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Cnidarians, the sister group to bilaterians, have a simple diffuse nervous

system. This morphological simplicity and their phylogenetic position make

them a crucial group in the study of the evolution of the nervous system.

The development of their nervous systems is of particular interest, as by uncov-

ering the genetic programme that underlies it, and comparing it with the

bilaterian developmental programme, it is possible to make assumptions

about the genes and processes involved in the development of ancestral

nervous systems. Recent advances in sequencing methods, genetic interference

techniques and transgenic technology have enabled us to get a first glimpse

into the molecular network underlying the development of a cnidarian ner-

vous system—in particular the nervous system of the anthozoan Nematostella
vectensis. It appears that much of the genetic network of the nervous system

development is partly conserved between cnidarians and bilaterians, with

Wnt and bone morphogenetic protein (BMP) signalling, and Sox genes playing

a crucial part in the differentiation of neurons. However, cnidarians possess

some specific characteristics, and further studies are necessary to elucidate

the full regulatory network. The work on cnidarian neurogenesis further

accentuates the need to study non-model organisms in order to gain insights

into processes that shaped present-day lineages during the course of evolution.
1. Why study cnidarian nervous systems?
With the exception of Placozoa and Porifera, the nervous system is a defining

characteristic of Metazoa, and its appearance was probably a crucial determinant

in their diversification and their capability to conquer almost all ecological niches.

Although the nervous system has been at the focus of attention for many years,

and many aspects of its development and physiology are well understood,

the knowledge about its evolutionary origins is still in its infancy. Most research

on nervous systems has been carried out on standard model organisms, but

their restricted phylogenetic representation makes it difficult to propose viable

theories about the ancestral morphology and development of the nervous

system. While the contentious phylogenetic positions of Porifera, Placozoa and

Ctenophora are impacting on scenarios of the evolution of the nervous system

(see also [1]), the Cnidaria have a robust position as a sister group to the Bilateria

(figure 1a, [2,3]). Hence, the Cnidaria and the comparison with Bilateria are

crucial for the reconstruction of a cnidarian–bilaterian ancestor and our under-

standing of the evolution of eumetazoan nervous systems. The cnidarians are

divided into two major groups, the Anthozoa, consisting of Hexacorallia and

Octocorallia, and the Medusozoa, which comprise Hydrozoa, Scyphozoa,

Cubozoa and Staurozoa (figure 1a; [9]). The relatively simple morphology, under-

lined by an intricate gene repertoire, makes cnidarians an ideal system for

studying the developmental and cellular processes that (i) led to the emergence

of the nervous system and (ii) were involved in the adaptation of nervous systems

to different environments and over long periods of time.

Until recently, most of our knowledge on the development of cnidarian

nervous systems came from Hydra. Hydra has been very helpful for getting insights
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Figure 1. (a) Phylogenetic relationships of cnidarians (after [4]). As the phylogenetic position of ctenophores and sponges is still not completely resolved, their
lineages are marked with a dashed line [3,5 – 8]. The length of branches is for illustrative purposes only and does not represent time of divergence. (b) Life cycle of
Nematostella vectensis, with both sexual and asexual reproduction. (c) Schematic of the body plan of N. vectensis throughout development. The lower panel rep-
resents a section through the polyp at the dashed line. (d ) Schematic of the nervous system of N. vectensis throughout development. Neurons are depicted in brown.
The schematic is based on several studies (see below), but it probably does not represent the whole neuronal population. All stages are showed as sections, except
for the primary polyp. The section through the polyp (at the dashed line) shows the distribution of neurons in different layers.
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into the mechanisms of neuronal differentiation during regener-

ation and homeostasis in the polyp (see below), however,

it mainly propagates asexually by budding. The embryonic

development occurs infrequently and is relatively derived,

which makes it difficult to investigate and analyse the cellular

and molecular differentiation processes during the initial

formation of the nervous system.

Other species of the Medusozoa typically have a more

complex life cycle, which involves a pelagic medusa stage

and a sessile polyp stage. Medusae generally exhibit a more

complex nervous system, with neural rings and eyes that

are organized in rhopalia and statocysts. Processing and inte-

gration of information has been described in rhopalia [10,11],

and the high concentration of neurites in the ecto- and endo-

dermal nerve rings at the medusa bell appears to have a

function in controlling swimming behaviour [12]. The more

complex repertoire of sensory organs in the medusae allows

for a more elaborate set of behaviours than found in the

purely benthic polyps, and nerve rings and rhopalia may rep-

resent an independently evolved form of nervous system

centralization [13].

In this review, we discuss cnidarian nervous systems

with an emphasis on the recent findings in anthozoan starlet

sea anemone Nematostella vectensis (figure 1b), because this

system is amenable to functional studies investigating
neurogenesis during embryogenesis. Nematostella became an

important model system among cnidarians in the past

decade [4,14–16]. This brackish water organism has been put

forward among other anthozoans owing to its accessibility

and amenability for experimental research. It is readily kept

under laboratory conditions, spawning can be induced repro-

ducibly, the genome has been sequenced, and gene

knockdown methods and stable transgenics have been estab-

lished, which were particularly insightful for our current

understanding of neuronal development [17–19] (for review,

see [15]). Nematostella has a surprisingly complex genome,

including all major signalling pathways and most transcription

factor families [18,20–24].
2. Structure of the Nematostella nervous system
The nervous system of Nematostella, as of other cnidarians, is

comprised of two interconnected neuronal networks, one in

the ectoderm and one in the endoderm. The principal cell

types of cnidarian nervous systems are sensory cells,

ganglion cells (the morphological equivalent of interneurons)

and cnidocytes (stinging cells). Molecular analyses have

revealed that the neuronal networks and the three main

classes of neural cells comprise several subpopulations of

http://rstb.royalsocietypublishing.org/
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Figure 2. (a) Distribution of Elav1-positive neurons in planula (left) and primary polyp (right). In the microscopic images (taken from reference [27]), Elav1-positive
neurons are in white, phalloiding is in purple, and DAPI is in blue. In the schematic, Elav1-positive neurons are in red. (b) Distribution of RFamide-positive neurons in
planula (left) and primary polyp (right). The inset is from reference [28]. RFamide-positive neurons are in green. (c) Distribution of GLWamide-positive neurons in planula
(left) and primary polyp (right). The insert is from reference [28]. GLWamide-positive neurons are in green. (d ) Distribution of GABA-positive neurons in planula
larva and the primary polyp (GABA, white; DAPI, blue). The original data images are maximum projections of 20 – 30 single confocal images. (e) Distribution of
different neuronal subpopulations during the development of N. vectensis. The schematic is based on the results of immunostaining with the antibody against the
neuropeptide (GLWamide (turquoise) [28], RFamide (beige) [26,28], GABA (orange) (I.K. and U.T. 2015, unpublished data), or on the analysis of transgenic animals
in which a fluorophore is under the control of the gene of interest promoter (SoxB(2) (brown) [29], Elav1 ( purple) [27]). Scale bars, (b,c) 100 mm; (d) 50 mm ( planula),
100 mm ( primary polyp).
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neurons, which are marked, e.g. by the expression of different

neuropeptides, and which can have different distributions

along the body.

The search for a pan-neuronal marker for cnidarian

neurons has been more difficult than expected. One of the can-

didate genes for a pan-neuronal marker is the homolog of

Elav1, coding for an RNA-binding protein involved in neuronal

differentiation [25]. In Nematostella, it indeed marks a large

neuronal subpopulation [26,27], but is not a pan-neuronal

marker (figure 2a,e), as it is part of a larger population

marked by SoxB(2) [29] (see below).

In the polyp, N. vectensis, the neuron density appears to

be higher in the oral half of the animal, but previous sug-

gestions of an oral nerve ring [26] could not be confirmed.

Elav1-positive neurons form networks both in the ectoderm

and in the endoderm (figure 2a,d). In the endoderm, how-

ever, many neurons follow the parietal muscles on either
side of the eight mesenteries, forming prominent longitudinal

tracts [27]. These tracts are connected via anastomoses of

single neurons.

Two smaller neuronal subpopulations expressing specific

neuropeptides, RFamide and GLWamide [30,31], are primar-

ily found in the oral half of the young polyp. Both of them are

found in all cnidarians and many bilaterians examined so far

[26,28,32–34] (figure 2b,c,e). Individual RFamide-positive

neurons appear in the tentacles (figure 2b,e) and may, as

in Hydra and other hydrozoans, have a role in ectodermal

sensory neurons.

The GLWamide-positive neuronal subpopulation has

recently been shown to have a very interesting development.

This population appears 2–3 days post fertilization (dpf), but,

unlike the RFamide-positive neurons, the GLWamide-positive

neurons initially appear on the one side of the developing

pharynx in the planula [28]. Later, more GLWamide neurons

http://rstb.royalsocietypublishing.org/
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Figure 3. Early neurogenesis switch in N. vectensis. During very early development (blastula to ea rly gastrula; (a)), individual neurons start appearing in the aboral
half, yet excluding future apical organ at the aboral pole. The location and morphology of the cells speak in favour of neuronal determination in situ, either guided
by stochastic processes, or by the action of a yet-unknown gradient. Neurogenesis during later stages of embryonic development (b) is still poorly understood, but
seems to have a more localized character. In the planula, many neurons are now born at the oral side and in the endoderm. It is still unclear whether and to what
extent neuronal precursors migrate towards the aboral side of the embryo.
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are added in a radially symmetric pattern, similar to RFamide

neurons, and the asymmetrical distribution of GLWamide-

positive neurons becomes undetectable (figure 2c,e). However,

we still have no insights into which special behaviour or

physiological processes this (and maybe other) asymmetrical

neuronal subpopulations might be involved in. It has been

reported that at 4 dpf these subpopulations make up around

8% of the Elav1-positive neurons [28]. However, because Elav1
is not a pan-neuronal marker, the fraction of RFamide or

GLWamide neurons of all neurons is unclear.

Both these neuropeptides mark neurons, which appear in

both endoderm and ectoderm, but layer-specific neuronal

populations have not yet been described. Recently, we discov-

ered that the neurotransmitter gamma amino butyric acid

(GABA) marks a population of neurons that is present only in

the endoderm, with the tendency to be more concentrated in

the aboral region (figure 2d,e; I.K. and U.T. 2015, unpublished

data). Interestingly, the GABA-neurons do not appear to form

connections to each other and seem embedded as individual

neurons in the nervous system, raising questions about

their role. The confined expression of individual neuronal

markers reveals a hidden complexity of the Nematostella
nervous system, with neuronal subpopulations that might be

dedicated to different processes and/or behaviours.

When comparing Nematostella with polyps of other cnidar-

ian species, we can see notable differences in the structure of

neuronal subpopulations. For instance, in Hydra, RFamide

marks mostly ectodermal sensory neurons of the hypostome

and tentacles, but also ectodermal ganglion neurons of the ped-

uncle, although they might also have at least a propriosensory

function, because ultrastructural studies showed that

they contain cilia [35]. In the planula larva of Clava multicornis,
a hydrozoan, RFamide-positive neurons accumulate at the

anterior end [36]. The difference between Nematostella and

these species may reflect different constraints in their biology

and shows that evolutionary interpretations of neuronal

patterns have to be taken with caution.

Bioinformatic analysis of the Nematostella genome has

shown that a large number of genes associated with chemical

neurotransmission are present [37]. Based on these data, we

can conclude that the number of neuronal subpopulations in

Nematostella must be larger than the several described ones

(see above), maybe numbering in dozens. However, in the

absence of a pan-neuronal marker, limited number of anti-

bodies and the lack of possibilities for double and triple
stainings, it will be difficult to conclude which fraction of

neurons express two or more neuropeptides. Also, one has to

take into account the discrepancy of bioinformatic data with

the empirical data (lack of serotonin orthologues in reference

[37], with serotonin immunostaining in reference [26] in

Nematostella). In order to tackle this problem, it is necessary

to develop antibodies against cnidarian neurotransmitters

and improve the immunostaining protocols.
3. Establishment of the nervous system in
Nematostella vectensis

In most bilaterians, the neurogenic potential is unequally

distributed in the ectodermal tissue. While sensory neurons

can often be generated throughout most of the ectoderm,

interneurons are typically generated only in the so-called

neuroectoderm, the territory from which the central nervous

system (CNS) develops. With some exceptions (e.g. hemi-

chordates, acoel worms and flatworms), the specification of

the neuroectoderm and CNS is a result of the formation of

the dorsoventral (DV) axis by a gradient of BMP signalling

[38]. While most cnidarians are considered radially sym-

metric, anthozoans form a second body axis, the directive

axis, which depends on a gradient of BMP signalling

[21,39,40]. However, this BMP signalling gradient has been

detected only considerably later (at gastrula stage, [39,40])

than the occurrence of the first neural progenitor cells

(NPCs; at mid-blastula stage [29]) and early neural differen-

tiation is not biased along the directive axis [26,27,29,41].

Interestingly, the previously mentioned asymmetric distri-

bution of early GLWamide-positive neurons (see above),

together with the RFamide-positive population, depends on

BMP signalling along the directive axis [28].

Recent observations suggest that in Nematostella neuro-

genesis commences at mid-to-late blastula stage in an aboral

territory that spans approximately 75% of the body length

(figure 3a). At early gastrulation, the oral cap is devoid of

differentiating neurons, whereas after gastrulation, more

neurons—including some specific subpopulations (RFamide,

GLWamide neurons)—are born in the oral half (in and

around the pharynx) and in the endoderm [26–28]

(figure 3b). Notably, the most aboral region, the ‘apical

organ’, often referred to as a sensory centre, remains free of

Elav1 and SoxB(2) neural cell bodies [27,29]. It is unclear

http://rstb.royalsocietypublishing.org/
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which signals prevent the early neurogenesis at the oral

domain. Because the blastopore expresses various Wnt genes,

and the oral–aboral axis of Nematostella is patterned by Wnt sig-

nalling [42,43], Wnt signalling might be involved in suppressing

early neuronal differentiation at the oral pole. However, in con-

trast to this idea, recent work showed that manipulation of the

Wnt pathway affects the development of oral RFamide and

Elav1 neurons [28], suggesting a conserved role for Wnt signal-

ling in promoting neurogenesis. This switch from aboral to more

orally located neurogenesis during embryonic development

might also indicate a shift from early on-site differentiation of

neurons, to a somewhat more restricted neurogenic field.

It would be interesting to investigate the potential migration

patterns that the neural progenitors and/or neurons, born

in this more restricted area, undergo, in order to establish the

nervous system of an adult, both in the ecto- and endoderm.

While in bilaterians neurons originate from the ectoderm,

in Nematostella, both ectoderm and endoderm appear to be

capable of producing neurons [27]. Endodermal neurons

appear shortly after completion of gastrulation. By using trans-

plantation experiments between transgenic Elav1::memOrange
and wild-type embryos, Nakanishi et al. [27] have shown that

the endoderm can produce neurons independently of the

ectoderm. Whether the underlying genetic programme and

developmental processes are the same in these two germ

layers remains to be elucidated. Because nematocytes differen-

tiate only in ectodermal tissue, one would expect distinct

molecular mechanisms that ensure nematocyte and neuronal

differentiation in the ectoderm, but neuronal differentiation

only in the endoderm.

The differentiation of neurons as assessed by the formation

of basal neurites begins at late gastrula stage and becomes

more prominent at early planula stage. Analysis of the

SoxB(2)::mOrange transgenic line, which broadly labels neural

progenitors and their progeny, showed that neurites can

extend in any direction from the onset of differentiation [29].

Interestingly, Elav1::mOrange-positive sensory cells, which con-

stitute a subset of the SoxB(2)::mOrange cells, predominantly

project in an aboral direction at early- and mid-planula stage.

Later-born Elav1 neurons, however, preferentially project in

transverse orientation. This is paralleled by the development

of the mesenteries, and soon neuronal tracts run along the

parietal muscle in the mesentery, with individual neurons situ-

ated in between and connecting them [27]. This change in the

neurite projection pattern may indicate chemical cues that

turn on and off during development in order to correctly

orient the projections of neural subpopulations in the develop-

ing nervous system; however, they have not yet been identified.

In fact, the expression patterns of candidate guidance mol-

ecules, such as Netrin or RGM, do not obviously relate to the

observed changes in neurite projections of Elav1-positive

neurons [24,39].

The development of the nervous system in Nematostella
displays some striking differences to that in Hydra and

other hydrozoans such as Clytia hemisphaerica and Hydractinia
echinata. In these cnidarians, neurons, as well as nematocytes

(cnidocytes), differentiate from multipotent interstitial stem

cells (i-cells). i-cells predominantly reside between the ecto-

dermal epithelial cells of the body column. Interestingly,

the distribution of i-cells is virtually complementary to the

density of neurons, which are highest at both extremities,

i.e. in hypostome, tentacles and peduncle. i-cells become

committed to become neurons either stochastically or by
unknown signals. Neuronal progenitors then migrate orally

or aborally to the site of differentiation, where they undergo

a final mitosis and differentiate—probably by local cues—to a

specific neuronal phenotype [44,45]. However, i-cells have

only been found in hydrozoans and therefore are considered

a specific feature of hydrozoans. In other cnidarians, e.g. the

scyphozoan Aurelia aurita, neurons likely arise from epithelial

cells or intermediate progenitors, more akin to the situation in

Nematostella [46]. This variability further emphasizes the need

to compare several species of one clade.
4. Developmental genetics of Nematostella
neurons

The publication of several cnidarian genomes has shown that

much of the molecular architecture underlying neurogenesis

and neuron functioning is conserved between bilaterians

and cnidarians [17,47–51]. In bilaterians, neurons are born

from specialized cell populations, termed NPCs, which

arise in an area of the ectoderm dedicated to developing

the CNS. With cnidarians lacking a centralized system, and

having both ectodermal and endodermal neurogenesis, it

has been questioned whether this conserved molecular

toolkit is employed in the same way.

Recent research on Wnt and BMP signalling during

embryonic neurogenesis in Nematostella gives us some insight

into the involvement of these conserved pathways in cnidar-

ian neurogenesis [28]. The Wnt/b-catenin pathway is

involved in neural patterning and neurogenesis in bilaterians

[52,53]. Use of a b-catenin signalling inhibitor resulted in a

severe reduction of RFamide, GLWamide and Elav1::mOrange
neurons at planula stage, whereas ectopic activation of

b-catenin increased the number of these neurons [28]. These

observations suggest that b-catenin can positively regulate

neural development in Nematostella. However, because the

oral Wnt signalling centre of the blastopore is devoid of

early neurogenesis, it is not clear whether Wnt/b-catenin sig-

nalling has a direct role in early neurogenesis or a general

positive function in establishing neurogenic potential. Sur-

prisingly, while in flies and vertebrates the gradient of BMP

signalling along the DV axis has an anti-neuralizing effect

and localizes the CNS [38], in Nematostella, BMP signalling

appears to have no effect on neuronal differentiation at an

early phase, but a proneural function in the later phase of

embryonic neurogenesis [28]. Future research also on other

bilaterian phyla will reveal whether Wnt signalling or BMP

signalling (or both) has an ancestral role in neurogenesis.

Interesting insights into the conservation of regional

patterning came from the analysis of the bilaterian head pat-

terning genes six3/6, FoxQ2a and irx, which are early anterior

brain markers. Strikingly, six3/6, FoxQ2a and irx are actually

expressed at the aboral end of the Nematostella planula [54],

suggesting a stunning conservation of regional patterning

genes. Knockdown of Nematostella six3/6 reduced the number

of DmrtB-expressing aboral neurons, but did not affect the

expression of the broader neural marker RFamide, suggesting

that the effect on the aboral neurons is rather a consequence

of the mis-specification of the aboral domain. These obser-

vations are similar to loss-of-function studies in sea urchin

and the beetle Tribolium castaneum [55,56], but different from

the situation in vertebrates, where six3/6 is crucial for anterior

brain development. Thus, general axial patterning genes

http://rstb.royalsocietypublishing.org/
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might have been coopted for the induction of the anterior CNS

in the vertebrate lineage.

The genetic network underlying the transition from the

NPC to the post-mitotic neuron has been extensively studied

in Drosophila [57] and mammals, especially mouse [58]. The

determination of NPCs from the epithelial layer represents

a textbook example of the lateral inhibition by the Notch/

Delta system [59]. In a previously designated neuroepithelial

field, NPCs, which are destined to become neurons, are

singled out by the interaction of receptors, and by differential

expression of the neurogenic programme in individual cells.

The cells, which remain dividing progenitors, are inhibited

from expressing this programme for the moment. It appears

that, in Nematostella, the Notch/Delta system is also invol-

ved in determining the fate of neural lineage cells. By using

pharmacological treatments with the g-secretase inhibitor

DAPT, it was shown that the Notch/Delta signalling influ-

ences the expression of neurogenic markers [60], e.g. the

achaete-scute homologue (AshA) among others [61].

More surprising was the finding that the Notch/Delta func-

tion in neurogenesis is not conducted through the canonical

pathway, i.e. involving suppressor of hairy (Su(H)), but a non-

canonical, yet unidentified route [61]. This difference might

indicate that the Notch pathway had a more general role in

cell differentiation in the ancestor of cnidarians and bilaterians

[62], and was coopted in slightly different ways in the neuro-

genic pathways of both lineages. Another explanation is that

the non-canonical Notch signalling is the ancestral form of

this signalling pathway. This is based on the fact that only bila-

terians have the full complement of the Notch/Delta pathway

[63]. However, because two key elements of canonical Notch

signalling, Su(H) and mastermind, are present in Nematostella,

this hypothesis still awaits confirmation through data from

other, non-bilaterian phyla.

Downstream of Notch/Delta signalling, a specific set of

proneural genes of the bHLH transcription factors become

activated, in particular the achaete-scute (Ash) and atonal (ato)

gene family, which regulate the transition of the progenitor

cell into a neuron. At least one, AshA, is expressed in single

cells of the aboral half of the early embryo and is directly

involved in neurogenesis: knockdown leads to loss of specific

neuronal markers, overexpression increases the number of

RFamideþ and Elav1-precursor cells in the aboral half [41].

The data suggest that AshA does not have a pan-neuronal

role, which would also fit the model in which Ash and ato
promote neurogenesis of distinct neuronal populations [64],

as in bilaterians. However, as the data on the members of

the ato family are still scarce, owing to their unresolved phy-

logeny [65], this idea cannot be yet confirmed. The expression

patterns of several ato genes coincide with the expression

patterns of AshB and SoxB2, a gene also involved in neuro-

genesis in Bilateria [28]. Interestingly, one of the ato genes,

Arp6, is expressed asymmetrically in the developing

embryo and functional analysis suggests that it regulates

the asymmetric distribution of GLWamide-positive neurons.

Notably, in hydra, chemical inhibition of Notch signalling

suggests a role in boundary formation during detachment

of the bud and in tentacle formation during regeneration

[66], thus, fundamentally different processes from neuronal

differentiation. It is possible that Notch signalling has distinct

roles in embryogenesis and adult polyps.

In mammals, neural progenitors still have the capability

to divide and produce either other types of progenitors or
different subpopulations of neurons. Pax6 and Sox2 are mar-

kers of these intermediate progenitors in the developing

mammalian brain [58]. It is still not clear whether a neural

progenitor population similar to this one exists in cnidarians.

Until recently, it was also unclear whether cnidocytes and

neurons, both members of the neuronal lineage, come from

the same populations of progenitors. Here, Sox proteins

might be key to this question. Sox proteins are indispensable

in the determination and maintenance of embryonic stem

cells in mammals, and later, during brain development, in

the population of NPCs [67]. Members of SoxB1 and SoxB2

subgroups are especially important during neurogenesis

[68,69]. Of the 14 Sox genes present in Nematostella and

Hydra [17,24,47,70], one gene, SoxB(2) (termed SoxB2 in refer-

ence [24] and SoxBa in reference [71]), is expressed in single

cells during gastrulation, consistent with a role in neuronal

differentiation [24]. Using a SoxB(2) transgenic reporter line,

Richards and Rentzsch showed that SoxB(2) marks a popu-

lation of cells that gives rise to ganglion and sensory neurons

and cnidocytes, thus representing a general neural progenitor

population [29]. The knockdown of SoxB(2) strongly reduces

the production of neurons and cnidocytes. Thus, this gene

appears necessary for the differentiation of both cell types.

The tracing of EdU-labelled dividing SoxB(2)-positive cells

suggested that daughter cells of one neural progenitor in

Nematostella can have different cell cycle characteristics [29], a

feature that is reminiscent of asymmetric cell fate in Drosophila
and mammals [72]. It also shows that this Sox gene has a con-

served role in neurogenesis in cnidarians and bilaterians.

In addition to SoxB(2), as mentioned above, another SoxB2
gene is involved in patterning the oral nervous system [28].

Taken together, these data strongly suggest that some key

aspects of the neurogenic programme are conserved between

cnidarians and bilaterians. Interestingly, Sox genes are also

expressed in putative progenitors that give rise to neurosensory

cells in the ctenophore Pleurobrachia pileus [73]. This further

confirms the ancestral role that Sox genes have in the develop-

ment and evolution of the nervous systems, but also brings

into question the independent origin of nervous systems in

ctenophores [5,74,75].
5. Evolutionary context
Taking into account more than 500 million years of indepen-

dent evolution of the bilaterian and cnidarian lineage [76],

surprisingly, many elements of the developmental neuronal

network and genes governing neuronal structure and function

are conserved. We conclude that the last common ancestor of

Bilateria and Cnidaria was an animal with a well-established

nervous system, in which neurons were born out of epithelial

cells, which were singled out to become neurons by a cell-

determining system (e.g. the Notch/Delta system) [61] and

this mechanism was inherited from the common ancestor of

sponges and eumetazoans [77], which may or may not have

had a nervous system. These epithelial cells most probably

underwent an asymmetric division, to produce a differentiated

cell—a neuron, and presumably another epithelial cell or a

neural progenitor. What also seems to be conserved is the

early proneural gene network, which is involved in the

production of neurons during the embryonic stages.

It has been shown that members of the Sox family of genes

are involved in the patterning of the neural field and the

http://rstb.royalsocietypublishing.org/
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production of the components of the neural lineage [28,29].

After the specification of the cell as a neural progenitor, other

downstream proneural genes finish the differentiation process

of the progenitor into a neuron [41]. More studies are needed in

order to fully reconstruct the basic genetic network underlying

cnidarian neurogenesis, but some obvious candidates exist.

Members of the Pax family of transcription factors represent

an interesting starting point, as they are crucial for mammalian

neurogenesis (especially eye development), with Pax6 being

one of the main markers of neural progenitors. The findings

that jellyfish PaxB gene is involved in the eye development

of the cubomedusa Tripedalia cystophora and that PaxB can

rescue a Drosophila eye mutant [78] suggests a conserved role

of PaxB in neuronal development. In line with this, Nematostella
PaxA and PaxB are expressed in single cells, reminiscent of

a pattern present in progenitors and/or neurons [24]. The

finding of asymmetrical divisions in the SoxB(2)-positive pro-

genitors also invites the investigation of cell polarity proteins

(e.g. Par3, Par6), and their role in the determination of cell

fate. With the development of advanced in vivo imaging

techniques, this problem becomes more accessible.

All of the previous studies spanning more than 150 years

of cnidarian research points at the common origin of the ner-

vous systems in Bilateria and Cnidaria. However, there are

also marked differences. The curious aspect of endodermal

neurogenesis existing in Nematostella presents a puzzle. Is

neurogenesis in both germ layers an ancestral trait, and bila-

terians have lost it or was it independently gained in the

cnidarian lineage? Further detailed analyses of the processes

governing neurogenesis in both germ layers, and potential

comparison with genomic elements expressed in the bilater-

ian endoderm, are necessary to resolve this question. The

cnidocyte, the cnidarian-specific cell type, is also a part of

the neuronal lineage, as it seems that it stems from the

same progenitor pool. Interestingly, cnidocytes express one

of the three subfamilies of the ether-à-go-go (EAG) family

of voltage-gated Kþ channels [79]. However, its morphology

and function are markedly different from any neuronal type

in the rest of the animal kingdom. While our knowledge of

the molecular basis of neuronal physiology is still scarce,

there has been some recent progress. Nematostella has a sig-

nificantly expanded set of 20 voltage-gated Kþ channels of

the shaker family, yet their function in Nematostella is still

unclear [80]. Further, the diversification of the EAG family

of voltage-gated Kþ channels into Eag, Erg and Elk subfami-

lies occurred in the cnidarian/bilaterian ancestor after

divergence from ctenophores. All three subfamilies seem to

have at least partially conserved molecular functions, when

tested in vitro [79,81]. An interesting case is the voltage-
gated Naþ (Nav) channels, which are responsible for the

action potential of neurons in bilaterians. Both cnidarian

and bilaterian Nav channels have evolved from an ancestral

voltage-gated Ca2þ (Cav) channel. However, the selectivity

filter differs significantly in cnidarians and bilaterians,

suggesting that a key component of neuronal physiology

has evolved independently in these two lineages [82,83].
6. Outlook
Evolutionary developmental biology (evo-devo) has experi-

enced a renaissance in the past 10–15 years. This is mostly

owing to the development of new functional techniques

and the advancement of sequencing methods. With this,

scientists could return to using non-model organisms to

answer questions about the evolutionary origin of pathways,

cells, organs and whole systems. Cnidarians have been par-

ticularly interesting in the studies of germ layers and the

nervous system. However, there are still many unanswered

questions. One of the main puzzle pieces still missing is the

molecular signature of the cnidarian neural progenitors and

neurons, and how it relates to the bilaterian ones. This

could be addressed by using a combination of transgenic ani-

mals and transcriptome sequencing, in order to decipher the

molecular fingerprint of different neuronal populations. The

cellular processes of the establishment and maintenance of

the nervous system are also still largely unknown. Further-

more, the molecular and cellular basis of the dynamics and

the physiology of the diffuse nervous system under con-

ditions of homeostasis and growth are still not well

understood. Applying new in vivo imaging techniques will

allow us to track transgenic progenitor cells in the developing

embryo and polyp to provide further insights into the

formation and function of the cnidarian nervous system.
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