
Incompleteness of the Inference System BNeg

Kjetil Midtgarden Golid

Master Thesis

Department of Informatics
University of Bergen

June 2016

Acknowledgements

I would like to thank my supervisor, Micha l Walicki, for outstanding support and guid-
ance. This thesis would not have been possible without your expertise.

Abstract

Any propositional discourse can be represented as a propositional theory in a specific
form in such a way that the theory is inconsistent if and only if the discourse is para-
doxical. Propositional theories in this form can be represented as directed graphs such
that the models of the theory correspond to the kernels of the digraph. This thesis
looks at Neg; a sound, refutationally complete, non-explosive resolution system over
such propositional theories. We investigate the relation between various graph struc-
tures and clauses provable by the resolution system from the corresponding theory. The
main results is a counter-example to a conjecture that a restricted version BNeg of the
system is refutationally complete.

Contents

1 Introduction and preliminaries 3
1.1 Paradoxes . 3
1.2 Graph Normal Form . 4
1.3 Kernels and Solutions . 5
1.4 Discourse Theories and Digraphs . 7
1.5 Results in kernel theory . 9
1.6 Recognizing dags without kernels . 11
1.7 Resolving GNF-theories . 11

1.7.1 The inference system . 12
1.7.2 Inconsistency of the Yablo-graph 14

1.8 Thesis overview . 15

2 NAND-clauses in graphs 17
2.1 Motivation . 17
2.2 Odd paths . 19
2.3 Trimming . 21
2.4 Odd vels . 23
2.5 Generalizing trimming . 24
2.6 Inductive definitions . 26

2.6.1 The V2 relation – a generalization of V1 26
2.6.2 The V3 relation – a generalization of V2 29

2.7 Concluding remarks . 33

3 Refutational incompleteness of BNeg 34
3.1 Inconsistencies in general theories . 35
3.2 Binary NAND-clauses in graph theories 37
3.3 Unary NAND-clauses in graph theories . 39
3.4 Inconsistencies in graph theories . 43
3.5 Additional findings . 47

3.5.1 Isolated components . 47
3.5.2 Components connected by a common source 48

4 Conclusion and future work 50

1

A Proofs 52
A.1 Translating CNF to GNF . 52
A.2 Inconsistency of Stretched Yablo . 54
A.3 Provability of NAND-clauses from vels . 59

2

Chapter 1

Introduction and preliminaries

1.1 Paradoxes

A formula in propositional logic is semantically inconsistent if it has no model, i.e.
there exists no variable assignment making the formula true. Likewise, a collection of
formulae, called a theory, is inconsistent if there exists no variable assignment making
all the formulae in the theory true. Consider the following formula:

x ∧ ¬x (1.1)

While a sentence like ¬a → b can be satisfied by, for instance, letting both a and b be
true, no such assignment can be made for the formula above. The formula is therefore
inconsistent.

A paradox can be informally defined as “a statement that can be neither true nor false”.
In this case, a statement can be both a formula or a theory. We can immediately note
that since no paradoxes can be true, all paradoxes are, by definition, inconsistent. It is
however not the case that all inconsistencies are paradoxes; just consider x ∧ ¬x again:
this formula simply seems false, and not paradoxical.

A different view is that paradoxes are dialetheia – statements that are both true and
false[1]. We will however not spend much time exploring these philosophical differences,
as this is not a philosophical paper and it will not change much for our definitions.

The liar sentence is probably the most famous example of a paradox:

“This sentence is false.”

If the sentence is true, then the sentence is false, but if the sentence is false, then the
sentence is true. It can thus neither be true nor false, since both lead to a contradic-
tion.

3

Notice how the liar sentence is a statement about other statements (in this case itself).
A collection of formulae where some of them may refer to themselves or other formulae
is called a discourse / discourse theory in [2], which we will follow. In order to represent
such discourses, we need a formal way of referring to other statements within a state-
ment. In propositional logic, this can be done by giving statements names. We name a
statement by introducing a bi-implication between it and a fresh variable.

Consider the examples below. On the left side are normal propositional statements; on
the right side are their corresponding named statements, the fresh variables being their
names.

a x1 ↔ a (1.2)

a ∧ ¬a x2 ↔ a ∧ ¬a (1.3)

a ∨ ¬a x3 ↔ a ∨ ¬a (1.4)

Labelling statements in this way obviously changes their truth value. Even though there
is one consistent, one inconsistent and one tautological statement on the left, all the
statements on the right are consistent. This is because we can find truth values for both
x1, x2 and x3 that match the truth value of their corresponding statements, making each
equivalence true. In other words, the truth value of a labelled statement does not refer
to whether the unnamed statement is consistent, but whether or not a truth value can
be found for it at all. Since we have defined a paradox to be a statement that is neither
true nor false, we get that a statement is paradoxical if and only if labelling it makes it
inconsistent.

Consider the liar sentence again. Labelling it and then using its label in order to make
it reference itself gives us the following statement:

x↔ ¬x (1.5)

This labelled statement is obviously inconsistent, making it a paradox by our defini-
tion.

We continue to look at labelled formulae and ways of determining whether or not they
are consistent.

1.2 Graph Normal Form

A propositional theory over a set of variables Σ is in graph normal form (GNF)[3] if all
its formulae have the following form:

x↔
∧
y∈Ix

¬y (1.6)

where Ix ⊆ Σ and such that every variable occurs exactly once on the left of ↔ across
all the formulae in the theory.

4

There is a simple translation from a theory in conjunctive normal form to an equisatis-
fiable theory in graph normal form (shown in Appendix A.1). Since conjunctive normal
form is expressively complete, it follows that any propositional theory, including our
labelled statements, has an equisatisfiable GNF theory.

This means that any discourse can be represented with a GNF theory such that the
discourse is paradoxical if and only if the GNF theory is inconsistent. This GNF rep-
resentation of discourses is interesting to us because GNF theories have a tight corre-
spondence to graphs. This correspondence lets us not only decide the satisfiability of
a discourse theory by looking at certain features in the corresponding graph, but the
graph also provides us with the actual models of the discourse, if they exist.

In order to express this logic/graph correspondence, we first need to establish some graph
terminology.

1.3 Kernels and Solutions

Definition 1. A directed graph (digraph) is a pair G = 〈G,N〉 where G is a set of
vertices while N ⊆ G×G is a binary relation representing the edges in G.

We say that the graph is finite if its set of vertices is finite; infinite otherwise.

We use the notation N(x) to denote the set of all vertices that are targeted by edges orig-
inating in x (successors of x). Similarly, N−(x) denotes the set of all vertices with edges
targeting x (predecessors of x). We define the two functions formally as follows:

N(x) := {y | (x, y) ∈ N} (1.7)

N−(x) := {y | (y, x) ∈ N} (1.8)

Definition 2. The number of successors a vertex has is often called the out-degree of
that vertex. The number of predecessors is called the in-degree. If a vertex has out-
degree 0, we call it a sink ; if it has in-degree 0, we call it a source. If the out-degree of
each vertex in a graph is finite, we say that the graph is finitary. A graph that is not
finitary is called infinitary.

Note the difference between the concept of a finite graph and the one of a finitary graph;
an infinitary graph is infinite, but a finitary graph is not necessarily finite.

Definition 3. A simple path is a sequence of distinct vertices x1, x2, . . . , xn such that
for each consecutive pair xi, xi+1 from the sequence, we have (xi, xi+1) ∈ N . We say
that two paths are disjoint if they do not share any vertices (with the possible exception
of their initial vertices).

The number of edges in the path is called the length of the path.

5

The functions N and N− can be extended pointwise to sets in the following way:

N(X) =
⋃
x∈X

N(x) (1.9)

N−(X) =
⋃
x∈X

N−(x) (1.10)

Definition 4. A kernel is a set of vertices K ⊆ G such that:

G \K = N−(K) (1.11)

The equivalence in the above definition can be split into two inclusions to be more easily
understood:

G \K ⊆ N−(K), saying that each vertex outside the kernel has an edge into the kernel
(K is absorbing). A consequence of this is that a kernel has to be non-empty, unless the
graph is empty.

N−(K) ⊆ G \ K, saying that each edge targeting a vertex within the kernel has to
come from outside, thus no two vertices in the kernel are connected by an edge (K is
independent).

Kernels have been studied over several decades, not only in graph theory, but also within
the fields of game theory and economics. The concept was first defined and used by von
Neumann and Morgenstern in [4].

In a graph representing some sort of a turn-based game, where vertices are states and
edges are transitions between states, one can often work out winning strategies whenever
one finds a kernel in the graph. Whenever one is outside of the kernel, one always has
the possibility of moving inside the kernel (since the kernel is absorbing), while inside the
kernel one has to move out of it (since the kernel is independent). If you are the player
with the choice outside the kernel, you can control the game and choose to stabilize it
by always moving into the kernel, forcing the opponent to move out again on the next
turn.

Deciding whether kernels exist in finite graphs has been shown to be an NP-complete
problem[5]. This should not be surprising, since we are in the middle of showing the
equivalence between this problem and the problem of finding satisfying models of PL-
theories (SAT), which we know is NP-complete. It should be noted however, that in
this thesis, we will mainly concern ourselves with the existence of kernels in infinitary
graphs and thus also SAT over infinitary formulae.

We will get the correspondence between models of a discourse theory and kernels in a
graph through an alternative, equivalent kernel definition called a solution.

Definition 5. Given a directed graph G = 〈G,N〉, an assignment α ∈ 2G is a function
mapping every vertex in the graph to either 0 or 1. A solution is an assignment α such

6

that for all x ∈ G :

α(x) = 1 ⇐⇒ α(N(x)) = {0} (1.12)

This means that for any vertex x, if x is assigned 1, then all its successors have to be
assigned 0, and if x is assigned 0, then there has to exist a vertex assigned 1 among its
successors. A consequence of this definition is that all sink vertices (vertices with no
outgoing edges) in the graph have to be assigned 1, since it vacuously does not point to
any node assigned 1. We use the notation sol(G) to denote the set of all solutions of
the graph G.

We get the equivalence between kernels and solutions from the following two facts: Given
a solution, the set of all vertices assigned 1 is a kernel. Given a kernel, the function
assigning 1 to all vertices in the kernel and 0 to the rest, is a solution.

1.4 Discourse Theories and Digraphs

As mentioned earlier, there is a close connection between the following three con-
cepts:

1. Models of a discourse (theory)

2. Kernels in a graph

3. Solutions of a graph

While we have the equivalence between (2) and (3), we will now look at two functions
connecting (1) and (2). This correspondence was shown by Roy T. Cook in [6]. Let
mod(T) denote the set of models of the theory T ; we get the following definitions from
[3].

T : translating a digraph G into a corresponding theory T (G) such that sol(G) =
mod(T (G)).

G : translating a theory T into a corresponding digraph G(T) such that mod(T) =
sol(G(T)).

Given any digraph G we get the discourse theory T (G) by, for each vertex x ∈ G,
forming the equivalence x ↔

∧
y∈N(x) ¬y. For the cases where N(x) = ∅, instead of

adding an equivalence, we simply add x.

7

(G1)
a

(G2)
ab c

(G3)
a

b c

Figure 1.1

The graphs in Figure 1.1 have the following theories:

T (G1) =
{
a↔ ¬a

}
(1.13)

T (G2) =
{
a↔ (¬b ∧ ¬c), b, c

}
(1.14)

T (G3) =
{
a↔ (¬b ∧ ¬c), b↔ ¬c, c↔ ¬b

}
(1.15)

The fact that sol(G) = mod(T (G)) is shown in [3]. Although not proving it, we observe
that G1 has no solution, just like its corresponding theory T (G1) has no models. G2

has one solution, where one assigns a = 0, b = 1, c = 1. This assignment also works
as the only model for T (G2). In G3, we get two solutions, both with a assigned 0,
but with 0 and 1 distributed between b and c. These are also the only two models of
T (G3).

Conversely, given any discourse theory T (in fact, this will work given any PL theory,
since we can translate CNF to GNF), we can derive the corresponding graph G(T) in the
following way: All variables in the theory are vertices, and for each formula x↔

∧
y∈Ix ¬y

make a directed edge 〈x, y〉 for each y ∈ Ix.

T = {(a↔ ¬a′), (a′ ↔ ¬a), (b↔ ¬b′), (b′ ↔ ¬b), (y1 ↔ (¬a ∧ ¬b ∧ ¬y1))} (1.16)

Using G on the above GNF theory gives us the following graph:

(G(T))
y1

b b’

a a’

Figure 1.2

Again, will we not be proving the correspondence, but notice that T has three solutions,
where either a, b or both are assigned 1. This reflects onto the graph where y1 has
to be assigned 0, thus forcing a or b to be assigned 1. The fact that G gives us the
correspondence we are looking for is shown in [3].

With the problem of solutions in the graph being equivalent with SAT, we get our final
equivalence between kernels in the graph and models of the theory. More precisely,

8

we have that the set of kernels in a graph is equivalent with the set of models of the
corresponding theory. Because of this tight link, we sometimes refer to graphs without
kernels as paradoxical graphs.

The applicability of kernels should by now be obvious. In the next section we will review
various findings within kernel theory and especially the findings related to infinitary
graphs.

1.5 Results in kernel theory

The end goal within kernel theory is ultimately to develop an easy way of answering the
question “Does this digraph have a kernel?” no matter the graph, and no matter the
answer. As of today, we are not quite there, but a lot of work has been put into trying
to identify special circumstances under which one is guaranteed to have (or guaranteed
to not have) a kernel in the given graph. One significant result is the theorem proven
by Moses Richardson in 1953:

Theorem 6 ([7]). If D is a finitary digraph without odd cycles, then D has a kernel.

Intuitively, one might be tempted to believe that all digraphs without odd cycles have
kernels, but this is not the case. Until now, all our paradoxes have been statements that
– directly or indirectly – have been referring back to themselves (giving cycles in the
graph) and thus causing a logical conflict, and it is hard to imagine any other way to
construct paradoxical statements. The following construction will however reveal our
lack of imagination.

The Yablo Graph[8] is an example of an acyclic graph with no kernel. It is constructed
with an infinite set of vertices {xi | i ∈ N} and a set of edges N such that 〈xi, xj〉 ∈ N
iff i < j.

x1 x2 x3 x4 x5
. . .

Figure 1.3: The Yablo Graph

Since the <-relation is a strict ordering, we have that the Yablo-graph indeed is acyclic.
Furthermore, since any natural number has infinitely many numbers strictly larger than
it, we get that all the vertices are infinitely branching, making the Yablo-graph infini-
tary.

9

The discourse represented by the Yablo-graph would – informally – be the situation
with an infinite number of statements, all saying “Every statement after this statement
is false”.

We will later show formally that the Yablo-graph is indeed without a kernel, but for now
the following explanation should suffice:

Suppose that the Yablo-graph has a kernel and that the vertex xa is in it. Then all
the vertices to the right of xa are necessarily outside of the kernel, including xa+1. But
if xa+1 is outside of the kernel, it has to point to a vertex on the inside. This is now
impossible, since the out-neighborhood of xa+1 is a subset of the out-neighborhood of
xa. Since xa was chosen without any restrictions, no vertex can be inside the kernel,
making it empty. Since no kernel can be empty, we have a contradiction, making the
Yablo-graph without a kernel.

One thing should be mentioned at this point: The inverse of Richardson’s statement is
not valid; neither odd cycles nor infinitely branching vertices entail that their respective
graphs are paradoxical. The following two graphs illustrate this point:

x0

x1 x2

Figure 1.4

The above graph contains an odd cycle, but the singleton set {x2} is a kernel.

x0

x1 x2 x3
. . .

Figure 1.5

The above graph has an infinitely branching vertex x0, but the infinite set {xi | x > 0}
is a kernel.

Another important theorem within kernel theory is shown by Roy T. Cook in [6], stating
that every digraph with at least one edge can be transformed into an infinitary dag –
preserving and reflecting the solutions. This means that for any finitary graph that is
paradoxical by the virtue of having an odd cycle, there is a corresponding infinitary,
acyclic digraph that is also paradoxical. So if one is trying to find ways to identify
paradoxical graphs, one does only need to look at dags.

10

1.6 Recognizing dags without kernels

Knowing that any graph can be translated to an equisatisfiable dag, the challenge is now
to find sufficient conditions for dags to have kernels, even weaker than the one proved
by Richardson (the fact that any finitary dag has a kernel is a direct consequence of
Richardson’s Theorem).

Definition 7. Given a graph G = 〈G,N〉, a ray is an semi-infinite path, i.e. an infinite
sequence (x1, x2, . . .) of distinct vertices of G such that (xi, xi+1) ∈ N for each i.

Definition 8. A vertex x0 dominates a set of vertices Y ⊆ G if there exists an infinite
number of disjoint paths from x0 to distinct vertices of Y .

Micha l Walicki has proposed the following conjecture:

Conjecture 9. If a dag has no kernel then it has a ray with infinitely many vertices
dominating it.

The contrapositive of Walicki’s thesis suggests a condition for a kernel. This condition is
weaker than the one from Richardson’s Theorem, since a dag having a ray with infinitely
many vertices dominating it implies that the dag is infinitary.

1.7 Resolving GNF-theories

In this section, I present an inference system introduced by Walicki in [9] which reasons
over clausal theories induced from GNF-theories. The system is refutationally complete
as well as non-explosive, allowing us to identify consistent parts of paradoxical discourse
theories.

We later show some correlations between certain graph structures and clauses provable
in this inference system.

Recall that a GNF theory consists exclusively of formulae of the following form:

x↔
∧
y∈Ix

¬y (1.17)

Using simple operations only, these formulae can be translated into an equivalent set of
clauses. We start by writing the above bi-implication as two implications:

x→
∧
y∈Ix

¬y and x←
∧
y∈Ix

¬y (1.18)

The first implication can be rewritten in the following way:

x→
∧
y∈Ix

¬y ⇔ ¬x ∨
∧
y∈Ix

¬y ⇔
∧
y∈Ix

(¬x ∨ ¬y) ⇔
∧
y∈Ix

¬(x ∧ y) (1.19)

11

The second implication can be rewritten in the following way:

x←
∧
y∈Ix

¬y ⇔ x ∨ ¬

∧
y∈Ix

¬y

 ⇔ x ∨
∨
y∈Ix

y (1.20)

By splitting the conjunction from the first implication up into individual clauses, we get
the following two kinds of clauses for every variable x in the GNF theory:

OR-clause: x ∨
∨
y∈Ix

y (1.21)

NAND-clauses: ¬(x ∧ y), for every y ∈ Ix (1.22)

We will treat both the OR-clauses and the NAND-clauses as sets of atoms, denoting
NAND-clauses ¬(x ∧ y) as xy and OR-clauses x ∨ y1 ∨ y2 ∨ y3 as xy1y2y3. This enables
us to state things like xy ⊂ xyz. A theory will – as expected – be a set of OR- and
NAND-clauses.

If we interpret the initial GNF-theory as a graph G = 〈G,N〉, for every vertex x ∈ G,
there will be one OR-clause {x} ∪ N(x) and for every edge 〈x, y〉 ∈ N there will be a
NAND-clause xy.

The graphs from Figure 1.1 will have the following clausal theories:

T (G1) = {a, a} (1.23)

T (G2) = {abc, b, c, ab, ac} (1.24)

T (G3) = {abc, bc, ab, bc} (1.25)

Further notation: A ⊆ G denotes an OR-clause while A ⊆ G denotes a NAND-clause.
Given a graph G = 〈G,N〉, we denote the set of all NAND-clauses induced from the
graph as NAND and all induced OR-clauses as OR. The combined set Γ = NAND+OR
will be our initial clauses in the inference system.

1.7.1 The inference system

We consider the following inference system, but we will focus on proofs using the axioms
together with the (Rneg)-rule.

(Ax) Γ ` C, for C ∈ Γ (1.26)

(Rneg)
{Γ ` aiAi | i ∈ I} Γ ` {ai | i ∈ I}

Γ `
⋃

i∈I Ai

(1.27)

(Rpos)
Γ ` A {Γ ` BiKi | i ∈ I} {Γ ` aik | i ∈ I, k ∈ Ki}

Γ ` (A \ {ai | i ∈ I}) ∪
⋃

i∈I Bi
(1.28)

12

(Rneg) is creating NAND-clauses from NAND-clauses using OR as a side-condition.
(Rpos) is creating OR-clauses from OR-clauses using NAND as a side-condition. In
(Rneg), aiAi denotes the NAND {ai} ∪Ai with a potentially empty Ai.

A proof in this system is a well-founded derivation, i.e. each of the branches in the proof
tree is finite. This allows us to induce over the complexity of the proof tree.

The premise of the (Rneg)-rule is a set of I NAND-clauses together with one OR-clause
with I elements such that each atom ai in the OR-clause is contained within a NAND-
clause, and such that each NAND-clause contains an atom from the OR-clause. The
correspondence between the NAND-clauses and the elements of the OR-clause should in
other words be bijective. The conclusion is the union of all the NAND-clauses without
their corresponding atom from the OR-clause.

Whenever it is obvious and/or irrelevant from what theory we are proving something,
we leave out this information in the proof to ease readability. Additionally, we move the
single OR-clause in the premise to the side of the proof to emphasize its role as a side
condition. These conventions are illustrated below:

Γ ` ax Γ ` by Γ ` ab

Γ ` xy
∼

ax by
ab

xy

Figure 1.6

Here are some examples of incorrect applications of the (Rneg)-rules, followed by some
correct applications:

(1)
ax by cz

xyz
abx (3)

ax by

xy
abx (2)

ax by bz

xyz
abx

(1) is incorrect because the NAND cz contains no atoms from the OR abx. (2) is
incorrect because the number of NAND-clauses does not match the length of the OR-
clause. (3) is incorrect because there exist no bijective correspondence of the type
described above.

(4)
ax by cz

xyz
abc (5)

ax b

x
ab (6)

ax by xyz

xyz
abx

The above applications are all correct, since all the atoms in each OR-clause get matched
to exactly one NAND-clause in such a way that no NAND-clause stays unmatched.

The proof system sets no restrictions on the number and cardinality of its clauses,
meaning that there might be an infinite number of clauses, and both the OR-clauses
and the NAND-clauses might be either finite or infinite in size. Note that an infinite
graph gives infinitely many NAND- and OR-clauses, while an infinitary graph also gives
us infinitely long OR-clauses.

13

We study the refutation system that arises from the axioms and the (Rneg)-rule, calling
it Neg. It is shown in [9] that Neg is sound for arbitrary theories and refutationally
complete for theories with a countable number of OR-clauses. Soundness gives us for
any graph G = 〈G,N〉 that proving C for any C ⊆ G implies that the vertices in C
cannot all be assigned 1 in the graph model T (G). Refutational completeness gives us
the property that whenever a graph/theory is inconsistent, we are able to prove ∅ in
Neg.

We use the notation Γ � C to express that every model of the theory Γ satisfies the
NAND-clause C. Note that because of the model/kernel equivalence presented in Sec-
tion 1.4, the notation can also be used to express that none of the kernels in the graph
G(Γ) contains all the vertices in the set C.

Since refutational completeness is only proven for theories with countably many OR-
clauses, this thesis will only consider graphs with a countable number of vertices. We
are thus able to assume both soundness and refutational completeness for all following
graph theories.

Note that Neg is not generally complete, i.e. we do not always have thatG � x ⇒ G ` x.
The inconsistent graph G in Figure 1.7 exemplifies this:

a b

Figure 1.7

Because of the loop on vertex a, the graph has no solutions. We therefore have G � ∅
and thus also G � b, but we are unable to prove b in Neg.

1.7.2 Inconsistency of the Yablo-graph

The inconsistency of the Yablo-graph is easily proven using Neg only. Since every vertex
xi (using the notation from Figure 1.3) has an edge to each vertex xj where j > i, we
get that every pair of distinct vertices is connected by an edge. This means that our set
of axioms from the Yablo-graph looks like this:

NAND = {xixj | i < j} OR = {xixi+1xi+2 . . . | i ∈ N} (1.29)

For any vertex xi from the Yablo-graph, we are now able to prove xi in the following
way:

14

xixi+1 xixi+2 xixi+3 . . .
xixi+1xi+2 . . .

xi

Figure 1.8

Proving ∅ is now simple:

. . .

x1

. . .

x2

. . .

x3 . . .
x1x2x3 . . .∅

Figure 1.9

A less trivial inconsistency proof is the one of the Stretched Yablo-graph. This proof can
be found in Appendix A.2 together with the definition of Stretched Yablo.

It is worth mentioning that even though our focus has been – and will be – on theories
originating from graphs, the results on soundness and completeness hold for any theory
consisting of a set of NANDs and a set of ORs.

An example of this is the pigeonhole problem which easily can be represented as a set of
NAND- and OR-clauses, but does not directly correspond to a graph (it can of course
be translated to a graph theory, like any other propositional theory). A Neg-proof of
the pigeonhole principle can be found in Section ??.

1.8 Thesis overview

The soundness and refutational completeness of Neg makes it a potentially great tool in
the overarching endeavor of weakening the conditions for kernels in graphs. We know
that for any graph G, ∅ can be proven in Neg based on G if and only if G is without a
kernel.

Suppose that any inconsistency can be proven using only NAND-clauses of length at most
2, and that all NAND-clauses of length 2 correspond to vertices related in a certain way
in the graph. This would in combination give us a condition for kernels, namely the
absence of such specifically related vertices. With this in mind, the thesis will set out to
do two things:

(1) Define a graph structural relation such that two vertices a, b in a graph G are so
related if and only if G ` ab.

This will be covered in Chapter 2 where we will be looking at increasingly general graph
structures that ensure the provability of certain NAND-clauses, ultimately attempting
to reach a structure general enough so that the provability of a NAND-clause entails the
existence of that structure.

15

(2) Explore whether Neg is still refutationally complete when restricted to using NAND-
clauses of length 1 or 2 only.

It will be shown in Chapter 3 that this is not possible. The chapter will present graphs
where certain NAND-clauses are provable in general, but not under the restrictions
mentioned. This will then be used to show that Neg, when under the restrictions of
only using NAND-clauses of length 1 or 2, is unable to prove inconsistencies in certain
graphs.

16

Chapter 2

NAND-clauses in graphs

Definition 10. A clause is unary if it contains only one atom. A clause is binary if it
consists of one or two atoms.

In this chapter, we will motivate and conduct the search for graph structural equivalents
of binary NAND-clauses provable in Neg. An actual graph structure corresponding to
the binary NAND-clauses has not been found, but we will show various graph structures
implying the provability of certain binary NAND-clauses.

2.1 Motivation

Since our proof system, Neg, has only one rule, the last step of any inconsistency proof
will always look the same:

k1 k2 k3 . . .
k1k2k3 . . .∅

Figure 2.1

The premise will always consist of a collection of unary NAND-clauses, together with an
OR-clause equal to the union of all the NAND-clauses. It is easy to see that none of the
NAND-clauses can be larger than unary, since that would result in a non-empty NAND-
clause in the conclusion. The OR-clause has to equal the union of the NAND-clauses
simply by definition of the (RNeg)-rule.

This fact was also observed in [9]:

Γ ` {} ⇔ ∃K ∈ OR : (∀k ∈ K : Γ ` k) (2.1)

We know from the definition that any OR-clause used in the proof system corresponds
to a single vertex with its successors in the graph. We do however not know what the

17

NAND-clauses of length 1 might correspond to. Knowing this would, by soundness and
completeness of Neg, give us a graph structural condition for a kernel not to exist.

The only thing we do know about unary NAND-clauses is that they correspond to
vertices that are assigned 0 in all solutions of the graph. We get this from soundness of
Neg. As an example, consider the axiomatic unary NAND-clauses, which corresponds
to loops in the graph. Vertices with loops can not be assigned 1 in any solution.

This is however not the graph structural property we are ultimately looking for, but at
least we have reduced the question “What does an inconsistent graph look like?” to the
question “What does a provably false vertex look like?”.

So what does a unary NAND-clause proven in Neg correspond to in the graph? Similarly
to a proof of ∅, there is really just one way to prove a unary NAND-clause:

xk1 xk2 . . . kn kn+1 . . .
k1k2 . . . knyk+1 . . .

x

Figure 2.2

Any derivation of a unary NAND-clause x must end with a rule application using K ∈
OR where for each k ∈ K, there is a NAND-clause in the premise that is either unary,
k or binary, xk. We require the premise to contain at least one binary NAND-clause, in
order to actually be able to conclude with x and not ∅.

In other words:

Γ ` x⇔ ∃K ∈ OR :

(
∃k ∈ K : G ` kx ∧
∀k ∈ K : G ` kx ∨G ` k

)
(2.2)

Just as we reduced the problem of inconsistency to the problem of unary NAND-clauses,
we are able to reduce the problem further to binary NAND-clauses. We could even
continue the reduction further to ternary clauses, quaternary clauses and so on, but
without a change of strategy at some point, this seems pointless.1

Our current reduction lets us ask how two vertices x, y are connected in the graph when
their binary NAND xy is proven in Neg. Observe that we have parts of this correspon-
dence down already, with our NAND-axioms being all binary. Vertices directly connected
by an edge must therefore be a part of the corresponding graph structure.

Let R(a, b) denote the existence of some graph structure R between the vertices a and b in
some graph G; our desired correspondence can now be formally defined as follows:

R(a, b) ⇒ G ` ab (2.3)

R(a, b) ⇐ G ` ab (2.4)

1We put a lot of attention on binary NAND-clauses because we at this point strongly believed that any
inconsistency was provable using binary NAND-clauses only. This claim is investigated and disproved
in the next chapter.

18

The two implications will be referred to as implication (1) and implication (2), respec-
tively. Note that since a = aa, we have the special case where R(a, a)⇔ G ` a.

Suppose we manage to find a structure R that satisfies both above implications. The
following equation tells us how that would directly give us a predicate deciding whether
or not the graph has a kernel.

Sol(G) = ∅ (2.5)

⇔ G ` ∅ (2.6)

2.1⇔ ∃K ∈ OR : (∀k ∈ K : G ` k) (2.7)

2.2⇔ ∃K ∈ OR : (∀k ∈ K : (∃L ∈ OR :

(
∃l ∈ L : G ` lk ∧
∀l ∈ L : G ` lk ∨G ` l

)
)) (2.8)

2.3⇔
2.4
∃K ∈ OR : (∀k ∈ K : (∃L ∈ OR :

(
∃l ∈ L : R(l, k) ∧
∀l ∈ L : R(l, k) ∨R(l, l)

)
)) (2.9)

The following sections will present various graph structures, each satisfying implication
(1). Each presented structure will be a generalization of the previous one, ultimately
aiming to find a structure general enough to satisfy both implication (1) and implica-
tion (2). Such a structure would be a graph structural equivalent of a binary NAND
provable in Neg. Unfortunately, we did not manage to find such a graph structure in
this thesis.

For each structure presented, implication (1) will be shown, followed by an example
disproving implication (2). The counterexamples will be graphs with the presented
structure absent, but with the corresponding NAND-clause still provable.

Because of soundness of Neg, if two vertices correspond to a provable binary NAND
in Neg, for any kernel K in that graph, at least one of the two vertices is outside K.
The contrapositive of this observation being that for a graph G, if there exists a kernel
K ⊆ G such that two vertices, x1 and x2 are both in K, then x1x2 is not provable from
G. This fact will be used when arguing why some graph structures are not satisfying
implication (1).

2.2 Odd paths

We already know that whenever two vertices are connected by an edge, their binary
NAND is trivially provable in Neg, since it is a part of the axioms.

We illustrate this case in Figure 2.3, where dashed lines represent possible out-edges to
irrelevant parts of the graph. If a vertex has no dashed edges, it means that we disallow
any additional edges out from this vertex.

This figure is the most basic example of a structure between two vertices that satisfies
implication (1).

19

Figure 2.3

It is however easy to find an example showing how implication (2) does not hold.

x0 x1 x2 x3

Figure 2.4

The above graph has the axioms NAND = {x0x1, x1x2, x2x3} and OR = {x0x1, x1x2, x2x3}.
From these axioms, we can now, despite the fact that the vertices x0 and x3 are not
connected by an edge, easily prove the NAND-clause x0x3:

x0x1 x2x3
x1x2

x0x3

Figure 2.5

Intuitively, one can imagine that the proof above is connecting two NAND-clauses using
an OR-clause, resulting in a new binary NAND-clause containing vertices that are weak-
lier connected than the ones we started with. This can be done repeatedly, resulting in
the ability to prove binary NAND-clauses from vertices that are connected by arbitrarily
long odd paths of the kind above.

Consider the following graph:

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9

Figure 2.6

With axioms from the above graph, x0x9 can be proven in Neg in the following way:

20

x0x1 x2x3
x1x2

x0x3 x4x5
x3x4

x0x5 x6x7
x5x6

x0x7 x8x9
x7x8

x0x9

Figure 2.7

Observe that the above proof also proves x0x3, x0x5 and x0x7 along the way, all of which
contain vertices connected by paths of odd length. This is an important point. NAND-
clauses containing vertices connected only by paths of even length cannot be proven in
the same manner as above.

In many cases, such NAND-clauses cannot be proven at all. This is exemplified by the
below graph, with a kernel containing the vertices a and b, showing that the NAND-
clause ab is unprovable in Neg. The kernel in the graph below is represented by the
black vertices.

a b

Figure 2.8

Restricting our paths to be of odd length lets us avoid cases like the one above. It is
however not the case that all odd paths satisfy implication (1).

2.3 Trimming

We introduce the following terminology:

Definition 11. Given a path and two consecutive vertices x and y from that path, we
will say that x is trimmed, with respect to that path, if N(x) = {y}.

Note that when a vertex is trimmed, its corresponding OR-clause is binary.

Definition 12. If all the vertices of a path, except the terminal vertex, are trimmed,
we will call the path a fully trimmed path.

All the paths presented in this chapter so far have been fully trimmed.

If two vertices a and b are connected by an odd path that is not fully trimmed, ab is not
necessarily provable in Neg. The below graph exemplifies this with a kernel containing
both a and b, even though they are connected by an odd path.

21

a b

Figure 2.9

Whenever two vertices, x0 and xk, are connected by a fully trimmed path of odd length,
x0xk is generally provable in Neg in the following way:

x0x1 x2x3
x1x2

x0x3 x4x5
x3x4

x0x5
...

x0xk−2 xk−1xk
xk−2xk−1

x0xk

Figure 2.10

Since the path is fully trimmed, all the OR-clauses used are binary, letting us prove our
NAND-clause without introducing any other clauses than the ones we get from the path
itself. However, notice that only half of the OR-clauses is actually in use in such a proof.
Thus, we need only to restrict half of the vertices in the path to not branch.

With the proof from Figure 2.10 in mind, consider the following graph:

x0 x1 x2 x3
. . .

xk−2 xk−1 xk

Figure 2.11: An oddly trimmed path of odd length

In the above path, between x1 and xk, only every other vertex is trimmed. We will call
this path variant an oddly trimmed path, and define it formally as follows:

Definition 13. A path (x0, x1, . . . , xk) is oddly trimmed if for each odd i < k, xi is
trimmed with respect to that path.

One can immediately note that any fully trimmed path is also oddly trimmed.

The axioms we get from the oddly trimmed path above do not differ significantly from
the fully trimmed variant. Since the vertices x0, x2, x4, . . . , xk−1 no longer have single
successors, their corresponding OR-clauses will no longer be binary. However, since none
of these OR-clauses are used in the general proof in Figure 2.11, the proof will remain
valid also for the oddly trimmed path.

22

This makes us able to generalize further and say that any two vertices connected by an
oddly trimmed path of odd length satisfy implication (1).

2.4 Odd vels

The following observation will further generalize the concept of oddly trimmed paths:

The direction of edges in a graph can often be changed individually while still keeping
many axiomatic clauses unchanged, including all the NAND-clauses.

Consider the following graph:

x0

x1

x2

x3

x4

x5

Figure 2.12

From the above graph, x0x5 can be proven in the same way as in the proof of x0x9
in Figure 2.7. Again, the only thing we are changing in terms of the axioms are the
OR-clauses that are not used in the proof.

We will call this kind of graph structure an odd vel and define it formally in the following
way:

Definition 14. Two vertices a and b have an odd vel between them if there exists a
vertex c such that there are oddly trimmed paths from a to c and from b to c, one of
even length (possibly 0) and one of odd length.

Notice that an oddly trimmed path of odd length is just an instance of an odd vel where
the even path is of length 0.

The formal proof why all NAND-clauses from vertices connected by such vels are provable
in Neg can be found in Appendix A.3.

There are obviously other ways of altering directions of individual edges in a path. The
next example will however show that most of them will alter the OR-clauses in such a
way that implication (1) no longer hold.

23

a

b a

b

Figure 2.13

The figure above shows two odd paths that have had some of their edges flipped. In
both examples, the shown kernels contain both a and b, showing that neither gives a
provable NAND-clause ab in Neg.

2.5 Generalizing trimming

In this section, we will take a closer look at the current concept of trimming, and through
some examples introduce a more general definition. So far, trimming has meant forcing
certain vertices to point only at its successor in a path.

In Section 2.2 we motivated the concept of trimmed paths by presenting the graph in
Figure 2.9. The figure showed how adding out-edges to certain vertices in the odd path
makes the corresponding NAND-clause unprovable.

Notice however that adding a loop on the vertex to which the path branches, leaves us
with a different situation.

a x

z

y b

Figure 2.14

The addition of the loop adds z to the axioms. The NAND-clause ab can now easily be
proven in the following way:

ax yb z
xyz

ab

Figure 2.15

This shows the fact that vertices at odd positions in a path can indeed branch off to
other vertices than their path successor and still contribute to a provable NAND-clause,

24

just as long as the vertices they branch off to satisfy certain criteria. If the vertex is
provably false, we can use that unary NAND-clause, like we did in the above proof, to
handle the non-binary OR-clauses. This observation lets us generalize our definition of
trimmed vertices and still have our vel-relation satisfy implication (1).

The new, general notion of trimming can be formally defined like follows:

Definition 15. Given a path in some graph G = 〈G,N〉 and two consecutive vertices
x and y from that path, we say that x is trimmed, with respect to that path, if ∀x ∈ G :
(c ∈ N(x) \ {y} ⇒ T (G) ` c).

The problem with this generalized definition is that it is using the notion of provability,
giving a vel-definition that is not purely graph-structural. With such a definition, when-
ever we want to check whether two vertices have a vel between them, we may have to
work out the actual provability of certain unary NAND-clauses, which is exactly what
we try to avoid with our vel-relation.

In addition to this problem, consider the following two graphs:

a x

z

y b a x

z

y b

Figure 2.16

Like with the graph from Figure 2.14, the above graphs are both based on Figure 2.9,
each with only one edge added. The left variant has az in its axioms, while the right
variant has bz, again making their respective proofs of ab almost trivial.

ax yb za
xyz

ab

ax yb zb
xyz

ab

Figure 2.17

The above proofs do not rely on any provably false vertex, but rather make use of the
fact that z is connected to one of the vertices contained in the NAND-clause that we are
trying to prove.

In the case of Figure 2.16, ab will be provable as long as for all the successors z of x,
either z, az or bz are provable in Neg.

This means that our definition of trimming should be generalized even further, taking
into account the observation made above. Such a generalization must add the case
where, given a vel between a and b, trimmed vertices may branch off to a vertex c as
long as either ac or bc are provable in Neg.

25

In order to keep our definitions strictly graph structural , we change our approach and
present two inductive definitions satisfying implication (1).

2.6 Inductive definitions

All the graph structures presented in this chapter so far can easily be defined inductively.
For instance, given some graph G = (G,N), let V1 ⊆ G ×G denote the set of all pairs
of vertices related by our original vel-definition (Definition 14) where ‘trimmed’ meant
strictly non-branching.

We can define V1 inductively in the following way, with a and b being arbitrary vertices
from G.

(BC): N(a, b) ∨N(b, a) ⇒ V1(a, b)

(IS): ∃c ∈ N(a) : (N(c) = {d} ∧ V1(d, b)) ⇒ V1(a, b)
(2.10)

The symmetry in the base case is what makes this a definition of a vel and not a path,
while the trimmed-ness gets expressed by the restrictions we set on vertex c in the
inductive step.

2.6.1 The V2 relation – a generalization of V1

Using induction, it is now easier to formally define the new vel-relation corresponding to
the concept of trimming from Definition 15, without using concepts of provability. Let
V2 ⊆ G×G be the set of all pairs of vertices related by the new vel-definition. V2 can be
defined inductively in the following way, again with a and b as arbitrary vertices from
G.

(BC): N(a, b) ∨N(b, a) ⇒ V2(a, b)

(IS): ∃c ∈ N(a) :

(
∃d ∈ N(c) : V2(d, b) ∧
∀d ∈ N(c) : V2(d, b) ∨ V2(d, a) ∨ V2(d, d)

)
⇒ V2(a, b)

(2.11)

Comparing the two inductive definitions, it is easy to see that V1(a, b)⇒ V2(a, b).

The fact that V2(a, b) ⇒ ` ab can now be proven inductively, showing that V2 satisfies
implication (1):

Proof. Given a graph G with two vertices a and b such that V2(a, b):

Base case: If N(a, b) or N(b, a), then the NAND-clause ab is an axiom.

Inductive step: The existence of a vertex c ∈ N(a) gives us the axiomatic NAND-clause
ac. Letting D = N(c) we also have that the OR-clause cD is an axiom. This gives us
the following incomplete proof:

26

ac . . .
cD

ab

Let Db, Da and Dd be subsets of D such that for any d ∈ D:

d ∈ Db ⇔ V2(d, b), d ∈ Da ⇔ V2(d, a), d ∈ Dd ⇔ V2(d, d), (2.12)

as illustrated in Figure 2.18

a bc

Da DbDd

Figure 2.18: The inductive case of a V2 construction. Boxes represents sets of vertices.
An edge between a vertex and a box represents a set of edges from the vertex to each of
the vertices in the set.

The inductive part of the V2 definition (2.11) reveals two properties of the sets Db, Da

and Dd:

• The set Db is nonempty, since ∃d ∈ N(c) : V2(d, b).

• Db ∪Da ∪Dd = D, since ∀d ∈ N(c) : V2(d, b) ∨ V2(d, a) ∨ V2(d, d).

The induction hypothesis lets us assume the provability of the following sets of NAND-
clauses: {db | d ∈ Db}, {da | d ∈ Da}, {d | d ∈ Dd}. Inserting these clauses into the
incomplete proof from Figure ?? gives the following proof:

ac {db | d ∈ Db} {da | d ∈ Da} {d | d ∈ Dd}
cD

ab

Figure 2.19

The nonemptiness of Db gives us the existence of a b in the premise, while the fact that
Db ∪ Da ∪ Dd = D guarantees that each atom in the OR-clause D has a match in a
NAND-clause.

The proof is thus valid, finishing the inductive step and ultimately proving the fact that
V2(a, b)⇒ ` ab.

Having that V2 satisfies implication (1), if one could show that it also satisfies implication
(2), the consequences would be considerable. It would mean that any provable binary
NAND-clause would have a proof that in each step combines a set of already proved
binary NAND-clauses with an axiom. Any provable NAND-clause could in other words

27

be constructed by adding one fresh axiom at every step, hinting at a possible normal
form of proofs in Neg.

Unfortunately, V2 does not satisfy implication (2). The vertices a and b in the graph
presented below will not be related by V2, but ab is still provable in Neg. The graph will
thus act as a counterexample for implication (2).

a

x

y

z

c1 c2

b

Figure 2.20

Given the above graph, ab can be proven like follows:

ax yz
xy

az ac1 bc2
zc1c2

ab

Figure 2.21

We now show that the graph in Figure 2.20 is not an instance of V2.

Suppose that V2(a, b). Since a and b are not connected by an edge, their relation has
to be an instance of the inductive step. Because of the non-emptiness requirement,
∃c ∈ N(a) : ∃d ∈ N(c) : V2(d, b) from the V2 definition, either a must have a successor
c which again has a successor d such that V2(d, b) or b must have a successor c which
again has a successor d such that V2(d, a).

The vertices a and b have a total of 3 successors, 2 of which only branch off to irrelevant
vertices and therefore are unable to satisfy the non-emptiness requirement. The last
successor is the vertex x, which only has one successor, vertex y.

28

a

x

y

z

c1 c2

b

Figure 2.22

The above solution shows us by soundness of Neg that yb is unprovable, and therefore
by implication (1) that y and b cannot be V2-related. Since none of the successors of
a and b satisfies the non-emptiness requirement, they also are not V2 related. We can
therefore conclude that V2 does not satisfy implication (2).

2.6.2 The V3 relation – a generalization of V2

Now, in what way can V2 be generalized in order to include the graph in Figure 2.20?
Looking at the proof in Figure 2.19, we see that the axiomatic NAND-clause ac is a
crucial part of the premise, representing the c ∈ N(a) in the definition of V2. Observe
that a case where ac is non-axiomatic would not invalidate this rule application. In
other words, the vertex c from the V2 definition does not necessarily need to be in the
neighborhood of a, they only need to be in a V2-relation.

Based on this observation, we define the relation V3, a generalization of V2. Like in the
definitions of V1 and V2, a and b are vertices from G.

(BC): N(a, b) ∨N(b, a) ⇒ V3(a, b)

(IS): ∃c ∈ G :

 ∃d ∈ N(c) ∪ {c} : V3(d, a) ∧
∃d ∈ N(c) ∪ {c} : V3(d, b) ∧
∀d ∈ N(c) ∪ {c} : V3(d, a) ∨ V3(d, b) ∨ V3(d, d)

 ⇒ V3(a, b)

(2.13)

V2 required a to have an edge to c. We are now treating c just like its successors by
requiring it to be in V3-relation to either a, b or itself. Requiring a to be in V3-relation
to some vertex in N(c) ∪ {c} is now what ensures the inclusion of a in the proof.

Looking back at the graph from Figure 2.20, we see that vertex z is clearly V3-related
to a while its successors, c1 and c2, are V3-related to a and b, respectively. The vertices
a and b are thus V3-related.

29

Implication (1) for V3 is proven in more or less the same way as we proved implication
(1) for V2 in Section 2.6.1. Therefore, only a condensed version will be shown here:

Proof. Given a graph G with two vertices a and b such that V3(a, b):

Base case: Same as in V2 proof.

Inductive step: Let D = N(c) ∪ {c} and let Da, Db and Dd denote the same sets as in
the V2 proof. The definition of V3 tells us that both Da and Db are nonempty. This fact
together with the fact that D = Da ∪Db ∪Dd lets us form the following proof:

{da | d ∈ Da} {db | d ∈ Db} {d | d ∈ Dd}
D

ab

Figure 2.23

No assumption was made on the vertices a and b, so we can conclude that V3(a, b) ⇒ ` ab.

We propose the following conditional property for V3:

Lemma 16. If V3 satisfy implication (2), then given a graph G = 〈G,N〉 and any two
vertices a, b ∈ G; if V3(a, b) then ab is provable in Neg using binary NAND-clauses only.

Proof. Since the vertices a, b from the latest proof are chosen arbitrarily, we have from
Figure 2.23 that any two V3-related vertices are provable in such a way that the premise of
the last rule application contains binary NAND-clauses only. Implication (2) would give
us that each NAND-clause in the premise contains V3-related vertices. These would then
also have proofs with binary NAND-clauses only in their last premise. By repeatedly
applying the same reasoning through the whole proof, we end up with a proof consisting
of binary NAND-clauses only.

Lemma 17. V3 does not satisfy implication (2), i.e., Γ ` ab 6⇒ V3(a, b)

Proof. The graph in Figure 2.24 provides a provable NAND-clause ab, but is not an
instance of V3.

30

a

x1

x2

b

y1

y2

c1

c2

Figure 2.24

The graph is admittedly a bit over-simplified. Even though the vertices y1, y2 and c2
are depicted like sinks, we treat them as initial vertices of (non-depicted) disjoint rays.
We will however not consider the clauses corresponding to the elements of these rays,
since these are not going to contribute to our argument.

Here is one way to prove ab in Neg given the graph theory from Figure 2.24:

ax2 by2 c1c2
x2y2c2

abc1

ax1 by1 c1c2
x1y1c1

abc2
c1c2

ab

Figure 2.25

If implication (2) holds for V3, we would expect a and b to be V3-related in the above
graph. In other words, we would expect there to be a third vertex in the graph such
that it and each of its successors are V3-related to either a, b or itself and such that at
least one of them is V3-related to a and one to b. This is not the case, as we now show.

Consider the following six solutions of the graph:

31

α1 : a

x1

x2

b

y1

y2

c1

c2

α2 : a

x1

x2

b

y1

y2

c1

c2

α3 : a

x1

x2

b

y1

y2

c1

c2

α4 : a

x1

x2

b

y1

y2

c1

c2

α5 : a

x1

x2

b

y1

y2

c1

c2

α6 : a

x1

x2

b

y1

y2

c1

c2

Figure 2.26

Given any pair of vertices x, y, if there exists a solution such that x and y are both
assigned 1, then xy is not provable in Neg. We get this from soundness.

The table in Figure 2.27 shows what pairs of vertices can be 1 under the same solution
and thus constitute a binary NAND-clauses unprovable in Neg. A cell is filled with
a reference to the solution, if any, exemplifying the case. This relation is obviously
symmetric, so we leave out the lower half of the table to ease readability.

a b x1 x2 y1 y2 c1 c2

a α1 α1 α1 α1 α2

b − α4 α4 α3 α3 α4

x1 − − α4 α6 α6

x2 − − − α5 α5 α5

y1 − − − − α1 α1 α1 α2

y2 − − − − − α1 α1 α2

c1 − − − − − − α1

c2 − − − − − − − α4

Figure 2.27

32

Two important observations are to be made from the above table:

First, for each vertex in the graph, there exists a solution where that vertex is assigned
1. By soundness, no unary NAND-clause can therefore be proven in Neg under this
theory.

Secondly, among the pairs above that are not shown to be unprovable, only two are not
axioms: ab and x1x2. We are left with the following collection of 11 “not unprovable”
binary NAND-clauses:

{ ab, ax1, ax2, by1, by2, x1x2, x1y1, x1c1, x2y2, x2c2 c1c2 } (2.14)

By the definition of V3 from (??) and (??), in order for a and b to be V3-related, a vertex
s has to exist such that it and all its successors are V3-related to either a, b or itself and
such that at least one of them is V3-related to a and one to b.

Looking at the table, one can see that most pairs containing a and b are unprovable and
thus not V3-related. Only ax1, ax2, by1 and by2 are not shown to be unprovable. Since
no vertex is V3-related to itself, the vertex s described above has to either be an x- or
a y-vertex. None of the y-vertices have successors V3-related to a or b. Both x-vertices
have a c-vertex as a successor, none of which are V3-related to a or b. We thus have that
none of the vertices in the graph satisfy the requirements making a and b V3-related.
Since ab is provable in Neg, we get that Γ ` ab 6⇒ V3(a, b) so implication (2) fails.

2.7 Concluding remarks

In the process of repeatedly generalizing our graph structural definitions, we have reached
a situation where our current definition is almost identical to the actual axioms and rule-
applications in our proof system; more specifically, the applications with binary NAND-
clauses in their conclusion. This comes as no surprise, but is a bit disappointing. The
original goal was to find some graph structural relation R, independent of the definition
of Neg, such that for any graph G with vertices a, b: R(a, b) ⇔ G ` ab (implication
(1) and (2)). This would in turn give us a graph structure present only when the graph
in question was kernel free. It has however become apparent that no simple graph
structural definition suffices in satisfying these implications. Even V3 falls short in this
endeavor.

The big lesson here might be that the existence of small substructures in graphs is not
always sufficient in predicting the absence of kernels. Trying to recognize and isolate
inconsistent parts of a graph seems to be the wrong approach in many cases. We will
therefore at this point terminate our search for such a graph structure.

However, in the process of searching for these structures, we developed the counter-
example disproving implication (2) of V3 (Figure 2.24). This graph will in the next
chapter be utilized to disprove the main hypothesis given for this thesis.

33

Chapter 3

Refutational incompleteness of
BNeg

Definition 18. BNeg denotes the proof system Neg when restricted to using binary
NAND-clauses only1. A clause is binary-derivable if it is provable in BNeg.

This chapter investigates the following conjecture:

Conjecture 19. BNeg is refutationally complete for graph theories.

This conjecture was given by supervisor as a main hypothesis for this thesis.

A proof for it would be significant both because it would be a strong property for a proof
system in general, but also because it could potentially help us to further characterize
a kernel-free graph. Having that any inconsistency can be proven in Neg using binary
NAND-clauses only might imply a similar property in kernel-free graphs, namely that
inconsistencies can be described as collections of pairwise structural relations between
vertices.

Section 3.1 will disprove a variant of the conjecture, looking at general theories, not
necessarily from graphs. Section 3.2 will prove that some binary NAND-clauses provable
from graph theories are not binary-derivable. Section 3.3 will build on this result to show
that there exist unary NAND-clauses provable from graph theories that are not binary-
derivable. Lastly, Section 3.4 will present the final proof showing an inconsistency in a
graph theory that is not binary-derivable, disproving Conjecture 19.

1Recall that binary also covers clauses of length 1

34

3.1 Inconsistencies in general theories

This section will show that there exist inconsistent theories such that their inconsistencies
are not possible to prove in Neg using binary NAND-clauses only. We will prove the
pigeonhole principle in Neg to exemplify this.

The pigeonhole principle states that whenever you have n pigeons and m holes such that
n > m, then at least one hole must contain more than one pigeon. We can prove this
principle in Neg by proving an inconsistency of the theory that (1) each of the n pigeons
is contained in a hole and (2) each hole contains only one pigeon.

Letting the atom xi denote the pigeon i occupying the hole x, the above theory, with n
pigeons and m holes, can be formalized in the following way:

(1): { 1i2i3i . . .mi | i ≤ n } (3.1)

(2): { xixj | i < j ≤ n, x ≤ m } (3.2)

We now prove the pigeonhole principle for 4 pigeons and 3 holes.

Proof. This instance of the pigeonhole principle has the following axioms:

OR = { 112131, 122232, 132333, 142434 }

NAND =


1112, 1113, 1114, 1213, 1214, 1314,

2122, 2123, 2124, 2223, 2224, 2324,

3122, 3133, 3134, 3233, 3234, 3334

 (3.3)

From the axioms above we can prove inconsistency by first proving the three NAND-
clauses 14, 24 and 34:

1314

1214 2223

1114 2123 3132
112131

322314
122232

2314

1214

1114 2122 3133
112131

223314 3233
122232

3314
132333

14

Figure 3.1

35

1213 2224

1113 2124 3132
112131

321324
122232

1324 2324

1112 2124 3133
112131

123324 2224 3233
122232

3324
132333

24

Figure 3.2

1213

1113 2122 3134
112131

221334 3234
122232

1334

1112 2123 3134
112131

122334 2223 3234
122232

2334 3334
132333

34

Figure 3.3

With these three NAND-clauses proven, we can now prove ∅ in one step:

14 24 34
142434 ∅

Figure 3.4

Observe that NAND-clauses of length 3 appear several times in this proof. We will show
that this is unavoidable in Neg given the axioms from 3.3.

Lemma 20. The inconsistency from the axioms in 3.3 is not binary-derivable.

Proof. As observed in Section 2.1, the only strategy in proving inconsistencies in Neg
is to create new NAND-clauses until you have a set of unary NAND-clauses such that
their union matches an OR-clause.

Now, what possible ways are there to create new NAND-clauses from our given pigeon-
hole axioms? The OR-clauses are what dictates the ways new NAND-clauses can be
created, and since all OR-clauses are of length 3, we get that any premise must consist
of exactly 3 NAND-clauses. In addition, since all OR-clauses contain exactly one atom
from each hole, each of the three NAND-clauses must contain atoms from different holes.

Looking at the NAND-clauses in the axiom set, we see that none of them contain atoms
from two different holes, so the three axiomatic NAND-clauses eligible in a premise are
mutually disjoint (each contains atoms from a hole different from the other two). Since

36

all three are binary, we have a total of 6 different atoms in the premise, and with the
OR-clause shaving of 3 of these, our conclusion must contain 3 different atoms. Any
NAND-clause derived directly from axioms must therefore be of length 3.

1i1j 2i2k 3i3l
1i2i3i

1j2k3l

Figure 3.5

It is easy to see that this generalizes to any version of the pigeonhole principle. When
you have n holes and > n pigeons, the OR-clauses will be of length n, requiring n
mutually disjoint NAND-clauses in the premise of the first proof step. This results in a
NAND-clause of length n when derived directly from axioms.

This means not only that we are unable to keep the clause length at 2, but also that the
size of the NAND-clauses increases with the size of the OR-clauses, which in this case
coincides with the number of holes.

Since ∅ is not a part of the axioms and not directly derivable from axioms, its proof
has to be of height > 2 and must therefore include a NAND-clause of size equal to the
size of the OR-clauses. Therefore, with the formulation in (3.3), the inconsistency in the
pigeonhole principle is not binary-derivable.

3.2 Binary NAND-clauses in graph theories

We have just shown that in the case of unrestricted theories, there is no guarantee that
an inconsistency is binary-derivable, but what about graph theories? After all, every
theory can be represented as an equisatisfiable graph theory.

It turns out that even for graph theories, some provable NAND-clauses require non-
binary NAND-clauses in their proof, i.e they are not binary-derivable. This section will
disprove the following conjecture:

Conjecture 21. Given a graph theory, any provable binary NAND-clause is binary-
derivable.

The conjecture will be disproved simply by presenting a graph containing a provable
binary NAND-clause and show that the only way to prove it is through using non-binary
NAND-clauses.

Let us again consider the graph from Figure 2.24, shown again here for convenience:

37

a

x1

x2

b

y1

y2

c1

c2

Figure 3.6

As before, the vertices y1, y2 and c2 are initial vertices of disjoint rays, and not sinks.

The NAND-clause we show not to be binary-provable is ab. Figure 2.25 proves ab, but
the proof contains two non-binary NAND-clauses. We will show that this is unavoidable.
In order to do this, we utilize the table from Figure 2.27. We show it again here for
convenience.

a b x1 x2 y1 y2 c1 c2

a α1 α1 α1 α1 α2

b − α4 α4 α3 α3 α4

x1 − − α4 α6 α6

x2 − − − α5 α5 α5

y1 − − − − α1 α1 α1 α2

y2 − − − − − α1 α1 α2

c1 − − − − − − α1

c2 − − − − − − − α4

Figure 3.7

Suppose there is a rule application with all binary NAND-clauses in the premise and
with ab in the conclusion. Based on the (Rneg)-rule, we know that the premise must
contain at least one binary NAND-clause containing a and at least one containing b.
The above table tells us that the only provable binary NAND-clauses that contain a or
b are the ones in the axiom set: ax1, ax2, by1 and by2. Since we do not want any xi or yi
in the conclusion, these variables have to be removed by the OR-clause. The OR-clauses
x1y1c1 and x2y2c2 are the only ones that contain both an x and a y, making them the
only OR-clauses that can potentially conclude with ab.

This gives us the following information: since both the possible OR-clauses are of length
3, the rule application concluding with ab has 3 NAND-clauses in its premise; one con-

38

taining an x-vertex (either x1 or x2), one containing a y-vertex and one containing a
c-vertex. Looking at our table again, we see that the potentially provable NAND-clauses
containing a c-vertex are again the axioms only. Since there are no provable NAND-
clauses on the form aci or bci, we get that the conclusion of our rule cannot possibly
be of length 2, contradicting our assumption. We can therefore conclude that ab is not
binary-derivable, thus disproving Conjecture 21.

3.3 Unary NAND-clauses in graph theories

The fact that some binary NAND-clauses are not binary-derivable will now be used to
show that some unary NAND-clauses are not binary-derivable.

We use our graph from Figure 3.6 to form the following, bigger graph:

t

a

xL1

xL2

bL

yL1

yL2

cL1

cL2

xR1

xR2

bR

yR1

yR2

cR1

cR2

Figure 3.8

The above graph contains two copies of the graph from Figure 3.6, only connected by
their shared vertex a and the vertex t that has both bL and bR in its neighborhood. We
will refer to the two copies as the left component and the right component, with a being
in both and t being in none.

The rest of this section will show that the unary NAND-clause a is provable, but not
binary derivable.

Both abL and abR can be proven in the same manner as ab was proven earlier in Fig-
ure 2.25. This makes the proof of a trivial, as shown in Figure 3.9:

39

t

. . .

abL

. . .

abR
tbLbR

a

Figure 3.9

To show that a is not binary-derivable, we will first prove the following lemma:

Lemma 22. Based on the graph in Figure 3.8, the only binary-derivable, non-axiomatic
binary NAND-clause containing the atom a is at.

Proof. First, the following Neg-proof shows that at is indeed binary-derivable.

axL1

t tbR bLyL1
tbRbL

tyL1 tbL xL2 y
L
2

bLyL1 y
L
2

txL2 cL1 c
L
2

t tbR bLyL2
tbRbL

tyL2
xL2 y

L
2 c

L
2

tcL1

t tbR bLyL1
tbRbL

tyL1
xL1 y

L
1 c

L
1

at

Figure 3.10

We now show that at is the only one. This is done by structural induction on the
complexity of the proof tree for some binary NAND-clause aγ, showing that γ always
has to equal either some x-vertex or t.

In the base case, the proof tree is just an axiom. The only axiomatic aγ are the ones
where γ is an x-vertex, so the lemma holds.

For the inductive step, suppose we have a proof that concludes with some binary NAND-
clause aγ; we have that the premise of the last proof step must contain at least one
NAND-clause containing a and at least one containing γ.

We introduce a table similar to the one in Figure 2.27, showing what pairs of vertices
from the graph in Figure 3.8 can be 1 under the same solution and thus correspond to
binary NAND-clauses unprovable in Neg. Clauses in cells with an X are unprovable.
Since the property is symmetric, the lower half of the table is left out.

40

a bL xL1 xL2 yL1 yL2 cL1 cL2 bR xR1 xR2 yR1 yR2 cR1 cR2 t

a

bL − X X X X X X X X X X X X

xL1 − − X X X X X X X X X X

xL2 − − − X X X X X X X X X X

yL1 − − − − X X X X X X X X X

yL2 − − − − − X X X X X X X X

cL1 − − − − − − X X X X X X X X

cL2 − − − − − − − X X X X X X X X

bR − − − − − − − − X X X X X

xR1 − − − − − − − − − X X X

xR2 − − − − − − − − − − X X X

yR1 − − − − − − − − − − − X X X X

yR2 − − − − − − − − − − − − X X X

cR1 − − − − − − − − − − − − − X

cR2 − − − − − − − − − − − − − − X

t − − − − − − − − − − − − − − −

Figure 3.11

Our induction hypothesis gives us that if the NAND-clause containing a in the premise
is non-axiomatic, then it must be at. All NAND-clauses containing a in the premise
must therefore be either at or one of the four axioms on the form axKi (K being either
L or R and i either 1 or 2).

Let us first consider the case where some axKi is in the premise. Figure 3.12 illustrates
the situation.

axKi

. . .

γyKi

. . .

γcKi
xKi y

K
i c

K
i

aγ

Figure 3.12

The only applicable OR-clause is the corresponding xKi y
K
i c

K
i , so the premise must con-

tain two additional NAND-clauses, one containing yKi and one containing cKi . Because of
our induction hypothesis, those two cannot contain a, so either both contain γ or one is
unary while the other contain γ. Table 3.11 gives us that neither yKi nor cKi is provable,
so they both have to contain γ. Therefore, the two additional NAND-clauses must be
on the form γyKi , γc

K
i . Except for the case where γ = xKi , the only γ-substitution that

makes both of these NAND-clauses provable is γ = t, giving us at in the conclusion. We

41

again see this from Table 3.11.

The other case is where at appears in the premise. Figure 3.13 illustrates this situation.

. . .

at

. . .

γbL

. . .

γbR
tbLbR

aγ

Figure 3.13

In order to “strip off” the t, the only applicable OR-clause is tbLbR, again giving us
three NAND-clauses in the premise. The two additional clauses must contain bL and bR,
respectively. From Table 3.11, we get that none of them are provably false, and none
of them can contain a because of the induction hypothesis, so they both must contain
some γ. The only γ-substitution applicable such that both γbL and γbR is provable is,
again, γ = t, giving us at in the conclusion.

The only binary-provable, non-axiomatic, binary NAND-clause containing a is therefore
at.

We can now easily prove the following lemma:

Lemma 23. Given the graph from Figure 3.8, a is not binary-derivable.

Proof. Suppose we have a binary proof concluding with a. There must exists a NAND-
clause in the immediate premise of this conclusion containing either at or some axKi .
Because of Lemma 22, we know that no other binary NAND-clauses containing a are
binary-derivable.

In the case with at, the OR-clause tbLbR must be used. Now, in order to prove a, the
premise must contain either abL or bL, but abL is not binary-derivable and bL is not even
provable.

In the case with axKi in the premise, we get the same problem; the only applicable

OR-clause is xKi y
K
i c

K
i , but neither ayKi nor yKi is binary-derivable.

We therefore get that no binary proof exists with a as its conclusion, making a provable,
but not binary-derivable.

We will use this result in the following section to show that there are inconsistent graphs
such that the inconsistency is not binary-derivable.

42

3.4 Inconsistencies in graph theories

In this section we consider the graph in Figure 3.14. Any mention of vertices, edges and
components in this section will refer to this graph.

t

aN

xL1

xL2

bL

yL1

yL2

cL1

cL2

xR1

xR2

bR

yR1

yR2

cR1

cR2

t
aW

xL1 xL2

bL

yL1 yL2

cL1 cL2

xR1 xR2

bR

yR1 yR2
cR1 cR2

t
aE

xL1xL2

bL

yL1yL2

cL1cL2

xR1xR2

bR

yR1yR2
cR1cR2

s

Figure 3.14

The graph contains 3 copies of the graph from Figure 3.8; one northern (N), one western
(W) and one eastern (E). We call these components. Every vertex in the graph is
contained within exactly one component, except the vertex s which is not inside any
component.

43

The first thing to notice is that the graph is inconsistent; the proof of a from Figure 3.9
can be applied to each component in the above graph, giving us the provability of aN ,
aW and aE . From here, the inconsistency proof is trivial; shown in Figure 3.15.

s

. . .

aN

. . .

aW

. . .

aE
saNaWaE∅

Figure 3.15

We will ultimately show that the inconsistency is not binary-derivable, but first we prove
some lemmata.

Lemma 24. Let the vertices u and v be from different components in the graph. If uv
is binary-derivable, then its proof contains either aN , aW or aE.

Proof. We prove the lemma by structural induction over the complexity of the proof
tree.

Base Case: No axiom uv exists such that u and v are vertices from different components,
so our claim vacuously holds.

Induction Step: Suppose we have a binary proof of uv where u and v are from different
components. The premise of the last proof step must contain at least one binary NAND-
clause containing u and one containing v.

u . . . v
Y

uv

Figure 3.16

If either u or v are in a clause together with a vertex from a component different from
their own, we get from the induction hypothesis that their proof must contain either aN ,
aW or aE , so we are done.

Otherwise, u and v are each either in a clause together with the vertex s or a vertex
from their own component. Each of these cases implies Y = saNaWaE in the last
proof step, since it is the only OR-clause containing s and the only OR-clause contain-
ing vertices from different components. The premise therefore contains two additional
NAND-clauses; one of them containing the a-vertex of the component not containing u
or v – let us call this vertex at.

Figure 3.17 illustrates the two possible cases.

If the clause containing at is unary, we are done. If it is binary, it must either contain u
or v in order to give uv in the conclusion, and since at is in a component different from
both u and v, the induction hypothesis gives us the claim.

44

s . . . uaN vaW aE . . .
saNaWaE

uv

us vaN aW . . . aE . . .
saNaWaE

uv

Figure 3.17

The proof must therefore contain either aN , aW or aE .

Lemma 25. aN , aW and aE are not binary-derivable.

Proof. We prove it by structural induction over the complexity of the proof tree.

Base Case: Neither aN , aW nor aE are axioms, so the claim vacuously holds.

Induction step: Suppose we have a binary proof of a, where a is either aN , aW or aE .
The vertices within the same component as the one containing a will be referred to as
internal vertices, while the vertices within the two other components will be referred to
as external vertices. Note that since s is not inside any component, it is neither internal
nor external.

First, since the proof is binary, we get from our induction hypothesis that neither aN ,
aW nor aE appears in it.

We get from Lemma 23 that a is not binary-derivable if one is using internal vertices
only, so the binary proof must use vertices outside the component containing a; either
the s-vertex or external vertices.

If it uses s, consider the last proof step with s in the premise. The OR-clause used
in this proof step must be saNaWaE , being the only OR-clause containing s and thus
the only clause able to remove it. This OR-clause contains 4 vertices, so the premise
must contain 3 additional NAND-clauses; one containing aN , one containing aW and
one containing aE .

We get the following restrictions on these 3 NAND-clauses.

• None of them can be unary, from the induction hypothesis.

• None of them can be binary and contain s, since that would give an s in the
conclusion, contradicting our assumption of this being the last proof step with s
in the premise.

• None of them can be binary and contain vertices from two different components,
from Lemma 24 the induction hypothesis.

The 3 additional NAND-clauses must therefore all contain a second vertex p from their
own component.

Figure 3.18 illustrates the situation.

45

s . . . aNpN aW pW aEpE
saNaWaE

pNpW pE

Figure 3.18

Since the three components are disjoint, these three p-vertices are different, making the
conclusion of the proof step non-binary, contradicting our original assumption of the
proof being binary.

If the proof does not contain s, then it uses external vertices. Consider the last proof
step containing external vertices in the premise. This proof step removes these vertices
and conclude with some clause only internal vertices. The premise must contain, in
addition to all the clauses with external vertices, at least one binary NAND-clause
with an internal vertex, in order to make the conclusion non-empty. This clause cannot
contain any external vertices, from Lemma 24 and the induction hypothesis, so it must be
a clause with two internal vertices. The OR-clause used in the proof step must therefore
contain both external vertices and at least one internal vertex. Since saNaWaE is the
only OR-clause containing vertices from different components, it is the only option, but
we just assumed that s is not in this proof, so we reach a contradiction.

a is thus not binary-derivable.

Corollary 26. If the vertices u and v are from different components in the graph, uv is
not binary-derivable.

Proof. We get this directly from Lemma 24 and Lemma 25.

Lemma 27. Any proof of inconsistency must contain the NAND-clause s.

Proof. Consider the graph G. If one removes the loop on the vertex s, the graph is no
longer inconsistent; each a-vertex can be assigned 0 and s can be assigned 1. Formally,
we have that G′ = G \ E(s, s) 6� ∅. Because of soundness of Neg, this gives us that
T (G′) = T (G) \ {s} 6` ∅ (recall the T -notation from Section 1.4).

Suppose there is a proof of T (G) ` ∅ that does not use s; this proof will also be a proof
of T (G′) ` ∅ violating the fact that Neg is sound.

Theorem 28. ∅ is not binary-derivable.

Proof. Assume ∅ is binary-derivable. We have from Lemma 27 that the proof must
contain s. Consider the last proof step with s in the premise. The OR-clause saNaWaE

is again the only clause that can do this, being the only OR-clause containing s. The
premise thus contains 3 additional NAND-clauses; one containing aN , one containing
aW and one containing aE . We get the following restrictions on these three clauses:

• None of them can be unary, from Lemma 25.

46

• None of them can be binary and contain s, since that would give an s in the
conclusion, contradicting our assumption of this being the last proof step with s
in the premise.

• None of them can be binary and contain vertices from two different components,
from Corollary 26.

The 3 additional NAND-clauses must therefore all contain a second vertex from their own
component, making the conclusion non-binary, contradicting our original assumption of
the proof being binary.

∅ is therefore not binary-derivable.

3.5 Additional findings

While developing the proof of the refutational incompleteness of BNeg, some additional
observations where made along the way. Even though they did not ultimately turn out
useful for the main proof, they do bear some general significance. These observations
are presented and proved in this section.

3.5.1 Isolated components

Given a graph G = 〈G,N〉 and a set of vertices A ⊆ G, if N(A) ⊆ A and N−(A) ⊆ A,
we call it an isolated component of the graph G.

Since there are no edges between any two isolated components, we get that no ax-
iomatic NAND- and OR-clauses can contain vertices from two different isolated compo-
nents.

We now prove the following lemma:

Lemma 29. Given a graph G = 〈G,N〉 and a set of vertices B ⊆ G; if B is provable
in Neg, then all the vertices in B are from the same isolated component.

An alternative formulation of Lemma 29 is that the vertices in B must be connected in
the underlying undirected graph.

Proof. We prove it by structural induction over the complexity of the proof tree of some
NAND-clause B.

Since no axioms contain vertices from different isolated components, the claim holds for
the base case.

For the inductive step, suppose we have a proof of the NAND-clause B. The induction
hypothesis lets us assume that each of the NAND-clauses in the premise contain vertices

47

from the same component. Since no OR-clause contain vertices from different compo-
nents, we get that all the NAND-clauses in the premise are from the same component,
so the concluding B must also contain vertices from the same component.

Any provable B must therefore contain vertices from the same component.

3.5.2 Components connected by a common source

Let G = 〈G,N〉 be a digraph with a source vertex x. Let {Ai} be a partitioning of
G \ {x} (a set of pairwise disjoint, nonempty subsets of G such that

⋃
{Ai} = G \ {x})

such that for each Ai we have that N(Ai) ⊆ Ai and N−(Ai) \ Ai = {x}. In words,
nothing points out of Ai and only x points in.

The induced subgraphs we get from each Ai will be referred to as components.

x

A1 A2 . . . An

Figure 3.19: Graph G

A couple of observations can be made based on the above graph-construction G:

• The vertex x only appears in 1 OR-clause, since it is a source vertex. This is also
the only OR-clause containing vertices from different components. We will call
this OR-clause X and formally define it as N(x) ∪ {x}.

• For any vertex p except x, we have that p only appears in axiomatic NAND-clauses
together with either x or other vertices in the same component.

Based on graph G from Figure 3.19 we show the following lemma:

Lemma 30. Given a set of vertices B ⊆
⋃
{Ai} such that ∀A ∈ {Ai} : B 6⊆ A; if

G `Neg B then the proof must contain the OR-clause X.

Proof. The lemma will be proven by structural induction on the complexity of the proof
tree for B.

In the base case, the proof tree is just an axiom. There exists no axiom in
⋃
Ai which

is not a subset of some component Ak, so our claim vacuously holds.

For the inductive step, suppose we have a proof of B and consider the premise of the
last rule application. The following figure illustrates the general situation, with B =
B1 ∪B2 ∪ · · · ∪Bn:

48

. . .

B1c1

. . .

B2c2 . . .

. . .

Bncn
c1c2 . . . cn

B

Figure 3.20

Since B does not contain x, neither does any of the Bi-clauses. If some ci = x, then the
OR-clause c1c2 . . . cn = X, being the only OR-clause containing x.

Otherwise, if some NAND-clause Bici contains vertices from two different components,
the induction hypothesis tells us that its proof must contain X, so we are done.

The last case is where each NAND-clause Bici in the premise contains vertices from one
component only. Since B contains vertices from at least two different components,
it cannot be the case that all the NAND-clauses in the premise take their vertices
from the same component. At least two of the ci-vertices therefore come from different
components, so the OR-clause used must be X, being the only OR-clause containing
vertices from different components.

The proof of B must therefore contain the OR-clause X.

49

Chapter 4

Conclusion and future work

This thesis has found various graph structures implying provability of certain NAND-
clauses in Neg. The process of continuously generalizing these structures has given
several examples of unconventional graphs still providing certain provable clauses. One
of these exemplified that some provable binary NAND-clauses are not binary-derivable.
This example was further extended to show that Neg is not refutationally complete when
restricted to using binary NAND-clauses only.

In our context, this is primarily a negative result. If BNeg was refutationally complete,
our search for a graph-structural equivalent of provable clauses would be easier, allowing
us to assume that any clause is provable using binary NAND-clauses only.

Knowing this, one can move forward by trying to find other features of Neg. One example
is its non-explosiveness, mentioned in [9]. While classical proof systems are explosive
and thus able to prove anything from inconsistent theories, Neg can only prove certain
clauses. It would be interesting to take a closer look at these clauses that are provable
by the virtue of the graph being inconsistent, and potentially develop some definition
of the “explosive range” of a graph. Coming back to our original interest in paradoxes,
this property becomes useful in attempts to identify and isolate the part of a theory that
makes it paradoxical. The concept of local kernels, as defined and studied in [2], might
contribute to this definition of an explosive range.

The non-explosiveness of Neg comes from the more general fact that Neg does not have
weakening, i.e. while rules like Γ ` x ⇒ Γ ` x ∨ y are admissible in classical proof
systems, this is not the case for Neg.

Since Neg is not complete, it does not hold in general that Γ � A ⇒ Γ ` A. An
interesting question might therefore be “when does it hold?”. Corollary 5.1 from [9] tells
us that Γ � A ⇔ ∃B ⊆ A : Γ ` B. A direct consequence of this is that Γ � A ⇒ Γ ` A
holds when ∀B ⊂ A : Γ 6` B and by soundness also when ∀B ⊂ A : Γ 6� B. We can
formalize this into a corollary on its own:

50

Corollary 31. Given a graph G = 〈G,N〉 and a set of vertices A ⊆ G, let Γ = T (G):

Γ � A ∧ ∀B ⊂ A : Γ 6� B ⇒ Γ ` A (4.1)

In words, if no kernel in G contains A, but for each subset B ⊂ A, there is a kernel that
contains B, then A is provable in Neg.

Based on this observation, one might be able to find some interesting relations between
the kernels in the graph and the set A.

Also, more work could be put into exploring graph structural relations V such that
for a graph and a subset A of its vertices, we have Γ ` A ⇒ V (A). The relation
“being connected in the underlying undirected graph” is certainly such a relation, as
shown in Section 3.5.1. If one is able to strengthen that relation, it will probably make a
bigger contribution to a potential proof of Conjecture 9 (from Section 1.6) than relations
satisfying the inverse implication.

51

Appendix A

Proofs

A.1 Translating CNF to GNF

Since any PL theory can be expressed in CNF, showing that any theory P in CNF can
be translated to a theory R in GNF such that P and R are equisatisfiable gives us that
any PL theory has an equisatisfiable GNF.

Given any CNF theory P , for each formula in it, follow the steps below to acquire its
corresponding GNF theory.

Step 1: For each atom xi in the formula, introduce a fresh variable x′i and add the
following two GNF formulae to P : x′i ↔ ¬xi, xi ↔ ¬x′i, (unless this has already been
done while translating an earlier formula in the theory).

Step 2: In each clause of the formula, replace every negative literal ¬xi with its corre-
sponding x′i from step 1. Every clause in the formula does now contain positive literals
only.

Step 3: For every clause (x1∨x2∨· · ·∨xn), replace it with the following formula, where
y is fresh:

y ↔ (¬x1 ∧ ¬x2 ∧ · · · ∧ ¬xn ∧ ¬y)

This formula is equisatisfiable with our original clause.

The combined set of all these acquired formulae will make up our GNF-theory. We have
only added proper GNF formulae and all variables appear to the left in exactly one
clause, so R will indeed be a GNF theory.

Step 1 is adding a bi-implication formula that is always satisfiable, since one of two
variables in it is fresh. One can think of it as a labelling of an already existing vari-
able. Thus, adding these formulae to a theory does not change its satisfiability/non-
satisfiability.

52

Step 2 is replacing each negative literal with its label, also not changing the satisfiabil-
ity.

Step 3 is replacing one formula with an equisatisfiable formula, thus not changing the
overall satisfiability.

Since none of the steps above change the satisfiability of the theory, we can conclude
that our acquired theory is equisatisfiable with to original CNF theory.

Below are two examples of CNF-theories with their corresponding GNF-theories.

Example 32.

T1CNF : (a ∨ b) (A.1)

T1GNF : (a↔ ¬a′), (a′ ↔ ¬a), (b↔ ¬b′), (b′ ↔ ¬b), (y1 ↔ (¬a ∧ ¬b ∧ ¬y1)) (A.2)

T2CNF : (¬a) (A.3)

T2GNF : (a↔ ¬a′), (a′ ↔ ¬a), (y1 ↔ (¬a′ ∧ ¬y1)) (A.4)

53

A.2 Inconsistency of Stretched Yablo

One variation of the Yablo-graph is the Stretched Yablo-graph, presented by Walicki in
[9]. While the Yablo-graph is a ray where each vertex on it has direct edges to all the
vertices after it, the Stretched Yablo-graph is a ray where each vertex has disjoint paths
(with certain properties depending on the variation of Stretched Yablo) to all vertices
in after it.

The variation on which we will be proving an inconsistency is one with a set of core
vertices N where each vertex x has a disjoint path to every vertex y after it, such that
the length of the path is (2× (y − x)− 1).

114 214 314 414 125 225 325 425

1 2 3 4 5

113 213 124 224 135 235

115 215 315 415 515 615

Figure A.1: Stretched Yablo

Shown above are parts of the Stretched Yablo-graph described. We denote the core
vertices by natural numbers. The peripheral vertices contained in each path is denoted
by nxy where x and y is the source and target, respectively, of the path in which the
vertex is contained. n denoted the relative position on the path.

Note that since two core vertices x and y have a peripheral path between them of length
Lx
y = 2(y−x)−1 (from the definition above), each path consists of Lx

y−1 = 2(y−x)−2
peripheral vertices. The vertex pointing back onto the core ray will thus alway be the
vertex (2(y − x)− 2)xy .

Based on the given definition of Stretched Yablo and the notation from above, we get

54

the following sets of axioms:

N1a = { x(x+ 1) | x ∈ N } (A.5)

N1b = { x1xy | x, y ∈ N, x+ 1 < y } (A.6)

N2 = { nxy(n+ 1)xy | n, x, y ∈ N, x+ 1 < y, n < 2(y − x)− 2 } (A.7)

N3 = { nxyy | n, x, y ∈ N, x+ 1 < y, n = 2(y − x)− 2 } (A.8)

O1 = { x(x+ 1)1xx+21
x
x+3 . . . | x ∈ N } (A.9)

O2 = { nxy(n+ 1)xy | n, x, y ∈ N, x+ 1 < y, n < 2(y − x)− 2 } (A.10)

O3 = { (nxyy | n, x, y ∈ N, x+ 1 < y, n = 2(y − x)− 2 } (A.11)

NAND = N1a ∪N1b ∪N2 ∪N3 OR = O1 ∪O2 ∪O3 (A.12)

One can identify the different axioms by looking at the figure above1: N1a are the edges
making up the core ray of the graph, N1b are the edges going from a core vertex onto
a peripheral vertex, N2 are the edges between two peripheral vertices and N3 are the
edges going from a peripheral vertex back onto a core vertex. O1 are the vertices on the
core ray, O2 and O3 are the peripheral vertices, O3 being the ones that points back to
a core vertex.

In order to prove ∅ from these axiom, we first prove three sets of intermediate clauses:

D1 = { xy | x, y ∈ N, x 6= y } (A.13)

D1b = { 1xyn
x
y | x, y ∈ N, x+ 1 < y, n = 2(y − x)− 2 } (A.14)

D2 = { x1yz | x, y, z ∈ N, x 6= z, y + 1 < z } (A.15)

D3 = { 11x1yz | x, y, z ∈ N, x 6= z, y + 1 < z } (A.16)

We already have xy from our axioms whenever y = x ± 1, so let us assume that either
y < x − 1 or x + 1 < y. In both these cases, we get that there exists a peripheral path
between x and y. Let us – without loss in generality – assume that x+ 1 < y. We thus
have a path from x to y containing n = 2 × (y − x) − 2 peripheral vertices. Consider
now the following proof:

1recall how NAND-clauses corresponds to edges, while OR-clauses corresponds to vertices

55

(N1b)

x1xy

(N2)

2xy3xy
(O2) 1xy2xy

x3xy

(N2)

4xy5xy
(O2) 3xy4xy

x5xy

(N2)

6xy7xy
(O2) 5xy6xy

x7xy
...

x(n− 1)xy

(N3)

nxyy
(O2) (n− 1)xyn

x
y

xy

Figure A.2: Proof, D1

Intuitively, this proof follows along the peripheral path between the two core vertices.
It is important to notice that since all our peripheral paths are odd in length, (n− 1) is
always odd. This guarantees that we are able to prove x(n− 1)xy in n/2 steps using the
strategy above.

Using x, y, n from above, the proof of D1b follows a similar pattern as D1:

(N2)

1xy2xy

(N2)

3xy4xy
(O2) 2xy3xy

1xy4xy

(N2)

5xy6xy
(O2) 4xy5xy

1xy6xy

(N2)

7xy8xy
(O2) 6xy7xy

1xy8xy
...

1xy(n− 2)xy

(N2)

(n− 1)xyn
x
y

(O2) (n− 2)xy(n− 1)xy
1xyn

x
y

Figure A.3: Proof D1b

Just like with D1, it is crucial that the path is odd in order for this proof strategy to
work.

As for the proof of D2, we again have a trivial case where x = y making the clause
simply an instance of N1b. We therefore continue under the assumption that x 6= y,
together with the other restrictions from the definition of D2. Using the same notation
as above, where n is the number of vertices in the peripheral path between y and z, we
now get the following short proof:

56

(D1)

xz

(D1b)

1yzn
y
z

(O3) nyzz
x1yz

Figure A.4: Proof, D2

Using D1 and D1b in the above proof restricts us to cases where x 6= z and where
y + 1 < z, but these are restrictions we have already assumed.

Lastly, we prove D3. n now denotes the number of vertices in the peripheral path
between y and z.

(D2)

11xz

(D1b)

1yzn
y
z

(O3) nyzz
11x1yz

Figure A.5: Proof, D3

We are again restricting our cases by using D3 and D1b, but these restrictions are already
assumed.

We now have what we need to prove the inconsistency of Stretched Yablo. First, we
prove the following NAND-clauses: 1, 2, 113, 1

1
41

1
5

Proving 1:

(N1)

12

(D1)

13

(D2)

1124

(D2)

1125

(D2)

1126 . . .
(O1) 231241

2
51

2
6 . . .

1

Figure A.6

Proving 2:

(N1)

23

(D1)

24

(D2)

1135

(D2)

1136

(D2)

1137 . . .
(O1) 341351

3
61

3
7 . . .

2

Figure A.7

Proving 113:

57

(D2)

1134

(D2)

1135

(D3)

1131
4
6

(D3)

1131
4
7

(D3)

1131
4
8 . . .

(O1) 451461
4
71

4
8 . . .

113

Figure A.8

Proving 114:

(D2)

1145

(D2)

1146

(D3)

1131
5
7

(D3)

1131
5
8

(D3)

1131
6
9 . . .

(O1) 561571
5
81

5
9 . . .

114

Figure A.9

The clauses 114, 115, 115, 117, . . . can be proven in exactly the same manner as above. With
the results from above, we can finally prove ∅:

1 2 113 114 115 . . .
(O1) 121131

1
41

1
5 . . . ∅

Figure A.10

Having proved ∅ in Neg, we get from soundness of Neg that our Stretched Yablo-graph
is indeed inconsistent.

58

A.3 Provability of NAND-clauses from vels

This section will prove the following statement: Given a graph where two vertices a and b
are connected by a vel, as defined in Definition 14, Section 2.4, the binary NAND-clause
ab is provable in Neg.

Let G = (G,N) be a graph containing the vertices a, b such that they have a vel between
them. By definition, this means that there exists a vertex c such that there is an oddly
trimmed path from a to c and from b to c, one of odd length and one of even length.

Let P and Q be the two sets containing the vertices in the path from a to c and from b
to c, respectively. We will denote each element of P as pi where i ∈ N is the position of
that vertex in the path, starting at 0. The elements of Q will be named qi by the same
rule. We immediately have that a = p0 and b = q0. As long as the trimming restrictions
are met, P and Q might overlap, i.e. we might have cases where pj = qk from some i
and j.

We assume, without any loss of generality, that the path from a to c is of odd length,
making the path from b to c. We denote the lengths of the two paths by the numbers n
and m, giving us that c = pn = qm. The path from b to c might also be empty, making
b = p0 = c.

This general variant of a vel can be illustrated in the following way, where the possibly
branching vertices are shown with dashed edges out of them.

a = p0

p1

. . .

pn−2

pn−1

c = pn = qm

qm−1

qm−2

. . .

q1

b = q0

Figure A.11: A general vel between a and b

Let NANDG and ORG denote the axiomatic NAND- and OR-clauses we get from our
graph. We can work out the following subset of NANDG:

NANDV = { pipi+1 | 0 ≤ i < n } ∪ { qjqj+1 | 0 ≤ j < m } (A.17)

59

Since both paths are oddly trimmed, every vertex at an odd position in its path will
only have one out-edge, resulting in a binary OR-clause. This makes us able to work
out the following subset of ORG:

ORV = { pipi+1 | 0 ≤ i < n, i is odd } ∪ { qjqj+1 | 0 ≤ j < m, j is odd } (A.18)

The proof of ab can now be worked out, based only on the axioms ΓV = NANDV ∪
ORV :

ap1 p2p3
p1p2

ap3 p4p5
p3p4

ap5
...

apn−2 pn−1c
pn−2pn−1

ac

bq1 q2q3
q1q2

bq3 q4q5
q3q4

bq5
...

bqm−3 qm−2qm−1
qm−3qm−2

bqm−1
qm−1c

ab

Figure A.12

All the NAND-clauses used as axioms in the above proof are on the form xixi+1 and thus
elements of NANDV . All the OR-clauses used as axioms are also on the form xixi+1,
and since n is odd and m is even, we see that all the OR-clauses used in the proof are
indeed from ORV .

Observe that the case where b = c is unproblematic, since the above proof also proves
ac. The case where some pi = qj does not make any of the axioms change, making it
too unproblematic.

All the axioms used are thus in ΓV , which is a subset of ΓG, and since all the rule
applications are correct, our proof is valid.

60

Bibliography

[1] G. Priest and F. Berto, “Dialetheism,” in The Stanford Encyclopedia of Philosophy,
E. N. Zalta, Ed., Summer 2013, 2013. [Online]. Available: http://plato.stanford.
edu/archives/sum2013/entries/dialetheism/.

[2] S. Dyrkolbotn and M. Walicki, “Propositional discourse logic,” Synthese, vol. 191,
pp. 863–899, 2014.

[3] M. Bezem, C. Grabmeyer, and M. Walicki, “Expressive power of digraph solvabil-
ity,” Annals of Pure and Applied Logic, vol. 163, pp. 200–213, 2012.

[4] J. von Neumann and O. Morgenstern, Theory of Games and Economic Behavior.
Princeton University Press, 1944 (1947).

[5] V. Chvátal, “On the computational complexity of finding a kernel. technical re-
port crm-300,” Centre de Recherches Mathématiques, Univeristé de Montréal, Tech.
Rep., 1973.

[6] R. T. Cook, “Patterns of paradox,” The Journal of Symbolic Logic, vol. 69(3),
pp. 767–774, 2004.

[7] M. Richardson, “Solutions of irreflexive relations,” The Annals of Mathematics,
Second Series, vol. 58(3), pp. 573–590, 1953.

[8] S. Yablo, “Paradox without self-reference,” Analysis, vol. 53(4), pp. 251–252, 1993.
[9] M. Walicki, “Resolving infinitary paradoxes,” The Journal of Symbolic Logic, [to

appear].

61

