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Abstract 

Although use of foam for gas mobility control is substantially covered in literature, large-scale field 

implementation is still absent in fractured reservoirs. Current understanding of foam behavior in 

fractured systems is essentially based on experimental studies, and a recent investigation of foam 

generation in a rough-walled fractured system by coinjecting surfactant solution and gas showed that 

foam effectively reduce gas mobility in fractures. Reduced gas mobility favors stabilized gas-oil 

displacement in heterogeneous reservoirs where high-permeable “thief-zones” may result in viscous 

fingering due to early breakthrough of gas. This experimental thesis investigates foam flow in three 

different fractured systems, and the overall objective was to evaluate if increased system size (i.e. 

fracture length) had an impact on foam flow.  

A total of 13 coinjections with surfactant solution and gas were carried out in fractured systems 

referred to as System A, B, and C. Systems A and B constitute two fractured marble cores with 

diameters of two and four inches, respectively, and were successfully drilled, fractured, and 

reassembled to replicate rough-walled fractures found in reservoirs. During all coinjections, the total 

volumetric rate was kept constant whereas gas fractional flow (Fg) was varied in pre-defined fractions. 

Measurements of differential pressure in all three systems indicated elevated flow resistance at Fg =

0.7 − 0.9, corroborated by observed generation of strong, fine-textured foam at high gas fractional 

flow. Foam rheology was evaluated using different flow rates in each system, and apparent viscosity 

of foam was found to decrease at increased flow rates, suggesting a shear-thinning foam behavior. 

Foam flow did not seem dependent on system size. Coinjections in all three systems obtained the 

highest flow resistance at high gas fractional flow and pressures gradient curves was highly 

comparable between the systems.  

Positron emission tomography (PET) imaging was successfully applied to visualize liquid saturation 

and distribution during coinjection in System B. PET signals provided access to variation in local 

surfactant concentrations within the fracture network, and contributed favorable towards 

understanding observed differences in measured differential pressures. Visual investigation of foam 

texture during coinjection in System C showed texture changed from uniform, polyhedral bubbles to 

coarse, dry bubbles at a high gas fractional flow. Findings from this thesis will hopefully contribute to 

improved understanding of foam behavior in fractured systems. 
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Introduction 

The global energy consumption is increasing and the world’s population is expected to pass the eight 

billion mark within the next decades. Although renewable sources of energy (e.g. wind power, 

hydropower, and solar energy) are developed and utilized to meet this demand, fossil fuels are 

believed to remain the primary energy resources in foreseeable future. The current situation with low 

oil and gas prizes due to an oversupplied marked may, however, constraint new developments within 

the petroleum industry. Companies emphasize cost-effective operations and strive to make a profit. 

Use of conventional recovery techniques such as pressure depletion and secondary water- or 

gasflooding are favored, seldom yielding recovery factors higher than 20-40 percent of original oil in 

place (Muggeridge et al., 2013). Hence, substantial reserves may be left behind in reservoirs as 

residual oil. Residual oil is a target for enhanced oil recovery (EOR) techniques, in which chemicals or 

gases not originally present in the reservoir are injected to increase sweep efficiency (Ahmed and 

Meehan, 2011).       

Approximately 50 percent of the world’s petroleum resources are located in carbonates, characterized 

by heterogeneities in permeability and wide distribution of fractures (Bust et al., 2011). Recovery by 

gas flooding may prove ineffective in these reservoir as high transmissivity of fractures facilitates 

viscous fingering and early breakthrough of gas. Implementation of foam as an EOR measure may, 

however, improve displacement efficiency by reducing gas mobility with factors as great as 5000 

(Buchgraber et al., 2012). Reduced gas mobility due to unique viscous properties of foam improve the 

mobility ratio between oil and gas. Foam could also enhance volumetric sweep efficiency by blocking 

off high-permeable zones (e.g. fractures) and divert displacing fluids into unswept, oil-rich zones (Guo 

et al., 2011). Field implementation of foam for mobility control in fractured carbonate reservoirs has 

yet been limited because foam flow in fractures is still not fully understood (Fernø et al., 2016). 

Studies by Kovscek et al. (1995) showed that foam effectively reduced gas mobility during coinjection 

of surfactant solution and nitrogen into a transparent replica of a rough-walled fracture. Foam films 

were observed to bridge the fracture aperture and induce the highest flow resistance at high gas 

fractional flow. Similar findings were reported by Fernø et al. (2016), observing foam generation and 

flow inside a fractured marble tile with large variations in fracture aperture. Reduction in the apparent 

viscosity of foam at elevated flow rates suggested reduced mobility control of gas due to shear 

thinning of foam from a significant drag between flowing foam and rough fracture surfaces.  

This experimental thesis was carried out to investigate foam dependency on system size using three 

different fractured systems. Foam was set to generate by coinjecting surfactant solution and gas in pre-

defined fractions directly into fractures. By recording differential pressure as a function of gas 

fractional flow, foam properties such as apparent viscosity and mobility reduction factor could be 

cross-examined between systems of various fracture lengths. The thesis is divided into five chapters. 

Chapter 1 introduce theory and experimental findings on foam flow in fractures. In addition, a short 

introduction is given on the imaging techniques used in this thesis (PET/CT). Chapter 2 includes 

detailed descriptions of materials, fluids and experimental setups used. Chapter 3 contains 

experimental results and discussion for System A, B, and C, and concluding remarks are presented in 

Chapter 4 along with proposed future efforts. References used are presented in Chapter 5 in addition to 

three appendixes A, B, C, containing uncertainty calculations, fundamentals and raw data from 

coinjections, respectively.    
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1 Scaling 

Reservoir heterogeneities and complex fracture geometries may lead to poor volumetric sweep 

efficiency in many of the reservoirs on the Norwegian Continental Shelf (Aarnes et al., 2007). 

Volumetric sweep efficiency defines the fraction of the total reservoir volume that is contacted by an 

injected fluid during a displacement process. Laboratory research on gas/oil displacement in 

heterogeneous systems report foam to have excellent mobility control abilities, increasing sweep 

efficiency by diverting gas flow from high permeable thief zones to zones with lower permeability (Li 

et al., 2011). However, to successfully use foam in reservoirs, foam behavior needs to be characterized 

on a variety of scales (Pancharoen et al., 2012).   

The objective of this experimental thesis is to characterize foam flow in fractured systems of 

increasing size. Generally, up-scaling describe the integration of small-scale flow mechanisms 

observed in the laboratory into coarse grid models of a reservoir. Here, foam flow is observed in 

systems of different fracture lengths, and corescale in Figure 1 is emphasized. PET/CT imaging was 

used to monitor foam flow inside a fractured core to provide insight on foam distribution within a 

fracture network. Findings from this thesis will hopefully contribute to improved understanding of 

foam behavior in fractured systems. 

 

Figure 1: Summary of the various scales under study for petroleum reservoirs (Fernø, 2015). The green arrow 

represents up-scaling from capillary driven flow observed in micromodels all the way up to field scale where reservoir 

heterogeneities affect flow performance. The experiments of this study covers corescale. 
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2 Fractured Reservoirs 

A fractured reservoir can be defined as a reservoir where naturally occurring fractures have a 

significant effect on reservoir fluid flow, predominantly in the form of increased reservoir 

permeability (Nelson, 2001). Low permeable rocks such as carbonates are heavily dependent on 

fractures to be economically recoverable (Ahr, 2011).  

van Golf-Racht (1982) related fracture patterns to geological events, keeping in mind that an 

elementary rock volume in a reservoir experience stress from overburden pressure, confining pressure, 

pore pressure and tectonic forces. Considering a depositional environment where thick layers of 

deposits are stacked on top of each other, a sufficiently high overburden pressure may result in 

extension, normal or inverse faults. A fault is a discontinuity in a rock volume resulting from sliding 

movement (Marshak, 2011). Because associated shear fractures tend to be oriented parallel to faults, it 

is possible to estimate the fracture direction near a known fault in a reservoir. Characterizing fractures 

from folding processes are much more complicated. An example could be the rise of a salt dome, 

where an initially plain layer experience stress from below from propagating salt. Due to several states 

of stress throughout the lifting process, both conjugate and orthogonal fractures develop over the fold, 

shown in Figure 2. 

 

Figure 2: Different types of fractures associated with a folding process (van Golf-Racht, 1982). 

As several fracture patterns and geometries can occur in one single reservoir, characterizing fractured 

reservoirs solely based on observed fractures is difficult. Instead, Firoozabadi (2000) classified 

fractured reservoirs into three groups depending on their fluid distribution in matrix and fractures.  

Type I: Fracture pore volume is very small compared to the matrix pore volume where the majority of 

hydrocarbons are stored. Ekofisk chalk, consisting of high porosity matrix from calcite shell fragments 

falls into this category (Skarestad and Skauge, 2012). 

Type II: Most of the hydrocarbons reside in the matrix, but the fracture pore volume may be as high 

as 10%-20%. One example could be Asmari limestone reservoirs (Firoozabadi, 2000).  

Type III: More than half of the hydrocarbons are stored in fractures. Although the Keystone field in 

Texas is a valid example of such a field, few reports on production performance of these reservoirs can 

be found in the literature (Firoozabadi, 2000).   
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2.1 Recovery in Fractured Reservoirs 

The impact from fractures on storage capacity and flow properties in a reservoir can present itself as 

abnormal behavior in production compared to what is expected in a conventional reservoir. Following 

is a list of production characteristics for fractured reservoirs (Allan and Sun, 2003): 

 Because fractures increase the transmissivity (i.e. ability to transfer flow) in a fractured reservoir, 

pressure drops around producing wells are very low. In fact, pressure gradients have limited 

effects on production because fracture/matrix-block communication is the primary drive 

mechanism.  

 Fluid expansion, gravity drainage and imbibition ensure a continuous supply of oil from matrix 

blocks into fractures during production from reservoirs containing adequate matrix permeability. 

This leads to lower pressure decline per barrel of oil produced compared to conventional 

reservoirs.  

 Fractured reservoirs lack transition zones as high permeability in fractures provide a mechanism 

for rapid re-equilibration of fluid contacts, resulting in sharp oil-water and gas-oil contacts during 

production.  

 PVT properties are commonly constant throughout a fractured reservoir as convective circulation 

occurs during production.  

Proper reservoir characterization is crucial prior to exploitation of a field. Mistaking a fractured 

reservoir for a conventional reservoir, for instance, could result in poor reservoir performance, and 

choosing the appropriate recovery method must be carefully considered in advance.  

2.1.1 Primary Recovery 

Primary recovery constitutes the simplest method of extracting hydrocarbons from a reservoir. The 

idea is to utilize the existing natural pressure in the reservoir as a drive mechanism by performing 

pressure depletion. Uren (1939) found that the natural pressure present in a reservoir originates from 

various forces, for instance expansion of natural gas and water drive from supporting aquifers. These 

forces could act either simultaneously or sequentially, depending on reservoir properties and 

composition (Donaldson et al., 1989). 

Allan and Sun (2003) stated that fractures in brittle reservoir rocks such as dolomite and tight 

limestone tend to connect the reservoir to regional aquifers. Some of the highest recovery efficiencies 

observed in their survey on 100 fractured reservoirs were in fact achieved by unassisted primary 

recovery from a strong bottom water drive. Weak correlation between ultimate recovery factor and 

matrix and fluid properties in these reservoirs suggest that the recovery efficiency is heavily dependent 

on fractures. In more ductile reservoirs such as chalk, fractures tend to be located around faults. 

Limiting the connection to supporting aquifers, an existing gas cap is necessary if primary recovery is 

to be considered. Normally, application of secondary or tertiary methods is essential for maximizing 

recovery in such reservoirs (Allan and Sun, 2003).  
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2.1.2 Secondary Recovery 

Secondary recovery occurs as artificial energy is applied to the reservoir, commonly by injection of 

water or immiscible gas (Speight, 2013). This provides pressure support extending the lifetime of the 

field, along with an additional push helping the hydrocarbons to flow towards producing wells (e.g. in 

a 5-spot configuration).  

Being the first field in production on the Norwegian Continental Shelf, the Ekofisk field (chalk) is a 

good example on use of secondary recovery in fractured reservoirs. Almost immediately after 

production start in 1971, the pressure went into steep decline. Pressure depletion caused subsidence in 

the reservoir, resulting in lowering of the production rig towards the ocean surface and fear of rig 

failure (Yudovich et al., 1989). The decision of injecting water into the reservoir to prevent further 

subsidence was genius. As it turned out, the reservoir was highly responsive to waterflooding and 

recovery was increased significantly. Immiscible gas/oil displacement is also a viable option in 

fractured reservoirs. Vertical communication from fractures favors gas-oil gravity drainage. By 

injecting gas from above, oil will be drained downward due to the density difference between the two 

phases. Matrix sections saturated with oil will also experience an additional drainage effect from 

surrounding gas-saturated fractures, as gravitational forces around the block will exceed the capillary 

forces inside the block, mobilizing the oil (Okon and Udoh, 2013). In contrast to conventional 

reservoirs, liberated gas from the oil preferentially flows straight to the top of the reservoir through 

fractured pathways rather than horizontally towards the nearest wellbore, generally resulting in a lower 

gas-oil ratio (Denney, 2003). 

One limitation using gasflooding for oil recovery is the mobility contrast between gas and oil. The 

mobility ratio 𝑀 is defined as the ratio between the mobility of the displacing fluid 𝜆𝑗   behind the 

flood front and the mobility of the displaced fluid 𝜆𝑘 ahead of the front (Zolotukhin and Ursin, 2000). 

Strongly influencing the residual oil saturation 𝑆𝑜𝑟 left after a recovery process, 𝑀 is given as:   

 
𝑀 =

𝜆𝑗

𝜆𝑘
=

𝑘𝑟𝑗 ∙ 𝜇𝑘

𝑘𝑟,𝑘 ∙ 𝜇𝑗
 (1) 

 

where 𝑘𝑟 is the end-point relative permeability and 𝜇 is the viscosity of the fluids. Because 𝜇𝑔 ≪ 𝜇𝑜, a 

heterogeneity in permeability (e.g. fracture) reducing the resistance to flow could cause the displacing 

fluid to channel through the oil as a viscous finger, resulting in a limited sweep as much of the oil 

remain untouched (Lyons and Plisga, 2005). This is illustrated in Figure 3 below: 

 

Figure 3: Simulation of viscous fingering when low-viscosity gas displace oil at M=10 (Muggeridge et al., 2013). 
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2.1.3 Tertiary Recovery 

Tertiary or enhanced oil recovery (EOR) is an additional production step designed to recover residual 

oil by injecting chemicals or gases not originally present in the reservoir (Ahmed and Meehan, 2011). 

A variety of different EOR methods has been developed over the years, and these may be divided into 

two major categories: non-thermal and thermal recovery (Al-Anazi, 2007). An overview is given in 

Figure 4 below.  

 

Figure 4: Overview of different EOR methods. Thermal methods are used when temperature affects recovery 

efficiency (e.g. mobilization of high viscous oils). Non-thermal methods including injection of chemicals and/or gas are 

particularly of interest in this thesis and are highlighted in red. Redrawn from (Al-Anazi, 2007). 

Chemical Flood 

Injection of chemicals called surfactants reduces the residual oil saturation by increasing the capillary 

number (defined in Appendix B). Surfactants molecules, often represented as a tadpole consisting of a 

nonpolar (lypophile) tail and a polar (hydrophile) head, orient themselves at the interface between two 

fluids based on where they have the greatest affinity. Adsorption along the interface provides an 

expanding force causing a drastic reduction in the normal interfacial tension (Schramm, 1994). 

Anionic surfactants have been used to alter the wettability of fractured carbonates from oil-wet to 

more water-wet states. This improves recovery as the relative permeability of oil increases when the 

aqueous phase imbibe into smaller pores, displacing additional oil (Anderson, 1986, Wang and 

Mohanty, 2014). Other chemicals such as polymers are used to create a more favorable mobility ratio 

and thus increase the sweep efficiency in a displacement process.  

Gas Drive 

Tertiary gasflooding in previously waterflooded reservoirs could also enhance oil recovery. By 

injecting natural gas (e.g. methane) from an existing gas cap or nearby fields, the goal is to recover oil 

capillary trapped by water and oil untouched by previous waterfloods. Gas flow in new pathways 

results in contact between oil and gas, and residual oil is mobilized in a miscible or immiscible process 

(Skjæveland and Kleppe, 1992). High permeability in fractures compared to rock matrix is, however, a 

challenge for application of this recovery method in fractured reservoirs as gas may channel into the 

high-permeable fractures, leading to early breakthrough and poor sweep efficiency (Fernø, 2012). 

Unique flow properties of foam suggest that gas override and limited sweep efficiency may be 

prevented when foam acts as a mobility control agent during EOR (Kovscek et al., 2010).  
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3 Foam  

Foam got a significantly higher viscosity compared to gas and may improve volumetric sweep 

efficiency in fractures by reducing the mobility contrast between oil and gas (Yan et al., 2006). In the 

following section, basic characteristics of foam will be described before foam flow and generation in 

fractures are emphasized. Fundamental parameters such as interfacial tension, capillary pressure and 

capillary number are an integer part of foam characteristics and petroleum recovery in general. 

However, because these parameters are not emphasized and qualitatively investigated in this thesis, a 

brief overview are included in Appendix B.  

3.1 Foam Structure and Characterization  

Foam consists of bubbles of gas dispersed within a continuous layer of liquid. Each bubble is 

separated by a thin liquid film called lamella, and a point of contact between three films is known as a 

Plateau border. A temporary film equilibrium is achieved when the bubbles assume a position 

determined by capillary pressure and surface tension (Exerowa and Kruglyakov, 1998), illustrated in 

Figure 5. The foam is metastable and thermal fluctuations leads to rearrangement with time 

(Stevenson, 2011). To generate and sustain liquid films, a surfactant is introduced to the liquid phase. 

Generally, the surfactant concentration must exceed a critical micelle concentration to generate stable 

foam (Mukerjee and Mysels, 1971, Buchgraber et al., 2012).  

 

Figure 5: Cross-section of a Plateau border. The first law of Plateau states that since film tensions are equal, forces 

acting in one plane can balance one another only if the three angles between them are equal i.e. ∠𝑨𝑪𝑩 = 𝟏𝟐𝟎° while 

all the angles in triangle AOB are equal to 𝟔𝟎°, making 𝑨𝑩 = 𝑹. The border radius of curvature R could therefore be 

determined with a microscope by measuring the side AB (Exerowa and Kruglyakov, 1998).   

Because foams are thermodynamically unstable and complex, it has been stated that “any attempt to 

understand their properties in terms of a ‘simple’ all-embracing theory is doomed to failure” 

(Schramm, 1994). However, there are different ways for characterizing foam. These are discussed 

below. 

 



17 

 

Foam quality is defined as the percentage of gas volume per volume of foam (Martins et al., 2001). 

Low quality foams (Fg ≤0.5) are referred to as wet foams, consisting of spherical bubbles well-

separated by liquid. Due to their sparsely texture, i.e. number of lamellae in unit volume, these are 

considered weak (Kam, 2007). In the high-quality domain, dry, gas-rich foam with flat liquid-films 

and polyhedral shape develops as bubbles accumulate. Such fine-textured foam will cause multiple 

film faces in pores, resulting in a stronger, more resistant foam due to increased viscosity (Grundmann 

and Lord, 1983). The different types of foam qualities are shown in Figure 6 below. 

 

Figure 6: Illustration of foam appearance within a porous media. Foam strength ranging from non-existent to the left  

to dry on the right (Sheng, 2013).    

Bubble size is controlled by foam quality, and this relation depends primarily upon the type and 

concentration of surfactant used (Holm, 1968). Since each bubble is filled with compressible gas, 

changes in pressure and temperature may cause the bubbles volume to change. If the pressure 

decreases, the gas will expand and make the bubbles larger (Grundmann and Lord, 1983). In foam 

structures of heterogeneous bubble size distribution, the gas in smaller ones tends to diffuse into larger 

ones because the pressure is higher inside the smaller bubbles compared to the larger ones (Martins et 

al., 2001).  

Rheology is a science of deformation of matter with time and is used to explain non-Newtonian fluid 

flow where stress is not proportional to rate (Corapcioglu, 1996). Studies through the 70’s and 80’s 

reviled that foams got non-Newtonian flow characteristics with a pseudoplastic behavior at different 

shear rates and is several orders of magnitude more viscous (10-100 cP) compared to its constituting 

phases: liquid and gas (Patton et al., 1983). To get a qualitative description of the viscous properties of 

foam, Hirasaki and Lawson (1985) compared viscosity measurements on foam flowing through 

smooth capillaries with a mathematical model of apparent viscosity. They concluded that the apparent 

viscosity of foam is a sum of three contributions: (1) viscosity from liquid in lamella, (2) the resistance 

in the interface of a bubble flowing through a capillary, and (3) a surface tension gradient generated 

when surfactant sweeps from the front to the back of a bubble. Treating foam as a single phase in 

Darcy’s law, apparent viscosity can be given as (Farajzadeh et al., 2015):   

𝜇𝑓
𝑎𝑝𝑝

=
𝐾∇𝑃

𝑄
 (2) 

 

where 𝑘 [D] is the permeability, ∇𝑃 [bar cm]⁄  is differential pressure over the length of the system and 

Q [ml/s] is total volumetric rate. Decrease in  𝜇𝑓
𝑎𝑝𝑝

 with increased flow rates indicate shear thinning 

of the foam, i.e. thinning of liquid lamella. Film thinning reduce foam strength and if flow rate is 
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increased (higher stress), bubbles will collapse spontaneously. Shear thinning foams will thus have a 

higher viscosity at low flow rates with moderate stress and lower viscosities at high flow rates with 

high levels of stress (Lee and Ramesh, 2004).  

3.2 Foam Generation in Fractures 

Foam experiments has been conducted in a variety of fractured systems ranging from idealized 

fracture models characterized by smooth rock surfaces and homogeneous fracture distribution to 

rough-walled, heterogeneous networks. Generally, lamellae are created by three different mechanisms; 

snap-off, lamella-division, and leave-behind (Chen et al., 2004). Snap-off is believed to be the 

dominant foam generation mechanism and occurs in constriction sites of the flow path featuring abrupt 

change in capillary pressure.  In accordance with equation (A4) in appendix B, the capillary pressure 

between gas (non-wetting) and water (wetting) is higher inside a constriction with small fracture 

aperture than in surrounding flow space with larger aperture. Increased pressure in the wetting phase 

result in influx of water toward the neck of the constriction, followed by snap-off and separation of gas 

bubbles (Ransohoff and Radke, 1988).  

Kovscek et al. (1995) studied foam flow inside a transparent replica of a rough-walled fracture. Foam 

was generated in two ways; in-situ by coinjecting nitrogen and surfactant solution into the fracture and 

by use of a Berea sandstone pre-generator. Snap-off appeared to be the primary foam-generation 

mechanism and observation of bubble shape and size indicated that in-situ foam had approximately 

four times larger bubbles compared to pre-generated foam. Differences in bubble size was assumed to 

be a result of a limited number of snap-off sites inside the fracture compared to the pre-generator. 

Large bubbles were observed to become more stationary at high gas fractional flow. As shown in 

Figure 7, lamella bridged fracture aperture and resulted in elevated flow pressure due to increased 

flow resistance within the fracture.  

 

Figure 7: Simple schematic of foam flow through a transparent replica of a rough-walled fracture. Lamella was 

observed to bridge fracture aperture at high gas fractional flow, resulting in elevated flow pressure (Kovscek et al., 

1995).   

Fernø et al. (2016) reported similar observations during coinjection of gas and surfactant solution into 

a fractured marble network with complex variations in fracture aperture (System C in this thesis). 

Lamella generation by snap-off was observed in large vugs, and the ultimate foam resistance was 

measured at Fg = 0.90. Coinjecting gas and surfactant solution into a 2D silicon micromodel 

representing a fractured network, Gauteplass et al. (2015) verified snap-off to be the predominant in-

situ foam generation on micro-level. Using a high resolution camera, rectilinear snap-off was observed 

at constriction sites where the wetting phase (water) accumulated into pores initially filled with gas. 

Areas where low permeability matrix opened into high permeable fractures also featured snap-off 

sites. Lamella was found to primarily follow only one pathway, usually where the pore throat radius 

was greatest, preventing foam generation from lamella division to occur.    
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3.3 Foam Stability 

Foam generated in a field must be stable enough to propagate through the formation to ensure a high 

sweep efficiency. Friedmann and Jensen (1986) found that a high velocity gas injection strategy could 

enhance foam stability. Increased shear between gas/surfactant/porous media results in smaller, 

uniform bubbles, characterizing a high quality foam. This logic does not apply when CO2 is used for 

mobility control. High quality CO2 foams could be extremely immobile and result in a drastic pressure 

drop across the reservoir. Instead, a low quality foam could be appropriate as these can be injected for 

a long time period as CO2 gradually approach the mobility of oil (Enick and Olsen, 2012). Following 

are some essential factors influencing foam stability.  

A limiting capillary pressure is found to destabilize foam films generated inside a porous medium. 

During foam flooding, capillary pressure increases with decreasing saturation of the wetting fluid, 

similar to a drainage process in a water-wet reservoir (see appendix 2). Reduction in water supply 

from Plateau borders to lamellae result in film-thinning (Farajzadeh et al., 2015). Approaching a 

limiting capillary pressure, 𝑃𝑐
∗, the work required to destabilize a film is minimal, and minor 

mechanical disturbances or thermal fluctuations is enough to cause rupture (Vrij and Overbeek, 1968). 

𝑃𝑐
∗ results in a coarse, unstable foam texture and depends upon the type of surfactant, its concentration 

and electrolyte content (Khatib et al., 1988).  

Diffusion could result in foam coalescence, and is defined as a process where physical properties are 

transferred from one location to another (Janssen et al., 2013). Pressure difference between small and 

large bubbles in a foam drives gas to diffuse through the lamella from smaller bubbles to larger 

bubbles (Sheng, 2013).  

Gas compressibility effects are reported to make an impact on foam flow in porous media. At low 

pressure gradients, foam moves as bubble trains when a minimum pressure gradient (∇𝑃)min is 

obtained (Rossen, 1988): 

 (∇𝑃)min = (∆𝑃)avg nL (3) 

   

where (∆𝑃)avg is the average differential pressure between each lamella in the train and nL is the 

number of lamellae per unit length. Lamella require a positive pressure difference between each 

bubble of the train to flow. An increased (∇𝑃)min value due to compression of gas filled bubbles may, 

however, cause unequal (∆𝑃)avg distribution within the bubble train, resulting in random fluctuations 

in pressure and frequent separation of bubbles. Compressible foams increase the flow resistance by 

occupying pore throats and depends on bubble size, presence of trapped gas and bubble-train length 

(Rossen, 1988).  
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3.4 Foam in Mobility Control 

The ability of foam to reduce gas mobility by presence of thin foam films in gas injection processes 

emphasize significant improvement in both aerial and vertical sweep efficiency (Sheng, 2013). 

Reduced gas mobility lowers the risk of gravity override and viscous fingering through high-

permeability zones, and the idea is to divert gas into unswept and oil-rich areas and thereby increase 

oil recovery (Guo et al., 2011).  

The mobility reduction factor (MRF) quantifies the reduction in mobility of gas when foam is present, 

and is given as (Buchgraber et al., 2012): 

 
𝑀𝑅𝐹 =

∆𝑃𝑓

∆𝑃𝑔
 (4) 

 

where ∆𝑃𝑓 [Pa] and ∆𝑃𝑔 [Pa] is the differential pressure across a fracture or porous media caused by 

foam and single-phase gas, respectively. Studies by Holm (1968) indicated that foam only allows  gas 

to move by breaking and re-forming bubbles. Under such circumstances, gas enters foam and start 

moving as flowing bubbles. In the largest pores of a water-wet medium, the aqueous phase (e.g. 

surfactant solution) resides along the pore walls while the gas moves as “bubble trains” in the center of 

the pores (Enick and Olsen, 2012). A significant drag force between the interfacial area of the foam 

and the rock surfaces result in limited movement for the gas bubbles (Hirasaki and Lawson, 1985). 

Immobile, trapped gas, shown in Figure 8, can be found in intermediate sized pores. Stationary foam 

impact gas mobility when foam films block for further gas propagation and thereby reduce the  

relative permeability of gas (Kovscek and Radke, 1993). 

 

Figure 8: Illustration of gas mobility in foam flow. Mobile foam bubbles are represented as a white “train” of bubbles 

flowing through the largest pore spaces and stationary, trapped gas is represented by a black color (Kovscek et al., 

2010) . 
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4 Literature Survey: Foam in Mobility Control 

Lawson and Reisberg (1980) showed that foam is applicable as a mobility control agent during oil 

displacement in homogeneous sandstone and limestone core samples. Foam was generated by 

injection of alternate slugs of nitrogen and surfactant solution, and gravity segregation and viscous 

fingering by gas was not observed. Low measurements in gas relative permeability at high gas 

saturations indicated pockets of trapped gas within the porous medium. Presence of stationary gas 

hindered early gas breakthrough, and replacement of oil by large bodies of gas was thought to be the 

predominant mobility control mechanism.  

Foam has also proven to be effective in fractures and high permeable thief zones during tertiary 

gasflooding. Li et al. (2011) increased oil recovery significantly by initiating a foam flood in 

previously waterflooded sandpacks of heterogeneous permeability, shown in Figure 9. Reduced 

mobility and increased viscosity of the gas phase after foam generation resulted in an improved sweep 

in layers of lower permeability. Mobilization of residual oil by gas was observed through a glass 

observation window attached to the sandpacks. A variety of different surfactants were used due to 

foam collapse in presence of crude oil.  

 

Figure 9: Plot of oil recovery and oil cut as a function of pore volumes injected in a layered system containing 

heterogeneous permeability zones (Li et al., 2011). After 4 pore volumes of waterflooding the system was shut in for 42 

days to let gravity and capillary flow settle. Foam flooding gives an almost linear recovery response and stabilize after 

approximately 1 PV. This is favorable from an economical point of view.  

Foam generation in fractures with various roughness and width has been investigated by Buchgraber et 

al. (2012) using 2D micromodels. Pore-scale observations from a high resolution camera along with 

differential pressure measurements proposed significant reduction in gas mobility during foam flow in 

fractures. Mobility reduction factor (MRF) ranged from 300-500 in rough fractures and were found to 

increase linearly up to a foam quality of 90%. For foam with quality >95%, lamella reportedly 

collapsed and smaller bubbles were stored in larger bubbles. MRF for wet foams did not appear to 

depend on liquid flow rate.    

Skauge et al. (2002) presented a full-scale field application of foam for gas mobility control in the 

Snorre Field, using a Foam Assisted Water Alternating Gas injection (FAWAG) strategy. In the 

Western Fault Block of the Snorre Field, the motivation was to prevent early gas breakthrough and 

thus increase sweep efficiency. Simulation and history matching confirmed increased oil production as 

a result of improved sweep from the foam, and it was concluded that foam is a qualified alternative for 
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EOR in the North Sea. The financial costs of the FAWAG operation was 1M USD, while the 

additional oil recovery observed from January 2000 in Figure 10 was 25-40 M USD considering the 

oil price at the time.  

 

Figure 10: Simulated oil production on the Western Fault Block. The peak in oil production was established a few 

months after initiation of waterflooding, followed by a decline in oil rate with time. Switching to WAG and later 

FAWAG schemes increased oil recovery, indicating that foam is an appropriate strategy for EOR (Skauge et al., 

2002). 
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5 Imaging Techniques 

Following is a brief description of imaging techniques used in this thesis.   

5.1 X-ray Computed Tomography 

X-ray Computed Tomography (CT) use an x-ray source and multiple detectors to create cross-

sectional images of an object of interest (e.g. core sample). Because CT scans offers an accurate and 

time-efficient way to investigate lithology, porosity and saturation inside of a rock without causing 

any damage, it has become an integral part of petroleum research (Hicks, 1996).  

Emitted x-rays experience attenuation, or gradual loss in intensity, as they move through a core 

sample. The number of x-rays successfully penetrating the core depends on rock properties, and is 

measured as the linear attenuation coefficient, 𝜇𝑎, defined in Beer’s law as:   

 
𝜇𝑎 = 𝜌𝑏 (𝑎 +

𝑏𝑍3.8

𝐸3.2 ) (5) 

 

where 𝜌𝑏[kg/m3] is the bulk density of the sample, a and b are empirical constants, 𝑍 is the effective 

atomic number in the sample and 𝐸 [kV] is the initial x-ray energy (Hicks, 1996). By collecting 

multiple 𝜇𝑎 readings from different angles of a core sample, it is possible to generate a two-

dimensional (2D) image representing a thin slice of the cross-sectional area (Suzuki, 1990). To 

alternate the angle of incoming x-rays, the core could be rotated around its own axis during the scan.  

Alternatively, the x-ray source and the detectors may be rotated around a stationary sample. CT may 

be used to map areas of high density within a core sample. By moving the sample in lateral direction 

between each 2D image, it is possible to create a three-dimensional (3D) image of the entire core 

sample. Using this technique, Eide (2011) managed to identify high-density areas inside a water 

saturated chalk core, shown in Figure 11.    

 

Figure 11: Three dimensional CT image of a water saturated Portland chalk core (Eide, 2011). Dark shade represents 

high-density areas where x-rays experienced significant attenuation whereas a lighter color indicates less dense 

material. 
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Figure 12: The physical principles in PET scans (Maucec et al., 2013). A) A positron emits from decay in the nucleus.  

A following positron/electron collision result in emission of two gamma rays moving in opposite directions with an 

angle of 180° between them. B) A PET scanner got detectors covering 360° around the system, making it possible to 

create 3D images of the tracer.  

5.2 Positron Emission Tomography 

Positron Emission Tomography (PET) generates 3D images of radioactive tracers flowing through a 

system by measuring emitted gamma radiation (Maucec et al., 2013). PET technology has played an 

important role in medicine for decades, and has also proven applicable in petroleum research. By 

adding a radioactive tracer to a fluid of interest in a multiphase flow system, this imaging technique 

allows a unique in-situ visualization of fluid distribution and propagation.   

18F-fluorodeoxyglucose (FDG) was chosen as the radioactive isotope for the PET experiments in this 

thesis. Because 18F is easy to produce in particle accelerators (e.g. cyclotrons) and got a relatively 

short half-life (109 minutes) minimizing the radiation dose, it is frequently used on patients in 

hospitals (Bailey et al., 2004). Figure 12 illustrates the underlying physics using 18F in PET imaging. 

The 18F isotope consists of an unstable nucleus with 9 protons and 9 neutrons surrounded by a total of 

9 electrons circulating in fixed orbits (Bailey et al., 2004). Spontaneous decay of the nucleus result in 

emission of a positively charged positron, considered an anti-particle of electrons because it got 

identical mass and opposite charge. A collision between a positron and an orbiting electron result in 

annihilation and emission of two gamma rays. These are oriented anti-parallel in space, making it 

possible to determine their line of response (LOR) if two detectors are placed on opposite sides. 

Tomography analysis on multiple LORs captured from various angles, illustrated in b) in Figure 12, 

makes it possible to create a high-resolution 3D image of a tracer moving through a system over time 

(Maucec et al., 2013).  
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Experimental Objective 
 
The objective of this thesis was investigate foam flow in fractured systems of increasing size. Two 

fractured cores of different length were developed to replicate one small and one intermediate system.   

In addition, a fractured marble tile was used to represent a large system. The design of the fractured 

marble network made it possible to visually observe foam flow during the coinjection and inspect 

foam texture at various gas fractional flows. Because the cores were placed in Hassler core holders 

during the experiments, it was not as straight forward to visualize fluid flow in these experiments. 

Hence, imaging techniques (PET/CT) were used to characterize foam distribution inside fractures. By 

comparing the results from the different fractured systems, the goal was to determine how system size 

influenced foam flow.  

 

6 Fluids and Materials 

6.1 Fluids 

Table 1 lists the fluids used in the experiments in this thesis. To generate foam and investigate foam 

properties at different foam qualities, a coinjection strategy with surfactant solution and gas was 

applied. Aqueous surfactant solutions were made by mixing concentrated surfactant with brine (1 wt% 

NaCl) using a magnetic stirrer. To ensure equal brine composition in all experiments, a synthetic brine 

consisting of 10 g NaCl and 990 g distilled water (1 wt% NaCl brine) was used. Two different 

surfactants (Petrostep C-1 and Huntsman SURFONIC® L24-22) were added to increase foam 

stability. These had significant differences in texture. Petrostep C-1 appeared as a high-viscous liquid 

and was quickly dissolved in brine using a magnetic stirrer. The surfactant from Huntsman had texture 

similar to wax, and was separated into small pieces before it was added to brine. The magnetic stirrer 

dissolved all the solid material into brine solution.    

Both air and nitrogen (N2) were used as gas during the coinjection experiments. Dry air contains a 

mole fraction of 0.78 N2  and was assumed to have the same properties as pure N2  at experimental 

conditions.   

Table 1: Fluids used in experiments. All experiments were performed at normal temperature and pressure (20 °C and 

1 atm).  

Fluid Composition 

Brine 1 wt% NaCl 

Surfactant solution I 1 wt% Huntsman SURFONIC® L24-22 in 1 wt% NaCl brine  

Surfactant solution II 1 wt% Petrostep C-1 in 1 wt% NaCl brine 

Gas I  Nitrogen, N2 

Gas II Air 
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Marble was chosen as rock material for the foam experiments conducted in this thesis. This is a 

metamorphic rock composed of calcite and is considered to be impermeable (Attanasio et al., 2006). 

Low-permeable matrix was believed to result in fluid flow primarily within fractures.  

6.2 Marble Cores  

Preparation of fractured core samples was done together with fellow master student Snorre Sande 

Vasshus. The job was accomplished in several steps and is described in detail below.   

6.2.1 Drilling of Cores 

Marble blocks were available at the Department of Physics and Technology, University of Bergen. 

These were initially cleaned with soap and a high-pressure water hose to remove attached moss from 

previous exposure to weather. To drill core samples of high quality, the marble blocks were 

transported to the core lab facility at Statoil Sandsli. Diamond coated bits with outer diameters of two 

and four inches were used to penetrate the solid marble. Prior to drilling, the blocks were mounted to 

the foundation of the drilling assembly, as shown in (1) in Figure 13. This increased stability and 

reduced the risk of uneven diameters over the lengths of the cores. During drilling, water was 

continuously supplied to the drilling bit to prevent overheating and flush calcite particles out of the 

drilling hole. A relatively high and constant drilling rate was found to be optimal. At low revolution 

per minute (RPM) settings, the bit stopped halfway through the block due to friction. A total of 

approximately 40 core samples were drilled.  

 

Figure 13: Drilling procedure on a marble block. 1) Water-cooled drilling machine used at Statoil Sandsli. The panel 

in the back controlled drilling rate and water supply to the bit. 2) One of the marble blocks after drilling. The 

majority of the cores shown here have a diameter of 2”. A 4” hole can be seen on the top left. 3) Asymmetric geometry 

on the marble blocks resulted in a slight difference in dip on the short sides of the cores. A saw was used to get an 

equal angle on both faces of the cores.      

Fractures found in reservoirs originates from geological events involving enormous amounts of stress. 

To create similar fractures in a lab, two practical aspects had to be considered: 

 To ensure a safe working environment and reproducibility of the fracturing method, a standardized 

procedure had to be established.   

 It had to be possible to reassemble the rock pieces into one solid core after the fracturing.  

 



28 

 

 

6.2.2 Fracturing Procedure 

A specialized fracturing device was designed in collaboration with the mechanical workshop at the 

Department of Physics and Technology. With inspiration from Brazilian test procedures described by 

Cote and Thimus (1999), the idea was to place a given core horizontally between two metal plates and 

generate fractures by applying pressure from above. The metal plates holding the core were included 

core-shaped tracks with a thin edge in the center. The edge reduced the area of stress between the 

device and the core, accelerating the generation of fractures and facilitating vertical stress vectors, 

indicated with red arrows in (1) in Figure 14. To fit cores of various diameters, the top plate was 

adjustable in vertical direction. Pressure was applied on the top plate by an extension arm driven by a 

hydraulic press from Enerpac. The press could deliver a maximum overburden pressure of 700 bars 

and was regulated manually by a handle. An installed pressure gauge allowed readings of pressure 

during the procedure. An example of a generated fracture is shown in (2).  

 

Because large amounts of force were released over a short time period, it was decided that at least two 

participants had to be present at all times. A proposed step-by-step fracturing procedure is given 

below: 

Step 1: Carefully place the core in the center (both horizontally and vertically) of the fracturing device. 

Make sure the core is contacted by the top and bottom plate over its entire length.  

Step 2: A protection screen is placed in front of the device before pressure is applied. This will block 

potential debris leaving the core at the time of failure.  

Step 3: One of the participants handles the hydraulic press while another act as an observer. The 

observer wears a face mask to safely inspect the core during the procedure. The extension arm from 

the hydraulic press is slowly lowered to the fracturing device before initiating the fracturing 

procedure.  

Step 4: The pressure should be increased in small steps, i.e. 10 bars up in each step. This gives the 

observer time to look for developing fractures and makes it easier to quantify the exact pressure 

applied on the core at the time of failure. The majority of the cores (both 2” and 4”) fractured at an 

Figure 14: Fracturing device. 1) Front-view of an unfractured marble core placed in the device. The red arrows 

represent the direction of stress through the core when overburden pressure is applied. 2) Fractured core sample. The 

resulting fracture developed in vertical direction. Notice the amounts of debris below the core, indicating use of 

significant amounts of force.   
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overburden pressure of approximately 120 bar. Core failure tend to occur just after an increase in 

applied pressure and is characterized by a loud cracking noise.  

Step 5: After the maximum pressure is recorded, the fractured core is carefully removed from the 

device. To avoid confusion between the different cores, each sample is puzzled together and wrapped 

in a paper towel marked with a specific name.  

 

Figure 15: Fractured core sample. Remaining dust and debris were carefully brushed away before the pieces were 

puzzled together.   

A majority of the marble core samples obtained controlled fracture patterns, as shown in Figure 15. 

Commencing flow experiments on cores with open fractures was not an option. Detachment and re-

positioning of pieces between and during experiments would most likely compromise fluid flow 

through the core (e.g. as extreme gravity segregation) and thus prevent comparability of experiments.  

6.2.3 Reassembling Procedure 

To hold the pieces together and maintain a fixed fracture geometry, the cores were wrapped with 

several layers of aluminum foil. Duct tape was used to keep the end-fold of the foil in place. Low 

resistance to shear-movement in aluminum foil was, however, a concern as rotational movement may 

occur when a core is placed in a core holder. For that reason, it was decided that shrink tubing from 

Zeus, shown in (1) in Figure 16, should be used as an additional coating material. This is a robust 

plastic material designed to shrink at high temperatures. Aluminum coated cores were placed inside 

shrink tubing with diameters of 2” and 4” before a heat gun was used to raise the temperature. The 

shrink tubing responded instantly to heat and the initial space between tubing and core was sealed 

almost immediately. This procedure is shown in (2). Due to the length of the 4” cores, two heat guns 

were used simultaneously to ensure equal heat distribution over the core, preventing development of 

plastic folds. When the shrink tubing was tightly sealed over a given area of core, the sample was 

rotated and the same procedure was done over 360 degrees. The result was a thick, smooth plastic 

coat, as shown in (3). A scissor was used to trim remaining foil stretching over the length of the core. 
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Figure 16: Application of shrink tubing in core assembling. 1) Unused shrink tubing from Zeus. 2) Heat guns were 

used to shrink the plastic around the core. 3) Fractured core covered with aluminum foil and shrink tube.  

 

6.3 Fractured Marble Network 

A fractured marble network has previously been developed by the reservoir physics group at the 

Department of Physics and Technology. This model consists of a fractured marble tile (31.2 cm x 31.2 

cm) kept together between two Plexiglas plates. The transparent Plexiglas makes visual observation of 

advancing foam possible. The fractured marble network got a porosity of 7 % and an absolute 

permeability of 3.64 Darcy. Further details regarding the of the network design are given by Fernø et 

al. (2016).   

 

Figure 17: Photo of the fractured marble network after injection of a red contrast fluid. Although the majority of the 

fractures were narrow, some wide ones (seen with red contrast fluid) were included to make it possible to observe 

foam propagation and variation in foam quality during the experiments (Fernø et al., 2016). 
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7 Experimental Setups  

7.1 System A: Fractured Marble Core (Two-Inch Diameter) 

Foam generated by coinjection of surfactant solution and gas was studied in a fractured marble core 

with a diameter of two inches at low pressure and temperature. A majority of the experiments were 

carried out in the petroleum lab at the Department of Physics and Technology together with fellow 

master student Snorre Sande Vasshus. Routine core analysis was carried out in advance of the 

experiments to determine essential properties of the fractured core. 

7.1.1 Routine Core Analysis 

Porosity, 𝜑, is a key parameter describing the available pore space within a rock and is defined as the 

ratio between pore volume, 𝑉𝑝 [cm3], and bulk volume, 𝑉𝑏 [cm3],  of a core sample: 

 
𝜑 =

𝑉𝑝

𝑉𝑏
 (6) 

 

The bulk volume of System A was determined geometrically by measuring the length and diameter of 

the core with a caliper and multiply surface area with length. The pore volume (i.e. fracture volume) 

was determined using the saturation method, shown in Figure 18. Firstly, a fractured core was placed 

inside a Hassler core holder mounted in an upright position where air was removed by a vacuum 

apparatus connected to the top of the assembly. Valve 1 was then closed and valve 2 at the bottom was 

connected to a beaker filled with sandstone brine. Secondly, valve 2 was opened, resulting in instant 

suction of brine into the vacuumed system. The amount of brine inside the core was determined by 

subtracting the weight of the beaker before and after valve 2 was opened.  

 

Figure 18: Photo of a vertically placed two-inch core holder during pore volume estimation using the saturation 

method. An upright position was used to fill the core with brine from the bottom and displace pockets of air. 
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Sandstone brine with known density was used and the pore volume was calculated: 

 
𝑉𝑝 =

∆𝑚𝑏

𝜌𝑏
 (7) 

 

where ∆𝑚𝑏 [g] is the weight difference of the brine filled beaker before and after brine was sucked 

into the fractured core and 𝜌𝑏 [
g

cm3] is the density of the brine. The absolute permeability, 𝐾, for 

System A was determined using Darcy’s law. Differential pressure was measured at various injection 

rates, assuming 100 percent water saturation. In this thesis, 𝐾 was used to calculate the apparent 

viscosity, 𝜇𝑓
𝑎𝑝𝑝

 during coinjection for in-situ foam generation. Table 1 summarize measured and 

calculated parameters of System A. Uncertainties are based on uncertainty in the apparatus designated 

by the manufacturer (e.g. caliper, digital weighing scale, and pressure transducers).   

Table 2: Key parameters of System A determined from routine core analysis. Low porosity coincides with limited 

matrix space in marble and high permeability indicates good communication between the fractures in System A.   

Length [cm] 
±𝟎. 𝟎𝟎𝟐 [cm] 

Diameter [cm] ±
𝟎. 𝟎𝟎𝟐 [cm] 

Bulk volume [cm3] Pore volume 

[cm3] 
Porosity [%] Abs.perm [D] 

14.935 5.080 302.0 ± 1.0 1) 17.9 ± 0.2 1) 5.95 ± 0.061) 3.94 ± 0.07 1) 

1)Uncertainties calculated from equation (A1) in appendix A.  

7.1.2 Experimental Setup and Equipment 

Figure 19 gives an overview of the experimental setup used for System A. Black lines represents 

plastic tubing and green lines represent cables connecting different devices to a computer.  

 

Figure 19: Schematic of the experimental setup used during coinjection of surfactant solution and gas into fractured 

marble cores. Black lines with arrows indicate the direction of fluid flow inside plastic tubing whereas the green lines 

indicate connection cables between devices and a computer. The computer was used to monitor pressure and regulate 

gas injection rate via a gas mass flow controller.  
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List of Equipment Used  

 2 x Air pressure supply (Maximum pressure delivery of 10 bar) 

 Bronkhorst EL-FLOW® Select Series Mass Flow Meter / Mass Flow Controller 

 1/16 plastic tubing with Swagelok fittings and valves 

 Pharmacia LKB P-500 pump 

 3 x ESI Digital USB Pressure Transducer, range 0-6 barg (± 0.1 % FS) 

 Computer used to regulate gas mass flow controller and record pressure  

 Two-inch Hassler type core holders with confinement pressure 

 Production tank (20-liter volume) used to maintain a constant back pressure 

7.1.3 Description of Experimental Procedure 

The fractured core was placed inside a Hassler core holder, as shown in Figure 19. A confinement 

pressure of approximately 10 bar was applied to hold the core in place and avoid fluid flow outside the 

fractures during coinjection. Surfactant solution from the Pharmacia pump and gas from the 

Bronkhorst Mass Flow Controller was injected in two separate tubes connected to Swagelok 

distribution ports on the inlet side. Two ports located in close proximity of each other was used to 

ensure rapid mixing between the two phases and facilitate in-situ generation of foam inside the 

fractures. Two ESI pressure transducers was connected on the inlet and outlet tubing to measure the 

differential pressure across the system.  

Produced surfactant solution and gas was collected in a tank at the outlet, with valve 3 and 4 open. By 

opening valve 5 to an air pressure supply, the production tank generated a backpressure in System A. 

Compressed air worked as a piston by applying force on accumulated liquid at the bottom of the tank. 

Elevated flow pressure reduce gas compressibility effects and could thus enhance foam quality 

(Buchgraber et al., 2012). The pressurization was performed in advance of the experiments, using 

multiple steps in pressure increase (e.g. 0.5 bar in each step). Elevated backpressure resulted in 

temporary backflow inside the system, and pressure was not increased further until steady state flow 

was confirmed (i.e. stabilized differential pressure). A dedicated ESI pressure transducer was 

connected to the tank to monitor potential increase in backpressure during the coinjections.  

The coinjections in System A used a constant volumetric rate and pre-defined changes in gas fraction. 

Fg 0 − 1 indicates a coinjection from pure surfactant injection (Fg = 0) to pure gas injection (Fg =

1.0). Fg 1 − 0 represent the opposite coinjection, changing from pure gas injection (Fg = 1.0) to pure 

surfactant injection (Fg = 0). Table 3 show changes in gas fraction during a 3 ml/min coinjection.     

Table 3: Variations in gas fractional flow during coinjection with a constant volumetric rate of 3 ml/min. Air was used 

as injected gas and 1 wt% Huntsman SURFONIC® in 1 wt% NaCl brine was used as injected surfactant solution.  

Fg 0 – 1 coinjection 

Gas fraction [frac. of total flow] 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

Gas rate [ml/min] 0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0 

Surf. Solution rate [ml/min] 3.0 2.7 2.4 2.1 1.8 1.5 1.2 0.9 0.6 0.3 0 

Fg 1 – 0 coinjection 

Gas fraction [frac. of total flow] 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 

Gas [ml/min] 3.0 2.7 2.4 2.1 1.8 1.5 1.2 0.9 0.6 0.3 0 

Surf. Solution [ml/min] 0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0 
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7.2 System B: Fractured Marble Cores (Four-Inch Diameter) 

A fractured core with a diameter of four inches was developed to evaluate how foam behavior change 

with increased fracture length. Similar coinjections (as in System A) were performed, using a constant 

volumetric rate and pre-defined alteration of gas fractional flow. In addition, it was desired to visualize 

foam flow inside the fractures using a combined PET/CT scanner at the Haukeland University 

Hospital. Hence, an almost identical experimental setup as the one for System A was rigged in the 

PET lab. Because the PET machine is used on cancer patients during the weekdays, the experiment 

was conducted over a weekend.  

7.2.1 Experimental Setup and Equipment 

Figure 20 show the PET/CT scanner with some of the equipment used during the coinjections. 

Equipment from System B are listed below.      

 

Figure 20: Pictures from the PET/CT experiment at Haukeland University Hospital. 1) The core holder alone was 

scanned with a high resolution CT scan to map major fractures inside the core. Lasers were used to adjust the core 

into optimal position. 2) An overview of the experimental setup during PET/CT scan. A nitrogen tank supplying the 

mass flow controller is visible in the background and a hand-regulated confinement pump is seen to the left. The 

patient bed holding the core was adjustable in horizontal direction and was situated inside the detector ring during 

the scan.      

List of Equipment Used 

 Siemens Biograph™ TruePoint™ medical PET/CT scanner 

 Four-inch Hassler type core holder compatible with X-ray and gamma scanning from Core 

Laboratories  

 18F-FDG radioactive isotope produced in a cyclotron was used to trace surfactant solution 

 Autoclave/Swagelok fittings and valves 

 Production tank connected to a backpressure regulator to maintain a constant backpressure 

 Nitrogen tank  

 Bronkhorst EL-FLOW® Select Series Mass Flow Meter / Mass Flow Controller 

 Pharmacia LKB P-500 pump 

 2 x ESI Digital USB Pressure Transducer, range 0-6 barg (± 0.1 % FS) 

 Computer used to regulate gas mass flow controller and record pressure 
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7.2.2 Description of Experimental Setup 

First, the four-inch core holder was placed inside the PET/CT scanner for a dry CT scan. Lasers were 

used to position the core in the center of the bore with detectors.  X-rays with an energy of 120 keV 

was used, and registered attenuation was converted to 490 vertically sliced images. The image stack 

covered the entire length of the core and had a high resolution with voxel sizes 0.6 mm x 0.6 mm x 0.6 

mm. High resolution is favorable as it makes it easier to characterize fractures.    

Prior to the PET scan, an experimental setup as the one for System A was established, with the core 

holder resting on the patient bed as shown in Figure 20. After the equipment was assembled, the bed 

was moved horizontally until the core holder was located in the center of the detector ring. Crucial 

equipment such as the Bronkhorst mass flow controller and the Pharmacia pump was mounted to the 

patient bed to avoid unnecessary pull on the plastic tubing during bed positioning. The mass flow 

controller received nitrogen gas from a tank whereas the Pharmacia pump was supplied by surfactant 

solution from a container on the floor. Long plastic tubing was used to give the system flexibility to 

movement. The production tank was placed behind the PET/CT machine and was connected to the 

outlet of the core with a long plastic tubing. Backpressure was regulated with an available air pressure 

supply in the lab. In addition, a backpressure regulator was installed on the production tank to 

evacuate potential overpressure inside the tank.  

Radioactive 18F-FDG with an activity of 350 MBq was produced in a cyclotron by a radiologist the 

same morning and was delivered in a syringe stored in a lead box. Immediately after the Fg 0 − 1 

coinjection was initiated, 18F-FDG was added to the surfactant solution. Detected PET signal was 

monitored over a time period of 8 hours and included all changes in gas fractional flow from Fg = 0 to 

Fg = 1.0. A PET scan detects only gamma radiation and does not show isotope distribution inside the 

rock. Hence, a CT scan was performed in advance with identical resolution as the PET (voxel size 2.0 

mm x 2.0 mm x 0.6 mm) to map the fractured core. Merging PET/CT images will then result in a 3D 

image of surfactant distribution within the core.  

18F-FDG did still emit a relatively high radiation at the end of the experiment, and the dismantling of 

the experimental setup was done the next day.  

 

 

 

.  

 

  



36 

 

7.3 System C: Fractured Marble Network 

The fractured marble network described in Section 6.3 was used to up-scale foam flow in fractures 

spanning over a large area. Although PET/CT imaging of a core gives a unique visualization of foam 

distribution inside a fractured system, the low resolution prevents evaluation of foam texture. The 

transparent Plexiglas surrounding the marble network, however, facilitates visual inspection of foam 

texture and bubble variation at different gas fractions. The experiments on the fractured marble 

network were conducted in the petroleum lab at the Department of Physics and Technology together 

with fellow master student Snorre Sande Vasshus.  

7.3.1 Setup and Equipment 

An overview of the experimental setup is shown in Figure 21. Details from the experimental 

procedure are given in Section 7.3.2.  

 

Figure 21: Schematic of the experimental setup used when surfactant solution and gas was coinjected into a fractured 

marble block. Black lines with arrows indicate the direction of fluid flow inside plastic tubing while the green lines 

indicate connection cables between devices and a computer. The computer was used to monitor pressure and regulate 

gas injection rate through a gas mass flow controller.   

List of Equipment Used 

 Nitrogen tank 

 Bronkhorst EL-FLOW® Select Series Mass Flow Meter / Mass Flow Controller 

 Pharmacia LKB P-500 pump 

 2 x ESI Digital USB Pressure Transducer, range 0-6 barg (± 0.1 % FS) 

 Computer used to regulate Mass Flow Controller and record pressure  

 1/16 plastic tubing with Swagelok fittings 
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7.3.2 Description of Experimental Procedure 

The fractured marble network was placed on an elevated platform in advance of each experiment to 

optimize the field of view through transparent Plexiglas plates covering the model. Coinjections was 

performed both horizontally and vertically. During horizontal coinjections, the model rested on the 

platform whereas the vertical coinjections were performed using an upright position (perpendicular to 

the platform plane), as shown in Figure 22. Vertical position facilitates gravitational drag on the 

injected fluids and makes it possible to observe the effect of gravity on foam distribution inside the 

fractured network.  

 

Figure 22: Schematic of horizontal and vertical coinjection configurations. Inlet represents two separate distribution 

ports located in close proximity to each other and the outlet represent one production port. Black arrows indicate 

expected direction of flow inside the fractures.   

A series of Swagelok distribution ports were available on the inlet side of the model. To ensure rapid 

mixing between gas and surfactant solution and generate foam, two ports located next to each other 

were used during coinjection. Unused ports were shut in throughout the experiments to maintain a 

sealed system. The inlet port for gas received continuous gas from a digitally controlled mass flow 

controller (Bronkhorst) supplied by a nitrogen tank and the neighboring port received surfactant 

solution from a pump (Pharmacia). The total rate between gas and surfactant solution was kept 

constant whereas the amounts of gas/surfactant were regulated in predefined fractions.  

Differential pressure was measured to calculate the pressure gradient at each gas fraction. A pressure 

gradient is given as differential pressure divided by system and was considered more appropriate than 

differential pressure because it allowed comparison of flow data from different sized systems. 

Differential pressure was calculated by subtracting the absolute pressure measured with an ESI 

transducer in the inlet tubing for surfactant with the absolute pressure at the outlet. Because injected 

fluids were produced directly into an open effluent collector, the outlet pressure was assumed to 

remain constant at one atmosphere (14.7 psi). An additional ESI transducer was connected directly 

into the fractured network. Measurements from several locations inside a fractured network may be 

used to evaluate the hydraulic communication between fractures (Fernø et al., 2016). Almost identical 

pressure measurements in all experiments suggested good communication between the fractures.   

1 wt% brine was injected into the fractured marble network in advance of all experiments to remove 

remaining surfactant solution and gas from previous coinjections. Immobile gas bubbles were 

effectively removed when the system was placed in an upright position, injecting from the bottom and 

producing at the top. The ESI transducers was opened to the room and zero censored before 

coinjection was initiated. The gas fractional flow was not changed until steady state flow was 

achieved, i.e. stable flow pressure over a period of time.  
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8 Foam Characteristics in Fractured Systems  

A total of 13 coinjections were conducted in three different fractured systems to evaluate foam 

dependency on fracture size and fracture geometry. Raw pressure data from each individual 

experiment is included in appendix C, and the duration of each gas fractional flow is indicated with 

black, vertical lines. Uncertainties were calculated in all experiments by equations presented in 

appendix A. Results from the experiments listed in Table 4 will be discussed next.  

Table 4: Overview of the experiments included in this thesis. System A corresponds to a fractured marble core with a 

diameter of two inches, System B corresponds to a fractured marble core with a diameter of four inches, and System 

C corresponds to a fractured marble network (FMN). All experiments were conducted at normal conditions (20 °C 

and 1 atm).  

Fractured 

system 

Coinjection Rate [ml/min] Gas Surfactant Comment 

A (2” core) 0-1 1 Air Brine Baseline 

A (2” core) 0-1 1 Air Huntsman  Baseline 

A (2” core) 0-1 1 Air Huntsman  

A (2” core) 0-1 2 Air Huntsman  

A (2” core) 0-1 3 Air Huntsman  

A (2” core) 0-1 2.5 Air Huntsman  

A (2” core) 1-0 2.5 Air Huntsman  

B (4” core) 0-1 8 Nitrogen Huntsman  

B (4” core) 0-1 5 Nitrogen Huntsman PET/CT exp. 

C (FMN) 0-1 3 Nitrogen Petrostep Horizontal 

C (FMN) 1-0 3 Nitrogen Petrostep Horizontal 

C (FMN) 0-1 3 Nitrogen Petrostep Vertical 

C (FMN) 1-0 3 Nitrogen Petrostep Vertical 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



41 

 

8.1 Foam Characteristics in System A  

Coinjections were performed on a fractured marble core with a dimeter of two inches in collaboration 

with fellow master student Snorre Sande Vasshus. Each experiment used a constant total volumetric 

rate between gas and surfactant solution (air and 1 wt% Huntsman SURFONIC® in 1 wt% NaCl 

brine) where gas fractional flow was varied in predefined fractions.  

8.1.1 Pressure Fluctuations and Gas Compressibility Effects    

Figure 23 show differential pressure as a function of time during an 1 ml/min coinjection of surfactant 

solution and gas. Vertical black lines are added to indicate the duration of each gas fraction. Fine-

textured foam was visually confirmed through a plastic tubing at the outlet, but scattering in pressure 

made it difficult to analyze flow characteristics. The experimental setup was hence examined to find 

the cause of the fluctuations. A peculiar trend was identified when movement of foam bubbles inside 

the outlet tubing was compared with differential pressure. In time intervals of 10-20 seconds, the 

pressure increased almost exponentially. During pressure buildup, bubbles remained stationary inside 

the outlet tubing. Suddenly, the pressure dropped and foam bubbles accelerated into the effluent 

collector at the production outlet. Pressure fluctuations occurred repeatedly during the first two hours 

of coinjection and increased in magnitude between Fg = 0.3 − 0.5. Abrupt changes in foam flow 

corroborate with findings from Rossen (1988), attributing gas compressibility effects to fluctuations in 

pressure. If lamellae stop simultaneously in constriction sites of the flow path (e.g. transition zone 

between wide and narrow fractures), the flow resistance increase significantly. Eventually, gas starts to 

compress due to elevation in flow pressure. Compression of individual lamella result in an unequal 

pressure distribution between flowing bubbles, leading to lamella separation and discontinuous flow. 

Pressure fluctuations could also originate from the viscosity contrast between water and gas. Because 

injected surfactant solution got a significantly higher viscosity than air, it is possible that a viscous 

drag between water/gas could separate lamellae at low gas fractions. Figure 23 display a significant 

reduction in pressure fluctuation when gas fractional flow was increased from Fg = 0.5 to 0.6, 

suggesting that viscous drag got less impact on foam stability when the amount of gas exceeds 

surfactant solution. A possible explanation to reduced fluctuation in pressure at high gas fractions is 

based on the assumption that surfactant solution (water) is more wetting to the fracture walls (calcite) 

compared to the gas phase (air). At high gas fractional flow, foam flows relatively freely in the center 

of the fractures with water residing on rock surfaces due to the wetting preference of calcite, leading to 

stable flow conditions within fractures.       
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Figure 23: Differential pressure [psi] plotted as function of time [minutes] during Fg 𝟎 − 𝟏 coinjection with a total 

volumetric rate of 1 ml/min. Black lines represent the duration of each gas fraction. The first two hours was 

dominated by pressure fluctuation, most likely due to gas compressibility effects. Differential pressure appeared to 

stabilize at high gas fractions.   

Figure 24 shows differential pressure as a function of time during an 1 ml/min coinjection after a 

backpressure regulator was installed downstream of the fractured core. Constant backpressure 

appeared to have a positive impact on foam stability, showing reduced fluctuation in pressure 

compared to the 1 ml/min coinjection without backpressure presented in Figure 23. Observations of 

foam flow inside a plastic tubing at the outlet verified stabilized flow conditions; instead of 

discontinuous fluid movement, foam maintained a constant velocity. Elevated flow pressure appears to 

stabilize individual lamella and limit unequal pressure distributions leading to gas compressional 

effects. A constant backpressure was hence used in a majority of the coinjections presented in this 

thesis.  

 

Figure 24: Differential pressure [psi] plotted as a function of time [seconds] during 1 ml/min coinjection after a 

backpressure regulator was installed. Black arrows indicate duration of each gas fraction, and pressure fluctuations 

appeared to be significantly reduced.  
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8.1.2 Baseline Study 

A baseline study was carried out to evaluate differences in fluid flow during coinjection with and 

without surfactant solution present. The baseline used 1 wt% NaCl brine and is represented by black 

dots in Figure 25, displaying averaged pressure gradients for pre-defined gas fractions during Fg 0 − 1 

coinjection. The baseline show limited increase in pressure between Fg = 0.2 − 0.4. Density 

difference between gas and water might have caused segregated gas flow in the top of the fractures 

where increased gas content had little impact on total fluid flow inside the fractures. Elevated pressure 

at Fg = 0.5 (same amount gas/brine injected) corroborates with discontinuity between injected phases 

where reduced relative permeability increase the flow resistance. Although flow conditions changed 

towards one-phase flow (i.e. gas) between Fg = 0.5 − 0.9, the pressure appeared to increase almost 

linearly. This contradicts expected flow behavior in a water-wet system where flowing gas would 

receive limited flow resistance from water residing on rock surfaces. The significant flow resistance 

(1.35 psi/ft) at Fg = 1.0 (pure gas injection) may be attributed to capillary end effects where water 

accumulates near the outlet of the core and reduce the relative permeability of gas. However, two 

factors challenge the validity of the baseline. Firstly, the baseline test in System A was carried out 

after a series of surfactant/gas coinjections. Mobilization of adsorbed surfactants on rock surfaces 

could have resulted in generation of foam, and a peak in pressure at Fg = 0.9 (1.65 psi/ft) correlates 

with foam behavior reported elsewhere (Pancharoen et al. (2012) determined Fg = 0.91 to result in 

maximum flow resistance during foam flow in fractures). Removal of surfactants is critical to obtain a 

representative baseline. For instance, Nguyen et al. (2005) handled surfactant retention by saturating 

cores with cleaning solvent for 24 hours between foam floods. Secondly, great uncertainties are 

associated with the averaged pressure gradients in the baseline. Based on observations from Figure A 

3 in Appendix C, differential pressure did not seem to stabilize before gas fractional flow was altered. 

Limited flow stability was especially apparent at low gas fractions (Fg = 0.2 − 0.4), increasing the 

uncertainty of the averaged  pressure gradients in this flow domain.  

The blue dots in Figure 25 represents an 1 ml/min coinjection with surfactant solution and gas. 

Elevated pressure at Fg = 0.2 (1 psi/ft) compared to the baseline (0.5 psi/ft) is attributed to foam 

generation immediately after gas entered the system. Although gas constitutes a small fraction of total 

flow at Fg = 0.2, the high transmissivity of the fractures results in effective distribution of gas inside 

the core. Observation of lamellae inside the outlet tubing after 1.4 pore volumes injected confirms a 

high gas mobility. Gradual increase in pressure towards a peak at Fg = 0.8 (2.2 psi/ft) corroborate 

with foam behavior described by Kam (2007); with increased gas quality, foam texture change from a 

wet state where bubbles are well-separated by liquid to dry, gas rich bubbles of uniform size 

distribution. A high number of bubble films characterizing high-quality foams result in increased flow 

resistance. Further increase in gas fraction (Fg > 0.8) resulted in reduced pressure gradients. Because 

foam get limited supply of surfactant solution at high gas fractions, lamella starts to thin. Film thinning 

destabilize foam and results in bubble coalescence and hence reduced flow resistance. Elevated 

pressure in the baseline compared to the surfactant/gas coinjection at Fg = 1.0 is believed to be a 

result of insufficient flow stability. Comparison of Figure A 3 and Figure A 4 show that pure gas 

injection (Fg = 1.0) was maintained for an extended time period in the surfactant/gas coinjection 

compared to the baseline. Assuming foam was generated during the baseline test, a shorter exposure to 

pure gas flow could have caused a smaller degree of foam coalescence, leading to increased average 

pressure gradient compared to the surfactant/gas coinjection.  
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Figure 25: Comparison of pressure gradient [psi/ft] variations with gas fraction between coinjection of brine and gas 

(black) and surfactant solution and gas (blue). A black arrow indicates the direction of change in gas fractional flow 

from pure liquid injection (Fg = 𝟎) to pure gas injection (Fg = 𝟏. 𝟎). Included error bars represents standard 

deviation between averaged pressure gradients at each gas fraction. The baseline had larger uncertainties at low gas 

fractions due to unstable flow conditions whereas surfactant/gas had varied distribution in uncertainty at different 

gas fractions.     

8.1.3 Foam Dependency on Injection Rate 

Foam rheology was investigated by comparing coinjections of different flow rates. Measured 

differential pressures relate flow resistance to foam quality, and were used to calculate the apparent 

viscosity of foam. Observation of change in apparent viscosity at different flow rates gives valuable 

information on shear-stress relations between flowing foam and rock surfaces. In addition, mobility 

reduction factors for all coinjections presented in this thesis (including System B and System C) were 

examined.   

Figure 26 show three Fg 0 − 1 coinjections with different total injection rates (Vt = 1, 2, 3 ml/min). 

Lines between pressure points does not represent measured data but are included to distinguish 

different coinjections from each other. All pressure gradients increased with gas fractional flow to a 

peak at either Fg = 0.8 or 0.9 before pressure subsequently dropped due to foam coalescence. The 

maximum pressure gradient seems to depend on total injection rate as Vt = 1, 2, 3 ml/min achieved 

2.1, 2.2 and 2.5 psi/ft, respectively. Both the 1 and 3 ml/min coinjection peaked at Fg = 0.8. This gas 

fractional flow differs from previous findings on foam flow in fractures. Pancharoen et al. (2012) 

simulated foam transport in 1D, 2D and radial fractured models and found maximum flow resistance 

to occur at Fg = 0.91. At this gas fraction, foam texture change from spherical bubbles to polyhedral 

bubbles. Because simulations were based on several assumptions (e.g. constant fracture aperture, 

atmospheric outlet pressure and a gas/water end-point relative permeability of 1), it is difficult to relate 

observed foam behavior directly to data from System A. The coinjections in Figure 26 occurred in 

rough-walled fractures of varied aperture, yielding a significant drag on flowing fluids. A possible 

explanation to increased foam strength at Fg = 0.8 compared to Fg = 0.9 (for Vt = 1, 3 ml/min) is 

based on an interesting observation made by Kovscek et al. (1995) studying foam flow through a 

transparent, rough-walled fracture. At low gas fractions (i.e. wet texture), foam maintained a relatively 

high flow velocity within the fracture. The high mobility was thought to be a result of liquid exchange 
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between lamella and the rock, effectively lubricating the rough fracture walls. A higher liquid content 

at Fg = 0.8 compared to Fg = 0.9 could have resulted in lubrication of rough fractures walls, reducing 

the shear-stress between flowing lamellae and rock surfaces. The 2 ml/min coinjection (orange) had a 

lower pressure gradient at Fg = 0.1 (0.35 psi/ft) compared to the 1 and 3 ml/min coinjections, most 

likely due to delayed zeroing of the ESI pressure transducers in the 2 ml/min coinjection. However, a 

similar trend with increased pressure gradient with increased gas fractional flow suggests that similar 

flow conditions were obtained and that the coinjections are comparable.   

 

Figure 26: Pressure gradients [psi/ft] as a function of gas fractional flow during Fg 𝟎 − 𝟏 coinjections of various total 

injection rates (Vt = 𝟏, 𝟐, 𝟑 ml/min). Lines between the pressure points does not represent measured data but are 

added to distinguish different experiments from each other. Included uncertainties are calculated as the standard 

deviation of the averaged pressure data representing each gas fraction, and increased with increased total injection 

rate.  

Apparent viscosity, 𝜇𝑓
𝑎𝑝𝑝

, was calculated using equation (2) where the product between absolute 

permeability of System A (3.9 Darcy) and pressure gradient was divided by superficial flow velocity 

(1,2, and 3 ml/min). Figure 27 display apparent viscosity as a function of gas fractional flow. The 

apparent viscosity reached a maximum at high gas fractional flow in all three coinjections. This 

corroborates with generation of fine-textured foam of significant viscosity, inducing elevated flow 

resistance within the fractures. However, foam had a significantly higher apparent viscosity during 1 

ml/min flow compared to the 2 and 3 ml/min coinjections. Decreasing apparent viscosity with 

increased total flow rate suggest a reduction in foam strength due to shear thinning (Allen, 1995). 

Increased flow rate result in a larger shear-stress between lamella and rock (i.e. rough fracture 

surfaces), leading to separation of bubbles. Although a flowing lamella constitutes a dynamic system 

that could stretch and regulate its surface area to maintain flow (e.g. through fractures with variations 

in fracture aperture), the rough fracture walls in System A seem to have a devastating effect on foam 

at high injection rates.        
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Figure 27: Apparent viscosity [cP] as a function of gas fractional flow. The lowest injection rate (1 ml/min in blue) had 

the highest apparent viscosity of the different coinjections. Reduced apparent viscosity with increased flow rate 

suggests shear thinning of the foam. Error bars are included to indicate uncertainties in apparent viscosity at different 

flow rates, and are based on standard deviations in the averaged pressure gradients.         

The mobility reduction factor (MRF) quantify the ability of foam to reduce gas relative permeability 

within fractures and was calculated for the Vt = 1, 2, 3 ml/min coinjections as the ratio between the 

apparent viscosity of foam and the viscosity of the injected gas (air), i.e. reconfiguration of equation 

(4). In addition, MRF was calculated for coinjections in System B and System C. Figure 28 show 

variations in MRF with total flow rate at high foam qualities (Fg ≥ 0.6). MRF values from the low 

foam quality domain (Fg ≤ 0.5) are not included because variations of volumetric rate at high liquid 

content seems to have little impact on MRF (Buchgraber et al., 2012). Note that x and y axis are 

logarithmic, making it easier to observe change in MRF at various injection rates. A negative slope in 

the included trendline indicate a decreased mobility reduction with increased injection rate for all 

fractured systems evaluated in this thesis. This suggests shear thinning of foam in fractured marble 

systems and correlate with findings from Fernø et al. (2016). However, significant variations in MRF 

at 3 ml/min coinjection show that there are differences in foam rheology between different-scaled 

systems. Thus, apparent viscosity measurements will be discussed for both System B and System C.  
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Figure 28: Mobility reduction factor (MRF) plotted as a function of total flow rate [ml/min] in a logarithmic axis 

configuration. MRF decreased with increased flow rate, indicating shear thinning of foam behavior in fractured 

marble systems. A power-trendline was included to indicate the decline in MRF. Trendline equation and R2 value are 

shown in the box below the plotted data.  

8.1.4 Alternation in Gas Fractional Flow  

Coinjection order was varied to evaluate foam dependency on saturation history. Figure 29 shows 

pressure gradients of two coinjections using a total rate of 2.5 ml/min with opposite variations in gas 

fractional flow. Fg 0 − 1 (blue curve) represents a coinjection from pure surfactant injection (Fg = 0) 

to pure gas injection (Fg = 1.0), and display a characteristic increase in pressure gradient with 

increased gas fractional flow to a peak at Fg = 0.9 (2 psi/ft). Dry foam and lamella coalescence at 

Fg = 1.0 resulted in a final pressure gradient of 1.5 psi/ft. A Fg 1 − 0 coinjection (red curve) was 

conducted immediately after the Fg 0 − 1 coinjection, indicated by a similar pressure gradient at Fg =

1.0. In contrast to the Fg 0 − 1 coinjection where pressure showed a strong dependence on foam 

quality, the Fg 1 − 0 coinjection show limited variations in pressure as gas fractional flow is reduced 

towards Fg = 0. Deviation in pressure development between the curves suggests hysteresis related to 

saturation history within the fractured core. A possible explanation to hysteresis in the Fg 1 − 0 

coinjection is accumulation of immobile, trapped gas within fractures during the Fg 0 − 1 coinjection 

performed in advance. Trapped bubbles of gas situated in the center of fractures reduce the relative 

permeability of flowing liquid/gas and result in significant flow resistance. Because pressure remained 

relatively constant with increased liquid flow (i.e. decreased gas fractional flow), trapped foam 

bubbles appears to have a significant resistance against viscous drag from flowing water inside the 

fractures.   
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Figure 29: Pressure gradient [psi/ft] as a function of gas fraction during Fg 𝟎 − 𝟏 and Fg 𝟏 − 𝟎 coinjection using a total 

volumetric flow rate of 2.5 ml/min. The blue curve represents the Fg 0 – 1 coinjection, changing from no fractional gas 

flow initially to 100 percent gas flow in the end. The opposite coinjection, Fg 1 – 0 is shown as a red curve. 

Representative arrows are included to indicate the direction of changes in gas fractional flow. Hysteresis between the 

curves is believed to be result of saturation history and presence of trapped gas. The error bars in each pressure point 

are calculated from the uncertainty given by the manufacturer of the ESI transducers.   
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8.2 Foam Flow in System B  

Similar coinjection experiments were conducted in an up-scaled system using a fractured marble core 

with a diameter of four inches. The objective was to evaluate whether a greater system size changed 

foam rheology and flow characteristics or if foam flow occurred similar to coinjections in System A. 

To make the systems comparable, the same liquid (1 wt% Huntsman SURFONIC® in 1 wt% NaCl 

brine) were used, together with a constant total rate and Fg 0 − 1 alteration in gas fractional flow. In 

addition, an imaging study of foam distribution within fractures was carried out using PET/CT 

technology.   

Figure 30 shows pressure gradient as a function of gas fractional flow during a Fg 0 − 1 coinjection in 

System B. Use of a relatively high total volumetric rate (8 ml/min) resulted in a pressure gradient of 

1.3 psi/ft at Fg = 0. Increased gas fractional flow between Fg = 0 − 0.6 caused a steady increase in 

pressure. After Fg = 0.6, however, the mass flow controller (MFC) was unable to provide sufficient 

gas flow due to elevated flow pressure, and predefined gas fractions were reduced to maintain flow. 

Adjusted  gas rates are presented in Table 5 and resulted in an averaged total flow rate of 6.8 ml/min. 

Differential pressure data in Figure A 8 clearly indicate a decrease in pressure when total flow rate 

was changed from 8 ml/min to 6.8 ml/min 130 minutes into the coinjection. Pressure gradients at Fg =

0.8, 0.9, and 1.0 were scaled with pressure data from the same gas fractions in a 5 ml/min coinjection. 

Although a scaling procedure involves a high degree of uncertainty, it gives an estimate of pressure 

variations at high gas fractional flow during 8 ml/min coinjection. Estimated pressure gradients are 

indicated with gray arrows and appeared to be almost identical at Fg = 0.8 and 0.9, suggesting a 

somewhat uniform foam stability at two different gas fractions. This was likely due to insufficient 

stabilization in flow before gas fractional flow was altered as foam texture and strength is known to be 

highly dependent upon gas fractional flow. Pressure gradient was reduced when gas fractional flow 

was increased at Fg = 1.0, corroborate with dry foam and bubble coalescence.   

 

Figure 30: Pressure gradient [psi/ft] as a function of gas fractional flow during Fg 𝟎 − 𝟏 coinjections with a total 

volumetric rate of 8 ml/min in System B. A black arrow is included to clarify the direction in change of gas fractional 

flow. The solid section of the curve represent 8 ml/min flow with scaled pressure gradients at Fg = 𝟎. 𝟖, 𝟎. 𝟗, and 𝟏. 𝟎, 

whereas the dotted line represents measured pressure after total volumetric flow was reduced to 6.8 ml/min total due 

to technical difficulties with the gas mass flow controller. Included error bars are based on standard deviation in the 

averaged pressure gradients.  
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Table 5: Variations in total volumetric flow [ml/min] during 8 ml/min coinjection in System B. Italicized numbers 

represents adjustments in gas fractional flow resulting in reduced total flow.    

8 ml/min Fg 𝟎 − 𝟏 coinjection 

Gas fraction [fraction of total flow] 0.4 0.6 0.8 0.9 1 

Surfactant solution rate [ml/min] 4.8 3.2 1.6 0.8 0 

Gas rate [ml/min] 3.2 4.8 5.7 6.0 6.2 

Total flow rate [ml/min] 8 8 7.3 6.8 6.2 

 

A Fg 0 − 1 coinjection with a total flow rate of 5 ml/min is presented in Figure 31. Reduction in flow 

rate (i.e. from 8 ml/min) was believed to result in flow pressures below the boundary of the mass flow 

controller. The coinjection showed steady increase in pressure with increased gas fractional flow and 

correlates well with the first section of the 8 ml/min coinjection. Increased gas content between Fg =

0.7 and Fg = 0.8 resulted in a significant elevation in flow pressure, suggesting generation of fine-

textured lamella.  

 

Figure 31: Pressure gradient [psi/ft] as a function of gas fraction during a Fg 𝟎 − 𝟏 coinjection with 5 ml/min total 

volumetric rate. The black arrow indicates the direction of change in gas fractional flow. Included uncertainties are 

based on standard deviation in the averaged pressure gradients.    

The 5 ml/min coinjection discussed above was conducted in the imaging lab at the Haukeland 

University Hospital. Application of a combined PET/CT scan during coinjection made it possible to 

visualize foam flow and fluid distribution inside the fractured core. The following section summarize 

the experimental findings from PET/CT imaging in System B.  
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8.2.1 Fracture Characterization of System B Using X-ray Computed Tomography 

A CT scan of high resolution (0.6 mm x 0.6 mm x 0.6 mm) was performed on System B before the 

coinjection to identify fractures where fluid flow was likely to occur. Thin 2D slices of the entire 

fractured core (35 cm) was converted to a 3D image using Amira 3D software. Figure 32 show a 

cropped 3D picture of System B and indicates substantial fractures in the center of the core.      

 

Figure 32: High resolution dryscan (0.6 mm) of the entire fractured core in System B. The white layer surrounding 

the core represents the Hassler core holder. Major fracture patterns are clearly visible through the core.      

PET images have a lower resolution (2.0 mm x 2.0 mm x 0.6 mm) with a limited field of view (FOW) 

of 16.6 cm consisting of 83 slices. Figure 33 shows a side-view of the total fractured core with  inlet 

on the right and outlet to the left. PET field of view is shown in red and two major fractures, F1 and 

F2, are indicated in green.   

 

Figure 33: High resolution CT image of System B. PET field of view is given in red and include two major fractures 

referred to as F1 and F2. The coinjected fluids enters System B from the right and flow towards the outlet on the left.  
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8.2.2 Visualization of Foam Flow Using Positron Emission Tomography 

Positron emission tomography was used to visualize fluid flow inside the fractures at specific gas 

fractions during the 5 ml/min coinjection in System B. Surfactant solution was labelled with a 

radioactive isotope (18F), and emitted gamma rays were measured by a PET scanner over an 8-hour 

period. The number detected gamma rays, referred to as counts, are hence proportional to liquid 

content. Figure 34 shows variation in counts as a function of normalized system length (i.e. over the 

PET field of view) where position XL = 0 indicates the outlet and XL = 1 represent the inlet. Gamma 

activity was particularly high at XL = 0, XL = 0.3, and XL = 0.8, indicating areas with increased 

fracture volume storing radioactive surfactant solution. Visual comparison with Figure 33 suggests 

that XL = 0 corresponds to the parallel fracture near the center of the core, XL = 0.3 to the 

perpendicular fracture F2 and XL = 0.8 to the perpendicular fracture F1.  

Measured gamma activity for Fg = 0.4 is represented in pink, and indicates a significant PET signal 

from the perpendicular fractures F1 and F2 compared to inlet (XL = 1) and outlet (XL = 0). In fact, the 

highest measured gamma count in fracture F1 was obtained at Fg = 0.4, suggesting significant 

accumulation of radioactive 18F within fractures oriented perpendicular to the flow path. When  gas 

fractional flow was increased at Fg = 0.6 (orange curve), PET signal was reduced in F1 and F2. 

Reduced liquid content within large, vertical fractures at increased gas flow (i.e. enhanced foam 

quality), suggests that liquid was displaced by foam distributing into new pathways. At Fg = 0.9 (blue 

curve), surfactant saturation increased in F1 and F2. In addition, PET signal increased significantly 

between XL = 0 − 0.3, XL = 0.3 − 0.8, and XL = 0.8 − 0.9. A possible explanation to elevated 

gamma activity at high gas fractional flow is discussed below.  

 

Figure 34: PET counts as a function of normalized length over the PET field of view in System B. Measured PET 

signal as a function of length gives valuable information regarding distribution of radioactive FDG at different gas 

fractions during coinjection. Peaks labelled as F1 and F2 was identified as large, vertical fractures oriented 

perpendicular to the flow path through CT images of System B. Increased gamma activity in F1 and F2 are believed 

to come from extensive storage space facilitating trapping of immobile, radioactive tracers.   
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The apparent increase in PET signal over the length XL = 0 − 1 between Fg = 0.6 to Fg = 0.9 

indicate an higher saturation of radioactive 18F at high gas fractional flow. This may seem strange as 
18F was injected through the aqueous phase (i.e. surfactant solution), constituting 10 percent of the 

total volumetric fluid flow injected at Fg = 0.9. However, pressure data in Figure 35 plotted together 

with the sum of PET counts in Figure 34 indicate that the highest flow resistance was obtained at high 

gas fractional flow. Kovscek et al. (1995) observed lamella to remain stationary and bridge fracture 

aperture at high gas fractional flow in rough-walled fractures. Because 18F is present on lamella, 

increased levels of stationary foam at high gas fractional flow could have increased the PET signal. 

Stationary foam may also entrap concentrated surfactant in vugs by sealing off communicating 

fractures. To validate this possibility, a PET image montage was created to visualize fluid distribution 

in 3D space. All images in Figure 36 were captured at time intervals where pressure seemed to 

stabilize, indicating stabilized flow conditions representative of each gas fractional flow.   

 

Figure 35: Differential pressure [psi] and total PET count over ten minutes intervals are plotted as a function of time 

[min]. Measured gamma activity appeared to increase with gas fractional flow (and pressure). A possible explanation 

to this development are based on a higher degree of stationary, trapped fluids at high gas fractional flow compared to 

flow at lower gas fractions.  

Figure 36 display variations in PET signal in 3D space at different gas fractions. Red color indicates 

high 18F concentration and blue color represents low 18F concentration. At Fg = 0.4, concentrated 

signal is observed F1 and F2, and coincide with accumulation of surfactant solution in perpendicular 

fractures at low gas fractional flow as discussed earlier. 18F appeared to be well-distributed in vertical 

direction in F1, and may suggests that presence of foam outside the fracture prevents liquid to 

accumulate in the bottom of the fracture from gravity pull. At Fg = 0.9, 18F concentration was lowered 

in F1 (indicated with a green color) whereas F2 seemed to contain a similar concentration as for Fg =

0.4. However, PET signal was detected in several locations new locations compared to Fg = 0.4, for 

instance at XL = 0 and between XL = 0.8 and 1.0. Elevated distribution in PET signals indicate 

increased propagation of foam inside fractures and diversion of flow into previously untouched zones. 

Increased amounts of foam within major flow fractures may also trap surfactant in vugs, resulting in 

elevated PET count. Reproduction of PET experiments is however necessary to draw conclusions.  
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Figure 36: 3D representation of 18F distribution inside System B during foam flow. Red color indicates a high count 

and presence of 18F whereas blue color indicates low gamma activity. Increased distribution of immobile, trapped 

foam at high gas fractional flow was believed to result in increased 18F concentration.   

8.2.3 Impact of Up-Scaling on Fractured Marble Cores 

Figure 37 show measured pressure gradients at different gas fractions in System A and System B. 

Green colored curves represent coinjections in System A whereas blue curves corresponds to 

coinjections in System B. All coinjections appear to follow a similar trend: the pressure gradient 

increases with enhanced foam quality (i.e. gas content) and peaks at either Fg = 0.8 or Fg = 0.9, 

before the pressure declines during pure gas injection at Fg = 1. The pressure gradient for the 8 

ml/min coinjection in System B (dotted blue curve) appeared to result in greater pressure gradients 

compared to coinjections at lower flow rates. However, there is a significant uncertainty related to the 

pressure gradients for 8 ml/min pressure data at Fg < 0.6 as these were estimated by scaling 

equivalent pressures obtained during 5 ml/min coinjection. Good overall correlation between the 

different sized systems (2” and 4” cores) imply that the generated foam is relatively independent on 

fracture size (in terms of fracture length) and that Huntsman surfactant could be used as a foam 

stabilizer in fractured systems having both intermediate and large fractures.  
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Figure 37: Comparison of various Fg 𝟎 − 𝟏 coinjections from System A and System B. Green curves represent System 

A and blue curves represent System B. The black arrow indicates that the coinjections was changed from pure 

surfactant solution injection Fg = 𝟎 to pure gas injection Fg = 𝟏. 𝟎. The pressure gradient caused by foam seem 

independent on fracture size.  

Because injection rate was varied between coinjections in System A and B, foam rheology could be 

evaluated. Apparent viscosity calculations for System B are based on an averaged absolute 

permeability between System A and C because routine core analysis has not yet been established. 

Apparent viscosity as a function of gas fraction is presented in Figure 38, and indicates reduced 

viscosity of foam at increased flow rates. This corroborates with shear-thinning and suggests that drag 

between foam and rough fracture walls reduce foam stability and hence the ability to control gas 

mobility in different sized fractured cores at elevated flow rates.  

 

Figure 38: Comparison of apparent viscosity as a function of gas fractional between System A and B. Viscosity 

decreased with increased flow rates and indicates shear-thinning of foam. Uncertainties included as error bars are 

based standard deviation in pressure gradients calculated from equation (A3) in appendix A and the uncertainties in 

absolute permeability, calculated with equation (A1) in appendix A.  
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8.3 Foam Characteristics in System C 

A fractured marble network was used to evaluate foam flow in a complex fracture pattern spanning a 

surface area of 31.2 cm x 31.2 cm. A total of four successful experiments were conducted in 

collaboration with fellow master student Snorre Sande Vasshus on the fractured marble network, all 

with a constant volumetric rate of 3 ml/min and pre-defined regulations in gas fractional flow. The 

network was positioned both horizontally and vertically during coinjection to evaluate influence of 

gravity.   

8.3.1 Horizontal Coinjection   

Pressure gradient is plotted as a function of gas fraction in Figure 39. The dark blue curve represents a 

Fg 0 – 1 coinjection, and an initially low pressure gradient (0.2 psi/ft) was expected because the 

system was liquid filled before gas subsequently entered the system to generate foam. Steady increase 

in pressure with increased gas fraction was consistent with generation of foam, and lamellae were 

observed in large vugs at Fg = 0.1. The highest pressure gradient (1.13 psi/ft) was measured at Fg =

0.8, implying that foam induced the greatest flow resistance at a quality of 80 percent. Further increase 

in gas fraction resulted in a decrease in pressure. Fg 1 – 0 (light blue) represents the same experiment 

performed in opposite injection order, moving from right to left in Figure 39. Both curves share a 

similar trend in pressure gradient variation with gas fractional flow, indicating limited hysteresis 

compared to Figure 29 in System A. A likely explanation to limited hysteresis effects in System C is 

that the model was pre-flushed with brine between coinjections to remove remaining trapped gas, 

reducing the relative permeability of gas by blocking flow pathways (Kovscek and Radke, 1993). By 

injecting brine from the bottom-up with the system oriented in vertical direction, gas bubbles were 

observed to flow to flow towards the outlet port. In System A, the Fg 1 – 0 coinjection were carried out 

directly after an Fg 0 – 1 coinjection, leaving trapped gas saturation within the fractures.    

 

Figure 39: Pressure gradient [psi/ft] as a function of gas fraction during coinjection of surfactant solution and 

nitrogen gas into a horizontally positioned fractured marble network. The dark blue curve represents a (Fg 0 – 1 

horizontal) coinjection, changing from no fractional gas flow initially to 100 percent gas flow in the end. The opposite 

coinjection, (Fg 1 – 0 horizontal) is shown as a light blue curve. Representative arrows are included to indicate the 

direction of changes in gas fractional flow.  The error bars in each pressure point are calculated by standard deviation 

in averaged pressure gradients using equation (A3) in appendix A.   
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Foam texture depends on gas fractional flow and was visually inspected during the horizontal 

coinjections. Figure 40 shows variations in foam texture at different gas fractions for Fg 0 – 1 

horizontal. The foam observed at Fg = 0.7 and Fg = 0.8 consisted of fine, polyhedral bubbles with a 

relatively homogeneous size distribution. Grundmann and Lord (1983) characterize fine textured foam 

as particularly resistant and strong due to a high number of film faces. Polyhedral foam was observed 

throughout the fractured marble network, predominantly in the largest vugs. Because foam occupied 

major flow paths, flowing gas experienced increased resistance and had to overcome a higher capillary 

entry pressure to advance further. This is apparent in Fg 0 − 1 coinjection in Figure 39, with a peak in 

pressure gradient at Fg = 0.8. A decrease in pressure at Fg = 1.0 occurred when the foam texture 

coarsened and is likely a result of dry foam conditions. Reduced exchange of surfactant solution 

between a Plateau border and lamella at high gas fractions may results in film thinning and eventually 

film rupturing at a limiting capillary pressure (Farajzadeh et al., 2015). Fg = 1.0 in Figure 40 is an 

example of coarse foam where small bubbles has coalesced into large bubbles that span over the entire 

length of the vug.   

 

Figure 40: Foam texture at different gas fractions during Fg 0 – 1 coinjection. Foam texture changed from a uniform, 

polyhedral geometry at Fg = 𝟎. 𝟕 and Fg = 𝟎. 𝟖 to a unstable coarse texture at Fg = 𝟏. 𝟎, and is consistent with the 

pressure gradients in Figure 39.  

8.3.2 Vertical Coinjection and Gravity Segregation 

Pressure gradients are plotted as a function of gas fraction in Figure 41. Coinjections into a vertically 

positioned fractured network are given in orange and show similar trends compared to the horizontal 

coinjections represented in blue, and all coinjections peaked at high gas fractional flow. A key 

difference, however, is an obvious deviation in the magnitude on the recorded pressure during 

horizontal and vertical coinjection. Foam was visually confirmed near the inlet and outlet ports, but 

was not observed elsewhere inside the network. Limited foam distribution was likely an effect of 

gravitational segregation between injected surfactant solution and gas. Mixing occurred near the inlet 

because the two phases was contacted instantly, but over the system length (31.2 cm), gas gradually 

settled near the top whereas surfactant solution flowed further down due to density differences 

between the phases. Foam was generated near the outlet port where narrow fractures opened into the 

production tubing, most likely by a snap-off mechanism as described by (Gauteplass et al., 2015). 

Discontinuous foam within the flow paths reduced the flow resistance and the pressure gradients was 

thus lower for the vertical coinjections compared to the horizontal coinjections.  

Fg = 0.7 Fg = 0.8 Fg = 1.0 
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Figure 41: Pressure gradient [psi/ft] as a function of gas fraction during coinjection of surfactant solution and 

nitrogen gas into a fractured marble network. Blue curves represent experimental data when the system was 

horizontal and the orange ones represent experiments where the model was mounted in an upright, vertical position. 

Representative arrows for each experiments are included to indicate the direction of changes in gas fractional flow 

(i.e. if the experiments were initiated with 100 percent gas and finished with 100 percent surfactant solution or vice 

versa). The error bars included in each pressure point are calculated from standard deviation in the averaged 

pressure gradient for a given gas fractional flow.     

8.3.3 The Influence of Fracture Geometry and System Design on Foam Distribution  

The fractured marble network constitutes a relatively complex flow system of both wide and narrow 

fractures distributed over an area of 31.2 cm x 31.2 cm. Foam was immediately generated at the inlet 

port during horizontal coinjection. Use of a ball-peen hammer during the fracturing procedure ensured 

rough-surfaced fractures similar those found in nature. Flow of surfactant solution and gas through 

rough fractures with varying aperture resulted in a wide distribution of foam throughout the entire 

network. This indicate that the rough fractures provide a sufficient amount of snap-off sites. Rough 

surfaces also increase the drag between the rock surface and flowing bubbles and result in stick and 

slip movement of bubbles (Buchgraber et al., 2012). Foam generation was particularly apparent near 

the outlet port and foam was observed to propagate towards the center of the network at high gas 

fractional flow. This indicates high communication between the fractures.        

The size of the system made it possible to thoroughly investigate and observe foam propagation with 

time. Discontinuous foam distribution during vertical experiments (likely an effect of gravity 

segregation), address a possible downside with the design. A minor slug of liquid was observed 

between the Plexiglas and the marble rock when the marble network was mounted in an up-right 

position. Aluminum rods used to apply force on the Plexiglas and keep the network together was 

tightened further but with limited success. Additional flow space outside the fractures makes it easier 

for gas to flow towards the top and increase the risk of gravity segregation. The observed leakage 

brings uncertainty to whether the reduced pressure gradients measured during vertical coinjection are a 

result of gravity segregation or an effect gravitational effects on the foam itself.     
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8.3.4 Up-Scaling from Core to Fractured Marble Network 

Foam experiments in System C showed great correspondence between coinjections performed in 

opposite injection order, both horizontally and vertically. Coinjection of gas with Petrostep-C1 

surfactant resulted in generation of fine-textured foam with uniform bubble. The highest pressure 

increase was found at high gas fractional flow, similar to the pressure gradients observed in both 

fractured cores. Gas compressibility effects and abrupt changes in foam flow was not visually 

observed in System C. Pressure data from horizontal coinjection in Figure A 10 and Figure A 11 

indicates limited scatter in differential during the coinjections, but are based on the assumption of 

constant atmospheric outlet pressure. Hence, the impact of foam gas compressibility is uncertain in 

System C and visual observations of lamella only give a qualitative description of foam flow.   

Figure 42 compare pressure gradients as a function of gas fractional flow between System A, B, and 

C. Pressure gradients were lower in System C compared to the core coinjections, and this was 

attributed to use of a total volumetric rate of 3 ml/min in a fractured system of increased length. 

Figure 43 display calculated apparent viscosities for System A, B, and C and implies decreasing gas 

mobility control by foam at elevated flow rates from shear-thinning of lamella.   

 

Figure 42: Comparison various Fg 𝟎 − 𝟏 coinjections in System A, B, and C where pressure gradient [psi/ft] is plotted 

as a function of gas fractional flow. Coinjections from System A, B, and C are represented in green, blue and brown, 

respectively.  
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Figure 43: Apparent viscosity as a function of gas fractional flow in System A, B, and C. Decreasing viscosity with 

increased flow rates indicate shear-thinning of foam in fractured marble systems.  
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9 Conclusions 

Based on coinjections in System A, B, and C, the following conclusions were made.  

 Marble cores were successfully drilled, fractured, and reassembled to replicate rough-walled 

fractures found in reservoirs. Low-permeable marble was used as core material to ensure foam 

flow primarily in fractures.  

 

 Differential pressure was measured as a function of gas fractional flow to evaluate the relationship 

between foam quality and flow resistance. Coinjections in all the fractures systems obtained 

maximum flow resistance at high gas fractional flow (Fg = 0.7 − 0.9).  

 

 Change in total volumetric flow rate between the fractured systems made it possible to investigate 

foam rheology. Apparent viscosity appeared to decrease with in increased flow rates, suggesting 

shear-thinning of foam within the fractures. Shear-stress at elevated flow rates caused the mobility 

reduction factor to drop from approximately 100 at 1 ml/min total rate to 10 at 3 ml/min total rate.  

 

 Foam flow did not seem dependent on system size. Pressure gradient curves was highly 

comparable between System A, B, and C.  

 

 Hysteresis was observed in System A when coinjection order was altered from Fg = 0 − 1 to Fg =

1 − 0. Hysteresis effects was attributed to presence of trapped gas saturation within the fractured 

core after coinjection of surfactant solution and gas. By flushing System C with brine from 

bottom-up with the network oriented in vertical direction, trapped gas was bubbles were observed 

to be removed. Hence, little hysteresis was apparent during coinjections in System C.   

 

 Positron emission tomography (PET) was successfully used to investigate changes in saturation as 

a function of gas fractional flow and pressure. PET signals provided access to variation in local 

surfactant solution concentrations within the fractured network.  

 

 Visual investigation of foam texture during coinjection in System C showed that texture changed 

from uniform, polyhedral bubbles to coarse, dry bubbles at high gas fractional flow.  
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10 Future Work 

The following work is suggested based on presented results in this thesis.  

 Reproduce coinjections presented in this thesis at different flow conditions, e.g. at high pressure 

and temperature to investigate foam stability at reservoir conditions.  

  

 Routine core analysis should be conducted on System B. Porosity and absolute permeability are 

essential parameters characterizing reservoir rocks, and absolute permeability needs to be 

determined to calculate apparent viscosity.   

 

 Baseline studies should be carried out in System A, B, and C. Retention of surfactants was 

believed to occur in System A, and an effective cleaning procedure should be established to 

remove remaining surfactant solution between coinjection experiments.  

 

 Acquired PET/CT data can be used in further investigations. Fractures should be characterized in 

greater detail using obtained CT data. Local variations in detected PET signal may be used to 

study foam distribution at different gas fractional flows. One possible study would be to link 

specific trends in pressure to fluids saturations. Reproduction of PET experiments are necessary to 

draw certain conclusions on the relationship between surfactant distribution and foam flow.  

 

 Coinjections of surfactant solution and gas into oil-saturated, fractured reservoir rocks (e.g. 

carbonates) should be investigated to evaluate foam application in reservoirs. The fracturing 

device developed in this thesis may be applied to generate fractured cores with rough fracture 

surfaces. An interesting study would be to perform baseline studies on oil recovery with pure gas 

injection, and compare obtained results to oil recovery by coinjecting surfactant solution and gas. 

Results from these tests could be used to evaluate the ability of foam to reduce viscous fingering 

and limited sweep efficiency in fractured carbonate reservoirs.   
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Appendix A – Uncertainties and Calculations 

Calculated uncertainties in this thesis are based on the following equations from Erdal (2011):   

The uncertainty of an experimental value 𝑅 involving several variables 𝑥, 𝑦, 𝑧, … , 𝑖 , with individual 

uncertainties ∆𝑥, ∆𝑦, ∆𝑧, … , ∆𝑖 may be calculated as: 

 

∆𝑅 = 𝑅√(
∆𝑥

𝑥
)

2

+ (
∆𝑦

𝑦
)

2

+ (
∆𝑧

𝑧
)

2

+ ⋯ + (
∆𝑖

𝑖
)

2

 (A1) 

 

Equation (A1) was used to calculate the uncertainty of bulk volume V𝑏, pore volume 𝑉𝑝 and porosity 𝜑 

during routine core analysis of System A. As discussed in Section 7.1, these parameters are based on 

length (caliper) and mass (weight). Uncertainty in absolute permeability (i.e. Darcy’s law) was also 

calculated with equation (A1) and included uncertainties in measured pressure (ESI transducers) and 

core length/surface area (caliper). Instrumental uncertainties are listed in Table 6.    

The mean value �̅� of a series of data points 𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑁 may be calculated as: 

 
�̅� =

1

𝑁
∑ 𝑥𝑖 =

𝑥1 + 𝑥2 + 𝑥3 + ⋯ + 𝑥𝑁

𝑁

𝑁

𝑖=1

 (A2) 

 

Equation (A2) were used to calculate an averaged pressure gradient for each gas fractional flow. 

Pressure data included in Appendix C indicate significant variations in pressure between different gas 

fractional flows. Thus, the uncertainty in pressure varies with gas fraction. The uncertainty in each 

averaged pressure gradient was therefore determined using standard deviation, 𝜎, given in equation 

(A3). The uncertainty of a mean value �̅� may be calculated from standard deviation, 𝜎, quantifying the 

amount of variation between individual variables of a data set. Considering an a random variable A in 

a data set, the standard deviation 𝜎 is given as: 

 𝜎 = √(𝐴 − �̅�)2 (A3) 

    

Table 6: Instrumental uncertainties provided by the manufacture of the instruments.  

Instrument Parameter Uncertainty Unit 

Caliper Length ±0.02 mm 

Pressure transducers Pressure ±0.09 psi 

Weight Mass ±0.01 gram 

Mass flow controller Volume ±0.02  ml/min 

 

Although uncertainties related to instruments are an important factor influencing the validity of 

experimental data, the primary source of error is attributed to the procedure. Incidents with leakage of 

fluids and changed flow conditions between coinjections (e.g. different constant backpressure) are 

examples of errors that likely affected the comparability between experiments in this thesis. However, 

the statistic validity of experimental work increase with number of experiments, and findings from this 

thesis will hopefully contribute to improved understanding of foam behavior in fractured systems.    
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Appendix B – Fundamentals  

The following section includes fundamental parameters relevant for foam and petroleum recovery in 

general.  

Interfacial Tension 

Interfacial tension 𝜎 (IFT) presents itself as a membrane-like equilibrium surface separating two 

immiscible fluids. Strong intermolecular cohesion and little molecular exchange at the interface 

reduces the contact area between the phases, and the magnitude of the resulting interfacial tension 

equals the energy required to keep the two phases apart in a pressure equilibrium state (Zolotukhin and 

Ursin, 2000).  Depending on the relative magnitude of the intra- and interfluid cohesive forces, this 

energy gives insight to how different fluids interact: 

 𝜎 > 0: Molecules of each fluid are strongly attracted to molecules of their own kind, making the 

fluids immiscible.  

 𝜎 ≈ 0: Molecules are equally attracted to its own and the other kind. Slow bilateral diffusion will 

lead to full mixing eventually. 

 𝜎 < 0: Molecules of one fluid are more attracted to the molecules of the other kind. This leads to 

dissolution, a chemical reaction forming a new fluid.  

Capillary Pressure 

The effects of capillary pressures, 𝑃𝑐, in petroleum reservoirs are of huge importance. Along with 

gravity, 𝑃𝑐 controls the distribution of fluid saturation within the reservoir as well as the relative 

freedom of movement for the fluids, making it a key parameter in production processes (Brown, 

1951). The pressure associated with interfacial tension is known as the capillary pressure 𝑃𝑐. Based on 

two fluids ability to spread on a solid’s surface in the presence of one another (wettability), capillary 

pressure is given as the pressure difference between the non-wetting fluid and the wetting fluid. Based 

on two fluids ability to spread on a solid’s surface in the presence of one another (wettability), 

capillary pressure is defined as the pressure difference between a non-wetting and wetting fluid (e.g. 

gas and surfactant solution). In a capillary tube shown in Figure A 1, 𝑃𝑐 could also be written 

according to the Young-Laplace equation.  

 
𝑃𝑐 = 𝑃𝑛𝑤 − 𝑃𝑤 =

2𝜎𝑐𝑜𝑠𝜃

𝑟
 (A4) 

where 𝑝𝑛𝑤  and 𝑝𝑤 is the pressure in the non-wetting and the wetting phase, 𝜃 is the wetting angle and 

𝑟 is the radius capillary tube.  
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Figure A 1: Illustration of capillary pressure in a capillary tube filled with water. Due to the water-wet nature of the 

tube itself, water rises in the tube to a certain height where the weight of the liquid column equals the vertical 

component of the interfacial tension.  The curved meniscus observed at the top is convex towards the wetting fluid. 

Redrawn from (Lien et al., 2011). 

Surfactants 

A surfactant molecule, or monomer, is often represented as a tadpole consisting of a nonpolar 

(lypophile) tail and a polar (hydrophile) head. The most energetically favorable orientation for these 

molecules is at interfaces between two fluids (e.g. water/gas), where each part of the molecule can 

reside in the fluid where it has the greatest affinity. Surfactant adsorption along an interface provides 

an expanding force causing a drastic reduction in the normal IFT (Schramm, 1994). When surfactants 

is dissolved in a solution, a critical micelle concentration (CMC) is reached when monomers aggregate 

into micelles where the hydrophile end is oriented outward and the lypophile inward (Skarestad and 

Skauge, 2012). The mentioned phenomena are illustrated in Figure A 2.  

 

Figure A 2: Illustration of surfactant adsorption along an interface between gas and a surfactant solution. The 

lypophile tail of the monomer faces the gas while the hydrophile head faces the water. Micelles within the surfactant 

solution is also shown (Exerowa and Kruglyakov, 1998). 

The aim of adding surfactants to the injected water is to recover the capillary trapped residual oil after 

water flooding. The residual oil saturation correlates well with the dimensionless capillary number 𝑁𝑐 

defined by (Skarestad and Skauge, 2012):  

 𝑁𝑐 =
𝑢𝑤 ⋅ 𝜇𝑤

𝜎𝑜𝑤
 (A5) 
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where 𝑢𝑤 is the Darcy velocity, 𝜇𝑤 is the viscosity of the injected water and 𝜎𝑜𝑤 is the interfacial 

tension between oil and the surfactant solution. Hirasaki et al. (2011) found that IFT has to be reduced 

from crude-oil/brine values of 20 to 30 mN/m to the range of 0,001 to 0,01 mN/m to get values of 

residual-oil saturation lower than 0,05 in a reservoir. Introduction of a surfactant into a liquid also 

changes the properties of gas dispersions (gas present in a continuous phase of a different fluid) and 

liquid films by acting as a stabilizer (Exerowa and Kruglyakov, 1998).  Surfactant accumulation at a 

gas/surfactant-solution interface prevents immediate rupture of the liquid film and thus aids as a 

foaming agent.  
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Appendix C – Experimental Data 

 

Figure A 3: Differential pressure [psi] as a function of time [min] during 1 ml/min coinjection of brine and air in 

System A.  

 

Figure A 4: Differential pressure [psi] as a function of time [min] during 1 ml/min coinjection of Huntsman surfactant 

solution and air in System A.  
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Figure A 5: Differential pressure [psi] as a function of time [min] during 2 ml/min coinjection of Huntsman surfactant 

solution and air in System A.  

 

 

Figure A 6: Differential pressure [psi] as a function of time [min] during 3 ml/min coinjection of Huntsman surfactant 

solution and air in System A. Data presented here has been processed in an a data reduction Excel sheet to a clarify 

pressure trends.   
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Figure A 7: Differential pressure [psi] as a function of time [min] during 2.5 ml/min coinjection of Huntsman 

surfactant solution and air in System A. Data presented here has been processed in an a data reduction Excel sheet to 

a clarify pressure trends. 

 

Figure A 8: Differential pressure [psi] as a function of time [min] during 8 ml/min coinjection of Huntsman surfactant 

solution and nitrogen in System B. Data presented here has been processed in an a data reduction Excel sheet to a 

clarify pressure trends. 
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Figure A 9: Differential pressure [psi] as a function of time [min] during 3 ml/min coinjection of Huntsman surfactant 

solution and nitrogen in System B. Data presented here has been processed in an a data reduction Excel sheet to a 

clarify pressure trends. 

 

Figure A 10: Differential pressure [psi] as a function of time [min] during 3 ml/min coinjection of Petrostep surfactant 

solution and nitrogen in System C.  
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Figure A 11: Differential pressure [psi] as a function of time during 3 ml/min (Fg = 𝟏 − 𝟎) coinjection of Petrostep 

surfactant solution and nitrogen in System C.  
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