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Abstract

SelGenes is a tool for selecting marker genes for the dominating cell type in heterogeneous
samples. Based on a framework from an existing algorithm, SelGenes selects cell-type specific
marker genes for the dominating cell-type and uses these marker genes to estimate cell-type
proportions in the sample and cell-type specific expression profiles. We test the performance of
SelGenes on a benchmark set and validate the marker genes against an external database and
further apply SelGenes to a real data set containing gene expression data from cancer samples.
Compared to an existing method the results from the test were consistently better for SelGenes.
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Chapter 1

Background

In cancer research sample heterogeneity is a major obstacle as most samples contain not only

tumour cells, but a range of other cell-types from the microenvironment. And although the

microenvironment has an important role in the tumour formation and progression it can also

be similar to normal tissue. Separating the signals is therefore crucial in order to make any

discoveries that are related to the tumour and to find important changes in the tumour’s

microenvironment.

Different approaches of separating these signals have been developed, with cell sorting [39],

expression deconvolution [42] and single cell sequencing [7] being the current main categories.

This thesis focuses on expression deconvolution.

Many previous studies into gene expression deconvolution have tried deconvolving using

a priori knowledge about either the tissue/cell-type proportions or pure tissue/cell-type ex-

pression profiles [15, 19, 35, 38]. Other studies have tried deconvolving without a priori knowl-

edge [14,23,24]. Common to some of these studies is the use of so called tissue/cell-type specific

marker genes in order to estimate tissue/cell-type proportions and expression profiles.

We develop SelGenes, a tool for selecting marker genes based on estimated pure tissue/cell-

type expression values. SelGenes then use the selected marker genes to again estimate tissue/cell-

type specific expression profiles.

We test performance by applying SelGenes to a benchmark set comparing the results to the

results from a similar approach and try to validate selected marker genes against an external

database. We further apply SelGenes to a invasive breast carcinoma dataset from The Cancer

Genome Atlas.

In this chapter I will describe some of the basics in molecular biology, statistics and other

terms used later in this paper.

1



CHAPTER 1. BACKGROUND 2

1.1 Molecular Biology

Deoxyribonucleic acid (DNA) is the hereditary material in almost all known living organisms.

DNA is made up from four chemical bases: guanine (G), cytosine (C), adenine (A) and thymine

(T). These bases are called nucleic acids. These bases pair with each other, A with T and C

with G, to form base pairs. Together with a sugar and a phosphate these bases form nucleotides,

which are arranged in two long strands forming a double helix. The order of these nucleotides

determine the information available for building and maintaining an organism [12].

A change in the nucleotide sequence is called a mutation. Mutations can result from DNA

copying mistakes made when the cell is dividing, exposure to radiation or chemicals called

mutagens, infections by viruses and some other causes. Some mutations are inherited, these

are called germ line mutations, while somatic mutations occur in the body and are not passed

on to the next generation [11].

A segment of a DNA molecule containing the information used to synthesise a protein or

another biological product is called a gene. DNA molecules tend to be large, as each cell

contains thousands of genes, therefore DNA molecules are highly condensed in chromosomes.

Humans have 46 chromosomes, 22 pairs and two sex chromosomes.

The only known functions for DNA is storage and transmission of biological information

[5]. The process of translating from DNA to product involves ribonucleic acid (RNA). RNA,

similarly to DNA, is made up from four bases: guanine (G), cytosine (C), adenine (A) and

uracil (U). Unlike DNA, RNA is single stranded and is therefore less stable than DNA and

more prone to degradation. The synthesis of RNA from DNA is known as transcription [27].

The RNA molecule can then be translated into a protein, through a process called translation,

or it can play other important roles in the cell, e.g. turn genes on or off. If a gene is switched

on in a cell, it means that the cell expresses that gene. The process by which the information

in a gene is used to synthesize the gene product is called gene expression [10].

In eukaryotes the initial RNA sequence transcribed from the DNA template usually contains

non-coding regions, called introns, and protein coding regions, called exons. The removal of

the introns is done in a process called splicing. Through alternative splicing one gene can

encode for several proteins [2] .

An RNA molecule directly transcribed from the DNA sequence in a gene is called a transcript

and the collection of all the gene readouts is called the transcriptome.

There are many types of RNA, messenger RNA (mRNA), ribosomal RNA (rRNA) and

transfer RNA (tRNA) are all involved in the translation process. In addition to these there are

many non-protein coding types of RNA that play vital roles in the cell [17].

Nearly every cell in the body has the same set of genes, but each cell only use a fraction of

the genes at any given time. The genes used, or expressed, are what makes cell-types different
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from each other, i.e blood cells from brain cells. This gene expression can be measured through

RNA levels in the cell [25]. This definition of gene expression will be the one used for this thesis

unless otherwise stated. Using all the gene expression data from a cell-type, it is possible to set

up a gene expression profile for that cell-type. [26] These profiles can be used to recognize

a cell-type from measured gene expression typically through mRNA abundance.

A biomarker is a biological molecule found in tissues, blood or other body fluids that signifies

a normal or abnormal state, it can also be used as a sign of a condition or disease [13]. A marker

gene could be considered an example of a biomarker. We define a marker gene as a gene that

is highly expressed in one cell-type, or tissue, and in small amounts or not at all in others.

1.2 Cancer

Cancer is the generic term used for a large group of diseases that involves formation of one

or more tumours. Tumours form from normal cells that has lost their ability to control and

regulate cell division and growth [34]. If a normal cell is damaged or has been mutated, it will

normally be repaired during the cell cycle before it can divide, if it cannot be repaired the cell is

scheduled for programmed cell death (apoptosis). If the genes that regulate these processes are

mutated in a way that their proteins no longer function in the way that they should, then that

could lead to damaged cells continuing to divide, and ultimately formation of tumours. Since

cancer cells have lost or reduced function of the processes that detect and repair mutations,

they are unstable and acquire new mutations more easily. This is called a cascading effect.

Cancers are not just a mass of malignant cells, they are a complex mix of malignant and

non-transformed cells. These cells interact to form the tumour microenvironment (TME) [8].

For tumours to become life threatening they must develop four characteristics: (1) the ability

to move, metastasise, (2) degrade the extra cellular matrix (ECM) , (3) survive in blood and (4)

establish itself in new tissues. The TME is of critical importance for gaining these characteristics

[9].

The TME is comprised of tumour cells, tumour stroma, blood vessels, infiltrating inflam-

matory cells and a variety of associated tissue cells. The composition of the TME is unique

to each tumour and changes in the course of tumour progression. The tumour dominates at

all times the creation and shape. There are also immune cells present in the tumour. The

inflammatory cells usually contribute to tumour progression, largely because of the tumour’s

ability to create mechanisms for avoiding immune intervention. The tumour not only evades

the immune response, but also manage to benefit from infiltrating cells [36].
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Figure 1.1: A simple figure of the TME. The cancer cells dominate, but other cell-types are
present as well. This is a simplified figure with only a few of the cell-types present, there are
many more cell-types in the TME. This figure was inspired by figures in [3, 8]

1.3 Expression Deconvolution

The fact that not all the genes are active at all times or expressed in different amounts explain

the differences in behaviour of cell-typess [4]. Many biological samples contain more than one

cell-type. For example, a cancer biopsy may not contain only cancer cells, but also a wide

array of cell-types from the TME. In such a mixed sample the total amount of each mRNA

measured depends on the composition of the sample [15]. This means that if we want to

make any conclusions about a certain cell-type, e.g cancer cells, we first have to separate the

different gene expression for each cell-type. One way of doing this is through a method termed

expression deconvolution.

Expression deconvolution can work in three ways: (1) estimate cell-type proportions with

the use of expression data from reference cell-types,(2) estimate cell-type expression profiles

with the use of reference cell-type proportions and (3) estimate both cell-type proportions and

expression profiles. The first two require some a priori knowledge about either the proportions

or reference expression profiles, the third does not require any previously acquired information.

Since getting both cell-type proportions and reference expression profiles is difficult, the third

way is the most desirable, but also the most challenging.

The first way, estimating cell-type proportions, is by far the most common approach since

expression data from reference cell-types is readily available from several databases. PERT [38]

and ccSAM [35] are examples of this type of deconvolution.
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The second way, estimating cell-type expression profiles from reference cell-type proportions,

is not that common as many cell-types already have a gene expression profile built from pure

samples of that particular cell-type. ESTIMATE [19] is an example of this type of deconvolution.

The third way, estimating both gene expression profiles and cell-type proportions, is not that

common yet, but some approaches have been made. DeMix [14], UNDO [24] and CAM [23] are

examples of this type of deconvolution.

Most approaches are based on the assumption of linearity, the assumption that the ex-

pression of each gene is a weighted average of expression values for pure population of those

cell-types.

genei =
∑

j
wj ∗ pj

where pj is the expression value of pure population of cell-type j and wj is the proportion of

each pure population.

These approaches are usually also based on a framework proposed by Venet et al. [4, 42].

Venet et al. said that gene expression for a given cell-type had to be non-negative and their

approach uses non-negative least squares (NNLS).

1.3.1 Unsupervised Deconvolution (UNDO)

Unsupervised Deconvolution (UNDO) is an algorithm that uses raw measured gene expression

data to find cell-type specific marker genes, estimate the cell-type proportions in each sample

and uncovers pure cell expression profiles [24]. The algorithm falls into the third category

mentioned above as it does not require any knowledge about proportions or reference cell-type

expression profiles.

UNDO takes in two or more samples in a matrix as input, where each row represents a

probe/gene and each column is the expression value for that gene in that sample. If there are

more than two samples, they apply eigenvalue decomposition (PCA) to reduce the dimensions

to two, where the first two principal eigenvalues are used as a transformation matrix. UNDO

then consists of three main steps: filtering, marker gene selection and deconvolution.

First a vector norm is calculated for each row in the matrix and sorted using this vector

norm. The filtering step then filters away a percentage from the top and bottom, where the

percentages is given as input parameters. Using this filtered set, the ratios between samples

is found by dividing one column on the other. The marker genes are then selected as the

genes having a ratio close to the maximum and minimum ratio. The rational behind this is

that cell-type specific marker genes should be located around the radii of the scatter section

corresponding to genes that are maximally expressed in one sample and minimally expressed

in the other.

Using these marker genes, UNDO estimates the mixing proportions and finds the cell-type
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specific expression values for the entire set. This method got good results both when tested on

several benchmark datasets and when compared to other deconvolution algorithms.

If the composition of the samples are 50% of each source, then UNDO will not perform as

expected.

UNDO will be described in detail later in this thesis.

1.4 Statistics

Outliers

Almost all large datasets contain outliers. An outlier is a data point that lies at an abnormal

distance from other data points in a random sample from a population.

Outliers can occur as results of equipment variance, background noise, amplification steps,

when creating the array, equipment bias and a whole range of other factors. Outliers can have

a large influence on any analysis performed on the sample and should be identified and removed

before any analysis. What constitutes an outlier should be determined before the analysis is

performed in order to avoid testing bias. One common way of defining and removing outliers

is using the interquartile range (IQR) [30].

The IQR is the difference between the upper and lower quartile in a dataset, IQR = Q3−Q1

where Q3 and Q1 is the upper and lower quartile respectively. The IQR can be used to define

outliers as anything outside the following interval:

[Q1 − k ∗ IQR,Q3 + k ∗ IQR]

Where k is a constant, often 1.5.
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Figure 1.2: Example of a data set containing an outlier. An outlier can have major effects on

any analysis of the dataset. In this example the mean of the y coordinates with the outlier is

16.75, while without it is 10.5. So by just removing one element we changed the result by a

significant margin.

1.5 Technology

In this section I describe the technology used to collect gene expression data and some alterna-

tives to expression deconvolution.

First I describe the two most prevalent methods for gathering gene expression data: mi-

croarrays and RNA-seq.

Microarray

Microarrays are used to measure gene expression values in a sample. Microarrays consists

of many probes, usually cDNA molecules or oligonucleotide sequences, bound to a solid sur-

face [21]. The target for each probe is a specific gene. The mRNA sample is then typically

fluorescently labelled and hybridized to the probe microarray. A successful hybridization will

increase the fluorescence intensity for the probe over the background level, and can be mea-

sured by a scanner. There are several different methods using this method, and they can be

distinguished by the nature of the probes, the solid surface the probes are bound to and other

characteristics.

RNA-seq

In contrast to microarray methods all sequencing approaches determine the cDNA sequence

directly [41]. In general a population of RNA is converted to a library of cDNA fragments with
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adaptors attached to one or both ends. Each molecule is then sequenced in a high throughput

manner to obtain short sequences from one or both ends. The reads are typically 30-400 bp,

depending on the DNA sequencing technology used. After sequencing, the resulting reads are

either aligned to a reference genome or transcripts, or assembled de novo without genomic

sequence to produce a genome-scale transcription map that has both transcriptional structure

and/or level of expression for each gene.

Microarray technology uses a probe of cDNA to detect presence of mRNA, and is therefore

limited to detecting transcripts corresponding to existing sequences. In contrast, RNA-seq is

not limited in such a way and can reveal the precise location of transcriptional boundaries, to

a single base resolution.

RNA-Seq can also reveal sequence variations (for example, SNPs) in the transcribed regions

and has been shown to be highly accurate for quantifying expression levels by established

methods (quantitative PCR and spike-in RNA) [1,37].

Because there are no cloning steps, and with some of the developed technology there is no

amplification step either, RNA-seq requires less RNA sample.

Next I describe two alternatives to expression deconvolution: Single cell sequencing and cell

sorting.

Single cell sequencing

Advances in DNA and RNA sequencing technology has scaled up in throughput and down in the

amount of DNA or RNA is required for analysis [7]. These advances has now made it possible

to analyse the DNA or RNA content of individual cells. First a cell must be isolated from the

surrounding tissue. This can be done in several ways (Table 1 [7]), which can be classified in

two ways, unbiased (randomized) or biased (targeted). An unbiased sample better represents

the composition of the tissue, but a targeted sample is necessary for isolating rare cell-types.

Cell sorting

An alternative to gene expression deconvolution is cell sorting. Since cell-types have different

physiological, immunological and functional properties, etc. , we can differentiate between them

and therefore also sort them accordingly.

Fluorescence Activated Cell Sorting (FACS) [22] and other similar approaches can be used

to physically separate defined cell-types from a heterogeneous sample before gene expression

analysis is preformed [39]. One drawback with this kind of method is that the sorting process

could introduce stress onto the cells and could therefore change the gene expression profiles.
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Aims of study

The aim of the work done in this study was to find improved methods for marker gene selection

in heterogeneous samples, find and improve weaknesses in existing methods and evaluate the

improvements made and compare them to the existing methods. We chose to focus specifically

on UNDO.

The study objectives include:

i) To investigate UNDO closely in order to identify weaknesses in the algorithm;

ii) To develop and evaluate modifications made to the UNDO algorithm;

iii) To develop a new method for identifying and selecting marker genes based on the UNDO

algorithm;

iv) To evaluate the marker genes found in this new method using an external database.

9
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Methods & Materials

3.1 Materials

3.1.1 Dataset

Benchmark data

To assess SelGenes and UNDO, a public gene expression dataset GSE19830 [35] was downloaded

from the Gene Expression Omnibus (GEO) [31] website.1 This dataset was generated from rat

microarray experiments with Affymetrix Rat Genome 230 2.0 Arrays. The data we used were

12 mixed samples of brain and liver tissues in four proportions. The downloaded datasets are

RMA normalized [33] meaning there is no way of getting back to the raw gene expression values,

but using exponentiation we can still use the samples. RMA use log base 2 so to reverse that,

exponentiation base 2 is used: Ei = 2samplei , where Ei is the expression value for genei used

in our experiments and samplei is the expression value in the downloaded data.

The 12 mixed samples all contain liver and brain tissues, along with lung tissue in small

proportions. The proportions of the samples are:

Sample Brain Liver Lung

1-3 25% 70% 5%

4-6 34% 65% 1%

7-9 35% 60% 5%

10-12 70% 25% 5%

Table 3.1: Sample numbers and composition in the Affymetrix Rat Genome dataset

1http://www.ncbi.nlm.nih.gov/geo/

10
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As UNDO is best suited for analysis on samples consisting of two cell-typess, the samples

with the smallest amount of lung tissue were chosen. During testing the lung tissue components

were simply ignored.

Figure 3.1: Scatter plot of sample 10 and sample 1 from the table above. In this example

sample 10 is the x-coordinate and sample 1 is the y-coordinate.

As the microarray data uses probes and not genes, we need to translate from probe ids

to gene names. This was done using the R packages rat232.db (version 3.2.3) and annotate

(version 1.48.0). As the rat genome is updated with more and more recent information the

matching from probe to gene may yield both 1 to 1 matchings and 1 to many matchings as well

as 1 to none matching. When there is more than one possible match the first matching in the

annotation file is used.
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Real cancer patient data

To test SelGenes on real patient data we downloaded a dataset from The Cancer Genome Atlas

(TCGA) [29]2. This dataset was downloaded in July 2014 and consists of 1172 breast invasive

carcinoma (BRCA) samples, of which 1052 were primary tumour samples, 113 were control

samples and 7 were metastasis samples. The data is RSEM normalized RNA-seqV2 measured

at level 3 (gene-level) and processed using TCGA assembler [40]. Breast cancer can be classified

into 5 subtypes: Basal-like,luminal A (LumA), luminal B (LumB), HER2-enriched and normal-

like [18]. Using the Supplementary table from this study [28], where they found the subtype

of breast cancer for each sample, we chose a subset consisting of 30 basal-like samples and 30

LumA samples. These subtypes labels were found using microarray data.

3.1.2 Expression Atlas/Reference marker genes

Expression Atlas (EA) is a value-added database for querying differential gene expression across

tissues, cell-types etc [32]. EA is an extension on the previous version Gene Expression Atlas

launched by the European Bioinformatics Institute in 2008 [20]. EA introduces the concept of

baseline expression, a concept that measures the abundance of each gene and splice variant in

healthy or untreated tissues or cell-types.

As there does not exist a list of known marker genes for all tissues in rats, assessing the

potential marker genes found with any method is challenging. So in order to assess SelGenes

we downloaded lists from the EA website3 of genes that were highly expressed in liver tissue

and in brain tissues in adult rats. The list were found by entering search queries with rattus

norwegicus and the tissue in question, and then choosing the baseline experiment that suited

our parameters.

The downloaded lists were then filtered, keeping only genes that had an expression value at

least c and those genes that had an expression value d times higher in liver than in brain and

vice versa. We also removed all duplicate genes, keeping the first instance of that gene. This

left us with one list of reference marker genes for liver tissue and one for brain tissue.

3.2 Methods

In this section I will first give a detailed description of how UNDO works. Then I will show some

modifications on the UNDO algorithm itself, as well as showing a method of creating clearer

radii for the UNDO algorithm by removing outliers, possibly improving the results. Then I will

show a new method for selecting marker genes based on the estimated gene expression values

2https://tcga-data.nci.nih.gov/tcga/
3https://www.ebi.ac.uk/gxa/home
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returned from UNDO. Finally in this chapter I will give a description of how we assessed this

method on both the benchmark set and on the real cancer patient data.

3.2.1 UNDO

UNDO is a gene expression deconvolution algorithm that uses raw expression data from two or

more samples to deconvolve them. UNDO does this by selecting tissue specific marker genes

to estimate the mixing proportions. The idea is that marker genes should be located around

the radii of the scatter section corresponding to the genes that are minimally expressed in one

sample and maximally expressed in the other. This theory is based on two theorems given in

the article [24].

UNDO uses a linear latent model of raw measured expression data:[
xsample1(i)

xsample2(i)

]
=

[
a11 a12

a21 a22

][
stumour(i)

sstroma(i)

]
−→x(i) = a1stumour(i) + a2sstroma(i) (3.1)

for genes i = 1, ...., n. Where xsample1(i) and xsample2(i) are the gene expression values in

heterogeneous samples and ajk are the mixing proportions combined in the mixing matrix. To

estimate the mixing matrix UNDO first selects cell-type specific marker genes from a filtered

set.

Filtering in UNDO is done by using the Frobenius norm also known as the Gaussian norm:

||Ai||F =

√∑
j
a2i,j

for gene i = 1, ...., n Where ai,j is the gene expression for gene i and sample j.

The genes are then sorted according to their norms and a percentage of the genes are filtered

from the top and bottom of this sorted list. The proportion to be filtered is given as input

parameter, the default being 40% from the bottom and 10% from the top. Genes removed in

the filtering step are not used in the marker gene selection step, but are used in the consecutive

steps.
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Figure 3.2: Example of how the data is filtered. The points marked in red are what UNDO

filters away and the points marked in blue are the points that are kept. This plot was obtained

using sample 10 and sample 1 in Table 3.1.

After the filtering is done, ratios between expression values are calculated for gene i in the

filtered list with the following formula:

Ratioi = Sample2i/Sample1i

The marker gene are then selected in the following way:

MG1 = {genei|min(ratio) + eps1 ∗min(ratio) ≥ ratioi ≥ min(ratio)}
MG2 = {genei|max(ratio)− eps2 ∗max(ratio) ≤ ratioi ≤ max(ratio)}

Where eps1 and eps2 are input parameters.

Then the sets MG1 and MG2 are the selected marker genes for the dominant cell-type or

tissue in sample 1 and sample 2 respectively. We can see from this definition that UNDO always

selects at least one marker gene along each of the radii.
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Figure 3.3: Example of how the data is filtered and marker genes selected in UNDO. The genes

highlighted in red are the ones used as marker genes. This plot was obtained using sample 10

and sample 1 from Table 3.1.

The next step is to estimate the cell-type proportions in the samples. This is done using

the marker genes in the following way:

â1 =

[
â11

â21

]
=

1

nMG−sample1

∑
i∈MG−sample1

x(i)

||x(i)||

â2 =

[
â12

â22

]
=

1

nMG−sample2

∑
i∈MG−sample2

x(i)

||x(i)||

Where nMG−sample is the number of genes chosen as marker genes for the respective sample

and ||.|| depicts the vector norm.

The two vectors are then combined to create the estimated Â =

[
â11 â12

â21 â22

]
from 3.1. As

â1 is found using only genes that are highly expressed in sample 1 it will be inflated in one end

and â2 for the same reason will be inflated in the other end. To avoid this the Â need to be
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scaled. This scale is found by taking the inverse of Â and multiplying it with a 2x1 identity

matrix to get a 1x2 vector. The elements in this vector are then put on the diagonal of a 2x2

matrix and multiplied with Â to get A.

A =

[
scale 0

0 scale

]
Â

The cell specific expression values are found for the original dataset by using matrix inver-

sion:

A−1

[
xsample1(i)

xsample2(i)

]
=

[
stumour(i)

sstroma(i)

]
In practice they use non-negative least squares, in order uphold the assumption that all

genes must have a non-negative expression value.

Figure 3.4: The estimated cell-spesific expression we get from an execution of the UNDO

algorithm, i.e. ssample1(i) and ssample2(i) plotted against eachother. This is the result after

running the dataset from 3.1 through UNDO with the default values. The plot to the right

show the same plot zoomed in and with marker genes from UNDO highlighted in red. These

plots were obtained by using sample 10 and sample 1 from Table 3.1.

3.2.2 UNDO symmetry

The marker gene selection in UNDO is done in the following way:

MG1 = {genei|min(ratio) + eps1 ∗min(ratioi)) ≥ ratioi ≥ min(ratio)}

MG2 = {genei|max(ratio)− eps2 ∗max(ratioi) ≤ ratioi ≤ max(ratio)}
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We can see from this definition that the genes in MG1 will have a ratio in the interval [0,1)

and the genes in MG2 will have a ratio in the interval [1,∞). This means that comparing sample

X against sample Y, does not necessarily give the same number of genes as when comparing

sample Y against sample X. This can have a significant impact on the calculation of the cell

specific gene expression values and can be modified to select the same number and the same

genes.

One way to modify this is to create two sets of ratios:

Ai = sample1i/sample2i

Bi = sample2i/sample1i

for i = 1, ....n. And then let marker genes be selected in the following way:

MG1 = {genei|max(Ai)− eps1 ∗max(Ai)) ≤ Ai ≤ max(Ai)}

MG2 = {genei|max(Bi)− eps2 ∗max(Bi)) ≤ Bi ≤ max(Bi)}

By doing this the interval in which the ratios fall has changed to [1,∞) for both sets. Using

this procedure should get the same number of, and the same, genes executing sample X against

sample Y and vice versa.

3.2.3 Removing outliers

Since outliers can have a large impact on any analysis performed on a data set, they should be

removed from the set. We propose to use IQR to define outliers.

To find the upper and lower quartiles we first needed to be able to sort our data. We chose

to sort on the ratio between samples. In order to guarantee that the order in which the samples

are put together does not change what points are considered outliers, we make some changes

to the IQR definition. This is because the IQR is based on the assumption that the points are

normally distributed, with both sides of the mean being equal. In our set we have that the

median should be around 1, as we expect that the samples will have a lot of genes in common.

But below the median the interval is between 0 and 1 and above it between 1 and ∞. That is

why we use two ratios A and B (as defined above) and define outliers as:

Outlier =
{
genei|(Ai < ((Q1(A))− 1.5 ∗ (Q3(A)−Q1(A)) ∨ (Bi <

((Q1(B))− 1.5 ∗ (Q3(B)−Q1(B))
}

where Q1 and Q3 are the lower and upper quartiles respectively. As we do not wish to remove

too many of the points we chose the interval [0,1) instead of [1,∞).
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Figure 3.5: Scatter plot of sample 4 and sample 10 from Table 3.1 with the outliers highlighted

in red.

To demonstrate the impact removing outliers can have on UNDO, we compared sample 4

and sample 10 from Table 3.1 with and without outlier detection and show the results in Figure

3.6.
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Figure 3.6: Scatter plots of expression values before and after deconvolution with UNDO both

with and without outlier detection. The samples used were S4 and S10 from Table 3.1. The

plots are have been zoomed in on in order to show the marker genes selected by UNDO. a)

Scatter plot of the two samples without outlier detection. Marker genes selected by UNDO are

highlighted in red. b) Scatter plot of the cell specific expression values returned from UNDO

without outlier detection. Marker genes selected by UNDO are highlighted in red. c) Scatter

plot of the two samples with outlier detection. Marker genes selected by UNDO are highlighted

in red. d) Scatter plot of the cell specific expression values returned from UNDO with outlier

detection. Marker genes selected by UNDO are highlighted in red.

3.2.4 Marker gene selection

There is no outlier detection in UNDO, although the filtering process will more than likely

remove all points considered outliers. This is why marker gene selection in UNDO is done on

the filtered set. It is done indiscriminatingly without setting any clear criteria other than that

the ratio must be either the minimum/maximum or relatively close to it.

Since we do outlier detection as part of the preprocessing we propose new a selection method,

SelGenes, by letting the original UNDO algorithm, with the symmetry modification, select can-

didate genes, calculate the slopes of the radii and estimate the proportions in the manner

described previously. And then select marker genes based on the estimated cell specific expres-

sion data. This means we can now set clear criteria for what a marker gene is.

We now define a marker gene for the dominant cell-type in sample 1 as having an expression

value at least x times higher in cell-type 1 than in cell-type 2, while never having an expression
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value above y in cell-type 2. And vice versa for a marker gene for the dominant cell-type in

sample 2. Where both x and y are input parameters with default value: x = 10 and y = 20.

MG1 =
{
genei|(exprval1 > x ∗ exprval2) ∧ (exprval2 < y)

}
MG2 =

{
genei|(exprval2 > x ∗ exprval1) ∧ (exprval1 < y)

}
where exprval are the cell-type specific expression values for genei in sample 1 and 2 respec-

tively.

Using this method of selection we get the example scatter plot in Figure 3.7 when executing

with sample 10 and sample 1 from Table 3.1.

Figure 3.7: a) Scatter plot of the cell specific expression values returned from UNDO with the

candidate genes used in the UNDO algorithm highlighted in red. b) Scatter plot of the cell

specific expression values returned from UNDO with the marker genes selected with SelGenes

highlighted in red.

3.2.5 Estimating tissue proportions

UNDO uses the marker genes it finds to estimate the mixing proportions of the samples. Having

selected marker genes we can do the same estimation using the marker genes selected with

SelGenes.
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Figure 3.8: Scatter plot of estimated cell-type specific expression values after deconvolving with

the marker genes found with SelGenes. This plot was obtained using sample 4 and sample 10

from Table 3.1.

In UNDO, in order to measure the estimated tissue proportions found they adopt a perfor-

mance measure [6]:

indα(P ) =
1

2

[∑
i

(∑
j

|pij |α

maxk|pik|α
− 1

)
+
∑
j

(∑
i

|pij |α

maxk|pkj |α
− 1

)]
(3.2)

Where pij is elements of P = Aest−1 ∗ A. As can be seen from 3.2 that the first sum is small

when there is one dominating element in each column of P. And the second sum is small when

there is one dominating element in each row. Note that both criteria is 0 if and only if P is the

product of a matrix and its true inverse, i.e. 2x2 identity matrix.

In UNDO they call their performance measure E1 and it is based on Equation 3.2, with

some changes. They remove 1
2 at the beginning, set α = 1 and both i and j go from 1 to 2 as

the mixing matrix is a 2x2 matrix.

Another measure of performance frequently used is Root Mean Square Error (RMSE).

RMSE represents the standard deviation of the differences between the estimated values and
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the observed values. RMSE is defined as:

RMSE(X, X̂) =

√∑n
i=1(x̂i − xi)2

n
(3.3)

where X are the observed values, X̂ are the estimated values and n is the total number of

values.

3.2.6 Assessing the marker genes

In order to assess the genes found in both SelGenes and UNDO as marker genes we compared

them to the reference list from EA. Then we formulate our hypothesis. We wish to determine

if there is a larger than expected overlap between the list of genes chosen by SelGenes and EA.

We therefore set up our hypothesis as following:

• H0: The list of genes drawn are independent from the reference marker gene list.

• Ha: There is some correlation between the two lists.

To determine this we use a hypergeometric test.

In a hypergeometric distribution there is a population of N individuals to be sampled,

where each individual can be classified as a success or a failure, and there are M successes in

the population. Then a sample of n individuals is selected without replacement such that each

subset of size n is equally likely to be chosen. [16] Then the random variable X is the number

of successes in the sample. This distribution is given by:

P (X = x) =

(
M
x

)(
N−M
n−x

)(
N
n

)
Where

(
M
x

)
is notation for M choose x and x is the number of successes we got from drawing

n individuals.

Our method and UNDO each give a list of genes that we believe to be marker genes. In

order to assess them as such we compare them to the list of reference marker genes from EA.

This means we now can set up a hypergeometric distribution where:

• The population is the total number of genes.

• The samples are the number of genes found with SelGenes (or the UNDO method).

• The number of successes are the number of genes that give a match in the reference list.
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The formula for finding P (X ≤ x) is the sum of all probabilities below x: P (X ≤ x) =∑x
0 P (X = i). Meaning that since we wish to find the probability that we have an improbably

large overlap we need to use:

P (X ≥ x) = 1− P (X ≤ (x− 1))

The p-value obtained from these test are then used to determine whether or not we reject

the null hypothesis at a certain confidence level.

3.2.7 Real cancer patient data

Having seen that SelGenes works well on a benchmark set, in the sense that it recovers known

marker genes for each cell-type, we wanted to try SelGenes on real cancer patient data. We chose

to analyse a set of breast cancer expression data coming from two different cancer subtypes and

analyse whether the marker genes identified has any relation to the cancer subtypes and their

marker genes. We also wanted to see if SelGenes manages to find expression profiles for the

dominating cell-types and if it can find differences between subtype 1 compared to subtype 2.



Chapter 4

Results

4.1 Benchmark data

In order to test all of the methods outlined in Chapter 3, we need a dataset were the ground

truth is known. For this purpose we used the public gene expression dataset GSE19830 outlined

in Section 3.1.1. Using this dataset we tried to validate the modifications made to the UNDO

algorithm, compare the results from SelGenes with the results from UNDO and evaluate genes

picked by SelGenes as marker genes using the lists of genes downloaded from EA as outlined in

Section 3.1.2.

4.1.1 Modifications of UNDO

To assess our modifications of UNDO outlined in Section 3.2.2 we looked at the number of genes

found when comparing sample i against sample j and sample j against sample i. As ordering

of samples should not change the results, we expect to find the same number of genes, and

the same genes, in both executions. These results were obtained using all default values in the

UNDO algorithm, that is eps1 = eps2 = 0.01 and filtering 40% from the bottom and 10% from

the top. We found that the number of genes picked in UNDO in many cases change depending

on the ordering of the samples as expected, but with our modification the identity of the genes

and the number of genes always stay the same. Table 4.1 show the results from some of the

comparisons.

24
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Number of genes found

UNDO UNDO Symmetric

Forward Reverse Forward Reverse

Sample MG1 MG2 MG1 MG2 MG1 MG2 MG1 MG2

S1-S4(25%-34%) 2 3 3 2 2 3 3 2

S1-S7(25%-35%) 1 2 2 1 1 2 2 1

S1-S10(25%-70%) 1 4 4 1 4 1 1 4

S4-S7(34%-35%) 1 4 4 1 1 4 4 1

S4-S10(34%-70%) 5 2 2 7 7 2 2 7

S7-S10(35%-70%) 14 1 1 19 19 1 1 19

Table 4.1: Table of some of the results from the experiments with changed UNDO selection

criteria. Each line describes which samples were used (sample number is from Table 3.1 with

brain tissue percentage in brackets) and the number of genes were found when these samples

were compared in UNDO, with and without the symetry modification. The forward column

shows how many genes were found when they were compared in the order written and reverese

shows how many genes were found when they were compared in the opposite order.

4.1.2 Marker genes

An overview of how SelGenes operates is seen in Figure 4.1. The major steps being: (1) removal

of outliers, (2) executing UNDO with symmetry modification, (3) selecting marker genes based

on the estimated expression values for the dominating cell-type in sample 1 and 2, and (4) using

the selected marker genes to estimate expression values for the dominating cell-type in sample

1 and 2.

In order to test SelGenes on the benchmark set, we compared two and two samples against

each other. Since comparing a sample to itself makes no sense and the order in which the

samples are compared gives the same results, we were left with 66 separate comparisons, in the

following called experiments. We used the following parameters in all of the experiments. For

UNDO we used all default values, meaning filtering percentage was 40% from the bottom and

10% from the top and both epsilon values set to 0.01. For SelGenes, we used x = 10 and y = 20

leaving the set definitions:

MarkersLiver =
{
genei|(exprvalLiver > 10 ∗ exprvalBrain) ∧ (exprvalBrain < 20)

}
MarkersBrain =

{
genei|(exprvalBrain > 10 ∗ exprvalLiver) ∧ (exprvalLiver < 20)

}
where exprval is the estimated explained tissue expression values for genei. The UNDO algo-

rithm should pick marker genes for the dominating cell-type in each sample. As the real mixing

proportions are known we could determine which of the marker gene sets were for brain by
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Figure 4.1: a)Flow chart of the algorithm. After outlier removal UNDO is executed, with
all three steps, and marker gene selection is then done using the results. After marker gene
selection just the expression deconvolution step of UNDO is executed. b) Scatter plot of the
input data with outliers highlighted in red. c) Scatter plot of the estimated expression values
returned from UNDO with candidate genes highlighted in red. d) Scatter plot of estimated
expression values returned from SelGenes with marker genes highlighted in red.
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checking which of the samples had the highest proportion of brain. If the two samples had the

same amount of brain the first set of marker genes were chosen to be for liver and the other for

brain.

All of the experiments were done both with and without outlier detection and removal.

With outlier detection turned on between 0 and 820 data points were removed.

Table 4.2 shows the number of genes found by each method both with and without outlier

detection. The rest of this table is included in Appendix Table A.1. As the table shows, the total

number of genes found by both UNDO and by SelGenes are increased significantly by removing

outliers. This is expected as removing outliers makes the radii in the scatter plot even more

pronounced and more genes will have a ratio within the range of marker gene definitions.

Number of genes found

SelGenes UNDO

O.D off O.D on O.D off O.D on

Sample Brain Liver Brain Liver Brain Liver Brain Liver

S1-S4(25%-34%) 1 23 29 38 1 1 10 1

S1-S7(25%-35%) 1 0 0 30 0 0 5 0

S1-S10(25%-70%) 70 0 90 291 1 0 1 0

S4-S7(34%-35%) 13 0 0 73 0 1 23 0

S4-S10(34%-70%) 49 5 77 110 1 1 1 0

S7-S10(35%-70%) 54 0 82 106 2 0 2 1

Table 4.2: Total number of genes found using SelGenes and UNDO, both when outlier detection

(O.D) was turned on and off. The sample numbers are the same as those from Table 3.1 with

the brain tissue percentage in brackets.

4.1.3 Comparing to reference marker gene sets

As we assume the genes selected in SelGenes are marker genes we wanted to try to validate

them as such using the lists of highly expressed genes in brain and liver tissue downloaded from

EA. In order to filter the lists down to genes that could be considered marker genes we used

c = 5 and d = 10 from Section 3.1.2. Meaning that we kept only genes that had an expression

value at least 5 and an expression value 10 times higher in brain than in liver and vice versa.

This resulted in 1465 reference marker genes for brain tissue and 548 reference marker genes

for liver tissue.

Then using these lists we tried to validate the genes picked in both SelGenes and UNDO

as marker genes. Trying to match each gene name in our lists to the reference list we recorded

how many matches we got. Table 4.3 shows the number of hits on the same samples from Table
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4.2. The rest of this table is shown in the Appendix Table A.2.

Number of genes found

SelGenes UNDO

O.D off O.D on O.D off O.D on

Sample Brain Liver Brain Liver Brain Liver Brain Liver

S1-S4(25%-34%) 0 0 0 0 0 1 4 0

S1-S7(25%-35%) 0 0 0 0 0 0 2 0

S1-S10(25%-70%) 29 0 36 180 0 0 0 0

S4-S7(34%-35%) 0 0 0 2 0 0 0 0

S4-S10(34%-70%) 26 0 34 32 0 0 0 0

S7-S10(35%-70%) 27 0 36 60 0 0 0 0

Table 4.3: The number of matches we got when comparing the genes from Table 4.2 to the

reference lists from EA. The sample numbers are the same as those from Table3.1 with the

brain tissue percentage in brackets.

In order to evaluate if the overlap with the set of reference marker genes were larger than

expected we performed hypergeometric tests. With confidence levels 90% and 95% we created

heatmaps (Fig.4.2) to show when H0 were rejected, with red breakpoint for 95% and yellow

breakpoint for 90%.

We found that without outlier detection UNDO (Fig.4.2a) has a larger than expected over-

lap with the reference marker gene list for the dominant cell-type in sample 1 if the sample

compositions differ greatly, otherwise there is no observable pattern present. When SelGenes

was used on the same set (Fig.4.2b) we observe the same pattern as with UNDO, but to a

greater extent. We also see that in a number of the experiments that UNDO only had a large

overlap with the reference marker genes for the dominating cell-type in sample 1, SelGenes had

a large overlap for the dominating cell-type in sample 2 as well.

We also found that with outlier detection UNDO (Fig.4.2c) has a larger than expected

overlap with the reference marker gene list for the dominant cell-type in sample 1 when the

sample compositions differ greatly, same as when outlier detection was turned off, but to a

somewhat greater extent. Otherwise there is no observable pattern as the hypergeometric test

gave some low p-values here and there but it seems random.

When SelGenes was used on the same set (Fig.4.2d) we found that it gave a larger than

expected overlap with the reference marker gene list for the dominant cell-type in both sample

1 and sample 2 for most of the samples. The exceptions being S4,S5 and S6 (Table 3.1),

especially when compared against S7,S8 and S9 (Table 3.1). This can be explained with the

similar composition of the samples and that therefore fewer genes will be chosen as marker
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genes as their ratios will be close to 1. If we accept this explanation, then we can see that

for most of the samples SelGenes, with outlier detection turned on, has a larger than expected

overlap with the reference marker gene lists for the dominating cell-type in both sample 1 and

sample 2.

Figure 4.2: Heatmaps of the returned p-values from the hypergeometric tests. The upper

triangle matrix is the p-value for marker genes from cell-type 1 and the lower triangle matrix

is for marker genes from cell-type 2. a) P-values from the hypergeometric test when the

marker genes came from executing UNDO without outlier detection. b) P-values from the

hypergeometric test when the marker genes came from executing SelGenes without outlier

detection. c) P-values from the hypergeometric test when the marker genes came from executing

UNDO with outlier detection. d) P-values from the hypergeometric test when the marker genes

came from executing SelGenes with outlier detection.

4.1.4 Estimating new mixing proportions

Using the marker genes found with SelGenes, expression deconvolution was performed again. In

order to measure the performance of SelGenes we used the E1 criterion in the UNDO package

and RMSE, both explained in Section 3.2.5.
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The results from the error estimation when using the E1 criterion are shown in Figure 4.3.

With the E1 criterion we found that the best estimations were those that involved S10, S11 and

S12 (Table 3.1). This is expected as these are the samples that differ the most in composition

from the others and therefore will give the clearest radii. We also expect to get a good estimated

mixing matrix when using true marker genes in the estimation, and we can see from Figure 4.2

that in many cases these samples have a good overlap with the reference marker genes.

Figure 4.3: Measure of performance using the E1 criterion. a) The E1 criterion for the first

estimation using candiate genes from UNDO without outlier detection. b) The E1 criterion for

the second estimation using marker genes found with SelGenes without outlier detection. c)

The E1 criterion for the first estimation using candiate genes from UNDO with outlier detection.

d) The E1 criterion for the second estimation using marker genes found with SelGenes with

outlier detection.

The results from the error estimation when using RMSE are shown in Figure 4.4. With

RMSE we found that the best estimations are found for samples S10, S11 and S12 (Table 3.1),

the same as with the E1 criterion. This is again expected as estimating tissue proportions with
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true marker genes should lead to a good estimation and with these samples we found a larger

than expected overlap with the reference marker gene lists.

We should also note that the values from the two methods of error estimation have a different

range, with RMSE returning values between 0.0347 and 0.4266 and the E1 criterion returning

values between 0.0859 and 3.1667.

Figure 4.4: Measure of performance using RMSE. a) RMSE for the first estimation using

candiate genes from UNDO without outlier detection. b) RMSE for the second estimation

using marker genes found with SelGenes without outlier detection. c) RMSE for the first

estimation using candiate genes from UNDO with outlier detection. d) RMSE for the second

estimation using marker genes found with SelGenes with outlier detection.

4.2 Real cancer patient data

Having validated SelGenes potential of selecting marker genes on the benchmark set, we applied

SelGenes on the TCGA dataset described in Section 3.1.1. In order to apply SelGenes to this

dataset we had to add 1 to all expression values, as SelGenes uses the ratio between samples
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and dividing by 0 is not valid.

One of our hypotheses was that SelGenes selects cell-type specific marker genes, and if it

does then we should expect to to find tumour-type specific marker genes when comparing one

subtype of breast cancer to a different subtype of breast cancer. If this hypothesis is correct

then we expect these tumour-type specific marker genes to occur more frequently when we

compare type 1 samples to type 2 samples, than when we compare randomly selected samples.

This means that if SelGenes finds genes that occur more frequently when comparing type 1

samples against type 2 samples than when the samples are compared randomly, then SelGenes

is probably capable of selecting subtype specific marker genes.

In order to test this, we compared each basal-like sample with all LumA samples. For each

comparison we collected all marker genes in two separate lists, one for the basal-like samples

and one for the LumA samples. Then we counted how many times each gene occurred within

each of the two lists. Then we found how many genes occurred a certain number of times

and created a histogram. After that we randomized the samples and compared each of the 30

first samples against the all of the 30 last samples and collected all of the marker genes in two

separate lists. Then we counted how many times each gene occurred within each list and how

many genes occurred a certain number of times. We did this randomized comparison 100 times,

and found the average number of genes that occurred a certain number of times and added this

to our histogram. Figure 4.5 show the distribution of how many genes occurred x number of

times in both marker gene sets.

As can be seen from Figure 4.5, the distributions are similar for both marker gene sets.

There are however some genes that were selected around 300 or more times as marker genes

when comparing basal-like samples against LumA samples and this did not occur often when

randomized. This is easiest to spot when looking at marker genes for LumA (Fig.4.5b), and

this could mean that there are more marker genes for LumA tumours than basal-like tumours.
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Figure 4.5: Diagram of how many genes occur x number of times as marker genes when using

SelGenes. The red line shows the results when each basal-like sample (T1) were compared to all

of the LumA samples (T2) and the blue line show the average results from 100 executions were

the samples were randomized. To be able to take the logarithm base 2 of the frequencies we

had to add 1. a) The logarithm base 2 of how many genes occur x number of times as marker

genes for sample 1. b) The logarithm base 2 of how many genes occur x number of times as

marker genes for sample 2

Another of our hypotheses was that SelGenes could find expression profiles for the domi-

nating cell-type in the samples. And that SelGenes could find out if the expression profiles for

subtype 1 and subtype 2 are noticeably different from each other.

In order to test this hypothesis we compared each of the basal-like samples to all of the

LumA samples keeping the estimated expression values for the comparison that gives the highest

estimated proportion for the basal-like samples as this should be purest expression profile. Then

we did the same with the LumA samples, comparing each of the LumA samples to all of the

basal-like samples and keeping the estimated expression values for the comparison that gives

the highest estimated proportions for the LumA samples as this should be the purest expression
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profile. Then created heatmaps of the expression values for both the original samples and the

estimated expression values returned from SelGenes. For both these datasets we logged the

data, and for the estimated expression values we had to add 1 to all of the values as it is not

possible to take the logarithm of 0 (already added 1 to the original data in order to apply

SelGenes). The heatmaps are seen in Figure 4.6.

We found that SelGenes manages to find expression profiles for the dominating cell-type

in the samples and that they are similar for all of the samples. However from Figure 4.6b)

we cannot see any clear differences between the two subtypes, although some of the basal-like

samples do have some differences from the others. As these differences are not found for all of

the basal-like samples we cannot claim that there is a clear difference in the expression profiles

between the two subtypes.

From Figure 4.6b) we can also note that most of the samples have a similar gene expression

profile for the dominating cell-type with a lot of the genes having the same colour.
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Figure 4.6: Logged expression values for the real patient cancer data. Each column represents

one patient and each row represents one gene. Patient ID for each column is found in Appendix

Table A.3. a) Heatmap of logged expression values from the original dataset, as downloaded,

with 1 added to all the expression values. b) Heatmap of the logged expression values as

returned from SelGenes. In order to log these values 1 was added to all of them as some of

them were 0.
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Discussion

UNDO

As can be seen from Equation 3.1, UNDO divides the samples into two cell-types, tumour

and stroma. This is an oversimplification, as there are multiple cell-types in the TME. This

means that UNDO finds marker genes for the dominating cell-types in sample 1 and 2. UNDO

also finds the expression profile for the dominating cell-types as the marker genes are used to

calculate the expression profiles.

As SelGenes uses results from a modified version of UNDO to select marker genes, this

oversimplification still persist in SelGenes. This can become an issue if the samples are very

similar in composition as seen with some of the benchmark samples. But in real biological

samples we do not expect this to be a major problem, as the probability for having two samples

from two different subjects be similar in composition is small. On the other hand real samples

are likely to contain more than two cell-types.

Outliers

Outliers can be caused by error as stated in Section 1.4, but not necessarily. It might be that

some of the genes that are removed, in reality are good marker genes. This is one reason why

we have to be careful in defining what is an outlier, in order to avoid removing exactly what

we are looking for. And why we should always determine if outlier removal makes sense based

on the biology and visual inspection of plots and not just the statistics.

36
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Marker genes

We developed a method, SelGenes, for selecting marker genes for the dominating cell-type

in a sample based on the estimated expression values after deconvolution. As marker genes

are not generally known for tissues or cell-types, validating the genes selected as true marker

genes is challenging. Using a benchmark set and an independent external database of genes

highly expressed in different tissues we assessed SelGenes’ ability to select genes that are highly

expressed in one tissue and not in the other. As this is the definition often used for marker

genes, we show SelGenes’ ability to select marker genes.

On the TCGA dataset we found that when applying SelGenes on two different subtypes,

some genes had a higher occurrence rate than when the subtypes were randomized. However

as this was true only for a few genes and mostly only for one of the marker gene sets this could

be considered a coincidence and more testing should be done on this before any conclusions are

drawn.

Estimating cell-type proportions and expression profiles

SelGenes’ ability to estimate cell-type proportions in samples was evaluated using both the E1

criterion and RMSE. Both methods gave the same picture, with estimation being best for the

same samples, confirming that estimating cell-type proportions with marker genes works well.

This also validates SelGenes’ ability to select true marker genes as the estimation was clearly

better when the overlap between genes selected by SelGenes and the reference marker gene lists

from EA was larger than expected.

The lung tissue component in the benchmark set, that was ignored during testing, make it

so that we expect both the E1 criterion and the RMSE to be different from 0. This is because

the real mixing proportions did not add up to 100% and SelGenes estimates mixing proportions

that do.

On the TCGA dataset SelGenes found expression profiles for the dominating cell-types, but

could not find specific differences between the subtypes. We also saw from Figure 4.6 that many

of the samples had a similar expression profile. This could stem from the fact that all of these

samples are from breast cancer, and that they therefore have a similar expression profile. It

would be interesting to compare the expression profiles found with these breast cancer samples

to other expression profiles found with other cancer types.

Conclusions

SelGenes show good potential when selecting cell-type specific marker genes in heterogeneous

samples after initial testing on both benchmark data and real patient cancer data. With marker
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gene validation through an external database SelGenes consistently found more marker genes

compared to UNDO. And as finding accurate cell-type specific expression profiles are dependent

on selecting good cell-type specific marker genes, SelGenes show good potential as an expression

deconvolution algorithm.

For further validation of SelGenes’ ability to select marker genes, we should apply SelGenes

to other benchmark sets were the ground truth is known. And we should also compare the

results from SelGenes to results from other expression deconvolution algorithms.

Although we have chosen to focus on cancer samples, expression deconvolution in general

can be used to deconvolve other heterogeneous samples. As shown with our benchmark set, ex-

pression deconvolution can be used for tissues and cell-types, but with SelGenes the assumption

is that there is a dominating tissue or cell-type.
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Tables

Total number of marker genes found

Table A.1: The table shows the total number of marker genes we

found using UNDO and SelGenes both with and without outlier

detection (O.D). The sample column describe which two samples

were used and how much brain percantage in each sample respec-

tively.

Sample Number of genes found

SelGenes UNDO

O.D off O.D on O.D off O.D on

Brain Liver Brain Liver Brain Liver Brain Liver

S1-S2(25%-25%) 1 6 13 91 0 0 19 0

S1-S3(25%-25%) 6 2 9 93 1 0 1 0

S1-S4(25%-34%) 1 23 29 38 1 1 10 1

S1-S5(25%-34%) 2 22 31 28 1 1 5 1

S1-S6(25%-34%) 3 24 27 33 1 0 6 1

S1-S7(25%-35%) 1 0 0 30 0 0 5 0

S1-S8(25%-35%) 1 4 15 51 1 0 1 0

S1-S9(25%-35%) 2 5 14 79 1 0 1 0

S1-S10(25%-70%) 70 0 90 291 1 0 1 0

S1-S11(25%-70%) 104 2 119 281 1 1 1 0

S1-S12(25%-70%) 51 4 66 291 1 0 1 0

S2-S3(25%-25%) 6 1 12 92 1 1 15 1

39
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Continued from previous page

Sample Number of genes found

SelGenes UNDO

O.D off O.D on O.D off O.D on

Brain Liver Brain Liver Brain Liver Brain Liver

S2-S4(25%-34%) 3 23 31 36 1 0 3 1

S2-S5(25%-34%) 2 26 31 36 1 0 4 1

S2-S6(25%-34%) 3 21 26 35 1 1 9 1

S2-S7(25%-35%) 3 3 4 54 0 1 0 1

S2-S8(25%-35%) 0 1 6 55 0 0 4 0

S2-S9(25%-35%) 6 4 10 84 2 1 11 2

S2-S10(25%-70%) 62 11 73 310 1 1 1 2

S2-S11(25%-70%) 83 20 96 312 1 2 1 2

S2-S12(25%-70%) 36 4 45 299 1 0 1 2

S3-S4(25%-34%) 1 23 31 47 1 0 10 1

S3-S5(25%-34%) 0 22 29 50 3 0 7 3

S3-S6(25%-34%) 8 22 25 33 1 1 8 1

S3-S7(25%-35%) 2 0 0 36 0 1 7 0

S3-S8(25%-35%) 0 4 15 64 1 0 9 1

S3-S9(25%-35%) 5 9 21 95 1 1 12 1

S3-S10(25%-70%) 47 19 58 316 1 2 1 1

S3-S11(25%-70%) 68 25 82 292 1 1 1 1

S3-S12(25%-70%) 39 10 49 315 1 1 1 1

S4-S5(34%-34%) 0 2 3 73 0 0 16 0

S4-S6(34%-34%) 14 13 25 79 2 1 14 2

S4-S7(34%-35%) 13 0 0 73 0 1 23 0

S4-S8(34%-35%) 17 3 108 13 1 1 16 1

S4-S9(34%-35%) 26 1 28 135 0 2 26 0

S4-S10(34%-70%) 49 5 77 110 1 1 1 0

S4-S11(34%-70%) 51 6 70 95 1 1 1 0

S4-S12(34%-70%) 25 6 39 121 2 1 2 0

S5-S6(34%-34%) 2 2 17 102 1 1 25 0

S5-S7(34%-35%) 17 0 0 74 0 1 24 0

S5-S8(34%-35%) 23 1 15 130 0 2 25 0

S5-S9(34%-35%) 27 3 31 155 2 1 32 2

S5-S10(34%-70%) 48 7 76 122 2 1 2 2
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Sample Number of genes found

SelGenes UNDO

O.D off O.D on O.D off O.D on

Brain Liver Brain Liver Brain Liver Brain Liver

S5-S11(34%-70%) 48 10 74 104 1 2 1 2

S5-S12(34%-70%) 24 12 42 121 1 2 1 2

S6-S7(34%-35%) 6 0 0 97 0 1 23 0

S6-S8(34%-35%) 16 3 25 97 1 1 14 1

S6-S9(34%-35%) 18 1 24 141 1 1 25 1

S6-S10(34%-70%) 24 2 45 95 1 1 1 1

S6-S11(34%-70%) 32 3 50 110 1 1 1 1

S6-S12(34%-70%) 19 2 38 105 1 1 1 1

S7-S8(35%-35%) 0 0 5 71 0 0 12 0

S7-S9(35%-35%) 0 1 21 100 1 0 12 1

S7-S10(35%-70%) 54 0 82 106 2 0 2 1

S7-S11(35%-70%) 29 0 50 106 1 0 1 1

S7-S12(35%-70%) 16 0 31 140 1 0 1 1

S8-S9(35%-35%) 5 0 0 139 0 1 27 0

S8-S10(35%-70%) 55 14 64 137 3 1 3 0

S8-S11(35%-70%) 34 12 39 145 0 1 0 0

S8-S12(35%-70%) 32 11 39 152 1 0 1 0

S9-S10(35%-70%) 57 3 65 135 1 1 1 0

S9-S11(35%-70%) 34 2 50 141 1 1 1 0

S9-S12(35%-70%) 26 2 40 136 1 1 1 0

S10-S11(70%-70%) 14 12 25 99 1 1 15 1

S10-S12(70%-70%) 4 7 115 17 1 1 29 1

S11-S12(70%-70%) 3 5 106 10 1 2 22 2
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Number of matches with Expression Atlas

Table A.2: The table shows the number of matches found when

comparing marker genes from UNDO and SelGenes with those from

Expression Atlas both with and without outlier detection (O.D).

The sample column describe which two samples were used and how

much brain percantage in each sample respectively.

Sample Number of genes found

SelGenes UNDO

O.D off O.D on O.D off O.D on

Brain Liver Brain Liver Brain Liver Brain Liver

S1-S2(25%-25%) 0 0 0 2 0 0 0 0

S1-S3(25%-25%) 1 0 1 10 0 0 0 0

S1-S4(25%-34%) 0 0 0 0 0 1 4 0

S1-S5(25%-34%) 0 0 0 0 0 0 0 0

S1-S6(25%-34%) 0 0 0 0 0 0 2 0

S1-S7(25%-35%) 0 0 0 0 0 0 2 0

S1-S8(25%-35%) 0 0 1 9 0 0 0 0

S1-S9(25%-35%) 0 0 1 32 0 0 0 0

S1-S10(25%-70%) 29 0 36 180 0 0 0 0

S1-S11(25%-70%) 48 0 52 167 1 0 1 0

S1-S12(25%-70%) 27 4 35 163 1 0 1 0

S2-S3(25%-25%) 1 0 1 0 0 0 4 0

S2-S4(25%-34%) 0 0 0 0 0 0 2 0

S2-S5(25%-34%) 0 0 0 0 0 0 1 0

S2-S6(25%-34%) 0 0 0 0 0 0 4 0

S2-S7(25%-35%) 1 2 1 13 0 1 0 0

S2-S8(25%-35%) 0 0 0 0 0 0 1 0

S2-S9(25%-35%) 0 0 0 0 0 1 6 0

S2-S10(25%-70%) 25 7 27 185 0 0 0 0

S2-S11(25%-70%) 38 10 41 195 1 1 1 0

S2-S12(25%-70%) 20 3 22 181 1 0 1 0

S3-S4(25%-34%) 0 0 0 0 0 0 6 0

S3-S5(25%-34%) 0 0 0 0 0 0 5 0

S3-S6(25%-34%) 0 0 0 0 0 1 5 0

S3-S7(25%-35%) 0 0 0 0 0 1 3 0
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Sample Number of genes found

SelGenes UNDO

O.D off O.D on O.D off O.D on

Brain Liver Brain Liver Brain Liver Brain Liver

S3-S8(25%-35%) 0 0 0 0 0 0 5 0

S3-S9(25%-35%) 0 0 0 0 0 0 6 0

S3-S10(25%-70%) 23 7 24 189 0 0 0 0

S3-S11(25%-70%) 29 10 34 173 1 0 1 0

S3-S12(25%-70%) 23 3 25 184 0 0 0 0

S4-S5(34%-34%) 0 0 1 0 0 0 1 0

S4-S6(34%-34%) 0 1 3 0 0 0 1 0

S4-S7(34%-35%) 0 0 0 2 0 0 0 0

S4-S8(34%-35%) 0 1 1 6 0 1 0 1

S4-S9(34%-35%) 0 0 4 0 0 0 0 0

S4-S10(34%-70%) 26 0 34 32 0 0 0 0

S4-S11(34%-70%) 25 0 32 22 0 0 0 0

S4-S12(34%-70%) 17 0 25 45 2 0 2 0

S5-S6(34%-34%) 0 0 1 0 0 0 1 0

S5-S7(34%-35%) 0 0 0 0 0 0 1 0

S5-S8(34%-35%) 0 0 0 1 0 0 0 0

S5-S9(34%-35%) 0 2 5 1 0 0 0 0

S5-S10(34%-70%) 23 0 32 46 0 0 0 0

S5-S11(34%-70%) 18 0 33 37 0 0 0 0

S5-S12(34%-70%) 18 0 24 43 1 0 1 0

S6-S7(34%-35%) 0 0 0 1 0 0 1 0

S6-S8(34%-35%) 0 1 6 1 0 0 0 0

S6-S9(34%-35%) 0 0 5 0 0 0 1 0

S6-S10(34%-70%) 13 0 21 26 0 0 0 0

S6-S11(34%-70%) 18 0 21 19 0 0 0 0

S6-S12(34%-70%) 13 0 24 30 1 0 1 0

S7-S8(35%-35%) 0 0 0 0 0 0 1 0

S7-S9(35%-35%) 0 0 0 0 0 0 2 0

S7-S10(35%-70%) 27 0 36 60 0 0 0 0

S7-S11(35%-70%) 17 0 28 47 1 0 1 0

S7-S12(35%-70%) 10 0 19 64 1 0 1 0
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Sample Number of genes found

SelGenes UNDO

O.D off O.D on O.D off O.D on

Brain Liver Brain Liver Brain Liver Brain Liver

S8-S9(35%-35%) 0 0 0 0 0 0 2 0

S8-S10(35%-70%) 23 10 26 60 2 1 2 0

S8-S11(35%-70%) 18 6 20 56 0 1 0 0

S8-S12(35%-70%) 18 5 20 60 1 0 1 0

S9-S10(35%-70%) 25 3 30 78 1 1 1 0

S9-S11(35%-70%) 16 1 22 65 1 0 1 0

S9-S12(35%-70%) 13 2 22 69 1 1 1 0

S10-S11(70%-70%) 0 2 5 1 0 0 1 0

S10-S12(70%-70%) 0 1 1 2 0 1 0 1

S11-S12(70%-70%) 0 1 1 1 0 1 0 1

Patient IDs used when testing SelGenes

Table A.3: The patient IDs used when testing SelGenes on the real

patient cancer data. The number corresponds to the ones used for

marking columns in Figure 4.6.

Number TCGA patient ID

1 TCGA-AO-A0J5-01A-11R-A034-07

2 TCGA-A8-A0A7-01A-11R-A00Z-07

3 TCGA-AN-A0XL-01A-11R-A10J-07

4 TCGA-AR-A0TR-01A-11R-A084-07

5 TCGA-A8-A096-01A-11R-A00Z-07

6 TCGA-A7-A13D-01A-13R-A12P-07

7 TCGA-E9-A22E-01A-11R-A157-07

8 TCGA-B6-A0RH-01A-21R-A115-07

9 TCGA-EW-A1J3-01A-11R-A13Q-07

10 TCGA-E2-A1IH-01A-11R-A13Q-07

11 TCGA-C8-A1HM-01A-12R-A137-07

12 TCGA-AR-A5QQ-01A-11R-A28M-07
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Number TCGA patient ID

13 TCGA-AO-A03N-01B-11R-A10J-07

14 TCGA-AQ-A04H-01B-11R-A10J-07

15 TCGA-E2-A1IF-01A-11R-A144-07

16 TCGA-D8-A1Y0-01A-11R-A14M-07

17 TCGA-AR-A1AH-01A-11R-A12D-07

18 TCGA-BH-A0HW-01A-11R-A034-07

19 TCGA-E2-A1IG-01A-11R-A144-07

20 TCGA-BH-A1EN-11A-23R-A13Q-07

21 TCGA-E2-A1B4-01A-11R-A12P-07

22 TCGA-AN-A03X-01A-21R-A00Z-07

23 TCGA-BH-A0C0-01A-21R-A056-07

24 TCGA-E9-A5UO-01A-11R-A28M-07

25 TCGA-E2-A10B-01A-11R-A10J-07

26 TCGA-BH-A18K-11A-13R-A12D-07

27 TCGA-D8-A27K-01A-11R-A16F-07

28 TCGA-B6-A0X5-01A-21R-A109-07

29 TCGA-E2-A15J-01A-11R-A12P-07

30 TCGA-BH-A18I-01A-11R-A12D-07

31 TCGA-B6-A0RU-01A-11R-A084-07

32 TCGA-BH-A0BW-11A-12R-A115-07

33 TCGA-E2-A1IK-01A-11R-A144-07

34 TCGA-B6-A0RQ-01A-11R-A115-07

35 TCGA-E2-A1LS-11A-32R-A157-07

36 TCGA-B6-A40B-01A-11R-A239-07

37 TCGA-A8-A08Z-01A-21R-A00Z-07

38 TCGA-BH-A0B5-11A-23R-A12P-07

39 TCGA-E9-A1N5-11A-41R-A14D-07

40 TCGA-BH-A0C3-01A-21R-A12P-07

41 TCGA-B6-A0IK-01A-12R-A056-07

42 TCGA-BH-A0DG-11A-43R-A12P-07

43 TCGA-BH-A0E6-01A-11R-A034-07

44 TCGA-B6-A0IM-01A-11R-A034-07

45 TCGA-E2-A1LK-01A-21R-A14D-07

46 TCGA-BH-A18R-01A-11R-A12D-07
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Number TCGA patient ID

47 TCGA-E2-A1LH-11A-22R-A14D-07

48 TCGA-BH-A1EV-01A-11R-A137-07

49 TCGA-C8-A134-01A-11R-A115-07

50 TCGA-BH-A18J-11A-31R-A12D-07

51 TCGA-A7-A13E-01A-11R-A12P-07

52 TCGA-AC-A5XU-01A-11R-A28M-07

53 TCGA-BH-A1EV-11A-24R-A137-07

54 TCGA-BH-A1EU-11A-23R-A137-07

55 TCGA-BH-A0H5-11A-62R-A115-07

56 TCGA-C8-A12T-01A-11R-A115-07

57 TCGA-AO-A03M-01B-11R-A10J-07

58 TCGA-B6-A0IP-01A-11R-A034-07

59 TCGA-D8-A142-01A-11R-A115-07

60 TCGA-D8-A1XL-01A-11R-A14M-07
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