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1 Introduction

This thesis primary focus is stochastic unit-root processes. We also study standard unit-
root processes and cointegration. When the root of the characteristic equation of the
AR(1) model is 1 or −1, the process is said to have a unit root. The best known example
of unit-root processes is the random-walk model. The term random walk was introduced
by Karl Pearson in 1905. He used the model to describe a mosquito infestation in a
forest. The theory of random walk was also developed by Louis Bachelier around the same
time. He proposed the random-walk model as the fundamental model for �nancial time
series and in this way he was years ahead of his time, see [Rycroft, page 1]. The modern
literature on unit roots dates back to White [1958]. However, by the early 1980s, only a
handful papers had been written about unit roots, mostly by Professor Wayne Fuller and
his coauthors. But the last two decades have seen signi�cant developmets in the literature
on unit roots, see [Choi, 2015, page 1] It was Nelson and Plosser [1982] who brought the
issue of nonstationarity to the forefront of economic research, see [Choi, 2015, page 5]. The
concept of cointegration was introduced by Engle and Granger [1987]. In cointegration
analysis, the �rst step is to test whether the variables of interest have a unit root, and
thus, unit root tests are used in application of cointegration, see [Choi, 2015, page 6].

In practice there are many types of processes that have near unit roots and are very di�cult
to distinguish from standard unit-root processes, given a �nite sample. In Granger and
Swanson [1997] a particular class of such processes are introduced. They have a root that
is stochastic and varying around unity. In our thesis we study the properties of such
processes, also called STUR processes. They are divided into two classes, STURA and
STURB. Some important results are listed below:

1. STURA is stationary.

2. Testing done in Granger and Swanson [1997] support the proposition that STUR
processes are generic unit root processes.

3. Testing done in Granger and Swanson [1997] shows that the STUR model performs
very well in multi-step ahead forecasting.

Acknowledgements: First of all, I want to thank my supervisor Hans Arn�nn Karlsen
for all help and guidance with my thesis. I would also like to thank my fellow students
Sondre Hølleland, Berent Lunde and Håvard Frøysa for useful discussions and help with
LaTex. I will give special thanks to my wife Mette, for all support and understanding, and
my little son Esekiel for providing great joy in my daily life.
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2 Preliminaries

In this introductory chapter we will state de�nitions and well-known results which may be
found in Brockwell and Davis [2002] and Tsay [2010]. We begin with de�ning time series
and time series models as in [Brockwell and Davis, 2002, page 1] and [Brockwell and Davis,
2002, page 7].

De�nition 2.1. A time series is a set of observations {xt}, each one being recorded at
a spesi�c time t.

De�nition 2.2. A time series model for the observed data {xt} is a speci�cation of the
joint distribution (or possibly only the means and covariances) of a sequence of random
variables {Xt} of which {xt} is postulated to be a realization.

2.1 Some simple time series models

In this section we will introduce some simple time series models, see [Brockwell and Davis,
2002, page 8-9] and [Brockwell and Davis, 2002, page 16-17].

Example 2.3. We are given a sequence of random variables X1, X2, . . . . If the variables
are independent and identically distributed (iid) random variables with zero mean and
variance σ2 we refer to such a sequence as iid noise. We use the notation

{Xt} ∼ IID(0, σ2).

Example 2.4. If we have a sequence of uncorrelated random variables X1, X2, . . . , each
with zero mean and variance σ2, we refer to such a sequence as white noise. We use the
notation

{Xt} ∼WN(0, σ2).

Example 2.5. We are given a sequence of iid random variables X1, X2, . . . , each with zero
mean and variance σ2. We de�ne S0 = 0 and

St = X1 +X2 + · · ·+Xt

for t = 1, 2, . . . . Then {St} is called a random walk.
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2.2 Stationary processes

In this section we will introduce stationary processes. We begin by de�ning the mean
function of {Xt} and the covariance function of {Xt}, see [Brockwell and Davis, 2002,
page 15].

De�nition 2.6. Let {Xt} be a time series with E(X2
t ) <∞. The mean function of {Xt}

is
µX(t) = E(Xt).

De�nition 2.7. Let {Xt} be a time series with E(X2
t ) < ∞. The covariance function

of {Xt} is
γX(r, s) = Cov(Xr, Xs) = E[(Xr − µX(r))(Xs − µX(s))]

for all integers r and s.

We now de�ne the terms weakly stationary and stationary, see [Brockwell and Davis,
2002, page 15].

De�nition 2.8. Let {Xt} be a time series with E(X2
t ) < ∞. Then {Xt} is weakly

stationary if (i) µX(t) is independent of t, and (ii) γX(t + h, t) is independent of t for
each h.

De�nition 2.9. Let {Xt} be a time series. Then {Xt} is stationary if (X1, . . . , Xn) and
(X1+h, . . . , Xn+h) have the same joint distributions for all integers h and n > 0.

If {Xt} is stationary and E(X2
t ) <∞ for all t, then {Xt} is also weakly stationary. Since

γX(t+h, t) is independent of t for each h whenever {Xt} is weakly stationary we introduce
the following function:

γX(h)
def
= γX(h, 0) = γX(t+ h, t) = Cov(Xt+h, Xt).

We will now formalize this and de�ne the autocovariance function (ACVF) and the
autocorrelation function (ACF) of a weakly stationary series as in [Brockwell and Davis,
2002, page 16].

De�nition 2.10. Let {Xt} be a weakly stationary time series. The autocovariance
function (ACVF) of {Xt} at lag h is

γX(h)
def
= γX(h, 0) = γX(t+ h, t) = Cov(Xt+h, Xt).
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De�nition 2.11. Let {Xt} be a weakly stationary time series. The autocorrelation
function (ACF) of {Xt} at lag h is

ρX(h) ≡ γX(h)

γX(0)
= Cor(Xt+h, Xt).

We now look at Example 2.3 and Example 2.4 again. We see immediately that iid noise
is stationary and iid noise with �nite second moment is weakly stationary. White noise
may not be stationary, but white noise with �nite second moment is weakly stationary.
A multivariate Gaussian distribution is fully characterized by its �rst two moments. A
Gaussian white noise series is therefore stationary. However random walk as de�ned in
Example 2.5 is not stationary. With the notation as in the example we see that E(St) = 0
for all t, but

γS(t+ h, t) = Cov(St+h, St) = Cov(St +Xt+1 + · · ·+Xt+h, St) = Cov(St, St) = tσ2,

which depends on t.

2.3 Linear time series

In this section we look closer at linear time series, see [Brockwell and Davis, 2002, page
51-53] and [Tsay, 2010, page 36-37]. We begin by de�ning linear time series as in [Tsay,
2010, page 36].

De�nition 2.12. The time series {Xt} is said to be linear if it can be written as

Xt = µ+
∞∑
i=0

ψiZt−i, (1)

where µ is the mean of Xt, ψ0 = 1, and {Zt} is a white noise series with zero mean and
variance σ2. The time series is also called a moving-average or MA(∞).

If {Xt} is weakly stationary, we see that Var(Xt) = σ2
∞∑
i=0

ψ2
i , where σ

2 is the variance of

Zt. The variance of Xt is �nite when Xt is weakly stationary. This implies that {ψ2
i } must

be a convergent sequence, i.e. ψ2
i → 0 as i→∞.

The ACVF of {Xt} at lag h is

γX(h) = Cov(Xt, Xt−h) = E

[( ∞∑
i=0

ψiZt−i

)( ∞∑
j=0

ψjZt−h−j

)]
= σ2

∞∑
j=0

ψjψj+h.
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Hence the ACF of {Xt} at lag h is

ρX(h) =

∞∑
i=0

ψiψi+h

1 +
∞∑
i=1

ψ2
i

,

see [Tsay, 2010, page 37, equation (2.6) and (2.7)].

2.4 AR models

In this section we study autoregressive (AR) models. We begin by looking closer at an AR
model of order 1 or simply an AR(1) model, see [Brockwell and Davis, 2002, page 53-55]
and [Tsay, 2010, page 37-40].

De�nition 2.13. The general representation of an autoregressive (AR) model of order 1
or simply an AR(1) model is

Xt = φ0 + φ1Xt−1 + Zt, (2)

where {Zt} is assumed to be a white noise series with zero mean and variance σ2.

We proceed as in [Tsay, 2010, page 37-39]. By assuming that the series de�ned by (2)
is weakly stationary we have E(Xt) = µ, Var(Xt) = γX(0), and Cov(Xt, Xt−h) = γX(h),
where µ and γX(0) are constants and γX(h) is a function of h, not t. From (2) we have

µ = φ0 + φ1E(Xt−1).

Since the weakly stationary assumption gives E(Xt−1) = µ, we obtain

µ =
φ0

1− φ1

.

We see that the mean of {Xt} exists if φ1 6= 1. Using φ0 = (1− φ1)µ, (2) can be rewritten
as

Xt − µ = φ1(Xt−1 − µ) + Zt. (3)

By repeated substitutions (3) implies that
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Xt − µ =
∞∑
i=0

φi1Zt−i. (4)

We observe that (4) expresses an AR(1) model as a linear time series, where ψi = φi1 in
(1). Since Xt−1 − µ is a linear function of Zt−i for i ≥ 1, we have that Cov(Xt−1, Zt) =
E[(Xt−1 − µ)Zt] = 0. If we are taking the square of (3) and then the expectation of the
result we obtain

Var(Xt) = φ2
1Var(Xt−1) + σ2.

Under the weakly stationary condition, Var(Xt) = Var(Xt−1), hence

Var(Xt) =
σ2

1− φ2
1

,

provided that φ2
1 < 1. Hence, the weakly stationarity of an AR(1) model implies that

|φ1| < 1. It is easy to verify that if |φ1| < 1 the AR(1) model is weakly stationary, see
[Tsay, 2010, page 39]. We summarize this in the following result, see [Tsay, 2010, page 39].

Theorem 2.14. The necessary and su�cient condition for the AR(1) model in (2) to be
weakly stationary is |φ1| < 1.

We will now obtain the ACF for a weakly stationary AR(1) model in (2), see [Tsay, 2010,
page 39-40]. If we multiply (3) by Zt and then take the expectation of the result we obtain

E[Zt(Xt − µ)] = φ1E[Zt(Xt−1 − µ)] + E(Z2
t ) = E(Z2

t ) = σ2.

If we multiply (3) by Xt−h − µ and then take the expectation of the result we obtain

γX(h) = φ1γX(h− 1),

for h > 0. The ACF of {Xt} must clearly satisfy

ρX(h) = φ1ρX(h− 1),

for h > 0. This lead us to the next result, see [Tsay, 2010, page 40].

Theorem 2.15. The autocorrelation function or the ACF for a weakly stationary AR(1)
model in (2) is

ρX(h) = φh1 .
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We observe that the ACF of the series starts at the value ρX(0) = 1 and decays exponen-
tially with rate φ1.

A generalization of the AR(1) model above is the AR(p) model given by

Xt = φ0 + φ1Xt−1 + · · ·+ φpXt−p + Zt, (5)

where p is a nonnegative integer and {Zt} is assumed to be a white noise series with zero
mean and variance σ2. When the series is weakly stationary it is easy to verify that the
mean is given by

E(Xt) =
φ0

1− φ1 − · · · − φp
,

provided that the denominator is not zero, see [Tsay, 2010, page 46].

The backward shift operator is de�ned by

BXt = Xt−1.

Powers of the operator B is de�ned by

Bj(Xt) = Xt−j.

Another way to express (5) is therefore

φ(B)Xt = φ0 + Zt, (6)

where
φ(z) = 1− φ1z − · · · − φpzp. (7)

If we set the last expression equal to zero we have the characteristic equation of the
AR(p) model above. The next theorem is an important result given in [Tsay, 2010, page
46].

Theorem 2.16. If all the solutions of the characteristic equation of the AR(p) model in
(5) are greater than 1 in modulus, then the series {Xt} is stationary.
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2.5 MA models and ARMA models

In this section we look at moving-average (MA) models and autoregressive moving-average
(ARMA) models. We begin by de�ning an MA(q) model:

De�nition 2.17. The general representation of an moving-average (MA) model of order
q or simply an MA(q) model is

Xt = φ0 + Zt + θ1Zt−1 + · · ·+ θqZt−q, (8)

where {Zt} is assumed to be a white noise series with zero mean and variance σ2.

Moving-average models are weakly stationary because they are �nite linear combinations
of a white noise sequence. We easily see that for the MA(q) model in (8) we have

E(Xt) = φ0

and

Var(Xt) = (1 + θ21 + θ22 + · · ·+ θ2q)σ
2.

It can be shown that for the MA(q) model in (8) the ACF of {Xt} at lag q is not zero, but
ρX(h) = 0 for h > q, see [Tsay, 2010, page 59].

We will now de�ne the general ARMA(p,q) model:

De�nition 2.18. The general representation of an autoregressive moving-average (ARMA)
model of order (p,q) or simply an (ARMA)(p,q) model is

Xt = φ0 +

p∑
i=1

φiXt−i + Zt +

q∑
i=1

θiZt−i, (9)

where {Zt} is assumed to be a white noise series with zero mean and variance σ2, and p
and q are nonnegative integers.

We see that the AR(p) and MA(q) models are special cases of the ARMA(p,q) model. If
we use the backward shift operator we can write the model in (9) as

(1− φ1B − · · · − φpBp)Xt = φ0 + (1 + θ1B + · · ·+ θqB
q)Zt.
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The polynomial 1−φ1B−· · ·−φpBp is the AR polynomial of the model and the polynomial
1 + θ1B + · · · + θqB

q is the MA polynomial of the model. We require that there are no
common factors between the AR and MA polynomials - otherwise the order of the model
can be reduced. The AR polynomial introduces the characteristic equation of an ARMA
model. If all the solutions of this equation are greater than 1 in modulus, then the series
is weakly stationary, see [Tsay, 2010, page 66]. In this case, the mean of the series is given
by

E(Xt) =
φ0

(1− φ1 − · · · − φp)
.

2.6 Forecasting

In this section we look at forecasting, and we consider the AR(p) model in (5), as our
example, see [Tsay, 2010, page 54-57]. We suppose that we are at time index h and are
interested in forecastingXh+l, where l ≥ 1. Let Fh be the collection of information available
at the forecast origin h. Let X̂h(l) be the forecast of Xh+l using the minimum squared

error loss function. That is, the forecast X̂h(l) is chosen such that

E{[Xh+l − X̂h(l)]
2|Fh} ≤ min

g
E[(Xh+l − g)2|Fh],

where g is a function of the information available at time h (inclusive), that is, a function

of Fh. We will refer to X̂h(l) as the l-step ahead forecast of Xt at the forecast origin h, see
[Tsay, 2010, page 54].

We begin by looking at 1-Step-Ahead Forecast.

For the AR(p) model in (5), we have

Xh+1 = φ0 + φ1Xh + · · ·+ φpXh+1−p + Zh+1.

Under the minimum squared error loss function we have

X̂h(1) = E(Xh+1|Fh) = φ0 +

p∑
i=1

φiXh+1−i,

and the associated forecast error is

eh(1) = Xh+1 − X̂h(1) = Zh+1.

The variance of the 1-step-ahead forecast error is therefore σ2.
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We now look at Multistep-Ahead Forecast.

For the AR(p) model in (5), we have

Xh+l = φ0 + φ1Xh+l−1 + · · ·+ φpXh+l−p + Zh+l.

Under the minimum squared error loss function we have

X̂h(l) = E(Xh+l|Fh) = φ0 +

p∑
i=1

φiX̂h(l − i),

where it is understood that X̂h(i) = Xh+i if i ≤ 0. The l-step-ahead forecast error is

eh(l) = Xh+l − X̂h(l). It can be shown that for a stationary AR(p) model X̂h(l) converges
to E(Xt) as l →∞, see [Tsay, 2010, page 56]. For such a series we therefore have that its
long-term point forecast approaches its unconditional mean. We refer to this property as
mean reversion.

2.7 Spectral Densities

In this section we de�ne the spectral density of {Xt}. We look at some of its properties
and give two simple examples, see [Brockwell and Davis, 2002, page 112-119].

De�nition 2.19. The spectral density of {Xt} is the function f(·) de�ned by

f(λ) =
1

2π

∞∑
h=−∞

e−ihλγ(h), −∞ < λ <∞.

Since cos and sin have period 2π, so also does f , and it su�ces to look at f on the interval
(−π, π]. Moreover it can be shown that f is even and nonnegative, see [Brockwell and
Davis, 2002, page 112-113]. We look at to examples:

Example 2.20. If {Xt} ∼WN(0, σ2), then γ(0) = σ2 and γ(h) = 0 for all |h| > 0. Hence
the process has a �at spectral density given by

f(λ) =
σ2

2π
, − π ≤ λ ≤ π.

We see that each frequency in the spectrum contributes equally to the variance of the
process and for a good reason the process is called white noise.
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Example 2.21. Consider the AR(1) process given in (2) with φ0 = 0. From the de�nition
above we have:

f(λ) =
σ2

2π(1− φ2
1)

(
1 +

∞∑
h=1

φh1(e−ihλ + eihλ)

)

=
σ2

2π(1− φ2
1)

(
1 +

φ1e
iλ

1− φ1eiλ
+

φ1e
−iλ

1− φ1e−iλ

)
=

σ2

2π(1− φ2
1)

(
1− φ2

1

(1− φ1eiλ)(1− φ1e−iλ)

)
=
σ2

2π

(
1− φ1e

−iλ − φ1e
iλ + φ2

1

)−1
=
σ2

2π

(
1− φ1[cos(−λ) + isin(−λ) + cos(λ) + isin(λ)] + φ2

1

)−1
=
σ2

2π
(1− 2φ1cosλ+ φ2

1)
−1.
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3 Technical Tools

In this chapter we will introduce some technical tools that have been used in the literature
on unit roots, see [Choi, 2015, page 12-14]. We begin with Brownian motion and stochastic
integrals.

3.1 Brownian motion and Stochastic Integrals

In this section we introduce Brownian motion and stochastic integrals. We get our infor-
mation from [Bjork, 2009, chapter 4]. The following de�nition is found in [Bjork, 2009,
page 40].

De�nition 3.1. A stochastic process W is called Brownian motion if the following condi-
tions hold.

1. W (0) = 0.

2. The process W has independent increments.

3. For s < t the stochastic variable W (t) − W (s) has the Gaussian distribution with
zero mean and variance t− s.

4. W has continuous trajectories.

We now take a closer look at Brownian motion, see [Bjork, 2009, page 50-51]. One can
show that, with probability 1, the trajectory of the process will be a continuous function
of time which is nondi�erentiable at every point. This lack of smoothness gives rise to
an odd property of the quadratic variation of the process which we now de�ne. Fix a
point in time t and subdivide the interval [0, t] into n equally large subintervalls of the
form [k t

n
, (k + 1) t

n
], where k = 0, 1, . . . , n − 1. Given this subdivision, we now de�ne the

quadratic variation of the process by Sn, i.e.

Sn =
n∑
i=1

[
W

(
i
t

n

)
−W

(
(i− 1)

t

n

)]2
,

and we want to see what happens to Sn as the subdivision becomes �ner, i.e. as n →∞.
It can be shown (as in [Bjork, 2009, page 51]) that E[Sn] = t and Var[Sn] = 2t2

n
. Hence

Var[Sn] → 0 as n → ∞ and we see that Sn tends to the deterministic limit t. This
motivates us to write ∫ t

0

[dW ]2 = t,

or, equivalently,
[dW ]2 = dt.
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We now want to construct the stochastic integral. Let X be any given stochastic process.
We need to de�ne �the information generated by X� as time goes by, see [Bjork, 2009, page
43].

De�nition 3.2. The symbol FXt denotes �the information generated by X on the interval
[0, t]�. If the value of a given stochastic variable Z can be completely determined given
observations of the trajectory X(s), where 0 ≤ s ≤ t, we write this as

Z ∈ FXt .

If Y is a stochastic process such that we have

Y (t) ∈ FXt

for all t ≥ 0 then we say that Y is adapted to the �ltration {FXt }t≥0.

Let W be Brownian motion and we also consider as given another stochastic process g.
The following construction of the stochastic integral is found in [Bjork, 2009, page 44-45].
First we need some integrability conditions on g in order to guarantee the existence of the
stochastic integral. The class L2 turns out to be natural.

De�nition 3.3. We say that the process g belongs to the class L2[a, b] if the following
conditions are satis�ed.

1.
∫ b
a

E[g2(s)]ds <∞.

2. The process g is adapted to the FWt -�ltration.

We say that the process g belongs to the class L2 if g ∈ L2[0, t] for all t > 0.

Our goal is to de�ne the stochastic integral
∫ b
a
g(s)dW (s) for a process g ∈ L2[a, b]. This is

now carried out in two steps. In the �rst step we assume that g ∈ L2[a, b] is simple. That
is, we assume that there exist deterministic points in time a = t0 < t1 < · · · < tn = b, such
that g(s) = g(tk) for s ∈ [tk, tk+1). We de�ne the stochastic integral in this case by the
following formula. ∫ b

a

g(s)dW (s) =
n−1∑
k=0

g(tk)[W (tk+1)−W (tk)].

In the second step we assume that g ∈ L2[a, b] is a general process (not necessarily simple).
We proceed in three steps.

1. Approximate g with a sequence {gn} of simple processes such that∫ b

a

E
[
(gn(s)− g(s))2

]
ds→ 0.
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2. For each n the integral
∫ b
a
gn(s)dW (s) is a well de�ned stochastic variable Zn, and it

is possible to prove that there exists a stochastic variable Z such that Zn → Z (in
L2) as n→∞.

3. We now de�ne the stochastic integral by∫ b

a

g(s)dW (s) = lim
n→∞

∫ b

a

gn(s)dW (s).

We end this section with the main result in the theory of stochastic calculus - the Itô
formula, see [Bjork, 2009, page 51].

Theorem 3.4. Assume that the process X has a stochastic di�erential given by

dX(t) = µ(t)dt+ σ(t)dW (t),

where µ and σ are adapted processes, and let f be a C1,2-function. De�ne the process Z by
Z(t) = f(t,X(t)). Then Z has a stochastic di�erential given by

df(t,X(t)) =

(
∂f

∂t
+ µ

∂f

∂x
+

1

2
σ2∂

2f

∂x2

)
dt+ σ

∂f

∂x
dW (t).

3.2 Continuous-Mapping Theorem

The following result is for instance found in [Choi, 2015, page 13]. Suppose that XT ⇒ X
as T → ∞, where XT is a sequence of random vectors and X a random vector (here
⇒ denotes weak convergence, i.e., convergence in distribution). The continuous mapping
theorem states that g(XT )⇒ g(X) as T →∞ where the function g(·) is continuous with
probability one.

3.3 Functional Central Limit Theorem

For this theorem we proceed as in [Tsay, page 1-2]. We are given a weakly stationary time
series {Yt}, with certain properties to be de�ned shortly. De�ne S0 = 0 and

St = Y1 + Y2 + · · ·+ Yt

for t = 1, 2, . . . . The average variance of ST is given by

τ 2 = lim
T→∞

E(T−1S2
T ).

De�ne the function

XT (r) =
1√
Tτ

S[Tr], 0 ≤ r ≤ 1,
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where [Tr] denotes the integer part of Tr. The properties we need for our result is listed
below.

1. E(Yt) = 0 for all t.

2. suptE|Yt|β <∞ for some β > 2.

3. The average variance τ 2 de�ned above exists and is positive.

4. {Yt} is strongly mixing, i.e. the serial dependence between Yt and Yt−h approaches
zero as h increases.

Theorem 3.5. If {Yt} satis�es the four properties listed above, then XT (r)⇒ W (r), where
W (r) is a standard Brownian motion for r ∈ [0, 1] and ⇒ denotes weak convergence, i.e.
convergence in distribution.
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4 Unit-root

In this chapter we will introduce unit-root nonstationary time series.

4.1 Random Walk

The best known example of unit-root nonstationary time series is the random-walk model,
see [Tsay, 2010, page 72]. We have already seen the random-walk model as our third
example of simple time series models in the �rst chapter, see Example 2.5.

De�nition 4.1. A time series {Xt} is a random walk if it satis�es

Xt = Xt−1 + Zt, t = 1, 2, . . . , (10)

where X0 is a �xed real number, and {Zt} is assumed to be a white noise series with zero
mean and variance σ2.

This is an AR(1) model with φ0 = 0 and φ1 = 1 in the notation of De�nition 2.13. The
characteristic equation of the model is

1− z = 0.

The root of this equation is 1 and the process is said to have a unit root, see [Choi, 2015,
page 4]. From Theorem 2.14 the necessary and su�cient condition for the AR(1) model
in (2) to be weakly stationary is |φ1| < 1. In our random-walk model we have φ1 = 1
and the process is nonstationary. We will now look closer at some of the properties of the
random-walk model. We will also look closer at another important model - random walk
with drift. We proceed as in [Tsay, 2010, page 72-74].

We begin by looking at the 1-step-ahead forecast of model (10) at the forecast origin h. It
is given by

X̂h(1) = E(Xh+1|Fh) = Xh.

It is easy to verify that for any forecast horizon l > 0, we have

X̂h(l) = Xh,

see [Tsay, 2010, page 72]. Thus, for all forecast horizons, point forecasts of a random-walk
model are simply the value of the series at the forecast origin. Hence, the process is not
mean reverting. We can write (10) in the following way:

Xt = X0 + Zt + Zt−1 + Zt−2 + · · ·+ Z1.

We see that the l-step-ahead forecast error is given by

eh(l) = Zh+l + · · ·+ Zh+1.
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Hence Var[eh(l)] = lσ2 (where σ2 is the variance of Zt), which diverges to in�nity as
l → ∞. As in [Tsay, 2010, page 73] we conclude that the model is not predictable.
In fact, theoretically, Xt can assume any real value for a su�ciently large t. With our
random-walk model we have ψi = 1 in De�nition 2.12. Hence, the impact of any past
shock Zt−i on Xt does not decay over time. The series has a strong memory and it
remembers all of the past shocks.

We will now look at a related process - random walk with drift, see [Tsay, 2010, page
73-74].

De�nition 4.2. A time series {Xt} is a random walk with drift if it satis�es

Xt = φ0 +Xt−1 + Zt, t = 1, 2, . . . , (11)

where X0 is a �xed real number, and {Zt} is assumed to be a white noise series with zero
mean and variance σ2.

We see that φ0 = E[Xt−Xt−1]. The constant term φ0 of model (11) is very important and
is referred to as the drift of the model. We can easily verify that

Xt = tφ0 +X0 + Zt + Zt−1 + · · ·+ Z1,

see [Tsay, 2010, page 73]. The last equation shows that the process consists of a time trend
tφ0 and a random-walk process. The conditional standard deviation of Xt is

√
tσ (where

σ2 is the variance of Zt), which grows at a slower rate than the conditional expectation of
Xt. Therefore, if we graph Xt against the time index t, we have a time trend with slope φ0.
In other words, for a random walk with drift, the constant term becomes the time slope of
the series.

4.2 Some properties of unit-root processes

Consider now the follwing AR(1) model:

Xt = φXt−1 + Zt,

where {Zt} is assumed to be a white noise series with zero mean and variance σ2. Dis-
cussions in this section revolve around the case φ = 1, see [Choi, 2015, page 4]. The
properties of {Xt} with φ = 1 are very di�erent from those of {Xt} with |φ| < 1. We have
the following summary in [Choi, 2015, page 4]:

1. When φ = 1, Var(Xt) → ∞ as t → ∞. When |φ| < 1, however, Var(Xt) =
(1− φ2)−1σ2 for all t.
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2. When φ = 1, the impact of any past shock Zt−i on Xt does not decay over time.
When |φ| < 1, an innovation will lose its e�ect on the value of Xt eventually as we
move forward into the future.

3. When φ = 1, f(0) =∞ where f(·) denotes the spectral density of {Xt}. This means
that {Xt} has a strong long-run component. When |φ| < 1, the spectral density is
�nite at all frequencies.

4. When φ = 1, the expected time between crossings of y = 0 is in�nite. When φ < 1,
the expected time between crossings of y = 0 is �nite.

5. When φ = 1, the theoretical autocorrelation at lag h converges to 1 for all h as
t → ∞. When |φ| < 1, the autocorrelation decreases steadily in magnitude as h
increases.

6. When φ = 1, the process is a null recurrent Markov chain.

4.3 Some basic results of a unit-root process

In this section we follow closely [Tsay, page 1-5]. Let {Yt} be a weakly stationary time
series with weak serial dependence. The properties of {Yt} is as in Section 3.3:

1. E(Yt) = 0 for all t.

2. suptE|Yt|β <∞ for some β > 2.

3. The average variance τ 2 exists and is positive.

4. Yt is strongly mixing, i.e. the serial dependence between Yt and Yt−h approaches zero
as h increases.

We see that if {Yt} is a white noise series with �nite second moment it satis�es the above
properties. We will however consider the general case. Let {Xt} be a time series given by

Xt = πXt−1 + Yt, t = 1, 2, . . . , (12)

where π = 1, X0 is a �xed real number, and Yt is as given above. As in Section 3.3 we
de�ne S0 = 0 and

St = Y1 + Y2 + · · ·+ Yt

for t = 1, 2, . . . . The average variance of ST is (as we know) given by

τ 2 = lim
T→∞

E(T−1S2
T ),
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and as before we de�ne the function XT (r) by

XT (r) =
1√
Tτ

S[Tr], 0 ≤ r ≤ 1,

where [Tr] denotes the integer part of Tr.

The ordinary least squares estimate of π in (12) is

π̂ =

T∑
t=1

Xt−1Xt

T∑
t=1

X2
t−1

,

and its variance is estimated by

Var(π̂) =
S2

T∑
t=1

X2
t−1

,

where S2 is the residual variance given by

S2 =
1

T − 1

T∑
t=1

(Xt − π̂Xt−1)
2,

see [Tsay, page 2-3].

The usual t-ratio for testing the null hypothesis H0 : π = 1 versus Ha : π < 1 is given by

tπ =

(
T∑
t=1

X2
t−1

)1/2

π̂ − 1

S
=

T∑
t=1

Xt−1Yt

S

√
T∑
t=1

X2
t−1

, (13)

see [Tsay, page 3].

De�ne σ2
Y as

σ2
Y = lim

T→∞
T−1

T∑
t=1

E(Y 2
t ).

We now have the following result given in [Tsay, page 3].
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Theorem 4.3.

1. T−2
T∑
t=1

X2
t−1 ⇒ τ 2

∫ 1

0
W (r)2dr.

2. T−1
T∑
t=1

Xt−1Yt ⇒ τ2

2
(W (1)2 − σ2

Y

τ2
).

3. T (π̂ − 1)⇒ (1
2
)(W (1)2 − (

σ2
Y

τ2
))(
∫ 1

0
W (r)2dr)−1.

4. π̂ converges to 1 in probability.

5. tπ ⇒ ( τ
2σY

)(W (1)2 − (
σ2
Y

τ2
))(
∫ 1

0
W (r)2dr)−1/2.

Here ⇒ denotes convergence in distribution. The proof of the theorem is given in [Tsay,
page 3-4]. We give the �rst part of the proof with our notation.

Proof of part 1 of Theorem 4.3.

T−2
T∑
t=1

X2
t−1 = T−2

T∑
t=1

(St−1 +X0)
2

= T−2
T∑
t=1

(S2
t−1 + 2X0St−1 +X2

0 )

= τ 2
T∑
t=1

(
1

τ
√
T
St−1

)2
1

T
+ 2X0τT

−1/2
T∑
t=1

(
1

τ
√
T
St−1

)
1

T
+ T−1X2

0

= τ 2
T∑
t=1

∫ t/T

(t−1)/T

(
1

τ
√
T
S[Tr]

)2

dr + 2X0τT
−1/2

T∑
t=1

∫ t/T

(t−1)/T

1

τ
√
T
S[Tr]dr + T−1X2

0

= τ 2
∫ 1

0

X2
T (r)dr + 2X0τT

−1/2
∫ 1

0

XT (r)dr + T−1X2
0

⇒ τ 2
∫ 1

0

W (r)2dr, T →∞.

In the last step we have used Theorem 3.5. We notice that from part 3 of Theorem 4.3
π̂ converges to 1 at the rate of T−1, not the usual rate T−1/2. This is referred to as the
super consistency in the theory of unit-root.

Example 4.4. Consider the random walk {Xt} where

Xt = Xt−1 + Zt, t = 1, 2, . . . , (14)

where X0 is a �xed real number, and {Zt} is assumed to be a white noise series with mean
zero and variance σ2. In this model we have τ 2 = σ2 = σ2

Y . Hence our result above gives:
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1. T−2
T∑
t=1

X2
t−1 ⇒ σ2

∫ 1

0
W (r)2dr.

2. T−1
T∑
t=1

Xt−1Yt ⇒ σ2

2
(W (1)2 − 1).

3. T (π̂ − 1)⇒ (1
2
)(W (1)2 − 1)(

∫ 1

0
W (r)2dr)−1.

4. tπ ⇒ (1
2
)(W (1)2 − 1)(

∫ 1

0
W (r)2dr)−1/2.

The critical values of tπ has been tabulated by several authors. The 0.01, 0.05, and 0.10
quantiles of the limit distribution of tπ in the above example are for instance given by
−2.58, −1.95, and −1.62, see [Tsay, page 7].

We now look at the general AR(p) case and follow closely [Tsay, page 5-6]. We start with
the AR(2) case where (1− B)(1− φB)Xt = Zt, where |φ| < 1 and {Zt} is assumed to be
a white noise series with mean zero and variance σ2. The model can be written as

Xt = Xt−1 + Yt, Yt = φYt−1 + Zt.

For the weakly stationary AR(1) process Yt, it can be shown that σ2
Y = (1 − φ2)−1σ2

and τ 2 = (1 − φ)−2σ2. Hence the limiting distributions discussed depend on the AR(1)
coe�cient φ. The t-ratio of π̂ can be obtained by Theorem 4.3 and it becomes

tπ ⇒
1

2

√
1 + φ

1− φ

(
W (1)2 − 1− φ

1 + φ

)(∫ 1

0

W (r)2dr

)−1/2
.

This dependence on φ makes it di�cult to use tπ in unit-root testing and the dependence
continues to hold for the general AR(p) process. A test that can overcome this di�culty
is the augmented Dickey-Fuller test which we will discuss in the next section.

4.4 Augmented Dickey-Fuller test

In this section we look at the augmented Dickey-Fuller test and we follow closely [Tsay,
page 7-8]. We consider an AR(p) process de�ned by φ(B)Xt = Zt, where {Zt} is assumed
to be a white noise series. We look closer at the case where φ(B) = φ∗(B)(1 − B). Here

φ∗(B)Xt = Zt de�nes a stationary model, see Theorem 2.16. Let φ∗(B) = 1 −
p−1∑
i=1

φ∗iB
i.

The model then becomes

φ(B)Xt = φ∗(B)(1−B)Xt = (1−B)Xt −
p−1∑
i=1

φ∗i (1−B)Xt−i = Zt.
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We see that testing for a unit root in φ(B) is equivalent to testing π = 1 in the following
model:

Xt = πXt−1 +

p−1∑
j=1

φ∗j(Xt−j −Xt−j−1) + Zt.

Or equivalently, the same as testing for π − 1 = 0 in the following model:

∆Xt = (π − 1)Xt−1 +

p−1∑
j=1

φ∗j∆Xt−j + Zt,

where ∆Xt = Xt −Xt−1. In practise, the linear model

∆Xt = βXt−1 +

p−1∑
j=1

φ∗j∆Xt−j + Zt, (15)

where β = π − 1, is used. The least squares estimate of β can then be used in unit-root
testing. We have that testing H0 : π = 1 versus Ha : π < 1 is equivalent to testing
H0 : β = 0 versus Ha : β < 0. The t-ratio of β̂ has the same limiting distribution as tπ
in the random-walk case. Hence, for an AR(p) model with p > 1, by including the lagged
variables of ∆Xt in the linear regression of (15), one can remove the nuisance parameters
in unit-root testing. This is the well-known augmented Dickey-Fuller unit-root test.

4.5 Di�erencing and Random Walk

The idea of transforming a nonstationary time series {Xt} into a stationary one by con-
sidering its change series {Ct} de�ned by Ct = Xt −Xt−1 is called di�erencing. For the
random walk in (10) we have

Ct = Xt −Xt−1 = (Xt−1 + Zt)−Xt−1 = Zt,

which is a weakly stationary process. We say that the random walk is integrated of order
one and we call it an I(1) process. In Chapter 6 we will look further into this concept.
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5 Stochastic unit-root processes

In this chapter we are going to introduce what Granger and Swanson call stochastic unit-
root processes in Granger and Swanson [1997]. From the Abstract in this article we read:
�A class of nonlinear processes which have a root that is not constant, but is stochastic, and
varying around unity is introduced. The process can be stationary for some periods, and
mildly explosive for others.�, see [Granger and Swanson, 1997, page 35]. Before studying
the process in Granger and Swanson [1997], we look at the following stochastic di�erence
equation.

5.1 A stochastic equation

In this section we look closer at the stochastic equation

Xt = AtXt−1 +Bt, t = 1, 2, . . . , (16)

where X0 is a �nite random variable.

We can solve (16) in the following way:

Xt = AtXt−1 +Bt

= At(At−1Xt−2 +Bt−1) +Bt

= Bt + AtBt−1 + AtAt−1Xt−2

= . . .

=

[ t−1∏
j=0

At−j

]
X0 +

t−1∑
k=0

[ k−1∏
j=0

At−j

]
Bt−k,

where it is understood that
∏−1

j=0At−j = 1.

We consider two di�erent settings and later apply some of the results to the process de-
scribed in Granger and Swanson [1997].

CASE 1. We assume that {(At, Bt)} are stationary and ergodic as is the case in Brandt
[1986]. If {Xt} is stationary and ergodic with E(Xt) = µ, then the time series average,

T−1
T∑
t=1

Xt, converges to µ. Note that stationarity itself does not guarantee ergodicity. The

main result for this situation is found in [Brandt, 1986, page 212].
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Theorem 5.1. The stochastic equation

Xt = AtXt−1 +Bt, t = 1, 2, . . . ,

where X0 is a �nite random variable and {(At, Bt)} are stationary and ergodic, has a
unique stationary and ergodic solution if and only if

−∞ ≤ E(log|A1|) < 0

and
E(log+|B1|) <∞.

Moreover the solution is given by

Xt =
∞∑
j=0

[ t−1∏
i=t−j

Ai

]
Bt−j−1, t ∈ Z. (17)

Note that ω+ = max(ω, 0) and ω− = −min(ω, 0).

Remark. We can write

Xt =

[ t∏
j=1

Aj

]
X0 + St, St =

t−1∑
k=0

[ k−1∏
j=0

At−j

]
Bt−k. (18)

In the stationary case |Xt − St|
a.s.→ 0. We can neither say that Xt

a.s.→ St nor Xt
a.s.→ S∞.

What we can say is that Xt ⇒ S∞, where ⇒ denotes convergence in distribution.

CASE 2. We assume that {(At, Bt)} are independent and identically distributed. This
setup is studied in [Vervaat, 1979, page 752-758]. Let (A,B) denote a generic ran-
dom pair with the same distribution as (At, Bt). Considering the limiting behaviour of

{
t∑

k=1

log|Ak|}, t = 1, 2, . . . , we have that one and only one of the following three cases

occurs.

1.
t∑

k=1

log|Ak| ⇒ −∞, where ⇒ denotes convergence in distribution.

2. log|A| = 0 with probability 1.

3. limsup P

(
t∑

k=1

log|Ak| > 0

)
> 0.

Let ν
def
= E(log|A|) in case the expectation exists, �nite or in�nite. In order to get a valid

expression (not an expression like ”∞−∞”), at least one of E(log+|A|) and E(log−|A|)
has to be �nite. We now have the following situation.

28



- If −∞ ≤ ν < 0, then the �rst case occurs.

- If 0 < ν ≤ ∞, then the third case occurs.

- If ν = 0 then all three cases occur.

- If E(log|A|) does not exist, then the �rst case and the third case occur.

From [Vervaat, 1979, page 757] we have the following important result.

Theorem 5.2. The stochastic equation

Xt = AtXt−1 +Bt, t = 1, 2, . . . ,

where X0 is a �nite random variable and {(At, Bt)} are independent and identically dis-
tributed, has a solution if and only if

−∞ ≤ E(log|A|) < 0

and
E(log+|B|) <∞.

The next result is found in [Vervaat, 1979, page 753]. If Xt ⇒ X (where Xt is given as in
Theorem 5.2) for some random variable X, then X satis�es the stochastic equation

X
d
= AX +B, (19)

where X and (A,B) are independent and
d
= denotes equality in distribution. A distribu-

tional solution of (19) in the situation of Theorem 5.2 is now given by

X ∼
∞∑
k=1

A1A2 · · ·Ak−1Bk.

We also have the following result considering the tail of a distributional solution of (19),
see [Goldie, 1991, page 135]:

Theorem 5.3. If there exists some κ > 0 such that

E|A|κ = 1,

E(|A|κlog+|A|) <∞,

0 < E|B|κ <∞,
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and moreover B
1−A is non-degenerate and the conditional distribution of log|A| given A 6= 0

is non-lattice, then there are constants c+ and c−, at least one of them positive, such that

sκP (X > s)→ c+,

sκP (X < −s)→ c−,

as s→∞, where X is a distributional solution of (19).

The important requirement in this theorem is that E|A|κ = 1 for some κ > 0.

5.2 The process in the article by Granger and Swanson

In this section we study the theory of the process described in [Granger and Swanson, 1997,
page 37-40]. Note that we will use a di�erent notation than the notation used in Granger
and Swanson [1997].

We will consider the following process in this section:

Xt = AtXt−1 +Bt, t = 1, 2, . . . , (20)

where X0 is a �nite random variable. We assume the following.

1. X0 is independent of {At, Bt, t > 1}.

2. {Bt} is iid noise with zero mean and �nite variance σ2
B.

3. {Bt} is independent of {At}.

4. At = exp(Ct).

5. {Ct} is a Gaussian stationary process with mean µC , variance σ
2
C > 0, and spectral

density fC . We also require
∑
h

|h||γC(h)| <∞ for later results.

We call this process a STUR process. If we allowed Ct ≡ 0 in the STUR model, then
{Xt} would be a standard unit-root process. Now as an example, let Ct be given by the
following AR(1) process:

Ct = φ0 + φ1Ct−1 + Zt, (21)

where |φ1| < 1, and Zt is iid normally distributed with zero mean and variance σ2
Z and is in-

dependent of the series Bt. For this model we will assume that Ct is generated exogenously
from Xt. This means that

E(Ct+1|FCt ∨ FXt ) = E(Ct+1|FCt ).
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We get the following results from Section 2.4:

µC =
φ0

1− φ1

,

σ2
C =

σ2
Z

1− φ2
1

.

We will now �nd expressions for the expectation of Xt and the variance of Xt and �rst we
proceed as in Granger and Swanson [1997]. We begin by de�ning the following:

SC,t(j) =

j−1∑
i=0

Ct−i,

with the notation SC,t(0) = 1. Further let

Wt,j = exp(SC,t(j)).

We see that SC,t(1) = Ct and SC,t(2) = Ct+Ct−1. Furter we see thatWt,1 = exp(SC,t(1)) =
exp(Ct) = At and Wt,2 = exp(SC,t(2)) = exp(Ct + Ct−1) = AtAt−1. We are led to the
following relation:

Xt = Bt +Wt,1Bt−1 +Wt,2Bt−2 + · · ·+Wt,k−1Bt−k+1 +Wt,kXt−k, (22)

for any integer k with 0 ≤ k ≤ t. When j > 0 the expectation of SC,t(j) denoted by Ej is
given as follows:

Ej = E(SC,t(j))

= E(Ct + Ct−1 + · · ·+ Ct−j+1)

= jµC .

The variance of SC,t(j) denoted by Vj is for j = 2 given by:

V2 = Var(SC,t(2))

= Var(Ct + Ct−1)

= Var(Ct) + Var(Ct−1) + 2Cov(Ct, Ct−1)

= σ2
C + σ2

C + 2ρC(1)σ2
C

= σ2
C(2 + 2ρC(1)).

This is di�erent from what we get from [Granger and Swanson, 1997, equation (2.6)]. The
equation gives us:

V2 = σ2
C(2 + ρC(1)),

and clearly
σ2
C(2 + ρC(1)) 6= σ2

C(2 + 2ρC(1)).
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By using the identity

Var

(
n∑
i=1

Xi

)
=

n∑
i=1

Var(Xi) + 2
∑
i<j

Cov(Xi, Xj),

we see that the correct expression for Vj for j > 1 is given by:

Vj = Var(SCt(j)) = σ2
C

[
j + 2

j−1∑
r=1

(j − r)ρC(r)

]
. (23)

Note that the constant 2 is not included in front of the summation symbol in [Granger and
Swanson, 1997, equation (2.6)]. However this mistake is not important for the results later
in the article. For j large we have the following approximation:

Vj ≈ jgC(0),

where gC = 2πfC . There is a mistake in [Granger and Swanson, 1997, equation (2.7)],
where it wrongly says that gC = (2π)−1fC .

Remark. gC(0) =
∑
h

γC(h) by the de�nition of the spectral density, see Section 2.7.

If a random variable X is normally distributed with mean µ and variance σ2 we have the
following standard result using the de�nition of the moment-generating function M of the
random variable X:

MX(k)
def
= E(exp(kX)) = exp(kµ+ 2−1k2σ2) = exp(E(kX) + 2−1Var(kX)).

It follows that for k large

E(Wt,k) = E(exp(SC,t(k)))

= exp(E(SC,t(k)) + 2−1Var(SC,t(k)))

= exp(Ek + 2−1Vk)

≈ exp(kµC + 2−1kgC(0))

= exp(k(µC + 2−1gC(0)))

= exp(kθ),

where θ = µC + 2−1gC(0), see [Granger and Swanson, 1997, equations (2.8), (2.9) and
(2.10)].

If we let k = t in (22) we get

Xt = Bt +Wt,1Bt−1 +Wt,2Bt−2 + · · ·+Wt,t−1B1 +Wt,tX0.
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If we assume that X0 is deterministic and if we use that Bt is iid noise with zero mean, we
get

E(Xt) = X0E(Wt,t) = X0exp(tθ). (24)

We also have the approximation

Var(Xt) ≈ σ2
B

t−1∑
k=0

exp(2kφ), (25)

where φ = µC + gC(0), see [Granger and Swanson, 1997, equation (2.11)].

Theorem 5.4. Let Xt be a STUR process. Then

E(Xt) = X0exp(tθ),

Var(Xt) ≈ σ2
B

t−1∑
k=0

exp(2kφ),

where θ = µC + 2−1gC(0) and φ = µC + gC(0). Here gC = 2πfC, where fC is the spectral
density of {Ct}, and µC is the mean of {Ct}, where Ct is given in the STUR model (20).

When φ 6= 0 we get

Var(Xt) ≈ σ2
B

t−1∑
k=0

exp(2kφ) = σ2
B

t−1∑
k=0

exp(2φ)k =
σ2
B

exp(2φ)− 1

(
exp(2φ)t − 1

)
.

When φ = 0 we get

Var(Xt) ≈ σ2
B

t−1∑
k=0

1 = tσ2
B.

Note that the conditional variance of a random walk behaves in exactly the same manner.

Let us calculate the variance of Xt in another way than in Granger and Swanson [1997].
We know that

Xt =

[ t−1∏
j=0

At−j

]
X0 +

t−1∑
k=0

[ k−1∏
j=0

At−j

]
Bt−k.

We have assumed that X0 is independent of {At, Bt, t > 1}, and that {Bt} is independent
of {At}. Since {Bt} is iid noise with zero mean, we therefore have that:
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E(X2
t ) = E

[ t−1∏
j=0

A2
t−j

]
X2

0 + σ2
B

t−1∑
k=0

E

[ k−1∏
j=0

A2
t−j

]

= E

[ t−1∏
j=0

A2
t−j

]
X2

0 + σ2
B

t−1∑
k=0

E

[ t∏
j=t−k+1

A2
j

]

= E

[ t−1∏
j=0

A2
t−j

]
X2

0 + σ2
B

t−1∑
k=0

E

[ k∏
j=1

A2
j

]
.

Now we use that At = exp(Ct), and get

E

[ k∏
j=1

A2
j

]
= E

[ k∏
j=1

exp(2Cj)

]
= E

[
exp

(
k∑
j=1

2Cj

)]
= E

[
exp (2Sk)

]
= MSk

(2),

where Sk
def
=

k∑
t=1

Ct. Since Ct is Gaussian, so is Sk. If we denote the expectation of Sk by

µk and the variance of Sk by σ
2
k, we have

E

[ k∏
j=1

A2
j

]
= exp

(
2µk + 2σ2

k

)
.

Lemma 5.5. Suppose that {Ct} is a stationary Gaussian time series with mean µC and
covariance function γC. Assume that

∑
h

|h||γC(h)| < ∞. Let αk =
∑
|h|<k

γC(h) and βk =

−
∑
|h|<k
|h|γC(h). Then

k∑
t=1

Ct ∼ N (kµC , kαk + βk).

Assuming that X0 = 0, Lemma 5.5 gives

Var(Xt) = σ2
B

t−1∑
k=0

exp
(
2µk + 2σ2

k

)
= σ2

B

t−1∑
k=0

exp (2kµC + 2kαk + 2βk) .

Theorem 5.6. Let Xt be a STUR process. Assuming that X0 = 0 we have that

Var(Xt) = σ2
B

t−1∑
k=0

exp (2k(µC + αk) + 2βk) ,

where αk =
∑
|h|<k

γC(h), βk = −
∑
|h|<k
|h|γC(h), γC is the covariance function of {Ct}, and

µC is the mean of {Ct}, where Ct is given in the STUR model (20).
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Note that from Theorem 5.4 we have that

Var(Xt) ≈ σ2
B

t−1∑
k=0

exp(2kφ) = σ2
B

t−1∑
k=0

exp(2k(µC +
∑
h

γC(h))).

We have that αk →
∑
h

γC(h) and that βk → 0 under the assumption
∑
h

|h||γC(h)| < ∞.

Hence the variance of Xt is determined by the expression µC +
∑
h

γC(h). We have the

following result:

Theorem 5.7. Let {Xt} be a STUR process. We have the following situations:

1. µC +
∑
h

γC(h) > 0. The variance of Xt increases at an exponential rate.

2. µC +
∑
h

γC(h) < 0. The process is weakly stationary.

3. µC +
∑
h

γC(h) = 0. Var(Xt) ≈ tσ2
B.

In Granger and Swanson [1997] two alternative characterizations of the STUR process are
presented. They are called STURA and STURB and have the following properties.

1. STURA: E(At) = E(exp(Ct)) = 1 so that

µC + 2−1σ2
C = 0.

We see that since σ2
C > 0 for the STUR model, it follows that µC < 0. Note that if

we had allowed for σ2
C = 0 in the STUR model, then µC = 0, and hence Ct ≡ 0. In

this case we would have a standard unit-root nonstationary time series.

2. STURB: E(AtAt−1 · · ·At−k+1) = E(Wt,k) = 1 for k large so that

θ = µC + 2−1gC(0) = 0,

see [Granger and Swanson, 1997, equation (2.15) and (2.16)].

We will look closer at some of the properties of STURA later in this chapter, but �rst we
give a remark considering STURB. Calculating gives:

E

[ k∏
j=1

Aj

]
= E

[
exp

(
k∑
j=1

Cj

)]
= MSk

(1) = exp(µk + 2−1σ2
k).

Thus we have

E

[ k∏
j=1

Aj

]
= exp

(
kµC + 2−1kαk + 2−1βk

)
,
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where αk and βk are given in Lemma 5.5.

Let us apply some of the results in this section to STURA. In the case of STURA, we
have seen that since σ2

C > 0, then µC < 0. It follows that

E(log|At|) = E(log|exp(Ct)|) = E(Ct) = µC < 0,

and the �rst requirement in Theorem 5.1 is satis�ed. This result can also be veri�ed by
Jensen`s inequality which in our case says that for any strictly concave function E(f(X)) <
f(E(X)). Since the logarithm is a strictly concave function it follows that

E(log|At|) = E(log(At)) < log(E(At)) = log(1) = 0.

The second requirement in Theorem 5.1 is assumed to hold and we get the following
important result.

Theorem 5.8. STURA is stationary.

We now consider the tail behaviour of STURA. With the conditions in Theorem 5.3 we
have that

P(|X| > s) ≈ cs−κ,

where c > 0 is a constant. However for STURA we have the restrictions that

E|At|1 = E(At) = 1,

E(|At|1log+|At|) <∞,

0 < E|Bt|1 <∞,

and further that Bt is not proportional to 1−At. We conclude therefore that the tail of a
solution X in this case obeys

P(|X| > s) ≈ ds−1

where d > 0 is a constant, see [Yoon, 2006, page 256].

STURA processes have very heavy tails and therefore extreme values are very likely to
happen. It can further be shown that the sample autocorrelation functions of STURA
will have in general, random limiting distibutions, see Davis and Mikosch [1998].
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5.3 An augmented Dickey-Fuller test with a STUR alternativ

In this section we look closer at part 3 in [Granger and Swanson, 1997, page 41-43]. Here
we discuss whether the augmented Dickey-Fuller (ADF) test has power against STUR
alternatives. The ADF test is described in Section 4.4. It has as the null hypothesis that
the series in question is distributed as I(1). From [Granger and Swanson, 1997, page 41]
we read that with the amount of data available in macroeconomics the ADF test is unlikely
to has much power against a variety of processes which are, in some sense, near I(1). In
general, processes against which unit-root tests have little power are called �generic unit-
root� processes. In [Granger and Swanson, 1997, page 42] two experiments were performed
in order to study the power properties of the ADF test in the presence of STUR. In the
experiments two di�erent STUR processes are generated. In the �rst experiment Zt in
(21) is iid normally distributed with zero mean and variance 0.0001, φ0 = −0.00003125
and φ1 = 0.60. This implies that

µC =
φ0

1− φ1

=
−0.00003125

1− 0.60
= −0.000078125,

and

σ2
C =

σ2
Z

1− φ2
1

=
0.0001

1− 0.602
= 0.00015625.

Hence

E(At) = E(exp(Ct))

= exp(µC +
1

2
σ2
C)

= exp(−0.000078125 +
1

2
0.00015625)

= exp(0)

= 1.

Thus the �rst experiment is a STURA process. In the second experiment Zt in (21) is
iid normally distributed with zero mean and variance 0.000001, φ0 = −0.0000003125 and
φ1 = 0.60. This also implies that E(At) = 1 and thus both experiments are STURA
processes.

In Granger and Swanson [1997] di�erent ADF tests were run, see [Granger and Swanson,
1997, equation (3.1)]. The test in the form of the one in Section 4.4 without trend and
intercept where among those who were run:

∆Xt = βXt−1 +

p−1∑
j=1

φ∗j∆Xt−j + Yt,
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where Yt is a white noise series.

The relevant test statistic is the standard t-value for β, the coe�cient of Xt−1, see [Granger
and Swanson, 1997, page 41]. Monte Carlo results with 10 000 simulations in each case
were performed, see Table 1 in [Granger and Swanson, 1997, page 42] for the results. The
table lists the percentage of estimated t-values that lie above the theoretical 95% and 5%
values in the di�erent cases. In the table results for σ2

Z = 0.0001 and σ2
Z = 0.000001 are

reported. From the table with σ2
Z = 0.0001 we read that using the 95% critical value

of -1.95, the null of a pure unit root fails to reject 96.8% of the time. Similarily with
σ2
Z = 0.000001 we read that again using the 95% critical value of -1.95, the null of a pure

unit root fails to reject 96.4% of the time. From both experiments it is clear that the ADF
test in these cases cannot distinguish between the given STUR model and a standard
unit-root process. This is also the situation for the other ADF tests without constraints
and without trend, see [Granger and Swanson, 1997, page 43]). These results support the
proposition that STUR processes are generic unit root processes. It would be ideal if we
could construct a test which has STUR as the null hypothesis, but this is rather di�cult
and is therefore not done in Granger and Swanson [1997].

5.4 Forecasting

From the Abstract in Granger and Swanson [1997] we read: �...a forecast comparison of
linear random walk and AR(p) models, time-varying parameter models, and STUR models
suggests that this new class of processes is potentially useful, particularly when the objective
is multi-step ahead forecasting.�, see [Granger and Swanson, 1997, page 35]. In [Granger
and Swanson, 1997, page 51-57] one judge the relevance of the STUR model by comparing
it to other models when analyzing actual data. The relative forecasting performance of a
simple STUR model is compared to

1. Standard random walk with drift models.

2. AR(p) models.

3. A time-varying parameter model, Xt = AtXt−1 + Zt, where At is assumed to evolve
according to an AR(1) process.

Overall, the results are rather mixed, but the STUR model performs very well outside
the 1-Step-Ahead case. These results are encouraging according to Granger and Swanson
[1997], but more light should be shed on the issue of why STUR perform so poorly
for 1-Step-Ahead case. Further experiments might compare STUR forecasts with more
complicated alternative forecasts.
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6 Cointegration

In this chapter we look closer at cointegration. But �rst we introduce bivariate time series.

6.1 Bivariate time series

We will now introduce bivariate time series and we get our information from Chapter 7 in
Brockwell and Davis [2002] and Chapter 8 in Tsay [2010]. A bivariate time series is a series
of two-dimensional vectors (X1t, X2t)

′ observed at times t. The two component series could
be studied independently as univariate time series, but such an approach fails to take into
account possible dependence between the two component series, see [Brockwell and Davis,
2002, page 224]).

We write X t = (X1t, X2t)
′ and we further assume that E(X2

1t) < ∞ and E(X2
2t) < ∞ for

all t. If all the �nite-dimensional distributions of {X1t} and {X2t} are multivariate normal,
then the distributional properties of {X1t} and {X2t} will be completely determined by
the means

µit
def
= E(Xit), i = 1, 2,

and the covariances

γij(t+ h, t)
def
= Cov(Xi,t+h, Xjt), i, j = 1, 2.

We de�ne the mean vector

µt
def
= E(X t) =

[
µ1t

µ2t

]
and covariance matrices

Γ(t+ h, t)
def
= Cov(X t+h,X t) =

[
γ11(t+ h, t) γ12(t+ h, t)
γ21(t+ h, t) γ22(t+ h, t)

]
.

The bivariate series {X t} is weakly stationary if µt and Γ(t+h, t) are both independent
of t. In this case we use the notation

µ
def
= E(X t) =

[
µ1

µ2

]
and

Γ(h)
def
= Cov(X t+h,X t) =

[
γ11(h) γ12(h)
γ21(h) γ22(h)

]
.

We see immediately that γ12(h) = γ21(−h) and it follows that Γ(h) = Γ′(−h). Moreover
we have that γ11 and γ22 are autocovariance functions for {X1t} and {X2t} respectively.
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The function γij(·), i 6= j, is called the cross-covariance function of the two series {Xit}
and {Xjt}. In general γij(·) is not the same as γji(·).

We now de�ne bivariate iid noise and bivariate white noise as in [Brockwell and Davis,
2002, page 232]:

De�nition 6.1. The bivariate series {Zt}, where Zt = (Z1t, Z2t)
′, is called iid noise

with mean 0 and covariance matrix A, written

{Zt} ∼ iid(0,A),

if the random vectors {Zt} are independent and identically distributed with mean 0 and
covariance matrix A.

De�nition 6.2. The bivariate series {Zt}, where Zt = (Z1t, Z2t)
′, is called white noise

with mean 0 and covariance matrix A, written

{Zt} ∼WN(0,A),

if {Zt} is weakly stationary with mean vector 0 and covariance matrix function Γ(h) where
Γ(0) = A and Γ(h) = 0 if h 6= 0.

Let us generate the linear processes as in [Brockwell and Davis, 2002, page 232]:

De�nition 6.3. The bivariate series {Zt}, where Zt = (Z1t, Z2t)
′, is a linear process,

if it has the representation

Zt =
∞∑

j=−∞

CjZt−j, {Zt} ∼WN(0,A),

where {Cj} is a sequence of 2× 2 matrices whose components are absolutely summable.

A causal MA(∞) process is a linear process with Cj = 0 for j < 0 in the above de�nition,
see [Brockwell and Davis, 2002, page 233].

We will now introduce bivariate ARMA processes. The following de�nition is found in
[Brockwell and Davis, 2002, page 241]:

40



De�nition 6.4. The bivariate series {X t}, where X t = (X1t, X2t)
′, is an ARMA(p,q)

process if {X t} is weakly stationary and if for every t,

X t − Φ1X t−1 − · · · − ΦpX t−p = Zt + Θ1Zt−1 + · · ·+ ΘqZt−q, (26)

where Φj (j = 1, 2, . . . , p) and Θk (k = 1, 2, . . . , q) are 2 × 2 matrices, and {Zt} ∼
WN(0,A).

Equations (26) can be written in the more compact form

Φ(B)X t = Θ(B)Zt, {Zt} ∼WN(0,A), (27)

where Φ(z)
def
= I − Φ1z − · · · − Φpz

p and Θ(z)
def
= I + Θ1z + · · · + Θqz

q are matrix-valued
polynomials, I is the 2 × 2 identity matrix, and B denotes the backward shift operator.
We assume that the two matrix polynomials have no left common factors; otherwise the
model can be simpli�ed, see [Tsay, 2010, page 424]. Setting q = 0 in (26) we obtain the
bivariate AR(p) process and similarly setting p = 0 in (26) we obtain the bivariate MA(q)
process. We will now look closer at the bivariate AR(1) process, see [Brockwell and Davis,
2002, page 241-242].

Example 6.5. Setting p = 1 and q = 0 in (26) gives the de�ning equations

X t = ΦX t−1 +Zt, {Zt} ∼WN(0,A), (28)

for the bivariate AR(1) series {X t}. From (28) it follows directly that

X t =
∞∑
j=0

ΦjZt−j, (29)

provided that the eigenvalues of Φ are less than 1 in modulus. The reason for this re-
quirement is that Φj must converge to zero as j → ∞ for the dependence in (29) to be
meaningful; otherwise, if not the eigenvalues of Φ are less than 1 in modulus, then Φj will
either explode or converge to a nonzero matrix as j →∞, see [Tsay, 2010, page 402]. The
condition that the eigenvalues of Φ should be less than 1 in modulus is just the bivariate
analogue of the condition |φ1| < 1 in Theorem 2.14.

6.2 Cointegration

We will now introduce cointegration. In the second part of the article by Engle and Granger,
cointegration is well explained, see [Engle and Granger, 1987, page 252-255]. Often time
series must be di�erenced before they get stationary. We have discussed di�erencing in
Section 4.5 and will now generalize this concept with the following de�nition found in
[Engle and Granger, 1987, page 252]:
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De�nition 6.6. A time series {Xt} which has a stationary ARMA representation after
di�erencing d times, is said to be integrated of order d, denoted Xt ∼ I(d).

We have already seen in Section 4.5 that a random walk is integrated of order 1 and we are
mostly interested in the cases where d = 0 or d = 1. For d = 0, {Xt} will be stationary,
while for d = 1, its change series is stationary. From Section 4.2 we know that there are
substantial di�erences between a time series that is I(0) and one that is I(1). An I(1)
series is rather smooth, having dominant long swings, compared to an I(0) series. It is
always true that the sum of an I(0) series and an I(1) series will be an I(1) series. If a
and b are constants with b 6= 0, and if Xt ∼ I(d), then a+ bXt is also I(d). If X1t and X2t

are both I(d), then it is generally true that the linear combination

Zt = X1t − aX2t

will also be I(d). However, it is possible that Zt ∼ I(d−b), where b > 0. When this occurs,
a very special constraint operates on the long-run components of the series. For the case
d = b = 1, the constant a is such that the bulk of the long run components of X1t and X2t

cancel out. For a = 1 in this case, the di�erence of X1t and X2t will be I(0). The vague
idea is that X1t and X2t cannot drift too far apart. We will now formalize these ideas as
in [Engle and Granger, 1987, page 253]:

De�nition 6.7. The components of the vectorX t = (X1t, X2t)
′ are said to be cointegrated

of order (d, b), denoted X t ∼ CI(d, b), if (i) both components of X t are I(d) and (ii)
there exists a vector β = (β1, β2)

′ 6= 0 such that β′X t = β1X1t + β2X2t ∼ I(d − b), b > 0.
The vector β is called the cointegration vector.

We will now give a simple example of cointegration found in [Brockwell and Davis, 2002,
page 255]:

Example 6.8. Let X t = (X1t, X2t)
′, where X1t is the random walk

X1t =
t∑

j=1

Zj, t = 1, 2, . . . , {Zt} ∼ IID(0, σ2),

and X2t consists of noisy observations of the same random walk,

X2t = X1t +Wt, t = 1, 2, . . . , {Wt} ∼ IID(0, τ 2),

where {Wt} is independent of {Zt}. Then clearly X t ∼ CI(1, 1) with cointegration vector
β = (1,−1)′.
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If the components of the vector X t = (X1t, X2t)
′ are I(1), they are cointegrated if there

is a linear combination β1X1t + β2X2t that is stationary. This linear combination is often
motivated by economic theory and referred to as long-run equilibrium relationship.
The intuition is that two I(1) time series with a long-run equilibrium relationship cannot
drift too far apart from the equilibrium because economic forces will act to restore the
equilibrium relationship, see [Zivot and Wang, 2006, page 435]. The cointegration vector
β in De�nition 6.7 is not unique. For any constant c, the linear combination cβ′X t ∼ I(0).
In order to identify β uniquely some normalization assumption is required. We use the
normalization

β = (1,−β2)′.

Hence the cointegration relationship can be expressed as

β′X t = X1t − β2X2t ∼ I(0)

or

X1t = β2X2t + Zt,

where Zt ∼ I(0). The error term Zt is often referred to as the disequilibrium error or
the cointegrationg residual.

6.3 Cointegration and Error Correction Models

Let X t = (X1t, X2t)
′ and assume that X t is cointegrated with cointegrating vector β =

(1,−β2)′ so that β′X t = X1t − β2X2t is I(0). We have that cointegration implies the
existence of an error correction model (ECM) of the form

∆X1t = c1 + α1(X1,t−1 − β2X2,t−1) +
∑
j

ψj11∆X1,t−j +
∑
j

ψj12∆X2,t−j + Z1t (30)

∆X2t = c2 + α2(X1,t−1 − β2X2,t−1) +
∑
j

ψj21∆X1,t−j +
∑
j

ψj22∆X2,t−j + Z2t (31)

that describes the dynamic behavior of X1t and X2t. Here {Z1t} and {Z2t} are iid noise
series. The ECM links the long-run equilibrium relationship with the short-run dynamic
adjustment mechanism, see [Zivot and Wang, 2006, page 441]. The idea is that a proportion
of the disequilibrium from one period is corrected in the next period. The coe�cients α1

and α2 are adjustment coe�cients and their magnitudes determine the speed of adjustment
toward equilibrium. We will now give an simple example of an ECM found in [Zivot and
Wang, 2006, page 442-443] to illustrate the concept:
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Example 6.9. LetX t = (X1t, X2t)
′ and assume thatX t is cointegrated with cointegrating

vector β = (1,−1)′. We suppose that the ECM has the form

∆X1t = c1 + α1(X2,t−1 −X1,t−1) + Z1t

∆X2t = c2 + α2(X2,t−1 −X1,t−1) + Z2t

where c1 > 0 and c2 > 0. Further we consider the special case where α1 = 0.5 and α2 = 0.
The ECM equations then become

∆X1t = c1 + 0.5(X2,t−1 −X1,t−1) + Z1t

∆X2t = c2 + Z2t,

so that only {X1t} responds to the lagged disequilibrium error. We have that

E[∆X1t|X t−1] = c1 + 0.5(X2,t−1 −X1,t−1)

and
E[∆X2t|X t−1] = c2.

We now consider three situations:

1. X2,t−1−X1,t−1 = 0. In this case E[∆X1t|X t−1] = c1 and there is no expected adjust-
ment since the model was in long-run equilibrium in the previous period.

2. X2,t−1−X1,t−1 > 0. In this case E[∆X1t|X t−1] = c1 + 0.5(X2,t−1−X1,t−1) > c1. The
model was above long-run equilibrium in the last period so the expected adjustment
is downward toward equilibrium.

3. X2,t−1−X1,t−1 < 0. In this case E[∆X1t|X t−1] = c1 + 0.5(X2,t−1−X1,t−1) < c1. The
model was below long-run equilibrium in the last period so the expected adjustment
is upward to equilibrium.

The discussion above illustrates why the model is called an error correcting model.

6.4 Testing for Cointegration

In this short section we suppose that the components of the vector X t = (X1t, X2t)
′ are

I(1) and formulate a two-step procedure for determining if the vector β = (β1, β2)
′ is

a cointegrating vector for X t. This procedure was originally considered by Engle and
Granger in Engle and Granger [1987]. We get our information from [Zivot and Wang,
2006, page 444]. The procedure is as follows:
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1. Form the cointegrating residual β′X t = Zt

2. Perform a unit root test on Zt to determine if it is I(0).

There are two cases to consider. In the �rst case the proposed cointegrating vector is
pre-speci�ed while in the second case the cointegrating vector is estimated from the data
available. In the second case an estimate of the cointegrating residual is formed. Tests for
cointegration using a pre-speci�ed cointegrating vector are generally much more powerful
than tests employing an estimated vector, see [Zivot and Wang, 2006, page 444].

6.5 The bivariate AR(p) process and the VECM

In this section we look closer at the bivariate AR(p) process which is an important model
for the analysis of bivariate time series and for cointegration analysis. We begin by the
following de�nition.

De�nition 6.10. The bivariate series {X t}, where X t = (X1t, X2t)
′, is an AR(p) pro-

cess if {X t} is weakly stationary and if for every t,

X t = Φ1X t−1 + · · ·+ ΦpX t−p +Zt (32)

where Φj (j = 1, 2, . . . , p) are 2× 2 matrices, and {Zt} ∼WN(0,A).

Equations (32) can be written in the more compact form.

Φ(B)X t = Zt, {Zt} ∼WN(0,A), (33)

where Φ(z)
def
= I− Φ1z − · · · − Φpz

p is a matrix-valued polynomial, I is the 2× 2 identity
matrix and B denotes the backward shift operator. If the solutions of det(Φ(z)) = 0 are
greater than 1 in modulus, then the series {Xt} is stationary, see [Zivot and Wang, 2006,
page 456]. If det(Φ(z)) = 0 has a root on the unit circle, then one or both of {X1t} and
{X2t} are I(1). We now suppose that the components of X t are possibly cointegrated
(we also say that X t is cointegrated, when we mean that the components of X t are
cointegrated). The cointegrating relation become apparent if we transform (32) to the
vector error correction model (VECM)

∆X t = ΓX t−1 + Γ1∆X t−1 + · · ·+ Γp−1∆X t−p+1 +Zt, (34)

where Γ = Φ1 + · · · + Φp − I and Γk = −
p∑

j=k+1

Φj, k = 1, . . . , p − 1. The matrix Γ is

called the long-run impact matrix and Γk are the short-run impact matrices. In the
VECM (34), ∆X t and its lags are I(0). The term ΓX t−1 is the only one which includes
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potential I(1) variables. But for ∆X t to be I(0) it must be the case that ΓX t−1 is also
I(0). Therefore, ΓX t−1 must contain the cointegration relation if it exists, see [Zivot and
Wang, 2006, page 456-457] for this and the following discussion. If the bivariate AR(p)
process has unit roots, then, using the relation det(Φ(z)) = 0 and the de�nition of Γ, it is
clear that Γ is a singular matrix. It follows that the rank of Γ equals 0 or 1. If the rank of
Γ equals 0, then Γ = 0, and X t is I(1) and not cointegrated. The VECM (34) reduces to
a bivariate AR(p− 1) in �rst di�erences

∆X t = Γ1∆X t−1 + · · ·+ Γp−1∆X t−p+1 +Zt.

If the rank of Γ equals 1, X t is I(1) with one cointegrating vector. Since Γ has rank 1 it
can be written as the product

Γ = αβ′

where α and β are 2× 1 vectors. Further we have that β is a cointegration vector for X t

and the elements in the vector α are interpreted as speed of adjustment coe�cients. The
VECM (34) now becomes

∆X t = αβ′X t−1 + Γ1∆X t−1 + · · ·+ Γp−1∆X t−p+1 +Zt. (35)

We end this section by considering the case of a bivariate AR(1) model with one cointe-
gration vector, see [Zivot and Wang, 2006, page 457-458] and [Tsay, 2010, page 434].

Example 6.11. Consider the bivariate AR(1) model. From De�nition 6.10 we have

X t = ΦX t−1 +Zt (36)

where Φ is a 2× 2 matrix and {Zt} ∼WN(0,A).

The VECM is

∆X t = ΓX t−1 +Zt,

where Γ = Φ− I.

Assuming X t is cointegrated, there exists a 2 × 1 vector β = (β1, β2)
′ such that β′X t =

β1X1t+β2X2t is I(0). We use the normalization β1 = 1 and β2 = −β, and the cointegration
relation becomes β′X t = X1t − βX2t. Since X t is cointegrated with one cointegration
vector, the rank of Γ is 1 and Γ can be decomposed as

Γ = αβ′ =

[
α1

α2

] [
1 −β

]
=

[
α1 −α1β
α2 −α2β

]
.
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The VECM now may be written

∆X t = αβ′X t−1 +Zt. (37)

We can also write the VECM equation by equation:

∆X1t = α1(X1,t−1 − βX2,t−1) + Z1t,

∆X2t = α2(X1,t−1 − βX2,t−1) + Z2t.

Premultiplying (37) by β′ and moving β′X t−1 to the right-hand side of the equation gives

β′X t = (1 + β′α)β′X t−1 + β′Zt

or
Ut = φUt−1 + Vt,

where Ut = β′X t, φ = 1 + β′α = 1 + α1 − βα2 and Vt = β′Zt. This is an AR(1) model
for Ut and as we know it is weakly stationary if |φ| < 1 or if |1 + α1 − βα2| < 1.

6.6 The Johansen test

The prior discussion shows that the rank of Γ in (34) determines if there is a cointegration
vector. In Section 6.4 we looked at a two-step procedure test for cointegration originally
considered by Engle and Granger in Engle and Granger [1987]. We now consider another
procedure outlined by Johansen in Johansen [1988]. Using the information in the previous
section, the two basic steps in Johansen's methodology in the bivariate case are:

1. Specify and estimate a bivariate AR(p) model for X t.

2. Construct likelihood ratio tests for the rank of Γ to determine if there is a cointegra-
tion vector.

6.7 Heteroskedastic cointegration

According to Hansen [1992] it is not clear that the model of cointegration formulated
in Engle and Granger [1987] (which we from now on will refer to as the CI model) is
su�ciently general to cover all nonstationary economic models of interest (see [Hansen,
1992, page 139]). From [Hansen, 1992, Introduction] we read: �The CI regression errors
di�er stochastically from the regressors in that they have a �xed mean and a bounded
variance. The asymmetry in variance orders is intuitively unsatisfying in some cases. One
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might expect that as the regressors increase in magnitude, the residual variance would also
increase. One might also expect that the variance of the error process might change over
time, due to other factors. Essentially, we may wish to allow the variance of the error
to be nonstationary.� The empirical relevance of this idea is illustrated in [Hansen, 1992,
page 140-141]. In [Hansen, 1992, page 141] one consider the process {Wt} generated by
Wt = AtBt, where At ∼ I(1) and Bt ∼ I(0) and call this process a bi-integrated (BI)
process. We think of {Bt} as the stationary part of {Wt} and {A2

t} as the variance part
of {Wt}. If {Yt} is generated by Yt = βXt + Wt, where Xt ∼ I(1) and Wt ∼ BI, then we
say that (Yt, Xt) are heteroskedastically cointegrated. We note that

Var(Xt) ≈ C1t, 0 < C1 <∞,

Var(Wt) ≈ C2t, 0 < C2 <∞,

and are thus of the same stochastic order. This is a substantial di�erence from the CI
model, where the variance of the regression errors is constant, see [Hansen, 1992, page
143].

6.8 Stochastic unit-root and cointegration

In the last section in [Granger and Swanson, 1997, page 58-59] stochastic unit-root and
cointegration is discussed. Granger and Swanson [1997] are somewhat unclear concerning
this matter. Stochastic unit-root and cointegration is an open �eld and few papers have
been written in this area. A stochastic unit-root in the model de�ning the cointegration
variables introduce nonlinearity in the model. It is not obvious how a possible version of
the ECM generalize for such a nonlinear cointegration model. Another possibility is to use
STUR as a substitute for the underlying I(1) process in the cointegration model. This is
done in [Granger and Swanson, 1997, page 58], but Granger and Swanson [1997] �nd this
situation not very interesting.
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