantics of the workflow.

3. Encoding of workflow model
In this section, we will cover how to encode a workflow model and its corresponding transition system as an Alloy

specification. The specification represents a model transformation system which simulates the dynamic semantics

(each task can change from a state to another). However, the state information is not represented in the generated

specification. The encoding procedure is adapted based on our encoding of model transformation systems detailed

in10. It is implemented as a code generation module in DPF and can derive the Alloy specification automatically from

a workflow model and the coupled transformation rules. Before presenting the encoding procedure, we give a brief

introduction to Alloy.
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Alloy11 is a structural modelling language, based on first-order logic, for expressing complex structure and con-

straints. The Alloy Analyzer is a constraint solver translating Alloy specifications written in relational logic to a

boolean satisfiability problem which is automatically evaluated by a SAT solver. For a given specification F , the

Alloy Analyzer attempts to find an instance which satisfies F or find a counterexamples which violates F by run-

ning run or check command. The instance or counter-example is displayed graphically, and their appearance can be

customized for the domain at hand.

3.1. Encoding of the metamodel at M2 level

Recall that each model in DPF (and also in DERF) consists of an underlying graph and a set of constraints. Given

a workflow model, for the underlying graph, each task t:Task is encoded as a task signature St; each flow f :Flow
is encoded as a flow signature Sf with two fields src and trg denoting the source task and the target task of the flow.

The encoding procedure handles the loop tasks specially. In order to count how many times the task is performed, a

field count is added to the loop task’s signature. Thus the workflow model can be encoded as a graph signature SG

containing two fields: the field nodes denoting the tasks; the field arrows denoting the flows. Since the structure is a

graph, it should satisfy that if a flow is contained by a graph g, its source and target tasks should also be contained by

g. The structure encoding is shown in the following listing: (assuming the structure contains m tasks and n flows.)

1 sig Sti{count:one Int//The field is optional depending if the task is a loop task or
within a loop.

2 }//For each task ti, i ∈ {1..m}
3 sig Sfj{src:one Ss

fj
, trg:one St

fj
}{//For each flow fj, j ∈ {1..n}, Ss

fj
/St

fj
is the flow’s

source/target task
4 sig SG{nodes:set St1+. . .+Stm,edges:set Sf1+. . .+Sfn}
5 fact{all g:SG|all e:g.edges|(e.src in g.nodes and e.trg in g.nodes)}

Besides the structural information, the workflow model contains also constraints restricting the set of valid in-

stances. The constraints are of two types:

General Constraints These constraints are implicitly contained in each workflow model and must be satisfied by

all workflow states. In the DPF jargon, we specify these constraints using universal constraints8.

1. Each task instance may enable at most one instance of the same subsequent task. This is forced by a multiplicity

constraint mult[0..1] on each flow in workflow models. Similarly, two instances of the same task cannot

enable the same instance of a subsequent task. This is forced by injective constraint [inj] on each flow.

2. A task instance cannot be enabled before its preceding task is finished. To specify this constraint, when a task has

only one incoming flow, the flow will be constrained with surjective constraint [surj]. However, if the task

has multiple incoming flows and the model designer has not put any routing constraint on these, the constraint

[or_merge] is put on the flows.

3. If a task has incoming flows mixing loop flows and ordinary flows, two separate [or_merge] (or [sur] if the

sets contain only one) are put on each of these two sets.

Specific Constraints These constraints are specified in a workflow model explicitly by designers. These constraints

are formulated using predicates from Σ2. Since there is a limited number of predicates for the workflow modelling

language, these predicates are hard-coded in the implementation and used to formulate different constraints in the

models. For example, the [xor_split,c] constraints in Fig. 1 are encoded as:

1 pred fact_E1_xor_split[g:Graph]{//For Evaluation1
2 all n:NE1&g.nodes|not ((some e:AE1_PB&g.arrows|e.src=n) and (some e:AE1_PA&g.

arrows|e.src=n))
3 }
4 pred fact_E2_xor_split[g:Graph]{//For Evaluation2
5 all n:NE1&g.nodes|not ((some e:AE1_PB&g.arrows|e.src=n) and (some e:AE1_PA&g.

arrows|e.src=n))
6 }
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3.2. Encoding of model transformation

In DERF, we use coupled transformation rules to define the dynamic semantics of workflow models. We adopt

a variant of the encoding procedure for transformation rules detailed in10. First, we derive the graph transformation

rules by finding the matching of each coupled transformation rule. For example, for the rule r4 in4 defining the

semantics of [xor_split,c], two matches are found: one on Evaluation1 and one on Evaluation2 (See rules

E11
xs, E12

xs, E21
xs, E22

xs in Table 1). Note that this step of deriving the graph transformation rules is performed im-

plicitly in the encoding procedure. Then each derived rule r is encoded as a predicate pre apply_r[tran:Trans] as in10

stating that a transformation applies the rule. The signature Trans, as in10, encodes the direct model transformations

which contains four fields: the rule applied rule, the source workflow source, the target workflow target, and, the

deleted and added elements during the transformation dnodes, anodes, darrows, aarrows. Assuming there are nr
derived rules, the following fact statement asserts that every transformation should apply exactly one of the derived

rules.

1 fact {all t:Trans | apply_r1[t] or . . . or apply_rnr[r]}

Since in the workflow modelling language loops are represented as tasks with predicate [MultNode,n], the loop

tasks can be repeated a finite number n of times. That is, the loop tasks may have up to n instances. Therefore, when

deriving the graph transformation rules for this case, several points should be considered:

• For the incoming flows of a loop task which are not loop flows, the rule creates a new instance of the loop task

with count = 0 (see rules E21
xm and E22

xm in Table 1).

• For the flow loops which are not coming into a loop task, the rule creates a new instance of the flow’s target task

with count equals to the flow’s source task. In addition, for the flow coming out of a loop task, a precondition

should check if its count is less than the upper limit n in [MultNode,n] (see rule E22
xs in Table 1).

• For the loop flows coming into a loop task, the rule shall create a new instance of the loop task with count =
count′ + 1, where count′ is the count of the flow’s source task (see rule Flow11 in Table 1).

Rule L K R

E1 1
xs :E1 :E1 :E1 �� :P A

E1 2
xs :E1 :E1 :E1 �� :P B

E2 1
xs :E2 :E2 :E2 �� :End

E2 2
xs :E2c<5 55 :E2c<5 55 :E2c<5 55

�� :T D c


E2 1

xm :P A :P A :P A �� :E2 c=0


E2 2

xm :P B :P B :P B �� :E2 c=0


Flow11 :BT 2c 55 :BT 2c 55 :BT 2c 55

�� :E2 c+1


Flow10 :T Dc 55 :T Dc 55 :T Dc 55

�� :BT 2 c



Table 1: Derived graph transformation rules

4. Verification of Healthcare Workflow

After a workflow is encoded as an Alloy specification, the Alloy Analyzer could be used to verify its properties. In

this work, we want to verify whether the workflow model satisfies generic properties such as: 1) absence of deadlocks,

and, 2) terminatoin (when loops are present). The Alloy Analyzer performs a bounded check and can prove whether

the workflow system is without error w.r.t. the properties within a user-defined scope. Hence, the approach can find

bugs in a workflow model efficiently. In addition, the Alloy Analyzer can visualize the counterexamples if they exist.

To verify these properties, we firstly verify that each instance of the workflow model (except the start instance where

only instances of tasks without incoming flows present) can be derived by applying a rule on a workflow instance; i.e.,

we have to verify that each reachable instance of the workflow model can be generated by applying a transformation
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rule. Note that this property is related to the DERF language, that is, we are verifying that the workflow metamodel

satisfy the property. Therefore, the property is only needed to be verified once. If this is verified, it means that each

workflow instance contains path information; i.e., there exists a sequence of transformations applied on the start state

to get such an instance.

To verify the property with the encoded Alloy specification, we check the Direct Condition10 to show that each

transformation from a valid source state could produce a valid target state. In addition, a similar condition should also

be verified: if the result of a transformation is a valid state the source is also a valid state.Similar to the verification

method in10, these two properties are verified by running the commands in the following listing. The scope we use

is for 10 but exactly 1 Trans, exactly 2 Graph. It means that in each workflow instance, at most 10 instances of

each task (such as Evaluation1 and Evaluation2) are present.

1 check{all trans:Trans|valid[trans.source] and not valid[trans.target]} for 10 but
exactly 1 Trans, exactly 2 Graph

2 check{all trans:Trans|not valid[trans.source] and valid[trans.target] and not isStart[
trans.target]} for 10 but exactly 1 Trans, exactly 2 Graph

Trans

($t)

AE2_TD0

aarrows

NTD1

anodes

Graph0

source

Graph1

target

rule_E2_xor_split_1

rule

trg

NE2

($fact_E2_TD_multi_0_1_n)

src

ABT1_E1

arrows

ABT2_E2

arrows

AE1_PA

arrows

AE2_TD1

arrows

AIE_BT1

arrows

AIE_MRI

arrows

AMRI_E1

arrows

APA_E2

arrows

ATD_BT2

arrows

NBT1

nodes

NBT2

nodes

NE1

nodesnodes

NIE

nodes

NMRI

nodes

NPA

nodes

NTD0

nodes

srctrg

arrows

nodes

arrowsarrows arrowsarrows arrowsarrowsarrowsarrows arrows

nodesnodes nodesnodes nodesnodesnodes nodes

srctrg srctrgsrc trg trg srcsrctrgtrg srctrg src trg src

Figure 3: Counterexample of xor_split

The verification result shows several counterexamples; e.g. the [xor_split,c]constraint is violated. One

violation is shown in Fig. 3. To correct this problem the rule for [xor_split,c]should use the two split branches

as NAC to avoid reapplying the rules multiple times (see Table 1). The errors and counterexamples disappear after

the encoding is revised and the . This means that the encoded Alloy specification correctly simulates the dynamics of

the workflow model.

Now we can prove the properties like absence of deadlock or termination for loops. To verify the absence of

deadlock property, we try to find a transformation where the source state is valid valid[trans.source], the target

state is not in finished state not finished[trans.target] (which means the workflow terminates,) and no rule can be

applied on the target model not rules_applicable[trans.target]. If such transformation is found, it means there is

deadlock in the workflow model. The Alloy Analyzer finds an instance by the command in the following listing.

1 run{all trans:Trans|valid[trans.source] and not finished[trans.target] and not
rules_applicable[trans.target]} for 10 but exactly 1 Trans, exactly 2 Graph

We can verify that a workflow will terminate although it contains a loop. It means each time a workflow enters a loop,

it will terminate in the future. We can use the Alloy Analyzer to find counterexamples. That is, a workflow has entered

a loop but have not finished or have further applicable rule. Actually, this is a special case of deadlock verification.

The result shows there is no deadlock or loop without termination for the workflow model.

1 run{all trans:Trans|has_enter_loop[trans.source] and valid[trans.source] and not
finished[trans.target] and not rules_applicable[trans.target]} for 10 but exactly
1 Trans, exactly 2 Graph

5. Related Work

We shortly present some efforts using model checking for verification of safety critical systems. Pérez et al. 12 use

MDE-based tool chain semi-automatically to process manually created clinical guideline specifications and generate
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the input model of a model checker from the specifications. The approach uses Dwyer patterns13 to specify com-

monly occurring types of properties. In14 the authors propose an approach to the verification of clinical guidelines,

which is based on the integration of a computerized guidelines management system with a model-checker. Advanced

Artificial Intelligence techniques are used to enhance verification of the guidelines. The approach is first presented as

a general methodology and then instantiated by loosely coupling the guidelines management system GLARE15 and

the model checker SPIN16. A similar approach was presented by Rabbi et al. 17 to model compensable workflows

using the Compensable Workflow Modelling Language (CWML) and its verification by an automated translator to

the DiVinE model checker. In18 a method to minimize the risk of failure of business process management systems

from a compliance perspective is presented. Business process models expressed in the Business Process Execution

Language (BPEL) are transformed into pi-calculus and then into finite state machines. Compliance rules captured

in the graphical Business Property Specification Language (BPSL) are translated into linear temporal logic. Thus,

process models can be verified against these compliance rules by means of model checking technology.

Most of these works use model checking to verify the workflow system while we use Alloy, based on relation logic

and a satisfiability solver. These works are complete since the model checker work on the whole state space. However,

our approach is bounded and incomplete, i.e., the properties verified is only valid in some scope. But our approach

could find bugs in the system more efficiently. In addition, the above mentioned works have their own patterns and

languages to specify the properties and verify different kinds of properties, while in our work, we only verify those

mentioned properties if they are expressed in first-order logic. Furthermore, we can also derive the model checker

input file (semi-)automatically.

6. Conclusion and Future Work

In this paper, we apply a bounded verification approach based on Alloy to the verification of healthcare workflow

models. We build on our MDE-based workflow modelling language for the definition of diagrammatic workflow

models. In order to verify a workflow, the dynamic semantic of the workflow is simulated as a model transformation

system, encoded as a specification in Alloy. Then the Alloy Analyzer is used to verify general properties of the

workflow by finding counterexamples. If such counterexamples are found, they are visualized by the Alloy Analyzer

showing how a property is violated.

One of the main contributions of the paper is that we use a new technique to verify workflow models. Comparing

with other approaches with model checking techniques, the approach is bounded and incomplete. But the approach

enable the designer quickly find the bugs in the models and correct them with the feedback from the verification result.

In10, the verification approach based on Alloy encounter a scalability problem when the relations in metamodel or

transformations rules are too complex. But as we can see from the workflow metamodel and the derived transformation

rules, this may not be a problem; because the arity of the relations in the coupled model transformations are at most 2.

In this work, we only applied the approach to one workflow model. In the future, larger models will be used to study

the performance of the approach. Right now, limited properties are verified with the approach. More study should

be continued to see whether other properties can be verified. In7 we used a user-friendly editor for the specification

of properties. We plan on translating properties defined in this editor so that they can be verified against the Alloy

specifications using Alloy Analyzer. Furthermore, we abstract out the state information in the encoding procedure.

Actually, some flows, like TakeDrug to Evaluation2, could be also omitted. We will check if any systematical

approach could make the encoding result simpler.
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