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Abstract 

The past decade the awareness for sustainability has come more and more into focus of 

society in terms of a need for eco-friendlier processes and renewable energies, new and better 

pharmaceuticals, and agricultural- and aquaculture challenges amongst others. Hence, 

enzyme technology has emerged as one of the most important technologies to meet future 

demands. A common consensus is that the marine environments represent a largely untapped 

potential for industrial applicable enzymes. As deep-sea hydrothermal vent fields have 

revealed a biodiversity of largely uncultivated microorganisms they have been reviewed as 

hot spots for finding new biocatalysts. In this study, samples from the Arctic Mid-Ocean-

Ridge (AMOR) deep-sea hydrothermal vent fields have been investigated as a source for 

potential carbohydrate degrading biocatalysts, with a focus on starch degrading enzymes, 

using a multifaceted approach; isolation of a novel starch degrader (Paper I), integrated 

sequenced-based meta-omics study of a microbial biofilm (Paper II), genomic analysis of 

microbial isolates (Paper I and III), and finally, a functional-based screening of a microbial 

biofilm was conducted (described in detail in section 3.2). 

In general, the sequence-based screening for glycoside hydrolases (GHs) in all sequencing 

analyses was low, with Lutibacter profundi LP1T exhibiting the highest amount with 24 GHs 

(Paper III). However, a purified thermophilic neopullulanase with a melting temperature of 

76.4 °C showed a comparable starch degradation capacity as the reference -amylase from 

Bacillus licheniformis (Paper I). In comparison, a higher amount of proteases was identified 

searching against the MEROPS protein database. For both isolates (Paper I and III), 

protease activity was confirmed on agar plates hydrolysing casein and gelatin. Interestingly, 

the activity-based screening of a microbial biofilm identified 274 clones with starch 

degrading activity. Selective sequencing of 106 positive clones did not reveal any homologs 

of known -amylases or members of the GH13 family. Further investigations of the clones 

are needed; however, this observation could be the first step in identifying new amylases yet 

to be characterized. 

The biofilm used in this study (Paper II and activity screening, section 3.2), attached to a 

deep-sea black smoker chimney, gave us the opportunity to investigate the trophic 

relationship between a biopolymeric producing filamentous Epsilonproteobacteria with 



organotrophic consumption of an epibiotic Bacteroidetes. Genomic characterization of an 

isolated Bacteroidetes from the biofilm further strengthened the link between primary 

production and the role of organotrophic degradation within the biofilm (Paper III). 

Besides exploiting metagenomics for bioprospecting, the comprehensive data obtained in my 

thesis enabled an expansive insight to functional and metabolic traits and linking them to 

taxonomical groups. The individual approaches provided different information, which 

combined contributed to our understanding of interactions in deep-sea hydrothermal food 

webs. 
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1. Introduction 

1.1 Background 

In recent years an awareness and need for sustainability, ecological friendly actions and 

health have grown. With increasing population size and global industrialization there is an 

expanding demand of food, water, energy, healthcare and new materials produced by 

environmentally beneficial applications.1 Earth´s reservoirs of fossil fuels are also decreasing 

and the use of renewable biomaterials is globally defined as important for the production of 

energy as well as new biomaterials. We see now a trend where the importance of a geo-based 

economy, the geoeconomy, is decreasing relative to a continually growing bio-based 

economy, the bioeconomy.2 Clearly, the use of biotechnological applications will likely 

increase more in the future, which means that there will be an increasing need to find new 

living organisms and identify their potentially useful products.  

Biotechnology is defined as the technical application of living organisms, systems and 

processes as well as their metabolic products.3 This technology has wide-spread application 

in various branches of major industrial areas including health care, food, non-food and the 

environment. For instance, the pharmaceutical industry uses microbial products as 

antibiotics, antitumor agents and immunosuppressants (Demain and Adrio 2008). The food 

and agriculture industry uses them for food-processing agents, biopesticides and antiparasite 

agents. Vitamins, amino acids, organic acids, detergents and bio-catalysts are produced in 

chemical industry, whereas the environmental industry uses microbial products for bio-

remediation and production of bioenergy (Demain and Adrio 2008). In 2009 it was estimated 

that over 500 commercial products were manufactured using biocatalysts of microbial origin 

(Singh 2010). The global market for industrial enzymes is growing in various sectors of 

industry, ranging from industrial application such as for detergent, starch, leather, textile, 

pulp and paper to food, feed and healthcare. The global market, estimated to $3.3 billion in 

                                                 
1 OECD (2009). The Bioeconomy to 2030: Designing a Policy Agenda: Main findings and policy conclusions. 
OECD – Organisation for Economic Co-operation and Development. 
http://www.oecd.org/futures/bioeconomy/2030 
2 European Commission (2012). Innovating for Sustainable growth: A Bioeconomy for Europe. European 
Commission, Directorate – General for Research and Innovation B-1049 Brussel, ISBN 978-92-79-25376-8 
3 United Nation (1992). Convention on Biological Diversity. https://www.cbd.int/convention/text/default.shtml 



2010, is expected to reach nearly $7.1 billion by 2018.4,5 The biodegradable nature and cost 

effectiveness of enzymes let them become financially and ecologically viable alternatives to 

chemical processes. Thus the need for novel microorganisms and biocatalysts is increasing in 

line with new demands, technologies and approaches.

The marine environment is characterized by a rich diversity of organisms, many of which 

remain undescribed (Kennedy et al., 2010, Dalmaso et al., 2015).6,7 Because of this high 

biodiversity, marine ecosystems are particularly well-suited for bioprospecting. 

Bioprospecting is the systematic search for valuable compounds and commercialization of 

new products based on biological resources (Kodzius and Gojobori 2015).6 Marine species 

that live in extreme environments such as deep-sea hydrothermal vents could be of particular 

interest, due to their physico-chemical adaptations. Deep-sea hydrothermal vents harbour 

ecosystems in areas with tectonic activity (Figure 1), and are located along mid-ocean ridges, 

back-arc basins, volcanic arcs and actives seamounts (Tyler et al., 2002, German et al.,

2011). They were discovered in the late 1970s during the exploration of the Galapagos 

spreading centre (Corliss et al., 1979). Within a deep-sea hydrothermal vent field multiple 

zones of focused, high-temperature venting and low-temperature diffuse flows may be found 

(Nakamura and Takai 2014).These represent some of the most physically and chemically 

diverse habitats on Earth for microbial growth where the geochemical and thermal gradients 

provide a wide variety of niches for microbial colonization (Takai et al., 2006, Tivey 2007). 

These ecosystems are fuelled by chemosynthesis where primary production is performed by 

chemoautotrophic archaea and bacteria that utilize reduced chemical substances such as H2, 

H2S, CH4, Fe(II) and Mn(IV) (Table 1) (Takai et al., 2006, Takai and Nakamura 2011, 

Sievert and Vetriani 2012). Different geological settings of the hydrothermal systems 

influence the chemical composition of the hydrothermal fluids (Kelley et al., 2002, Tivey 

2007, Flores and Reysenbach 2011, Orcutt et al., 2011, Nakamura and Takai 2014). Deep- 

                                                 
4 BBC Research (2011). Report BIO030 F Enzymes in Industrial Applications: Global Markets. BBC 
Research, Wellesley, MA, USA 
5 BBC Research (2014). Report BIO030 H Enzymes in Industrial Applications: Global Markets. BBC Research. 
Wellesley, MA, USA 
6 Nasjonal strategi (2009). Marin bioprospecting – en kilde til ny og bærekraftig verdiskaping. Fiskeri- og 
kystdepartementet, Kunnskapsdepartementet, Nærings- og handelsdepartementet, Utenriksdepartementet, 
Norway 
7 Global Ocean Commission (2013). Policy Options Paper # 4: Bioprospecting and marine genetic resources in 
the high seas. Global Ocean Commission. http://www.globaloceancommission.org 



sea hydrothermal microbial communities include chimney structures, plumes, microbial 

mats, sediments, diffuse flow hydrothermal fluids and epibiontic microflora of deep-sea vent 

metazoans (Figure 1) and are reviewed elsewhere (Dubilier et al., 2008, Flores and 

Reysenbach 2011, Orcutt et al., 2011, Sievert and Vetriani 2012). The microorganisms living 

under such extreme conditions (high pressure, extreme temperatures and pH) are commonly 

called extremophiles (Podar and Reysenbach 2006, Cavicchioli et al., 2011a). They are well-

known to produce enzymes or “biocatalysts” (Antranikian et al., 2005). Industrial processes 

often include extreme conditions, which are similar to those that exist in extreme habitats. 

Biocatalysts from extremophiles are particularly interesting as their range of applications is 

versatile for biotechnology processes (Dalmaso et al., 2015) and fundamental research 

(Sarmiento et al., 2015). The number of biocatalysts derived from deep-sea hydrothermal 

vents is however limited.7 This may be explained by the fact that they remain largely 

underexplored resources as access to deep-sea hydrothermal systems is difficult (Thornburg

et al., 2010). Furthermore, the logistics for studying such environments is extremely 

challenging, cost-intensive and requires a vast amount of resources and specialized 

Figure 1: Hydrothermal circulation along Mid-Ocean Ridge illustrating compositional changes of seawater and 
microbial habitats supported by hydrothermal fluids. The small arrows indicate fluid flow while large arrows 
indicate heat transfer from magmatic source. Image is not to scale. Adapted from Flores and Reysenbach 
(2011). 



equipment, including the use of remotely operating vehicles (ROVs) (Thornburg et al., 2010, 

Cavicchioli et al., 2011a). Thus research explorations to these environments have rather 

fulfilled the demand of basic research in terms of revealing the phylogenetic, metabolic and 

physiological microbial diversity of those ecosystems than serve for the search and 

identification of novelties for biotechnology and industrial applications (Sievert and Vetriani 

2012).7  

Table 1: Examples of thermodynamically favourable redox reactions utilized by microorganisms from marine 
hydrothermal environments. Modified from Flores and Reysenbach (2011) and complemented (Knittel and 
Boetius 2009). 

Conditions Electron donor Electron 
acceptor 

Free energy 
G (kJ/mol) Metabolic process 

Aerobic H2 O2 -237 Hydrogen oxidation
HS- O2 -797 Sulphide oxidation
S0 O2 -585 Sulphur oxidation
S2O3

2- O2 -952 Thiosulfate oxidation
Fe2+ O2 -44.3 Iron oxidation
NH4+ O2 -275 Nitrification
CH4 and other 
C1 compounds O2 -810 Methane oxidation 

Organics O2 -477 Heterotrophic metabolism
Anaerobic H2 NO3

- -239 Denitrification
H2 S0 -98.3 Sulphur reduction
H2 SO4

2- -38.1 Sulphate reduction
H2 CO2 -34.7 Methanogenesis
CH4 SO4

2- -16 Methane oxidation

 Organics SO4
2- -40.6 Heterotrophic sulphate

reduction 

 Organics S0 -25.1 Heterotrophic sulphur
reduction 

Organics Organics -38.5 Fermentation

Since 2005 researchers at the Centre for Geobiology, University of Bergen, have discovered 

deep-sea hydrothermal vent systems at the ultraslow-spreading Arctic Mid-Ocean ridge 

(AMOR) in Norwegian territorial waters (Figure 2). AMOR extends over 4000 km north of 

the Arctic Circle (66°N) in the Norwegian-Greenland Sea and consists of several smaller 

ridge sections (Pedersen et al., 2010b). The Jan Mayen Vent Fields (JMVF) and Loki’s 

Castle Vent Field (LCVF) were the selected study sites for this PhD thesis. They are both 

basalt hosted hydrothermal vent systems located along AMOR. 



Explorations of the microbial biodiversity have identified a large diversity of novel microbial 

taxa with a multiplicity of uncultivated microbial linages, in addition to microorganisms 

found widely distributed in deep-sea hydrothermal vent systems (Lanzen et al., 2011, 

Jaeschke et al., 2012, Jorgensen et al., 2012, Dahle et al., 2013, Urich et al., 2014, Dahle et 

al., 2015, Stokke et al., 2015, Schouw et al., 2016, Steen et al., 2016). These results point 

towards an untapped genetic reservoir encoding potentially valuable biocatalysts. 

Figure 2: Arctic Mid-Ocean Ridge with the location of the hydrothermal systems 1) Jan Mayen vent field and
2) Loki’s Castle vent field. KR, Kolbeinsey Ridge; MR, Mohns Ridge; Kni. R, Knipovich Ridge; LT, Lena
Through and GR, Gakkel Ridge. Map after Pedersen et al. (2010b). 



1.2 Enzymes from extremophiles and their biotechnological application 

Microbial enzyme resources are provided by nature in an immense amount. These 

biocatalysts exhibit high specific activities toward substrates, are biodegradable, have a low 

demand for energy and lead to limited production of wastewater and by-products (Adrio and 

Demain 2014).  

Comparative analyses of homologous enzymes from psychrophiles, mesophiles and (hyper-) 

thermophiles have revealed a variety of characteristics promoting thermostability (Russell et 

al., 1998, Knapp et al., 1999, Mallick et al., 2002, D'Amico et al., 2003). In general, (hyper)-

thermophilic enzymes are intrinsically stable and have a rigid conformation (Vieille and 

Zeikus 2001). To promote this stability “loose structures” like the protein ends (N- and C- 

terminus) and loops are either shortened or anchored to the protein surface (Vieille and 

Zeikus 2001, Bell et al., 2002, Leiros et al., 2012). Hydrophobic amino acids are shifted to 

the interior of the protein, promoting elevated hydrophobic interactions (Knapp et al., 1999). 

The amino acids arginine and proline are found in higher frequency in thermophilic proteins, 

where they facilitate stabilization of the protein structure. The number of disulphide bonds 

formed by cysteines increases with temperature elevation (Mallick et al., 2002). A higher 

number of charged amino acids are located on the protein surface and large networks of ionic 

interactions and hydrogen bonds can be found in active site regions and at subunit interfaces 

(Knapp et al., 1999). In contrast, psychrophilic proteins are intrinsically more disordered, 

leading to more flexible structures (Feller 2010). The compactness of the protein interior is 

reduced, due to a smaller hydrophobic core. Fewer and weaker molecular interactions lead to 

unfolding of proteins at moderate temperatures. A higher proportion of non-polar residues 

exposed on the surface and the increased state of loose or relaxed of protein extremities are 

considered as additional destabilizing factors (Feller 2010). In comparison with mesophilic 

and thermophilic homologs, psychrophilic proteins show a higher occurrence of glycine 

clusters, especially in functional regions, but have a lower proline content and disulphide 

bonds (Feller 2010). The increased flexibility of psychrophilic enzymes results in a modified 

active site with elevated heat-labile properties. Although the catalytic residues are conserved 

among the extremophilic enzymes, the catalytic cavity seems larger and more accessible to 

ligands (Russell et al., 1998). The weaker substrate affinity reduces the activation energy and 

results in higher enzyme activity (D'Amico et al., 2003).  



Interest in psychrophilic enzymes with industrial potential has increased over the last years 

(Trincone 2011, Dalmaso et al., 2015). Various enzymes, such as lipases, proteases, 

amylases and ureases, were obtained from isolates or metagenomic studies from a diverse 

range of cold habitats (Prasad et al., 2014, Vester et al., 2014, De Santi et al., 2016a). These 

are applied in a wide variety of industries, including food and beverages, detergents, textiles, 

research and cosmetics (Cavicchioli et al., 2011b, Dalmaso et al., 2015). For example, in 

molecular biology, there is particular interest in the use of cold-active DNA modifying 

enzymes, like alkaline phosphatases, DNases and nucleases (Sarmiento et al., 2015). The 

increasing numbers of available cold-active enzymes is not only due to the growing interest 

and efforts of reducing energy consumption in various applications, but also to due to the fact 

that diverse psychrophilic environments are easier to exploit than other extreme habitats, 

such as the deep-sea. The Earth biosphere is considered to be cold, with over 80% being 

permanently subjected to temperatures below 5 °C (Cavicchioli et al., 2011a). Therefore the 

quantity of habitats comprising bacteria producing cold-adapted enzymes is versatile.  

Enzymes from (hyper)-thermophilic organisms are also of interest in terms of industrial 

applications. In contrast to their mesophilic counterparts, these enzymes are thermostable and 

resistant to irreversible heat inactivation. Other advantages are enhanced biomass conversion,

minimized contamination and reduction of process costs (Antranikian et al., 2005). (Hyper)         

-thermophilic enzymes have gained importance in biorefineries for bioethanol production, 

where the temperatures are elevated to degrade complex compounds. Industrial markets 

using thermophilic enzymes comprise food and beverages, detergents, pulp and paper and 

biofuels, among others (Adrio and Demain 2014, Sarmiento et al., 2015).  

The broad ranges of physicochemical boundaries found in hydrothermal vents allow the 

discovery of distinct enzymes covering a wide temperature range for activity. However, as 

Podar and Reysenbach stated, “the path from extremophile to successful commercial 

application is not documented in peer reviewed scientific publications in most cases, due to 

highly competitive nature of industrial R&D. These information’s can be partially followed 

through patents, biotechnology meetings and company websites” (Podar and Reysenbach 

2006). This clearly presents a major challenge to obtain and present a complete overview of 

the amount and types of enzymes, originating from hydrothermal vents, which have 

biotechnological applications. 



1.3  Glycoside hydrolases 

The carbohydrate-active enzyme (CAZy) database (http://www.cazy.org/) describes 

structurally-related catalytic domains and carbohydrate-binding modules of enzyme families 

that degrade, modify or create glycosidic bonds (Cantarel et al., 2009). The currently 

included enzyme classes are: glycoside hydrolases (GHs), glycosyltransferases (GTs), 

polysaccharide lyases (PLs), carbohydrate esterases (CEs), auxiliary activities (AAs), and 

non-catalytic carbohydrate-binding modules (CBMs) (Levasseur et al., 2013). The CAZy 

classification system is based on amino acid sequence comparison, and members of the same 

glycoside hydrolase (GH) family should exhibit sequence similarities, share catalytic 

machinery, employ the same reaction mechanism and adopt the same type of catalytic 

domain fold (Henrissat 1991). 

1.3.1 Amylases 

Amylases catalyse the hydrolysis of starch and related -glucan molecules to glucose 

monomers (Figure 3). Starch and related polysaccharides occur in great abundance in nature 

and serve as energy storage molecules in plants (van der Maarel et al., 2002, Kelly et al.,

2009). Starch is composed of two different glucose polymers: 1) amylose, a linear -1,4-

linked glucose molecule chain and 2) amylopectin with the additional association of -1,6 

branches. Glycogen is the storage form of glucose in mammals and is analogous to starch in 

plants. It is structurally similar to amylopectin, but with a higher degree of -1,6 branches 

(Kelly et al., 2009). Enzymes, that are active towards -glucosidic bonds, present in starch 

and related poly- and oligosaccharides, have been designated as “amylolytic enzymes” 

(Janecek et al., 2014). They catalyse the enzymatic reactions hydrolysis, transglycosylation 

and isomerization. Amylases are mainly represented in the GH family 13, although members 

probably exist in the families GH57, GH119 and GH126 (Janecek et al., 2014).  

The endo-acting enzyme -amylase (EC 3.2.1.1) is the most widely studied amylolytic 

enzyme. It catalyses the hydrolysis of internal -1,4-glucosidic bonds of amylose and 

amylopectin chains in a random fashion (MacGregor and Svensson 1989) (Figure 3). Exo-

acting amylases release terminal glucose monomers from non-reducing ends of 

polysaccharide   chains.   Glucan  1,4- -glucosidase  (EC 3.2.1.3,  glucoamylase)   and  - 



glucosidase (EC 3.2.1.20) are able to cleave both -1,4  and -1,6 bonds to release single 

glucose residues (van der Maarel et al., 2002). The -amylase (EC 3.2.1.2, maltogenic 

amylase) hydrolyses maltose units instead of glucose residues from exclusively -1,4 

glucosidic polysaccharides. It is the only known enzyme of the GH14 family. Other 

exoamylases are glucan -1,4 maltohydrolase (EC 3.2.1.133) and diverse 

maltooligosaccharide forming amylases (van der Maarel et al., 2002). The debranching 

enzymes isoamylase (EC 3.2.1.68) and pullulanase type I (3.2.1.41) mediate the hydrolysis of 

-1,6-linked branching points in amylopectin and related polysaccharides, whereas 

amylopullulanase (EC 3.2.1.1/41) can additionally hydrolyse -1,4 glycosidic bonds (Hii et 

al., 2012). Another group of starch converting enzymes are transferases. They cleave an -

1,4 glucosidic bond from a donor molecule and transfer a part to a glucosidic acceptor by 

forming a new glucosidic bond (Figure 3). Amylomaltase (EC 3.2.1.25) and cyclodextrin 

glycosyltransferase (EC 2.4.1.19) catalyse a new -1,4 glucosidic bond with the acceptor, 

whereas the branching enzyme (EC 2.4.1.18) forms new -1,6 glucosidic bonds (van der 

Maarel et al., 2002). 

The wide range of industrial applications for amylases includes food and feeding production 

(e.g. fruit juice clarification, baking and beer industries), detergent, textiles, pulp and paper, 

bio-remediation and bioethanol production (van der Maarel et al., 2002, Yang et al., 2014). 

Figure 3: Different enzymes involved in starch degradation. The white ring structure marks the reducing end of 
a glucan molecule. Adapted from van der Maarel, et al. (2002) 



The liquefaction and saccharification process of starch for sugar syrups (e.g. glucose, 

fructose or maltose syrups) or ethanol production requires a variety of thermophilic amylases 

at different production steps (Prakash and Jaiswal 2010, Hii et al., 2012, Homaei et al.,

2016). An -amylase is applied during liquefaction, which has to withstand temperatures of 

105 °C, with optimum activity at 95 °C, and pH 6.0 to 6.2 for the hydrolysis of starch into 

oligosaccharides. In the following saccharification step, glucoamylases and pullulanases are 

utilized to produce glucose at 60 °C and pH of 4.2 – 4.5. A last step in fructose syrup 

production is isomerization of glucose into fructose by glucose isomerase at 60 °C and 

elevated pH of 7.8 (Crabb and Shetty 1999). In the detergent application amylases must 

withstand elevated temperatures (60 °C), alkaline conditions and be resistant to oxidants 

(Cherry and Fidantsef 2003). Pullulanases are applied as effective additives in detergents and 

in the production of high-amylose starches, diverse syrups and cyclodextrins (Hii et al.,

2012). A variety of starch-active enzymes has been suggested as anti-staling agents in the 

baking industry to improve texture, volume and flavour of bakery products, such as -

amylase, branching and debranching enzymes, maltogenic amylases, -amylases and 

amyloglucosidases (van der Maarel et al., 2002). Transferases like cyclodextrin 

glycosyltransferase find applications in the production of novel glycosylated compounds or 

cyclodextins for food, pharmaceutical and cosmetic industry (Biwer et al., 2002, van der 

Maarel et al., 2002, Radu et al., 2016).  

Various microorganisms (Bacteria, Archaea and Fungi) are sources for amylolytic enzymes 

implemented in present-day biotechnology (Homaei et al., 2016). The most deployed 

thermophilic amylolytic enzymes derive from different Bacillus species, such as -amylases 

(Kindle et al., 1986, Nedwin et al., 2013), pullulanases (Tomimura 1991), -amylase 

(Matsunaga et al., 2011) and cyclodextrin glycosyltransferase (Kragh et al., 2010). The 

leading enzyme producer Novozyme has Toruzyme®, a cyclodextrin glycosyltransferase 

from B. licheniformis, and BAN 480 L, an -amylase from B. amyloliquefaciens, in their 

thermophilic product range. Other commonly used bacterial sources are the Firmicutes

Thermoanaerobacter or Thermoanaerobium for cyclodextrin glycosyltransferases (Starnes et 

al., 1996), Clostridium thermosulfurogenes for -amylases (Zeikus and Hyun 1987) and 

Geobacillus for cyclodextrin glycosyltransferases and -amylases (Shiosaka 1976, Tamuri et 

al., 1981); the Bacteroidetes Rhodothermus obamensis for branching enzyme (Shinohara et 



al., 2001, Hendriksen and Norman 2002) or Thermotogales, such as Fervidobacterium, for 

pullulanases (Antranikian and Rgensen 1996). For processes with higher temperature 

demands, Archaea represent an adequate resource for hyperthermophile enzymes (Littlechild 

2015). Species of Pyrococcus and Thermococcus among others, are not only used as 

biocatalyst source for DNA modification (Mathur 1996, Schildkraut and Schildkraut 2008), 

but also for other hydrolases, such as amylases and pullulanases (Antranikian et al., 1992, 

Antranikian and Sjoholm 1997). 

1.3.2 Carbohydrate binding modules 
A variety of carbohydrate-active enzymes have acquired one or more additional non-catalytic 

domains that interact with poly-, oligo- or monosaccharides. Theses auxiliary domains 

exhibit an autonomous folding and are known as carbohydrate-binding modules (CBM). 

Currently, CBMs are grouped into 73 families in the CAZy database (February 2016). 

Proteins containing CBMs recognize a variety of insoluble polysaccharides (e.g. cellulose, 

chitin, xylan, -glucans, starch, glycogen) and other different sugars (e.g. arabinofuranose, 

mannan, fucose, lactose, galactose, lipopolysaccharides) (Guillen et al., 2010). Thereby 

CBMs play a key role in substrate hydrolysis, but are also important for metabolisms, energy 

storage, structural support, attachment, immunological recognition, etc. A fine carbohydrate-

binding specificity by CBMs enable the anchoring of the catalytic domain to the 

polysaccharide surface and enhance enzymatic activity (McLean et al., 2002). Some CBM 

families are invariant in their substrate specificity, whereas modules of other families bind to 

a range of different polysaccharides (Michel et al., 2009). In general, the binding specificity 

of the CBMs are congruent with the catalytic activity of the enzymatic domains (Michel et 

al., 2009). Additionally, the disruption of diverse polysaccharide structures by CBMs has 

been described (Giardina et al., 2001, Guillen et al., 2010). The capability of binding starch 

is found at present in 12 carbohydrate-binding module families (CBM20, CBM21, CBM25, 

CBM26, CBM34, CBM41, CBM45, CBM53, CBM58, CBM68, CBM69) (Janecek et al.,

2011, Peng et al., 2014, Xu et al., 2014). 



1.4 Enzyme discoveries by (meta)genomic analysis 

The Earths biosphere contains a wide variety of habitats which host vast microbial diversity. 

Prokaryotes have been determined to comprise 106 to 108 separate genospecies, representing 

the largest proportion of distinct organisms (Simon and Daniel 2011). Up to now, over 99% 

of the total cell counts of a given sample observed under the microscope cannot be isolated 

by cultivation techniques (reviewed by Torsvik and Ovreas 2002). Over the last few decades, 

a variety of genomic and metagenomic tools have been developed to study this microbial 

diversity and ecology, including DNA cloning systems, DNA sequencing, PCR, 

hybridization techniques and bioinformatics (Rashid and Stingl 2015). Such culture-

independent techniques enable the analysis of the phylogenetic, genetic and the functional 

diversity of a sample, without the need for isolating individual organisms. The terms 

“metagenome” and “metagenomics” were coined by Handelsman and colleagues and refer to 

the genomic analysis of uncultured microorganisms (Handelsman et al., 1998). Since then, 

metagenomic approaches constituted two types of analysis to obtain information from 

metagenomic libraries. The first approach, called “sequencing-based metagenomics”, uses 

sequencing techniques to screen genetic material for particular DNA sequences. The second 

approach screens for a heterologous expressed traits and is termed “functional 

metagenomics” (Schloss and Handelsman 2003). The same techniques are now applied for 

bioprospecting “microbial dark matter” as a resource for novel biocatalysts and secondary 

metabolites (Piao et al., 2014, Michalska et al., 2015). As a consequence, new molecular 

tools and sequencing techniques, genomics and metagenomic-based enzyme discoveries have 

become increasingly important over the years (Kodzius and Gojobori 2015, Ufarte et al.,

2015b, Mirete et al., 2016). In the following, the sequence-based and function-based 

approaches will be described in detail. 

1.4.1 Sequence-based metagenomics 
The sequence-driven approach is adequate for ecological studies that address questions such 

as “who is there” and “what can they do” (Tyson et al., 2004, von Mering et al., 2007, Simon 

and Daniel 2011). At the beginning of the metagenomic era, the generation of metagenomic 

libraries from environmental samples was a necessary part of the method. The entire genomic 

DNA content of a sample was isolated and genomic fragments of a certain size were cloned 



into a vector before the transformation into a suitable host. Genome libraries play an 

important role in e.g. analysing phylogenetic affiliations of organisms by 16S rRNA or other 

highly conserved genes, characterizing operon structures, to facilitate discovery of genes and 

whole pathways for potential physiology and ecological function or industrial applications, 

and even in the assembly of genomes from uncultured organisms (Schloss and Handelsman 

2003, Tyson et al., 2004). In the first study using this approach, environmental DNA was 

cloned into bacteriophage lambda and screened for 16S rRNA gene sequences to analyse the 

phylogenetic diversity of marine picoplankton, a decade before the term ‘metagenome’ was 

coined (Schmidt et al., 1991). De Long et. al. demonstrated that sequence-based 

metagenomics has the potential to link phylogeny with functional aspects of uncultured 

microorganisms (Beja et al., 2000a). A bacterial rhodopsin gene was identified from a rRNA-

containing clone of an uncultivated marine Gammaproteobacterium (SAR86 group) from a 

marine planktonic community metagenomic library (Beja et al., 2000a, Beja et al., 2000b). In 

the past, bacteriorhodopsin was only attributed to halophilic archaea and the finding 

expanded the knowledge on how light energy enters marine ecosystems. With the 

development of next generation sequencing (NGS) technologies, the analyses of samples has 

been shifted towards a sequencing-only approach, making the generation of clone libraries 

unnecessary (Margulies et al., 2005, Shendure et al., 2005). Entire genomes or metagenomes 

of environmental samples can now be sequenced in parallel, leading to an exponential growth 

of available sequence data and thereby providing valuable insights into diversity, genome 

size and metabolic functions of microorganisms (Gonzalez et al., 2008, Pope et al., 2012, 

Albertsen et al., 2013). Recently, the technology has evolved; enabling separation of single 

cells and mediating sequencing of their amplified genomes (Raghunathan et al., 2005, Marcy

et al., 2007). By using single-cell genome sequencing, Rinke and colleagues were able to 

recover and analyse the genomic data of 201 uncultivated bacterial and archaeal cells of 29 

novel phylogenetic branches, revealing unexpected metabolic features (Rinke et al., 2013).  

Working with sequence-driven metagenomics requires prior knowledge about the gene 

sequences of interest. Analyses are referred to as direct studies when making use of 

conserved DNA sequences to design PCR primers for target genes or hybridization probes to 

screen for clones in metagenomic libraries that contain the sequences of interest (Schloss and 

Handelsman 2003). The undirected approach uses random sequencing of metagenomic DNA. 



All analyses are based on sequence homology towards known sequences and are limited in 

terms of finding novel and unique ones. The applications of adequate bioinformatic tools are 

essential for the analysis of sequencing data, including functional annotation of genes, and 

assessment of the performance. Specialized databases of specific protein groups (e.g., 

enzyme classes) can be helpful for gene annotation and are of great relevance for functional 

prediction to biology in general and to biotechnology in particular. Integrated annotation 

tools perform sequence comparison against sequence collections and enable the identification 

of homologues. The batch BLAST tool of the MEROPS peptidase database detects 

peptidases in newly determined sequences (Rawlings and Morton 2008). Information about 

enzymes involved in the assembly, modification and breakdown of oligo- and 

polysaccharides is provided by CAZy, a database for carbohydrate-active enzymes (Cantarel

et al., 2009). The database for automated carbohydrate-active enzyme annotation, (dbCAN), 

and the CAZYmes analysis toolkit, (CAT), incorporate the knowledge of CAZy and provide 

automated annotation for CAZymes (Park et al., 2010, Yin et al., 2012). Thereby, sequence-

based metagenomics enables the identification of protein encoding genes with lower 

sequence homology towards known genes and also the discovery of modified or new 

activities, which is an interesting aspect for bioprospecting. 

1.4.1 Function-based screening methods 
Functional screening methods are based on heterologous expression of target genes present in 

metagenomic libraries and selection for certain phenotypes, such as colour, inhibition zones 

or fluorescence (Rashid and Stingl 2015). Clones with the desired functional properties are 

subsequently sequenced to identify the genes of interest. An advantage of this approach is the 

identification of novel activities, uncoupled from sequence homology, which enables the 

discovery of new genes with low or missing sequence homologies to known genes (Simon et 

al., 2009). The experimental setup is important for functional-based metagenomics regarding 

the choice of DNA fragment size, vector and expression host (Kakirde et al., 2010). The 

approach can be coupled with high-throughput technologies, thereby shortening the 

processing time and allowing for larger clone libraries to improve the screening outcome for 

an otherwise labour-intensive protocol (Ekkers et al., 2012). Furthermore, a suitable 

production organism has already been established for the detected gene activities. 



Nevertheless, robust and sensitive screening methods need to be applied to overcome low hit 

rates due to low gene expression levels or incompatible host expression machinery towards 

target genes.  

The basic phenotypical functional screening is based on visual detection of traits, such as 

colony pigmentation, irregular colony morphology or halo formation on plate overlays 

(Ekkers et al., 2012). Craig and colleagues used the above mentioned traits to screen for 

associated small-molecule production using high-throughput screening in multiple hosts 

(Craig et al., 2010). The application of indicator medium is more common in functional-

based screening (Simon and Daniel 2011). Supplements in media will lead to the detection of 

catabolic, metabolic or antibiotic capabilities as well as chemical reactions or particular small 

molecules. The use of solid media enables elevated analytical screening throughput of clones, 

although the detection sensitivity might be reduced due to diffusion of reaction products, 

which leads to low signal-to-noise ratios (Rashid and Stingl 2015). An extensive study of a 

human metagenome by solid media-based multi-step functional screening for carbohydrate-

active enzymes facilitated the identification of target genes (Tasse et al., 2010). The 

application of liquid-based high-throughput screening is another alternative. It can be a 

sensitive and reproducible method in combination with a small reaction volume, in microliter 

scale, and automated detection systems of chromogenic or fluorescent signals (Nyyssonen et 

al., 2013). In addition to those aforementioned ‘basic’ approaches, more sophisticated high-

throughput screening technologies have been developed. Functional screening can be 

performed using heterologous complementation of host strains or mutants for growth under 

selective conditions (Schipper et al., 2009, Simon et al., 2009) or induced gene expression 

(Uchiyama et al., 2005, Uchiyama and Miyazaki 2010, Simon and Daniel 2011). Growth of 

clones can only be observed if foreign DNA inserts promote expression of desired gene 

products that facilitate viability. Cold-active DNA polymerase activities have been detected 

using Escherichia coli harbouring a cold-sensitive lethal mutation in DNA polymerase I as a 

host, for screening metagenomic libraries obtained from glacial ice (Simon et al., 2009). 

The use of functional-driven metagenomics to search for new biocatalysts was applied for the 

first time by Healy and colleagues (1995). They constructed a gene library from 

thermophilic, anaerobic lignocellulose digesters and screened successfully for thermophilic 

cellulases. Since then, a vast number of studies have been performed screening for a variety 



of biocatalysts (Yan et al., 2013, Biver et al., 2014, Lee et al., 2015, De Santi et al., 2016b) 

and reviewed (Ferrer et al., 2009, Uchiyama and Miyazaki 2009, Ufarte et al., 2015a). 



2. Aims

Given the promising biotechnological potential of extremophilic microorganisms from the 

AMOR, the overall aim of this thesis was to reveal this potential by cultivation, genome 

analyses and by culture-independent metagenomic analyses. Since amylases and 

proteinases/peptidase are known to have broad application areas, the focus was put on these 

enzyme classes.  

Specific objectives were to: 

• Isolation and characterization of starch-degrading thermophilic microorganisms from 
the AMOR. 

• Identification and characterization of genes encoding carbohydrate-degrading 
enzymes in genomes and shotgun metagenomic data from AMOR. 

• Construction of a metagenomic library of environmental DNA from a microbial mat 
situated on a hydrothermal chimney and identification of -amylases by functional 
screening using plate-based activity assays. 



3. Results and discussion 

In this thesis, the work included isolation, characterization and genome analysis of a new 

Geobacillus strain from hydrothermal sediments collected from the JMVF (Paper I). 

Moreover, a biofilm (09ROV3-BS) sampled from a black smoker chimney wall at LCVF was 

studied using meta-omics technologies for the analysis of the community structure and 

functions (Paper II). The genome of Lutibacter profundi LP1T (Le Moine Bauer et al., in 

review), isolated from the same biofilm, was also sequenced and analysed to assess its 

ecological role in the biofilm and to identify genes encoding enzymes of industrial relevance 

(Paper III). Finally, a metagenomic library for screening of potential novel amylases was 

made from the same biofilm. The main results are presented and discussed in the papers I, II

and III, respectively. The procedures and results obtained from the work with the 

metagenomic library are only presented and discussed in this section (see 3.2). 

3.1 DNA-sequencing technologies 

Three different high-throughput DNA-sequencing technologies were used in this PhD-

project. In Paper II, the metagenome and transcriptome of the biofilm sampled from the 

black smoker wall was sequenced using 454-shotgun sequencing in combination with 8 kb 

paired-end sequencing. The 454 system, later known as Roche 454, was launched in 2005 

and was the first commercially used next generation sequencing (NGS) system. This system 

uses pyrosequencing technology, which is based on the detection of pyrophosphate released 

during nucleotide incorporation. The reactions are carried out in a picotiter plate, where 

single DNA strands are captured via specific adaptors by amplification beads (Margulies et 

al., 2005). This technique can generate a long read length of 700 bp and 0.7 G data per run 

with 99.9% accuracy within 24 hours (Liu et al., 2012a). Paired-end libraries from genomic 

DNA consist of short paired tags from the two ends of DNA fragments (3 kb, 8 kb or 20 kb), 

which are extracted and covalently linked as paired-end constructs for high-throughput 

sequencing (Shendure et al., 2005, Fullwood et al., 2009). The mapping of the tags to 

reference genomes improves the DNA sequence efficiency, and relates discrete contigs in 

genome assemblies due to distance relationships of DNA fragment ends. The combination of 

shotgun and paired-end sequencing of the biofilm resulted in a total number of ~500 Mbp 



with 1´840´364 total reads (943´600 shotgun reads, 896´764 paired-end reads) with an 

average read length of 344 bp. The direct sequencing of environmental DNA will be referred 

to as “metagenomic shotgun” data.  

In Paper I and III, the genomes from Geobacillus sp. 12AMOR1 and L. profundi LP1T were 

sequenced using a technology developed by Pacific Bioscience (PacBio). PacBio developed 

the single-molecule real-time (SMRT) method for long-read DNA sequencing (Eid et al.,

2009). The SMRT cell consists of millions of zero-mode waveguides (ZMW), each 

containing one set of enzymes, where the complementary strand of a long single stranded 

DNA molecule is synthesized by sequencing. The nucleotides are phospholinked with 

individual fluorophores that are released during DNA synthesis. By using the zero-mode 

waveguide, a single-fluorophore detection of incorporated nucleotides can be realized (Eid et 

al., 2009). Even though the throughput is lower than in second generation sequencing 

techniques, the turnover rate of SMRT is quite fast with 3 hours per run and read length is by 

far longer, with 5500 bp in average. The sequencing reactions of the two bacterial genomes 

were archived with two SMRT cells for each genome. A total number of 595 Mbp was 

generated for Geobacillus sp. 12AMOR1 with 80´512 reads having an average length of 

7393 bp. In comparison, the genome sequencing of L. profundi LP1T generated 362.9 Mbp 

with 63´994 reads and an average length of 5671 bp.

In the functional genomics work (described below), Illumina sequencing technology was 

used. Illumina has developed a sequencing technique based on sequencing by synthesis. 

Single stranded DNA is attached to the flowcell by adapters and forms clusters by bridge 

amplification. After additional DNA separation into single strands, DNA sequencing is 

detected by synthesis with fluorescent reversible terminator deoxyribonucleotides, one base 

at a time (Bentley et al., 2008). Different platforms have been launched, such as HiSeq, 

NextSeq and MiSeq. They vary in read length from (50 to 300 bp), sequencing direction of 

DNA strands (single read or paired-end), size of data (output up to ~600 Gb) and time 

(between 1 to 6 days). As part of this work, I sequenced 106 fosmids using 300bp paired-end 

MiSeq platform and obtained 19´878´063 raw sequence counts comprising 11.9 Gb in total. 

The metagenomic data obtained in this approach will be referred to as “metagenomic library” 

data. 



3.2 Metagenomic library of the black smoker biofilm (09ROV03-BS) 

3.2.1 Methods 

3.2.1.1 DNA-extraction 

For the metagenomic library, high molecular weight DNA was extracted from 1.2 g of a 

biofilm, sampled from a black smoker chimney wall at LCVF, using a modified protocol of 

Tiedje and colleagues (Zhou et al., 1996). Modifications included the following: 15 ml DNA 

extraction buffer was used for the sample (1.2 g biofilm and 6 ml sea water). The initial 

incubation time for cell lysis was extended to 2 h at 56 °C by limiting the movement to 

occasional gentle shaking. The second incubation period was carried out after adding 2 ml of 

20% SDS (approx. 1% end concentration). After centrifugation at 4800 x g for 20 minutes at 

4 °C the DNA was extracted from the supernatant was extracted in three cycles with equal 

volume of chloroform (1st cycle 50:50 chloroform/phenol, 2nd and 3rd cycle only chloroform). 

The DNA was precipitated with 0.6 volume isopropanol at -20 °C overnight and resuspended 

in 10 mM Tris pH 7.6. As pulse field gel electrophoresis was not available for the 

verification of purified high molecular weight DNA quality, 20 cm long 0.8% agarose gels 

were run for 20 hours at 35 V and at 20 °C (data not shown). The high molecular weight 

DNA was concentrated with Amicon Ultra 100K (Millipore, Germany) and the concentration 

measured with NanoDrop 2000 (Thermo Scientific).  

3.2.1.2 Metagenomic library production 

The metagenomic library was constructed using the following fosmid cloning system – the 

CopyControl™ Fosmid Library Production Kit (Epicentre, Madison, WI, USA). Instructions 

described by the manufacturer were followed with one exception. In short, shearing of the 

high molecular weight DNA by pipetting and following size selection was carried out before 

the DNA end-repair step to increase the yield of modified DNA fragments with appropriate 

size. The size-selected, end-repaired DNA fragments were purified again using 3 M sodium 

acetate, as described in the protocol. The size-selected, modified metagenomic DNA 

fragments were ligated to the pCC2FOS fosmid vector, and packed into bacteriophages. The 

host strain E. coli Epi300-T1R was infected and clones were spread on selective agar plates. 



The estimated metagenome size of the biofilm sample 09ROV3-BS by shotgun sequencing 

was 165 Mbp. The approximate number of clones needed for a complete metagenomic 

fosmid library was calculated based on the formula provided by the manufacturer’s 

instructions. To cover 99% of the metagenomic DNA in the library, assuming an insert size 

of 40 kb, a minimum of 18´994 clones were required. The generated fosmid clones were 

picked using the Qpix2 XT (Molecular Devices) to construct a library of 22´800 clones. 

DNA insertions of selected fosmid clones were verified by Sanger sequencing using 

pCC2FOS forward and reverse sequencing primers (Epicentre, Madison, WI, USA) flanking 

the cloning site of the fosmid vector.  

3.2.1.3 Functional screening of the metagenomic library 

The whole metagenomic library was subjected to functional screening and analysed for the 

presence of amylase and xylanase activity. Clones were cultivated for 2 days at 37 °C on LB 

agar plates supplemented with 1% starch or 0.25% xylan. Zones of substrate degradation 

were visualized using a modified Gram’s iodine reagent (1.0 g KI, 0.5 g iodine in 300 ml 

distilled Water) or 0.5% Congo red, respectively (Teather and Wood 1982, Kasana et al.,

2008). In total, 274 clones exhibited activity for starch degradation were identified by halo 

formation surrounding the clones. Positive clones for xylan degradation were not observed.  

3.2.1.4 Sequencing of amylase-encoding fosmid clones 

Hundred and six fosmid clones with positive amylase activity were selected for sequencing 

to identify the amylase-encoding genes. Purified fosmids, using GenElute™ Plasmid 

Miniprep Kit (Sigma-Aldrich, Germany), were pooled into 10 batches of 10 or 11 fosmids, 

containing equal quantities of DNA for each fosmid.  

The size for each fosmid was estimated by restriction analysis using BamHI, which flanks 

both sides of the cloning site in the fosmid vector. The average insert size was 35 Kbp, 

yielding approximately 796 Mbp of total cloned genomic DNA. To identify the individual 

fosmids after sequencing, the ends of each fosmid insert were sequenced in a Sanger reaction 

using the two flanking primers, pCC2FOS forward and pCC2FOS reverse. Sequencing of the 

fosmid batches were performed at the Norwegian Sequencing Centre in Oslo, Norway 



(www.sequencing.no). There, the batches were tagged individually before combining them 

into one pool for sequencing; using paired-end (300 bp) MiSeq, Illumina. 

The total number of sequence output varied between the batches, ranging from 1.58 to 2.6 

million. After splitting the reads, based on their tags, into individual batches, reads belonging 

to the sequence tags, fosmid vector or to the host E. coli were removed. The remaining reads 

were assembled into contigs using MIRA (Chevreux et al., 2004).  

The assembly resulted in 402 large contigs ( 5000 bp) of the total 485 contigs. Contigs larger 

than 1100 bp were analysed in terms of fosmid insert recovery. Multiple sequence alignments 

of individual batches were therefore performed in combination with the corresponding 

Sanger “end-sequences” of the fosmids. In total, complete inserts of 44 fosmids were 

recovered, of which 36 inserts were fully assembled into single contigs. Open reading frames 

(ORFs) of assembled contigs were predicted using Prodigal v2.6.2 (Hyatt et al., 2010) with 

the –meta option, for metagenomes, enabled. In order to identify carbohydrate-degrading 

enzymes, a HMM search (Finn et al., 2011) of the ORFs was performed using the dbCAN 

database (Yin et al., 2012). Additionally, a search for proteases was performed using the 

MEROPS peptide database (Rawlings and Morton 2008).

3.2.1.5 Fosmid supernatant activity screening 

To confirm the positive amylase activity identified in the functional screening of the library, 

an additional activity screen of supernatants from selected clones was performed. Therefore, 

5 fosmid clones, which have shown high activity in the library screen, and a negative control, 

containing the vector with the fosmid control insert (Epicentre, Madison, WI, USA), were 

cultured in 200 ml LB at 37 °C shaking at 170 rpm overnight. The supernatants were 

collected by centrifugation and filtration (0.2 μm) to remove cells, and concentrated 

approximately 200 times in 3K Centricon Plus-70 devices (Merck-Millipore, Ireland) at 4 °C. 

The concentrated supernatants were incubated on a 1% starch agar plate together with 5 μg 

of -amylase from B. licheniformis (Sigma-Aldrich, Germany) as positive control for 4.5 h at 

37 °C.  



3.2.2 Results and discussion of the metagenomic library screening  
The initial manual analysis of the 09ROV3-BS metagenomic shotgun sequencing data was 

based on ORFs associated with carbohydrate metabolism of COG functional category. Two 

ORFs were identified encoding a fragmented -amylase belonging to Bacteroidetes. This 

was one of the rationales for the metagenomic library generation.  

3.2.2.1 Fosmid screening 

Screening of the metagenomic library for amylase activity resulted in a relatively high 

number i.e. 274 of positive clones, comprising 1.2% of the library (Figure 4). The average hit 

rate for activity screenings are generally less than one clone with activity per 1’000 clones 

screened (Lammle et al., 2007, Kakirde et al., 2010), due to a low specialized enzyme 

frequency in natural habitats, low gene expression levels or incompatible host expression 

machinery (Ekkers et al., 2012). The obtained high fraction of putative positive clones for 

amylase activity could therefore indicate the presence of false positives.  

The use of the CopyControl™ Fosmid Library Production Kit (Epicentre, Madison, WI, 

USA) is an established procedure and has been applied for the generation of many fosmid 

libraries (Neveu et al., 2011, Liu et al., 2012b, Nyyssonen et al., 2013, Lee et al., 2015, De 

Figure 4: Primary (A) and secondary (B) screening of the biofilm metagenomic library for amylase activity on 
1% starch agar colored with iodine. Starch hydrolysis is visible as clear halo around clones. Negative control E.
coli Epi300-T1R containing the pCC1FOSvector with the fosmid control insert is marked with asterisk. 



Santi et al., 2016b, Maruthamuthu et al., 2016). Although E. coli Epi300-T1R carries genes 

with amylase activity in its genome (Nyyssonen et al., 2013), new -amylases have been 

identified using E. coli Epi300-T1R as host strain (Tasse et al., 2010, Liu et al., 2012b, 

Maruthamuthu et al., 2016). Furthermore, the screening procedure used for the metagenomic 

library in this project did not differ significantly from other studies with positive screening 

outcome, except for different incubation times and temperatures prior to screening, as well as 

the modified Gram’s iodine reagent (Lammle et al., 2007, Liu et al., 2012b). Hence, the 

observed activity on the plates does not necessarily indicate that all of the clones were false 

positives. 

Indeed, the change of substrate to AZCL-linked or other chromogenic substrates (Kracun et 

al., 2015) could be used to verify the activities of the identified clones. The use of such 

substrates visualizes enzymatic degradation directly and can also simplify the screening 

procedure by allowing multiple screens simultaneously and eliminates additional potential 

error-prone colour steps. The activity screening using the supernatant of selected fosmid 

clones revealed amylase activity of the negative control on starch agar plates (Figure 5). This 

result was not observed in the functional metagenomic library screening on agar plates and 

could be due to cell lyses during liquid cultivation that resulted in the release of intracellular 

amylases into the supernatant. Expression of a gene with amylase activity located on the 

Figure 5: Amylase activity screening and supernatant activity assay of selected fosmid clones on starch agar 
plates colored with Gram’s solution. E. coli Epi300-T1R containing the vector with the fosmid control insert was 
used for negative control (N). Positive control (P) was -amylase from B. licheniformis.



fosmid control insert of the negative control would have led to a constant positive amylase 

activity in the functional screening, which was not the case (Figure 4). Future verification 

experiments could include a retransformation of the plasmid to E. coli Epi300-T1R or 

alternative host strains (Liu et al., 2012b). Alternatively, analysis of -glucosidase activity 

using the crude protein extract as described by Maruthamuthu (2016) could be applied.  

It should be noted that the performed screening assays targeted secreted enzymes. To include 

the screening for intracellular enzymes, a lysis step has to be added or an alternative method 

should be applied. This could increase the number of positive hits. It is further recommended 

to increase the fosmid copy number, which is inducible by the addition of L-arabinose in the 

CopyControl system, thus enhancing the protein expression in the cells, which could be 

useful to distinguish activity from native host activity. 

3.2.2.2 Sequencing and analysis of fosmids 

The 106 sequenced metagenomic DNA inserts from fosmids contained in total 3017 

annotated ORFs, whereof 51.6% could be assigned to Sulfurovum, the dominating genus of

Epsilonproteobacteria within the biofilm (Paper II). A sequence comparison between 

metagenomic shotgun data and metagenomic library data was performed using blastn 

(Altschul et al., 1990) and resulted in 633 scaffold matches. For the metagenomic library, 

235 out of the 485 unique scaffolds matched scaffolds from the metagenomic shotgun data 

(Paper II) ranging from 68 to 23´986 bp with sequence identities between 73 and 100%. The 

majority of the metagenomic library scaffolds matched against scaffolds to the dominating 

population of Sulfurovum in the biofilm (Paper II). Interestingly, a higher number of 

scaffolds from the metagenomic library showed highest sequence identity with scaffolds of 

the Sulfurovum Bin2 (94), rather than the more complete and dominating Sulfurovum Bin1 

(45). Congruent with the lower abundance of Bacteroidetes in the biofilm community (Dahle

et al., 2013), only 11 metagenomic library scaffolds had highest similarity to the 

Bacteroidetes Bin3. The remaining 85 scaffolds hit none of the main three Bins and showed 

sequence identity with sequences in the Bin_REST fraction. Alignments of selected longer 

scaffold from the metagenomic library with Sulfurovum scaffolds from the shotgun 

sequenced metagenome identified preponderantly the same ORF’s and annotations, as the 

example Batch5_c7 vs. Bin_Sc1 shown in Table 2. 



Approximately one third of the ORFs from the sequenced metagenomic DNA library were 

annotated as hypothetical proteins. The CAZyme database (Cantarel et al., 2009) was used to 

identify amylase encoding genes in the metagenomic library data. The search for CAZymes 

identified 61 hits containing 7 unique ORFs each, for glycoside hydrolases (GH) and 

carbohydrate binding modules (CBM), respectively. Annotation and dbCAN search (Yin et 

al., 2012) of the sequencing data from the metagenomic library did not reveal any homologs 

of known -amylase or members of the GH13 family. The identified GH families were 

mainly associated with peptidoglycan modification (GH23, GH103) or hydrolysis of 

different  -glycosidic   bonds   (GH3, GH5)  (Figure  6).  CBMs   might   indicate  potential  

Table 2: Concordant sequence match of scaffolds from metagenomic library sequencing and metagenomic 
shotgun sequencing  

Fosmid Batch10_bbm_c5 Metagenome Bin1_Sc3 
ORF Annotation ORF Annotation
batch10_bbm_c5_1 hypothetical protein  Bin1_Sc3_00242 hypothetical protein  

batch10_bbm_c5_2 MULTISPECIES: 
hypothetical protein  Bin1_Sc3_00243 hypothetical protein 

DEFDS_0394  

batch10_bbm_c5_3 peptide ABC transporter 
substrate-binding protein  Bin1_Sc3_00244 

oligopeptide ABC 
transporter substrate-
binding protein  

batch10_bbm_c5_4 sulfide-quinone reductase Bin1_Sc3_00245 sulfide-quinone reductase 
batch10_bbm_c5_5 hypothetical protein Bin1_Sc3_00246 hypothetical protein 

batch10_bbm_c5_6 formylmethionine 
deformylase  Bin1_Sc3_00247 formylmethionine 

deformylase  
batch10_bbm_c5_8 hypothetical protein Bin1_Sc3_00249 hypothetical protein 
batch10_bbm_c5_9 hypothetical protein Bin1_Sc3_00250 hypothetical protein 
batch10_bbm_c5_10 30S ribosomal protein S9 Bin1_Sc3_00251 30S ribosomal protein S9 
batch10_bbm_c5_11 50S ribosomal protein L13 Bin1_Sc3_00252 50S ribosomal protein L13 
batch10_bbm_c5_12 recombinase RecB Bin1_Sc3_00253 recombinase RecB 

batch10_bbm_c5_13 beta-lactamase  Bin1_Sc3_00254 metallo-beta-lactamase 
family protein 

batch10_bbm_c5_14 hypothetical protein Bin1_Sc3_00256 hypothetical protein 

batch10_bbm_c5_15 2-hydroxyacid 
dehydrogenase  Bin1_Sc3_00257 2-hydroxyacid 

dehydrogenase  
batch10_bbm_c5_16 succinate dehydrogenase Bin1_Sc3_00258 succinate dehydrogenase 
batch10_bbm_c5_17 hypothetical protein -

batch10_bbm_c5_18 putative protein-disulfide 
isomerase  Bin1_Sc3_00259 putative protein-disulfide 

isomerase  
- Bin1_Sc3_00260 NO HIT
- Bin1_Sc3_00261 NO HIT

batch10_bbm_c5_21 hypothetical protein  Bin1_Sc3_00262 hypothetical protein, 
partial  

batch10_bbm_c5_22 hypothetical protein -



glycoside hydrolases, as they can be found as additional domain mediating substrate binding 

or in the vicinity as part of a gene cluster mediating certain hydrolytic activity (Guillen et al.,

2010). The ORFs containing members of four different CBM families (CBM11, CBM44, 

CBM50, CBM66) were annotated as hypothetical proteins or based on containing domains, 

mostly polycystic kidney disease I (PKD) domain (Figure 7). Many of those CBMs are 

associated to binding of different -1-4-linked saccharide polymers according to the CAZy 

database. Hence, the presence of CBMs there might be an indication for unknown GHs with 

-1-4 saccharide polymers degrading activity. In the sequenced metagenomic DNA from 

fosmid inserts a 1784 amino acid long ORF was identified, containing a dockerin domain, a 

cohesin domain and a PorSec sorting domain located C-terminal. Since cohesin and dockerin 

are part of the cellulosome, a multi-enzyme complex produced by anaerobic bacteria for 

degradation of cellulosic substrates (Bayer et al., 1994, Smith and Bayer 2013), may be 

associated with this function. Missing hits towards known amylases (GH13) or associated 

CBMs, such as CBM48, CBM20 and CBM34, in annotation and CAZy analyses of 

Figure 6: Comparison of GH and CBM family profiles of AMOR (meta-) genomes. The total number is placed
above the individual columns. 



sequenced fosmids could be an indication for novel amylase sequences. To verify these 

assumptions, further investigation is needed.  

3.2.3 Conclusion – metagenomic library 
Apart from the amylase screening, the establishment of a metagenomic fosmid library from a 

biofilm, originated from a deep-sea hydrothermal vent system, can now serve as a resource 

for future functional screenings. As approximately 36% of the identified ORFs are of 

unknown function, this library represents a great source for finding new biocatalysts 

accompanied by novel sequences and functions.  

3.3 New insight into the biotechnological potential of the AMOR vent 

fields 

The results obtained in this project have revealed that the hydrothermal systems located at 

AMOR represent a valuable source of new microbial isolates and biocatalysts. 

An advantage of new microbial isolates is that the cultivation on a diversity of substrates 

enables the direct screening for hydrolytic activity. The selective cultivation of specialized 

degrading microorganisms was one essential part of this thesis, resulting in the identification 

of Geobacillus sp. 12AMOR1 (Paper I). Research on Geobacillus species has been carried 

out since the 1920s (Donk 1920). The genus is known for its versatile hydrolytic capacity at 

elevated temperatures and diverse enzymes have been applied for decades in biotechnology 

Figure 7: Graphical representation of metagenomic DNA fosmid inserts with detected CBMs. Detected and
annotated genes are represented as arrows.



(Zeigler 2014). Genome sequencing of Geobacillus sp. 12AMOR1 enabled the identification 

of five GH13 genes, encoding a trehalase, a neopullulanase, a glycogen-branching enzyme 

and two -amylases (Paper I). Sequence similarities with GH13 from other Geobacillus

strains were high (99%), and all five GH13 were expressed and purified in E. coli. The starch 

degradation capacity of the neopullulanase was comparable with a commercially available -

amylase from B. licheniformis (Sigma-Aldrich) at 60 °C (Paper I). With a melting 

temperature of 76.4 °C, this thermophilic enzyme could be suitable for processes at elevated 

temperatures, such as the saccharification step in the starch industry (Prakash and Jaiswal 

2010). One of the Geobacillus sp. 12AMOR1 -amylases (GARCT_00683) showed a strong 

hydrolytic potential, however the enzyme could not be purified in sufficient amount to 

conduct further experiments. Unfortunately, a high conformity of genes between Geobacillus

strains deteriorates the potential of the identified biocatalysts from Geobacillus sp. 

12AMOR1. The ~26% of hypothetical genes in the genome gives scope for the discovery of 

new enzymes.  

The genus Lutibacter was first described 10 years ago and research has so far focused on 

isolation and characterization of novel strains (Choi and Cho 2006, Nedashkovskaya et al.,

2015), not on the biotechnological potential. L. profundi LP1T represents to our knowledge 

the first sequenced and characterized genome of this genus (Paper III). Annotation analysis 

using Prokka (Seemann 2014) identified six GH13 as sucrose phosphorylase, malto-

oligosyltrehalose hydrolase, two cyclomaltodextrinases and two -amylases. It should be 

noted that cyclomaltodextrinases, neopullulanases and maltogenic amylases are not easily 

distinguishable from each other and need detailed characterization (Lee et al., 2002). 

Interestingly, the automated NCBI Prokaryotic Genome Annotation Pipeline (Angiuoli et al.,

2008) identified only three of the six GH13 as -amylases. The remaining genes were 

annotated as hypothetical proteins (Paper III). Blastp analyses of the six GH13 revealed 

amino acid sequence similarities between 60 to 80% with homologous glycosylases, which 

have been mostly identified by sequencing without biochemical characterization. Altogether, 

this strengthens the potential biotechnological value of enzymes from L. profundi LP1T. 

The frequency of identified CAZymes varied from 1.99% to 5.73% in the different (meta-) 

genome samples (Table 3). Both isolates, Geobacillus sp. 12AMOR1 and L. profundi LP1T

revealed a small selected arsenal of glycoside hydrolases in comparison to known complex 



polysaccharide degraders (Xu et al., 2003, Izquierdo et al., 2012, Mann et al., 2013). They 

comprised glycoside hydrolase families able to hydrolyse - and -glucosidic poly- and 

oligosaccharides (Figure 6). Similar results have been obtained from both 09ROV3-BS 

metagenomic studies, with even lower numbers of identified glycoside hydrolases, still 

covering different, mostly -linked hydrolytic activities. A CBM20-type ORF, known for 

starch binding, with an E-value close to cut-off threshold e-05 has been found in the 

09ROV3-BS metagenomic shotgun sequencing data (Figure 6). The corresponding ORF 

comprised a hypothetical protein of 379 amino acids with only 39% identity to a hypothetical 

protein from a Bacteroidales bacterium TBC1. This gene represents an interesting candidate 

for future amylase activity screenings. 

Table 3: Number of genes associated with certain enzyme classes found in the AMOR ecosystem applying 
diverse –omic approaches.  

Metagenome 
09ROV03 

Bacteroidetes 

Fosmid 
library 

09ROV03 

Lutibacter 
genome 

Geobacillus 
Genome 

Scaffolds 60 486 1 (Isolate) 1 (Isolate)
Assembly (Mbp) ~1.77 3.65 ~2.967  ~3.41
Total ORF # 2617 3408
Annotated ORF 2373 3017 2601 3323

dbCAN AA 9 5 3 3
CBM 16 9 7 13
GH 7 10 24 21
GT 80 21 45 28
CE 20 15 24 23
PL 4 0 1 0
Total 136 60 104 88

MEROPS Total 88 70 130 127
Frequency CAZy 5.73 1.99 4.00 2.65
(%) GH 0.29 0.33 0.92 0.63

GH13 0.00 0.00 0.23 0.15
MEROPS 3.71 2.32 5.00 3.82

AA – auxiliary activities; CBM – carbohydrate binding module; GH – glycoside hydrolases; GT – glycosyl 
transferases; CE – carbohydrate esterases; PL – polysaccharide lyases; CAZy – includes all carbohydrate-active 
enzymes. 

Proteases have a wide application range in industry such as detergents, feed, textile and the 

leather industry. The ability to hydrolyse recalcitrant proteinous material, such as keratin, has 

recently become gained increased interest (Brandelli 2008, Gupta et al., 2013). In the early 



process of characterizing Geobacillus sp. 12AMOR1, the bacterium was also tested for 

proteinase activity on plates using selected substrates, among them were substrates of 

industrial relevance and strong hydrolytic activity could be observed. The identification of 

the corresponding proteases is now part of another PhD project. Blast analysis against the 

MEROPS protein database identified a high number of putative proteases, with a frequency 

of 3.82%, compared to CAZymes with a frequency of 2.65% (Table 3). This also provided 

further motive to analyse additional samples for putative proteases. The results revealed a 

generally higher frequency of proteases compared to carbohydrate-active enzymes in the 

AMOR hydrothermal vent environments (Table 3). An exception is the shotgun sequenced 

metagenome, where a higher number of carbohydrate-active enzymes (136) were identified 

in comparison to proteases (88). Both isolates contain a similar number of predicted 

proteases with 127 and 130 for Geobacillus sp. 12AMOR1 and L. profundi LP1T, 

respectively. Proteolytic activity has been verified for L. profundi LP1T on agar plates (Le 

Moine Bauer et al., in review). The largest number of putative proteases was found in L. 

profundi LP1T with a frequency of 5%. The isolate encoded several industrial applied 

endopeptidase families, such as chymotrypsin, subtilisin or thermolysin. A comparative 

genome study of different Bacteroidetes revealed a higher number of proteases in isolates 

from deep-sea marine sediments than from surface waters, suggesting a role in organic 

carbon and nitrogen cycling by degradation of proteinaceous organic nitrogen (Qin et al.,

2010). Since the 09ROV3-BS library originated from the same biofilm as L. profundi LP1T,

this makes it an ideal source to screen for protease activity in the future. Preliminary analysis 

of the sequenced metagenomic DNA library against the MEROPS peptide database identified 

70 unique ORF’s as proteases (Table 3). Again, one third of those proteases are annotated as 

hypothetical proteins or proteins with a general function, such as /  hydrolase or protease. 

In addition, potential proteases from all sequencing data contained members of both bacterial 

keratinase MEROPS families S8 and M14 (Lange et al., 2016).  

Typically, enzymes withstand conditions similar to the growth conditions of the 

microorganism they originate from. In the case of the mesophilic L. profundi LP1T, it 

corresponds to temperatures between 13 and 34 °C, pH between 5.2 and 7.5 and NaCl 

concentration of up to 3% (Le Moine Bauer et al., in review). Applications using low to 

moderate process temperatures could therefore be suitable for L. profundi LP1T derived 



enzymes, such as in textile or detergent industry. Biocatalysts from the thermophilic 

Geobacillus sp. 12AMOR1 is expected to be active under a range of temperatures from 40 to 

70 °C, pH range of 5.5 to 9.0 and NaCl concentration of up to 5%. This makes the GH13 

enzymes feasible for applications involving elevated temperatures, such as starch conversion, 

paper or detergent industry.  

AMOR deep-sea hydrothermal vents represent a source for microorganisms and biocatalysts 

covering a wide range of physiochemical parameters, which are interesting for various 

applications. Hence, a combination of functional screening and sequencing-based approaches 

have implemented the identification of amylases and putative proteases in new isolates, 

which could encourage the search for interesting biocatalysts from deep-sea hydrothermal 

vents even further. 

3.4 New insight into the ecology of the AMOR vent fields 

The results presented in this project have increased the understanding of the function and 

interaction within microbial communities in deep-sea hydrothermal systems.  

Epsilonproteobacteria comprise a significant proportion of the microbial population in deep-

sea hydrothermal vents and are found to dominate in communities associated with chimney 

structures, microbial mats, diffuse flow hydrothermal fluids and epibiotic microflora of deep-

sea vent metazoans (Moyer et al., 1995, Campbell et al., 2001, Huber et al., 2003, Flores et 

al., 2011). As they are mesophilic to moderately thermophilic, they are important primary 

producers, capable of oxidizing sulphur compounds and hydrogen with oxygen, nitrate or 

sulphur compounds as terminal electron acceptors (Campbell et al., 2006, Nakagawa et al.,

2007, Sievert and Vetriani 2012). Vent fluids of the LCVF are enriched in high 

concentrations of H2S, H2 and CO2 (Pedersen et al., 2010a). Furthermore, high 

concentrations of CH4 and NH4
+ in the fluids together with a pH of 5.5 suggest an additional 

sedimentary influence of the system. Thermodynamic models of the LCVF suggest that this 

vent field represents an extremity in terms of its energetic potential for hosting anaerobic and 

aerobic methane oxidizers, aerobic ammonium oxidizers as well as sulphide oxidizers (Dahle 

et al., 2015).  



In the biofilm studied in this project, primary production by Epsilonproteobacteria appears to 

involve simultaneous utilisation of sulphur species, hydrogen, formate with nitrate and 

oxygen coupled to CO2 fixation using the reverse TCA cycle (Dahle et al., 2013). The 

dominating genus Sulfurovum is affiliated with the biofilm formation by producing unique 

extracellular polymeric substances (EPS) in form of long filamentous sheaths surrounding 

the cells (Paper II). The EPS represents thermotolerant, recalcitrant polysaccharides 

resembling chitin or cellulose (Paper II). Furthermore, Bacteroidetes were identified to 

colonize the microbial filaments as epibionts. The comprehensive -omics data obtained for 

the 09ROV3-BS biofilm, together with microscopy, enabled the evaluation of metabolic 

capability of the two individual taxonomic groups in the community (Paper II). The link 

between the primary production of lithotrophic Sulfurovum and organotrophic consumption 

by Bacteroidetes within the food web has been addressed. This is not only beneficial for 

understanding the hydrolytic potential of the microbial community, but also crucial for the 

energy flow within the biofilm food web. A corresponding culture-dependent approach 

contributed to gain insight to the metabolic potential of a Bacteroidetes biofilm member and 

its potential function within the community (Paper III). Characterization of the mesophilic 

L. profundi LP1T (Le Moine Bauer et al., in review) and genome analysis (Paper III) 

revealed interesting metabolic features, albeit the isolate may not be the predominant 

Bacteroidetes member within the biofilm. Some features found in -omics studies could be 

confirmed though genome analysis, such as the presence of a gliding apparatus. L. profundi

LP1T does not represent all features found for Bacteroidetes in the –omics approach, e.g. 

Type IV pilus or other different potential adhesion genes. However, the following metabolic 

traits have been revealed through the genome analysis, adding new knowledge that was not 

identified in the previous –omics study. L. profundi LP1T harbours a complete denitrification 

pathway, whereas in the –omics study only a partial denitrification pathway for reduction of 

nitrite to nitrous oxide was identified. Growth experiments with the isolate confirmed 

denitrification of nitrate to nitrite (Le Moine Bauer et al., in review), strengthening the 

hypothesis of heterotrophic denitrification by Bacteroidetes under limited oxygen levels 

rather than under aerobic conditions. Furthermore, genes involved in sulphide oxidation were 

identified, such as sulphide:quinone reductase (SQR), which may contribute to sulphide 

detoxification (Paper III). The information obtained from the genome confirms the 



organotrophic lifestyle of degrading sugar polymers and proteins, and further provides an 

overview of the adaption strategies towards its habitat (Paper III). 

The genus Geobacillus comprises a group of Gram-positive, obligate thermophilic, chemo-

organotrophic bacteria, including obligate aerobes, denitrifiers, and facultative anaerobes that 

can grow over a range of 45-75 °C (Coorevits et al., 2012, Hussein et al., 2015). Members of 

this genus have shown versatile hydrolytic traits at elevated temperatures, and the organisms 

themselves, or their enzymes, are applied in various biotechnological processes (Zeigler 

2001, Hussein et al., 2015). A thermophilic, aerobic, organotrophic Geobacillus, belonging 

to the phylum Firmicutes, was isolated from hydrothermal sediments (~90 °C) at JMVF 

(Paper I). The genome of Geobacillus sp. 12AMOR1 and its phenotypical properties have 

been characterized with respect to its biotechnological potential to hydrolyse carbohydrates 

(Paper I). As environmental knowledge about the JMVF hot sediments is limited, the 

genome information has not been used to assess the functional role of the isolate in the 

habitat. However, the information provided by genome sequencing can be used in future 

ecological studies of this environment. In this way, the obtained –omics data, including 

genome sequencing, contributed additionally to the knowledge of the AMOR hydrothermal 

vent microbial ecology.  

3.5 Future research - Mining potential for other enzymatic groups 

originating from AMOR  

The combinatory approach in this project, involved cultivation and genome analysis of a new 

Geobacillus strain from the JMVF as well as sequence-based and functional metagenomics 

of a biofilm community attached to a black smoker in the LCVF. The approaches have 

created a huge data set that is of significance for future mining of new biocatalysts from the 

AMOR vent fields.  

In terms of revealing GH13 amylases, selection by functional screening using cultivation 

techniques of isolates has been a better choice for identifying amylases in comparison to 

metagenomic sequencing. Furthermore, amylase activity has been observed in functional 

screening of a metagenomic library against starch without revealing genes with sequence 

similarities to known amylases or their auxiliary CBMs in sequence analyses. In my opinion, 



future analyses to verify those identified activities in library clones would be an exciting task. 

Suitable strategies could include retransformation of the plasmids to E. coli host strains, the 

use of different chromogenic substrates or better functional assays. The usage of 

environmental DNA libraries still enables the identification of novel amylases, despite the 

intensive research for many decades (Delavat et al., 2012, Liu et al., 2012b, Maruthamuthu et 

al., 2016). Research continually improves functional assays for carbohydrate-active enzymes 

in terms of high throughput analyses of clones (Nyyssonen et al., 2013), development of new 

detection methods (Vidal-Melgosa et al., 2015), application of multiple, simultaneous 

screenings (Maruthamuthu et al., 2016) and development of new chromogenic substrates 

(Kracun et al., 2015). These improvements should be applied in further studies in order to 

achieve the best possible results.  

Besides the amylase screening, the established metagenomic library is and remains a 

resource for other functional screenings in the near future. By using the sequenced 

metagenomic DNA library as reference, it can be estimated that approximately 36% of the 

gene sequences may have a hypothetical function. This “dark matter” has a great potential for 

the discovery of new and potentially novel biocatalysts.  

Sequencing of genomes and metagenomes present an overview of the genomic content of an 

organism or a microbial community. Bioinformatic resources enable the mining for 

biocatalysts of genomes and metagenomes, based on sequence similarity. Specialized 

databases, such as the CAZy and MEROPS database, are especially helpful in revealing gene 

functions. In this study, a variety of carbohydrate-active enzymes, including enzymes 

belonging to GH13, and proteases have been identified using bioinformatical tools. In future 

projects, cloning, expression and characterization of those enzymes would be interesting in 

order to confirm their enzymatic activity and biochemical properties in an industrial context. 

Annotation of genes in genomes and metagenomes relies on homology to known and, in the 

best case, characterized protein sequences. In the current sequencing era the amount of 

sequenced and annotated data increases rapidly in available databases. The majority of these 

annotated genes have not been confirmed in wet lab studies, which may cause incorrect 

annotations. Furthermore, considering the vast amount of genes with unknown function, 

there is a huge potential for discoveries of novel functions, also in terms of biocatalysts. Piao 



et al. successfully mined “genomic dark matter” for novel cellulases by combining sequence 

similarity searches of higher sensitivity with consideration of the genomic context (Piao et 

al., 2014). An emphasis, on developing more sensitive algorithms and incorporating 

additional information, such as auxillary domains or gene context, will help to improve 

sequence prediction based on homology and thereby to unravel “genomic dark matter”. I am 

confident that those improved bioinformatics tools will be available in the near future. 



4. Conclusion 

The results obtained in my thesis have demonstrated that the AMOR deep-sea hydrothermal 

vent systems are valuable sources for new microorganisms and biocatalysts to meet the needs 

in biotechnology. The described microbial isolates represent a valuable source of new 

biocatalysts, like in the case of the thermophilic Geobacillus sp. 12AMOR1, or divergent 

from other known microorganisms, such as the mesophilic Lutibacter profundi LP1T. The 

combination of sequencing-based and functional-based metagenomics has complemented 

each other in terms of finding potential amylases. The high number of amylase activity in 

functional screening in combination with non-existing sequence similarities points towards 

the possibility of identifying novel ones. Furthermore, it allowed the discovery of other 

potential biocatalysts, such as -polymer degrading enzymes, glycosyltransferases and 

proteases. Besides exploiting metagenomics for bioprospecting, the comprehensive data 

enabled an expansive insight to functional and metabolic traits in the deep-sea hydrothermal 

vent systems and linking them to taxonomical groups. The individual approaches provided 

different information, which combined contributed to our understanding of interactions in 

deep-sea hydrothermal food webs. 
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