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Abstract 20 

Satellite imagery is increasingly used to monitor glacier area changes and create glacier inventories. 21 

Robust and efficient pixel-based band ratios have proven to be accurate for automatically delineating 22 

clean glacier ice, however such classifications are restricted by debris-covered ice due to its spectral 23 

similarity with surrounding terrain. Object-Based Image Analysis (OBIA) has emerged as a new 24 

analysis technique within remote sensing. It offers many advantages over pixel-based classification 25 

techniques due to the ability to work with multiple data sources and handle data contextually and 26 

hierarchically. By making use of OBIA capabilities we automatically classify clean ice and debris-27 

covered ice in the challenging area surrounding Mount Manaslu in Nepal using optical (Landsat 8), 28 

topographic (void-filled SRTM) and SAR coherence (ALOS PALSAR) data. Clean ice was classified with 29 

a mean accuracy of 93.3% while debris-covered ice was classified with an accuracy of 83.3% when 30 

compared to manually corrected outlines, providing a total glacier accuracy of 91%. With further 31 

developments in the classification, steep tributary sections of ice could be contextually included, 32 

raising the accuracy to over 94%. One prominent advantage of OBIA is that it allows some post-33 

processing and correction of the glacier outlines automatically, reducing the amount of manual 34 

correction needed. OBIA incorporating SAR coherence data can be recommended for future mapping 35 

of debris-covered ice. 36 

Keywords: Debris-covered glacier, object-based image analysis,  Landsat 8, SAR coherence, semi-37 

automatic classification, Himalayas  38 
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1. Introduction 39 

Current and accurate glacier outlines are required for many applications within glaciology, such as 40 

glacier area change analysis (Nuth et al., 2013, Bajracharya et al., 2014a, Shangguan et al., 2014), 41 

masks when determining glacier velocity (Berthier et al., 2005, Kääb, 2005, Quincey et al., 2009) and 42 

volume change estimations (Berthier et al., 2010, Gardelle et al., 2013), as well as input and 43 

validation data within glacier modelling (Rees and Collins, 2006, Racoviteanu et al., 2013, 44 

Pradhananga et al., 2014).  45 

Due to their remote location, many glaciated areas, such as the Himalayas, are under-sampled when 46 

it comes to direct in-situ glacier observation data (Berthier et al., 2007). Existing in-situ data is often 47 

biased towards small to medium sized and debris-free glaciers(Gardelle et al., 2013). Mass balance 48 

measurements are relatively sparse and cover less than 10 years, (Bolch et al., 2012)  49 

The status of glaciers within the Himalayas is of great importance. Changes in glaciated area have 50 

implications on the amount of ice area exposed to melt, this influencing the discharge of many rivers 51 

originating in the Himalayas that are important for irrigation and hydroelectric power production 52 

(Immerzeel et al., 2010, Bolch et al., 2012). Additionally, the continued down-wasting and retreat of 53 

debris-covered glaciers in the Himalayas can lead to the development of moraine-dammed lakes, 54 

which can breach catastrophically producing glacial lake outburst floods (GLOFs) that disrupt 55 

downstream populations and infrastructure (Richardson and Reynolds, 2000).  56 

Remotely sensed data provide a means of increasing our understanding of these remote regions by 57 

permitting analysis at the regional scale (Paul et al., 2013c, Nuimura et al., 2014). Satellite imagery 58 

has been widely used in the last decades for delineating glacier outlines over large areas, often using 59 

automated or semi-automated methodologies such as band ratios and supervised classifications, 60 

with reported accuracies of over 95% (Albert, 2002, Paul and Andreassen, 2009, Paul et al., 2013a). 61 

Global glacier inventories such as the GLIMS (Global Land Ice Measurements from Space) initiative 62 
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and the Randolph Glacier Inventory aim to map land glaciers globally using optical satellite imagery 63 

and assess their changes over time (Ranzi et al., 2004, Pfeffer et al., 2014). The application of these 64 

techniques has allowed glaciers to be mapped and analysed over large areas of the Himalayas 65 

(Scherler et al., 2011, Frey et al., 2012, Bajracharya et al., 2014b, Nuimura et al., 2014).  66 

Many glaciers within the Himalayas are covered in heavy debris cover. Debris-cover on glacier-ice is 67 

an important component in glacier mass balance and is known to complicate the response of the ice 68 

to climate (Scherler et al., 2011, Zhang et al., 2011, Benn et al., 2012, Pratap et al., 2015), yet the 69 

relationship is poorly understood. Debris cover can act to either insulate or amplify glacial melting, 70 

depending on variables such as the debris thickness and composition and the amount of 71 

precipitation (Takeuchi et al., 2000, Reznichenko et al., 2010, Bhardwaj et al., 2014a).  For example 72 

Bolch et al. (2008a) reported that the debris coverage on Khumbu Glacier increased as the total 73 

glacier area reduced. The spatial distribution of debris over the glacier and the presence of 74 

supraglacial lakes and exposed ice cliffs are therefore important factors affecting how the glacier 75 

responds to changes in climate. In some cases, debris cover may cause rates of ablation to increase 76 

by up to an order of magnitude (Benn et al., 2012, Immerzeel et al., 2014, Juen et al., 2014).  77 

Although the delineation of clean ice is a robust and accurate procedure, the automated 78 

classification of debris-covered glacier ice is not so straightforward, due to the spectral similarity of 79 

glacier debris cover to the surrounding terrain of rock or glacial moraines (Paul et al., 2013c, Huang 80 

et al., 2014). Several methods have been implemented to aid delineation of debris-covered ice. 81 

Morphological parameters such as the slope and curvature, as well as thermal satellite data have 82 

been used in both automatic and semi-automatic classification methods (Paul et al., 2004, Ranzi et 83 

al., 2004, Bolch et al., 2007, Shukla et al., 2010, Bhambri et al., 2011, Racoviteanu and Williams, 2012, 84 

Tiwari et al., 2014). To date however, most of these automated studies have not focused on large-85 

scale regions (>200 km2) but a small number of glaciers (< 5 glaciers) are analysed e.g. (Bolch et al., 86 

2007, Bhambri et al., 2011, Racoviteanu and Williams, 2012, Bhardwaj et al., 2014b). A high 87 
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resolution Digital Elevation Model (DEM) significantly aids the automated delineations of debris-88 

covered ice through topographic parameters such as curvature or slope (Tiwari et al., 2014), yet 89 

DEMs over many mountainous areas often have high uncertainty,  with high-resolution DEMs often 90 

only available at great expense (Bolch et al., 2007). The majority of studies that delineate debris-91 

covered glaciers therefore have relied on some degree of manual interpretation (Bajracharya and 92 

Shrestha, 2011, Sharma et al., 2013, Bhardwaj et al., 2014b, Kääb et al., 2014, Nuimura et al., 2014, 93 

Shangguan et al., 2014). Paul et al. (2013a) had 20 participants manually map 24 glaciers and found 94 

differences in interpretation of up to 30% over heavily debris-covered glaciers. One reason for this is 95 

the high variability in the spatial coverage and composition of glacial debris cover, which makes 96 

spectral and topographic delineations difficult (Racoviteanu et al., 2009).  97 

Some recent studies have exploited the coherence pattern between two Synthetic Aperture Radar 98 

(SAR) images in order to differentiate debris-covered ice from surrounding terrain (Zongli et al., 2011, 99 

Frey et al., 2012, Saraswat et al., 2013, Snehmani et al., 2014). Change over time results in a loss of 100 

coherence over the glacier, which can then be used as a guide for the digitisation of debris-covered 101 

ice (Frey et al., 2012). Atwood et al. (2010) automatically mapped debris-covered ice in the Wrangell 102 

Mountains and the Juneau Ice Field in Alaska, relying solely on SAR coherence data. Complicated 103 

mountain topography however makes this unfeasible in regions such as the Himalayas where layover 104 

and foreshortening can cause no signal return to the sensor over sizable areas (Frey et al., 2012).  105 

Object-Based Image Analysis (OBIA) is a promising methodology where near-homogenous objects are 106 

the basis of classifications instead of pixels. This allows more possibilities when defining classification 107 

rules, e.g. considering spatial characteristics or context information. OBIA also allows multi-data 108 

integration meaning that it is possible to fully exploit a combination of data sources, (e.g. optical 109 

satellite imagery, SAR data, DEM). OBIA can therefore be used to semi-automatically classify glaciers 110 

and distinguish between different surface types and characteristics. 111 

1.1 Objectives 112 
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The main objective of this study is to test OBIA for accurately delineating debris-covered glaciers by 113 

combining SAR coherence data with optical and topographic data. The accuracy of the classification 114 

technique is assessed by comparing the automatic outlines against both manually delineated 115 

outlines, and the most recent published glacier outlines available at the time of study. For most of 116 

the study area the  International Centre for Integrated Mountain Development (ICIMOD) glacier 117 

inventory was used. This inventory was based on images acquired between 2007 and 2009 for 118 

glaciers in Nepal. The glacier outlines in Tibet are from the Chinese Glacier Inventory (CGI) based on 119 

aerial photography from the 1970s. Both glacier inventories were downloaded through the GLIMS 120 

database. (ICIMOD, 2010, GLIMS, 2014). For simplicity we refer to both glacier inventories as the 121 

reference outlines for the duration of the paper. 122 

1.2 Study Area  123 

We tested our classification in the Manaslu region of Nepal . The Manaslu Region was chosen due to 124 

both the assortment and range of glaciers found under various conditions (clean ice, heavily debris-125 

covered, stagnant ice, lake terminating ice) and its accessibility from Kathmandu. The region covers 126 

2350 km2 in total. The glaciers in the study area range in elevation from 3000 m.a.s.l. to over 7000 127 

m.a.s.l and cover a combined area of 788 km2. They are typically 0.5 – 1 km in width and 5 – 15 km in 128 

length with areas that vary from 5.6 km2 to 32.0 km2. The glaciers on the southern side of the 129 

topographic divide are heavily debris-covered, while those north of the divide are clean type glaciers, 130 

with minimal or no debris cover. Nineteen debris-covered glaciers are analysed in the vicinity of 131 

Mount Manaslu (8163 m), which lies between the districts of Gorkha and Manang in Central Nepal, 132 

(Figure 1).  Ten clean-ice glaciers on the northern slopes of Himlung, Ratna Chuli and Lugula Himal 133 

were also investigated.  The Manaslu Region is situated at the boundary between the maritime, 134 

monsoon-driven climate found in Nepal, and the drier, more continental climate of the Tibetan 135 

plateau (Benn and Owen, 1998). Although climate data is limited, the Nepali Department of 136 

Hydrology and Meteorology estimate maximum and minimum temperatures of 26.7°C and 12.8°C 137 
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with 1066 mm of precipitation a year at the weather station Larke Samdo, 84o38E, 28o39N, 3650 138 

m.a.s.l. (Government of Nepal, 2014). Glaciers in Nepal receive up to 80% of their annual 139 

accumulation during the summer monsoon between June and September (Ageta and Higuchi, 1984, 140 

Benn and Owen, 1998). Rates of both accumulation and ablation are highest simultaneously during 141 

the summer monsoon; small changes in temperature can therefore strongly affect the balance 142 

between accumulation and ablation (Benn and Owen, 1998). Glaciers on the northern side of the 143 

mountain divide receive much less precipitation, and as such respond primarily to changes in 144 

ablation season temperature (Owen and Benn, 2005). A combination of warmer summer 145 

temperatures and reduced precipitation over the last few decades have caused increased rain and 146 

reduced snow, (Benn et al., 2012) leading to a marked retreat of many glaciers within the Himalayas 147 

(Bajracharya et al., 2014a).  148 

The study area also contains Thulagi Lake (0.9 km2), (also referred to as Dona Lake) situated in front 149 

of Thulagi Glacier (G084538E28524N); which has been identified as one of the most potentially 150 

hazardous glacial lakes in Nepal (Mool et al., 2011). An outburst flood could affect 160,000 people in 151 

the Marsyangdi river basin, damaging or destroying infrastructure relating to hydroelectric power 152 

generation as well as sections of the Annapurna and Manaslu hiking circuits (Mool et al., 2011).  153 

2. Background 154 

2.1 Object-Based Image Analysis 155 

Object-based image analysis (OBIA) is a spatially explicit information extraction workflow, combining 156 

image processing and GIS functionalities (Blaschke, 2010). Traditional pixel-based methods only 157 

consider the spectral characteristics of single pixels, often resulting in a salt-and-pepper effect within 158 

the classification, thus requiring post-processing or cleaning. This reduces the robustness of pixel-159 

based methods to adequately depict complex natural phenomena such as glaciers. In addition, pixels 160 

may not always be clearly assignable to one land cover type since each pixel can contain reflectance 161 
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values from multiple land classes.  OBIA instead segments pixels into near-homogenous objects, on 162 

which the analysis is conducted.  163 

OBIA provides a methodological framework for computer-based interpretation of complex classes 164 

that are defined by a range of spatial, spectral and contextual properties derived from multiple data 165 

sources (Lang, 2008). Today, OBIA or GEOBIA (geographic object-based image analysis) is a relatively 166 

new and evolving methodology in remote sensing and GIScience (Blaschke et al., 2014). Working on 167 

the object-level as opposed to the pixel-level facilitates the combined use of spectral, spatial, 168 

textural, hierarchical and contextual properties. Unlike single pixels, image objects are defined by a 169 

large number of properties in addition to just spectral values, such as shape, compactness and area 170 

that can be applied during classification. This is especially useful when working with high resolution 171 

(HR) imagery (spatial resolution < 30 m) or very high resolution (VHR) imagery (spatial resolution < 4 172 

m),(Hoersch and Amans, 2012)  where objects of interest are usually larger than the pixel size, or 173 

when performing combined analysis of data from various sources (e.g. optical, DEM, SAR, vector 174 

data) as the most appropriate properties of image objects derived from multiple datasets can be 175 

used for classification. This makes object-based approaches more intricate, especially when 176 

performing knowledge-based analysis. The process of how scene complexity is broken down into 177 

meaningful image primitives with object-based approaches is closely related to how humans 178 

perceive an image (Blaschke and Strobl, 2001). Extracting useful information from individual pixels 179 

can be significantly influenced by the signals of surrounding pixels (Townshend et al., 2000). This 180 

effect can be almost neglected when working with image objects because of the reduced relevance 181 

of radiometric information of single pixels. For the same reason, atmospheric and radiometric 182 

correction of images appear to be less important for object-based mapping tasks (Hölbling et al., 183 

2015). A number of studies have shown that OBIA outperforms pixel-based approaches within 184 

various applications such as land use mapping and landslide delineation (Gao et al., 2006, Myint et 185 

al., 2011, Moosavi et al., 2014). 186 



 
 

9 
 

2.2 Classifying Glaciers with OBIA 187 

Initial studies have been conducted delineating debris-covered ice within an object-based 188 

classification. Rastner et al. (2014), for example compared pixel-based and object-based classification 189 

techniques with high reliance on slope and surface temperature parameters over different clean and 190 

debris-covered conditions. They found object-based classifications delivered marginally more 191 

accurate results when classifying clean ice, but significantly more accurate results when working on 192 

debris-covered ice. The International Centre for Integrated Mountain Development (ICIMOD) used 193 

Landsat TM and SRTM elevation data within OBIA to classify glaciers over the entire Himalayas 194 

(ICIMOD, 2010, Bajracharya and Shrestha, 2011, Bajracharya et al., 2014a, Bajracharya et al., 2014b), 195 

although the amount of manual correction required is not known. 196 

2.3 Use of Remote Sensing data to classify glaciers 197 

This study uses optical, topographic and SAR coherence data. The background and how each dataset 198 

can be used to detect glacier ice are detailed below. 199 

Due to the high spectral contrast between clean ice and the surrounding terrain, optical images 200 

provide a reliable means of automatically classifying clean ice. Band ratios have been found to be the 201 

most consistently accurate way of classifying clean ice (Albert, 2002), with a threshold applied to 202 

ratios of the Landsat TM bands TM 4/TM 5 or TM3/TM5 being the most accurate and robust (Paul et 203 

al., 2013b).Much work has been done mapping debris-covered ice using optical data. Band ratios 204 

such as the NDVI, LWM and NDSI (explained in ) have been used to debris-covered glaciers (Keshri et 205 

al., 2009, Bajracharya et al., 2014b, Bajracharya et al., 2015). Brenning et al. (2012) on the other hand 206 

used the diurnal variation in thermal data to map glaciers. Most authors however have combined 207 

SWIR, NIR and thermal band data for mapping debris-covered ice (Shukla et al., 2010, Casey et al., 208 

2012, Karimi et al., 2012, Bhardwaj et al., 2014b, Tiwari et al., 2014, Alifu et al., 2015). We 209 

investigated the potential of including thermal data in our study; however the thermal signature was 210 

not consistently visible over the study area. While some debris-covered glaciers exhibited a clear 211 
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difference in temperature, for many of the debris-covered glaciers there was no thermal signature 212 

visible through the glacier debris. We therefore did not include thermal data in the classification. 213 

As mentioned above, breaks in topographic data such as surface slope and curvature can be used to 214 

distinguish the debris-covered glacier tongue morphologically (Bolch et al., 2007), while elevation can 215 

constrain the altitudinal extent of classifications to exclude false positives. 216 

The de-coherence between two SAR radar images acquired with a time interval between them 217 

relates to either motion occurring between when the images were taken, or to changing surface 218 

conditions. It is therefore important to distinguish glaciers from changing surface conditions, such as 219 

snowfall, rock slides and vegetation changes (Snehmani et al., 2014). The use of SAR coherence data 220 

is therefore appealing as it provides a way to distinguish moving debris-covered glacier areas that are 221 

optically similar to the surrounding non-glacier terrain. The integration of SAR data with optical 222 

images and digital elevation information in OBIA can provide valuable information for classification. 223 

The exploitation of interferometric coherence information between two SAR images separated by a 224 

time interval provides a means of identifying features that have changed in a landscape (Strozzi et al., 225 

2000), and as such is applicable to the study of features such as glaciers and landslides (Catani et al., 226 

2005, Atwood et al., 2010, Joyce et al., 2014).  227 

Optical or topographic data are incapable of differentiating between active glacier-ice and stagnant 228 

glacier ice, something that Bolch et al. (2007) and Ghosh et al. (2014)  state as a weakness in current 229 

methods for classifying debris-covered ice. SAR coherence data allow the identification of active ice 230 

based on whether motion or a change in surface conditions has occurred. There is some discussion 231 

however whether stagnant glacier tongues should be included in glacier mapping. Many definitions 232 

of what constitutes a glacier specifically mention that glaciers must be actively flowing (Kääb, 2005, 233 

Benn and Evans, 2010, Cuffey and Paterson, 2010). However if one is interested in GLOF hazards, 234 

then the downwasting of stagnant ice is very important (Richardson and Reynolds, 2000, Bolch et al., 235 

2008b). It is beyond the scope of this paper to speculate whether stagnant glacier-ice should be 236 
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included or not in glacier mapping; however in this stidu we only consider debris-covered ice that is 237 

active. 238 

2 Data and Methods 239 

3.1 Data 240 

Optical imagery from Landsat 8 (Green, Red, NIR and SWIR-1 bands) acquired in October and 241 

December 2013 was used. One Landsat 8 scene from October was used for debris-covered glaciers, 242 

while a second scene from late December was used on the higher elevation, clean-ice and the 243 

glaciers in the north of the study area which were affected by seasonal snow in the October scene. In 244 

addition, a RapidEye image (5 metre resolution) was used to manually correct the glacier outlines. 245 

The elevation data used in the classification is a version of the SRTM DEM that that was void-filled 246 

with the 1:50 000 Finnmap topographic maps of Nepal (available pre-processed online (De Ferranti, 247 

2012)). The ASTER GDEM was not used as it is considerably noisy; contains large striping artefacts 248 

(Tachikawa et al., 2011, Rexer and Hirt, 2014) and lacks a consistent timestamp that would have led 249 

to problems when classifying with topographic derivatives. 250 

Two coherence images were generated from four ALOS PALSAR images with a time separation of 46 251 

days. All the data used in this study is shown in . 252 

    

    
 

    

    

    
 

    

    

3.2 Methods 253 
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The OBIA procedure was performed within Trimble eCognition 9.0. Two classifications were 254 

performed: one based solely on the optical and topographic data (OBIA_OT), while the second 255 

classification used in addition the SAR coherence images (OBIA_OTS).  256 

The workflow consists of three steps: 257 

1. Pre-processing: The SRTM was bi-linearly resampled to 30 m resolution to match the 258 

resolution of the Landsat 8 image and a slope raster generated. Custom indices and band 259 

ratios were created () within ArcGIS.The ALOS PALSAR images were processed in order to 260 

create the SAR Coherence data. First, the interferometric processing combined the pairs of 261 

Single Look Complex (SLC) images at HH-polarization into interferograms using GAMMA 262 

Remote Sensing software. Because of rugged topography in some areas, a simulated phase 263 

image, which corresponds to the topographic phase was computed from the void-filled SRTM 264 

DEM and then subtracted from the interferometric phase. For coherence estimation an 265 

adaptive window size varying between 3 x 3  and 9 x 9 pixels for a 1 range x 4 azimuth looks 266 

interferogram was used (Frey et al, 2012). The resulting terrain-corrected and geocoded 267 

coherence images were combined with a mask considering regions with layover and radar 268 

shadow as well as the SRTM voids. The two coherence images were mosaicked into one file 269 

for input into OBIA. All data was projected to UTM zone 45N. 270 

2. Image segmentation: The initial image segmentation into near-homogeneous objects is one 271 

of the most critical stages within OBIA (Drăguţ et al., 2014). Image segmentation is a bottom-272 

up process that begins by grouping pixels into objects. Additional object hierarchical levels 273 

can be created where individual objects are merged. Different datasets (individual spectral 274 

bands, topographic derivatives, etc.) can be used to segment the image, and different 275 

weighting factors based on their importance in the segmentation can be assigned. As pointed 276 

out by Rastner et al. (2014), the performance of OBIA is strongly influenced by the initial 277 

choice of parameters during image segmentation. A trade-off had to be reached between 278 
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creating too large and too small objects. The former can cause multiple classes to be grouped 279 

into single objects, resulting in misclassifications, while the latter reduces the functionality of 280 

using shape and contextual constraints in the classification. In both classifications, image 281 

objects were created using the multi-resolution segmentation algorithm in eCognition based 282 

on three hierarchical levels on the blue, green, NIR, panchromatic, red and shortwave 283 

infrared bands, as well as the slope. It was found that having multiple image object levels 284 

helped group non-glacier features together, making it easier to exclude them from the 285 

classification. For the classification that incorporated SAR data, the SAR coherence data was 286 

also included. The scale parameter, which dictates the size of objects, was chosen with 287 

assistance from the Estimation of Scale Parameter 2 (ESP 2) tool (Drăguţ et al., 2014). The 288 

scale parameter, shape and compactness criterions used are displayed in Figure 2.. 289 

 290 

   

   

   

   

   

3. Rule based classifications: Figure 2 shows the workflow for the classification procedure, 292 

including all parameters and thresholds that were used, as well as the post-classification 293 

filtering. Various parameters and parameter combinations (band ratios and indices, 294 

topographic derivatives, spatial properties, etc) were tested to determine the most 295 

appropriate thresholds and parameters for classification. Some thresholds were acquired 296 

from literature (for example the SWIR/NIR ratio, NDVI and slope) (Paul et al., 2013b, 297 

Bajracharya et al., 2014a) while others were determined through trial and error. Fuzzy logic 298 

classifications were used to identify lakes, clean ice and debris-covered ice. Fuzzy logic relies 299 

on assigning membership functions to different criteria ranging from 0 (non-member) to 1 300 

(member) (Benz et al., 2004). In addition, each classification rule was assigned a weighting 301 
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factor, i.e. a higher weighting factor increases the significance of that particular rule set in 302 

the classification. 303 

 304 

The following classification procedure was applied: 305 

3a. Mapping of Water Bodies and Clean ice  306 

Lakes and clean ice were delineated first as they were easiest to classify and therefore 307 

could be masked out for the rest of the analysis. Water bodies were classified using the 308 

NDWI, slope and elevation. Clean ice was classified using the Landsat NIR/SWIR1 ratio, 309 

slope and elevation.  310 

3b. Mapping of Debris-covered Ice 311 

A third segmentation level was applied to all unclassified objects. This was found to help 312 

group non-glacier objects. The following two classifications were then performed. 313 

i. Classification using only optical and elevation data (OBIA_OT) 314 

Debris-covered ice was classified with greater weight on the NDVI, NDSI and slope.. 315 

Similar to Bajracharya et al. (2014a), the elevation was used to limit the altitudinal 316 

range where glaciers could be classified, reducing false positives. The LWM was also 317 

included in the classification.  318 

ii Classification using SAR Coherence data (OBIA_OTS) 319 

The second OBIA classification procedure was much the same as the classification 320 

using solely optical and topographic data. Greater weights were applied to the SAR 321 

coherence data, slope and elevation; accordingly a lower weights were assigned to 322 

the NDVI and NDSI.  323 
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4. Classification refinement:  The image objects classified as glacier ice were merged together, 324 

and then objects were filtered by area and by the distance from the clean ice. The image 325 

objects were then expanded into neighbouring objects with similar spectral, topographic or 326 

SAR coherence characteristics. Some problems were caused by very elongated but narrow 327 

objects that resulted in overestimations of the glacier width, and so for this reason a criterion 328 

was set to exclude objects that were adjacent to the debris-covered ice and had a high 329 

length/width ratio.  330 

Lastly, object boundaries were smoothed by using the pixel-based growing and shrinking 331 

commands within eCognition. The classifications were then exported to shapefile (.shp) 332 

format. 333 

5. Manual Correction of glacier outlines: The shapefiles were divided into drainage areas using 334 

the SRTM DEM. Due to the coarse resolution of the DEM, some manual correction was 335 

necessary for the drainage divides. The OBIA_OTS outlines were manually corrected with 336 

reference to high resolution Google Earth imagery, a RapidEye image from 2012, 337 

photographs from the field, and the SAR coherence images. Both the classifications outlines 338 

were then compared to each other, to the manually delineated outlines, and to the 339 

reference glacier inventory, which had been submitted to the Randolph Glacier Inventory 340 

(RGI 3.2) and can be downloaded online (Arendt et al., 2012, Pfeffer et al., 2014). 341 

6. Comparison of glacier outlines and accuracy assessment 342 

Originally it was planned to compare the OBIA outlines only against the reference glacier 343 

inventory for data verification, however such comparisons were not straightforward due to 344 

the range in years that were used when the reference inventory was produced. To assess the 345 

spatial overlap between the reference and the classification, our OBIA outlines were 346 

therefore compared against both the reference outlines as well as OBIA outlines that we 347 

manually corrected (OBIA_Man). For comparison purposes the reference outlines were 348 

manually split into clean ice and debris-ice by overlaying them on the Landsat images. Unlike 349 
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the reference glacier outlines; our manual outlines used the SAR coherence data in addition 350 

to Google Earth and RapidEye imagery in order to determine the extent of the glacier ice 351 

beneath the debris cover. We therefore consider our manually corrected outlines to be 352 

sufficiently accurate to be used as “truth” in this study. The OBIA outlines, both from optical 353 

and topographic data (OBIA_OT), as well as those from optical, topographic and SAR 354 

coherence data (OBIA_OTS) were compared with the manually corrected outlines 355 

(OBIA_Man) and the reference glacier inventory (REF) and percentages of deviation were 356 

used to assess the accuracy. OBIA_Man and REF were also compared.357 
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3 Results 358 

A total of 19 debris-covered and 10 clean-ice glaciers were classified, comprising in total 788 km2 of 359 

ice, 15% (113 km2) of which is debris-covered. Figure 3 and Table A1 show the reference glacier 360 

inventory areas (REF), the OBIA outlines using optical and terrain data (OBIA_OT), the OBIA outlines 361 

using optical, terrain and SAR Coherence data (OBIA_ OTS) and the manually corrected outlines 362 

(OBIA_Man). It is apparent from Figure 3 that the OBIA_OT method has the greatest variance of the 3 363 

methods for mapping debris-covered ice. It also appears that the mapping becomes less reliable for 364 

the larger debris-covered glaciers. Figure 4 compares both the clean ice and debris-covered ice areas 365 

derived from the OBIA method, the manual delineations and the reference glacier inventory. 366 

In terms of total glacier area (clean ice and debris-covered ice), our method achieved an accuracy of 367 

91.01% over the 788 km2 of glacier ice. Of the 27 glaciers classified, 14 of which were mapped with 368 

accuracy of 95% of more. While most comparable studies assess accuracy over the entire glacier due 369 

to the difficulty of classifying debris-covered ice as opposed to clean ice, we present separate results 370 

and discussion for both clean ice and debris-covered ice to quantify the difference between 371 

classification techniques used in this study.4.1 Delineation of Clean ice 372 

Due to the high spectral contrast between ice and rock, the SAR coherence was not necessary when 373 

classifying clean ice. Comparison of the outlines from this study revealed that the clean ice areas 374 

were mapped with an accuracy of 84.7% against the reference data,  and an accuracy of 93.3% 375 

against the manually corrected outlines by 6.7%. This is approximately in line with the accuracies 376 

found by other studies (Paul et al., 2013c). Visual inspection of the automatic outlines reveal an 377 

accuracy of within ± 30 m within most cases. Errors arose due to shadow covering portions of the 378 

glacier and in some cases narrow strips of rock surrounded by ice were classified as glacier.  379 

  Because the reference outlines north of the mountain divide were created using aerial imagery from 380 

the 1970s,   large disparities are found when compared with the automated clean ice outlines (Figure 381 
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5). On average the accuracy against the  reference outlines was 74.1% for these glaciers. Differences 382 

of glacier extent by between 500 and 1000 m at the glacier terminus are common.  383 

4.2 Delineation of Debris-covered ice 384 

Debris-covered ice remains one of the most troublesome aspects of remote sensing glaciology (Kääb 385 

et al., 2014). For debris-covered glaciers, OBIA_OTS classification mapped to an accuracy of 83.8% 386 

from the manually delineated outlines. The OBIA_OT classification is considerably less accurate, and 387 

in particular is sensitive to lithological changes in glacier debris, occasionally mapping individual 388 

glaciers as multiple entities (Figure 6). The mean accuracy falls to 71.7% when compared to the 389 

manual delineations. This is a sizable error term, and shall be explored in the following section.  390 

Both object-based classifications fail to detect debris-covered ice in some situations. Neither method 391 

fully classifies the steep tributaries of clean ice that flow down gullies towards the glacier. The 392 

steepness of these sections, often 25 - 50o, and therefore above the threshold of 14 - 16o used for 393 

debris-covered ice, as well as the area of individual objects means that they are excluded from the 394 

classification. When the slope threshold was increased to accommodate these steep sections it was 395 

found to include non-glacial debris adjacent to the glacier terminus. If these steep tributaries of ice 396 

are excluded from the accuracy assessment then the accuracy of mapping debris-covered ice rises to 397 

90.8%, over the entire glacier this raises the accuracy to 94%. This shows that if the classification 398 

procedure can be improved to contextually include these areas then the OBIA method has a large 399 

potential for future application. 400 

On occasion there are areas where the reference outlines fail to map debris-covered ice, for example 401 

the glacier termini are often not fully mapped (as visible in Figure 6D and Figure 7). highlighting 402 

problems caused by the spectral similarity of debris-covered ice to the surrounding terrain for 403 

mapping debris-covered ice without additional data. Moreover, in some areas steep marginal 404 

moraines or paraglacial slopes are misclassified as debris-covered ice (Figure 6) by both classification 405 

techniques, although glacier ice can extend into valley slopes by up to 100 m (Bernard et al. (2014)).  406 
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If the OBA_OTS outlines are compared to the manual delineations solely on the glacier margins and 407 

termini, thereby excluding the steep upper reaches the classifications struggle with (Table A2), the 408 

error reduces to 9.2% over debris-covered ice, or 6% over the total glacier area. This shows that 409 

further development of the methodology within OBIA addressing these steep portions of ice through 410 

contextual properties could lift the accuracy of the delineations of debris-covered ice over large 411 

regions to over 94%. 412 

4.3 Comparison of SAR coherence based classification (OBIA_OTS) to spectral based classification 413 

(OBIA_OT) 414 

The OBIA_OTS outperforms the OBIA_OT classification in most cases, especially on the glacier 415 

termini, where the glacier debris often becomes more lithologically similar to the surrounding 416 

bedrock (Kääb et al., 2014).  In cases where the OBIA_OT outperforms the OBIA_OTS classification it 417 

does so mostly by a narrow margin - 3.2% compared to the 18.2% that the OBIA_OTS classification 418 

on average outperforms the OBIA_OT classification. The SAR based classification occasionally 419 

delineated what appeared to be avalanche or debris flow deposits which flow out onto the glacier.  420 

Similarly, in a few situations (for example on glacier G084374E28756N) the OBIA_OT classification 421 

was able to differentiate between the debris-covered ice and paraglacial slopes better than the 422 

OBIA_OTS classification. This can most likely be explained by the paraglacial slopes and glacier debris 423 

being more lithologically distinct in the optical imagery compared with in the SAR coherence data. 424 

   425 
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The OBIA_OTS classification however was able to classify the glacier on relative motion and not just 426 

based on the debris lithology. Even in situations where the lithology was sufficiently distinct between 427 

the debris and rock, the heterogeneity of image objects based on optical data still occasionally 428 

caused misclassifications towards the glacier margins. 429 

There were some areas where the SAR coherence data had problems, for example a loss of 430 

coherence over water(Figure 8A), steep north-facing valleys (Figure 8B), or areas where no data was 431 

received back at the sensor (Figure 8C). Problems can arise through orthorectification of the SAR 432 

data, or areas with non-uniform patterns of SAR coherence, for example at some of the glacier 433 

termini which confused the classification.   434 

4 Discussion  435 

5 5. Discussion 436 

6 5.1 Comparison with other debris-covered ice classifications.  437 

7 The accuracy of a glacier outline is dependent upon a number of factors, for example the presence of 438 

seasonal snow and shadows, the identification of topographic drainage divides and the presence of 439 

supraglacial debris  (Paul et al., 2013a). Often the accuracy is provided as a percentage of the total 440 

glacier area as this is one of the only measures from which to compare various studies on various 441 

glaciers. However, the relative accuracy is dependent significantly on the size of the glacier or study 442 

area, and thus comparisons to other studies must also consider this. As the study area or number of 443 

glaciers mapped increases, the error term becomes more random and less systematic (Nuth et al., 444 

2013). Care must therefore be taken then when comparing accuacy assessments between studies, 445 

especially for studies that worked on a few large glaciers. 446 

8  447 

9 There are very few studies that have used OBIA to directly map glacier ice. Rastner et al. (2014) 448 

mapped glaciers in Everest Region of Nepal and similarly found that OBIA mapped debris-covered ice 449 

11.9% more accurately than pixel based methods, with an overall accuracy of 88.5%, however no 450 
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separate accuracy is provided for clean and debris-covered ice. ICIMOD have performed OBIA over 451 

large regions of the Himalayas, including Bhutan (Bajracharya et al., 2014a), Nepal (Bajracharya et al., 452 

2014b) and the entire Hindu Kush Himalayas (HKH) (Bajracharya and Shrestha, 2011, Bajracharya et 453 

al., 2015), however these classifications do not include SAR data, nor do they include information on 454 

the amount of manual corrections that were necessary.  455 

We found an accuracy of 91% for 29 glaciers over the entire glacier area, including an accuracy of 456 

83.8% over debris-covered ice. Our accuracy assessment was based on a comparison with manually 457 

corrected glacier outlines. Although an accuracy of 91% over a large study area is certainly promising, 458 

we have demonstrated that if steep tributary sections of ice can be contextually included through 459 

further development of the OBIA method which would raise the total accuracy to 94%. 460 

10 Many studies concerning debris-covered ice mapping within the Himalayas have used other semi-461 

automatic methodologies and found accuracies higher than those found in our investigation, yet 462 

these studies all mapped considerably less than the 788 km2 of ice mapped in this study. For example 463 

Alifu et al. (2015) found an accuracy of >98% over two glaciers,  Bolch et al. (2007) obtained an 464 

accuracy of 95% over less than 10 glaciers while Bhambri et al. (2011) also achieved 95% over 3 465 

glaciers (226 km2). Our study achieved higher total accuracies than Bhardwaj et al. (2014b) who 466 

obtained an accuracy of 91% over 2 glaciers while Shukla et al. (2010) mapped one glacier (200 km2) 467 

to an accuracy of 89.35%. Racoviteanu and Williams (2012) had errors of up to 25%.  468 

11  469 

12 Although some studies obtained higher accuracies than us, their study areas were considerably 470 

smaller, and any automatic method for mapping debris-covered ice should function over large areas. 471 

We therefore consider our method as favourable due to its inclusion of SAR data which is used to 472 

distinguish active-ice from stagnant-ice, and its application over a large study area, despite the 473 

slightly lower accuracies found.  474 

 475 
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5.2 Use of SAR coherence data to classify debris-covered ice 476 

SAR Coherence data requires expertise knowledge and expensive software in order to be processed 477 

(Frey et al., 2012). Therefore, it was attempted to classify debris-covered ice based on optical and 478 

topographic data alone, especially since the data used for this (Landsat 8 and the SRTM DEM) are 479 

both freely available. When the SAR coherence data is excluded from the OBIA, the accuracy of the 480 

classification falls by 12.2%. The spectrally based classification was sufficient on several of the larger 481 

debris-covered glaciers, where prominent shifts in lithology or vegetation represented the shift from 482 

debris-covered ice to stagnant ice, moraine or rock. In some cases however, the termini of glaciers 483 

were overestimated, with avalanche and debris flow deposits (Figure 9) as well as surface water 484 

leading to misclassifications of debris-covered ice. In many cases the delineations of debris-covered 485 

ice from the spectral classification varied by 30% or more when compared to the manually corrected 486 

outlines as a result of similar spectral signatures of the glacier debris and surrounding bedrock. The 487 

SAR coherence data also permits the distinction between active ice and stagnant ice when combined 488 

with optical and topographic data, something stated  as a weakness in methods that only use optical 489 

and topographic data (Bolch et al., 2007, Ghosh et al., 2014). Although SAR coherence data has not 490 

been used within OBIA to map debris-covered ice, it has been used without additional data  to 491 

automatically map ice in Alaska (Atwood et al., 2010), in combination with optical data for manual 492 

delineations (Frey et al., 2012). Zongli et al. (2011) used SAR coherence data within a Maximum 493 

Likelihood classification in China and pointed out problems of surface water also having low 494 

coherence values. Huang et al. (2014) used both a backscatter coefficient threshold (89.16% 495 

accuracy) and multi-polarimetric analysis within a support-vector-machine (SVM) learning strategy. 496 

The latter achieved accuracies of 98.29% although the method is more complicated and was applied 497 

on only 1 glacier (83.6 km2). 498 

From the work conducted in this study, it is clear that the inclusion of SAR coherence data within 499 

OBIA greatly improves the automatic delineation for debris-covered ice. In particular the lowermost 500 
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portions of the debris-covered tongues are often indistinguishable from stagnant ice and surrounding 501 

bedrock without SAR coherence data.  502 

It is important to note that despite the improvement that the coherence data brings to the overall 503 

classification, it is not possible to classify debris-covered ice based solely on SAR coherence data as 504 

was done in Alaska by Atwood et al. (2010). This is because greater amounts of vegetation, steeper 505 

topography with unstable slopes and inactive debris-covered ice, all of which contribute to a loss of 506 

SAR coherence, are more widespread in the Himalayas than in Alaska (Frey et al., 2012). Optical data 507 

can be used to exclude glacial lakes, vegetation growing in the proximity of the glacier or on stagnant 508 

ice, while slope data can exclude steep gullies and paraglacial slopes. There are some areas, however, 509 

where SAR data was not received at the sensor due to the effects of steep topography on the radar 510 

image, namely layover and shadow, as well as problems in orthorectification in the absence of a high 511 

quality DEM. In areas where no SAR coherence data was returned, the classification relied solely on 512 

optical and topographic data, an additional advantage of using multiple data sources with OBIA. Use 513 

of SAR data acquired by a descending orbit would reduce the areas of missing information, but the 514 

ALOS operation strategy was to operate the SAR sensor only at night and therefore along ascending 515 

orbits. Other SAR sensors with short repeat intervals and high spatial resolution, such as TerraSAR-X 516 

and Sentinel-1, could be also considered for future studies. 517 

5.3 Importance of image segmentation and classification parameters 518 

Two of the most critical steps in the classification were the weights assigned to the input data, and 519 

the parameters used in the image segmentation. Assigning weights of importance for image 520 

classification of the coherence data, optical data and topographic data had to be selected carefully in 521 

order to exploit each dataset fully. Assigning a higher weight to the optical data could cause a 522 

reliance on the lithological composition of the debris cover at the expense of the SAR coherence or 523 

topographic data, while weighing the topographic data higher could cause problems when the 524 

newer, optical data conflicted with the topographic data. The end result varied considerably 525 
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depending on the chosen weighting factors , and much time was spent trying to balance the data 526 

weight assignments as well as possible. 527 

Care is required to decide which parameter sets (such as slope or NDVI) should be used in the 528 

classification. The Himalayas are a very heterogeneous region, thus one parameter threshold one 529 

area may not be in another. As few parameters as possible were chosen in order to make the 530 

classification more transferable between the different conditions in the Manaslu region.  The 531 

parameters were limited to a few initial band ratios and indices before the delineations were 532 

expanded using contextual and relational properties. 533 

Three segmentations were used in this study; a higher weighting factor on the slope helped to create 534 

larger objects over the gently sloping debris-covered glacier tongues, and smaller objects over the 535 

surrounding bedrock. This however caused some of the steeper glacier tributaries to be fragmented 536 

between objects, making it more difficult to include them in the classification. In particular some 537 

elongated features such as narrow nunataks were too small to be adequately depicted by 538 

segmentation and were therefore misclassified as clean ice. The classification procedure was made 539 

simpler by using multiple hierarchical segmentations to build large yet homogenous objects while 540 

minimising objects that included multiple classes. This made the subsequent classification procedure 541 

simpler. 542 

5.4 Use of topographic parameters for classifying debris-covered ice 543 

Several studies pointed to the importance of topographic parameters in the classification. Rastner et 544 

al. (2014) and Bajracharya et al. (2014a) both used the slope within OBIA to separate debris-covered 545 

ice and the surrounding valley sides, while the slope and curvature have been used in other methods 546 

such as cluster analysis or supervised classifications to map debris-covered ice based on its 547 

morphology (Paul et al., 2004, Ranzi et al., 2004, Bolch et al., 2007, Bhambri et al., 2011, Racoviteanu 548 

and Williams, 2012, Bhardwaj et al., 2014b, Tiwari et al., 2014). The slope was especially useful in 549 

separating debris-covered ice from the surrounding bedrock, whilst the elevation was used in 550 
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separating glacial lakes from clean ice, and eliminating spectrally similar objects such as scree slopes 551 

that were found in lower valleys. There is a large potential to gain information by using the surface 552 

curvature and the surface roughness to demarcate the debris-covered portion of the glacier, as has 553 

been done in other studies (Paul et al., 2004, Bolch et al., 2007, Shukla et al., 2010, Bhambri et al., 554 

2011, Bhardwaj et al., 2014b). Such information has not been included as part of an object-based 555 

classification of glacier ice before, and in particular could be useful for including the steep glacier 556 

tributaries that were missed from the classification. Edge detection of a break in slope or curvature 557 

could be used in creating image objects depicting the debris-covered glacier tongue. In this study the 558 

resolution of the SRTM DEM was not sufficient to use either the curvature or the surface roughness; 559 

however the future release of higher resolution DEMs such as the TanDEM-X Global DEM could 560 

increase the ability of an automated OBIA classification. 561 

5.5 Comparison between OBIA and pixel based methods 562 

The use of OBIA has many advantages over standard pixel based methods. The ability to include 563 

contextual information permits the removal and subsequent reclassification of cloud and shadows 564 

that are surrounded by glacier ice. This reduces the amount of manual correction that is necessary. 565 

OBIA also allows glaciers to be efficiently broken down into their components (for example, clean ice, 566 

debris-covered ice and glacial lakes), while the ability to assign classes within a hierarchy allows sub- 567 

and supraclasses. This allows a “glacier” to be made up of “clean ice” and “debris-covered ice”, or 568 

“glacial lakes” to be made up of “pro-glacial lakes”, “supra-glacial lakes” and “marginal-glacier lakes”. 569 

Hierarchical ordering of classifications also enables temporary classifications that can be used to 570 

expand classifications into troublesome areas.   571 

Additionally, as OBIA permits the handling of optical, SAR and DEM data simultaneously, 572 

classifications can use a combination of remotely sensed data in order to determine a class, allowing 573 

an improvement of the classification of debris-covered ice when compared to pixel based methods.  574 
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It should be noted though that pixel based methods are simpler to perform than OBIA, both in terms 575 

of steps and technical knowledge needed when classifying, as well as computational power.  576 

Nonetheless, OBIA can be recommended for future work on glacier inventories and glacier areas 577 

estimations, but more so with either debris-covered ice or when working on very large areas in order 578 

to reduce the amount of manual correction necessary. 579 

5.6 Future Directions 580 

Future studies should also explore using the NIR or Red spectral channels to separate clean ice from 581 

snow-covered ice, thereby mapping the transient snow line (TSL). The highest altitude of the TSL 582 

during an ablation season can be considered a proxy for the equilibrium line altitude (ELA) of a 583 

glacier (Racoviteanu et al., 2008, Bishop et al., 2014). 584 

Kääb et al. (2014) highlight the potential of comparing digital elevation models to map debris-585 

covered ice, given that any active ice has most likely experienced a change in surface elevation it 586 

should be identifiable from the rate of elevation change. Such an approach requires less expertise 587 

and pre-processing than calculating SAR coherence, and thus could be worthwhile to classify debris-588 

covered ice by including a change in elevation within OBIA.  589 

The disparity found between the various glacier outlines compared in this study highlight the need 590 

for frequent, up to date glacier inventories. Large differences were found for the glaciers north of the 591 

mountain divide as a result of the 40 year difference between the creation of the two inventories. 592 

Remote sensing and GIS technologies, such as OBIA, facilitate the automatic or semi-automatic 593 

creation of regular glacier inventories, however differences in arbitrary thresholds such as the upper 594 

elevation and upper slope threshold cause significant differences in the upper boundaries of glaciers. 595 

This study used shallower slope thresholds than the ICIMOD inventory in order to exclude false 596 

positives; thresholds selected depend on the specific datasets used and also vary by location. 597 

Nonetheless, if multiple glacier inventories are used to assess areal changes over time, problems can 598 
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arise. For example, there is no clear consensus on the upper bounds of the accumulation area, nor 599 

whether steep terrain that contributes snow and ice to the glacier through avalanching should be 600 

considered as a part of the glacier. It is interesting that some changes between the reference glacier 601 

inventory and the outlines derived in this study were due to differences in these upper delineations, 602 

and could cause noise when assessing glacier area change between multiple inventories. Through 603 

initiatives such as GLIMS and the Randolph Glacier Inventory, a defined outline for the use of OBIA 604 

could be used to streamline the creation and maintenance of glacier outlines.  605 

6. Conclusions 606 

Remote sensing glaciology, and in particular large scale glacier mapping is hampered by glacier debris 607 

being spectrally indistinguishable from the surrounding terrain. This study has shown that OBIA can 608 

be used effectively for automated mapping of glaciers; both clean ice and debris-covered ice, and has 609 

many advantages over traditional pixel-based methods. OBIA permits the handling of multiple data 610 

types including optical, SAR and elevation data, while hierarchical and contextual capabilities allow 611 

rule sets such as excluding debris-covered ice not adjacent to clean ice, including neighbouring 612 

objects that are spectrally similar or determining an object’s class by its shape or area. These 613 

capabilities of OBIA also reduce the amount of post-processing that is needed while enhancing the 614 

potential to enhance glacier mapping to the various types of glacier surfaces (i.e. snow lines, debris-615 

cover type, lake detection etc…) 616 

We have shown that by combining SAR coherence data with optical satellite imagery and 617 

topographic data in an OBIA, it is possible to accurately map clean ice and debris-covered ice, even 618 

with course-resolution elevation data, such as the 90 metre SRTM DEM.  619 

This OBIA however has some restrictions when it comes to steep, unstable valley slopes, rock slides, 620 

flowing surface water, and vegetation. In addition, the mountainous terrain in our study area results 621 

in SAR data not always being retrievable due to shadowing and layover effects. Nevertheless, over a 622 

large (788 km2) study area we semi-automatically mapped the clean ice with an accuracy of 93.3% 623 
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(6.7% error) and the debris-covered portions to an accuracy of 83.3% (16.7% error) given an accuracy 624 

over the entire glacier of 91.1%. This accuracy can be improved using a higher resolution DEM, 625 

and/or by using temporally consistent data within the classification, while if steep, tributary sections 626 

of ice can be contextually included then the accuracy will rise to over 94%.  627 

Based on our results we can recommend the use of OBIA incorporating SAR coherence data with 628 

optical imagery and topographic data within OBIA for future studies mapping heavily debris-covered 629 

glaciated regions at a large spatial scale. 630 
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8 Appendix 888 

  889 

Table A1: Comparison of glacier areas of both clean and debris-covered ice, as derived from the 2010 ICIMOD Glacier Inventory, manual 
delineation, a spectrally based OBIA and a SAR based OBIA. 
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Table A2: Comparison between the manually delineated outline and the OBIA_OTS classifications 
when steep tributaries of the glaciers are excluded 
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List of Figure Captions 899 

 900 

Index Acronym Custom Index Name Band Formula 

NDVI Normalized Difference 
Vegetation Index 

(NIR – Red)/(NIR + Red) 

NDSI Normalized Difference Snow 
and Ice Index 

(Green – (SWIR)/(Green + SWIR) 

NDWI Normalised Difference Water 
Index 

(Green – NIR)/(Green + NIR) 

LWM Land and Water Mask (SWIR/Green + 0.001) x 100 

SWIR/NIR Commonly referred to as 
TM4/TM5 

SWIR/NIR 

 901 

 902 

 903 

Date Sensor Scene ID Spatial Resolution 
(m) 

08.10.2013 Landsat 8 LC81420402013281LGN00 30 (15 pan-sharp) 
 

26.12.2013 Landsat 8 LC81420402013361LGN00 30 (15 pan-sharp) 

20.11.2012 RapidEYE 11240644 5 

11.02.2000 SRTM SRTM3N28E084V2 90 
 

19.08.2007 ALOS PALSAR Coherence image from pair: 
ALOS_511560560_20070704_20070819.cc 

16 m x 13 m, 
geocoded to 1 
arc-second (~30 
meters) 

05.09.2007 ALOS PALSAR Coherence image from pair: 
ALOS_512560560_20070721_20070905.cc 

16 m x 13 m, 
geocoded to 1 
arc-second (~30 
meters) 

 904 

Table 1: Custom indices used in the glacier classifications. 

Table 2: Data used in this study 
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  905 

Figure 1: Location of the glaciers studied (outlines derived from this study) within the Manaslu Region (28°N, 84°E), and the location of the 
Manaslu Region within Nepal. 
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  907 

Figure 2: Flowchart showing the procedure followed to classify clean ice, glacial lakes and debris-covered ice. Rule sets that are in grey were used in the classification that used ALOS PALSAR 
Coherence data in addition to Landsat 8 optical and SRTM elevation data, while the other classification relied solely on the optical and elevation data. An explanation of the processing steps 
is given in 3.2. 
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 908 

Figure 3: Scatter plot comparing the manually corrected glacier outlines (OBIA_Man) against the OBIA outlines using optical 
and topographic data (OBIA_OT), the OBIA outlines using optical, topographic and SAR Coherence data (OBIA_OTS) as well 
as the ICIMOD glacier outlines (ICIMOD) for the debris covered portions of the glaciers in the Manaslu Region. The total 
glacier area (clean and debris-covered ice) is shown, the clean ice was measured using the OBIA_OT method only. 

Figure 4: A Comparison between the measured clean ice areas and debris-covered areas of the glaciers of the Manaslu Region, Nepal. Three areas for 
each glacier are shown, the reference glacier outlines (REF), OBIA_Man outlines, and the OBIA outlines. The debris covered outlines shown are 
OBIA_OTS areas while the clean ice areas are OBIA_OT outlines. Clean ice is easier to map automatically and as such OBIA_Man and OBIA_OTS agree 
well with each other for the debris-free glaciers in the north, it is also noticeable how the ICIMOD data is out of date and show consistently larger glacier 
areas.  The debris-covered portions of glaciers are harder to map and as such there was more variation between the areas measured by the ICIMOD, 
OBIA_Man and OBIA_OTS. 
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 927 

Figure 5:  Comparison between  the OBIA mapping of clean glacier ice and the 2010 ICIMOD Glacier Inventory. 

Figure 6: Comparison of the mapping of debris-covered glacier ice. The manually corrected outlines are compared with the OBIA_OTS classification (A), the 
OBIA_OT classification (B), and the 2010 ICIMOD glacier inventory (C). In addition the OBIA_OTS classification is compared with the 2010 ICIMOD glacier inventory 
(D). Notice how due the OBIA_OT classification is sensitive to the debris lithology, and depicts the glacier as three sections. 
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Figure 7: The OBIA method struggles most with the steep tributaries (A) where clean ice 
met debris-covered ice, as well as the extent of the glacier termini. In some cases 
paraglacial slopes or lateral moraines were also misclassified as debris-covered ice (B). 
Note in addition the large disparity between the extent of the right hand branch of Ponkar 
glacier in the OBIA classifications and the ICIMOD glacier inventory. Photo: Pål Ringkjøb 
Nielsen. 
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 948 

Figure 8: An illustration of where the SAR coherence signal struggled. Dark shades illustrate a loss of coherence, and therefore that 
motion has occurred or the ground conditions have changed. (A) The loss of coherence over water was indistinguishable from that 
of glaciers, (B) some steep valleys facing north showed a loss of coherence over the entire valley, making it hard to depict glaciers, 
(C) some areas no data at all was returned (shown in white) due to the steep topography (D). Many glacier termini however were 
easy to distinguish based on loss of coherence. E shows Manaslu Glacier, where the loss of coherence data couldn’t differentiate 
between clean ice, very steep proglacial rock and water. 
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 949 

Figure 9: An example from Syancha Glacier (G084564E28610N) of a debris flow flowing onto the 
glacier (shown in red square). Due to the spectral similarity of the debris-covered ice and the 
debris flow, as well as a loss of coherence or no SAR data received, the debris flow deposit was 
misclassified as glacier ice. 


