
DEPARTMENT OF INFORMATICS

Master Thesis

MultiPath TCP-communication
(in NorNet Core)

By: Kristian B. Ingebretsen and Daniel Selvik

Supervisor: Øyvind Ytrehus

June 1, 2016

Preface

This thesis has been written in co-operation between Kristian B. Ingebretsen and Daniel
Selvik, and is a result of our work and research in the period of time between August
2015 and June 2016. The work carried out is the final step for obtaining the Master of
Science (MSc) degree in Informatics from The University of Bergen. All textual content is
co-produced using ShareLaTeX, an online LATEX editor, which have allowed for real-time
collaboration. This has made it easier for both to contribute, make suggestions and dis-
cuss matters during the writing process.

The research question in this thesis was formulated together with our supervi-
sor, prof. Øyvind Ytrehus, to whom we would like to express our deepest gratitude. He
introduced us to the topic and gave us the opportunity to conduct our master thesis at
the Department of Informatics. We are also grateful for his invaluable guidance and en-
gagement throughout the year.

Furthermore, we would like to thank Simula Research Laboratory for providing us
with access to the NORNET testbed. A special thanks to Ahmed Elmokashfi and Thomas
Dreibholz, for answering our inquiries and for dedicating their time to help us.

Bergen, 1st of June 2016

Kristian B. Ingebretsen
Daniel Selvik

Abstract

Technology is constantly evolving, and we are currently witnessing a digital revolution
with a tremendous growth of interconnected devices. The scale of the Internet and the
amount of transported data is constantly increasing. The need for reliability is also in-
creasing, as users are constantly on the move, and are more dependent on cloud services.
Utilizing the connectivity redundancy of devices is an interesting approach to deal with
this increasing resource demand. In addition to ISPs and data centers implementing re-
dundancy, lately we have also seen that end-user devices also do the same. The term
multihoming describes the practice of being connected to multiple networks simultane-
ously. However, the most used transport protocols today, TCP and UDP, are not able to
effectively take advantage of multihoming, as they are single-path transport protocols.

In this thesis we will explore the newly proposed MultiPath TCP protocol, an
extension of TCP, which enables the concurrent use of multiple network interfaces. This
makes it possible for one data stream to be transferred over multiple paths on the Internet.
In order to evaluate the performance of this protocol, we will test it according to its design
goals set by the Internet Engineering Task Force, in the NORNET CORE testbed.

Contents

Preface . i
Abstract . i
List of Figures . viii
List of Tables . x
Listings . xii
Acronyms . xiv

1 Introduction 1
1.1 Initial Motivation . 2
1.2 Objective . 3
1.3 Thesis Outline . 4

2 Background 5
2.1 The TCP/IP Protocol Suite . 5

2.1.1 Architecture . 6
2.1.1.1 Application Layer . 8
2.1.1.2 Transport Layer . 9
2.1.1.3 Network Layer . 10

2.1.2 Encapsulation . 11
2.2 Transmission Control Protocol (TCP) . 13

2.2.1 Important Concepts . 14
2.2.2 The TCP Window Principle . 15
2.2.3 TCP Segment Format . 17
2.2.4 TCP Congestion Control Algorithms 18

2.2.4.1 Slow Start . 19
2.2.4.2 Congestion Avoidance . 20
2.2.4.3 Fast Retransmit . 21

ii

2.2.4.4 Fast Recovery . 22

3 Multihoming: State of the Art 24
3.1 Resource Pooling Principle . 25
3.2 Application Layer . 26
3.3 Link Layer . 27
3.4 Network Layer . 28

3.4.1 Mobile IP (MIP) . 28
3.4.2 Site Multihoming by IPv6 Intervention (Shim6) 30
3.4.3 Host Identity Protocol (HIP) . 31

3.5 Transport Layer . 33
3.5.1 Stream Control Transmission Protocol (SCTP) 34

3.5.1.1 Basic SCTP Features . 34
3.5.1.2 SCTP Multistreaming Feature 35
3.5.1.3 SCTP Multihoming Feature 36

4 MultiPath TCP 37
4.1 Design Goals . 38

4.1.1 Functional Goals . 38
4.1.2 Compatibility Goals . 39

4.1.2.1 Application Compatibility 39
4.1.2.2 Network Compatibility . 40
4.1.2.3 Compatibility With Other Network Users 41
4.1.2.4 Security Goals . 42
4.1.2.5 Congestion Control Algorithm Goals 42

4.2 Terminology . 43
4.3 Protocol Operation . 44

4.3.1 MPTCP Options . 44
4.3.2 Connection Establishment . 45
4.3.3 Starting a New Subflow . 47
4.3.4 Exchange of Data . 48
4.3.5 Prioritizing of Subflows . 49
4.3.6 Closing a Connection . 51
4.3.7 Coupled Congestion Control Algorithm 52

4.4 Failure Handling . 55

iii

4.4.1 Middleboxes . 55

5 NORNET CORE: A Multihomed Research Testbed 57
5.1 The Design . 57
5.2 The Implementation . 61

5.2.1 Testbed Management . 61
5.2.2 The Sites . 61
5.2.3 Tunneling Setup . 62
5.2.4 Addresses in NORNET CORE . 63
5.2.5 Accessing the Testbed Slivers . 63
5.2.6 Virtualization . 66

5.3 The NORNET MPTCP Implementation . 66
5.3.1 Installation . 67
5.3.2 Configuration . 67

5.3.2.1 Congestion Control . 68
5.3.2.2 Path Manager . 69
5.3.2.3 Scheduler . 70

6 Methodology and Results 72
6.1 Expectations . 72
6.2 Evaluation Tools . 73

6.2.1 Gathering Experimental Data . 75
6.3 Analysis of Packet Capture . 79
6.4 Experiments and Results . 84

6.4.1 MPTCP Subflow Analysis . 85
6.4.1.1 Subflow Routing . 87

6.4.2 Throughput . 88
6.4.2.1 MPTCP vs. TCP Throughput, Independent Flows 88

6.4.3 Fairness . 93
6.4.3.1 MPTCP vs. TCP, Two Concurrent Flows 93
6.4.3.2 MPTCP vs. TCP, Four Concurrent Flows 96

6.4.4 Latency . 99
6.4.5 Connection Handover . 107
6.4.6 Congestion Control Algorithms . 108
6.4.7 Schedulers . 110

iv

6.5 Summary and Evaluation . 111

7 Conclusion and Future Work 114
7.1 Conclusion . 114
7.2 Future Work . 115

Bibliography 117

Appendix A NetPerfMeter Vector Parser 123

v

List of Figures

2.1 TCP/IP Architecture and Encapsulation . 11
2.2 Overview of a TCP Connection . 14
2.3 The TCP Window Principle . 16
2.4 The TCP Segment Format . 17
2.5 The TCP Options Format . 18
2.6 TCP Fast Retransmit . 22

3.1 Resource Pooling Principle . 25
3.2 Mobile Host Sending and Receiving Data . 29
3.3 Architectural Comparison of IP and HIP . 32

4.1 Comparison of TCP and MPTCP Protocol Stack 38
4.2 The Traditional Internet Architecture . 41
4.3 The Real Internet Architecture . 41
4.4 MPTCP Connection and Subflow Establishment 46
4.5 MPTCP Subflow Priority System . 50
4.6 MPTCP Shared Bottleneck Problem . 52

5.1 NORNET CORE Architecture . 59
5.2 NORNET Tunneling . 60
5.3 NORNET CORE Site Schematic View . 62
5.4 NORNET Gatekeeper . 64
5.5 NORNET Sliver . 65

6.1 NetPerfMeter Passive Side . 75
6.2 NetPerfMeter Active Side . 77
6.3 Tcptrack During an MPTCP Transfer . 79

vii

6.4 Wireshark screenshot - MP_CAPABLE signal 80
6.5 Wireshark screenshot - ADD_ADDR signal 81
6.6 Wireshark screenshot - MP_JOIN signal . 82
6.7 Wireshark screenshot - DSS signal . 83
6.8 Wireshark screenshot - The Closure of a Connection 84
6.9 Subflow throughput analysis: floeibanen to bymarka 86
6.10 Independent throughput: lungegaardsvannet to nordlys 89
6.11 Independent throughput: rennesoey to floeibanen 90
6.12 Independent throughput: nordlys to kettwig 92
6.13 Fairness, two concurrent flows: rennesoey to lungegaardsvannet 94
6.14 Fairness, two concurrent flows: nordberg to kettwig 95
6.15 Fairness, four concurrent flows: rennesoey to lungegaardsvannet 97
6.16 Fairness, four concurrent flows: lungegaardsvannet to kettwig 98
6.17 Latency: ekeberg to bymarka (TCP: Uninett→Uninett) 100
6.18 Latency: ekeberg to bymarka (MPTCP: Uninett→Uninett subflow) 101
6.19 Latency: ekeberg to bymarka (MPTCP: All subflows) 102
6.20 Latency: nordlys to lungegaardsvannet (TCP: Uninett→Uninett) 103
6.21 Latency: nordlys to lungegaardsvannet (MPTCP: All subflows) 104
6.22 Latency: rennesoey to bymarka . 105
6.23 Latency: rennesoey to lungegaardsvannet (MPTCP: All subflows) 106
6.24 Connection Handover: One Backup Link . 108
6.25 MPTCP Congestion Controls Performance 109
6.26 Scheduler: LowRTT vs. roundrobin . 111

viii

List of Tables

4.1 MPTCP Option Subtypes . 45

5.1 NORNET CORE Deployment Status, April 2016 58

6.1 Subflow throughput analysis: floeibanen to bymarka 86
6.2 Independent throughput: lungegaardsvannet to nordlys 89
6.3 Independent throughput: rennesoey to floeibanen 91
6.4 Indepedent throughput: nordlys to kettwig 92
6.5 Fairness, two concurrent flows: rennesoey to lungegaardsvannet 94
6.6 Fairness, three concurrent flows: rennesoey to lungegaardsvannet 94

x

Listings

6.1 Example of traceroute from rennesoey to nordberg 88

xii

List of Acronyms

3G Third Generation

4G Fourth Generation

ACK Acknowledgement

ADSL Asymmetric Digital Subscriber Line

API Application Programming Interface

ARP Address Resolution Protocol

Balia Balanced Linked Adaption Congestion Control Algorithm

CMT Concurrent Multipath Transfer

CRC Cyclic Redundancy Check

DCCP Datagram Congestion Control Protocol

DNS Domain Name System

DSN Data Sequence Number

DSS Data Sequence Signal

FTP File Transfer Protocol

GRE Generic Routing Encapsulation

HIP Host Identity Protocol

HMAC Hash Message Authentication Code

HTTP Hypertext Transfer Protocol

IANA Internet Assigned Numbers Authority

ICMP Internet Control Message Protocol

IEEE Institute of Electrical and Electronics Engineers

xiv

IETF Internet Engineering Task Force

IMS IP Multimedia Subsystem

IP Internet Protocol

IPv4 Internet Protocol version 4

IPv6 Internet Protocol version 6

IRTF Internet Research Task Force

ISP Internet Service Provider

LACP Link Aggregation Control Protocol

LAN Local Area Network

LIA Linked Increase Algorithm

LTE Long-Term Evolution

LXC Linux Containers

MIP Mobile IP

MIPv6 Mobile IP version 6

MPRTP MultiPath Real-time Transmission Protocol

MPTCP MultiPath Transmission Control Protocol

MSS Maximum Segment Size

MTU Maximum Transmission Unit

NAT Network Address Translation

NIC Network Interface Controller

OLIA Opportunistic Linked Increase Algorithm

OSI Open Systems Interconnection

P2P Peer To Peer

xv

PLC PlanetLab Central

REAP Reachability Protocol

RFC Request For Comments

RTA Real-Time Application

RTP Real-time Transmission Protocol

RTT Round-Trip-Time

SCP Secure Copy

SCTP Stream Control Transmission Protocol

SDP Session Description Protocol

SHA Secure Hash Algorithm

Shim6 Site Multihoming by IPv6 Intermediation

SIP Session Initiation Protocol

SMTP Simple Mail Transfer Protocol

SSH Secure Shell

TCP Transmission Control Protocol

TLD Top-level Domain

UCL Université catholique de Louvain

UDP User Datagram Protocol

ULID Upper Layer Identifier

VoIP Voice over IP

VPN Virtual Private Network

WAN Wide Area Network

Wi-Fi Equivalent to WLAN (Wireless Local Area Network)

xvi

wVegas Weighted Vegas (Delay-based Congestion Control for MPTCP)

WWW World Wide Web

xvii

Chapter 1

Introduction

During the last decade we have witnessed a digital revolution, with an enormous increase
of interconnecting devices that communicate over the Internet. We rely on our devices
every day - our smartphones, tablets and personal computers. Our devices again rely
on server parks and huge content delivery networks, which are satisfying our need for
information and entertainment. Our desire to stay connected and reachable the whole
time, demands that our devices have reliable connections. Recently, end-user devices
have started to employ some kind of connection redundancy, in the form of at least two
different built-in (network) interfaces. The set of interfaces that a device is equipped with
varies from device to device. Smartphones and tablets typically have 3G/4G and a Wi-Fi
interface, and laptops can additionally have an Ethernet interface. However, the currently
used transport protocols doesn’t allow us to benefit from multiple interfaces. Today’s web
technologies have simply not adapted to the evolution of devices.

For over 30 years, the Transmission Control Protocol (TCP) has been the standard
reliable transport protocol. Major Internet applications like the World Wide Web (WWW),
e-mail and file transfers relies upon the services of TCP. TCP provides services like reliable
transmission, flow- and congestion control, but a TCP connection is bound to the client
and server IP addresses at the time of connection establishment. This implies that it only
allows a single path between a source and a destination. With the rapid growth of devices
and traffic experienced today, especially coming from multimedia streaming services, the

1

scalability of the Internet is put to the test. Although TCP provides mechanisms that
assure flow and congestion control, the protocol itself cannot guarantee real-time delivery
in situations where links become unavailable or critically congested.

With the objective to work around these TCP limitations, various researchers
have proposed solutions at different network layers. However, in order for the devel-
opment of a multipath protocol to be realistic, it needs to be easily deployable, without
having to perform modifications on existing infrastructure. With this understanding, the
Internet Engineering Task Force (IETF) has established a workgroup to develop a standard-
ization for a new multipath protocol. This ongoing work has resulted in MultiPath TCP
(MPTCP), an extension of the TCP protocol. Given that it is an extension makes it easier
to deploy, since it provides backward compatibility with existing network structure.

Theoretically, MPTCP can possibly increase throughput, reliability and robust-
ness in end-to-end connections. However, these benefits may be at the expense of in-
creased latency. In this thesis, we seek an answer to whether these statements are accurate
under realistic network conditions.

1.1 Initial Motivation

Cloud computing is rapidly gaining more importance for consumers. The ease of manag-
ing huge amounts of data and the reliability factor associated with cloud computing, are
parts of the reason why cloud computing and similar services are of growing importance.
However, a stable Internet connection is essential for applications of cloud computing.
Knowing that critical applications have to be stable, initially motivated us to look further
into multihoming.

The same factors also apply to portable devices widely deployed all over the
world. Because some of these devices are constantly on the move, robustness and reli-
ability are possibly more important than the theoretic improvement in throughput. For
these devices, seamless application connectivity is of great importance.

After learning about all these gains related to multihoming, it became clearer to

2

us that the development of a transport protocol that is capable of utilizing all available
links is definitely an important area of commitment. Optimizing the multihoming area
can prepare the Internet for the future ahead.

The Department of Informatics’ association with Simula Research Laboratory made
it possible for us to get access to a Future Internet research testbed consisting of multi-
homed sites, namely the NORNET CORE. NORNET was built to allow researchers to per-
form experiments with multihomed systems. An experimentation platform like NORNET

is able to tell us whether MPTCP truly has benefits like better throughput and seamless
connection handover. Given this unique opportunity, together with our growing interest
in the multihoming area, our curiosity is looking forward to combine MPTCP with an
up-to-date testbed.

1.2 Objective

The purpose of this thesis is to study, analyze and evaluate the new emerging MPTCP
protocol, an extension of the standard TCP protocol. Our main goal of this work is to
evaluate the performance of a functional MPTCP implementation in the NORNET testbed,
by performing a selection of experiments. These experiments will hopefully enlighten
both positive and negative aspects of the MPTCP protocol.

To achieve the best possible understanding of MPTCP before conducting our
experiments, we will at first focus our attention on background information and the un-
derlying technologies on which MPTCP depends. We will then present state-of-the-art
research on different solutions to multihoming from various research communities.

In the second phase of this thesis, the design and implementation of NORNET

will be described. Finally, an MPTCP implementation will be evaluated in the NORNET

environment.

3

1.3 Thesis Outline

The thesis is structured as follows:

Chapter 2: We go into detail on the background material to get a better understanding
of the technologies which MPTCP is dependent on. This is where the basics will be
discussed and established.

Chapter 3: An overview over the most recognized related work and different state-of-
the-art multihoming implementations is presented.

Chapter 4: We will in detail present and describe different aspects of MultiPath TCP, as it
is currently proposed by the IETF.

Chapter 5: We present the testbed setup and analyze the NORNET CORE framework im-
plemented with MPTCP in more detail.

Chapter 6: We will explain the methodology during our experiments. Our methods for
data collection from the experiments will also be given. We then present and analyze
our results.

Chapter 7: Finally, we conclude the thesis and our findings, with a summary of the work
developed, in addition to some thoughts on future work.

4

Chapter 2

Background

In this chapter, we will present some theory on underlying network technologies. In
the first section, we explain the key principles of the TCP/IP protocol suite, with an extra
emphasis on the transport layer and standard TCP, the most prominent transport protocol
today. With an understanding of the protocol suite, we dig deeper into standard TCP, on
which MPTCP is highly dependent. TCP will be thoroughly investigated, covering the
most important aspects, especially those which affect MPTCP a great deal. In order to
understand the capability of TCP/IP applications, an understanding of the core protocol
functions must be established.

2.1 The TCP/IP Protocol Suite

A network is a group of connected, communicating devices such as computers and
phones. An internet (lowercase i) is two or more networks that can communicate with
each other. The most notable is called the Internet (uppercase I), composed of hundreds
of thousands of interconnected networks and billions of devices worldwide. The Internet
uses the TCP/IP protocol suite (TCP/IP) [49] to make communication possible.

TCP/IP is the set of communication protocols that implements the protocol stack

5

on which the whole Internet and most commercial networks run. The suite is named after
its core protocols, TCP and Internet Protocol (IP). A protocol is required when two enti-
ties need to communicate - a set of rules that governs communication. It defines several
aspects of the communication, like what, how and when. For example, in a face-to-face
communication between two persons, there are rules that define how two persons should
start communicating. This reasoning also holds for computer networks, as two entities
in a computer network cannot simply send arbitrary data to each other and expect to be
understood. For the communication to conform, both entities must agree on a protocol.

When communication is intricate or complex, there are some advantages by di-
viding the complex task of communicating into several layers of abstraction. Several pro-
tocols are therefore needed, typically one or more per layer. For example, the transport
layer consist of more than one transport protocol, specifically TCP and User Datagram Pro-
tocol (UDP) [38]. By dividing the communication software into layers, the protocol stack
allows for division of labor, ease of implementation and code testing. Each of the layers
defines a part of the process of moving information across a network.

Most networking software follow this philosophy. The original TCP/IP was de-
fined as a four-layer suite, built on top of the hardware. Today, it is thought of as having
five layers, as the hardware that the original suite was built upon, is now seen as a layer
itself.

Especially two models are mentioned in the literature, and both has been con-
structed to abstractly describe the communication in a computer network. The two mod-
els are the TCP/IP and the Open Systems Interconnection (OSI) model. The shared proper-
ties of these models are their layered structure, having the layers arranged based on its
specific functionality. The model that dominated data communication and networking
before 1990 was the OSI model, but as the TCP/IP was used and extensively tested in
the Internet, TCP/IP became the dominant commercial architecture. For these reasons,
TCP/IP is the primary focus of this section.

2.1.1 Architecture

The TCP/IP model is composed of five ordered layers [32]:

6

• Application Layer
• Transport Layer
• Network Layer
• Data Link Layer
• Physical Layer

While the lower layer protocols are responsible for physical transmission of data,
the layers near the top are logically closer to the user application.

The layers only pass data and network information with those directly above or
below, and it is made possible by concise interfaces between each pair of adjacent layers.
The structure of TCP/IP is said to be hierarchical, which means that each upper level
protocol is supported by one or more lower level protocols. Within each computer or
any device, each layer calls upon the services of the layer just below it, e.g. the application
layer uses the services provided by the transport layer, which in turn uses the services of the
network layer. As long as a layer provides the expected services to the layer above it, the
specific implementation of its functions can be modified or replaced without requiring
changes to the surrounding layers. This is an important feature that is essential to the
prevalence of MPTCP as a TCP extension.

It is possible to structure the layers of TCP/IP even more, as thinking of the three
bottom (data link, physical- and network) layers as the network support layer. These lay-
ers deal with the electrical specifications, transport timing, transport reliability, physical
connections and physical addressing. The application layer and the network support
layer are linked together by the transport layer, which ensures that what the lower layers
have transmitted is in a form that the application can use. The different layers are im-
plemented differently, as the upper layers are almost always software, lower layers are a
combination of software and hardware. The physical layer is essentially hardware.

Further we will describe the three top layers a little closer.

7

2.1.1.1 Application Layer

The application layer is the highest level layer of TCP/IP. This layer allows a user to access
the different services on the global Internet. It receives data from user applications and
issues requests to the transport layer. An application is a user process cooperating with
another process, usually on a different host. Examples of application protocols include
the Hypertext Transfer Protocol (HTTP) [8], Simple Mail Transfer Protocol (SMTP) [30] and File
Transfer Protocol (FTP) [39]. These application protocols are defined at this layer to provide
access to the World Wide Web, electronic mail and file transfer. The unit of communication
at the application layer is called a message.

The interface between the application- and transport layer is defined by port
numbers and sockets. The concept of ports and sockets is needed to determine which
local process at a given host actually communicates with which process, at which remote
host, using which protocol.

Port: Each process that wants to communicate with another process identifies itself to the
TCP/IP stack by one or more ports. A port is a 16-bit number used by the host-to-
host protocol to identify which higher-level protocol or application program it must
deliver incoming messages to. There are two types of ports:

Well-known: Well-known ports belong to standard servers, for example SMTP uses
port 25 and HTTP uses port 80. The well-known port numbers range between
1 and 1023 and are assigned by the Internet Assigned Number Authority (IANA).
The reason for using well-known ports is allowing clients to find servers with-
out configuration information.

Ephemeral: Some clients do not need well-known port numbers because they are
the ones initiating communication with servers, and the port numbers are al-
located automatically by the client itself. When the client is automatically al-
located a port, it is also done by random, so an ephemeral port is essentially a
random port used to communicate with a known server port. The ephemeral
ports have values greater than 1023, normally in the range of 1024 to 65535.
The ports in this range can be used by ordinary user-developed programs on
most systems.

8

Example: If a client wants to open a connection to an FTP server, the connec-
tion would look like:
192.168.1.100:34234 → 192.168.1.200:21

Here, 21 is the standard FTP port the client is connecting to; 34234 is the
ephemeral port used on the client machine.

Socket: A socket is one endpoint of a two-way communication link between two pro-
grams running on the network. A socket is bound to a port number so that the TCP
layer can identify the application that data are destined to be sent to. Normally, a
server runs on a specific computer and has a socket that is bound to a specific port
number. A client knows the host name of the machine on which a server is run-
ning and on the port number on which the server is listening. To make a connection
request, the client tries to rendezvous with the server on the server’s machine and
port. The client also binds to a local ephemeral port number that is assigned by the
system. Upon acceptance of the connection, the server gets a new socket bound to
that port and also has its remote endpoint set to the address and port of the client.
On the client side, a socket is successfully created, so that the client and server can
now communicate by writing to or reading from their sockets.

2.1.1.2 Transport Layer

The transport layer provides end-to-end data transfer, by delivering data from the appli-
cation layer to the correct remote host and application. The transport layer implementa-
tion is usually found in the end-user computers, and not in the routers, as these depend
on lower layer protocols.

As the layer beneath, the network layer, is responsible for sending individual
datagrams between A and B, the transport layer is responsible for delivering the whole
message, which is called a segment (for TCP) or datagram (for UDP). A segment may con-
sist of a few or tens of datagrams. For the transport layer to send data to a remote host,
the TCP segments need to be broken into datagrams. After dividing the segments into
datagrams, each datagram has to be delivered to the network layer below for transmis-
sion.

9

The transport layer protocols offer an abundance of services to the application
layer. The services include connection-oriented communication, reliability, end-to-end
integrity, flow control, congestion avoidance and so forth. Because of the important ser-
vices that the transport layer offer and the location of TCP, this is the most important and
relevant layer for this thesis. This is because MPTCP also operates precisely here, even
though MPTCP aims at being transparent to both higher and lower layers. A detailed de-
scription of TCP and MPTCP will be provided in section 2.2 and chapter 4, respectively.

Another transport layer protocol is UDP, which provides connectionless, unre-
liable best-effort service. As a result, applications using UDP as their transport protocol
have to provide their own end-to-end integrity, flow control etc, if this is desired. Due to
the lack of services UDP provide, it is suitable for applications that need a fast transport
mechanism and can tolerate possible loss of some data.

2.1.1.3 Network Layer

At the network layer (also called the internetwork layer), the virtual network image of an
internet is provided. The Internet Protocol (IP) is the most important protocol in this layer,
and is the transmission mechanism used by TCP/IP. Unlike TCP, IP does not provide
reliability, flow control or error correction.

IP provides a routing function that attempts to deliver transmitted messages to
their destination IP address. As described in the previous section, a TCP segment is bro-
ken into multiple IP datagrams, each of which is transported separately by IP. The content
of datagrams that start at the sender and reach the receiver are not changed by interme-
diate routers, though they inspect the source and destination addresses of packets to find
the best possible path.

In order for IP to uniquely identify the target hosts, the protocol is in need of
some kind of forwarding address, specifically the IP address. This address is a numerical
label assigned to each device participating in an Internet Protocol network. Specifically, an
IP address identifies an interface that is capable of sending and receiving IP datagrams.
The first designers of the IP defined an IP address as a 32-bit number [26], known today
as IPv4. Because of the growth of the Internet and the future insufficiency of addresses, a

10

new version of the IP protocol (IPv6) was developed [17]. IPv6 uses a 128-bit number.

In addition to the core protocols IPv4 and IPv6 in the network layer, other im-
portant protocols exists, like Internet Control Message Protocol (ICMP), which is primarily
used for error and diagnostic functions, and Address Resolution Protocol (ARP), which is
providing resolution of network layer addresses into link layer addresses.

2.1.2 Encapsulation

Along with the descending, sequential order of a data unit, a header is also added at each
layer, the so called encapsulation. The original data packet expands in terms of added
headers as it travels down the stack. The term encapsulation comes from the fact that
each layer can not differentiate the data part and header part. The formatted data is ulti-
mately changed into an electromagnetic signal and transported onward a physical link.

Figure 2.1: TCP/IP Architecture and Encapsulation

1 - Application Layer: The journey of the packet begins when a user sends a message or
issues a command that must access a remote host. The application layer formats the

11

packet so that it can be handled by the appropriate transport layer protocol, either
TCP or UDP.

2 - Transport Layer: When the data has arrived at the transport layer, TCP or UDP starts
the process of encapsulation. TCP is a connection-oriented protocol because it en-
sures the successful delivery of data at the receiving host. Figure 2.1 shows how TCP
receives the HTTP request. TCP then divides the data received from the application
layer into segments and attaches a header to each segment. These headers contain
sender and recipient ports, ordering information and a checksum. The checksum
is used for detecting errors that might have occurred. Since TCP is connection-
oriented, the TCP connection must be established before sending. All TCP connec-
tions need to be initiated by a three-way handshake.

3 - Network Layer: When TCP has established the connection to the remote host, it
passes their segments and packets down to the internet layer, where they are handled
by the IP protocol. Each segment is prepared for delivery by formatting it into mul-
tiple IP datagrams and determining the IP addresses for the datagrams. The IP then
attaches an IP header containing the sending and receiving IP address, datagram
length and sequence order. This information is added in case the datagrams must
be fragmented due to exceeding the maximum transmission unit (MTU) for network
packets.

4 - Data Link Layer: The IP datagrams are passed down to the link layer, where Data-
link layer protocols, such as Ethernet, encapsulates the IP datagrams into a frame
and then attaches a third header and a footer. Each frame contains source and des-
tination address, and error-checking data (CRC) so that damaged frames can be
detected and discarded. Then the data link layer passes the frames to the physical
layer.

5 - Physical Layer: After receiving the frames, the physical layer converts the IP ad-
dresses into the hardware addresses appropriate to the network media. The frames
are then sent out over the network media.

6 - Intermediate routers: As the packet moves across the Internet towards the destina-
tion computer, the packet has to pass through routers connecting the networks the
packet is traversing. Unlike the sending and receiving computer, a router only pos-
sess some of the layers of the TCP/IP stack, specifically the network-, data link-

12

and physical layer. A router contains only these layers, as the network layer is re-
sponsible for choosing the path through the Internet that the packet will follow. As
the packet moves through the protocol stack in reverse order to the network layer,
features specific to the network the packet is leaving are removed. At the network
layer, IP will choose the path or route the packet should follow next. After this,
the packet then moves down through the protocol layers on that router to add the
features specific to the network the packet is entering.

7 - Receiver: When the packet arrives at the receiving host, the packet again moves
through the TCP/IP stack in reverse order. Each protocol at the receiving host strips
off header information attached to the frame. At the physical layer the Cyclic Redun-
dancy Check (CRC) is computed and sent together with the frame to the Data link
layer. The CRC for the frame is verified for its correctness, and the frame header is
stripped off. The Data link layer then sends the frame to the network layer which
reads information in the header to identify the transmission and determine if it is
a fragment. If it is a fragment, then it is reassembled to the original datagram, if it
is not, the then the header is stripped off and is passed to the transport layer. The
TCP in the transport layer reads the header to determine which application layer
protocol should receive the data. Then TCP strips off its related header and sends
the message or stream up to the appropriate application.

2.2 Transmission Control Protocol (TCP)

TCP was firstly described in 1981, by RFC 793 - Transmission Control Protocol [27]. TCP is
by far the most widely used transport protocol today. Unlike UDP, TCP provides consid-
erably more services for the applications. Specifically, this includes flow and congestion
control, and reliability. As TCP is a connected-oriented protocol, its primary purpose is
to provide a reliable connection between two services, and assure in order byte delivery
of data over a possible unreliable underlying network, such as an IP network.

13

Figure 2.2: Overview of a TCP Connection

2.2.1 Important Concepts

TCP provides the following services to the applications which rely on it:

Stream data transfer: Applications using TCP is not responsible for dividing the bytes
into blocks or datagrams. TCP does this by grouping the data into TCP segments,
which are passed on to the IP layer for transmission. In other words, TCP assures
the application that a contiguous stream of data is transmitted through the network.
How the data is segmented, is up to itself.

Reliability: A sequence number is assigned to each byte transmitted, and a positive ac-
knowledgment (ACK) is expected from the transport layer at the receiving part. If the
ACK is not received within a timeout interval, the data will be retransmitted. Due
to the fact that data is transmitted in blocks as TCP segments, only the sequence
number of the first data in the segment is sent to the destination host. TCP at the
receiving part use the sequence numbers to rearrange the segments if they arrive
out of order, as well as eliminating duplicate segments.

Flow control: When TCP at the receiving end is sending an ACK back to the sender, it also

14

indicates to the sender the number of bytes it can receive, beyond the last received
TCP segment, without causing overrun and overflow in its internal buffers. This
information lies in the ACK in the form of the highest sequence number it can receive
without complications. This mechanism is also called the window-mechanism, and
will be discussed in detail later.

Multiplexing: Multiplexing, which can be described as the process of combining two or
more data streams into a single physical layer connection, is achieved through the
use of source and destination ports. These port numbers allow TCP to establish a
number of virtual connections over a physical connection, and multiplex the data
stream.

Logical connections: The reliability and flow control mechanisms described above re-
quire that TCP initializes and maintains certain status information for each of the
data streams. The combination of this status information, including sequence num-
bers, sockets, and window sizes, is called a logical connection. Each of the connec-
tions are uniquely identified by the pair of sockets used by the sending and receiving
process.

Full duplex: TCP offers full-duplex service, which means that data can flow in each di-
rection concurrently. Each TCP endpoint has its own sending and receiving buffer,
thus segments move in both directions.

Error free data transfer: Error-free data transfer is guaranteed by TCP. It does this by cal-
culating a 16-bit checksum over the TCP packet (header and data). At the receiving
end, if the checksum does not match the contents of the packet, it is discarded.
Because the sending side does not receive an acknowledgement of the discarded
packet, it is retransmitted.

2.2.2 The TCP Window Principle

In order to utilize the available network bandwidth, TCP group packets that are being
transmitted in a window of a predefined size. The sender can then fill up the window
with packets, but a timeout timer must be started for each of them. The receiver must
acknowledge each packet received, with the sequence number of the last received packet

15

indicated. When the sender receives the ACK, the window is slid, and more packets can
be transmitted. Because TCP provides a byte-stream connection, sequence numbers are
assigned to each byte in the stream. The contiguous byte stream is then divided into
TCP segments when transmitted. The window principle is used at the byte level, which
means that the segments sent and ACKs received will carry byte-sequence numbers and
the window size is therefore expressed as a number of bytes, rather than a number of
packets.

The size of the window is determined by the receiver at the time of connection
establishment, but can vary during the data transfer. Every ACK message will include the
window size that the receiver is able to process at that point in time - an important factor
in the flow control.

Figure 2.3: The TCP Window Principle

16

2.2.3 TCP Segment Format

Figure 2.4: The TCP Segment Format

Source port: The 16-bit source port number, used by the receiver to reply.

Destination port: The 16-bit destination port number.

Sequence number: The sequence number of the first data byte in this segment. If the
SYN control bit is set, the sequence number is the initial sequence number (n) and
the first data byte is n + 1.

Acknowledgment number: If the ACK control bit is set, this field contains the value of
the next sequence number that the receiver is expecting to receive.

Data offset: The number of 32-bit words in the TCP header. It indicates where the data
begins.

Reserved: Six bits reserved for future use, must be zero.

17

URG: Indicates that the urgent pointer field is significant in this segment.

ACK: Indicates that the acknowledgment field is significant in this segment.

PSH: Push function.

RST: Resets the connection.

SYN: Synchronizes the sequence numbers.

FIN: No more data from sender.

Window: Used in ACK segments. It specifies the number of data bytes, beginning with
the one indicated in the acknowledgment number field that the receiver (the sender
of this segment) is willing to accept.

Checksum: The 16-bit one’s complement of the one’s complement sum of all 16-bit words
in a pseudo-header, the TCP header, and the TCP data. While computing the check-
sum, the checksum field itself is considered zero. The pseudo-header is the same as
that used by UDP for calculating the checksum. It is a pseudo-IP-header, only used
for the checksum calculation.

Urgent pointer: Points to the first data octet following the urgent data. Only significant
when the URG control bit is set.

Options: Just as in the case of IP datagram options, options can be either:

• A single byte containing the option number.

• A variable length option in the format as shown in figure 2.5 beneath.

Figure 2.5: The TCP Options Format

2.2.4 TCP Congestion Control Algorithms

The responsibility of the TCP congestion control algorithm [4] is to prevent a sender from
overrunning the capacity of a link. TCP has the ability to adjust the sender’s rate to better

18

fit the network capacity and thus avoiding potential congestion situations. A number of
congestion control enhancements have been added and suggested to TCP over the years,
and this is still an important matter of research and discussion. Nevertheless, modern
implementations of TCP contain the following four important algorithms as basic Internet
standards:

• Slow start
• Congestion avoidance
• Fast retransmit
• Fast recovery

2.2.4.1 Slow Start

In the first implementations of TCP, the connection is started by the sender injecting mul-
tiple segments into the network, up to the window size announced by the receiving part.
It is possible that this works OK when the two hosts are on the same LAN, but what
happens if there are a number of routers and slow links between the sender and the re-
ceiver? Problems can arise, and performance is undoubtedly degraded when packets gets
dropped due to intermediate routers that can’t handle the ongoing traffic.

To avoid this, TCP uses an algorithm called slow start. It operates by making
sure that the rate at which new packets are sent, doesn’t exceed the rate at which the
acknowledgments are returned by the other end. The slow start algorithm adds another
window to the senders TCP: the congestion window, often called cwnd. When a new
connection is established with another host, the congestion window is initialized to one
segment, typically 536 or 512.

Each time an ACK is received at the sending part, the congestion window is in-
creased by one segment. The sender cannot transmit segments exceeding the size of the
congestion window. The sender starts the transmission by sending one segment, and
when the ACK is received, the congestion window is incremented from one to two, and
then two segments can be sent. When the ACK’s for those two segments are received,
the congestion window is incremented to four, and so on. This results in an exponen-
tial growth of the window. However, at some point the capacity of the network will be

19

reached, and packets will eventually be discarded or dropped. This can as an example
happen due to slow Wide Area Network (WAN) links, or because of overloaded routers
somewhere on the path. When packets are getting lost, the sender knows that the conges-
tion window has increased too much.

2.2.4.2 Congestion Avoidance

Most often, the loss of a packet signifies congestion in the network somewhere between
the source and the destination. There are two indications of packet loss:

• A timeout occurs

• Duplicate ACKs are received

As mentioned, congestion avoidance and slow start are independent algorithms with dif-
ferent objectives, but in practice, they are implemented together. Congestion avoidance
and slow start’s responsibility is to monitor and adjust two variables for each TCP con-
nection:

• The congestion window, called cwnd

• The slow start threshold size, called ssthresh

The combination of these two algorithms works as follows:

1. Initialization for a given connection sets cwnd to one segment and ssthresh to 65535
bytes.

2. The TCP output routine never sends more than the lower value of cwnd or the re-
ceiver’s advertised window.

3. When a congestion occurs (timeout or duplicate ACK), one-half of the current win-
dow size is saved in ssthresh. Additionally, if the congestion is indicated by a time-
out, cwnd is set to one segment.

20

4. When new data is acknowledged by the other end, increase cwnd, but the way it
increases depends on whether TCP is performing slow start or congestion avoid-
ance. If cwnd is less than or equal to ssthresh, TCP is in slow start; otherwise, TCP is
performing congestion avoidance.

The slow start procedure continues until TCP is halfway to the point where it was when
the congestion occurred (half the window size was recorded in ssthresh in step 2, and then
the congestion avoidance takes over. Instead of the exponential incrementation in slow
start, the congestion avoidance algorithm now increments the cwnd by segsize×segsize

cwnd each
time an ACK is received, where segsize is the segment size and cwnd is maintained in bytes.
This results in a linear growth of cwnd, compared to the exponential growth of the slow
start algorithm. The increase in cwnd should now be at most one segment each round-trip
time (RTT), regardless of how many ACKs received in that RTT.

2.2.4.3 Fast Retransmit

The fast retransmit algorithm makes sure that TCP does not have to wait for a timeout
to resend lost segments. When an out-of-order segment is received, TCP generates and
sends a duplicate ACK of the last ACK sent. The duplicate ACK should not be delayed. The
purpose of this duplicate ACK is to tell the other part that a segment was received out of
order and to let it know what sequence number is expected next.

Due to the fact that TCP does not know whether a duplicate ACK is caused by
a lost segment or just a reordering of segments, it waits for a small number of duplicate
ACKs to be received. It is assumed that if there is just a reordering of the segments, there
will be only one or two duplicate ACKs before the reordered segment is processed, which
will then generate a new ACK. If three or more duplicate ACKs are received in a row, it
is a strong indication that a segment has been lost. TCP then performs a retransmission
of what appears to be the missing segment, without waiting for a transmission timer to
expire. The fast retransmit principle is illustrated in figure 2.6.

21

Figure 2.6: TCP Fast Retransmit

2.2.4.4 Fast Recovery

When fast retransmit has sent what appears to be the missing segment, congestion avoid-
ance is initiated, not slow start. This is basically the fast recovery algorithm. Fast recov-
ery is an improvement that makes it possible for TCP to maintain high throughput under
moderate congestion, especially for large windows.

The main reason for not initiating slow start in this case can be explained by the
fact that the receipt of the duplicate ACKs tells TCP more than just a packet has been lost.
Because the receiver can only send the duplicate ACK when an out-of-order segment is
received, that received segment has left the network and is now in the receiver’s buffer.
This means that it’s still being transmitted data between the source and the destination,
and TCP does not want to reduce the flow of data by going into slow start. The fast
retransmit and fast recovery are usually implemented together and operates in the follow
way:

22

1. When the third duplicate ACK in a row is received, set ssthresh to one-half the current
congestion window, cwnd, but no less than two segments. Retransmit the missing
segment. Set cwnd to ssthresh plus three times the segment size. This inflates the
congestion window by the number of segments that have left the network and the
other end has cached.

2. Each time another duplicate ACK arrives, increment cwnd by the segment size. This
inflates the congestion window for the additional segment that has left the network.
Transmit a packet, if allowed by the new value of cwnd.

3. When the next ACK arrives that acknowledges new data, set cwnd to ssthresh (the
value set in step 1). This ACK is the acknowledgment of the retransmission from
step 1, one RTT after the retransmission. Additionally, this ACK acknowledges all
the intermediate segments sent between the lost packet and the receipt of the first
duplicate ACK. This step is congestion avoidance, because TCP is down to one-half
the rate it was at when the packet was lost.

23

Chapter 3

Multihoming:

State of the Art

The Internet has become a redundant, multipathed network over the years, far from what
the designers imagined. The protocols allowing communication over the Internet, have
all been designed with single-path communication in mind. There exists a gap between
the single-path transport and the multipathed network that has emerged. Filling this gap
would allow to pool the resources of the different available paths, which is known as the
resource pooling principle [57].

The multihoming problem has received a lot of attention in the research com-
munity over the last years. Researchers argue different implementation solutions to this
problem. As described in chapter 2, the different layers and protocols of the TCP/IP stack
have different functionality and characteristics. Some of the researchers have seen pos-
sibilities in the network layer to provide the benefits of multipath transport. Some have
even implemented their solution in the application layer. Currently, we find the most
promising implementations in the transport layer, such as the Stream Control Transmission
Protocol (SCTP) and MultiPath TCP (MPTCP).

The following sections will describe the resource pooling principle and state-of-the-
art approaches for achieving its benefits.

24

3.1 Resource Pooling Principle

Being a network of networks, the Internet consists of multiple paths between commu-
nicating hosts. These paths have different characteristics, such as bandwidth and delay.
Resource pooling means making a collection of these networked resources and make them
behave as though they make up a single pooled resource, and aims to increase reliability,
flexibility and efficiency. In case one of the paths experience an issue, the traffic can be
moved to another path, thus achieving resilience to network failures. In a conventional
single-homed session, the failure of a single path can isolate an end system, while failures
in single-homed machines within the network core could cause temporary unavailability
of transport. Resource pooling also enables moving traffic from congested paths to less
congested paths, thus balancing the load more efficiently.

Resource pooling benefits can be summarized as follows:

• Robustness against component failures

• Better ability to handle localized surges in traffic

• Higher utilization of available infrastructure

• Balancing load between various parts of the network

Figure 3.1: Resource Pooling Principle

25

In figure 3.1, the entire 36 Mbit/s bandwidth in (a) can be shared fairly and each flow can
achieve a higher throughput than it could over a single path. This is as they were load
balancing over the four links in (b). Since each node is connected to multiple links, it is
also more robust to any link failure, but not as robust as in (b).

The implementation solutions to the multihoming problem are all examples of
some type of resource pooling. There are clear differences between the implementations,
but the resource pooling principle is what binds them all together. The following subsec-
tions will describe the various approaches in deeper detail, categorized by the layer of
implementation.

3.2 Application Layer

There exist a few approaches to resource pooling in the application layer, even though
implementing multi-access protocols at this layer is not hard. One can naturally bind
sockets to different interfaces with the socket API and then send data to different sockets,
which will, with appropriate routing configuration, follow different paths. This approach
has some inconvenience associated with it, as the developer must implement services like
congestion control and scheduling by himself.

Session Initiation Protocol (SIP) [42] and IP Multimedia Subsystem (IMS) are signal-
ing protocols to negotiate media sessions, that typically include phone calls and media
streaming sessions. These protocols can interestingly enough support the use of multiple
contact IP addresses for the registration of one or more IMS user agents on terminals. This
enables the creation of multiple IMS signal paths. To negotiate media streams, Session De-
scription Protocol (SDP) [24] messages are carried on the paths. The negotiations of the
media streams enable multipath transport at the application layer. However, to negotiate
multimedia streams, Real-time Transmission Protocol (RTP) [45] is used, but only single-
path communication is supported. On the other hand, a protocol that enables multipath
RTP is under discussion within the IETF [47] [48]. In [46], Varun Singh et al. says that
MPRTP allows utilization of multiple paths without performance degradation compared
to suitable single-path cases. It also enables load distribution between available interfaces,
as well as resource pooling in diverse scenarios. MPRTP may also allow mobile hosts to

26

access the Internet on the move, providing seamless handovers between networks.

Peer-to-Peer (P2P) protocols, like BitTorrent, are also an approach to benefit from
multihoming, though it is a bit different from the other approaches. The BitTorrent ap-
proach involves downloading separate chunks of a file from different peers located any-
where. It is different from node-to-node multipath approaches as it achieves resource
pooling from opening a single connection per peer, while other approaches opens sev-
eral connections to one single peer. When peers are downloading chunks from different
people, they are also uploading chunks to other peers, making it possible for files to be
downloaded and shared simultaneously by a very large number of peers [16].

3.3 Link Layer

At the link layer, link aggregation techniques are used to aggregate the capacities of dif-
ferent interfaces to the same switch. The goal is to provide redundancy in case of a link
failure, as well as to increase throughput. The link aggregation feature has been defined
by the Institute of Electrical and Electronics Engineers (IEEE), in the IEEE 802.3ad [33] [13].
Only the link capacity of a single hop is able to be pooled at this level. Also, it requires
specific configuration on both the host and the connected switch. Though, there exists
an automatic configuration protocol for this configuration, known as the Link Aggrega-
tion Control Protocol (LACP) [14]. LACP offers a mechanism to control the aggregation
of several physical ports to form a single logical channel. Resource pooling through link
aggregation can be achieved in multiple modes. Distribution of frames by round-robin
over the links is one option. However, this approach increases the probability of frame
reordering, which can result in performance problems for TCP’s fast retransmission algo-
rithm [9], as it uses arrival of duplicate ACKs to detect packet loss, which can be caused
by reordering.

Today, link layer aggregation is widely used, despite that one of its downsides is
that it only allows to aggregate the capacity of the next hop. Some Internet Service Providers
(ISPs) for instance, uses link aggregation to increase cumulative bandwidth between two
switches, which can help improve cost effectiveness. It is also used to provide the servers
with higher network-access. Some approaches, targeting the home and business market,

27

manages the incoming ISP connections, by sending and receiving traffic on the best link
possible [19]. This can potentially improve application performance by prioritizing and
optimizing traffic. However, this approach does not fully comply with the resource pooling
principle. Rather than using multiple links at the same time, it tries to constantly use the
best one. Since link aggregation only affects the next hop, it doesn’t bring any benefits if
the bottleneck of the communication is not in the next hop. Link aggregation is mostly
restricted to local area networks (LANs), and doesn’t support the multipath diversity as
well as the layers above.

3.4 Network Layer

It seems more natural to benefit from multiple paths by implementing the solution in the
network layer. Intuitively, this seems to be the most clear-cut. A single TCP connection
would be sufficient, and the packets would be distributed across different flows, with
the help of the network layer. There are especially three recognized solutions that try to
achieve all, or some, of the benefits of multihoming at the network layer, such as Mobile IP
(MIP) [11], Site Multihoming by IPv6 Intervention (Shim6) and Host Identity Protocol (HIP).
These solutions will be described in the following subsections.

3.4.1 Mobile IP (MIP)

Mobile IP (MIP) is an IETF standard protocol that allows mobile device users to relocate
from one subnet to another while maintaining a permanent IP address. The result is con-
tinuous Internet connectivity. There also exists an implementation of the next generation
of IP, specifically the Mobile IPv6 [12].

Mobile IP introduces the following entities; the mobile node, a home agent, and
a foreign agent. Regardless of its current position, the mobile entities are identified by its
home address, belonging to the home agent. The home agent is a router on the mobile
node’s home network. When the node moves away from the home network, it is identi-
fied by a care-of-address. This address can identify the current network location, which is
on the so-called foreign agent. The foreign agent provides routing services to the mobile

28

node. Mobile IP specifies how the home agent routes datagrams to the mobile node, as
the foreign agent detunnels and delivers them.

Figure 3.2: Mobile Host Sending and Receiving Data

Figure 3.2 shows how Mobile IP operates:

1. The home agent receives datagrams going to the mobile node (home address), via
standard IP routing

2. The home agent tunnels the datagrams to the care-of-address (foreign agent)

3. Datagrams are detunneled by the foreign agent and delivered to the mobile node

4. If the mobile are the one sending datagrams, standard IP will forward them to their
destinations. The foreign agent then function as the mobile node’s default router

Mobile IP allows for undisrupted TCP connections. However, it does not comply with the
resource pooling principle. Since it does not allow resource pooling, and thus not increase

29

the bandwidth, the Mobile IP we know today is only capable of giving us some of the
benefits of multipath.

However, in [59] it is described how a Mobile IP extension is able to manage
multiple simultaneous connections with foreign agents. For now, it is only compatible
with Mobile IPv4. In the extension, multiple paths can be used for packets to and from the
mobile host, therefore it also comply with the resource pooling principle. The mobile host is
able to register multiple care-of-addresses at the home agent by listing all the reachable
networks. It only chooses the networks supporting the best connectivity. The connectivity
is evaluated by monitoring the deviation in arrival times between advertisements. With a
list of care-of-addresses, the home agent can now reach the mobile host on each of these.
The MIP extension will manage the network mobility and multihoming, so the IP routing
protocols are unaware. Its compliance to the resource pooling principle is able to support an
increase in throughput and provide a more reliable connection than the original MIP.

3.4.2 Site Multihoming by IPv6 Intervention (Shim6)

Mobile IP, despite its lacking support of multipath communication, is a very successful
solution in IP-based networks. Unfortunately, partly because of the need of an interme-
diary router, performance can be poor in terms of handover delay [2].

With this problem in mind, there is specified a purely end-to-end based solution,
namely Site Multihoming by IPv6 Intervention (Shim6) [36], an extension to IPv6. The Shim6
protocol is a network layer protocol for providing locator agility below the transport layer
protocols. This provides multihoming for IPv6 with fail-over and load-sharing properties,
in the sense that it allows existing communication to continue when a host experiences
link failure.

A part of the Shim6 approach involves detecting when pair of interfaces (or ad-
dresses) between two nodes experience a failure. If there is such a detection, Shim6 will
allow to hand over traffic from one IPv6 address to another. This signaling is done by
bringing a clear split between the locator and identifier part of an IP address. In mobile
environments, this is especially helpful for hosts that have to manage many IP addresses.
If a host has several IPv6 addresses, the connecting application will use one of these as

30

the upper layer identifier (ULID). For the upper layers, the ULID of a Shim6 host stays un-
changed even if the active IP addresses (locators) are changed, intentionally or not. At
the host, mapping between the identifier and locators is performed at the Shim6 sublayer.
The Shim6 sublayer is responsible for changing locators, while keeping the identifiers
constant.

The REAchability Protocol (REAP) has been designed to be used with Shim6, and
implements failure detection and recovery capabilities through locator pair exploration
functions [5]. Upon failure detection, REAP is able to find a new working path by probing
the available locator pairs. The Shim6 layer is then told to change the current locators,
after in which communication can continue without change in the application.

Studies have shown that Shim6 is indeed realizable and also deployable in a mul-
tihoming context [7]. There are currently some public Linux implementations of Shim6,
e.g. the LinShim6 [6] and the one described in [1].

3.4.3 Host Identity Protocol (HIP)

During IETF meetings in 1998-1999, the Host Identity Protocol (HIP) was formed by the
HIP working group. The HIP architecture is described in [34].

The primary concept of HIP, is to enhance the original TCP/IP architecture, by
decoupling the network layer and the transport protocols. In this new architecture, Host
Identifiers (HI) are introduced, by implementing the same identifier/locator split as in
Shim6. A host identifier is the public cryptographic key component of a public/private
key pair. As in Shim6, the new host identifiers take over the prior identification role of
IP addresses, which is now used for determining topological locations in the network.
Identification of TCP connections, applications and sockets is now achieved with HIs.
Two hosts cannot have the same host identifier.

A four-way handshake between two HIP hosts is run when initializing a con-
nection, also called the base exchange. During the exchange, the hosts identify each other
using public key cryptography and exchange Diffie-Hellman public values. The host ini-
tiating a connection is labeled as the Initiator, the peer is the Responder. The Initiator first

31

sends a trigger packet to the Responder (I1), containing a Host Identity Tag (HIT) of the
Responder. The HIT is a 128-bit hashed encoding value of the HI [31]. A hashed encod-
ing allows for some advantages; a fixed length makes for easier protocol encoding and
better packet size cost. The Responder starts the actual exchange by sending a packet
(R1) containing a cryptographic challenge (puzzle) that the Initiator must figure out be-
fore continuing the exchange. Based on the trust level of the Initiator, the puzzle difficulty
is adjusted accordingly. R1 also contains the initial Diffie-Hellman parameters. Now, the
Initiator have to solve the puzzle, which it displays to the Responder in the I2 packet. I2
also contains a Diffie-Hellman parameter. The Responder discards I2 if it does not contain
the correct solution to the puzzle. If it’s correct, the R2 packet concludes the exchange.

The result of adding a new name space to the architecture is that applications
that open connections and send packets, now bind to the HIs instead of IP addresses.
The HIP sublayer links IP addresses together, so that multiple IP addresses correspond
to one Host Identity. The locators do not need to be known to the upper layers, only the
Host Identity, as the applications are unaware of the architectural change, which leads to
practical division of labor and backwards compatibility. Additionally, HIP is constructed
so that it is entirely backward compatible with the already deployed IP infrastructure.
Consequently, when an existing e-mail client connects to an e-mail server, a reference to
the server’s public key is handed over to its operating system. This means that the client
wants to open a (secure) connection to the server holding the corresponding private key.
Even though both the client and server are mobile and changing their whereabouts, the
connection can be kept open. If a subset of the addresses become unavailable or a more
favored address becomes available, existing connections can easily be moved to another
address. Address changes are therefore straightforward when a node relocates while a
connection is already active. HIP also allows for load balancing over available links.

Figure 3.3: Architectural Comparison of IP and HIP

32

As seen in figure 3.3, in the conventional TCP/IP architecture (a), IP addresses are used
as both locators and identifiers. However, in the HIP architecture (b), the endpoint names
and locators are separated, but IP addresses still act as locators. The HIs take the role of
endpoint identifiers. Note that an HI is reachable through different interfaces simultane-
ously.

Another consequence of the decoupling of the network- and transport layer, is
that new possibilities for network layer mobility and host multihoming rise at a low in-
frastructure cost. With HIP, a number of previously hard networking problems suddenly
become much easier. Mobility, multihoming and security integrate neatly into the new ar-
chitecture. Since multiple interfaces can be associated dynamically to the same HI, multi-
homing implementation becomes trivial. The usage of cryptographic identifiers provides
a basis for strengthening the trust between hosts.

The mobility and multihoming extensions to HIP [35] defines the LOCATOR pa-
rameter, which allows a HIP host to notify peers about alternative addresses at which it
may be reached. A host achieves mobility by sending a HIP UPDATE packet containing a
LOCATOR parameter to notify the peers of the new address. When a host is multihomed,
it has multiple locators simultaneously rather than sequentially, as in the case of mobility.
By using the LOCATOR parameter, a host can inform its peers of multiple locators at which
it can be reached simultaneously. Today, the Internet Research Task Force (IRTF) is looking
further into new possibilities and impacts of HIP.

3.5 Transport Layer

A multipath solution sitting at the transport layer is aware of path characteristics, which is
an advantage over other solutions. When scheduling traffic over different paths, it allows
for the protocols to take this information into account.

33

3.5.1 Stream Control Transmission Protocol (SCTP)

The Stream Control Transmission Protocol (SCTP) [50], is a reliable transport protocol oper-
ating on top of a connectionless packet network such as IP, and is a proposed standard
by the IETF [51]. It exists at an equivalent level with TCP and UDP, which provide trans-
port layer functions to many Internet applications. Equivalent to the TCP, SCTP offers a
reliable transport service to applications, ensuring no errors and in-order delivery. SCTP
is also a session-oriented protocol, implying that a relation is established between the
hosts prior to data transmission, and this relationship is preserved until all data trans-
mission has been successfully completed. SCTP was originally designed for transporting
telephony over IP, hence it provides a number of functions that are critical for telephony
signaling transport. These functions can at the same time benefit other applications need-
ing transport with additional performance and reliability.

3.5.1.1 Basic SCTP Features

Unicast: SCTP is a unicast protocol, therefore it only supports data exchange between ex-
actly two endpoints, even though these can be represented by multiple IP addresses.

Reliable: SCTP provides reliable transmission to the application layer, as it detects when
data are discarded, duplicated or corrupted, and it retransmits damaged data as
necessary. SCTP transmission is also full duplex, meaning both parties can commu-
nicate with each other simultaneously.

Message-oriented: SCTP is message-oriented and supports framing of individual mes-
sage boundaries. In comparison, the stream-oriented nature of TCP is often an in-
convenience, as applications must add their own record-marking to delineate their
messages to ensure that a complete message is transferred in a reasonable time.

Rate adaptive: SCTP implements congestion control, and will scale back data transfer
based on the load conditions in the network. It is also fair to other traffic.

34

3.5.1.2 SCTP Multistreaming Feature

It is the multistreaming function provided by SCTP that gives it its name, Stream Control
Transmission Protocol. The multistreaming feature allows to subdivide the data into multi-
ple streams. Each stream has the property of independently sequenced delivery, meaning
any loss will only affect delivery with that stream. In contrast, TCP utilizes a single data
stream. As described in section 2.2.1, TCP ensures byte sequence preservation. This can
be beneficial for delivery of e.g. a file, but it can cause additional delay when the network
experiences loss. When this happens, TCP will delay the delivery until correct sequenc-
ing is restored. A strict sequence preservation is not vital for all applications. In e.g.
telephony, only messages affecting the same resource need to maintain sequence order.
Other messages are loosely correlated and can be delivered without maintaining the same
order. Another example of multistreaming is the transmission of multimedia documents,
such as a web page. Since web pages consist of objects of different sizes and data types,
multistreaming allows these objects to be partially ordered at the receiver. This may re-
duce delay and result in an improved user experience.

SCTP achieves the multistreaming feature by creating an independence between
data transmission and data delivery. More specifically, unlike TCP, each payload in SCTP
uses two sets of sequence numbers, a Transmission Sequence Number that oversees the mes-
sage transmission and the detection of packet loss, and the Stream Sequence Number/Stream
ID pair, which is used to determine the sequence of received data. The independence be-
tween transmission and delivery allows the receiver to determine immediately when a
gap in the transmission sequence occurs, and also if the following messages are within
the same stream. If the following messages are within the same stream, there is going
to be a corresponding gap in the Stream Sequence Number. Other messages from other
streams will not show a gap. The receiver can then continue to deliver messages from the
unaffected streams, while buffering messages in the affected stream until retransmission
occur.

35

3.5.1.3 SCTP Multihoming Feature

Another core feature of SCTP is multihoming, i.e. the ability for a host to support multiple
IP addresses. The benefits of multihoming are discussed in section 3.1. In traditional
single-homed sessions, the failure of the single path can completely isolate a host. All
addresses a host is available on is exchanged during the connection establishment in order
for SCTP to support multihoming.

The earlier versions of SCTP only supported multiple IP addresses in fail-over
situations. However, it is the recent extensions that have enabled SCTP to support the
use of multiple paths concurrently [28]. Regardless of this, SCTP has not been universally
deployed. One reason is that a majority of firewalls and NAT (Network Address Transla-
tion) boxes are inadequate of processing the SCTP packets, and therefore discard them.
Another reason is that each application must code to a different socket than of TCP. Con-
sequently, SCTP is not backward compatible to current applications. These problems
combined lead to the classic chicken-and-egg problem; the network middleboxes do not
support SCTP in their firewalls because no applications are using this protocols, and no
application is using SCTP because the firewalls discard SCTP packets.

As we will describe in section 4.1.2.2, the Internet today is infested with middle-
boxes that interfere with our data transport. TCP and UDP are the only protocols we can
expect gaining adequate acceptance by the middleboxes. Therefore, a promising solution
to the multipath problem runs on top of TCP, namely MultiPath TCP (MPTCP). MPTCP
has gained a lot of attention from the research community in recent years. MPTCP is also
a transport layer solution, and will be thoroughly described in the next chapter.

36

Chapter 4

MultiPath TCP

This chapter will present and describe the most important concepts of the current MPTCP
proposal by IETF, as defined in RFC 6824 [21]. We will look at advantages, potential
drawbacks, and give an overview of its general operation. We will also take a look at the
proposed Coupled Congestion Control Algorithm for MPTCP, described in RFC 6356 [40].
Finally, we will take at look at how MPTCP handles failures, specifically concerning mid-
dleboxes.

MultiPath TCP is an extension of the existing TCP which achieves resource pooling
and resilience to failures by utilizing diverse paths on the Internet. Unlike ordinary TCP,
MPTCP allows sending and receiving data using different interfaces, with different IP
addresses, simultaneously. In addition, it also provides compatibility with the application
layer and network layer - every modification is done at the transport layer. As a result
of this, MPTCP will appear to applications just as standard TCP, and it also maintains
backward compatibility with existing network designs and segments can traverse the
Internet as it is currently structured. Beneath, figure 4.1 give a comparison of the protocol
stacks of respectively standard TCP and MPTCP.

37

Figure 4.1: Comparison of the TCP (left) and MPTCP (right) Protocol Stack

4.1 Design Goals

As noted in RFC 6182, the development of MPTCP aims to meet both functional and
compatibility goals. The functional goals consist of features that MPTCP must provide,
and the compatibility goals determine how MPTCP should appear to entities that interact
with it. This section is based on the goals as they are stated in [20], and will outline the
main principles behind them.

4.1.1 Functional Goals

When taking advantage of transmission over multiple paths, MPTCP has the following
two functional goals:

Improve Throughput: MPTCP must support the concurrent use of multiple paths. To
meet the minimum performance incentives for deployment, a MultiPath TCP con-
nection over multiple paths SHOULD achieve no worse throughput than a single
TCP connection over the best constituent path.

38

Improve Resilience: MPTCP must support the use of multiple paths interchangeably for
resilience purposes, by permitting segments to be sent and re-sent on any available
path. It follows that, in the worst case, the protocol MUST be no less resilient than
regular single-path TCP.

If the distribution of traffic among available paths are done in accordance with the resource
pooling principle, the use of MPTCP should eventually improve overall network perfor-
mance over the Internet, as traffic will be more balanced by reducing load on congested
links, and taking advantage of spare capacity on other links.

4.1.2 Compatibility Goals

In order to be deployable without complications in today’s network infrastructure,
MPTCP is required to meet several compatibility goals. The following sections will di-
vide the compatibility goals into categories.

4.1.2.1 Application Compatibility

This section refers to the appearance of MPTCP to the applications - both regarding the
API that can be used and the expected services that are provided.

It is essential that MPTCP follows the exact same service model as TCP, and
provide in-order, reliable, and byte-oriented delivery. It is also required that an MPTCP
connection provides the application with no worse throughput and resilience compared
to the best available single-path TCP connection. However, MPTCP may not be able to
provide the same level of consistency of throughput and latency as a single TCP connec-
tion [43]. Extensive backward compatibility to existing TCP APIs must be retained, so
that existing applications can take advantage of multipath transport just by upgrading
transport layer-components in the operating systems of the end hosts. Although, this
backward compatibility should not exclude the possibility of using an advanced API to
allow multipath-aware applications to have specific preferences, or for users to do con-
figurations to their systems that differs from the default settings.

39

MPTCP should desirably implement some sort of similar session continuity as
TCP. The architecture of TCP allows active sessions to handle minor connectivity breaks
by keeping the state of the host static if a possible timeout occurs. However, with MPTCP
a new problem needs to be addressed; if a connectivity break occurs in a multipath ca-
pable connection, which of the interfaces appear afterwards? With regular single-path
TCP, you will only have one interface, and thus the address of this interface will remain
constant. In the case of MPTCP, every interface will have its own address. Therefore,
it’s desirable (but not required) to implement some kind of support for the mentioned
session continuity, which is based on the break-before-make-principle. The break-before-make
term means that the failed connection is completely killed before a new one is established.

4.1.2.2 Network Compatibility

The network compatibility goals refer to how MPTCP should behave in traditional net-
work architecture. The main goal that MPTCP aims to meet is to retain compatibility
with the Internet infrastructure as it exists today, without needing to do modifications to
network devices which operate at the network layer and the layers below that. To meet
this goal, MPTCP is constrained to appear exactly as TCP on the media layers, and us-
ing established TCP extensions where necessary. This requirement makes MPTCP able
to traverse predominant middleboxes, such as NATs, firewalls and proxy servers. If in-
surmountable incompatibilities arise for the multipath extension on a path, MPTCP must
fall back to regular TCP to retain network compatibility. As mentioned, the only modifi-
cations required to support MPTCP remain at the transport layer. However, some infor-
mation about the underlying network layer is required, for MPTCP to satisfy the goal of
seamlessly work with interchangeably IPv4 and IPv6 networks.

Despite the almost exact appearance as TCP, problems may arise regarding pre-
vailing middleboxes. The architecture shown in figure 4.2 was for a long time the default
Internet structure, but this no longer reflects the truth about network operation. Occa-
sionally middleboxes interfere with the transport layer, as illustrated in figure 4.3. The
fact that this possibly can complicate MPTCP deployment and impact the general use of
MPTCP, is a challenge. The main problem we are facing is that middleboxes can strip
or make changes to the TCP header (section 2.2.3). All classes of middleboxes can de-
liberately drop packets carrying unknown TCP options. As we will see in section 4.3.1,

40

MPTCP uses a new TCP Option Kind, which carries information that is essential for suc-
cessful MPTCP operation. Middleboxes should preferably just be concerned about the
delivery of datagrams in the network layer, and thus be forwarding TCP segments with-
out modifying or removing unknown TCP options. Unfortunately, this is not the reality.

Figure 4.2: The Traditional Internet Architecture

Figure 4.3: The Real Internet Architecture

The purpose of the behavior of middleboxes is mainly related to the attempt of optimizing
performance or enhancing security, but naturally this behavior needs to be considered
and accounted for in order to minimize the chances of failure during MPTCP deployment.
In section 4.4.1, we will take a closer look at error handling related to middleboxes.

4.1.2.3 Compatibility With Other Network Users

The main goals of this section is to ensure that the architecture enables new MPTCP sub-
flows to coexist with existing single-path TCP-flows, without competing for bandwidth
in an aggressive way. In the cases where an overloaded link is shared, MPTCP flows
are required not to deliberately harm other users transmitting using a single-path TCP-
connection, beyond the impact of a competing single-path TCP-flow. As a corollary, mul-
tiple MPTCP flows over a shared bottleneck must divide the bandwidth equally with

41

other single-path TCP flows, the same way as single-path TCP-flows would impact the
bandwidth.

4.1.2.4 Security Goals

From a security perspective, MPTCP is required to provide a reliable service with the
same level of security as regular, single-path TCP. However, the extension of a single-
path TCP service to a service with multipath capabilities, will introduce a number of
new threats [41]. Still, the security goals will be achieved by taking advantage of existing
TCP security mechanisms, and combining them with new security measures of protection
against the new multipath threats identified.

4.1.2.5 Congestion Control Algorithm Goals

This section presents the primary goals for the congestion control algorithm selected for
MPTCP. As mentioned, fairness when transmitting through a shared bottleneck is just
one of the goals required for MPTCP. To obtain these desirable qualities, there exist three
goals for the multipath congestion control algorithm:

Improve Throughput: A multipath flow should perform at least as well as a single path
flow would on the best of the paths available to it.

Do no harm: A multipath flow should not take up more capacity from any of the re-
sources shared by its different paths than if it were a single flow using only one of
these paths. This guarantees it will not unduly harm other flows.

Balance congestion: A multipath flow should move as much traffic as possible off its
most congested paths, subject to meeting the first two goals.

These three goals for the congestion control algorithm support and correspond to many
of the goals stated in the previous sections. The combination of the first and second goal
ensure fairness at a potential shared bottleneck, as stated as a goal for MPTCP in sec-
tion 4.1.2.3. The first functional goal defined for MPTCP, is also in accordance with the

42

first goal for the congestion control algorithm - to assure that a service with multiple flows
should never perform more poorly than a regular single-path flow. The third goal empha-
sizes the concept of resource pooling - if a service transmitting over multiple paths sends
more data through the least congested path, it will clear away traffic from the most con-
gested paths. Among other things, this will eventually improve robustness and overall
throughput. The best way to achieve resource pooling is to effectively manage to couple the
congestion control loops for the different subflows.

4.2 Terminology

Before going into detail on how MPTCP operates, we need to define and explain a number
of terms that are essential to this protocol.

Path: A path is defined as a sequence of links between a sender and a receiver. When
a packet is sent, it traverses through many links between different routers before it
arrives at the destination. The total route this packet has traveled, is defined as the
path. In order to achieve resource pooling, an important concept of MPTCP is that the
different subflows will benefit from transmitting over different paths. This concept
is of course dependent on the infrastructure of the network and how the routing is
configured. It is obvious that two different paths can share one or more links, but
as long as they have at least one link which differs, there can be benefits, at least for
reliability and robustness.

Subflow: A subflow is defined as a flow of TCP segments operating over an individual
path, which again forms part of a larger MPTCP connection, naturally consisting
of several subflows. A subflow of MPTCP is initiated and terminated similar to a
regular single-path TCP-connection. As a consequence, data belonging to the same
MPTCP connection can consist of packets with different source and destination IP
addresses and ports.

MPTCP Connection: The MPTCP connection is a set of one or more subflows, and forms
the basis for communication between two end-hosts. The connection and the appli-
cation socket is one-to-one mapped.

43

Token: The token is defined as a locally unique identifier given to a multipath connection
by a host. The token can also be referred to as the Connection ID.

Host: The host is referred to as the end host operating an MPTCP implementation, and
is either initiating or accepting an MPTCP connection.

Path management: The path managers are responsible for how the available paths be-
tween hosts should be utilized.

Packet scheduling: The packet schedulers are responsible for how packets are scheduled
over the available paths. The packet scheduler divides the byte-stream from the
application into segments and then schedules the segments in accordance with the
principles behind the currently used scheduler.

4.3 Protocol Operation

This section will present and give a description of the different mechanisms which are
essential for MPTCP operation, as specified in RFC 6824. These key parts of the proto-
col operation allow MPTCP to create, maintain and close connections that can consist of
several subflows.

4.3.1 MPTCP Options

For signaling between end-hosts, MPTCP uses the TCP Options field. The TCP Option
Kind reserved for MPTCP is 30, and is assigned by the Internet Assigned Numbers Authority
(IANA) [25]. The use of these option subtypes is essential for the support of multipath-
specific functionality and they consist of a single numerical type for MPTCP, with 4-bit
“sub-types” for each MPTCP message.

44

Value Symbol Description

0x0 MP_CAPABLE Multipath Capable

0x1 MP_JOIN Join Connection

0x2 DATA_SEQUENCE_SIGNAL Data ACK and Data Sequence Mapping

0x3 ADD_ADDR Add Address

0x4 REMOVE_ADDR Remove Address

0x5 MP_PRIO Change Subflow Priority

0x6 MP_FAIL Fallback

0x7 MP_FASTCLOSE Fast Close

0x8-0xe Unassigned

0xf Reserved for private use

Table 4.1: MPTCP Option Subtypes

The subtypes specified in table 4.1 will be essential in the following description of the
different MPTCP mechanisms. When a reference to an MPTCP option is made in this
thesis, the symbolic name is used, such as MP_CAPABLE. This does, however, refer to the
TCP Option with the subtype value of the symbolic name.

4.3.2 Connection Establishment

This subsection will describe how an MPTCP connection is initiated, and we will also see
how new subflows are established and added to an existing connection.

To initialize the MPTCP connection, an MPTCP-enabled host opens a regular
TCP-connection by sending an ACK packet with the MP_CAPABLE option. In the cases
where the other host also supports MPTCP, the SYN/ACK response will contain the
MP_CAPABLE option as well. The three-way-handshake is then completed by the final
ACK packet which also contains the MP_CAPABLE option. Now, both hosts know that
the other host is capable of performing multipath transmission, and corollary intends

45

to do so in this connection. In cases where the SYN/ACK response doesn’t contain the
MP_CAPABLE option, it is assumed that the passive opener does not support MPTCP, and
the connection continues as a regular single-path TCP connection.

During the three-way-handshake, the two hosts will also exchange keys and
agree on a cryptographic algorithm to be used for the connection. For now, the only
cryptographic algorithm specified by RFC 6824 is the HMAC-SHA1 algorithm. The ini-
tiating host uses the MP_CAPABLE option in the SYN packet to send a 64-bit key that is
generated specifically for this MPTCP connection. The generation method for this key is
implementation specific, but the key must be hard to guess, and it must be unique for
the sending host at any one time. This unique and random key is then hashed with a
one-way hash function. The resulting HMAC-value (Hash-based Message Authentication
Code) is the 32-bit token for this connection, and all future subflows will use this token to
identify the connection. As we will see, this subflow handshake mechanism ensures that
every subflow is added to the right connection - this is essential in cases where a host
handles thousands of connections.

Figure 4.4: MPTCP Connection and Subflow Establishment

46

After the MPTCP connection has been established between two hosts, new subflows can
be added to the connection. The MP_CAPABLE option is only used in the initialization
of the MPTCP connection, and each host is given a token in order for other subflows to
be able to identify the connection. Both two hosts can at any time during the connection
initiate the establishment of new subflows, and they can be created using the MP_JOIN
option.

4.3.3 Starting a New Subflow

We can of course assume that a multihomed host has knowledge of its own address(es).
While both hosts are allowed to initialize the process of a starting a new subflow, the most
logical and normal will be that the the host that originally initiated the connection take
this responsibility.

The creation of a new subflow is started as a TCP three-way-handshake, with
a normal TCP SYN/ACK exchange. The first SYN-packet is naturally sent from the addi-
tional interface with the new address. Unlike in the initiation of the connection, now the
MP_JOIN TCP option is used, and the token for the connection is sent with it to iden-
tify which connection to be joined by this new subflow. The first MP_JOIN SYN-packet
sends not only the token, which we know is derived from the other host’s key and is static
for each connection, but also a random number and an Address ID. The random number,
called a nonce, is a security precaution, which prevents replay attacks on the authentica-
tion method. As mentioned, a cryptographic algorithm was exchanged during the ini-
tial connection establishment - the HMAC-SHA1 being the only one currently available.
When using this, the hosts will exchange the nonces, combine them with the keys from
the connection establishment, generate a SHA1 hash from the result, and finally exchange
the hash values. This method will prevent an attacker from creating a new subflow to
a multipath capable host, unless the attacker managed to sniff the original key from the
handshake during the connection establishment.

The Address ID can be described as an identifier of the source address from where
a subflow is initiated. As we know, middleboxes can change or remove the source address
in the IP header of a packet, but using the Address ID in the MP_JOIN option assures that
the receiver knows the address of the interface where the subflow originated. When the

47

final ACK is sent, the subflow is created and ready for data transfer. The whole exchange
process is shown in figure 4.4.

The term path management refers to the information exchange regarding addi-
tional paths between hosts. This is basically done by exchanging information about your
additional address(es). One host can notify the other host about an additional address us-
ing the ADD_ADDR option on an existing subflow, containing the new address. The other
host may then decide to initiate the creation of a new subflow to the address received.
This can be useful if a multihomed host is behind a NAT, which may prevent the host
from creating new subflows with others.

If one or more of the interfaces of a host should start to encounter problems,
there is also the REMOVE_ADDR option, which can be used to notify the other host that the
address is no longer reachable and should be removed.

4.3.4 Exchange of Data

In this section the general MPTCP operation for data transfer will be explained. As we
know, an MPTCP implementation takes an input data stream from an application and
splits the data across one or more subflows. To ensure reliable and in-order delivery, data
transmitted over multiple subflows need sufficient control information to be successfully
reassembled at the recipient. Thus, MPTCP uses a 64-bit data sequence number (DSN) to
number all the data being sent over the different active subflows, and each subflow has
its own 32-bit sequence number space, just as regular TCP.

All data packets transmitted contain the DATA_SEQUENCE_SIGNAL (DSS) TCP
option, which carries the Data Sequence Mapping. The data sequence mapping consists
of the data sequence number and the subflow sequence number, in addition to a length for
which this mapping is valid. This mapping maps the subflow sequence space to the data
sequence space, and ensures that data from different subflows are reassembled correctly
and delivered in-order. In the case of failure, the mapping also ensures that data can
be retransmitted on another subflow (mapped to the same DSN). However, RFC 6824
does not specify how the data should be scheduled between the different subflows at the
sender, this aspect is implementation-specific.

48

The DATA_SEQUENCE_SIGNAL option also carry the Data ACK field, a connection-
level acknowledgment for the received data sequence number. This is needed in order to
assure that MPTCP provide full end-to-end resilience, and acts as a cumulative ACK for
the connection as a whole. TCP ensures that the data segments sent over subflows are
acknowledged as usual, but it’s also desired that MPTCP acknowledges the reassembled
data stream. Different subflows may have different RTTs, and this could lead to holes in
the data-level sequence numbers, and would eventually result in the head-of-line blocking
problem [44]. This acknowledgment is necessary for the sender to know at what point it
can free data from the buffer. The Data ACK field specifies the next data sequence number
it expects to receive on either active subflow.

Head-of-line blocking problem: The subflows of MultiPath TCP will naturally go through
paths with different network characteristics. As packets are multiplexed across the
available paths, the paths delay differences can potentially cause out-of-order de-
livery at the receiver. As MPTCP ensures in-order delivery, the packets that went
across the low RTT path will have to "wait" for the packets coming from paths with
high RTT. This phenomenon is known as the head-of-line blocking problem.

4.3.5 Prioritizing of Subflows

How an MPTCP connection choose to schedule traffic over its subflows is implementation
specific, and cannot be dictated by the applications. Local policies decide how the traffic
is divided over the available paths, but in most cases the goal is to maximize throughput
and balance congestion.

Regardless of the scheduling mechanisms, it could be useful for applications or
end users to have some kind of control of which subflow to utilize. A possible scenario
could be a situation where the main subflow is the only one used for regular traffic, but
a secondary subflow is ready for use in the event of failure of the main subflow. This
solution can for example be favorable in cases where the secondary subflow has a high
monetary cost, or any other negative path properties such as variable delay or unstable
throughput.

49

Because of this, MPTCP has implemented the MP_PRIO option. This option sup-
ports two levels of subflow priority: normal priority and backup priority. If an MP_PRIO

option is sent with the B-flag (backup flag) set to 1, it indicates that the path should not
be used for data traffic unless there are no other subflows in the connection where B = 0.
In other words, the subflow can be used in cases where every other subflow with normal
priority fails. Even though a subflow is in backup priority-mode, it is still possible to receive
data from the subflow. The principle is illustrated in figure 4.5. The B-flag with the priority
setting can also be notified during the creation of a new subflow, in the MP_JOIN-option.

Note that the MP_PRIO option with a priority setting is a request from a data
receiver to a data sender, but the sender should comply with the request. Although,
it is possible that a data sender has local policies overriding the fact that a subflow is
configured to backup priority. In situations where you want to change the priority of a
subflow that is temporary unavailable due to unexpected link problems, it is possible
to send the MP_PRIO-option on another subflow and specify the address of the desired
interface by setting the Address ID field.

Figure 4.5: MPTCP Subflow Priority System

50

4.3.6 Closing a Connection

This section will describe the process related to the closing of an MPTCP connection. In
a regular TCP connection, a FIN announces to the receiver that the sender has no more
data to transmit. However, as MPTCP subflows operate independently, a FINwould only
affect the one specific subflow on which it was sent. The semantics of a FIN on a subflow
remains as with ordinary TCP - before both hosts have acknowledged each other’s FINs
the subflow remains open.

For MPTCP, an equivalent mechanism for closing the whole connection is
needed, and this is referred to as the DATA_FIN. The DATA_FIN operates the same way
as the regular TCP FIN - it is an indication that the sender has no more data to send. In
other words could it also be a verification that all data has been successfully received.

The DATA_FIN is sent to the other host by setting the F-flag in the
DATA_SEQUENCE_SIGNAL option to 1. When the first DATA_FIN is sent from a host,
the return of both DATA_ACK and DATA_FIN from the other host is triggered. It is only
needed for the first DATA_FIN to be sent on one subflow, and once it has been acknowl-
edged, all remaining subflows must be closed according to standard TCP FIN-procedure.
This is done as a courtesy to allow middleboxes to clean up state even if an individual sub-
flow has failed. The MPTCP connection is considered closed once both hosts DATA_FINs
have been acknowledged by DATA_ACKs.

The MP_FASTCLOSE option is only used by specific implementations, but acts as
a reset to allow the abrupt closure of the whole MPTCP connection. The option indicates to
the host that the connection will be abruptly closed and no data will be accepted anymore.
MP_FASTCLOSE can be compared to the regular TCP reset (RST) signal, however, this
would only close the concerned subflow and not affect the remaining subflows in the
connection.

51

4.3.7 Coupled Congestion Control Algorithm

In order for MPTCP to comply with the design goals for congestion control, especially
regarding bottleneck fairness, regular TCP congestion control algorithms cannot be used
individually on each subflow [53]. As defined by RFC 5681 [3], regular TCP congestion
control guarantees fairness between all the data flows. Implementing this solution in
each MPTCP subflow, would give the multipath flow an unfair share when paths taken
by its different subflows share a common bottleneck. Say that you have a number of
subflows that share the same bottleneck link or middlebox as several other single-path
TCP data flows - then your number of MPTCP subflows should theoretically achieve the
same throughput as every other single-path flow, and that matter of fact does not meet
the MPTCP congestion control design goals. Taking this circumstance into consideration,
MPTCP congestion control on one subflow can not be independent of the other subflows.
As we can see in figure 4.6, the host benefiting from multipath transport with per-flow
congestion control is unfair to the other single-path flow.

Figure 4.6: MPTCP Shared Bottleneck Problem

This subsection describes the proposed solution to this bottleneck fairness-problem, by
introducing the Coupled Congestion Control Algorithm, defined by RFC 6356. This window-
based congestion control takes the congestion level of the other subflows into account,
and has been designed to comply with the design goals presented in section 4.1.2.5.

This algorithm operates by coupling the additive increase function of the con-

52

gestion windows of the individual subflows, but unmodified TCP behaviour is adopted
in case of packet loss. The algorithm relies on the traditional TCP mechanisms (presented
in section 2.2.4) to detect loss, to retransmit data, etc. The goal of the congestion control
is to make sure that the aggregate throughput of the MPTCP subflows is equal to what a
single-path TCP flow would achieve on the best path available. In order to estimate the
throughput of a regular TCP flow, it is required to compute the target rate by estimat-
ing loss rates and RTTs. Then, the overall aggressiveness (the α parameter) is adjusted
adequately, to achieve the desired rate.

The effect of the mechanism mentioned above is dependent on whether MPTCP
subflows influence the link loss rates or not. In cases where MPTCP does not influence
the link loss rate, the throughput will be equal to TCP on the best available path. In
the opposite scenario, where the MPTCP subflow indeed influences the loss rates on the
path, the throughput of the MPTCP subflow will probably be slightly higher than the
single-path TCP would achieve on any of the paths in use.

Compared to regular TCP mechanisms, the only modification done to the cou-
pled algorithm is actually in the increase phase of the congestion avoidance state. As
mentioned in section 2.2.4, the congestion avoidance state specifies how the congestion
window should increase when an ACK is received.

Beneath is the proposed cwnd increase formula from RFC 6356. Let cwndi denote
the congestion window of the subflow i. The sum of every congestion window of the
subflows that belong to the connection is denoted by cwnd_total. The loss rate, RTT, and
maximum segment size on subflow i are denoted by respectively Pi, RTTi, and MSSi.
In this algorithm it is assumed that the congestion window is maintained in bytes. The
acknowledged data, in bytes, is denoted by B.

• For each ACK received on subflow i, increase cwndi by the following formula:

cwndi = cwndi + min
(

α× B×MSSi

cwndtotal
,

B×MSSi

cwndi

)
(1)

By the second term in the formula (1) stated above we observe that the cwnd will never

53

increase faster than the cwnd of a regular TCP flow. By taking the minimum of the two
terms, we can guarantee that the multipath flow won’t be more aggressive than an ordi-
nary TCP flow under the same conditions, hence fulfilling goal 2 (do no harm).

The term of importance in the formula (1) is the α-parameter, which describe the
aggressiveness of the multipath flow. In order for goal 1 (improve throughput) to be met,
the value of α has to be calculated so that the total throughput of the multipath flow is
equal to the throughput of a TCP flow running on the best available path.

The calculation of the α-parameter is stated below in (2), and the value is cal-
culated based on observed properties of the subflows of the MPTCP connection, where
RTTi is the observed round-trip-time of the subflow i.

α = cwndtotal ·
max

i

(
cwndi
RTT2

i

)
(

∑
i

cwndi
RTTi

)2 (2)

Note:

maxi denotes the maximum value of all possible values of i,
which represents the subflows.

∑i denotes the summation of all possible values of i, which
represents the subflows.

From this algorithm we observe that the window increase is lower than one maximum
segment size (MSS), which means that the subflows of an MPTCP connection will reach
maximum throughput slower than regular single-path TCP flows - cwnd grows slower.
However, this is an intended behavior. The algorithm also makes sure that the cwnd of
subflows that are heavily congested increase at a slower rate compared to a less congested
subflow. This is in accordance with the resource pooling principle - traffic is shifted from
congested links to less congested links, hence balancing congestion more effectively in a
network.

54

When the total throughput of a multipath flow approaches the throughput of
what a regular single-path TCP flow would get on the best flow, the coupled congestion
control-algorithm gradually makes the α-parameter less aggressive, and by doing so, the
growth rate of the cwnd of each subflow is decreased. If congestion arises on one or more
of the subflows, both MPTCP and TCP’s competing flows will halve their cwnd, but given
the fact that TCP’s cwnd increase faster than the cwnd of MPTCP subflows, the single-path
flow will to some degree gain capacity previously possessed by the multipath flow. This
behavior is eventually resulting in fairness between the different flows - links are shared
evenly.

4.4 Failure Handling

4.4.1 Middleboxes

As mentioned in section 4.1.2.2, MPTCP can have some difficulties regarding middle-
boxes that strip or modify information in the TCP header, such as the TCP options. These
challenges are of course accounted for in the development of MPTCP. As stated in the de-
sign goals, MPTCP should always fall back to ordinary TCP if some unexpected behavior
is experienced.

When an MPTCP connection is initiated, the first SYN packet contains the
MP_CAPABLE TCP option. If this TCP option is removed by a middlebox, the return-
ing SYN/ACK packets will not contain MP_CAPABLE either, and MPTCP should fall back
and continue the session using regular TCP.

The same goes for the establishment of new subflows - if the MP_JOIN option
is removed from the outgoing SYN packet, the reply will be either a SYN/ACK or a RST

(connection failure). In the case of a SYN/ACK response, the initiator will send a RST,
simply because the reply did not contain the MP_JOIN option and the connection token,
and thus the subflow is not multipath capable and the establishment fails. This failed
subflow establishment does not affect other aspects of an ongoing MPTCP connection.
If an MP_JOIN-request fails, the initiator should not attempt the same MP_JOIN-request

55

again to the same address, unless the other host sends an ADD_ADDR containing updated
address information.

Situations can occur where NATs might change the source address and source
port of packets, which means that it exists a possibility that a host does not know its
public-facing address used for signaling MPTCP options. In cases like this it can be prob-
lematic for other hosts to establish subflows. Therefore, the Address ID-field has to be
used during the MP_JOIN-request, signaling the hosts source address and port.

Another obstacle that can be met, is firewalls that possibly perform sequence
number randomization on the TCP header for security reasons [22]. As MPTCP uses
relative sequence numbers in the data sequence mapping, this should not be a problem.
Firewalls can also place a limitation on the amount of incoming connections permitted.
In these cases, it is necessary for the "protected" host to signal its address(es) using the
ADD_ADDR-option, so other hosts can connect to additional interfaces behind the firewall.
If unforeseen occurrences arise, that may be caused by middleboxes or not, the standard
MPTCP procedure is, regardless of cause, to fall back to regular TCP.

56

Chapter 5

NORNET CORE:

A Multihomed Research Testbed

Today, our society heavily relies on the diverse services the Internet provides. However,
failures are unavoidable, and can have some serious consequences. When our networks
experience failures, it is important to mitigate the consequences as much as possible. We
also need to ensure the availability of especially critical services.

The Internet is big and complex, and carries a magnitude of critical services.
This acts as an obstacle in terms of doing changes to the current infrastructure, as new
protocols, algorithms and software have to be comprehensively tested and proved be-
fore being deployed. Not to mention, these tests must be done in realistic environments
for the results to be legitimate and credible. To satisfy this obligation in the context of
multihoming, the NORNET [23] testbed has been realized by Simula Research Laboratory.

5.1 The Design

The NORNET testbed is made up of two parts, NORNET CORE and NORNET EDGE. NOR-
NET EDGE is the wireless part of the testbed, and consists of several hundred nodes. It

57

is a wireless infrastructure for conducting measurements and experiments with cellular
networks, such as Telenor, Telia and OneCall.

NORNET CORE is the wired part of NORNET, where the sites are connected by
wired Internet connections. Initially, NORNET CORE consisted of 10 programmable sites
that was geographically spread across large parts of Norway, mainly at universities and
research institutions. There were additionally two sites in Germany and China, but today,
the NORNET CORE network consist of 18 sites in several different countries. Most of the
sites are connected to at least two wired Internet Service Providers (ISPs). Table 5.1 shows
the deployment status of NORNET CORE in April 2016. The ten initial sites from Septem-
ber 2013 have expanded to 11 domestic sites (no. 1 to no. 11) and nine international sites
(no. 30 to no. 200).

No. Site ISP1 ISP2 ISP3 ISP4
1 Simula Research Laboratory Uninett Kvantel Telenor PowerTech
2 Universitetet i Oslo Uninett Broadnet PowerTech
3 Høgskolen i Gjøvik Uninett PowerTech
4 Universitetet i Tromsø Uninett Telenor PowerTech
5 Universitetet i Stavanger Uninett Altibox PowerTech
6 Universitetet i Bergen Uninett BKK
7 Universitetet i Agder Uninett PowerTech
8 Universitetet på Svalbard Uninett Telenor
9 Universitetet i Trondheim Uninett PowerTech
10 Høgskolen i Narvik Uninett Broadnet PowerTech
11 Uni. i Oslo og Akershus Uninett
30 Karlstads Universitet SUNET
40 Universität Kaiserslautern DFN
41 Hochschule Hamburg DFN
42 Universität Duisburg-Essen DFN Versatel
43 Universität Darmstadt DFN
88 Hainan University CERNET China Unicom
100 University of Kansas KanREN
160 Korea University KREONET
200 National ICT Australia AARNet

Table 5.1: NORNET CORE Deployment Status, April 2016

Each of the sites consists of a set (of any size) of servers and a switch, where one of the

58

servers acts as a tunnelbox. The tunnelbox is responsible for connecting its own site to
other sites in NORNET CORE, by using the available set of ISPs. The site’s tunnelbox cre-
ates connections, or more precisely tunnels by using all possible combinations of local and
remote ISPs at the other site’s tunnelboxes. The topology of the NORNET CORE is there-
fore a fully connected mesh, which means there are direct links between any two nodes in
the network. The other servers at a given site that are not the tunnelbox are called nodes,
and are connected by the switch. These additional nodes host the virtual resources that
are made available for researchers to perform experiments. Most often, a site consists of
at least three servers, but this number can however vary from site to site. The NORNET

CORE architecture is shown in figure 5.1.

Figure 5.1: NORNET CORE Architecture

The administration of resources and users is realized by the use of a PlanetLab/OneLab
installation. Nodes that are based on the PlanetLab/OneLab software are Linux-based
physical machines that run virtual machines. Initially, the NORNET CORE was based on
the original PlanetLab software, but today it is based on a PlanetLab code branch, namely
OneLab. OneLab is a European testbed initiative that is built on the PlanetLab core, but
has several advantages over it. Originally, the PlanetLab software applied the Linux-
VServer, which is no longer a part of the mainline kernel, and is therefore troublesome
to use. The mainline Linux kernel today prefers the approach of Linux Containers (LXC),
providing relatively similar functionalitiy. LXC is an operating-system-level virtualiza-
tion method for running multiple Linux systems on a control host using a single Linux

59

kernel. As the development of PlanetLab/OneLab also went in the LXC direction, an
LXC-based OneLab build is the research testbed platform used by NORNET CORE. In ad-
dition to the LXC providing a much easier possibility to user state-of-the-art Linux kernels
and software, it also provides a significantly improved network handling in comparison
to the original PlanetLab.

As mentioned earlier, most sites are connected to at least two ISPs. Each ISP i
is given a NORNET Provider Index, denoted Pi ∈ [1, 255] ⊂ N. A site a is identified by a
unique identification number, called the NORNET Site Index, denoted Sa ∈ [1, 255] ⊂ N,
and are connected to its ISPs, denoted P̂a = {Pa1, Pa2}. If Sa, with its two ISPs, is con-
nected to Sb with P̂b = {Pb1, Pb2, Pb3}, there would be |P̂a| × |P̂b| = 2× 3 = 6 possible
paths from Sa to Sb. Figure 5.2 illustrates this.

Figure 5.2: NORNET Tunneling

This means, traffic from Sa can use the two outgoing providers P̂a, and traffic received
at Sb can come in from its three incoming providers. All six possible paths from Sa to Sb

are represented by static tunnels among the corresponding sites’ provider endpoints. Of
course, these tunnels will differ in both throughput and delay, as the NORNET testbed
prefers to have a mix of different connection types. That means, while it will still be
connected using high-speed connections, it is also desired to add the type of connectivity
that is provided to "regular" users, such as consumer-grade broadband Internet access.
This selection of different Internet access types, will allow for representative network
evaluation experiments. For consumers, a typical scenario would be to compare a high-
speed fiber-link with a more limited ADSL-link.

60

5.2 The Implementation

5.2.1 Testbed Management

The nodes that are based on the PlanetLab/OneLab platform are centrally administrated
by a PlanetLab Central (PLC). The PLC takes care of the managing of user accounts, sites,
nodes and the so-called slices. It also provides a web-based administration interface, man-
aging the PLCAPI. A slice is a reserved set of resources in the testbed. A node’s resources
can be split into multiple slices. For each slice, the physical node will instantiate its own
virtual machine, denoted as a sliver. A node is therefore shared among all researchers
having slivers on it. The PLC also include a tag feature, which allows custom exten-
sions by adding tags to the database. Tags are additional information to be managed, e.g.
testbed-specific configuration parameters. Custom, NORNET-specific configurations are
then realized by appropriate tags, e.g. tunnelbox configurations (such as ISPs, addresses
etc.). A tunnelbox can also use the PLCAPI to obtain configuration data for setting up
interfaces, routing policies, as well as for dynamically providing information about any
changes to the list of connected ISPs.

5.2.2 The Sites

Each NORNET CORE site needs appropriate hardware to provide resources for re-
searchers. Therefore it was decided to deploy the setup shown in figure 5.3. At the time
the NorNet Core Handbook [18] was written, all NORNET CORE sites physically consisted
of four HP DL320 servers, all with the same hardware specifications (e.g. two Ethernet
interfaces). However, since server 1 is intended to work as a tunnelbox for the site, it is
also equipped with an additional Network Interface Controller/Card (NIC), with four Ether-
net ports. These ports are used to connect to the different ISPs, such as Uninett, Kvantel,
Telenor and PowerTech. The switch connects all of the servers to the tunnelbox, which acts
as a router. The fourth server is equipped with a global Uninett IP-address to provide
access to a site, in case the tunnelbox is not working properly.

61

Figure 5.3: NORNET CORE Site Schematic View

The servers are installed with Ubuntu Linux 12.04 LTS, a server installation that is de-
scribed as "minimal". The purpose of this is to offer the basic configuration tasks and
Secure Shell (SSH) for remote login, as well as running VirtualBox to host virtual machines.
This means that the tunnelbox and all the research systems are realized as virtual ma-
chines, which allows for good hardware resource utilization. It also allows researchers to
easily backup and restore virtual systems, without requiring physical access to the hard-
ware itself.

5.2.3 Tunneling Setup

To set up IPv4 tunnels between two hosts, Generic Route Encapsulation (GRE) is used. GRE
is a tunneling protocol that can encapsulate a wide variety of network layer protocols
inside virtual point-to-point links over an IP network. IPv6 uses direct tunneling over
IPv6, but if there no IPv6 interconnection between two hosts, GRE is used.

62

To be able to use the tunnels appropriately, the routing has to be configured.
For multihomed hosts, the default routing (longest prefix matching) is not sufficient. All
packets for a destination address would then take the same route via the same ISP by
default. When a host is multihomed, the source address must also be taken into consider-
ation. Packets with source address Uninett, should go over the Uninett interface, as should
packets with source address Altibox go over the Altibox interface. By applying IP-rules,
i.e. own routing tables, for each ISP, this functionality is implemented.

5.2.4 Addresses in NORNET CORE

The tunnelbox also functions as a DNS server at the sites - providing the internal, pri-
vate NORNET CORE network addresses. To make it easier for researchers to work
with the nodes at the different sites, each site has its own second-level domain be-
low the top-level-domain (TLD) .nornet - as an example uib.nornet for nodes lo-
cated at the University of Bergen. Every node has its own name, for example the node
lungegaardsvannet, located at the University of Bergen, can be reached at the address
lungegaardsvannet.uib.nornet. In order to use these internal addresses, we must
of course go through the Gatekeeper server, which acts as a tunnel from the outside Internet
to the internal network of NORNET CORE.

5.2.5 Accessing the Testbed Slivers

In order to perform experiments in the NORNET CORE testbed, a user account for the
PLC server is necessary. The new user then has to store a Secure Shell (SSH) key on the
PLC server, as it will be used to authenticate users when accessing slivers. A user is then
affiliated with one or more new or existing slices, where experiments can be done. A slice
will most often represent one project. A new slice, uib-mptcp, was created in the context
of this thesis.

To access the NORNET CORE network, the user can simply connect a computer
to the local NORNET network at one of the sites. For now, external users has to connect
via the Gatekeeper server (gatekeeper.nntb.no), but eventually it is intended to make the

63

network available via a Virtual Private Network (VPN) to the Simula central site. SSH is
used to access the Gatekeeper remotely, which is just a Linux server that is connected
to the NORNET CORE network as well as the outside Internet. Any operating system
with the appropriate tools (mainly SSH) can be used. To be able to use SSH on Windows
machines, you can use PuTTY, a free SSH and Telnet client for Windows [52]. An SSH
connection to the Gatekeeper-server can then be established by the following command:

1 ssh [username]@gatekeeper.nntb.no

After accessing the Gatekeeper, we are presented with the display in figure 5.4

Figure 5.4: NORNET Gatekeeper

We can then connect to any of the slivers on a corresponding slice by an SSH command
on the following format:

1 ssh -i [RSA-key] [slice]@[node].[site].nornet

64

For example, if we want to connect to one of the slivers on the node lungegaardsvannet,
located at the University of Bergen, we can use the following command:

1 ssh -i ~/.ssh/id_rsa uib_mptcp@lungegaardsvannet.uib.nornet

Inside a sliver, the user is presented with a Linux environment that can be configured as
needed, e.g. by installing additional software, like standard software from the standard
repository or custom software for research experiments. After accessing the sliver, the
user is presented with the display in figure 5.5.

Figure 5.5: NORNET Sliver

As we can see in figure 5.5, a selected amount of information about the sliver is presented
to the user when logging in. The user can then see which slice one is working on, the
name of the node, the uptime of the node, which Linux distribution the sliver is running
on and some memory statistics. Additionally, the network configuration of each sliver
will show a single Ethernet interface, eth0, that has one or more logical IPv4 and IPv6
networks configured - one for each ISP it is connected to.

Earlier we mentioned that NORNET CORE implements server virtualization,
meaning that all physical servers (the nodes) are split into one virtual Linux environ-
ment (the slivers) per slice. That means if there are 12 slices on a physical server, there are

65

also 12 slivers per physical server. In NORNET CORE, there will typically be one slice for
each project that is using the testbed. Accordingly, in a setup with six physical servers at
a site, there would need to be 12× 6 slivers, per site. Of course, the server redundancy in
NORNET is provided to handle server failures. Having multiple researchers sharing the
same resources (without virtualization) can often provoke resource conflicts. Addition-
ally, providing separate hardware for each sliver can become expensive when scaling.

There are multiple other reasons that the NORNET CORE implements virtual
machines. The advantages of server virtualization are discussed in the next section.

5.2.6 Virtualization

The cost of wasted storage space, processing power and network utilization can be ex-
pensive, but server virtualization allows the flexibility to change the system resource
allocation for the virtualized environments. Since these virtual servers can run on any
machine, it means that the machine resources are fully shared between different users,
which in turn ensures a high utilization level of the physical resources. Furthermore, if
any of the physical resources are changed, it does not alter the virtualized servers. Server
virtualization allows a growing, realistic testbed like NORNET to have a sufficient level
of scalability and availability.

5.3 The NORNET MPTCP Implementation

The two most important MPTCP implementations are the FreeBSD-based implementa-
tion by the Centre for Advanced Internet Architectures (CAIA) at Swinburne University,
as well as the Linux Kernel MPTCP implementation by the Université catholique de Louvain
(UCL) [55]. While the first is still under development, the UCL implementation is by far
the most widespread one. It is used by the IETF MPTCP working group as their reference
implementation as well. Because of this, the UCL implementation is also the one used in
the NORNET CORE testbed. In the following sections, installation and configuration of
the UCL Linux Kernel MPTCP implementation are described.

66

5.3.1 Installation

First of all, the git-repository needs to be accessed and cloned with the following com-
mand:

1 git clone --depth=1 git://github.com/multipath-tcp/mptcp.git

When the repository is downloaded, the kernel is configured by doing make xconfig or
make menuconfig. After this your kernel need to be compiled, installed and rebooted.

The following command will then enable MPTCP:

1 sysctl -w net.mptcp.mptcp_enabled=1

Since the UCL MPTCP implementation is used in NORNET, section 5.3.2 will describe
how to configure the MPTCP options and system variables.

5.3.2 Configuration

The sysctl interface, where you modify kernel parameters at runtime, is used to con-
figure the Linux Kernel Implementation of MPTCP, and its configurations are described
next. To set a sysctl MPTCP-variable, the following format describes how:

1 sysctl -w net.mptcp.[name of the variable]=[value]

The following variables are available:

enabled

This option is used to enable or disable MPTCP support. MPTCP is enabled when
the value is set to 1. In order to disable, the value is set to 0 (default value is 1).

mptcp_checksum

This option is used to enable or disable the MPTCP checksum. Note: Unless both
hosts have disabled the checksum option, it will be used (default value is 1).

67

mptcp_syn_retries

This option specifies how many times a SYN with the MP_CAPABLE-option is re-
transmitted (default value is 3). If the number of retransmits reaches this number,
the next SYN packet will not contain the MP_CAPABLE-option. The connection will
then fall back to regular TCP. This is done because of middleboxes that drop SYNs
containing unknown TCP options, as described in section 4.4.1.

For example, to switch from the default number of MPTCP SYN retries to five, use the
following command:

1 sysctl -w net.mptcp.mptcp_syn_retries=5

5.3.2.1 Congestion Control

You can also configure different congestion controls with the sysctl command. You can
change them with a command on the following format:

1 sysctl -w net.ipv4.tcp_congestion_control=[congestion control]

The congestion controls options available are:

Linked Increase Algorithm [lia] The Linked Increase Algorithm [40] (also known as the
Coupled Congestion Control), described in detail in section 4.3.7, couples the conges-
tion control algorithms running on different subflows by linking their additive in-
crease functions, and dynamically controls the aggressiveness of the multipath flow.
The result is a practical algorithm that is fair to TCP at bottlenecks while moving
traffic away from congested links. This is chosen as the default congestion control
algorithm for this MPTCP implementation.

Opportunistic Linked Increase Algorithm [olia] Similarly to LIA, the Opportunistic
Linked Increase Algorithm (OLIA) couples the additive increases and uses unmod-
ified TCP behavior in the case of loss. By measuring the number of transmitted
bytes since the last loss, it reacts to events within the current window. By adapting
the window increases as a function of RTTs, OLIA also compensates for different
RTTs. OLIA provides fairness and theoretically optimal congestion balancing [29].

68

Delay-based Congestion Control for MPTCP [wvegas] The Delay-based Congestion Con-
trol for MPTCP is also known as weighted Vegas (wVegas), since it share character-
istics with TCP Vegas. As LIA and OLIA are based on packet loss events, wVegas
adopts packet queuing delay as the congestion signals. This is supposed to make
wVegas more sensitive to the changes of network congestion, which in turn should
achieve more timely traffic shifting [58].

Balanced Linked Adaption Congestion Control Algorithm [balia] The Balanced Linked
Adaption Congestion Control Algorithm (Balia), is a window-based congestion control
algorithm for MPTCP. The algorithm only applies to the AIMD (Additive Increase
| Multiplicative Decrease) part of the congestion avoidance phase. The other parts,
such as slow start, fast retransmit and fast recovery algorithms are the same as in
regular TCP. The result is a MPTCP algorithm that strikes a good balance between
friendliness and responsiveness. Balia is described in detail in [56].

For example, to change from the default Linked Increase Algorithm to the Delay-based Con-
gestion Control for MPTCP, use the following command:

1 sysctl -w net.ipv4.tcp_congestion_control=wvegas

5.3.2.2 Path Manager

A path-manager controls the behaviour of an MPTCP-enabled host regarding the handling
and creation of subflows. If a path-manager is not selected, a host will not attempt to
create new subflows, nor will it inform the other host of alternative IP-addresses through
the ADD_ADDR-option. To set a specific path-manager, use the following command:

1 sysctl -w net.mptcp.mptcp_path_manager=[path manager]

In the current implementation, four different path-managers are available:

default This path-manager is passive, as described above. It doesn’t initiate the cre-
ation of subflows, nor does it advertise available IP-addresses. However, if the other
host in the connection initiates more than one subflow, it will accept them.

69

fullmesh The fullmesh path-manager will create a full mesh of subflows on all available
interfaces to all available IP-addresses at the other host. This means that a subflow
will be created to every interface at the receiver, from each one of your interfaces. If
both hosts have three interfaces, nine subflows will be created (3× 3).

ndiffports The ndiffports path-manager will create a predetermined amount of sub-
flows between a pair of IP-addresses (interfaces), transferring over different ports
(hence the name). To configure the number of created subflows, a value ≥ 1 can be
set with the following command:

1 sysctl -w net.mptcp.mptcp_ndiffports=[value]

binder This path-manager uses a model described in the paper Binder: A System to Ag-
gregate Multiple Internet Gateways in Community Networks [10].

5.3.2.3 Scheduler

In section 4.3.4, we mentioned the head-of-line blocking problem, which can be a result of
poor scheduling of packets. This can in turn affect the MPTCP performance. Accurately
scheduling data across multiple paths, while avoiding the head-of-line blocking problem is
difficult, but important. Therefore, it exists multiple implementations of schedulers, ap-
proaching the problem differently, and having different characteristics. You can select one
of the pre-compiled schedulers by using the following command:

1 sysctl -w net.mptcp.mptcp_scheduler=[scheduler]

Currently, there exits multiple schedulers [37], but in the current implementation you
have the choice between two of them:

default This scheduler is the default one, hence the name. It is also known as the
Lowest-RTT-First (LowRTT). It will initially forward packets to the TCP subflows
with the lowest RTT, until that subflow’s congestion window is full. Thereafter, it
will start transmitting packets on the subflow with the next lowest RTT, and so on.
The default scheduler is currently the best performing, among of the ones available
in this implementation [54].

70

roundrobin The roundrobin scheduler will transmit data according to the round-robin-
principle - transmitting data on one subflow, then moving on to the next, with fixed
intervals. It is possible to configure how many concurrent segments to be sent by
modifying the value of num_segments in the sysfs - the default value is 1. In
addition to this, it is also possible to set the boolean value cwnd_limited, speci-
fying whether or not the scheduler attempts to fill the congestion window on all of
the subflows (true), or if it prefers to have empty space in the congestion windows
(false), in order to comply with the real round-robin, even if the different links are
of varying capacities. This scheduler should not be used if you are unsure of the
capacities of your links - then its performance would be very poor. This scheduler
is mainly only interesting for academic- and testing purposes.

For example, to switch from the default scheduler to roundrobin, you can use the following
command:

1 sysctl -w net.mptcp.mptcp_scheduler=roundrobin

71

Chapter 6

Methodology and Results

In the previous chapter, the testbed which forms the basis for our experiments was pre-
sented. The main objective of the NORNET testbed is to give us an environment where
different aspects of performance can be evaluated under real network conditions at dif-
ferent multihomed sites. This chapter describes the experiments we are going to run, in
order for us to analyze and evaluate MPTCP performance. Section 6.1 will give our ex-
pectations for MPTCP, and then section 6.2 will present the tools used for evaluation and
our methods for gathering data. After examining the means of our experiments in section
6.4, we will conduct them in the NORNET CORE testbed. Results, comments, and possible
explanations, will be given for each of the tests.

6.1 Expectations

Prior to having any actual results, we will present some expectations regarding the actual
performance of MPTCP in real-life scenarios.

Throughput
We expect that the total throughput of an MPTCP connection is better, or at least
equal to a single-path TCP connection running on the best available path. It would

72

be surprising if MPTCP provides a lower total throughput than a single-path con-
nection. We have learned that the Coupled Congestion Control Algorithm acts less
aggressive than the regular TCP congestion control algorithms, but can this result
in an overall performance below our expectations?

Latency
Naturally, the latency on a given physical link should be more or less identical irre-
spective of which transport protocol used. But the latency can vary between links,
and with MPTCP we have the opportunity of always benefiting from the link with
the lowest latency. The exact behavior is difficult to predict, but it should be ex-
pected that overall MPTCP latency could be slightly higher compared to TCP over
the best path. This can be explained by the fact that MPTCP has more overhead
than TCP, in addition to the processing that has to be done in order to assemble the
segments coming from each subflow in to a continuous byte-stream. However, we
know that when links are congested, the latency often increases. We hope to see that
MPTCP can balance traffic over the different paths in a way that will give benefits in
form of low latency. As data are divided over different subflows, one unstable link
can influence the performance as the host receives packets out-of-order and might
have to wait for a retransmit - which most possibly will result in a delay.

Reliability
Reliability is probably the area where MPTCP really should excel, as its fundamen-
tal architecture is based on utilizing diverse paths connected to several interfaces
simultaneously. Therefore, we expect that a seamless connection is provided even
though one or more of the links get disconnected or doesn’t respond.

6.2 Evaluation Tools

This section will give a description of the tools we used during our evaluations. These
tools provided us with the experimental data needed, and helped us to analyze it.

Tcpdump
tcpdump is a packet analyzer which can output or store packets that are being trans-
ferred over the network(s) you are connected to through your interface(s). When

73

storing data, the libpcap (packet capture) API is used, which allows us to capture all
network traffic and dump it to a local file. This file can later on be analyzed.

Wireshark
Similar to tcpdump, Wireshark is also a packet analyzer tool, but with a graphical user
interface. In addition, it has some more advanced features for filtering and grouping
of packets. Wireshark is used to study network communication protocols, network
troubleshooting and for educational purposes.

NetPerfMeter
NetPerfMeter is a transport protocol evaluation tool. The software is open source,
and currently support the use of TCP, UDP, MPTCP, SCTP and DCCP. NetPerfMe-
ter measures the performance of network links, in terms of throughput and jitter.
Data can be sent in each direction, between a passive- (server) and a active side
(client). The data flows can be configured in a number of ways, including only us-
ing unidirectional or bidirectional flows and concurrent use of MPTCP and TCP.
After running a performance test, flow statistics are recorded to scalar- and vector
result files.

Ping
Ping is a statistical network software utility which is used to measure the reachabil-
ity and RTT of a specified host connected to the Internet or on a local network. It
operates by sending a ICMP (Internet Control Message Protocol) packet with an Echo
request to the specified IP-address or host name, and then waits for the Echo Reply
ICMP-packet. In addition to the minimum, maximum and average RTT, Ping also
reports network errors and packet loss.

Traceroute
Traceroute is a network diagnostic utility, which shows you the route between two
endpoints on a computer network. Unlike Ping, which only measures the delay to
the destination, traceroute also measures the delay between the different hops on the
route.

Tcptrack
Tcptrack is a monitoring utility which lists all TCP connections on the network inter-
face given as an argument. The source- and destination addresses of each connec-
tion is given, in addition to the state and bandwidth usage.

74

The combination of tcpdump and Wireshark allows us to study and analyze captured
packet data from our testbed. In this way, we can also study MPTCP connection estab-
lishment, the creation of subflows, and look at the various TCP options that MPTCP make
use of. Packet capture data can also be useful when analyzing subflows and the balanc-
ing of throughput between them, connection handovers and subflow latency. Given that
MPTCP is still in the development process, and not yet fully deployed, there is not a large
selection of performance evaluating tools with specific support for it. However, using
the described tools, we are provided with the data we need in order to give an adequate
analysis and evaluation.

6.2.1 Gathering Experimental Data

To collect experimental data, we first need to start a data transfer between two NORNET

CORE endpoints (slivers). For this, we use NetPerfMeter, which we have to start at both
the active side and the passive side. In section 5.2.5, we describe how you can access a
sliver through SSH. We can easily access two slivers on the same computer by starting
multiple shells.

After accessing the slivers, we can start a NetPerfMeter session. The passive side
(server) has to be started first, which is done by the following command:

1 netperfmeter 9000

Figure 6.1: NetPerfMeter Passive Side

NetPerfMeter is now in server mode, waiting for connections on port 9000. Figure 6.1
shows NetPerfMeter listening at the passive side. The passive side will listen for con-

75

nections until it is manually stopped, which is desired in our setup. The receiving and
sending rate is also shown in the figure. For a one-directional TCP flow, the passive side
sending rate will naturally be zero. After the passive side is started, we can start the active
side:

1 netperfmeter [IP address of passive side]:9000 \

2 -runtime=60 \

3 -tcp const0:const1460:const0:const0:cmt=off

This command will start a saturated TCP flow from the active to the passive side,
transmitting for 60 seconds. The -tcp argument will open a TCP connection, and
the following parameter will set some flow-specific variables. The first four vari-
ables, outgoing_frame_rate, outgoing_frame_size, incoming_frame_rate, incoming_frame_size
(const0:const1460:const0:const0) may be substituted by the option "default", which will
create a flow with default values.

The cmt argument configure the use of Concurrent Multipath Transfer (CMT). We
use this option to switch between the use of MPTCP (mptcp) and TCP flows (off). To
start an MPTCP flow between the active and passive side, with default flow-specific vari-
ables, we use the following command:

1 netperfmeter [IP address of passive side]:9000 \

2 -runtime=60 \

3 -tcp default:cmt=mptcp

The active side will now send data to the passive side using MPTCP, for 60 seconds. One
of the most important features in NetPerfMeter is to easily get machine-readable result
files. No statistic data from the connection will be stored unless we explicitly ask for it.
The following command lets us save statistics from the connection in vector- and scalar
files:

1 netperfmeter [IP address of passive side]:9000 \

2 -runtime=60 \

3 -scalar=scalars.sca \

4 -vector=vectors.vec \

5 -tcp default:cmt=mptcp \

76

The performance of the data channels (like throughput and jitter) is evaluated and then
stored on the passive side, as well as uploaded to the active side. We can then access these
files using Secure Copy (SCP):

1 scp -i [RSA-key] [slice]@[node].[site].nornet: \

2 [file name].[file format] [local destination]

Starting NetPerfMeter on the active side will show the following:

Figure 6.2: NetPerfMeter Active Side

As you can see in figure 6.2, different connection data are provided. Just as in figure
6.1, sending- and receiving rate is shown, as well as duration, CPU usage and number of
flows. The information given also includes some frame-rate and size information, as well
as some MPTCP specifics, such as congestion control, path manager and scheduler. You
can also see that both the congestion control and the scheduler are set to default, but are
indeed switchable through NetPerfMeter. NetPerfMeter has the ability to set socket options
before initiating an MPTCP connection, by specifying flow options as a parameter. We are

77

planning to do some experiments in respect to congestion controls and schedulers in the
later sections.

To examine the experimental data which NetPerfMeter does not offer, we use
tcpdump and Wireshark, as mentioned earlier. The NORNET CORE Linux distributions
had tcpdump pre-installed, and it is easily used:

1 sudo tcpdump -ni eth0 -s0 -w [file name].pcap

This command generates a pcap-file containing all the packets transmitted or received
over the eth0 interface. In addition to tcpdump and Wireshark, we used tcptrack to provide
us with some empirical data. We used tcptrack to monitor each subflow’s throughput, and
to ensure that MPTCP was working properly during our tests, by reading the source- and
destination addresses, connection state, idle time and bandwidth usage for each subflow.
Tcptrack as it is will not give us any statistics or the ability to plot data, but we used it
solely for monitoring and observation reasons. It can be started at any time, as it just
listens on the interface given as an argument. Tcptrack does not come pre-installed, but
the following command will install it:

1 sudo dnf install tcptrack

The installation will have to be executed at each sliver where we want to use it. To start
tcptrack, use the following command:

1 sudo tcptrack -i [interface]

Since the slivers have only one interface (with multiple logical addresses), we replace
[interface] with eth0. Tcptrack will still be able to distinguish between the subflows. Figure
6.3 illustrates how tcptrack looks after starting an MPTCP connection:

78

Figure 6.3: Tcptrack During an MPTCP Transfer

More specifically, figure 6.3 shows how tcptrack provides us with per-flow information.
Note that the number of flows equals the number of client ISPs × the number of server
ISPs (3 × 2). This substantiates what we mentioned in section 5.1, it is indeed a fully
connected mesh.

6.3 Analysis of Packet Capture

In order to see how MPTCP connections operate in practice, the tcpdump tool was used to
capture all packets during the initiation, data exchange, and closure parts of an MPTCP
connection. The Wireshark tool was then used to examine the captured packet data. This
section will present the most relevant options used for signaling, which are essential
for connection handling. As described in section 4.3.1, the MPTCP signaling messages
are sent in the TCP Options field, with the TCP Options number (Kind) 30. Screenshots
from Wireshark are provided beneath, showing the MPTCP options in different scenarios.

79

The experimental data used in this case comes from an MPTCP transfer between the ren-
nesoey.uis.nornet node, located at the University of Stavanger with three connected ISPs,
and the nordberg.simula.nornet node, located at Simula Research Laboratory with four con-
nected ISPs.

Figure 6.4: Wireshark screenshot - MP_CAPABLE signal

Figure 6.4 shows the establishment of a new MPTCP connection. The TCP Options of the
selected packets in the screenshot can be seen inside the outer red rectangle. The connec-
tion starts with the first SYN packet sent from 10.1.5.146 (rennesoey) to 10.1.1.183

(nordberg), containing the MP_CAPABLE (MPTCP option value 0) option. In other words,

80

the rennesoey node asks the nordberg node if it is multipath capable. Further, we can see
that the nordberg node replies with a SYN/ACK, and then the final ACK is sent from ren-
nesoey. We can also see that this packet contains the senders key, and the subflow token
generated from the key, as described in section 4.3.2. From the MPTCP flags, which is
also sent through the TCP Options, we observe that the "Use HMAC-SHA1"-value is set
to 1, which tells us that this is the agreed cryptographic algorithm to be used for the
connection.

Figure 6.5: Wireshark screenshot - ADD_ADDR signal

Figure 6.5 shows us that nordberg sends a packet with the ADD_ADDR option to rennesoey,

81

where an additional IP-address is announced (10.2.1.183), as marked in the figure.
This tells rennesoey that nordberg also can be reached at an additional address. After-
wards, as we can see in figure 6.6, rennesoey (10.1.5.146) sends a packet to the newly
announced address 10.2.1.183 containing the MP_JOIN option (MPTCP option value
1), which means that it wants to create a subflow between the two IP-addresses. We
can also see that the packet contains the receiver’s token, the number needed in order for
the receiver to know which MPTCP connection (the node might have several active con-
nections) this subflow is supposed to be added to. The sender’s random number is also
provided.

Figure 6.6: Wireshark screenshot - MP_JOIN signal

82

Figure 6.7: Wireshark screenshot - DSS signal

Figure 6.7 shows an MPTCP connection transmitting data - naturally with the DATA_-

SEQUENCE_SIGNAL option (MPTCP option value 2), giving the data sequence number and
subflow sequence number, as described in section 4.3.4. In figure 6.8, the closure of the con-
nection is showed. In the DATA_SEQUENCE_SIGNAL option, now the DATA_FIN flag is
set, signaling the initiation of connection closure. As we also can observe from the figure,
FIN is set in the TCP flags as well (marked in blue), to make sure that the connection is
closed even if the TCP options are dropped. As mentioned in section 4.4.1, TCP Options
can be dropped due to middleboxes.

83

Figure 6.8: Wireshark screenshot - The Closure of a Connection

6.4 Experiments and Results

In the following subsections, different experiments will be presented and conducted in
our testbed. Every test is run for 60 seconds, between two specified nodes in NORNET

CORE. We believe that 60 seconds will be enough for TCP to stabilize and give us suf-
ficient data. A shorter run time may not show behaviour that develop over time, and a
longer run time would result in too much experimental data for us to effectively analyze.

84

All throughput values stated are given in Mbit/s, and all latency values are given in ms.
In the introduction part of each test, the ISPs of the involved nodes are given in paren-
theses after the node name. All MPTCP tests involving subflow analysis, throughput,
latency and connection handover are run with the default MPTCP properties:

Path manager: fullmesh

Congestion Control: default (Coupled Congestion Control (lia))

Scheduler: default (Lowest-RTT-First (LowRTT))

6.4.1 MPTCP Subflow Analysis

Test 1: Subflow throughput: floeibanen (UiB) to bymarka (NTNU)

In this test, data are sent from floeibanen (Uninett, BKK), located at the University of
Bergen, to bymarka (Uninett, PowerTech), located at the University of Trondheim (NTNU).

85

0 5 10 15 20 25 30

10−1

100

101

102

Seconds

M
bi

t/
s

MPTCP Total
Uninett→Uninett

BKK→Uninett
Uninett→PowerTech

BKK→PowerTech

Figure 6.9: Subflow throughput analysis: floeibanen to bymarka

Subflow From ISP To ISP Min Max Mean
MPTCP Total Uninett, BKK Uninett, PowerTech 57.83 79.73 69.36
Subflow 1 Uninett Uninett 35.46 65.97 51.88
Subflow 2 BKK Uninett 3.36 26.13 10.11
Subflow 3 Uninett PowerTech 0.23 1.62 0.79
Subflow 4 BKK PowerTech 0.10 1.06 0.50

Table 6.1: Subflow throughput analysis: floeibanen to bymarka

As the MPTCP API doesn’t provide us with per-subflow statistics, we had to use tcpdump
and Wireshark. In Wireshark, we added IP-address filters so that we could manually extract
data from each of the subflows. As this was very time consuming, we chose to run this
test for 30 seconds, seeing that this is mainly a proof of concept. As we expected from
MPTCP, it consists of multiple TCP subflows, illustrated in figure 6.9. From the figure,
we can see (2 × 2) different flows (excluding MPTCP total). This is because of the tunnels
in a full mesh setup from each of floeibanen’s ISPs to each of bymarka’s ISPs. The flow

86

diversity is noteworthy, and is explained by each flow running over links of different
characteristics, and therefore throughput and delay will vary. The throughput difference
was of such extent, that we chose to plot the figure in a logarithmic scale to see how the
weaker links behaved. The drawback of doing this is that the fluctuating characteristic of
the total throughput is not that visible in the figure.

However, in table 6.1, each subflow’s min, max and mean throughput values are
given. We can see from the table that the Uninett→Uninett subflow dominates the oth-
ers. This is explained by the fact that the Uninett links are high-bandwidth fiber links, as
well as the behaviour of the default scheduler of MPTCP, LowRTT. The LowRTT scheduler
might also explain the low throughputs to the PowerTech-links (ADSL), as it tries to avoid
high-latency links. Also, as demonstrated in later tests, we will see that poor performance
is a recurring issue regarding DSL-links. The differences in available link characteristics
can therefore explain the huge differences in MPTCP subflow characteristics. The weaker
links aren’t necessarily boosting the throughput, but maintaining a constant connection
between client and server if other links break down. Undoubtedly, in the case of an im-
portant Internet service running MPTCP, the weaker links keeping the service up and
running can be the difference between failure or success.

6.4.1.1 Subflow Routing

When sending data out on links from different ISPs, the routing of the packets can vary.
The paths may be disjoint, or they may meet at a point on the way. It would be interesting
to look at the routing of packets for each of the subflows in figure 6.9 and the other tests,
as the routing of packets can help us analyze the gathered data furthermore. As packets
on different subflows may traverse different paths, the network may introduce different
delays and bottlenecks to the subflows. If a subflow experiences high latency and low
throughput, it may be partially explained by the subflow’s routing. Additionally, it would
be easier to identify possible bottlenecks in the network.

Normally, monitoring a packet’s path through a network is straightforward us-
ing traceroute. Unfortunately, as described in section 5.1, due to the GRE-tunnel setup of
NORNET CORE, traceroute will not work as desired. Instead of showing each hop of the
path between any two nodes, traceroute will only show three hops, as demonstrated in

87

listing 6.1.

traceroute to nordberg. simula . nornet (10.1.1.104) , 30 hops max, 60 byte packets
1 stavanger . uninett . uis . nornet (10.1.5.1) 0.772 ms 0.850 ms 0.813 ms
2 uninett . uis . uninett . simula . nornet (192.168.71.69) 11.542 ms 11.792 ms 11.759 ms
3 nordberg. uninett . simula . nornet (10.1.1.104) 14.399 ms 14.345 ms 14.333 ms

Listing 6.1: Example of traceroute from rennesoey to nordberg

6.4.2 Throughput

6.4.2.1 MPTCP vs. TCP Throughput, Independent Flows

The following tests will compare total MPTCP throughput, using all available links be-
tween the specified nodes (fullmesh), to single-path TCP throughput using all combina-
tions of links. All the flows run independently of each other, i.e. one 60-second test has
been performed for each of the flows. As we will see, MPTCP is highly dependent on the
combination of links. To demonstrate the various properties of MPTCP in the best pos-
sible way, we have chosen pairs of nodes with different link-characteristics. This is also
done to cover different scenarios that is likely to take place in a real life setting. Latency
values in the throughput tests are only given for the single-path TCP flows. Currently,
it doesn’t exist any tool that give an average latency value for an MPTCP transfer, nor
does the MPTCP API provide this information. However, Wireshark is able to plot RTT
pr. packet from captured packet data. As we will see in section 6.4.4, we will use this to
evaluate latency in MPTCP.

Test 2: lungegaardsvannet (UiB) to nordlys (UNIS)

In this test, data are sent from lungegaardsvannet (Uninett, BKK), located at the Univer-
sity of Bergen, to nordlys (Uninett, Telenor), located at the University Centre in Svalbard.

88

0 10 20 30 40 50 60

0

10

20

30

40

Seconds

M
bi

t/
s

MPTCP
Uninett→Uninett
Uninett→Telenor

BKK→Uninett
BKK→Telenor

Figure 6.10: Independent throughput: lungegaardsvannet to nordlys

Protocol From ISP To ISP Min Max Mean Avg. Latency
MPTCP Uninett, BKK Uninett, Telenor 34.86 44.09 41.42
TCP Uninett Uninett 9.02 9.46 9.28 39.83 ms
TCP Uninett Telenor 7.83 8.33 8.16 44.87 ms
TCP BKK Uninett 8.74 9.44 9.13 39.67 ms
TCP BKK Telenor 7.93 8.29 8.13 45.82 ms

Total TCP throughput (mean): 34.7 Mbit/s

Table 6.2: Independent throughput: lungegaardsvannet to nordlys

The experimental data collected in this test are visualized in figure 6.10, and the most im-
portant metrics are presented in table 6.2. As we can observe in the comparison above, the
throughput that MPTCP provide is actually a little higher compared to the total mean TCP
throughput. These numbers are interesting, given that the MPTCP connection in practice
consists of the four TCP flows listed above (as subflows). In section 4.3.7, we described
that if an MPTCP subflow influences the link loss rate, it can possibly achieve slightly
higher throughput than a TCP flow over the same link. This can help us explain why

89

MPTCP aggregate throughput is higher than the aggregate throughput of independent
TCP flows over the same paths. Random factors like network congestion can potentially
also affect our results. Since the flows are transmitting at different points in time, other
network traffic may not have influenced each flow identically. Given the fact that both
nodes in this test are connected with two fiber links, we observe from the plot that the
throughput is relatively stable. As we know, fiber links provide stable throughput and
low latency even when links are saturated, which can explain why the results from this
test correspond well with theory. As we will see later on, stable throughput is not always
the case.

Test 3: rennesoey (UiS) to floeibanen (UiB)

In this test, data are sent from rennesoey (Uninett, Altibox, PowerTech), located at the Uni-
versity of Stavanger, to floeibanen (Uninett, BKK), located at the University of Bergen.

0 10 20 30 40 50 60

0

20

40

60

80

100

120

140

160

180

Seconds

M
bi

t/
s

MPTCP
Uninett→Uninett

Uninett→BKK
Altibox→Uninett

Altibox→BKK
PowerTech→Uninett

PowerTech→BKK

Figure 6.11: Independent throughput: rennesoey to floeibanen

90

Protocol From ISP To ISP Min Max Mean Avg. Latency
MPTCP Uninett, Altibox, PowerTech Uninett, BKK 29.21 172.76 113.12
TCP Uninett Uninett 50.95 55.23 52.88 6.47 ms
TCP Uninett BKK 50.91 54.45 53.12 7.15 ms
TCP Altibox Uninett 6.31 6.74 6.53 19.96 ms
TCP Altibox BKK 6.37 6.66 6.53 18.41 ms
TCP PowerTech Uninett 0.29 0.48 0.30 147.80 ms
TCP PowerTech BKK 0.30 0.49 0.39 119.84 ms

Total TCP throughput (mean): 119.75 Mbit/s

Table 6.3: Independent throughput: rennesoey to floeibanen

As it can be observed from table 6.3, the mean MPTCP throughput is close to the aggre-
gate mean TCP throughput from the individual flows. But it can also be seen from figure
6.11 that the MPTCP throughput is relatively fluctuating. We believe that these frequent
variations in bit rate is caused by rennesoey’s PowerTech-link, which is actually an ADSL-
link. As we know, ADSL-links have very weak upstream due to its asymmetric design,
in addition to high latency. This can be confirmed by the data in table 6.3. We also ex-
perienced a considerable amount of packet loss on this link. We know that these factors
combined lead to the head-of-line blocking problem, defined in section 4.3.4 - which again
can lead to the sudden drops in throughput as experienced in this test.

Test 4: nordlys (UNIS) to kettwig (UDE)

In this test, data are sent from nordlys (Uninett, Telenor), located at the University of Sval-
bard, to kettwig (DFN, Versatel), located at the University of Duisburg-Essen.

91

0 10 20 30 40 50 60

0

2

4

6

8

10

Seconds

M
bi

t/
s

MPTCP
Uninett→DFN

Uninett→Versatel
Telenor→DFN

Telenor→Versatel

Figure 6.12: Independent throughput: nordlys to kettwig

Protocol From ISP To ISP Min Max Mean Avg. Latency
MPTCP Uninett, Telenor DFN, Versatel 7.1 9.58 8.86
TCP Uninett DFN 3.97 5.06 4.64 79.53 ms
TCP Uninett Versatel 4.04 3.59 3.32 244.96 ms
TCP Telenor DFN 4.04 5.03 4.82 73.31 ms
TCP Telenor Versatel 3.02 3.47 3.31 286.95 ms

Total TCP throughput (mean): 16.09 Mbit/s

Table 6.4: Indepedent throughput: nordlys to kettwig

In this test we see that the MPTCP throughput is approximately half of the sum of the TCP
flows. This result tells us that even if the MPTCP cannot fully utilize each link, it can still
perform according to the design goals. As long as MPTCP achieve no worse throughput
than the best TCP flow, it does what it is supposed to do. From table 6.4, we can see
that there are significant latency variations between the TCP flows. These variations can
help us explain why MPTCP is not able to fully utilize each link’s potential. The resource
pooling principle is an obvious goal of MPTCP. To reach this goal, all available paths should

92

be considered a shared resource, i.e. behaving as the sum of the individual resources. A
performance issue of MPTCP is that MPTCP may require larger receive buffers when
subflows have different delays, as it does in this case. Another reason why MPTCP can
experience performance issues, is when the network routing does not have completely
disjoint paths between sender and receiver. The occurrence of shared bottlenecks between
the MPTCP subflows may explain this reduced performance, as each of the subflows go
through the same bottleneck, and act fair to each other.

6.4.3 Fairness

The fairness tests, which are essentially throughput tests with concurrent data flows, are
performed with NetPerfMeter. Every test is run for 60 seconds, between two specified
nodes in NORNET CORE. The MPTCP flows run with the default properties, as defined
in the beginning of section 6.4.

6.4.3.1 MPTCP vs. TCP, Two Concurrent Flows

Test 5: rennesoey (UiS) to lungegaardsvannet (UiB) (2 concurrent flows)

In this test, data are sent from rennesoey (Uninett, Altibox, PowerTech), located at the Uni-
versity of Stavanger, to lungegaardsvannet (Uninett, BKK), located at the University of
Bergen.

93

0 10 20 30 40 50 60

0

20

40

60

80

100

Seconds

M
bi

t/
s

MPTCP
Uninett→Uninett

Figure 6.13: Fairness, two concurrent flows: rennesoey to lungegaardsvannet

Protocol From ISP To ISP Min Max Mean
MPTCP Uninett, Altibox, PowerTech Uninett, BKK 29.24 106.93 72.47
TCP Uninett Uninett 41.23 50.17 45.03

Table 6.5: Fairness, two concurrent flows: rennesoey to lungegaardsvannet

Protocol From ISP To ISP Min Max Mean
TCP Uninett Uninett 49.39 56.49 53.26
TCP Uninett Uninett 50.16 56.90 53.24
TCP Uninett BKK 43.02 48.53 46.82

Table 6.6: Fairness, three concurrent flows: rennesoey to lungegaardsvannet

In test 3, where the same links as in this test are used, we saw that the mean MPTCP
throughput was 113.12 Mbit/s - here it is 72.47 Mbit/s, a decrease of 41 Mbit/s. On
the other side, the Uninett→Uninett mean throughput was 52.88 Mbit/s - here it is 45.03

94

Mbit/s, a decrease of 7 Mbit/s. The only difference is that in this test, the flows transmit
concurrently. We observe that MPTCP acts fair to the TCP flow, by not utilizing an unfair
share of the Uninett-link, but rather decrease its own total throughput, compared to test 3
where the flows run independently of each other. In table 6.6, we are trying to reproduce
the same amount of load that the Uninett-link gets when running one MPTCP-flow and
one TCP-flow concurrently. This is done by performing a separate test with three concur-
rent TCP-flows, over the same combination of links as the MPTCP- and TCP-flow utilizes
in this test. As we observe, the throughput values are a bit higher for each flow when
running only TCP-flows concurrently.

Test 6: lungegaardsvannet (UiB) to kettwig (UDE) (2 concurrent flows)

In this test, data are sent from lungegaardsvannet (Uninett, BKK), located at the Univer-
sity of Bergen, to kettwig (DFN, Versatel), located at the University of Duisburg-Essen.

0 10 20 30 40 50 60

0

2

4

6

8

10

12

14

16

18

Seconds

M
bi

t/
s

MPTCP
Uninett→DFN

Independent TCP flow

Figure 6.14: Fairness, two concurrent flows: nordberg to kettwig

95

In section 4.1.2.5, we described how the MPTCP should be fair to other MPTCP and TCP
flows in the occurrence of shared bottlenecks. Because of this, we wanted to test the
fairness of MPTCP from a domestic site to an international one. Our choice of nodes is
based on the assumption that there is a higher possibility to encounter a shared bottleneck
when transmitting data abroad. From figure 6.14, we can see that MPTCP does in fact
have a higher throughput rate than TCP, which is expected. When running MPTCP and
TCP (Uninett→DFN) concurrently, the throughput of the TCP-flow was approximately
8 Mbit/s, and 16 Mbit/s for the MPTCP-flow. To determine if MPTCP is fair to TCP or
not, we also ran a TCP-flow independently after the initial test. As we can observe, the
independent TCP flow achieved approximately the same throughput as when running
concurrently with MPTCP. These observations can be explained by a couple of reasons.
First and foremost, it can tell us that MPTCP does in fact not steal resources from other
concurrent flows, that it is fair. It can also be explained by the fact that there might be no
shared bottlenecks, i.e. the links are capable of handling all the flows without the flows
fighting for resources. Since TCP will try to use all available bandwidth, for the latter
to be true, it may suggest that every TCP flow in the network is limited to some fixed
throughput rate.

6.4.3.2 MPTCP vs. TCP, Four Concurrent Flows

Test 7: rennesoey (UiS) to lungegaardsvannet (UiB) (4 concurrent flows)

In this test, data are sent from rennesoey (Uninett, Altibox, PowerTech), located at the Uni-
versity of Stavanger, to lungegaardsvannet (Uninett, BKK), located at the University of
Bergen.

96

0 10 20 30 40 50 60

0

20

40

60

80

Seconds

M
bi

t/
s

MPTCP
Uninett→Uninett 1
Uninett→Uninett 2
Uninett→Uninett 3

Figure 6.15: Fairness, four concurrent flows: rennesoey to lungegaardsvannet

Compared to test 5, where the same nodes run with two concurrent flows, we observe
that the mean throughput of the TCP flows are approximately identical, but the MPTCP
flow’s throughput has decreased from a mean of 72.47 Mbit/s to a mean of 59.15 Mbit/s in
this test. This observation shows us that MPTCP is trying to avoid taking up bandwidth
from the TCP flows.

Test 8: nordberg (Simula) to kettwig (UDE) (4 concurrent flows)

In this test, data are sent from nordberg (Uninett, Kvantel, PowerTech), located at Simula
Research Laboratory, to kettwig (DFN, Versatel), located at the University of Duisburg-
Essen.

97

0 10 20 30 40 50 60
0

5

10

15

20

25

30

Seconds

M
bi

t/
s

MPTCP
Uninett→DFN 1
Uninett→DFN 2
Uninett→DFN 3

Figure 6.16: Fairness, four concurrent flows: lungegaardsvannet to kettwig

In this test, we are doing the same as in test 6, i.e. testing fairness from a domestic site,
to an international site. Both tests show similar tendencies, MPTCP is dominant, while
the TCP flows are at approximately 8 Mbit/s. This observation substantiates our state-
ment of TCP flows being limited to a certain bit rate. We believe traffic shaping and rate
limiting are the explanation of our observations of TCP having "constant" bit rate regard-
less of how many concurrent TCP flows we run (up to some point). We expect each TCP
flow to have decreased throughput when increasing the number of TCP flows running
concurrently.

When a link becomes saturated up to a significant level of contention, eventually
bufferbloat will occur due to overly sized buffers in the network, substantially increasing
the network latency. Traffic shaping is a technique to prevent these events from occur-
ring and keeping latency in check. By rate limiting each TCP flow, it controls the volume
of traffic being sent into a network. If this is the case, the constant bit rate of TCP is as
expected, but at least we would also expect the MPTCP flow to behave like in test 6. How-
ever, in this test, MPTCP performs better than MPTCP in test 6. This is not as expected,
as we would think that more traffic in the network would suggest lower throughput per

98

flow. Although, network traffic caused by others, and other random factors can explain
this variation in throughput.

6.4.4 Latency

In this subsection, we will study MPTCP latency, and do comparisons to latency in single-
path TCP flows. As the MPTCP API doesn’t provide the end-user with statistical data,
e.g. average latency in an MPTCP flow (or it’s subflows), we had to study pcap-data which
was captured during MPTCP data-transmission.

Test 9: Latency: ekeberg (UiO) to bymarka (NTNU)

In this test, data are sent from ekeberg (Uninett, Broadnet, PowerTech), located at the Uni-
versity of Oslo, to bymarka (DFN, Versatel), located at the Norwegian University of Sci-
ence and Technology.

In the following figures, we have plotted the RTT for each packet during a data
transmission using NetPerfMeter - marked as a dot in the scatter plot. Dots are color coded
with respect to their RTT - the red dots naturally indicate packets with high RTT (and are
mostly consisting of outliers). Blue and gray dots are representing values in the region
around the average, whilst the yellow ones are in between.

99

0 10 20 30 40 50 60
6

8

10

12

14

16

18

20

Seconds

m
s

TCP: Uninett→Uninett

Figure 6.17: Latency: ekeberg to bymarka (TCP: Uninett→Uninett)

From the figure above we observe that the TCP-flow deliver fairly stable and constant
latency, with RTT pr. packet mostly around 9 to 10.5 ms. We can also see that there are
some outliers around 11-12 ms, and a few at 15 ms, but this is quite normal behavior.

100

0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

Seconds

m
s

MPTCP: Uninett→Uninett subflow

Figure 6.18: Latency: ekeberg to bymarka (MPTCP: Uninett→Uninett subflow)

The subflow shown in figure 6.18 is transmitting between the exact same links as the
TCP-flow in figure 6.17, but in this case it transmits as a subflow of an MPTCP connection
between ekeberg and bymarka. As we can see, the average RTT is a bit higher compared to
the TCP-flow, in addition to several more outliers, spanning from ∼15 to ∼50 ms. This
demonstrates that this subflow is indeed affected by the other subflows belonging to the
MPTCP connection and potential MPTCP overhead, which results in a slightly higher
average and a higher number of outliers. It is important to note that two of the links be-
longing to ekeberg are ADSL-links, which as we have seen can influence the performance
of the overall flow.

101

0 10 20 30 40 50 60
0

100

200

300

400

500

600

700

Seconds

m
s

MPTCP: All subflows

Figure 6.19: Latency: ekeberg to bymarka (MPTCP: All subflows)

Figure 6.19 consists of the same Uninett→Uninett-subflow data as in figure 6.18, but it
also includes the RTT pr. packet of all the other subflows belonging to the MPTCP con-
nection. Because of the high RTT of the outliers, the relatively low and stable RTT values
of the Uninett→Uninett-subflow are hard to determine from the plot, but are seen as a
solid line along the x-axis. In the beginning of the transmission, we experience numerous
outliers - packets with extremely high RTT. Given the fact that we have already plotted
the Uninett→Uninett subflow, we know that these outliers belong to the two ADSL-links
of ekeberg. We believe that the reason to why most of the outliers disappear after the first
10 seconds, is because of the the LowRTT-scheduler. When the scheduler experiences the
high RTT of the packets over the ADSL-links, it schedules less packets over those links, in
accordance with the third goal of MPTCP, to balance the congestion in the best possible
way.

102

Test 10: Latency: nordlys (UNIS) to lungegaardsvannet (UiB)

In this test, data are sent from nordlys (Uninett, Telenor), located at the University Centre
in Svalbard, to lungegaardsvannet (Uninett, BKK), located at the University of Bergen.

Seeing that the ADSL-links caused some high latency in the previous test, in this
test we have specifically chosen two nodes only connected with fiber-links. If links with
extreme latency issues, like we experienced with the ADSL-links in some of our tests, are
being utilized, all the packets on the faster links will have to wait for the slower ones to
arrive.

0 10 20 30 40 50 60
30

40

50

60

70

80

90

Seconds

m
s

TCP: Uninett→Uninett

Figure 6.20: Latency: nordlys to lungegaardsvannet (TCP: Uninett→Uninett)

In figure 6.20, we observe that the RTT pr. packet is relatively stable around 40 ms, with
an even spread of packets with some higher RTT, mainly in the range 30 to 80 ms. We
note ourselves that due to the high geographically distance between the nodes in this
test, some variation in the latency can be expected.

103

0 10 20 30 40 50 60

50

100

150

200

250

Seconds

m
s

MPTCP: All subflows

Figure 6.21: Latency: nordlys to lungegaardsvannet (MPTCP: All subflows)

In figure 6.21, we discover that the average RTT is slightly higher than in the previous
figure. We also see that there are outliers with values above 200 ms, whereas the highest
outliers in the previous figure which were around 70-80 ms. In addition, there is a higher
number of packets with RTT values in the range 50-70 ms, compared with the TCP-flow.
Overall, the MPTCP connection has a higher degree of varying latency. However, as we
saw in test 2, the performance of the links of nordlys are quite similar, but still, some
varying latency is observed. Anyhow, the results of this test show us that overall latency
is improved when the available links are homogeneous, i.e. all links are of approximately
same quality. Like we saw in test 9, the ADSL-links caused higher latency issues than in
this test.

104

Test 11: Latency: rennesoey (UiS) to bymarka (NTNU) (independent flows)

0 10 20 30 40 50 60
0

50

100

150

200

MPTCP activated

Seconds

m
s

PowerTech→Uninett
MPTCP

Figure 6.22: Latency: rennesoey to bymarka

In this test, the transmitting data flow starts as an ordinary TCP flow, transmitting from
PowerTech, the ADSL-link at rennesoey, to Uninett at bymarka. For us to get average RTT
values, we had to manually calculate them based on the Wireshark plot. This method will
not give us exact values, but it gives us adequate estimates. Due to the limited upstream
rate of the ADSL-link, figure 6.22 shows us that the latency is rather high and variable.
However, MPTCP is enabled 30 seconds into the test, and as we observe, this decreases
the average packet latency of the flow from over 160 ms to around 20 ms. When MPTCP
is enabled, all links at rennesoey (Uninett, Altibox, PowerTech) is used, in addition to both
links at bymarka (Uninett, PowerTech). The decrease in latency can naturally be explained
by the fact that the fiber-links takes over most of the data transmission, because of the
LowRTT-scheduler which schedules the data away from the slower PowerTech-link.

105

Test 12: Latency: rennesoey (UiS) to lungegaardsvannet (UiB)

In this test, data are sent from rennesoey (Uninett, Altibox, PowerTech), located at the Uni-
versity of Stavanger, to lungegaardsvannet (Uninett, BKK), located at the University of
Bergen.

0 10 20 30 40 50 60

10

20

30

40

50

MPTCP activated

Seconds

m
s

MPTCP: All subflows

Figure 6.23: Latency: rennesoey to lungegaardsvannet (MPTCP: All subflows)

If a user it not using the best available link, he can suffer from unnecessary low through-
put and high latency. In the previous test, we showed that MPTCP has the ability to lower
the average latency by utilizing the additional low-latency links. To get a closer look on
the latency difference between the best available link (Uninett→Uninett) and MPTCP, we
again started a single TCP flow, and then activated MPTCP after 30 seconds. As in our
other latency tests, we expect the MPTCP latency to be slightly higher than TCP. From
figure 6.23, we can see that this expectation is accurate. In the TCP flow, the majority of
the packets are in the 5.5-7 ms range, shown as a nearly solid line, with some outliers in
the range 7-14 ms. MPTCP, on the other hand, has an average latency slightly above TCP,

106

in the 5.5-10 ms range. We also observed some small latency spikes in the 10-16 ms range.
From these numbers, MPTCP doesn’t seem too bad, but as you can see from the figure,
the MPTCP flow unfortunately contains a noteworthy amount of outliers in the 20-45 ms
range. We chose to not include the high-RTT packets caused by the PowerTech-link. Most
of these packets are in the 100-300 ms range, but some of them are actually above 2000
ms. These packets are, as in the other tests, only experienced in the initial phase of the
transmission.

6.4.5 Connection Handover

Together with improved throughput, resilience is probably the most interesting and use-
ful aspect of MPTCP. This section will study the resilience of MPTCP, and the connection
handover will be tested. Due to the fact that every link is virtualized behind one interface
in the NORNET CORE nodes, we are not able to intentionally remove a link during a data
transfer. By taking down an interface during a data transfer, we wish to test if MPTCP
provides the resilience we expect - meaning that a data transfer doesn’t get interrupted.
In order to test this, we had to use a personal laptop. We used the operating system
Ubuntu 16.04 LTS, with MultiPath TCP v0.90 provided by the Linux Kernel MultiPath TCP
implementation by UCL. The Linux kernel version in this implementation is 3.18.20-90-
mptcp. The laptop we used is equipped with an 802.11b/g/n interface, and a USB-dongle
provided additional 4G access to the Telenor cellular network.

Test 13: Handover with additional backup link

In this test, the Wi-Fi interface acts as the main link, with the 4G-link in backup priority
mode. This means that it should take over if the main interface goes down or doesn’t
respond. To test this, it was started an HTTP file transfer from http://multipath-tcp.org,
the home page of the MPTCP Linux Kernel implementation, which we know is MPTCP
enabled. The download of a 121 MB file was started, but 10 seconds into the file transfer,
the WiFi-interface (wlan0) was shut down with the following command:

1 ip link set dev wlan0 down

107

Afterwards, pcap-data from tcpdump was studied.

0 5 10 15 20 25 30

0

5

10

15

20

Seconds

M
bi

t/
s

Wi-Fi
Telenor 4G

Figure 6.24: Connection Handover: One Backup Link

The outcome of this test was positive and expected, as the file transfer didn’t get inter-
rupted, but instead continued over the 4G-link. This confirms the resilience aspect of
MPTCP. The exact handover time from the Wi-Fi interface was taken down, until data
transfer began on the 4G-link, was 3.44 seconds. However, the MP_JOIN signal was sent
from the 4G-link to the web server only 1.73 seconds after the Wi-Fi interface was taken
down. In addition, the REMOVE_ADDR option was sent, telling the server that the initial
address of the Wi-Fi interface should be removed from the connection.

6.4.6 Congestion Control Algorithms

In this section, we will examine and evaluate the different congestion controls algorithms
that are available for MPTCP. In addition, we will also find out if there exist any differ-
ence in performance between the coupled and the uncoupled congestion controls, where
the uncoupled ones mainly belong to TCP. The coupled congestion controls that are going

108

to be tested are the four described in section 5.3.2.1; LIA, OLIA, Balia and Weighted Vegas
(wVegas). The uncoupled congestion controls that are also included for comparison, are
the most known congestion controls for TCP, Reno and Cubic. In these experiments, data
are sent from floeibanen (Uninett, PowerTech), located at the University of Bergen, to eke-
berg (Uninett, Broadnet, PowerTech), located at the University of Oslo. The measurements
are done using NetPerfMeter, with a transmission duration of 60 seconds. Each test with a
given congestion control is repeated 10 times, in order to avoid outliers that can be caused
by background traffic between the nodes. Finally, the average throughput is calculated
and presented.

Test 14: Congestion Controls: floeibanen (UiB) to ekeberg (UiO)

lia olia
bali

a

wveg
as

Ren
o

Cubic

60

80

100

120

140

127.43 127.13
132.41

55.71

117.75

68.13

M
bi

t/
s

Throughput (Mbit/s)

Figure 6.25: MPTCP Congestion Controls Performance

Figure 6.25 presents the results from the tests, where the average throughput are plotted
for each of the congestion control algorithms. As we can observe, wVegas has the poorest

109

performance of all. However, the three other coupled congestion controls have pretty
similar performance, without a clear stand out. But, as stated in section 4.1.2.5, only one of
the three congestion control algorithm goals is to improve the throughput - the first goal.
The second goal says that MPTCP should behave fairly, and the third goal is all about
moving congestion away from congested paths or shared bottlenecks, in accordance with
the resource pooling principle. Considering the current tunnel-configuration of NORNET

CORE, it can be difficult to discover shared bottlenecks on the different paths taken.

6.4.7 Schedulers

As previously mentioned, there are only two schedulers available; the default one
(LowRTT), and roundrobin. If you really want to take advantage of multipath transport,
the roundrobin scheduler is not of great benefit, as it doesn’t transmit concurrently over
all available links, nor does it take into account that the available links may have very
different qualities, considering throughput and latency. Regardless of the usefulness of
roundrobin, we have tested it and compared it to the default scheduler, LowRTT (which is
used in all other tests).

110

Test 15: Schedulers: ekeberg (UiO) to floeibanen (UiB)

0 10 20 30 40 50 60

10−1

100

101

102

Seconds

M
bi

t/
s

LowRTT
roundrobin

Figure 6.26: Scheduler: LowRTT vs. roundrobin

As expected, figure 6.26 shows that the use of the roundrobin scheduler results in a sig-
nificant decrease in throughput compared to LowRTT. These results could frankly be pre-
dicted, given the design and behaviour of roundrobin, so no further explanation is really
necessary. Due to the ADSL-link of ekeberg, the throughput is fluctuating for both sched-
ulers, as experienced in earlier tests.

6.5 Summary and Evaluation

We started our experimentation with MPTCP by making sure that it actually utilized
multipath transport by initiating the correct number of subflows (fullmesh between the
available ISPs). This was confirmed in test 1, where we also saw that (some of) the nodes
have links of different qualities, regarding throughput and latency. In test 2, 3 and 4,

111

we confirmed our expectations that MPTCP can provide a significant gain in through-
put, compared to a single-path TCP-flow. We observed that between domestic sites, the
MPTCP throughput was close to the aggregate throughput of independently run TCP-
flows (full mesh). Although MPTCP provided a superior mean throughput, our tests show
that MPTCP throughput can be highly fluctuating. This is especially the case for sites with
heterogeneous link characteristics, such as the combination of fiber- and DSL-links. Test
4 showed that even though MPTCP cannot fully utilize each subflow compared to TCP, it
still perform according to design goal one, improve throughput.

Test 5, 6, 7 and 8, running with two and four flows, we saw that MPTCP acted
fairly to concurrently transmitting TCP-flows. However, as we don’t have an overview
or information about the NORNET CORE ISP interconnections, or the paths taken by our
packets, it is difficult to identify possible shared bottlenecks. Based on our results, we
suspect that TCP-flows (and then also MPTCP’s subflows) are rate limited, to control the
volume of traffic being sent on the network.

In test 9, 10, 11 and 12, we looked at latency in MPTCP connections, by studying
the RTT of each packet. Our findings show that the average latency of an MPTCP connec-
tion is slightly higher compared to a TCP-flow. However, the MPTCP-flow had a higher
number of outliers, and the RTT-value of the outliers were generally considerably higher.
These observations are possibly caused by a combination of the overhead introduced by
MPTCP, and the head-of-line blocking problem. In addition, MPTCP had some extremely
high outliers, caused by the low quality ADSL-links. Here, we could also confirm that
the LowRTT-scheduler in fact schedules data away from the slower links. The number
of high latency outliers tells us that MPTCP running with variable link-quality can be
unsuitable for latency-sensitive applications. In test 10, we studied latency between two
sites with homogeneous link quality, and we observed that the number of extreme out-
liers decreased significantly.

Test 13 demonstrated the resilience aspect of MPTCP, and confirmed seamless
connection handover to a backup link in cases where the main link goes down. The file
transfer in the test didn’t get interrupted, but it continued on the backup link.

Test 14 compared the available congestion control algorithms available to
MPTCP, and compared them to the TCP congestion control algortihms Reno and Cubic.

112

Our observations show that lia, olia and balia, have very similar performance regarding
throughput, unlike wvegas which showed a significant decrease in throughput. Finally, in
test 15, we compared the default scheduler, LowRTT, to roundrobin, mainly just to show
the differences.

113

Chapter 7

Conclusion and Future Work

7.1 Conclusion

The work carried out in this thesis have explored different aspects of the new and emerg-
ing MultiPath TCP (MPTCP) protocol. To obtain the best possible understanding of the
underlying technologies of multipath protocols, it was natural to start this thesis by ac-
quiring fundamental knowledge on the multihoming subject.

The first phase of this thesis presented recent research on multihoming, with
various approaches for implementation at different network layers. Following, a thor-
ough introduction to MPTCP and its operation was given - including the goals set by
the IETF for the further development of this comparatively new multipath protocol. The
second phase of this thesis embraced the NORNET testbed, gave implementation details,
and presented our aims for testing the protocol in order to illuminate the most interesting
fields.

We have successfully validated that the concepts of MPTCP works in a real-
world setup, using only existing infrastructure between the test-nodes. We have seen
that the MPTCP implementation actually is taking advantage of multipath transport, by
concurrently transmitting data over all of the available paths, taking the qualities of the

114

links into consideration. We have also seen that the subflows appear as ordinary TCP
flows to existing hardware and infrastructure. For a rational deployment of MPTCP in
current network structure to be realistic, this part is particularly crucial. We have con-
firmed that the only modifications needed to be done are at the end-points, in order for
MPTCP to function as supposed. After a wide variety of tests have been performed in
the testbed, our experimental evaluations have shown that MPTCP can in fact provide
users with a significant gain in throughput. We have confirmed that the path managers
function as anticipated, by initiating the correct number of subflows, and we have pre-
sented the differences between the available congestion control algorithms. We have also
demonstrated that MPTCP acts fairly to other TCP flows, in the best way possible.

Throughout these experiments, we have learned that the combination of links
with very unlike qualities, e.g. business-grade fiber-links and weaker DSL-links, can re-
sult in fluctuating throughput and latency. This behaviour doesn’t come unexpected - as
we learned in the application compatibility goals in section 4.1.2.1. Here we saw that MPTCP
may not be able to provide the same level of consistency of throughput and latency as a
single TCP connection. However, more importantly, this does not affect the resilience
aspect of multipath transport - if you loose one link, you will still be connected through
another link.

We believe that our work has proved the main concepts of MPTCP, by success-
fully having performed tests in an operational implementation of MPTCP in the NORNET

CORE testbed.

7.2 Future Work

We do also believe there is room for future work. In order to do thoroughly testing of
fairness regarding shared bottlenecks, we need an overview and a detailed analysis of
the paths and interconnections of the different ISPs. Due to the tunneling configuration
of NORNET CORE, it is currently not possible to study the paths taken by the different
data flows. It would also be interesting to test the impact of variable maximum segment
size (MSS) and window size.

115

We have seen that the current MPTCP scheduler tries to avoid using links with
poor performance, which naturally is important if the end-user is running real-time appli-
cations (RTA), such as video conferencing, voice over IP (VoIP) and online gaming. How-
ever, our experiments show that the first phases of data transfers often contain high-RTT
packets from the ADSL-links - this might be avoided by implementing a smarter sched-
uler that has knowledge of the qualities of the available links prior to a data transmission.
It can e.g. use the bandwidth× delay product and latency to find the optimal window size
and MSS for each subflow.

Another interesting approach to improve MPTCP further, could be to use network
coding. As we experienced throughout our testing, MPTCP was negatively affected by
high packet loss due to poor channel conditions on the ADSL-links. Network coding
could be able to overcome the majority of packet loss and maintain a stable throughput,
as the head-of-line blocking problem will not occur as frequently [15]. In addition, network
coding can make for easier packet scheduling - if a packet is lost, other packets sent on
different subflows can be used to recover the lost packet.

MultiPath TCP is surely an exciting technology, and it will be of great interest to
follow the further development. We are confident that this protocol has the potential to
provide improved throughput and superior resilience compared to the current transport
layer protocols.

116

Bibliography

[1] J. Ahrenholz and T. Henderson. Shim6 manual. http://openhip.sourceforge.
net/docs/shim6.pdf, 2007.

[2] K. E. Aldatay. Mobile IP Handover Delay Reduction Using Seamless Handover Ar-
chitecture. Master’s thesis, Blekinge Institution of Technology, August 2009.

[3] M. Allman, V. Paxson, and E. Blanton. TCP Congestion Control. RFC 5681, Internet
Engineering Task Force, September 2009.

[4] M. Allman, V. Paxson, and W. Stevens. TCP Congestion Control. RFC 2581, Internet
Engineering Task Force, April 1999.

[5] J. Arkko and I. van Beijnum. Failure Detection and Locator Pair Exploration Protocol
for IPv6 Multihoming. RFC 5534, Internet Engineering Task Force, June 2009.

[6] S. Barré. LinShim6. http://inl.info.ucl.ac.be/softwares/linshim6,
August 2007.

[7] S. Barré. Implementation and Assessment of Modern Host-based Multipath Solutions. PhD
Thesis, Louvain School of Engineering, October 2011.

[8] M. Belshe, R. Peon, and E. M. Thomson. Hypertext Transfer Protocol Version 2
(HTTP/2). RFC 7540, Internet Engineering Task Force, May 2015.

[9] E. Blanton and M. Allman. On Making TCP More Robust to Packet Reordering.
Article, Ohio University, BBN Technologies/NASA GRC, January 2002.

[10] L. Boccassi, M. M. Fayed, and M. K. Marina. Binder: A System to Aggregate Multiple
Internet Gateways in Community Networks. Article, LCDNet ’13, August 2013.

117

http://openhip.sourceforge.net/docs/shim6.pdf
http://openhip.sourceforge.net/docs/shim6.pdf
http://inl.info.ucl.ac.be/softwares/linshim6

[11] Ed. C. Perkins. IP Mobility Support for IPv4. RFC 3344, Internet Engineering Task
Force, August 2002.

[12] Ed. C. Perkins and D. Johnson. Mobility Support in IPv6. RFC 6275, Internet Engi-
neering Task Force, July 2011.

[13] Cisco Systems Inc. IEEE 802.3ad Link Bundling, February 2007.

[14] Cisco Systems Inc. Link Aggregation Control Protocol (LACP) (802.3ad), March 2007.

[15] J. Cloud, F. d. Pin Calmon, W. Zeng, G. Pau, L. M. Zeger, and M. Médard. Multi-
Path TCP with Network Coding for Mobile Devices in Hetereogeneous Networks.
Article, Internet Engineering Task Force, 2013.

[16] B. Cohen. The BitTorrent Protocol Specification. http://www.bittorrent.org/
beps/bep_0003.html, October 2011.

[17] S. E. Deering and R. M. Hinden. Internet Protocol, Version 6 (IPv6). RFC 2460,
Internet Engineering Task Force, December 1998.

[18] T. Dreibholz. The NorNet Core Handbook. Technical report, Simula Research Labo-
ratory, August 2015.

[19] F5 Networks Inc. BIG-IP Link Controller. Datasheet specification.

[20] A. Ford, C. Raiciu, M. Handley, S. Barré, and J. Iyengar. Architectural Guidelines
for Multipath TCP Development. RFC 6182, Internet Engineering Task Force, March
2011.

[21] A. Ford, C. Raiciu, M. Handley, and O. Bonaventure. TCP Extensions for Multipath
Operation with Multiple Addresses. RFC 6824, Internet Engineering Task Force,
January 2013.

[22] N. Freed. Behavior of and Requirements for Internet Firewalls. RFC 2979, Internet
Engineering Task Force, October 2000.

[23] E. G. Gran, T. Dreibholz, and A. Kvalbein. NorNet Core - A Multi-homed Research
Testbed. Article, Simula Research Laboratory, January 2014.

[24] M. Handley, V. Jacobsen, and C. Perkins. SDP: Session Description Protocol. RFC
4566, Internet Engineering Task Force, July 2006.

118

http://www.bittorrent.org/beps/bep_0003.html
http://www.bittorrent.org/beps/bep_0003.html

[25] Internet Assigned Numbers Authority (IANA). Transmission Control Protocol
(TCP) Parameters. http://www.iana.org/assignments/tcp-parameters/

tcp-parameters.xml, 2015. [Online: accessed 25-Feb-2016].

[26] University of Southern California Information Sciences Institute. Internet Protocol.
RFC 760, Information Sciences Institute, University of Southern California, January
1980.

[27] University of Southern California Information Sciences Institute. Transmission Con-
trol Protocol. RFC 793, Information Sciences Institute, University of Southern Cali-
fornia, September 1981.

[28] J. R. Iyengar, Paul D. Amer, and R. Stewart. Concurrent Multipath Transfer Using
SCTP Multihoming Over Independent End-to-End Paths. Technical report, Internet
Engineering Task Force, October 2006.

[29] R. Khalili, N. Gast, and J-Y Le. Boudec. Opportunistic Linked-Increases Congestion
Control Algorithm for MPTCP. Article, Internet Engineering Task Force, July 2014.

[30] J. Klensin. Simple Mail Transfer Protocol. RFC 2821, Internet Engineering Task Force,
April 2001.

[31] M. Komu, M. Sethi, and N. Beijar. A survey of identifier-locator split addressing
architectures. Elsevier, May 2015.

[32] J. F. Kurose and K. W. Ross. Computer Networking: A Top-Down Approach. Pearson
Education, fourth edition, 2008.

[33] Link Aggregation Task Force. IEEE 802.3ad. http://www.ieee802.org/3/

axay/index.html, January 2009.

[34] R. Moskowitz and P. Nikander. Host Identity Protocol (HIP) Architecture. RFC 4433,
Internet Engineering Task Force, May 2006.

[35] R. Moskowitz and P. Nikander. End-Host Mobility and Multihoming with the Host
Identity Protocol. RFC 5206, Internet Engineering Task Force, April 2008.

[36] E. Nordmark and M. Bagnulo. Shim6: Level 3 Multihoming Shim Protocol for IPv6.
RFC 5533, Internet Engineering Task Force, June 2009.

119

http://www.iana.org/assignments/tcp-parameters/tcp-parameters.xml
http://www.iana.org/assignments/tcp-parameters/tcp-parameters.xml
http://www.ieee802.org/3/axay/index.html
http://www.ieee802.org/3/axay/index.html

[37] C. Paasch, S. Ferlin, O. Alay, and O. Bonaventure. Experimental Evaluation of Multi-
path TCP Schedulers. In ACM SIGCOMM Capacity Sharing Workshop (CSWS). ACM,
2014.

[38] J. Postel. User Datagram Protocol. RFC 768, Internet Engineering Task Force, August
1980.

[39] J. Postel and J. Reynolds. File Transfer Protocol (FTP). RFC 959, Internet Engineering
Task Force, October 1985.

[40] C. Raiciu, M. Handley, and D. Wischik. Coupled Congestion Control for Multipath
Transport Protocols. RFC 6356, Internet Engineering Task Force, October 2011.

[41] C. Raiciu, M. Handley, and D. Wischik. Threat Analysis for TCP Extensions for
Multipath Operation with Multiple Addresses. RFC 6181, Internet Engineering Task
Force, March 2011.

[42] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson, R. Sparks,
M. Handley, and E. Schooler. SIP: Session Initiation Protocol. RFC 3261, Internet
Engineering Task Force, June 2002.

[43] M. Scharf and A. Ford. Multipath TCP (MPTCP) Application Interface Considera-
tions. RFC 6897, Internet Engineering Task Force, March 2013.

[44] M. Scharf and S. Kiesel. Quantifying Head-of-line Blocking in TCP and SCTP. Inter-
net Draft, TCPM, July 2013.

[45] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobsen. RTP: A Transport Protocol
for Real-Time Applications. RFC 3550, Internet Engineering Task Force, July 2003.

[46] V. Singh, J. Ott, and S. Ahsan. MPRTP: Multipath Consideration for Real-time Media.
Article, Aalto University, March 2013.

[47] V. Singh, J. Ott, T. Karkkainen, S. Ahsan, and L. Eggert. Multipath RTP (MPRTP).
Internet-draft, Aalto University, July 2014.

[48] V. Singh, J. Ott, T. Karkkainen, R. Globisch, and T. Schierl. Multipath RTP (MPRTP)
attribute in Session Description Protocol. Internet-draft, MMUSIC Working Group ,
July 2012.

120

[49] T. Socolofsky and C. Kale. A TCP/IP Tutorial. RFC 1180, Internet Engineering Task
Force, January 1991.

[50] R. Stewart. Stream Control Transmission Protocol. RFC 4960, Internet Engineering
Task Force, September 2007.

[51] R. Stewart, Q. Xie, K. Morneault, C. Sharp, H. Schwarzbauer, T. Taylor, I. Rytina,
M. Kalla, L. Zhang, and V. Paxson. Stream Control Transmission Protocol. RFC 2960,
Internet Engineering Task Force, October 2000.

[52] S. Tatham. PuTTY. http://www.putty.org/.

[53] R. H. Tse. TCP Fairness in Multipath Transport Protocols. Bachelor thesis, Brown
University, May 2006.

[54] Université catholique de Louvain. Configure MPTCP. http://multipath-tcp.
org/pmwiki.php/Users/ConfigureMPTCP, September 2015.

[55] Université catholique de Louvain. MPTCP v0.90 Release. http://

multipath-tcp.org/pmwiki.php?n=Main.Release90, September 2015.

[56] A. Walid, Q. Peng, J. Hwang, and S. Low. Balanced Linked Adaptation Conges-
tion Control Algorithm for MPTCP. Internet Draft, Internet Engineering Task Force,
January 2016.

[57] D. Wischik, M. Handley, and M. B. Braun. The Resource Pooling Principle. ACM
SIGCOMM Computer Communication Review, 2008.

[58] M. Xu, Y. Cao, and E. Dong. Delay-based Congestion Control for MPTCP. Internet
Draft, Internet Engineering Task Force, January 2016.

[59] C. Åhlund and A. Zaslavsky. Multihoming with Mobile IP, 2003.

121

http://www.putty.org/
http://multipath-tcp.org/pmwiki.php/Users/ConfigureMPTCP
http://multipath-tcp.org/pmwiki.php/Users/ConfigureMPTCP
http://multipath-tcp.org/pmwiki.php?n=Main.Release90
http://multipath-tcp.org/pmwiki.php?n=Main.Release90

Appendices

122

Appendix A

NetPerfMeter Vector Parser

To easily extract performance data from the vector files provided by NetPerfMeter, we
created a simple Java program. The program simply reads multiple vector files from a
directory, calculates the bit-rate, and then combines them into a text file. As our project
files were synchronized using OneDrive (i.e. same absolute path), we could both easily
access the test files by entering our name into the program. The output files allow us to
more effectively create tables and figures from the extracted data.

import java.io.*;

import java.nio.file.Files;

import java.nio.file.Paths;

import java.util.*;

public class NPM_Vector_Parser {

public static void main(String[] args){

// Prompting the user

String name = "";

Scanner in = new Scanner(System.in);

System.out.println("Please type your name: (krist = Kristian) (daniel =

Daniel)");

name = in.next();

System.out.println("Please choose the parent directory of the .vec files

123

(integer):");

// Listing directories that the user can choose from

File[] directories = listChildDirectories(new File("C:\\Users\\" + name

+ "\\OneDrive\\INF399\\Testdata"));

File testDirectory = directories[in.nextInt()];

// Reading from .vec files in chosen directory

ArrayList<ArrayList<String>> data = readFromFile(name, testDirectory);

// Writing to new .txt file

writeToFile(data, testDirectory);

in.close();

}

// Listing all child directories of a directory

public static File[] listChildDirectories(File file) {

File[] dirs = file.listFiles(new FileFilter() {

@Override

public boolean accept(File path) {

return path.isDirectory();

}

});

for (int i = 0; i < dirs.length; i++) {

System.out.println(i + ": " + dirs[i].getName());

}

return dirs;

}

// Writing data to a .txt file

public static void writeToFile(ArrayList<ArrayList<String>> data, File

testDirectory) {

PrintWriter writer = null;

try {

writer = new PrintWriter(testDirectory + "\\" +

testDirectory.getName() + ".txt");

} catch (Exception e) {

e.printStackTrace();

}

124

int count = 0;

for (int i = 0; i < 61; i++) {

writer.print(count + "\t");

for (int j = 0; j < data.size(); j++) {

writer.print(data.get(j).get(i) + "\t");

}

count++;

writer.println();

}

writer.close();

System.out.print("The following file was created:\n" + testDirectory +

"\\" + testDirectory.getName() + ".txt");

}

// Calculating the throughput in Mbit/s

public static String calculateMbits(int bytes_last, int bytes_now) {

double speed = bytes_now - bytes_last;

speed = (speed * 8) / 1000000;

return String.format("%.2f", speed).replace(",", ".");

}

// Reading from a collection of .vec files

public static ArrayList<ArrayList<String>> readFromFile(String name, File

testDirectory) {

ArrayList<ArrayList<String>> listOfLists = new

ArrayList<ArrayList<String>>();

try {

for (File file : testDirectory.listFiles(new FilenameFilter() {

@Override

public boolean accept(File dir, String name) {

return name.endsWith("passive.vec");

}

})) {

BufferedReader in = new BufferedReader(new FileReader(file));

ArrayList<String> oldList = (ArrayList<String>)

Files.readAllLines(Paths.get(file.getPath()));

ArrayList<String> newList = new ArrayList<>();

125

int bytes_last = 0;

for (int j = 1; j < oldList.size(); j++) {

if(oldList.get(j).contains("\"Received\"")) {

String[] tokens = oldList.get(j).split("\\s+");

String flow_ID = tokens[4];

String absBytes = tokens[8];

if(Integer.parseInt(flow_ID) == 0) {

newList.add(calculateMbits(bytes_last,

Integer.parseInt(absBytes)));

bytes_last = Integer.parseInt(absBytes);

}

}

}

listOfLists.add(newList);

in.close();

}

} catch (Exception e) {

e.printStackTrace();

}

return listOfLists;

}

}

126

	Preface
	Abstract
	List of Figures
	List of Tables
	Listings
	Acronyms
	Introduction
	Initial Motivation
	Objective
	Thesis Outline

	Background
	The TCP/IP Protocol Suite
	Architecture
	Application Layer
	Transport Layer
	Network Layer

	Encapsulation

	Transmission Control Protocol (TCP)
	Important Concepts
	The TCP Window Principle
	TCP Segment Format
	TCP Congestion Control Algorithms
	Slow Start
	Congestion Avoidance
	Fast Retransmit
	Fast Recovery

	Multihoming: State of the Art
	Resource Pooling Principle
	Application Layer
	Link Layer
	Network Layer
	Mobile IP (MIP)
	Site Multihoming by IPv6 Intervention (Shim6)
	Host Identity Protocol (HIP)

	Transport Layer
	Stream Control Transmission Protocol (SCTP)
	Basic SCTP Features
	SCTP Multistreaming Feature
	SCTP Multihoming Feature

	MultiPath TCP
	Design Goals
	Functional Goals
	Compatibility Goals
	Application Compatibility
	Network Compatibility
	Compatibility With Other Network Users
	Security Goals
	Congestion Control Algorithm Goals

	Terminology
	Protocol Operation
	MPTCP Options
	Connection Establishment
	Starting a New Subflow
	Exchange of Data
	Prioritizing of Subflows
	Closing a Connection
	Coupled Congestion Control Algorithm

	Failure Handling
	Middleboxes

	NorNet Core: A Multihomed Research Testbed
	The Design
	The Implementation
	Testbed Management
	The Sites
	Tunneling Setup
	Addresses in NorNet Core
	Accessing the Testbed Slivers
	Virtualization

	The NorNet MPTCP Implementation
	Installation
	Configuration
	Congestion Control
	Path Manager
	Scheduler

	Methodology and Results
	Expectations
	Evaluation Tools
	Gathering Experimental Data

	Analysis of Packet Capture
	Experiments and Results
	MPTCP Subflow Analysis
	Subflow Routing

	Throughput
	MPTCP vs. TCP Throughput, Independent Flows

	Fairness
	MPTCP vs. TCP, Two Concurrent Flows
	MPTCP vs. TCP, Four Concurrent Flows

	Latency
	Connection Handover
	Congestion Control Algorithms
	Schedulers

	Summary and Evaluation

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography
	Appendix NetPerfMeter Vector Parser

