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Abstract: The synchronization of loosely-coupled chaotic oscillators, a phenomenon
investigated intensively for the last two decades, may realize the philosophical concept of
“synchronicity”—the commonplace notion that related events mysteriously occur at the same
time. When extended to continuous media and/or large discrete arrays, and when general
(non-identical) correspondences are considered between states, intermittent synchronous
relationships indeed become ubiquitous. = Meaningful synchronicity follows naturally if
meaningful events are identified with coherent structures, defined by internal synchronization
between remote degrees of freedom; a condition that has been posited as necessary for
synchronizability with an external system. The important case of synchronization between
mind and matter is realized if mind is analogized to a computer model, synchronizing with
a sporadically observed system, as in meteorological data assimilation. Evidence for the
ubiquity of synchronization is reviewed along with recent proposals that: (1) synchronization
of different models of the same objective process may be an expeditious route to improved
computational modeling and may also describe the functioning of conscious brains; and (2)
the nonlocality in quantum phenomena implied by Bell’s theorem may be explained in a
variety of deterministic (hidden variable) interpretations if the quantum world resides on a
generalized synchronization “manifold”.

Keywords: synchronized chaos; synchronicity; machine perception; coherent structures;
quantum nonlocality; micro-wormholes
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1. Introduction

Synchronization within networks of oscillators is widespread in nature, even where the mechanisms
connecting the oscillators are not immediately apparent. One recalls the example of the synchronization
of clocks suspended on a common rigid wall, a paradigm commonly attributed to Huygens [1]. As
with similar phenomena of fireflies blinking in unison or female roommates synchronizing hormonal
cycles, the pattern suggests a universally valid organizational principle that transcends any detailed
causal explanation. Further, from everyday experience, but perhaps related, are the quantum mechanical
harmonies between distant parts of a system that are not causally connected. As reviewed in the
penultimate section of the paper, quantum mechanics is fundamentally nonlocal in the sense that no
interpretation that retains objective reality, in which an observer is assumed to have the free will to
alter his choice of what variables to observe while leaving everything else unchanged, is consistent with
locality in the observed system. There must either be a grand synchrony between the observer’s choices
and the observed system or a synchrony between distant parts of the observed system, maintained by a
subtle nonlocal coupling between them.

The study of coupled networks of oscillators in classical physics has focused on regular oscillators
with periodic limit-cycle attractors. Such models afford explanations for such surprising relationships
as the one observed by Huygens, but other synchronous relationships that are sometimes said to exist
in nature are less easily explained. While the synchronization of chaotic oscillators with strange
attractors has become familiar in the last two decades, most work on such systems has examined
engineered systems, primarily for application to secure communications, using the low-dimensional
signal connecting the oscillators as a carrier that is difficult to distinguish from noise. However, examples
of synchronized chaos in pairs of systems of partial differential equations that describe physical systems,
coupled loosely, have also been given [2-6].

In the philosophical realm, synchronous relationships that are difficult to explain causally have figured
prominently in primitive cultures and in traditions commonly associated with Jung [7]. (No reference
is made in this paper to the use of archetypes in physical theory or other aspects of Jung’s philosophy.)
The notion of “synchronicity” commonly associated with Jung has two essential characteristics beyond
the simple simultaneous occurrence of corresponding events: First, the simultaneous occurrences or
“synchronicities” must be isolated occurrences. Second, the synchronicities must be “meaningful”. The
idea of synchronicity thus goes beyond the synchronization of oscillators in positing a new kind of
order in the natural world, schematized by Jung and Pauli (Figure 1) in their book The Interpretation
of Nature and of the Psyche [8]. Regular oscillator models fall far short of explaining synchronicities
of this type, as Strogatz observed in his popular exposition [9]. A particularly important instance is the
synchronization of matter and mind. In this view, mind is not slaved to the objective world, but tends
to synchronize with it, based on limited exchange of information. Jung’s examples of synchronicity,
and subjective perceptions of synchronicity generally, are often dismissed as the result of chance, but a
minority opinion follows Pauli in asserting that a synchronistic order exists in the world alongside the
causal one.
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Figure 1. Diagram constructed by Carl Jung, later modified by Wolfgang Pauli, to suggest

relationships based on synchronicity as an “acausal connecting principle”, existing alongside

causal relationships [8].

While Pauli kept such speculations largely separate from his scientific work, the point of this paper,
reached through a review of the author’s and others’ more recent work, is to show that the nonlinear
dynamics paradigm of synchronization in networks of loosely-coupled chaotic systems can realize the
philosophical notion of synchronicity, or at least approach it much more closely than is possible with
regular oscillators. The proposed realization is concrete in nature, without any need for dualism between
the mental and material worlds. It is also different from the “dual-aspect monism” ascribed to Jung and
Pauli themselves [10], in that material synchronization is put forward as an explanation of synchronous
relationships in the mental realm and between mind and matter.

We begin by reviewing work, in the next section, showing that the simple introduction of a time delay
in the coupling between the systems can transform a situation of complete synchronization to one of
isolated “synchronicities”. In Section 3, we review previous work on an application of synchronized
chaos to “data assimilation” of observations of a “real” system into a computational model that is
intended to synchronize with truth, analogously to the synchronization of matter and mind. Traditional
data assimilation methods, which have been investigated extensively for meteorological modeling [11],
can be clarified and augmented within the synchronization framework. “Meaningfulness” is naturally
interpreted as internal coherence. A three-way relationship between two parts of a real system and
a third system conceived of as an observer is shown to satisfy the requirement for meaningfulness in
synchronicities in Section 4.

The objective rational basis for synchronicity that is put forward in this paper suggests applications
of the new organizational principle to processes in the brain and in the physical world. In Section 5,
we discuss implications of synchronized chaos for neural systems, in view of contemporary ideas about
synchronization as a binding mechanism in perception and consciousness and in view of recent work
on the synchronization of different computational models of the same objective process with each other.
In Section 6, we highlight the role of synchronized chaos in realist interpretations of quantum theory,
where determinism is retained, while quantum nonlocality and the Bell correlations are explained. The
concluding section speculates on remaining gaps between our objective realization of the synchronicity

principle and its original philosophical motivation.

2. Highly Intermittent Synchronization in Loosely-Coupled Chaotic Systems

Extensive interest in synchronized chaotic systems was spurred by the work of Pecora and Carroll [12]
(cf. [13,14]), who initially studied the phenomenon in three-variable Lorenz systems [15], a prototypical
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example of chaos. Slaving the X variable of one Lorenz system to the corresponding variable of a second

system, one has:

X = oY —X)
Y = pX-Y-XZ Vi=pX -Yi—-XZ, (1)
7 = —BZ+ XY Z=—BZ+ XY,

The systems defined by (X, Y, Z) and (X; = X, Y7, Z1), respectively, synchronize rapidly: as ¢ —
oo, Yi(t) = Y(t) = 0, Z1(t) — Z(t) — 0, as shown in Figure 2 (synchronization also occurs if the slave
system is driven by the master Y variable instead of the X variable, but not if driven by the Z variable).
Various schemes to use chaos synchronization for cryptography were motivated by the thought that
variables analogous to X in (1) could be used as carrier signals that would be difficult to distinguish
from noise [16]: the signal between the two systems defined by X is broadband and has no characteristic
frequency. The Takens—Mainé Theorem [17,18] can still be used to infer information about the encoding
from a segment of a signal that is sufficiently long, but as one considers higher-dimensional analogues

of (1), it becomes increasingly difficult to do so.
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Figure 2. The trajectories of the synchronously-coupled Lorenz systems in the
Pecora—Carroll complete replacement scheme (1) rapidly converge (a). Differences between

corresponding variables approach zero (b).

The two connected chaotic systems are conceived to be effectively unpredictable, but exhibit
significant correlations if connected by a signal that is conceived to be effectively inscrutable. Taking
these views of the systems and their connection as valid, we have an instance of an acausal synchronous
relationship. To the extent that relationships between physical systems analogous to (1) occur in nature,
synchronism becomes a valid physical principle.

It is important that the “acausal” correlations arise in the context of a perfectly causal, deterministic
system. However, the same could be said of the examples of synchronicity given by Jung. Those
surprising coincidences occurred in systems that one would imagine to be governed by ordinary

deterministic physics, with a history of connection between the two systems, but that connection would
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not have been readily interpreted as causal. The synchronistic behavior emerges as a higher-order
relationship, i.e., an epiphenomenon, in causal systems that could not have been predicted from
existing causal theory. Synchronicity thus does not logically contradict causality, but transcends it.
In nonlinear computational models governed by causal relationships, synchronicities not predicted from
theory are detected in numerical experiments. If physical systems manifest such relationships as in the
pair of coupled Lorenz systems, as will be illustrated below, then synchronicity might be accounted
for rationally.

Synchronization can indeed occur with weaker forms of coupling than the complete replacement of
one variable by its corresponding variable as in (1), but degrades below a threshold coupling strength.
Typically, synchronization degrades via on-off intermittency [19], where bursts of desynchronization
occur at irregular intervals or as “generalized” synchronization [20], where a strict correspondence
remains between the two systems, but that correspondence is given by a less tractable function than
the identity. As shown schematically in Figure 3, as differences between the two systems increase, the
correspondence changes from the identity to a smooth function that approximates the identity, to one
given by a function that is nowhere differentiable. The last case is in fact common [21].
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Figure 3. Transition from identical to generalized synchronization, illustrated by the
relationship between a pair of corresponding variables x and z’: projections of the
synchronization manifold onto the (x, z’) plane are shown for (a) identical synchronization,
(b) generalized synchronization with near-identical correspondence and (c¢) generalized
synchronization with a correspondence function that is nowhere smooth.

While initial research on synchronized chaos was motivated by potential applications to secure
communication schemes using electronic circuits, the phenomenon has also been demonstrated in
lasers [22] and ferromagnetic materials [23], as well as in the fluid dynamical systems discussed below.
In applications to physical systems, it is natural to consider forms of coupling that embody a time
delay. If one extends chaos synchronization to the realm of naturally-occurring systems, the delay
in transmission ought to be described in terms of the same physics that governs the evolution of the
systems separately. To a first approximation, let us assume that the time scale of the delay is the same as
some intrinsic dynamical time scale of each system. Consider the following configuration of two Lorenz
systems, coupled through an auxiliary variable S that introduces a delay:
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X = oY - X) X, = oY1 - X))

YV = p(X-9)-Y - (X-S5)~7 Vi = p(X1+8) -V —(X1+972 ()
7 = —BZ+(X-9)Y 7, = —BZ + (X, +9)Y;

S = —TS+ID(X—X;)

System (2) is a generalization of the Pecora—Carroll coupling scheme (1) to a case with bidirectional
coupling and where each subsystem is partially driven and partially autonomous.

AsT' — oo in (2), with S finite, S — X — X;. In this limit, the system reduces to a bidirectionally
coupled version of (1), which indeed synchronizes. In the general case of the coupled System (2) with
finite I', the subsystems exchange information more slowly: if X and X; are slowly varying, then S
asymptotes to X — X over a time scale 1/I". Thus, I is an inverse time lag in the coupling dynamics.

Synchronization along trajectories of System (2) is represented in Figure 4 as the difference Z — 7,
vs. time, for decreasing values of I'. For large I', the case represented in Figure 4a, the subsystems
synchronize. As I' is decreased in Figure 4b—d, corresponding to increased time lag, increasingly
frequent bursts of desynchronization are observed, until in Figure 4d (uncoupled systems), no portion
of the trajectory is synchronized. The bursting behavior can be understood as an instance of on-off
intermittency [19,24], the phenomenon that can occur when an invariant manifold containing an attractor
loses stability, so that the attractor is no longer an attractor for the entire phase space, but is still effective
in portions of the phase space. Trajectories then spend finite periods very close to the invariant manifold,
interspersed with bursts away from it.

The case of a coupling time lag that is of the same order as the prescribed physical time scale in the
simple Lorenz system corresponds to I' = 1, with behavior as in Figure 4c. Although there is little trace
of synchronization, the average instantaneous distance between the subsystems is less than it is in the
uncoupled case. More interestingly, there is a very short period of nearly complete synchronization. In a
very long integration, such “synchronicities”, of moderately short duration, occur more commonly than
they would by chance in unrelated systems, as seen in the histograms in Figure 4e, showing the total
time in synchronicities of the given duration for the two cases.

System (2) is indeed analogous to the one derived from a pair of geophysical fluid models coupled by
standing waves in narrow ducts [2]. Auxiliary variables analogous to S in (2) arise by first decomposing
the field into a piece that satisfies the full nonlinear equations with homogeneous boundary conditions
and a second piece that satisfies a linear system with matching boundary conditions in the region of the
narrow ducts. The linear equations are solved using boundary Green’s functions that effect a time delay.
The auxiliary variables are integrals of products of the boundary Green’s functions and differences of
corresponding field variables from the two sides of the ducts. Intermittent synchronization of the two
ODE systems implies correlations between large-scale weather patterns in the mid-latitude regions of the
Northern and Southern Hemispheres, since they are connected by “duct” regions in the tropics, where
prevailing winds are westerly and Rossby waves can thus propagate [2].

The relevance of low-order chaos to very high-dimensional geophysical systems may seem
questionable, but both chaos and synchronization/control have already been applied to simple models
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of the the El Nifio-Southern Oscillation (ENSO) cycle [25]. ENSO is known to correlate with a large
number of global weather phenomena. The intermittency in the synchronization in the two-hemisphere
model is a result of the time delay in the coupling between the hemispheres, but such delays play an
important role in other geophysical models [26], accounting for the irregularity of the ENSO cycle [27].
If one were to couple a delayed oscillator model of ENSO, such as [27], to models of other climate
subsystems that are physically connected, then notwithstanding that the delay here is within a subsystem
rather than between subsystems, new geophysical “synchronicities” might emerge, perhaps stronger than

the weakly correlated blocking effect, but similarly unexpected.
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Figure 4. The difference between the simultaneous states of two Lorenz systems with
time-lagged coupling (2), with ¢ = 10., p = 28., and 8 = 8/3, represented by Z(t) — Z;(t)

vs. t for various values of the inverse time lag I' illustrating complete synchronization

total time in synchronicity intervals

(a), intermittent or “on-off” synchronization (b), partial synchronization (¢) and de-coupled
systems (d). The average Euclidean distance (D) between the states of the two systems in
X, Y, Z-space is also shown. A histogram of the lengths of periods of “synchronicity”, such
as the one indicated by the arrow in (c), is shown in (e) for the time-delayed coupling case
(solid line) and a case of two unrelated Lorenz trajectories (dashed line), where synchronicity
intervals are periods during which |Z(t) — Z;(t)| < 5.
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The co-occurrence of the weather patterns in the two hemispheres could not have been predicted from
the mere existence of the narrow connecting ducts. One needs to study the real system, or a sufficiently
complex numerical model thereof, to observe the synchronous behavior. The small statistical correlations
induced by wave transmission through the ducts were indeed surprising (but not particularly useful),
although the “blocking” behavior, to be described in Section 4, had been familiar for several decades.
The tendency of blocks to co-occur, which is reminiscent of Huygens’ clocks or synchronized hormonal
cycles in female roommates, but constructed from systems that are individually unpredictable, supports
the existence of synchronicity as an organizational principle that transcends causality.

Thus, the term “acausal” is interpreted here phenomenologically. One can always find causal
mechanisms, as with the wall connection between Huygens’ clocks or the weak molecular signal (a
relatively recent discovery) linking female roommates. Subtle causal chains can always be found
between any two events that can be linked by a light signal or which have a common history. If
one insists, one can regard synchronicity as an epiphenomenon, secondary to the underlying causal
relationships. However, it is often more convenient and useful to describe complex systems directly
in terms of synchronous patterns without attention to causal mechanisms. It is the assertion of this
paper that such an approach potentially applies to all phenomena that philosophers and laypersons have
historically categorized as synchronistic.

The impact of chaos synchronization is enhanced greatly by the phenomenon of small-world
networks. One can consider a large array of chaotic oscillators with local and/or long-range connections
among them. In a small-world network, a few long-range connections are sufficient to sharply decrease
the average degree of separation between any two oscillators, as occurs more generally in a scale-free
network in which the number of highly connected nodes decreases with the number of their connections
according to a power law [9]. Randomly connected networks of this type can be expected to synchronize
more readily than regular networks that are connected only in local neighborhoods: the introduction of

a few long-range connections can lead to a phase transition to long-range synchronization [28-31].

3. Machine/Human Perception as a Synchronization of Reality and Model

The connection between synchronized chaos and mind-matter synchronicity is best illustrated by
another application to meteorology, a field that inspired the modern notion of chaos [15]. Computational
models that predict weather include a feature not found in numerical solutions of simpler initial-value
problems: as new data are provided by observational instruments, the models are continually
re-initialized. This data assimilation procedure combines observations with the model’s prior prediction
of the current state, since neither observations nor model forecasts are completely reliable, so as to form
an optimal estimate of reality at each instant in time. While similar problems exist in other fields, ranging
from financial modeling, to factory automation, to the real-time modeling of biological or ecological
systems, data assimilation methods have been researched more extensively and are more developed in
meteorology [11,32-34] than in other fields.

Since the problem of data assimilation arises in any situation requiring a computational model of a
parallel physical process to track that process as accurately as possible based on limited input, it has

been asserted that the broadest view of data assimilation is that of machine perception by an artificially
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intelligent system [35]. Like a data assimilation system, the human mind forms a model of reality
that functions well, despite limited sensory input, and one would like to impart such an ability to the
computational model.

The usual approach to data assimilation is to regard it as a tracking problem that can be solved using
Kalman filtering or generalizations thereof [11]. However, clearly, the goal of any data assimilation is
to synchronize the model with reality, i.e., to arrange for the former to converge to the latter over time.
Thus, the synchronously-coupled systems of the previous section are re-interpreted as a “real” system
and its model. In System (1), for instance, we imagine that the world is a Lorenz system, that only the
variable X is observed and that the observed values are passed to a perfect model.

The above philosophical considerations have motivated efforts to recast data assimilation as a
synchronization problem and attempts to thus improve assimilation algorithms [35-37]. It may seem
a large stretch from three-variable systems to the human mind, but the use of low-order systems to
study problems that arise in numerical weather models is common practice in meteorology, popularized
especially by E.N. Lorenz. These numerical models, intended to represent turbulent fluid behavior over
a vast range of scales, are among the most complex computational models known. It is remarkable that
such models are capable of tracking reality using only a sparse, temporally intermittent set of noisy
observations.

To demonstrate the relevance of synchronization in low-order systems, it is first necessary to show
that the phenomenon persists as the dynamical dimension of the model is increased to realistic values.
Chaos synchronization in the sort of models given by systems of partial differential equations that are of
interest in meteorology and other complex modeling situations has indeed been established. Pairs of 1D
PDE systems of various types, coupled diffusively at discrete points in space and time, were shown to
synchronize by Kocarev et al. [6].

Synchronization in geofluid models that are relevant to weather prediction was demonstrated by
Duane and Tribbia [4,5]. The models [38] are given in terms of the stream function ¥ (x,y,1,t) in
a two-layer (z = 1,2) channel, contours of which are streamlines of atmospheric flow, as shown in
Figure 5, and a derived field variable, the potential vorticity ¢; = fo + By + V2; + Ry 2 (1 — 109)(—1)7,
with constants as defined in the reference. The dynamical equation for each model is:

Dq;/Dt = 9q;/0t + J (i, qi) = F; + D; 3)
where the Jacobian J(v,-) = g—f% — %% = vy% + UJC% gives the advective contribution to the

Lagrangian derivative D/ Dt. Equation (3) states that potential vorticity is conserved on a moving parcel,
except for forcing F; = u(qf — ¢;) and dissipation D;, as defined in [5]. The forcing induces a relaxation
to a jet-like background flow ¢* (Figure 5a,b) with ¢* = ¢(¢*), injecting energy into the system.

Two models of the form (3), D¢ /Dt = FA+D# and Dq” /Dt = FP+ DP, were coupled diffusively
through a modified forcing term FP = pg [qf — ¢2]+ 1%t [qi — g ], where the flow has been decomposed
spectrally and the subscript k on each quantity indicates the wave number k spectral component. The

ext

two sets of coefficients py. and pi"* were chosen to couple the two channels only in some medium range
of wavenumbers.
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Figure 5. Stream function (in units of 1.48 x 10° m?s~!) describing the forcing ¥* (a,b),
and the evolving flow ¢ (¢—f), in a parallel channel model with coupling of medium-scale
modes for which |k,| > k,0 = 3 or |k,| > ky = 2, and |k| < 15, for the indicated
numbers n of time steps in a numerical integration (generalizing to bidirectional coupling,

for convenience). Parameters are as described previously [S]. An average stream function
for the two vertical layers ¢ = 1, 2 is shown. Synchronization occurs by the last time shown
(e,f), despite differing initial conditions (c,d).

It was found that the two channels rapidly synchronize if only the medium-scale modes are coupled
(Figure 5), starting from different initial flow patterns. For unidirectional coupling, the synchronization
would effect assimilation of Fourier-space data from the A channel into the B channel. The restriction
to coupling of medium-scale modes is a Fourier-space counterpart to assimilating data from discrete,
well-separated observation points. It has been shown analytically that optimal synchronization is
equivalent to Kalman filtering when the dynamics change slowly in phase space, so that the same linear
approximation is valid at each point in time for the real dynamical system and its model. When the
dynamics change rapidly, as in the vicinity of a regime transition, one must consider the full nonlinear
equations, and there are better synchronization strategies than Kalman filtering or the popular method
of ensemble Kalman filtering [39]. The deficiencies of the standard methods, which are well known
in such situations, are usually remedied by ad hoc corrections, such as “covariance inflation” [40]. In
the synchronization view, such corrections can be derived from first principles [35,41]. In other work
by Abarbanel [36], the synchronization view has led to new assimilation algorithms in which nudging

coefficients can be made to decrease over time. While neither scheme has been developed for application
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to practical weather forecasting, these preliminary theoretical results demonstrate the analytical power
of viewing perception as synchronization of truth and model.

It is suggested here that biological perception can also be described as synchronization of brains
with sensory input. A view of the brain-world relationship in the context of the brain as an open,
dissipative system has been put forward by Vitiello [42]. However, as yet, there has been little work on
synchronization of neural models with input time series, although synchronization within such models
plays a large role in generating realistic EEG patterns (e.g., [43,44]) and in internal organization of
information [45]. Some recent work on auditory perception indicates that brain rhythms synchronize
with the syllabic rate in speech input, so as to parse syllables [46].

4. Internal Sync vs. Mind-Matter Sync and the Role of Meaning

In the context of data-assimilation/machine-perception, the role of synchronism is indeed reminiscent
of Jung’s notion of synchronicity in the relationship between mind and the material world. However,
in the latter view, and in the popular culture surrounding the notion, the alleged relationships between
events, mental or physical, are detected without close inspection and are “meaningful”. In this section,
it is argued that meaningfulness is realized naturally in terms of the internal coherence that is typically
present in any system that synchronizes with an external system and, thus, that the scientific view of
synchronization should satisfy philosophers in this regard, as well.

Prior use of the idealized geophysical model considered above illustrates how “meaning” would
enter. The quasi-geostrophic channel model was originally developed to represent the geophysical
“index cycle”, in which the large-scale mid-latitude atmospheric circulation vacillates, at apparently
random intervals, between two types of flow [38]. In the “blocked flow” regime, e.g., Figure 6a,
a large high-pressure center, typically over the Pacific or Atlantic, interrupts the normal flow of
weather from west to east and causes a build-up of extreme conditions (droughts, floods, extreme
temperatures) downstream. In the “zonal flow” regime, e.g., Figure 6b, weather patterns progress
normally. Synchronization of flow states, complete or partial, implies correlations between the regimes
occupied by two coupled channel models at any given time. Such correlations, in the context of
synchronization between reality and model, are indeed meaningful to meteorologists and to the residents
of the regions downstream of any blocks. Synchronization of two highly simplified versions of
the channel model has been used to predict correlations between blocking events in the Northern
and Southern Hemispheres [2,3], and synchronization of two channel models has been used to infer
conditions under which Atlantic and Pacific blocking events can be expected to anticorrelate [4,5].

To generalize from the geophysical models, we note that blocks are “coherent structures”, as
commonly arise in a variety of nonlinear field theories. Such structures, of which solitons are perhaps the
best known example, persist over a period of time because of a balance between nonlinear and dispersive
effects. While no generally accepted definition of “coherent structure” has been articulated, one view
of their fundamental nature can support the proposed general connection with meaningfulness. For a
structure to persist, the different degrees of freedom of the underlying field theory must continue to
satisfy a fixed relationship as they evolve separately. That behavior defines generalized synchronization,

the phenomenon in which two dynamical systems synchronize, but with a correspondence between
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states given by a relationship other than the identity [20]. Coherent structures are then characterized by
internal generalized synchronization within a system. As state variables that are generally synchronized
with other state variables reveal additional information, it is proposed that such relationships capture

“meaningfulness” in the usual sense of that term.
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IULARR RN RLAREE]

LI

‘@
§§
J

T TP T I R IITTg

%

state (a) and a typical zonal flow state (b) in the two-layer quasi-geostrophic channel model.

An average stream function for the two vertical layers ¢ = 1, 2 is shown.

Meaningfulness is even more naturally defined as internal synchronization within mind. A response
to a given external stimulus by any “element” of mind is likely to be deemed meaningful if there are
synchronized, parallel responses of other mental elements.

No reference has been made to the semantic meaning of the meaningful structures. Rather, the
function of internal synchronization is that of parsing, or perceptual grouping, which must precede
interpretation. Synchronization is indeed known to play a role in perceptual grouping in real neural
systems, as discussed below in Section 5. An example is the “cocktail party problem” of how a listener
groups sounds in a crowded room into individual voices, to each of which meaning can be assigned. von
der Malsburg hypothesized that the grouping occurs when neurons responding to the different frequency
components of a given voice, at any given time, momentarily synchronize their spike trains [47]. In the
visual domain, the corresponding process is the synchronization of neurons that respond to features in the
visual field that belong to the same object, so that meaning can subsequently be assigned to that object
at higher levels of processing. In digital image processing, the task of automatic image segmentation
into meaningful components is often harder than the task of interpreting those components; cellular
neural network architectures have been proposed in which segmentation is manifest as synchronization
of units corresponding to each meaningful component within the 2D field and de-synchronization
between different meaningful components [48,49] (The synchronization must be delicately controlled to
be useful. An excess of synchronization can lead to such pathological conditions as epileptic seizures).

If coherent structures defined by synchronization within a system are meaningful, the question
remains of whether the correspondence between two co-occurring structures in two different systems,
which might define a synchronicity, is itself meaningful, i.e., whether the structures are properly paired.
In the typical case (especially in the case of a real system and its model), there is enough similarity
between the synchronizing systems that a meaningful pairing is likely.

It remains to show that internal synchronization is likely in each of a pair of dynamical systems that
exhibit synchronized chaos. It has indeed been hypothesized that internal synchronization is required for

synchronizability with an external system [50]. The essential role of coherence in synchronizing systems
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was examined by considering a pair of Hamiltonian systems, for which complete synchronization is
precluded, because phase-space volumes of ensembles of trajectories are preserved, by Liouville’s
theorem. It turns out that the form of the resulting incomplete, residual synchronization highlights the
role of coherent structures.

We consider a nonlinear scalar field theory, in an expanding universe, that gives rise to
“oscillons”—coherent structures in the field that oscillate in fixed, randomly-placed locations—as do
similar structures that were first noted in vibrating piles of sand [51]. The expansion of the Universe
plays a role in the cosmological case that is analogous to the role of frictional dissipation in the sand
piles—entropy is cast off to smaller scales in the expanding coordinate system, corresponding to newly
created space in a fixed coordinate system. However, unlike the sand piles, the cosmological system is
governed by a time-dependent Hamiltonian, and Liouville’s theorem still applies. The one-dimensional
model is given by the relativistic scalar field equation, with a nonlinear potential term, in an expanding
background geometry described by a Robertson—Walker metric with Hubble constant /. Using covariant

derivatives for that metric in place of ordinary derivatives, one obtains the field equation:
D*¢)Ot* + HOp/ot — e *1'0%¢)0x* + V'(¢) = 0 4)

The scalar field exhibits oscillon behavior for some forms of the nonlinear potential V' (Figure 7a),
but not for others (Figure 7b).
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Figure 7. Energy density p = (1/2)e H(¢,)? + (1/2)ef'(¢;)? + 'V (¢) vs. position
x for a numerical simulation of the Scalar Field Equation (4) with the potential V' (¢) =
(1/2)¢* — (1/4)¢* + (1/6)¢°, exhibiting localized oscillons (a), and a simulation of the
same equation, but with a different potential V(¢) = (1/2)¢? + (1/4)¢* + (1/6)¢°, for
which oscillons do not occur (b).
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Where oscillons exist, a crude form of synchronized chaos is observed for a pair of loosely-coupled
scalar field systems (a configuration that is introduced to study the synchronization patterns, without
physical motivation), as seen in Figure 8. The fields do not synchronize, but the oscillons in the two
systems tend to form in the same locations. The phases of the oscillons do not necessarily agree, so
neither do we have an example of phase synchronization—the celebrated phenomenon [52,53] in which
a system that is chaotic can nevertheless be assigned a phase that matches that of a second system.
Oscillon frequencies depend on their amplitudes, which are generally different for a pair of oscillons
whose positions correspond, and so the phases cannot agree (additionally, it is not clear how one would
define a phase for a multi-oscillon system that would capture information about their positions). For a
potential that does not support oscillons, the positional coincidence is trivially absent, and there is no
correlation between corresponding components of the underlying field. Synchronization in this case can

only be interpreted in terms of coherent structures in the separate systems.
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Figure 8. The local energy density p vs. x for two simulations (solid and dashed lines) of
the Scalar Field Equation (4), coupled to one another only through modes of wavenumber
k < 64, where modes up to k., = 2'* are realized numerically (p for the second system
(dashed line) is also shown reflected across the x-axis for the ease of comparison). The

coincidence of oscillon positions is apparent.

In a system as simple as the three-variable Lorenz model, the hypothesis about the relationship
between internal and external synchronization is also validated. In this case, the relationship gives
insight about which variables can be coupled to give synchronized chaos. Along the Lorenz attractor,
the variables X and Y partially synchronize, resulting in the near-planar shape, while Z is independent.
Consistently with the internal-external synchronization hypothesis, either X or Y, but not Z, can be
coupled to the corresponding variable in an external system to cause the two systems to synchronize, as
is well known.

To summarize, the meaningfulness of a synchronization pattern, as philosophically required, is
naturally defined in terms of internal synchronization, or coherent structures, involving some of the
variables that synchronize externally. However, external synchronization usually (or, by hypothesis,

always) implies the existence of internal synchronization and, hence, meaning.
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5. Sync as an Organizational Principle in Mind and in Computational Modeling

If chaos synchronization provides a rational foundation for philosophical synchronicity, it should
give deeper insight regarding apparent synchronicity in physical and psychological phenomena and
underlying mechanisms. In the psychological realm, it has already begun to appear that synchronized
oscillations play a key role. Synchronized firing of neurons has been introduced as a mechanism for
grouping of different features belonging to the same physical object [47,54,55]. If a moving bar is
presented to a cat, then neurons responding to opposite ends of the bar, which may be widely separated
within the visual cortex, synchronize their spike trains, even if the middle of the bar is missing [54].
Analogous neural synchronization phenomena describe the coordination of different muscles involved
in motor control for a complex activity. Debates over the physiological basis of consciousness have
centered on the question of what groups or categories of neurons must fire in synchrony in a mental
process for that process to be a “conscious” one [56]. It was argued previously that patterns of
synchronized firing of neurons provide a particularly natural and useful representation of objective
grouping relationships, with chaotic intermittency allowing the system to escape locally optimal patterns
in favor of global ones [57], following an early suggestion of Freeman’s [58]. Ambiguous figures, of the
sort depicted by Escher, for instance, typically arise when more than one grouping of different features is
possible. Intermittent synchronization patterns in the fields of neurons that respond to the features would
give alternating interpretations of the same figure. The observed, highly intermittent synchronization of
40-Hz neural spike trains could play just such a role, an idea that has been supported in more specific
studies of brain function [45].

Since in the experiment with the cat, for instance, the cat’s consciousness is focused on the bar,
the role of spike train synchronization in perceptual grouping has led to speculations about the role of
synchronization in consciousness [9,47,56,59]. However, here, we suggest a relationship between neural
synchronization and consciousness on a more naive basis: the hallmark of conscious thought, defined
subjectively, is the ability to focus on one’s own thoughts and to influence them as one would interact
with external events. Thus, consciousness can be framed as self-perception and then placed on a similar
footing as perception of the objective world. In this view, there must be semi-autonomous parts of a
“conscious” mind that perceive one another. In the interpretation of Section 3, these components of the
mind synchronize with one another, or in alternative language, they perform ‘“data assimilation” from
one another, with a limited exchange of information.

Such a scheme has actually been proposed, and is currently being investigated, for the fusion of
alternative computational models of the same objective process in a practical context [60,61]: different
numerical models used to predict climate change in the 21st century differ by as much as a factor of two in
the amount of globally-averaged warming and differ completely in their projections for specific regions
of the globe. Current practice is just to average the results of the different models. By synchronizing a
small set of alternative models with each other, a more reliable and detailed consensus could be obtained.

Taking the interpretation of consciousness that motivates such computational schemes seriously,
imagine again that the world is a three-variable Lorenz system, perceived by three different components
of mind, also represented by Lorenz systems, but with different parameters. The three Lorenz systems

also “self-perceive” each other. Three imperfect “model” Lorenz systems were generated by perturbing
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parameters in the differential equations for a given “real” Lorenz system and adding extra terms. The

resulting suite is: £ = o(y — 2), y=pr —y —xz, 2= —Fz+zy, and
J#z
g o= pri—yi— xizm i+ Y Cy; — ui) + Ky (y — i) S
J#i
Zi = —Bl-zi -+ ;Y -+ ZCZZJ(ZJ — Zi) —+ KZ(Z — Zi)
J#i

where (x,y, 2) is the real Lorenz system and (x;, y;, ;) @ = 1, 2, 3 are the three models. An extra term g
is present in the models, but not in the real system. Because of the relatively small number of variables
available in this toy system, all possible directional couplings among corresponding variables in the three
Lorenz systems were considered, giving 18 connection coefficients C’f} A=xy,z i,j=1,2,3 1#
j. The constants K4 A = x, vy, z are chosen arbitrarily so as to effect “data assimilation” from the “real”
Lorenz system into the three coupled “model” systems. The configuration is schematized in Figure 9.

Model

P
>

Reality c,”

Figure 9. “Model” Lorenz systems are linked to each other, generally in both directions
and to “reality” in one direction. Separate links between models, with distinct values of the
connection coefficients C'" , are introduced for different variables and for each direction of

possible influence.

The connections C;; linking the three model systems can be chosen using yet a further extension
of the synchronization paradigm: if two systems synchronize when their parameters match, then under
some weak assumptions, as was proven in [62], it is possible to prescribe a dynamical evolution law for
general parameters in one of the systems, so that the parameters of the two systems, as well as the states
will converge. In the present case, the tunable parameters are taken to be the connection coefficients (not
the parameters of the separate Lorenz systems), and they are tuned under the peculiar assumption that
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reality itself is a similar suite of connected Lorenz systems. The general result [62] gives the following

adaptation rule for the couplings:
Cfi = a(z; — x;) (:c —3 Zazk> — 6/(Cm- — Cax)* + e/(CM +6)? (6)
k

with analogous equations for C’Zy ; and C’f ;» Where the adaptation rate a is an arbitrary constant and the
A

extra terms with coefficient € dynamically constrain all couplings C;,
for some small number §. Without recourse to the formal result on parameter adaptation, the rule (6)

to remain in the range (—9, Chax)

has a simple interpretation: time integrals of the first terms on the right-hand side of each equation give
correlations between truth-model synchronization error, x— % > « Tk» and inter-model “nudging”, z; —x;.
We indeed want to increase or decrease the inter-model nudging, for a given pair of corresponding
variables, depending on the sign and magnitude of this correlation (The learning algorithm we have
described resembles a supervised version of Hebbian learning. In that scheme, “cells that fire together
wire together.” Here, corresponding model components “wire together” in a preferred direction, until
they “fire” in concert with reality.). The procedure will produce a set of values for the connection
coefficients that is at least locally optimal in the multidimensional space of connection values.

A simple case is one in which each of the three model systems contains the “correct” equation for
only one of the three variables and “incorrect” equations for the other two. The “real” system could then
be formed approximately using large connections for the three correct equations, with other connections
vanishing, and the peculiar assumption is strictly true if the large connections become infinite. Other
combinations of model equations will also approximate reality.

Several things have been learned from “supermodels”, such as the one defined by (5) and (6). First,
it is not difficult to define adequate inter-model connections. In a numerical experiment (Figure 10a),
the couplings did not converge, but the coupled suite of “models” did indeed synchronize with the “real”
system, even with the adaptation process turned off half-way through the simulation, so that the coupling
coefficients Cif‘j subsequently held fixed values. (The three models also synchronized among themselves
nearly identically.) Second, the inter-model connections are needed, despite efforts, common in the
modeling community [63], to combine only the outputs of independently run models using Bayesian
reasoning. The difference between corresponding variables in the “real” and coupled “model” systems
was significantly less than the difference using the average outputs of the same suite of models, not
coupled among themselves (Figure 10b). Further, without the model-model coupling, the output of the
single model with the best equation for the given variable (in this case, z, modeled best by z; in Model 1)
differed even more from “reality” than the average output of the three models (Figure 10c). Therefore,
it is unlikely that any ex post facto weighting scheme applied to the three outputs would give results
equaling those of the synchronized suite. Internal synchronization within the multi-model “mind” is
essential. Third, the choice of semi-autonomous models to be combined is not essential, as long as the
“gene pool” of models is diverse. In a case where no model had the “correct” equation for any variable,
results deteriorated only slightly (Figure 10d).
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Figure 10. Difference z,,—z between “model” and “real” z vs. time for a Lorenz system with
p =28, =8/3, 0 = 10.0 and an interconnected suite of models with p; 3 = p, /1 = [,
o1 = 15.0, uy = 30.0, By = 1.0, 09 = 0, o = —30.0, B3 = 4.0,03 = 5.0, u3 = 0. The
synchronization error is shown for (a) the average of the coupled suite z,, = (21 + 22+ 23)/3
with couplings C’f} adapted according to (6) for 0 < ¢ < 500 and held constant for 500 < t <
1,000; (b) the same average z,,, but with all C{} = 0; (¢) z,, = 21, the output of the model
with the best z equation, with C’;;‘» = 0; (d) as in (a), but with §; = 7/3, 0, = 13.0, and
s = 8.0, so that no equation in any model is “correct” (analogous comparisons for x and y

give similar conclusions).

The above scheme for the fusion of imperfect computational/mental models only requires that the
models come equipped with a procedure to assimilate new measurements from an objective process
in real time and, hence, from one another. Such procedures are indeed available for the long-range
climate projection models, which differ significantly among themselves in regard to the magnitude and
regional characteristics of expected global warming [64] (to project 21st century climate, the models are
disconnected from reality after training, parameters are altered slightly to represent increased greenhouse
gas levels, and one assesses changes in the overall shape of the attractor). Toward the intended
application, results with Lorenz systems were thoroughly confirmed and extended using a learning
method that minimizes synchronization error over finite-length trajectories, instead of the instantaneous
error as above, to determine inter-model connections [60,61]. The scheme could also be applied to
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financial, physiological or ecological models. It could conceivably also describe the combination of
individuals to form a society (cf. [65]), in models and in reality.

In the realm of mind, the sharpening of the transition to synchronization as the suite of interconnected
systems increases in size (e.g., as in the Kuramoto model [66]) is taken here to bolster the previous
suggestions that synchronization plays a fundamental role in conscious mental processing (we have
focused on assimilation/perception, but analogous constructions could be applied to the opposite problem
of control—the interaction between mind and matter is two-way). For application to mind, we imagine
that the systems are neurons or collections of neurons (for a large number of simple systems, a mean field
theory could represent the interaction of each system with the collective effect of the others). Note that
the proposed role of synchronization is markedly different from Pauli’s view of mental phenomena as
“something objectively psychical which cannot and should not be explained by material causes” [10,67].
Here, mental phenomena are grounded in the material reality of neuronal systems, even if their dynamical
properties are qualitatively different from those of the much higher dimensional physical world that
they represent.

To describe ordinary mental phenomena, one needs a notion of synchronization at slower time
scales and higher levels of organization, so that alternative representations of the same objective reality
within the brain can fuse to form a conscious percept. Thus, the synchronization view suggests
a new direction of research, since it remains to integrate a theory of higher-level synchronization
with the known synchronization of 40-Hz spike trains. There is indeed evidence that internal
synchronization within the brain is greater during successful encoding of new information