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Abstract 

Purse-seining is regarded as one of the most effective methods for capturing 

migrating pelagic schools (Ben-Yami, 1994; Watson et al., 2006), where the school is 

encircled and entrapped by the net, pumped aboard into the cargo hold, then delivered 

to the coast for processing. For avoiding increased mortality during slipping of 

unwanted catch (Lockwood et al., 1983; Huse & Vold, 2010; Tenningen et al., 2012), 

the fishermen need reliable information on the school’s total biomass, density and 

species before shooting the purse-seine. Migrating pelagic fish schools, such as the 

Atlantic mackerel (Scomber scombrus) and the Norwegian spring spawning herring 

(Clupea harengus L.), often swim near the sea surface. Therefore, the vertical 

echosounder may perform poorly if much of the population is within this near-surface 

blind zone, or if the fish move to avoid the vessel (Misund, 1993b; Ona et al., 2007b; 

Hjellvik et al., 2008; Totland et al., 2009). Then, calibrated, horizontally-observing 

tools are needed if this portion of the population is to be quantified.  

Schooling fish can be detected and observed remotely using multi-beam 

sonars, such as the Kongsberg Maritime Simrad SX90 (Simrad, 2007) or the Furuno 

FSV-30 used in Nishimori et al. (2009). In standard operation, the sonar transmits a 

conical acoustic beam through the entire water volume around the fishing vessel 

(Brehmer et al., 2006). During reception, 64 acoustical beams are formed through 

array processing techniques applied to the transducer element outputs (Blomberg et 

al., 2012). Calibration of the accessible beams is a necessity if an accurate 

quantitative measures are required (Aglen, 1994). A precise calibration rig was 

designed to move the target with adequate control to map a single beam in detail 

(Paper 1). The initial rig was unsatisfactory as its size and weight limited its capacity 

to calibrate multiple sonar beams. A second rig was therefore designed for swifter 

movement of the target through multiple beams from each rig-mounting location. 

Within-beam target-tracking algorithms were then a prerequisite. The theory behind 

realizations of both a Split-Beam algorithm and an Interpolated Neighbouring Beam 

algorithm was described for the cylindrical transducer array with 256 circular 
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elements (Paper 2) where the Split-Beam algorithm facilitated target positioning with 

precision between ±0.2 and ±0.25º. In a practical field calibration, the reference target 

was steered to the centre of each accessible beam, or to cross the beam horizontally 

and vertically, guided by the Split-Beam positioning (Paper 3). Multiple calibration 

trials have shown accuracy around ±0.5 dB is to be expected in what is regarded as a 

typical field calibration environment. Still, this accuracy was found to be susceptible 

to rapid but small variations of both the salinity and temperature of the stratified 

water, where a 0.8 dB drop of the measured sphere target strength has been seen. A 

further improvement of the calibration accuracy does not, however, contribute any 

significance reduction of the total uncertainty when finally computing the school’s 

biomass.  

The volume of a single school is estimated by evaluating its three measured 

extensions, the length, width and height. The two across-beams extensions, width and 

height, were seen to be overestimated due to the border effects created by the finite 

beam width, an effect also reported for echosounders (Diner, 2001). In paper 4, this 

effect was investigated on several simulated schools of known sizes, where two 

across-beam smearing effects were identified as the Long Range Smearing and Short 

Range Smearing effects. Correction of both effects increased the accuracy, giving 

precisions for the volume estimate between 6.6-8.7 % for the width and 8.5-10.5% 

for the height. The mean estimated volume of a real school of herring was reduced by 

55% by correcting for the smearing effects.  

When converting the received acoustic energy into a quantitative biomass 

measure, the backscattered is divided by a mean backscattering cross-section 

representative of the species and individual-fish size. For horizontal acoustic 

transmissions, finding a representative backscattering cross-section is complicated 

since the cross-section is not only dependent on the distribution of the pitch and roll 

angles (Nakken & Olsen, 1977), the depth (Ona, 2003) or length of fish (Foote, 

1980b), but also the yaw angle (Cutter & Demer, 2007). Circumnavigating the school 

is proposed as a means of increasing the accuracy of the volume density, where only 

school data from favourable incidence angles are used, for example close to the 
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broadside of the school. If both low-frequency and a high-frequency fishery sonar are 

available, a comparison of the frequency response may give an indication of the 

actual angle of incidence. Such Dual-Frequency analysis may contribute to a more 

accurate volume density in situations where a full circumnavigation is not possible.  

This synthesis represents only part of the total work conducted in one of the 

working package in the CRISP project, intended to provide the skipper accurate and 

reliable information on the school biomass during the last stages of an inspection.  
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Introduction 

Pelagic Fishery  

The fishing industry is one of the major industries in Norway. In 2014, 

280,000 ton mackerel (Scomber Scombrus), 410,000 ton herring (Clupea Herengus), 

400,000 ton blue whiting (Micromesistius poutassou) and 76,000 ton capelin 

(Mallotus villosus) were caught by Norwegian-registered fishing vessels, and then 

delivered to the Norwegian coast for processing. These three species represent the 

largest proportion of all pelagic catches (Figure 1).  

 

 

Figure 1. Illustration of the quantity of different pelagic species delivered to 
the Norwegian coast by Norwegian-registered fishing vessels in the years 
2011, 2012, 2013 and 2014. Data from the Norwegian Directorate of 
Fisheries, www.fiskeridir.no. 
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The price of landed fish heavily depends on the species, size and quality. 

Norges sildesalgslag, a Norwegian sale organization for the pelagic fishery, states the 

price of herring in 2014 was 5 NOK/kg for large herring and 3.5 NOK/kg for small 

herring. Herring unfit for human consumption, either because it was juvenile or 

injured, was priced as low as 2.65 NOK/kg. This, together with the fact that every 

Norwegian fishing vessel has its own quota per species, is a strong motivation for 

selective and strategic fishing.  

Ninety percent of all pelagic fish delivered by Norwegian registered fishing 

vessels, and 30% in a worldwide perspective, were caught by purse seiners (Watson 

et al., 2006; Huse & Vold, 2010; Tenningen et al., 2012). Purse seining is perhaps the 

most effective method for catching migrating pelagic fish (Ben-Yami, 1994; Watson 

et al., 2006). The vessel quickly encircles the school while shooting the seine, while 

carefully adapting the vessel’s course to the speed and heading of the school, then the 

net is pursed before the hauling begins (Ben-Yami, 1994; Tenningen, 2014).  

 

 

Figure 2. Photographic image showing the purse seiner F/V “Sjarmør” 
during the last stages of hauling a school of herring. Photo: Sindre 
Vatnehol.  
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In the last stages of the hauling (Figure 2) a representative fish sample is 

acquired for evaluating the species and size distribution of the catch. If this 

information is unsatisfactory, or if the total biomass of the school is too large, with 

regard to the fishing gear capability, storage capacity or quota restrictions, a common 

but criticized practice is to release the fish in a manner which is known as “slipping”. 

Although slipping is legal, the practice is not an optimal solution because of the 

increased fish mortality, caused by either stress, fatigue or injury due to crowding 

(Lockwood et al., 1983; Marçalo et al., 2010; Huse & Vold, 2010; Tenningen, 2014). 

To overcome this problem, early indications of the school’s species, total biomass 

and the mean weight of individual fish, preferably obtained by onboard 

instrumentation, should be available before deploying the net.  

In short, this is called pre-catch information which the skipper on a purse 

seiner collects in the last part of the school “inspection phase”, where he must decide 

whether to catch the school or not. One of the key elements in this decision is to 

evaluate the actual biomass of the school. Many skippers have developed an 

indispensable expertise using sonar in a relative sense over many years, and can thus 

estimate the biomass fairly accurately from inspection of the sonar display. Real 

quantification, however, requires a more scientific approach using calibrated 

instruments. This is the main topic of this thesis and the main goal of one of the work 

packages in CRISP (Centre for Research-based Innovation in Sustainable Fishing and 

Pre-processing technology). CRISP is a research collaboration between research 

institutions and the industry, and is financed by the Research council of Norway. The 

aim of the project is to obtain a more sustainable fishery, with less impact on the 

environment, and also to enable the industry to deliver higher quality products in the 

future (www.imr.no/crisp).  
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Thesis objectives 

For this thesis the industry partner, Kongsberg Simrad, has given exclusive 

access to the transducer element data of the Simrad SX90 multi-beam fishery sonar. 

This made it possible to investigate the properties and limitations of the sonar more 

closely. New functions could also be added.  

The main objectives were:  

1. Develop algorithms for estimating the location of a single target within a 

single acoustic beam for calibration purposes.  

2. Develop calibration protocols for multi-beam fishery sonar 

3. Increase the accuracy and precision of geometrical measurements of schools 

4. Evaluate the suggested improvements on real catch situations  
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Acoustic methods  

Historical survey 

One of the earliest references associated with the field of underwater acoustics 

is the notebook written by Leonardo da Vinci, where the sentence “If you stop your 

ship, put a long pipe down into the water and listen, you are able to hear the noise 

from distant ships” is often quoted (MacCurdy & Linscott, 1938; Urick, 1983; 

Simmonds & MacLennan, 2005). Daniel Colladon (a Swiss physicist) and Charles 

Sturm (a French mathematician) collaborated in a scientific experiment in 1827 

where an immersed bell was struck simultaneously with a flash of light on the 

surface. The time difference between the light and the sound was measured on the 

other side of Lake Geneva, Switzerland, and thus the speed of sound in fresh water 

was calculated to be 1450 ms-1 (Lasky, 1977). Two physical effects were discovered 

during the 19th century, essential for the development of modern acoustic devices, 

namely the magnetostriction and piezoelectric effects. Magnetostriction involves 

ferromagnetic materials which change size when affected by magnetism; James Joule 

explored this effect through quantitative measurements in the 1840s. Piezoelectric 

materials generate an electrical voltage when subjected to mechanical stress; Jacques 

and Pierre Curie are often credited for this discovery. Several researchers, in the late 

19th century, utilized these effects when converting mechanical vibrations (such as 

oscillating sound waves) into electrical signals and vice versa, a phenomenon named 

“transduction” (Urick, 1983).  

In 1914, R. A. Fessende demonstrated that active (both emitting and receiving) 

electromagnetic equipment could detect icebergs as far as 2 km away, just two years 

after the Titanic sank (Hovem, 2012). During the early years of the First World War, 

passive acoustic equipment (only receiving, and similar to da Vinci’s underwater 

listening device) was used for detecting hostile submarines (Urick, 1983). In 1917, 

the Frenchman Paul Langevin presented a transducer made of piezoelectric material 

capable of emitting an acoustic signal at a frequency of 38 kHz. Mechanical steering 

of such transducers facilitated the detection and positioning of submerged targets. 
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Such acoustic equipments for detecting submarines were also developed by the secret 

group ASDIC in England during the First World War. According to Wood (1965), 

the acronym stands for “Anti-Submarine Division-ics”. In other literature the acronym 

is said to stands for “Allied Submarine Detection Investigation Committee”. 

Nevertheless, the term ASDIC has been used for decades to describe transducer 

equipment acting as an acoustical searchlight, which was mechanically steered to 

survey the whole water column. The world's first fishery-ASDIC (developed by the 

Norwegian Defence Research Institution (FFI) and later sold to Simrad in 1953) was 

installed on R/V G. O. Sars in 1949. After the war, in 1919, the first scientific article 

about sound propagation in water was published in a scientific journal, where the 

theory of ray-bending caused by small variations in water temperature and salinity 

was theoretically described (Lichte, 1919).  

Kimura (1929) conducted the first successful experiment for detecting fish 

using acoustical methods, where the presence of fish disturbed a transmitted signal. 

The first echogram of fish, attributed to the Norwegian fisher R. Bokn of the vessel 

“Signal”, was published in July 1934 (referred to in Fernandes et al. (2002)). In 1935, 

in advance of the annual oceanographic survey in the Lofoten area, a 16 kHz 

transducer was mounted on R/V Johan Hjort, where cod, Gadus morhua, was 

observed in a 10 m thick layer at a constant depth (Sund, 1935). A few years later, the 

distribution of the Norwegian spring spawning herring was annually evaluated using 

the echosounder as a standard tool (Runnstrøm, 1937, 1941; Sund, 1943). During 

World War II, a major effort for developing detection equipment such as radar (Radio 

detection and ranging) and sonar (Sound navigation and ranging) was undertaken; 

both acronyms are still in use. Concepts such as the sonar equation, methods of 

calibration, vessel noise, reverberation etc. began to be quantitatively understood 

(Urick, 1983). In the post-war years, the echosounder was said to be installed on 

hundreds of Norwegian fishing vessels (Devold, 1961) since the echosounder was 

now considered an essential tool for commercial fishing (Hodgson, 1951; Hodgson & 

Fridriksson, 1955). Finn Devold (expedition leader aboard R/V G. O. Sars in 1950) 

used both echosounder and ASDIC to track and study the herring migration, where 
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the fish location and heading was forwarded to the waiting fishing fleet (Dragesund 

& Midttun, 1966). In the 1950-60s, the concept of a species- and size-dependent 

directivity pattern of single fish was known, with these effects being highlighted 

through target strength measurements (Cushing, 1955; Jones & Pearce, 1958; Midttun 

& Hoff, 1962). Approaches using acoustics in fish stock assessment were also 

developed in the 1950-60s, first through counting of individual echoes (Tungate, 

1958; Mitson & Wood, 1961), summing of the echo amplitudes (Richardson, 1959), 

and finally the echo-integration method based on the echo amplitude (Dragesund & 

Olsen, 1965). Integrating the echo intensity was later shown to be a more correct 

approach (Scherbino & Truskanov, 1966). The technique of echo-integration was 

attributed to Ingvar Hoff (Simmonds & MacLennan, 2005) and is still used in stock 

assessment.  

When the transducer is designed as an array of transducer elements, a single 

beam can be steered towards a specified direction when a time delay is added 

between adjacent transducer elements (Sherman & Butler, 2007). This is the 

fundamental principle of the electronic sector-scanning sonar (Voglis & Cook, 1966; 

Forbes & Nakken, 1972) where the single beam is steered in a stepwise manner 

through a pre-defined sector. Such systems have been utilized to investigate fish 

behaviour and movements of fish schools (Harden Jones & McCartney, 1962; 

Welsby et al., 1963, 1964). Mitson & Cook (1971) presented a system where the 

transducer was mechanically steered from scanning a horizontal sector to a vertical 

sector. In one investigation, a vertically oriented 330 kHz scanning-sonar, the Simrad 

FS 3300, was used to study fish-avoidance effects when a survey vessel crossed 

above them (Ona & Toresen, 1988).  

A collaborate project between Simrad and Norwegian research institutions 

began in 1968 with the intention to explore the possibility of incorporating 

contemporary computer technology with the new multi-beam approach (Olsen, 1972; 

Bodholt & Olsen, 1977). Here, a rectangular transducer array formed 10 beams 

simultaneously, where the beams were evenly distributed along a 60º sector. The 

beam width was 6º. The transducer, hence the sector, was mechanically tilted and 
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rotated towards any direction below the sea surface. Its successor, SM600 (Bodholdt, 

1982), had a similar transducer design and functions, where the 85º sector was 

resolved into 17 beams, each with a beam width of 9x7º. Multi-beam sonar studies 

using the SIMRAD SM600 sonar (Misund & Aglen, 1992) and the RESON SeaBat 

6012 (Gerlotto et al., 1994, 1999; Soria et al., 1996), when investigating vessel 

avoidance by schooling fish, is regarded as pioneer work (Foote et al., 2005). 

 Using fishery sonar for scientific purposes has been a common strategy for 

acquiring supplementary information about what is beneath the sea surface. Some 

examples of these scientific applications are noted here: The scanning sonar Simrad 

SU was used to track acoustically tagged fish during behaviour studies (Dalen, 1974). 

The omni-directional fishery sonar Simrad SP90 has been used to study the 

aggregation of whales around FADs (Fish Aggregating Devices) (Brehmer et al., 

2012), and to develop multi-beam processing tools for identifying and tracking 

schools of fish (Trygonis et al., 2009). The Simrad SR240, also omni-directional, has 

been used for investigating the behaviour and avoidance reactions of fish schools 

(Misund et al., 1993; Hafsteinsson & Misund, 1995), and monitoring ecosystems in 

shallow water (Brehmer et al., 2003). A proposal for continuous data acquisition with 

automated data extraction and processing has been reported (Brehmer et al., 2006), 

where both the SR240 and the Furuno CSH20 sonars were to be used. The Simrad 

SX90, which is relevant to this thesis, has previously been used to estimate the speed 

of Peruvian anchovy schools (Peraltilla & Bertrand, 2014) and to measure the target 

strength of whales (Bernasconi et al., 2013; Geoffroy et al., 2015).  

 

Acoustics and backscattering from fish  
 

Fish which have a gas-filled swim bladder are grouped into two species-

categories; physostomes (open swim bladder for gas release) and physoclists (closed 

swim bladder) (Blaxter & Batty, 1984). When ensonified by for example a downward 

orientated echosounder, the swim bladders are the main reflector of acoustic energy 

since 90-95% of the measured echo intensity, which is usually described in terms of 
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the target strength (TS, dB re 1 m2), originates from this organ (Foote, 1980b). The 

residual energy originates from the rest of the fish body, for example the flesh, bones 

and the head.  

Herring, being a physotome, cannot adapt its buoyancy to the pressure at depth 

by regulating the quantity of gas within the bladder, while the physoclisti do have this 

capability (Blaxter & Batty, 1984; Ona, 2003). The herring swallows gas at the sea 

surface, where the gas is led to the swimbladder via the stomach duct. In the clupeid 

swimbladder, one channel connects the bladder to the air-filled bulla system in the 

inner ear, and the anal duct also connects the bladder directly to the outside sea water 

via a sphincter muscle. During rapid descent, gas is released directly out into the sea 

via the anal duct, enabling a rapid escape response for herring when attacked by 

physoclisti predators such as cod. The swimbladder is usually not emptied in tranquil 

descent; therefore, the volume of the bladder shrinks with the increased pressure as a 

consequence of the Boyle-Mariette law. Thus the target strength of the herring is 

depth dependent (Ona, 1990, 2003).  

Atlantic mackerel, on the other hand, belongs to a third group of species which 

have no swim bladder (Foote, 1980b; Gorska et al., 2005, 2007). Consequently, the 

target strength of a single mackerel is considerably less than that of a swimbladder 

bearing fish of the same size. A target strength difference between 10-13 dB between  

cod and mackerel has been reported (Foote, 1980b), hence the conclusion that 90-

95% of the backscattered echo originates from the swim bladder.  

The amplitude of the target’s echo is known to be frequency dependent (e.g. 

Johnson, 1977; Holliday, 1978; Greenlaw & Johnson, 1983), and this frequency 

response can, to some degree, identify the species and the size of the fish (e.g. Horne, 

1999; Kloser et al., 2002; Korneliussen & Ona, 2002, 2003; Korneliussen et al., 2009; 

Demer et al., 2009; Johnsen et al., 2009; Kubilius & Ona, 2012). Also, the orientation 

of the fish relative the acoustic axis of the transmitted beam contributes to notable 

changes in the target strength (Love, 1969; Cutter & Demer, 2007; Pedersen et al., 

2009). For example, Love (1969) reported a target strength difference close to 10 dB 
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at 30 kHz when a black crappie (Pomoxis nigromaculatus) was ensonified in side 

aspect, compared to either the posterior or anterior aspect (head-tail directions). 

Individual fish cannot be distinguished through standard acoustical methods if 

they are in too dense aggregations, which is common for species such as herring and 

mackerel. Nevertheless, if the aggregations are not so dense that acoustic extinction 

occurs (Foote, 1983, 1990), the linear relationship between the density of targets and 

the accumulated backscattered energy from the effective volume of the signal pulse 

has been proven valid (Foote, 1983; MacLennan, 1990). Consequently, if a 

representative mean target strength of the fish, and their length distribution, are 

known, the density of fish within the aggregation can be computed from the ratio of 

the accumulated energy and the mean backscattering cross-section (which is a linear 

measure equivalent to the target strength).  

Still, the total backscattered energy from a school is highly dependent on the 

orientation of each fish inside the school (Cutter & Demer, 2007; Holmin et al., 

2012). The volume backscattering coefficient, , is often observed to be greatest 

when a polarized school is ensonified in its lateral aspect, and smallest in the 

posterior or anterior aspects. If the fish inside the school were more randomly 

orientated, the mean backscattered energy from the school is weaker although less 

directive. This orientation effect must therefore be considered when evaluating the 

school biomass, and needs to be further investigated here.  

If the mean size of fish is known, and the density of fish inside the school is 

accurately estimated, the total biomass within a school (M) can be simply expressed 

as: 

 (1) 

where  is the mean volume density of fish,  is mean weight per fish, and V is the 

correct volume of the school.  
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Single-Beam echosounder systems 

A typical echosounder system includes a hull-mounted, downward orientated 

transducer unit which emits, and receives, acoustic signals. Such equipment is 

commonly used for quantitative evaluation of fish abundance during scientific 

surveys (Simmonds & MacLennan, 2005). Multi-frequency analysis, such as for 

species classification, can be achieved by simultaneous operation of several 

transducer units, each transmitting at a different frequency (e.g. Kloser et al., 2002; 

Korneliussen & Ona, 2002; Gorska et al., 2005; Fässler et al., 2007). The scientific 

echosounder system facilitates recording of the echo amplitudes detected by each 

transducer unit, for each simultaneous transmission/receiving event (aka. ping), in a 

digital raw-data format (Korneliussen et al., 2008).  

To prevent loss of acoustic energy due to scattering by air bubbles in the near-

surface region (Dalen & Løvik, 1981), the transducers are mounted on the bottom of 

the vessel, or sometimes lowered below the hull of the vessel by means of a drop keel 

(Ona & Traynor, 1990). The transducer draft and the lack of useful quantitative 

measurements in its near-field, and ringing effects on the transmission, means that 

fish close to the sea surface, that is to say in the acoustical blind zone (Totland et al., 

2009), are excluded from the echo-integration. Therefore, on the research vessel G. 

O. Sars, the echo integration starts at 10 m below the sea surface in good weather, and 

12 m in bad weather conditions. Additionally, the fish may react to the presence or 

approach of the vessel at close range, where the school structure or its location, after 

noise exposure, may be distorted (Misund 1993; Soria et al. 1996; Ona et al. 2007). 

For these reasons, vertical echosounders are not the preferred tool when investigating 

a possible catch.  
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Multi-beam systems 

A multi-beam system transmits several acoustic beams, all formed 

simultaneously by processing the signals from multiple elements of the same 

transducer unit, where each beam is directed in a specified direction (Sherman & 

Butler, 2007). Only multi-beam systems which can operate in the echosounder’s 

acoustical blind zone are of relevance here and are further addressed. According to 

preferences, there are two categories of such multi-beam sonars; full 3D-systems and 

2D-systems.  

In a full 3D-system, the beams are orientated to completely ensonify a 

specified sector-volume. For the horizontally transmitting Simrad MS70 Scientific 

Multi-Beam sonar (Andersen et al., 2006; Ona et al., 2006), a sector volume is 

ensonified by 20 beams in a vertical fan (distributed from 0 to 45º below horizon) and 

25 beams horizontally, covering a 60º sector. The 500 beam widths are all close to 3º. 

The system gains of each beam are accurately measured by a multi-beam calibration 

using split-beam target positioning (Ona et al., 2007a, 2009). The fish species is 

determined by evaluating the school’s morphological features (e.g. Gerlotto & 

Paramo, 2003; Korneliussen et al., 2009); here, specifically, by evaluating the 

school’s structure, depth distribution, and its backscattering properties. The MS70 

system is not, however, installed on any commercial fishing vessel. It is installed on 

only a few research vessels, and hence is presently not available as a tool for the 

fishing industry. 

The 2D-system has multiple beams orientated within a single contiguous fan, 

revealing a narrow cross-section of the water column, for example the Simrad 

SM2000 (Chu et al., 2002). Such instruments do not have the same spatial coverage 

as the full 3D-system, although they have been used for counting and evaluating the 

migration speed of whales and fish schools (Misund, 1990; Peraltilla & Bertrand, 

2014; Pyc et al., 2015). Also, the 2D-system has been used to estimate school 

biomass through visual evaluation of the sonar display (Misund et al., 1992, 1995), 

and to estimate school volume and structure using various scanning modes and 

algorithms (Gerlotto et al., 1994; Gerlotto & Paramo, 2003; Tang et al., 2009). The 
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new Simrad SN90 fishery sonar is being used on an increasing number of fishing 

vessels. This instrument presents both a vertical and a horizontal cross-section of a 

school sequentially. However, the SN90 is still too recent a development for 

evaluation of its scientific potential.  

Another 2D-system is the so-called omni-directional fishery sonar, a common 

equipment found onboard most fishing vessels (Brehmer et al., 2006). The term 

“omni-directional” in this context means the transmissions are omni-directional in the 

horizontal cross-section, but they cover only a narrow range of angles in the vertical 

section. Previously, such sonars have been used for evaluating school biomass 

(Misund, 1993a) through comparison of the school’s cross-section area, determined 

using the Furuno CSH-70, and the actual catches from purse-seining. Tenningen et al. 

(2015) recorded screen shots from the SH80 (a high-frequency fishery sonar, 110-122 

kHz) sonar display, where these images were analyzed along with observations of the 

pursed volume, and the size of the mackerel school within the net. Brehmer et al. 

(2006) proposed a scheme for storing and analysing non-digital sonar data. More 

recently, the echo amplitude from each sonar beam has been digitized in a new raw-

data format, which allows further and more comprehensive analysis. Nishimori et al. 

(2009) presented a method for quantitative echo-integration when evaluating the fish-

school abundance, independent of the school volume, using digital beam data from 

the Furuno FSV-30 (22.5 kHz). Peña et al. (2013) used the software PROFOS 

(Processing system for omni-directional fisheries sonar) to track herring schools after 

exposure to seismic activities, using raw and un-calibrated echo-amplitude data from 

the SH80 fishery sonar. Trygonis et al. (2009) presented an operational system for 

automatic identification and tracking of fish schools using raw data from the Simrad 

SP90 fishery sonar.  

In this thesis, such multi-beam fishery sonars are further evaluated, and their 

key features are briefly described in the following section. 
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Sonar Discription  

Both simulated and field data from the Simrad SX90 and the Simrad SU90, 

manufactured by Kongsberg Maritime AS (Simrad, 2007), were utilized in the 

presented work. The two sonars are almost identical, except that the SU90 transducer 

is a 1.5 times longer than the SX90 transducer and its vertical beam width is narrower 

than that of the SX90. Fishers prefer the sonar transducer to be mounted as far 

towards the bow as practicable. A mechanical hoisting device (Figure 3 left) is used 

to lower the transducer to a depth 1.2-1.6 m below the hull of the vessel, in order to 

reduce the adverse absorption effects from wind-induced air bubbles in bad weather 

conditions (Dalen & Løvik, 1981).  

 

                              

Figure 3, To the left, schematic diagram of the mechanical hoisting device 
used to lower the transducer. Full description of the diagram is shown in 
Simrad (2007). To the right, schematic diagram of a cylindrical transducer 
array with 256 elements (equivalent to part I in the figure to the left). One 
element is coloured red. The element index along the cylindrical wall is ‘n’, 
increasing counter-clockwise. The vertical element index is m, increasing 
downwards. 
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The transducer unit is a vertically-aligned cylindrical array composed of either 

256 (SX90) or 384 (SU90) transducer elements (Figure 3 right). The exact alignment 

of each element was not given due to company restrictions, and only approximate 

figures are given here. Therefore, the cylinder radius is , and the radius 

of the circular transducer elements is . The array is preferentially 

partitioned into  evenly separated line arrays with either  (SX90) or 

 (SU90) transducer elements, uniformly separated by 1.5 mm physical 

spacing between each element. When the array pitch and roll are disregarded, the 

orientation of each element is , where  is 

the index of the line array (counter-clockwise when seen from above) and 

 is the index of the element within each linear array (downward increasing) 

(Figure 3). Each transducer element is a tonpilz piezoelectric transducer, which 

implies the element is comprised by several tightly stacked piezoceramic rings (e.g. 

Yao & Bjørnø, 1997). The acoustic performance of each element was measured in a 

laboratory tank at Simrad in Horten as part of their QA-system (quality assurance).  

Each of the active transducer elements radiates either a single frequency (CW) 

or a hyperbolic frequency modulated (FM) signal. The purpose of the FM signal is to 

minimise the degradation of matched filter processing caused by the Doppler effect 

(Readhead, 2010). The signal’s centre frequency is selectable between 20 and 30 kHz 

in 1 kHz steps, and the sonar’s detection range is selectable between 150 m and 8 km. 

For practical reasons, such as interference from bottom reverberation and ray bending 

(Lichte, 1919), the detection range was limited to 600 m in any investigation. The 

duration of the signal pulse is dictated by both the selected signal type and detection 

range, which in our case gave a maximum pulse duration of 4 milliseconds when 

using the preferred range settings and a short CW signal (Table 1).  
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Table 1. Duration of the transmitted signal for various target ranges and the selectable 

signal types. The full table includes the pulse durations up to 8 km range, as reported in 

(Simrad, 2007).  

Range 

(m) 

FMshort 

(ms) 

FMnormal 

(ms) 

FMlong 

(ms) 

FMauto 

(ms) 

CWshort 

(ms) 

CWnormal 

(ms) 

CWlong 

(ms) 

150 1 4 6 4 1 2 6 

300 2 8 12 8 2 3 12 

450 3 12 18 12 3 6 18 

600 4 16 24 16 4 8 24 

900 6 24 36 24 6 12 36 

1200 7 28 42 42 7 14 42 

1500 8 32 48 48 8 16 48 

 

During reception (Figure 4) the complex transducer element data are recorded 

after the raw acoustic signals were filtered and pulse-compressed with 4 kHz 

sampling frequency. The sonar software utilizes the element data to form 64 receiver 

beams with a nominal beams width between 7.4º (30 kHz) and 11.4º (20 kHz) 

vertically, and between 8.5º (30 kHz) to 10º (20 kHz) horizontally. The measured 

echo amplitudes received by each beam are stored as raw data in the so-called 

“Scientific Data Output”. Additional filtering and processing is required in order to 

display a clean and preferably noise-free image on the sonar display.  
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Figure 4, Sketch for sonar data flow; the acoustic reflection is recorded by 
the transducer elements, filtered and stored as the element data (Red). 
Subsequently, the element data are beam-formed, then stored as the 
scientific data output (Blue). The beam data are further processed with 
additional filters, and interpolated before displaying a smooth and 
preferably noise free picture on the sonar display.  

 

The beams are orientated according to selectable transmission modes, namely 

the horizontal mode and the vertical mode (Figure 5;Tang et al., 2006). If both modes 

are activated, the two cross-sections are automatically alternated and their echograms 

are displayed in separate windows on the sonar screen. In the horizontal transmission 

mode, the sonar transmits and receives a single fan of beams evenly distributed in a 

cone with the transducer at the apex. Through the sonar interface, the user may 

electronically steer all the beams towards a common tilt angle. In the vertical 

transmission mode, the beams are distributed in a vertically aligned semicircle, 

providing a narrow cross-section of the lower hemisphere. This fan of beams can be 

rotated by the user with the transducer acting as a celestial pole. The direction of the 

beams is automatically compensated for vessel movements by the sonar software.  
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Figure 5, Picture of the two sonar fans from the SX90 sonar. The conical 
fan is an illustration of the beams’ orientation in the horizontal mode, while 
the vertical aligned semicircle illustrates the orientation of the beams in the 
vertical mode. (SIMRAD. 322074/A 12.2011) 

 

  



 27 

Discussion 

Calibration of cylindrical multi-beam fishery sonar 

Accurate calibration of acoustical equipment is essential for good quantitative 

measurements (Foote et al., 1987; MacLennan, 1990; Aglen, 1994; Simmonds & 

MacLennan, 2005). The mean density of targets per unit volume is computed from 

the measured mean volume backscattering coefficient, , divided by the mean 

backscattering cross-section of an individual target, ;  

 (2) 

where the parameter to be calibrated prior to a survey is   

There are several methodologies for calibrating acoustic equipment, for 

example reciprocity calibration or using pre-calibrated hydrophones (Foote et al., 

1987; Simmonds & MacLennan, 2005). However, in fishery acoustics the usual 

practice is to calibrate the equipment using a standard reference reflector (Foote & 

MacLennan, 1984). A solid spherical target is advantageous due to its relatively 

strong and stable ability to reflect sound, with the amplitude of the backscattered echo 

being independent of the transmitted wave’s angle of incidence. Another advantage 

of using a reference target is swift mapping of the beam pattern when the position of 

the target can be measured directly. 
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Estimation of the reference target’s position 

The various methods which have been used to estimate the target position fall 

into one or other of the following two categories;  

i. Data-independent methods – these do not utilize the acoustic data directly 

for estimating the target direction. 

ii. Data-dependent methods – these do utilize the acoustic data for estimating 

the target direction. 

 

Data-independent methods 

The typical procedure for calibrating a single-beam echosounder was to 

carefully steer the calibration sphere within the acoustic beam until a maximum echo 

strength was observed (Foote et al., 1987; Simmonds & MacLennan, 2005). Since the 

sphere location relative to the transducer was unknown, moving the sphere to the 

centre of the beam was a tedious process. Another pitfall, although uncommon among 

experienced calibration personnel, is to centre on one of the side lobes and 

misinterpret it as the main lobe.  

Another common approach is to calibrate the acoustical device either in a tank 

or deployed at sea, with known or controlled environmental conditions (Chu et al., 

2001; Doherty et al., 2002; Jech et al., 2003; Cochrane et al., 2003; Melvin et al., 

2003; Foote et al., 2005; Nishimori et al., 2009; Lanzoni & Weber, 2011). A typical 

protocol involves rotating the acoustic transducer while the reference target is held 

stationary. In practical terms, this is not a desirable procedure as it involves removing 

the transducer from the ship’s hull. This incurs extra costs and time.  

Using a reference target deployed from a second vessel for calibration 

comparisons between multiple beams has been suggested for cylindrical multi-beam 

sonar (Brehmer & Gerlotto, 2001). Such a procedure was here rejected due to its poor 

accuracy, and consequent bias in biomass estimates. It should be noted, however, that 
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the authors suggested the split-beam technique could be used to locate the calibration 

sphere inside each beam during field calibrations. 

In this thesis, a reference target was steered with millimetre precision inside a 

single beam from the cylindrical transducer using a specially designed calibration rig 

(Paper 1). The rig was mainly utilized for developing a within-beam target-position 

algorithm for field calibrations (Paper 2). While this method may still be used to 

compute the system gain and the beam widths, in practice the rig performance was 

found to be too laborious in situations where external forces, such as water currents 

or ship movements, influenced the position of the reference target. Also, the 

horizontal scope of the rig was confined to only one beam at each rig mounting 

location (Paper 1). That design did not allow a quick and effective multi-beam 

calibration; however, it motivated the development of a new calibration rig which, 

when operated with a target-positioning algorithm, enabled faster calibrations of a 

larger fraction of the sonar beams.  

 

Data-dependent methods 

This category covers instruments capable of determining the target position 

relative to the transducer, based on acoustic measurements alone. The Dual-Beam 

method was one of the first developments of this kind (Ehrenberg et al., 1976). Here, 

two concentric beams with collinear acoustic axes are formed simultaneously. To 

correct echo measurements for the beam shape, the inclination angle between the 

target direction and the (common) acoustic axis is determined from the ration of the 

two measured echo amplitudes. The Dual-Beam method was later superseded by the 

split-beam technique which has superior performance in the presence of noise 

(Ehrenberg, 1983). The split-beam principle involves a transducer with four 

quadrants whose signals are processed separately. The target direction, defined by 

two angles, is determined by comparing the time delays between the four quadrant 

signals (Carlson & Jackson, 1980; Ehrenberg, 1983; Degnbol, 1988).  
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The same split beam principle was adapted for calibrating the cylindrical 

multi-element transducer, where the array processing applied to the transducer 

elements was a crucial step, improving the signal-to-noise ratio to better separate the 

target echo from the background noise (Paper 2). Two pairs of transducer halves, one 

for vertical and the other for horizontal positioning, were formed through the 

combination of data from selected transducer elements. Overlapping transducer 

halves were considered, but rejected because this approach did not improve the 

precision with any practical significance (Paper 3). Still, a precision between 0.2 and 

0.24º is expected under typical calibration conditions (eSNR ~5dB) and using a low 

tilt angle (-5º) (Figure 6). During the calibration of the SU90 on F/V “Eros“ on 19th 

October 2015, the calibration conditions were nearly ideal, with almost no sea or 

vessel movement, and the precision in that case was computed to be as good as 0.09º, 

corresponding to an element signal to noise ratio (eSNR) around 15 dB (Figure 6). 

The precision of the split beam approach is reduced when the beam is steered towards 

steeper angles below the horizon.  

 

Figure 6, Figure illustrating the expected precision of the SB (blue) and INB 
(black) methods, along horizontal (x) and vertical (+) directions, when the 
target is at the centre of a beam steered towards ° (left), ° (middle) 
and ° (right) relative the horizon. The effect of noise is shown by 
changing eSNR from 25 dB to 0 dB with -5 dB steps. 
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The offset between the target positions determined mechanically by the 

calibration rig (Paper 1) and those from the split beam data (Paper 2) was believed to 

be caused by incorrect allocation of the rig’s reference position. Still, it may also be 

caused by unexpected variability between the element sensitivities, as such 

irregularities could generate position offsets similar to those reported in Jech et al. 

(2003, 2005). In essence, the split beam approach was found to be sufficiently 

accurate for practical field calibrations. A dedicated Matlab script facilitated real time 

positioning of the sphere, since the computational time was less than the minimum 

ping interval (0.2 s). Real time detection of the sphere is highly advantageous during 

practical calibrations, since this will reveal any unwanted sphere movements when 

they occur. 

A second target position algorithm was also included in Paper 2, namely the 

Interpolated Neighbouring Beam (INB). With this method, the target direction within 

the beam is estimated from the amplitude differences between the two adjacent 

beams. When the two amplitudes are equal the target is at the centre in the beam in 

between, where the method’s precision equals that of the split beam approach (Figure 

6). In a practical calibration where the beam pattern is measured, the accuracy of the 

INB is insufficient once the target is located outside the centre of the beam (Paper 2).  

There are other algorithms for estimating the reference target’s direction, such 

as Esprit, MUSIC, minimum variance, etc. (Krim & Viberg, 1996). However, several 

of these methods were considered unsuitable for the typical fishery sonar, due to their 

poor performance in situations with coherent signals, or because the sonar design did 

not meet the requirements of a linear array structure, such as uniformly spaced 

elements.  
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Calibration of the SX90 

Initial preparation  
The fishery sonar transmits nearly horizontally. Therefore, its calibration has 

challenges beyond what was experienced during traditional echosounder calibration. 

Inside fjords, sheltered from the wind and weather, fresh water inflows cause 

stratification of the water column, (Skarthhamar & Svendsen, 2010). As a 

consequence, the sound speed close to the sea surface is highly variable. This causes 

bending of the sound transmission (and reception) (Lichte, 1919). Near surface waters 

further out in the fjords may be more homogeneous, resulting in less ray bending. 

However, close to the open sea the vessel is much more susceptible to wind, waves 

and weather than inside the fjords, then positioning of the reference target is an 

onerous task. For this reason, it was preferred to calibrate inside the fjords, sheltered 

by mountains, even if the accuracy of the calibration was reduced as a consequence of 

the variable environmental parameters.  

Three environmental parameters need to be computed prior to the calibration; 

the acoustic absorption coefficient, the sound speed in water, and the water density. 

The absorption coefficient ( [dB/km]) was determined by the following expression 

(Ainslie, 1998) 

 

(3) 

where  is the temperature in degrees Celsius,  is the salinity in PSU (practical 

salinity units, [g kg-1] (Millero, 1993)),  is the depth in metres,  is the central 

frequency of the signal (kHz),  is the relaxation frequency of 

boric acid (Francois & Garrison, 1982) and  is the relaxation frequency 

of magnesium sulphate.  
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The propagating sound speed in salt water (  [m/s]) follows from Chen & 

Millero (1977);  

 

 

(4) 

where  is the absolute pressure, and  are the empirical coefficient detailed 

in Chen & Millero (1977). There are other approximations (e.g. Kinsler et al., 1999), 

but the model proposed by Chen & Millero (1977) is the standard adopted by the 

Norwegian Institute of Marine Research and was thus adopted here. 

The density of sea water is, according to Fofonoff & Millard (1983),  

 
(5) 

Here, the density of sea water, at the surface, is 

 

 

(6) 

and the secant bulk modulus is: 

 

(7) 

The constants  and  are empirical coefficient shown in Fofonoff & 

Millard (1983). The Salinity (S), Temperature (T), and Depth (D) (which defines the 

pressure (P)) are all measureable by performing CTD (Conductivity, Temperature and 

Depth) casts, using for example the Seabird 911 CTD system (Seabird, 2015).  
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Backscattering properties of elastic sphere 
A 64 mm diameter Tungsten Carbide calibration sphere with 6% cobalt binder 

was selected as the reference target. This sphere was initially produced for calibrating 

sonars at higher signal frequencies ( ); although, its theoretically computed 

frequency response showed that the sphere was also a suitable reference target for 

sonars with an operational frequency similar to the SX90 (Figure 7). A 63 mm copper 

sphere has also been used in the calibration of the SX90 sonar (Geoffroy et al., 2015; 

Pyc et al., 2015). The frequency response of the calibration sphere is theoretically 

computed using the scattering theory of elastic spheres (Faran, 1951; Hickling, 1962; 

MacLennan, 1981), where the steady-state signal and far-field determination of the 

backscattering cross-section of an elastic sphere is (here reprinted from MacLennan 

(1981))  

 (8.a) 

where  is the wave number, a is the sphere’s radius, and  

 
(8.b) 

Here 

 
(8.c) 

where  is the spherical Bessel function of first kind and  is the spherical Bessel 

function of the second kind, and 

 

 

(8.d) 

 

 

(8.e) 
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Here  is the velocity of the longitudinal wave, and  is the speed of the 

transverse wave inside the sphere,  

 

 

 

 

(8.f) 

 

(8.g) 

 

(8.h) 

 

(8.i) 

and  is the density of the sphere.  

Equation 8.a can be adapted for signals of finite length, which include a band 

of frequencies, as shown by MacLennan (1981); however, the principle dependencies 

of the backscattering cross-section are the transmitted signal frequency (or its wave 

number, , the material properties of the sphere ( ), and the 

environmental factors ( ), where the latter are computed using equations 4 and 

5. These dependencies are seen in equations 8.a to 8.i. The material properties of the 

sphere are provided by the manufacturer, although these may be checked for a 

particular sphere by measuring its frequency-response spectrum (Hobaek & Forland, 

2013). In this procedure, the transverse and longitudinal sound speeds are computed 

from the position of nulls in the echo frequency spectrum, revealed by broad-band 

transmitted pulses.  
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Figure 7. The computed target strength of a 64 mm diameter Tungsten 
Carbine sphere with 6% cobalt binder, specially designed for fishery sonars 
operating at 20-30 kHz and 110-120 kHz (Ona, pers. communication 2015). 
Typical variations in reference target response as a function of temperature (-
2, 20ºC) and salinity (0 – 50 PSU) are shown as grey areas. The specific 
response during our measurements (T = 10ºC, PSU = 35, and reference 
target depth of 13 m) is shown as a black line. The frequency range is 0 to 
120 kHz in the main plot, and 15 to 35 kHz in the expanded window.  

 

Typical survey and fishing grounds in the North Sea, Norwegian Sea and the 

Barents Sea have relatively stable temperature and salinity features. The temperature 

near the sea surface changes in a seasonal manner between 2 and 15ºC. At the 

calibration sites inside fjords, however, both temperature and salinity in the upper 20 

m may be affected by freshwater runoff into the fjords. Significant stratification may 

therefore occur within the ensonified volume. Repeated calibrations have shown that 

a vertically orientated echo sounder, despite the stratification, can be calibrated with 
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an accuracy better than 0.1 dB (Knudsen, 2009). For horizontally orientated 

transducers, stratification across the acoustic beam may cause some error.  

Air bubbles attached to the knots and suspension lines that support the sphere 

were carefully removed by soaking both the sphere and its suspensions in a solution 

of water and liquid detergent (Foote et al., 1987). Even small air bubbles are a source 

of acoustic interference, and must be avoided. Also, the sphere was positioned well 

outside the near-field of the transducer. The far-field of a circular transducer array 

begins at a range  which is, approximately (Medwin & Clay, 1998), 

 
(9) 

where  is the height of the transducer and  is the diameter, where (Sherman & 

Butler, 2007) 

 
(10) 

and  is the horizontal beam width. This equation (eq. 10) is not exact for our 

transducer array, but approximate. Still, the sphere was usually located at a distance 

around 10-14 meters from the transducer, corresponding to 5-6 times the near-

field/far-field boundary.  

 

Completion of calibration 
When the sonar transducer on a particular vessel is to be calibrated, the sphere 

is first deployed to the approximate depth of the sonar transducer, as indicated from 

the vessel’s general arrangement plans, and then it is sequentially steered through a 

selected number of the beams (Paper 1). The echo amplitude of the sphere, as 

received in each beam, was determined from the signal power (in Watt units) which 

was logged in the scientific data output. These data were converted into acoustical 
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parameters using an equation provided by the sonar manufacturer, which is similar to 

the one normally used for echosounders (Ona et al., 2009), where 

 

(11) 

is the equation for computing the target strength, and  

 

(12) 

is the equation for the volume backscattering coefficient (Paper 3). Here  is the 

received power (W), r is the range between the transducer and target (m), pt is the 

transmitted power (W), λ is the acoustic wavelength (m),  and  

are the transducer gain in the target direction during transmission and reception 

respectively, G0 is the on-axis system gain (dB),  is the tilt angle of the beams, c 

is the acoustic propagation speed (ms-1),  is the nominal pulse duration (s), 

 is the integration correction (dB), and Ψ is the equivalent beam angle (dB rel. 

1 steradian). The sum of  and  equals the effective pulse duration (Ona et 

al., 2009).  and  where evaluated using the split-beam method (Paper 2). 

Two features of the above equations differ from those presented in (Ona et al., 

2009). First, the term  is included to compensate for the vertical 

steering of the beam. Secondly, the sonar’s directivity pattern during transmission 

and reception is not the same as it is in echosounders; hence, the factor  

(which was the original input shown in Ona et al. (2009)) was here replaced by the 

product of  and . For example, when selecting the horizontal transmission 

mode, the transmitted wave is omni-directional when seen from above (or 

), but directive in the reception mode. Therefore, when mapping 

the shape of the beam, in a similar manner as shown in figure 8, the two-way half-

power beam-widths (  and  for the vertical and horizontal beams, 
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respectively), relate to points 3 dB below the peak echo strength along the horizontal 

beam cross-section, but 6 dB below for the vertical cross-section.  

 

 

Figure 8. Mapping of a single beam on the SX90 mounted on F/V “Artus”. The 
beam was calibrated in March 2013 while the stern of the vessel was moored 
to a pier in Ålesund. The sonar transmitted a 26 kHz CW signal with a 
detection range of 150 m and a tilt angle of -5º. The WC64 reference target 
was steered through the beam while a Matlab program estimated the sphere 
location using the split beam approach. Crosses ( x ) and dots ( . ) indicate 
measured sphere TS values while the sphere was steered, respectively, in depth 
and horizontally. The orange curve indicates the horizontal two-way beam 
pattern from a quadratic least-square fit, while the purple curve indicates the 
fitted vertical two-way beam pattern.  

 

Several parameters in equations (11) and (12) are already known, either from 

the sonar’s technical specification or from previously computed environmental 

parameters (Equation 3-4). Before sonars are delivered to the customer, the 

manufacturer checks that their performance matches the theoretical design, by 

measurements usually conducted in a calibration-tank facility. This fact simplifies our 
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calibration procedure, as the beam width, beam shape when steering and the 

equivalent beam angle may then be estimated using theory rather than measurement.  

 

 

Figure 9. On-axis beam calibration of multiple beams of the SX90 installed on 
F/V “Artus”, November 2013. The sonar was transmitting a 26 kHz CW signal 
with a detection range of 150 m, and the beam tilt angle was -5º relative to the 
horizon. A WC64 sphere was located at the centre of 28 sonar beams for a 
period of at least 30 s in each beam, after centring was achieved. Mean TS is 
shown as dots (.) and the standard deviation is shown by the grey shades. Data 
points with unsatisfactory split beam positions were excluded from the 
analysis. To the right, a histogram of all accepted TS measurements is shown 
in 0.5 dB bins, with the mean TS = -36.7 ± 0.8 dB.   

 

 Assuming all other parameters are correct, the system gain (G0) is the key 

parameter to be measured and corrected. During the practical field calibration, the 

offset between the known TS of the sphere (Figure 7) and its measured value at the 

centre of each beam (Figure 9) was computed (Paper 1 and 3). The mean of all offsets 

was included in a separate calibration file. Measurements affected by occasional 

sphere movements were excluded by removing all those showing an unsatisfactory 

split beam position. When the scientific data were analysed, the calibration gain was 

uploaded from the relevant file, then applied to all the beams. This will increase the 

accuracy of the estimate of the single school biomass. The corrected sphere target 
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strengths for all beams on F/V Artus calibrated in 2013 (Figure 9) now gave a mean 

target strength of -36.7 dB with a standard deviation of 0.8 dB. 

The sonar has many combinations of settings, but calibration of all possible 

settings would be too time consuming and is not necessary. It is better to calibrate 

only the particular settings that will be used during the survey. Still, if the settings 

need to be changed for any reason, such as acoustic interference from other vessels, 

an asymptotic relationship has been found between the beam gain and either the 

frequency or the signal’s pulse duration (Paper 3).  

 

 

Figure 10. Temporal variation of the target strength of the WC64 sphere in 
the centre of one beam of the SU90 sonar mounted on R/V G.O. Sars, 19th 
October 2015. The sonar was transmitting a 26 kHz FM short signal with a 
detection range of 150 m and a tilt angle of -5º. The start time of the 
measurement was 09:36 UTC. Mean TS is shown as the black dots and the 
standard deviation is shown by the grey shades 
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 Adjacent beams are formed using essentially the same transducer elements, 

and should therefore indicate the same target strength. However, the TS discrepancy 

between adjacent beams was observed to be as much as 0.5 dB (Figure 9). These 

between-beams variations may be caused by small variations in the temperature and 

salinity as the vessel or water movements generate mixture of the stratified water. A 

longer recording, ~25 min, of the TS with the sphere located at the centre of one 

beam supports this hypothesis (Figure 10). Here, the mean sphere TS was computed 

over 60 ping intervals (corresponding to the time required to calibrate one beam), and 

was seen to be change with time. Typical mean TS variation was within a 0.5 dB 

band. The standard deviation of each half-minute increment was close to ±0.25 dB, 

similar to the results from the calibration on F/V “Artus” (Figure 9). The larger 

variation of the mean indicate the TS was affected by an external source.  

 To further strengthen this hypothesis, a standard ES38B Simrad echosounder 

transducer, with known performance, was mounted at the same depth as the sonar 

transducer below the drop keel of the vessel G. O. Sars. A metallic support frame 

stabilized the transducer, which was now observing horizontally. A 60 mm copper 

sphere was lowered to the centre of the beam while its target strength and split beam 

locations were recorded (Figure 11). Simultaneously, temperature and salinity of the 

water close to the transducer were measured every 10 seconds using the SEABIRD 

SBE21 thermosaliniograph. Due to the weight of the sphere, the reels attached to the 

bulwark slightly discharged or stretched the support lines, hence the slow vertical 

movement in figure 11 (red line). 

Small random variations of the sphere target strength (SD 0.1 dB) occurred 

throughout the first 30 minutes of the time series. From around 12:28 UTC, the 

variation of the target strength increased to nearly ±0.5 dB, and there was a sudden 

drop in the target strength of 0.8 dB around 12.35 UTC. With reference to the 

recorded split beam positions, these variations were not correlated with any 

movement of the sphere, but rather seemed to be due to rapid, but small, variations in 

temperature and salinity, indicating that an internal wave was passing the calibration 

site. This demonstrated that when calibrating horizontally in a fjord with stratified  
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water, the apparent TS may be more influenced by the environmental parameters and 

their variation, compared to calibrations of a vertically directed transducer. This 

suggests that further investigations on how physical oceanography affects calibrations 

of horizontally observing systems should be undertaken, beyond what has been 

presented here.  

Despite the adverse effects caused by the inhomogeneous medium, it is still 

not desirable to calibrate further out in the open sea, since the location of the sphere 

has been found to be highly susceptible to water currents and uncontrollable 

movements of the vessel. The locations which were selected have previously been 

experienced as satisfactory for calibrating keel mounted and vertically observing 

echosounders. They were also close to the port of survey departure. Other sheltered 

fjords, with more homogeneous water, could be found more suitable for sonar 

calibration, thus potentially improving the calibration accuracy. Still, a calibration 

accuracy of ±0.5 dB has been found to be achievable in the fjord locations selected 

for the present study. 
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Evaluation of the accuracy of the school biomass estimate 

Estimation of the school volume 

Fishermen, who have long experience of using sonar, often observe schools 

which appear large at long ranges often appear smaller when measured at shorter 

ranges. This effect has been demonstrated for simulated schools with known sizes 

and locations, and is attributed to a spatial smearing of the target across multiple 

sonar beams (Paper 4).  

 

 

Figure 12. Illustration of the two categorized smearing effects; the long range 
smearing effect (a) and the short range smearing effect (b). In figure (a) the true target 
is partially detected within 3 adjacent beams, thus smeared over all three beams. In 
(b) the true target fully covers several central beams but only partially intersects the 
border beams. Again, the target echo is smeared over all the intersected beams.  

 

Spatial smearing occurs when the target school partially intersects one or two 

beams, and due to the spatial resolution, or the lack of such, the target echo is 

smeared across the entire cross-section of the beam fan. This is also an issue with 

echosounders, where the length of the school can be overestimated due to border 

effects caused by the finite beam width (Diner, 2001, 2007). Two kinds of beam 

smearing effects have been classified; the long range smearing effect (LRS) and the 

short range smearing effect (SRS). The latter occurs when the school is detected 

within several beams but only partially within the border beams (Figure 12b). In this 
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case, the smearing effect is relatively small. The true extension of the school is 

between that represented by the whole beam fan, and that with one beam less. For 

example, if the school was smeared through 8 beams, its true extension is somewhere 

between 7 and 8 beams. As the range from the transducer increases, the extension of 

the school, in terms of the number of beams intersecting the school, is gradually 

reduced, resulted the zigzag pattern as illustrated in figure 13.  

 

 

 

Figure 13. Simplified illustration of the measured width (left) and height (right) of a 
school relative to the distance (R) from the transducer. The measured width is given 
by , where n is the across-beam extension in terms of number of 
beams and  is the angular separation between adjacent beams. The black line 
indicates a typical width measurement of a school with a true width of 100 meter. The 
red line indicates the region where the long range smearing effect is dominant for all 
sonar settings. The blue lines indicate the region where the long range smearing effect 
is dominant depending on the sonar setting (narrower width gives longer distances). 
The green lines indicate the region where only the short range smearing effect applies.  
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Once the minimum of three, or sometimes four, beams intersect the school, the 

apparent extension is overestimated by a factor proportional to the range, until the 

school is either out of sonar view or is no longer visible above the background noise. 

This effect is attributed to the long range smearing effect, as illustrated in figure 13 

with the red lines for the narrowest beams and blue lines for wider beams. Only the 

SRS is present in the area given with the green lines.  

Two threshold criteria were adopted to prevent the LRS effect being included 

in the biomass estimation, where, in principle, all schools with a crosswise extension 

less than the nominal beam width were excluded. If the school was to be accepted, its 

crosswise extensions must be larger than the swath length of minimum 3 beams 

horizontally and 5 beams vertically for transmissions at 30 kHz, and 4 (horizontal) 

and 8 (vertical) when transmitting at 20 kHz (Figure 13 and Paper 4).  

Two correction models have been developed for mitigating the SRS effect, one 

for the school’s width and the other for the height. Including the correction models 

will increase the biomass estimation accuracy of a single fish school. A prerequisite 

of both models was that the two transmission fans (Figure 5) were directed towards 

the centre of the school. The horizontal model was a reformulation of that presented 

by Misund (1990), where the reformulation included the concept of overlapping and 

digitized beam responses. The vertical correction model was a function of both the 

height of the school (in terms of number of beams) and its angular direction relative 

to the transducer. A precision of ±6.6-8.7% for the width and ±8.6-10.5% for the 

height is anticipated when the models are implemented on real acoustic data. The 

length of the school was defined as the along-beam extension (Diner, 2001), where 

the corrected length is compensated for a known extension, equal to half the 

transmitted pulse length. For the sake of clarity, in Diner (2001) this model is referred 

to as the height correction since this is the along-beam extension viewed by a vertical 

echosounder. The model does not, however, correct for any further deviation caused 

by multiple scattering within the school nor acoustic extinction. The echo strength of 

any multiple scattering is likely to be 2-3 orders of magnitude weaker (Ona, E. Pers. 

communication, 2016) than that from direct scattering; hence, this effect will be 
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ignored if a high enough echo amplitude threshold is included in the analysis. 

Henceforth, uncertainty in the along-beam extension of the school is assumed to be 

absolute and mainly caused by the sampling frequency (4 kHz) and inadvertent 

changes in the sound speed, and was here assumed to be ±1m. Any other acoustic 

effects are at this stage ignored.  

Element data for several migrating schools of herring have been collected; 

however, these were insufficient for a proper analysis of the school volume (e.g. 

Korneliussen et al., 2009; Gerlotto & Paramo, 2003), since the schools were often 

located in regions where they were susceptible to the LRS effect. Manual scrutiny of 

school, that was close enough, showed on average a 55% reduction of the mean 

estimated volume when the spatial smearing was corrected (Paper 4). Manual 

scrutiny may also introduce bias if the interpreter is using too large or too small 

amplitude threshold criteria, which may be the case in this example. Using an 

automatic procedure for extracting the school data would be a more objective 

approach (e.g. Balabanian et al., 2007; Holmin et al., 2012; Peña et al., 2013).  

 Improving the total volume accuracy through a full 3D reconstruction of the 

fish school is possible using the element data from the fishery sonar, if they are 

available. In practice, it was found that the vertical beam width of the transmission is 

too narrow for ensonifying the entire volume of large schools. As a consequence, 

parts of the school may be excluded from the volume estimate. Increasing the beam 

width during transmission will, however, increase the noise level in an already noisy 

environment (Gerlotto et al., 2000), and is therefore not an ideal solution. Still, if a 

3D reconstruction of the whole school is used to obtain higher spatial resolution than 

what is possible with typical 2D reconstructions, the whole school must be 

sufficiently resolved by several beams in both the horizontal and vertical directions. 

This may be achievable if the whole school is within the green sectors in figure 13. 

For example, a small herring school which is 100 m in diameter and 50 m high needs 

to be within 100 m of the sonar transducer to be accurately measured. Logically, such 

short distances are problematical since the entire school will then not be ensonified, 

and such close ranges may also cause vessel avoidance behaviour by the fish. 
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 The distance until the LRS effect becomes the dominant bias may be increased 

if additional, but narrower, beams are formed. This is theoretically possible if the 

signal frequency or the transducer size is increased (Kinsler et al., 1999; Sherman & 

Butler, 2007). Increasing the signal frequency could result in the formation of grating 

lobes, since the element spacing is then greater than half the wavelength. Having a 

larger cylindrical transducer involves producing a completely new sonar with 

additional elements, updating of the beam former software, and a stronger mechanical 

hoist system, resulting in a much more expensive product. Therefore, if higher spatial 

resolution is required, it is proposed to use other presently available equipment, such 

as the previously mentioned Simrad SN90 which is anticipated to provide improved 

volume measurement accuracy at shorter ranges.  

 

Evaluation of the backscattering cross section 

Referring back to equation 1 and 2, the next parameter which has to be 

evaluated is the mean lateral backscattering cross-section . This parameter is used 

to convert the received acoustic energy into quantitative fish density measures. 

Computing  in the lateral aspect is more complicated than in the dorsal aspect 

because  is then not only dependent on the fish pitch and roll angles (Nakken & 

Olsen, 1977), the depth (Ona, 2003) and length of the fish (Foote, 1980b), but also 

the yaw angle (Cutter & Demer, 2007). The difficulty of selecting a , 

representative of typical schooling behaviour is further discussed below, along with 

two proposed methods for improving the precision of fish density measures. To 

facilitate this study, scattering data from virtual schools of herring have been 

simulated where, for simplicity, the length and the depths of the herring schools were 

assumed to be known. 

Some elaboration of the backscattering cross-section is needed before 

continuing.  is computed using the directivity pattern of one representative fish 

weighted by the fish orientation distribution (Foote, 1980a). For echosounders, where 

the fish are ensonified from above, the tilt-angle distribution of non-reactive fish is 
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likely to be relatively narrow, for example a mean tilt-angle of -3.9º with a standard 

deviation of 11.9º has been reported for caged herring (Ona, 1984). When 

transmitting horizontally, however, any horizontal aspect of the fish may be 

ensonified, and, additionally, the yaw-angle distribution of fish in an aggregation may 

be anything from purely random to, for example, a normal distribution. 

Consequently, the mean TS of adult mackerel, with randomly distributed yaw-angles, 

were recently measured in the field to be 3-4 dB weaker in the lateral aspect than in 

the dorsal aspect (Ona, E. Pers. communication, 2015), probably because the 

backscattering from the posterior and anterior directions had now a higher influence 

on the mean backscattering cross-section. Also, the TS in lateral aspect is more depth 

dependent than in the dorsal aspect. The lateral TS was reported to be 2.5 dB higher 

then dorsal at 50 m depth, but 5 dB lower at 350 m (Pedersen et al., 2009), and was 

concluded to be caused by proportionately more compression of the swimbladder in 

the dorso-ventral aspect than the lateral.  

 

 

Figure 14. To the left, the computed, and interpolated, directivity pattern of a 
suspended herring 29.2 cm long in terms of target strength (TS, [dB re 1 m2]) 
using the boundary element approach. To the right; mean lateral target strength 
as a function of  (horizontal angle of incidence) of the 29.2 cm fish (blue). Green 
curve - mean TS of a straight cylinder with ka = 9 ± 20%. Coordinates of key 
anatomical directions are: anterior end , posterior end

, left lateral side  and dorsal side . 
Target strength was defined as TS = 10 log10( ). The data from the boundary 
element calculations were supplemented by Hector Pena at IMR.  
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First, the directivity of every fish needs to be included in the simulation. The 

acoustic reflectivity of the fish is mainly influenced by the swim bladder, if one is 

present, but also to some extent by the flesh and bones in the fish body (Nesse et al., 

2009; Peña & Foote, 2008; Blaxter & Batty, 1984). Numerous methods for 

computing the directivity pattern of a gas-filled swim bladder have been described in 

the scientific literature. Here are a few examples: Boundary Element (Cunefare et al., 

1989; Fischer et al., 2004; Śmigaj et al., 2015), Kirchoff Ray - method (Clay & 

Horne, 1994; Peña & Foote, 2008; Horne et al., 2009; Macaulay et al., 2013), 

Prolate-spheroid modal – series (Stanton & Chu, 2000; Gorska & Ona, 2003; Tang et 

al., 2009), and the Straight Cylinder (Gorska et al., 2007; Medwin & Clay, 1998). 

Since the simulation is done at a conceptual level, the choice of swimbladder-

scattering model is not critical. Here it was assumed that the directivity pattern of a 

single fish was equivalent to that of a cylindrical swim bladder (CSB) with ka = 9 ± 

20%, since this reasonably approximated the computed directivity pattern of a 29.2 

cm herring (Figure 14).  

Two kinds of fish aggregation have been observed in the field, namely 

shoaling fish (un-polarized with randomly distributed yaw angles) and schooling fish 

(polarized with normally distributed yaw angles). In the simulation exercises, the two 

aggregation types were consecutively located at the centre of a global coordinate 

system. The orientation of each fish is described by the angles ( ); for 

simplicity only the effects caused by the yaw-angle distribution were evaluated. 

Therefore,  for the polarized school and 

 for the shoal. Here N indicates a normal distribution and U 

indicate uniform distribution. The beam’s angle of incidence is determined by the 

directions ( ), with the constraint . The volume backscattering 

strength for each aggregation, with a density of 5 fish per cubic meter, was computed 

when accumulating the directivity indices of all fish within the volume (Figure 15). 

The beam’s angle of incidence relative to the anterior-posterior axis of the fish was 

given by , leading to the appropriate swimbladder directivity index 

computed from the CSB model. Ignoring any acoustic extinction (Foote, 1990), the 

assumed density of fish was found to have no effect on the final biomass estimate. 



 52 

 

 

 

The overall directivity pattern of the shoal was found to be omni-directional 

(Figure 15A). When the mean volume backscattering coefficient was divided by the 

 

Figure 15. Volume backscattering strength (grey) and its mean (black) from 
circumnavigation of a simulated un-polarized school (A) and a polarized school with yaw 
angles normally distributed within ±15º (B), both for a true density of 5 fish per cubic 
metre. Computed mean volume densities for (C) the un-polarized school and (D) the 
polarized school. Volume backscattering strength was defined as . 
Simulation parameters include the cylindrical swimbladder model, 26 kHz transmissions 
with ensonification only in the horizontal plane. Angle of incidence is relative to the head-
on direction of the polarized school. 
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mean backscattering cross-section (weighted with a randomly distributed yaw-angle), 

the mean volume density was 5.0 fish per cubic meter with a proportional standard 

deviation of 8% (Figure 15C).  

Circumnavigating the school, however, provided an overall directivity pattern 

similar to a sine function, with maximum reflectivity in the lateral aspects ( 0 

and ±180º) and minima in both the anterior and posterior aspects ( ±90º) 

(Figure 15B). This particular pattern has been observed in the field, when 

circumnavigating migrating schools of both herring and mackerel. Schooling Atlantic 

mackerel was, however, found to be almost immeasurable due to the background 

noise when ensonified in the anterior/posterior aspects. When the same used for 

computing the volume densities in the shoal was applied to the school,  was found 

to be overestimated by a factor of 4 at lateral aspects and grossly underestimated at 

posterior/anterior aspect (Figure 15D). Still,  was 

computed when including all measurements.  

For better precision, only at what is regarded as favourable angles of 

incidence are considered, for example around the peak of the school’s overall 

directivity pattern ( . In this case  

 (14) 

where is the mean volume backscattering coefficient of the selected data, and 

is then a computed mean lateral backscattering cross-section based on the ±20º 

incidence angle relative to the fish lateral aspect. The estimated volume density of the 

polarized school was . The relative standard deviation of the 

estimated volume density for different constraints on  is presented in Table 2. 

The best precision was obtained when only the data closest to the peak of the school’s 

overall directivity pattern were utilized, with less precise results when including more 

off-peak measurements.  
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In practical calculations with actual survey data, we have used recent TS 

measurements of adult herring and mackerel in lateral aspect, measured by other 

work packages within CRISP, rather than the theoretical computed values used 

earlier. Still, a value between the maximum and the mean TS has been used when 

converting the of migrating schools during field exercises. Measuring  is 

difficult when circumnavigating an aggregation, and nearly impossible in a survey 

situation. When a circumnavigation is not possible, alternative approaches are needed 

to maintain the accuracy of the quantitative measure. The mean values of both 

volume backscattering and the lateral TS can be used, assuming that the movements 

of the schools are random in relation to the survey grid. In detailed tracking of a 

single school, its movement along with the water current must then be incorporated in 

the computations. Also, multi-frequency sonar, or two similar sonars observing the 

same school using different frequencies, may reveal information on the internal 

orientation. Therefore, a proposed dual-frequency analysis using two fishery sonars is 

described below.  

  

Table 2: The Relative Standard Deviation of the mean volume density during 
circumnavigation of a fish school, when only data from various favorable angles ( ) 
were selected ( ); and when the angle of incidence was corrected using the Dual-
frequency approach ( .  was constrained similarly to . 

Limitation  RSD(%) 

  Favorable angle of incidents, 
 

Dual-frequency approach, 
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Dual-frequency analysis 

The main lobe of the fish-directivity pattern is known to become narrower as 

the frequency increases (Nakken & Olsen, 1977; Ona & Korneliussen, 2000). As a 

result, the backscattered echo energy decreases faster at higher than at low 

frequencies when the fish adopt steep diving angles. Computing the diving (or tilt) 

angle using the echo-energy ratios between multiple frequencies has been proposed 

(Ona & Korneliussen, 2000). Using this concept, the orientation of the fish inside the 

school may be estimated using a dual-frequency analysis. The two signal frequencies 

need to be well separated, which could be feasible on commercial fishing vessels if 

both for example the SX90 and the SH90 (high-frequency fishery sonar, ~114 kHz) 

sonars are available to simultaneously observe the same school.  

 

 

Figure 16. Difference between the simulated mean volume backscattering 
strengths of a polarized school of swimbladder bearing fish ensonified at 
114 kHz  and 26 kHz ( ) for the true angle of incidence, 

. The density of fish was set to 5 m-3, where the directivity pattern of 
each fish was determined from the scattering model of a straight cylinder 
with ka = 9 ± 20%. The yaw-angle was assumed normally distributed within 

° relative to  = ° (Direction of head).   
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The discrepancies between the volume backscattering strength of the polarized 

school at 114 kHz ( ) and at 26 kHz ( ),  were 8 dB in the lateral 

aspect ( ~0º) and close to 2 dB around the posterior/anterior directions (

±50-90) (Figure 16). In the intervening region,  decreases as a quadratic function 

of the incidence angle. Such information may then be used to estimate the school 

orientation.  

The next step is to replace equation 2 with  

 (15) 

where  is the mean backscattering cross-section as a function of the 

evaluated angle of incidence,  using the dual-frequency approach. Assuming 

 (16) 

and 

 
(17) 

where is the mean backscattering cross-section around both the anterior and 

posterior directions. The computed density at each true angle of incidence is shown in 

figure 17. When only  is accepted, the result is 

. The relative standard deviations of the volume density for 

different constraints on are also given in Table 2. These indicate that the dual-

frequency approach gives more precise results when a larger proportion of the data 

below the maximum school reflectivity are used.  

Further investigation of the proper  is still needed, and a comparison 

with real data. Variation of depth and fish size must then be included in the analysis. 

However, both the SH90 and the SX90 or SU90 sonar are presently not installed on 

any Norwegian research vessels, and so the data must be collected on commercial 



 57 

vessels which usually have both sonars. Until such data are available, further 

investigation of this topic can only be speculative. Still, the present results provide a 

foundation for future research.  

 

 

Figure 17. To the left; the corrected  using the dual frequency approach, 
.  indicates the true angle of incidence of the beam. The 

distribution of the corrected for all measurements within ° 
are shown in the figure to the right.  

 

Further analysis of the measurement uncertainty  

Both the school’s estimated biomass and its uncertainty are valuable 

information in the pre-catch scenario. Computation of the total uncertainty is 

presently premature as several of the key elements in Equation 1 and 2 are not yet 

sufficiently studied or evaluated. However, GUM software was used to give a 

preliminary assessment of each component’s contribution to the overall uncertainty of 

the biomass estimate for an ellipsoidal school (Guide to the expression of Uncertainty 

in Measurement (Kacker et al., 2007)). This software analyses the combined 

uncertainty of multiple measurements, given the distribution of each measurement 

and the correlation between them, according to the ISO Guide to the Expression of 

Uncertainty in Measurement (SASO, 1995).  
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For simplicity, the uncertainties of each component were assumed to be 

normally distributed. The fish weight was assumed to be ±0.02 kg from the mean and 

the school’s length, height and width were supposed to be fully correlated. When 

converting echo data to quantitative fish measures, only the variations caused by fish 

orientation are considered; hence, any TS variation with depth was ignored. It should 

be mentioned that in future work, wideband echosounder technology, such as the 

Simrad EK80, may facilitate sizing of individual fish in the outskirts of the school by 

analysis of echo strengths, pulse-stretching and frequency response (Ona, 2014). The 

individual fish weight may then be derived from the standard growth equation 

(Fulton, 1904; Froese, 2006). Since this technology is very new, such investigations 

were not included in the present analysis.  

 

Table 3. Input values used with the GUM-software to compute the combined uncertainty of 
the biomass estimate for an ellipsoidal school. The individual components in the biomass 
equation are the school width, height, length, the fish weight, calibration and the 
acoustic/fish density conversion factors. The values and associated uncertainties are 
presented for three cases.  

 

Component 

Values and uncertainties 

Case 1 Case 2 Case 3 

Width:     

Height:     

Length:     

Weigh:     

Calibration:     

Conversion into 
density :  

   

 

The combined biomass uncertainty for a polarized school (Figure 18), along 

with the individual component contributions, are presented for 3 illustrative cases, all 

based on the data distributions adopted elsewhere in this thesis. The results are 
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summarized in Table 3. In the first case, a polarized school was virtually 

circumnavigated, and all the generated data were used to compute the volume 

density. This is the same case as was illustrated in figure 15B. In the second case, 

only data around the maximum school reflectivity (equivalent to  in 

figure 15B) were selected. The third case is similar to the second one, however, a 

calibration accuracy of ±1% was assumed. This is a reasonable assumption since a 

maximum calibration error around ±2% has previously been reported for 38 kHz echo 

sounders (Foote, 1982; Knudsen, 2009).  

 

 

Figure 18. The combined uncertainties of the biomass of a polarized school 
(upper) during a full circumnavigation (1), with selection of data close to 
the maximum reflectivity (2), and the same data but with a calibration 
accuracy of ±1%. Each component’s contribution to the combined 
uncertainty is presented for each case in the three lower histograms.  

 

In the first case the combined uncertainty was as high as ±300%, where the 

conversion into quantitative fish measures contributed 97.7% of the total (Figure 18, 

left). In the second case (Figure 18, middle), the combined uncertainty was ±65%, 

with the quantification uncertainty contributing 49.1%, and the total contribution of 
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the school dimensions was 38.2%. With a better calibration accuracy (±1%, Figure 18 

right), the combined uncertainty is only 3% less. This result shows that greater effort 

to improve the calibration accuracy will not provide any significant benefit as regards 

the total biomass uncertainty. Also, the results demonstrate that a continuing 

commitment to establish the correct mean backscattering cross-section representative 

of the species, school depth, fish size and orientation is essential for further reducing 

the total uncertainty, since this factor is presently the largest contribution.  

Using a sonar operating at lower frequency (for example 10 kHz) will reduce 

the directivity of single fish. This effect may also contribute to a simple way of 

reducing the uncertainty caused by the quantification process, since the difference 

between maximum and minimum volume backscattering strength during 

circumnavigation (e.g. Figure 15) is then less. Hence, the density estimate may then 

be less dependent on the orientation and polarization of the school. Still, if the 

accuracy of the volume estimate must be preserved, a new and larger sonar transducer 

is then needed.  

 

Using fishery sonar for abundance estimation 

In acoustic surveying to quantify the abundance and distribution of fish populations, 

multi-frequency echosounders are now common and indispensable tools. However, 

this technique may not be effective for pelagic species that swim close to the sea 

surface, when part of the population may occur in the echosounder blind zone or be 

vulnerable to vessel avoidance behaviour (Misund, 1993b; Soria et al., 1996). The use 

of fishery sonar together with an echosounder can yield supplementary information, 

improving the accuracy of stock estimates since bias may be corrected by quantifying 

any fish in the acoustic blind zone, or evaluating the effect of fish avoidance 

reactions. Even when the sonar reveals no fish close to the surface, this information 

will strengthen the quality of the survey estimate. 
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Figure 19. The ABD over a period of 635 pings (~1.5 nm) near Vikingbanken 
in March 2013. The SU90 multi-beam fishery sonar, mounted on F/V Eros, 
transmitted a continuous 26 kHz CW signal, where the beams were tilted at -10 
degree inclination and the observation range was up to 600 m. Upper window - 
the original data from the ABD; middle window - data corrected for bottom 
reverberation; lower window - , after the background noise has been excluded. 
The calibration gain was not considered in this exercise.  
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Analyzing sonar data may be a tedious process when around 2.6 million pings have to 

be analyzed separately (assuming a ping rate of 1 per second over 30 days). In many 

cases over long periods, there are literally no fish in the water column and a simple 

system to direct the operator to which periods should be analyzed are needed. For 

large scale surveys, it is further proposed to sum the amplitudes of all beams within 

each ping, and present these data in a similar manner as a typical echosounder display 

(Figure 19). Such a simplified view (here named as the accumulated beam data 

(ABD)) makes it easy to detect the presence of schools within a specified time period 

during a survey, as illustrated by the ~1.5 nm echogram in figure 19. It can also be 

used to determine if the swimming speed and/or direction of the school changed 

while the vessel was passing. Echo-integration of the beam data, after correcting for 

the mean fish orientation relative to the vessel, and bottom reverberation, may still 

prove to be a simple, but adequate approach for improving the accuracy of survey 

estimates.  

Two of the schools shown in figure 19 have been highlighted from the ABD, 

one around ping number 350 (Figure 20A) and the other one around ping number 520 

(Figure 20B). Both schools have unique track patterns similar to the traces of single 

fish on an echosounder display, where the peak of the school-trace occurs when it is 

nearest to the vessel. It is then located on either the port or the starboard side. The 

shape of the school-track in figure 20B was found to be close to a quadratic function 

of the ping number (i.e. the along-ship distance), both before and after the vessel was 

passing the school.  

The school-track in figure 20A, on the other hand, changed shape once the 

school was aligned with the vessel. This suggests that the fish swam more slowly 

when passed by the vessel; hence, their behaviour was indeed influenced by the 

presence of the vessel. Information on fish avoidance is important in acoustic 

surveying, as it may significantly bias the fish density estimate (Aglen, 1994). The 

suggested processing of the sonar data is a good start for such evaluation.  
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Figure 20. Two selected schools from the ABD, around ping numbers 350 (A) and 520 (B). 
The track-lines of both schools are plotted using parabolic fitted functions. The track-line in 
(A) has been fitted with two parabolic functions, the solid curve for the period before and the 
dotted curve for the period after the vessel passed the school. The track-line of the school in 
(B) is described by the same parabolic function both before and after the vessel passed. 
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Concluding remarks 

This doctoral thesis is part of a work package within the CRISP project, where 

the total biomass of a fish school is to be measured with sufficient accuracy for use 

by the fishing industry. If successful, the plan is to incorporate new biomass-

algorithms into fishery-sonar software which will help skippers in their catch 

decisions. The work described in this thesis was based on a specific instrument, the 

Simrad SX90 sonar. Only some of the key parameters of the biomass formula 

(Equation 1) have been evaluated so far, but solutions for the remaining parameters 

have been proposed.  

Much effort was applied to facilitate multi-beam sonar calibration. Two 

calibration rigs for steering the reference target were developed along with an 

acoustic position-fixing algorithm for measuring its within-beam location, (Papers 1-

2). Additionally, a protocol for practical field calibration of multi-beam fishery sonar 

has been developed (Paper 3). Variations in temperature and salinity in the stratified 

near-surface water layer were found to influence the measured sphere target strength 

when the sound beams were transmitted in a horizontal fan. Thus, the sonar 

calibration could not be done with the same accuracy as reported for standard 

vertically-transmitting echosounders (Knudsen, 2009). The calibration results were 

nevertheless concluded to be satisfactory when compared to the overall uncertainty in 

estimating the biomass of a fish school.  

The fishery sonar’s capability to provide accurate school-volume estimates 

was validated, along with an assessment of its limitations (Paper 4). To avoid adverse 

beam-smearing effects, the resolution of the school’s cross-section, with respect to 

the beam coverage, must be sufficient in both the horizontal and vertical cross-

sections. Further studies of the mean backscattering cross-section in the lateral aspect 

to provide values representative of the relevant species, signal frequency and fish-

orientation distribution are essential to achieve more accurate and precise estimates of 

the mean fish density within schools. A dual-frequency approach has been proposed, 

using two well separated signal frequencies, for estimating the mean orientation of 
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fish inside migrating schools. If such an approach is feasible, an overall uncertainty 

around ±60 % is considered plausible for each measurement when estimating the 

school biomass during the inspection phase, before deploying the purse seine. For the 

sake of clarity, the mean biomass of the school, computed after completing half a 

circumnavigation, may be regarded as one measurement in this context. 

Circumnavigating the school repeatedly, until the mean biomass stabilizes, is here 

proposed as part of a strategic investigation. In fact, this is a procedure also used by 

some experienced skippers. More “variable” or difficult schools are inspected more in 

detail before the catch. In the CRISP projects, other researchers have estimated the 

correlation between the biomass in real catches, 6 mackerel schools and 2 herring 

schools, and the estimates using the sonar. So far, the deviations of the measurements 

compared with the catches fits well with a uncertainty of about ±60%. This result will 

be published when additional validation catches are available, and when the 

computation methods have been properly tested on more schools of different species.  

Many of the skippers we have worked with during the project have by 

experience developed a fairly good but subjective judgement of how the sonar images 

relate to the likely catch. In many cases, this may even compete with the objective 

accuracy level reported above (±60%). However, using un-calibrated sonar, the 

skipper must be careful with the sonar settings, and preferably not change any to 

achieve a good comparison with previous sonar observations and the resulting 

catches. Large differences between catches are, however, expected if the fish density 

is changing or if the catch must be taken in a layer of herring or mackerel. Using 

calibrated sonar, the important density estimate may be determined objectively in 

both situations. Since the area and volume covered by the purse seine is known, 

realistic catch estimates may also be made when the fish are in layers. After the end 

of the CRISP project, the proposed methods will be part of a new biomass-algorithm 

incorporated within the sonar software. Such algorithm may then give reliable 

biomass estimates, including uncertainty, from calibrated sonars to further build the 

fisherman’s experience.  
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More difficult acoustic phenomena, such as acoustic extinction (Zhao & Ona, 

2003; Foote et al., 1992) or multiple scattering (Stanton, 1983) within the school, 

have not been properly discussed or accounted for in this thesis. For Atlantic 

mackerel, there are no indications of significant extinction in the schools or layers 

observed with echosounders and therefore none is expected in sonar images. For 

dense schools and large layers of herring, however, acoustic extinction is definitely a 

problem when they are observed with echosounders. Methods for correcting the mean 

volume backscattering coefficient for extinction have been developed by (Foote et al., 

1992) and (Zhao & Ona, 2003). Due to the wide yaw-angle distribution compared to 

that of the fish tilt-angles, the mean target strength is 4-5 dB less when measured in 

the horizontal mode compared to the dorsal mode (Ona, 2015 personal 

communisation). The extinction cross–section is therefore expected to be similarly 

weaker, with less likelihood of significant acoustic shadowing. Investigations of this 

problem will be a future activity within the CRISP project, including both field 

measurements and simulations, but this work has not yet begun. At this stage, the 

collected data on single schools will reveal any large deviations between the 

acoustically measured biomass and pursed catch, and if the extinction effect is a 

significant problem. For the small and midsized schools which we have been fishing 

on, usually less than 500 tons, we have not seen such effects.  
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Abstract 

Two calibration rigs for controlling the movement of a reference target during a 

field calibration of multi-beam fishery sonars are described. The first rig was designed 

to be firmly mounted on the vessel hull and position the reference target inside a single 

beam, or a few selected sonar beams, with a specified spatial precision. This rig was 

also used for developing within-beam positioning algorithms, based upon the split-
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beam principle, using data from individual transducer elements. The size and weight of 

this rig limited its capacity to calibrate multiple sonar beams. A second rig was 

therefore designed for swifter movement of the target through multiple beams from 

each rig-mounting location. The position of the reference target inside each beam was 

now directly computed from the measured target echo. The rig designs, operation and 

the experiences of using them, along with comparative performance tests are presented 

along with some examples of field calibrations. 

 

1. Introduction 

Accurately calibrated acoustical equipment is essential if quantitative estimations 

of fish populations are to be determined by acoustical methods (Aglen, 1994; Foote et 

al., 1987; Simmonds and MacLennan, 2005). For scientific investigations of fish 

stocks, the vertical echosounder is a vital tool that provides accurate backscattering 

data with a high sampling rate (Løland et al., 2007; Simmonds and MacLennan, 2005). 

However, for migrating pelagic fish schools which often swim near the sea surface, 

such as the Atlantic mackerel (Scomber scombrus) and the Norwegian Spring 

Spawning herring (Clupea harengus L.), the vertical echosounder may perform poorly 

if much of the population is within the near-surface blind zone, or if the fish move to 

avoid the vessel (Hjellvik et al., 2008; Misund, 1993; Ona et al., 2007b; Totland et al., 

2009). Then, calibrated, horizontally-observing tools are needed if this portion of the 

population is to be quantified acoustically.  
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Scientific multi-beam systems, such as the Simrad MS70 (Andersen et al., 2006; 

Ona et al., 2006), are horizontally-observing and a standard calibration protocol has 

been established (Ona et al., 2009). These are, however, only available on a few 

research vessels, limiting the prospects for more comprehensive results from acoustic 

survey. On the other hand, commercial fishery sonars are far more available and could, 

if sufficiently accurate, contribute useful data for stock estimates.  

Multi-beam sonar systems with a cylindrical transducer arrangement, such as the 

omni-directional fishery sonar (Simrad, 2007), are commonly used in purse-seine 

fisheries for observing fish schools (Misund, 1990; Tang et al., 2009, 2006). Such 

sonars typically transmit and receive a single fan of beams (Misund, 1990; Tang et al., 

2006), evenly distributed in a near-horizontal cone providing observations all around 

the vessel (Fig. 1). Electronic steering of the beams permits observation of volumes as 

the user selects different tilt angles from the surface (Sherman and Butler, 2007; Van 

Trees, 2002), revealing cross-sections of ensonified schools or other targets. 

Alternatively, a vertical fan of beams can be configured, presenting a vertical cross-

section through the water column at a user-selected angle relative to the heading of the 

vessel (Fig. 1). When both these transmission modes are activated, the two modes are 

automatically alternated and the relevant echoes are displayed in separate windows 

(Fig. 1).  

The fans include 64 evenly separated acoustic beams, and the echo-amplitude data 

from each beam must have sufficient accuracy and range resolution for scientific 

purposes. Such data output, or the scientific data output, is now available in the 
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Simrad SX90 fishery sonar, and its successor the SU90 (Simrad, 2007). For the SX90, 

the nominal beams widths are between 7.4º (30 kHz) and 11.4º (20 kHz) in the vertical 

cross-section and between 8.5º (30 kHz) to 10º (20 kHz) in the horizontal. The range is 

sampled with 4 kHz time resolution. The amplitude data of each transducer element 

(256 elements on the SX90, and 384 on the SU90) were recorded in a separate data 

output. In addition to such facilities for primary data collection, a practical and 

standardised procedure for calibrating the sonar beams is essential to support research 

surveys on schooling pelagic fish.  

Protocols for calibrating multi-beam sonars have been established (Foote et al., 

2005), however, these calibrations have been conducted either in large-tank facilities 

or by using a free-floating buoy (Brehmer and Gerlotto, 2001; Cochrane et al., 2003; 

Foote et al., 2005; Lanzoni and Weber, 2011; Nishimori et al., 2009). The calibration 

procedure proposed in this paper is based on the methods used with scientific 

echosounders for decades (Foote et al., 1987); a reference target with known acoustic 

backscattering properties is moved through multiple beams in a practical field 

calibration which can be done on any fishing vessel. This procedure incorporates 

features of that described by (Ona et al., 2009), where a split-beam positioning 

algorithm was available for each sonar beam.   

The software of the commercial multi-beam sonar does not include any target-

positioning data (Foote et al., 1987; Ona et al., 2007a). A precise calibration rig was 

therefore designed to move the target with adequate control to verify its position in the 

beam. The results led to a target-positioning algorithm based on acoustic 



 

8 

 

measurements from these sonars, which was shown to perform accurately for 

cylindrical transducer arrays. A second rig was then designed which allowed faster and 

more efficient calibration of multiple beams. Fishermen prefer to have the transducers 

mounted as far towards the bow of the vessel as possible, and a mechanical device is 

used to lower the transducer array 1.2-1.6 m below the hull; adverse absorption effects 

from wind-induced air bubbles are then reduced (Dalen and Løvik, 1981), which is 

especially important on modern, relatively flat-bottomed vessel designs. This forward 

location of the transducer, directly below the forecastle of the ship, is beneficial for 

calibrations since it is easier to locate the standard target within the beams in that area. 

The design and operational procedure of the two calibration rigs, and initial tests of 

accuracy and performance are described and discussed in this paper.  

 

2. Rig Descriptions 

2.1 Precision rig 

2.1.1 Purpose 

The purpose of the precision rig (Fig. 2) is to move the reference target in a 

precise geometry relative to the sonar transducer which is below the bow of the fishing 

vessel. During the calibration the rig data and the corresponding target positions are 

logged at 50 ms intervals. Given sufficient accuracy, the geometric data from the rig 

can be used to test new position-fixing algorithms based only on the received echo 
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data. Knowledge of the sphere position relative to the transducer is needed to compute 

the calibration parameters for individual beams.  

System accuracy and limitations 

In optimal conditions, with no sea current, no wind and no ship movement, the 

sphere can be moved with millimetre precision laterally and in depth, referenced to 

fixed points on the rig and the sea surface respectively. The overall spatial-location 

accuracy of the sphere relative to the sonar transducer is influenced by the following 

factors: 

 Rig geometry 

 Sonar range measurement (transducer – sphere distance) 

 Rig orientation to the vessel 

 Water movement 

 Wind 

 Ship movement in the x, y and z planes 

Clearly favourable weather and sea conditions are a prerequisite to obtaining the best 

results. Sheltered calibration sites, within fjords, were therefore selected for these 

experiments.  

 

2.1.2 The rig calibration system 

The calibration system includes the following three components: 
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1) The rig 

The calibration rig (Fig. 2) has two 4-m long poles which keep a 5-m long rail 

at that distance from the ship’s side, in a region where the reference target is well 

outside the near-field of the transducer. On the rail, a cart can be moved back and forth 

along a toothed strap which avoids any slippage problems. This lateral movement is 

performed by a stepper motor with position feedback, enabling movement with 

millimetre accuracy along the rail.  

To prevent the cart from running off the rail, end switches cut the motor power 

if the cart moves too far to either side of the rail. A lateral endpoint at the leftmost 

position of the rail is specified by the user during the start-up operation. An electronic 

sensor measured the tilt angle of the rail off the horizontal.  

On the cart, a second and similar stepper motor is attached to a reel. The reel is 

used to lower the calibration sphere to the desired depth. Thus the motions of the two 

stepper motors determine the lateral and vertical location of the sphere. At the start of 

the operation, the sphere is lowered so that its centre is aligned with the sea surface. 

Here a second endpoint is defined in the software, indicating that the sphere has 

reached the surface during retrieval. The diameter of the reel was rather wide, around 7 

cm, suggesting only 9 reel rotations are needed to lower the sphere 2 meters. The 

length of the discharged line, around the expected sphere depth, was measured prior to 

the calibration. Correct winding provides negligible changes in the drum diameter 

between each rotation. At the end of the operation, the sphere was hoisted back to the 
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second endpoint. If the sphere’s centre is still aligned with the sea surface, the winding 

of the line may be assumed to be adequate.  

During calibration of a single beam, the sphere is steered towards the centre of 

one selected acoustic beam. At the acoustic axis, the lateral and vertical reference 

position is set in the software, and the rig data output will now refer to the spatial 

location of the sphere relative to this position. Nominal angles relative to the 

transducer may then be computed. 

The line used to lower the sphere is coated spectra™ rope (Cortland, 2015), 

where a line with a thickness of 1 mm and a tensile strength of 120 kg was 

commissioned. The purpose of the coating is to minimize trapped air inside the rope 

and consequent effects on the received echoes. It is important that the netting around 

the sphere and its guiding line are more or less acoustically transparent, or 40 dB 

weaker than the reference-target echo. To reduce arbitrary movement of the sphere, a 

heavy weight, around 15 kg, was sometimes attached 10 m below the sphere. The 

reference target and its line were soaked in a mixture of detergent soap and water 

before submerging. 

2) Electronic control unit  

An electronic control unit is an interface between the control software on a PC 

and the sensors and motors on the rig, operating via an Ethernet connection. Since the 

control unit is inside a splash-proof case with waterproof connectors, it can be located 

on deck in any weather conditions. The control unit is powered by 220 VAC  and 
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contains the various converters needed for motor operation, sensor logging and data 

distribution.  

3) System software  

A Labview application running on the PC is used to control, display and store 

relevant rig data. Prior to data collection, the clocks on the rig-control PC and the 

sonar-PC must be synchronized. Time-tagged motor-feedback and tilt-sensor data are 

stored to a file at up to 20 records per second. The reference target can be moved 

automatically through vertical and horizontal distance increments relative to the 

transducer, or manually using the arrow keys on the keyboard. A “home” button 

moves the sphere back to the earlier described reference position. Start-up and default 

values for the storage interval, IP addresses, motor speed etc., may be edited by the 

user in a parameter file prior to program execution. 

 

2.2 Multi-beam calibration rig  

2.2.1 Purpose 

The precision rig was found to be too large and impractical for the calibration of 

multi-beam sonars, as it must be physically moved around the bow of the vessel to 

check all the beams. We therefore developed a new multi-beam rig which was more 

manoeuvrable (Fig. 3). This rig cannot provide high-precision data on the sphere’s 
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spatial position, but it can swiftly move the sphere between multiple beams from one 

location on the bow deck. Alternative sphere-positioning procedures were then needed.  

The rig calibration system 

This calibration system comprises the following components: 

The rig 

The base of the rig (Fig. 3) is a tripod placed on the steel deck and held in 

position by two magnets with an attachment force of 200 kg. A motor driven rotary 

table on top of the tripod provides azimuthal movement of a 5 – 8 meter long glass 

fibre rod. The line from a motorized reel runs to the tip of the rod then down to the 

attached calibration sphere. A mast with supporting ropes, attached to the tip of the 

fibre rod, stabilizes and limits unwanted movement of the rod.  

Electronic control unit  

The same electronic control unit as described earlier for the precision rig forms 

the interface between the software running on a PC and the motors on the rig. 

System software 

A dedicated Labview application running on a PC is used to control, display 

and store the rig data. As long as the rig can position the reference target on the 

acoustic axis of the sonar beam, these data are not required in the calibration process, 

as the target positioning is now determined solely by the acoustic-echo data.  
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3. Testing and experiences 

3.1 Test of the precision rig 

A horizontally-orientated Simrad 200kHz split-beam echosounder was used for 

initial testing. The transducer two-way directivity pattern was measured according to 

standard calibration protocols (Ona, 1999). The echosounder was mounted behind the 

precision rig, replacing the SX90 in the sketch in Fig. 2, and the whole assembly was 

deployed from a pier in Bergen harbour, Norway. The rig was used to steer the 

calibration sphere (38.1 mm diameter tungsten carbide), within the entire beam. The 

spatial locations of the sphere were recorded to two separate files. The first file 

recorded the rig output with a reference position at the acoustic axis of the 

echosounder beam. The second was the split-beam target location generated directly 

from the echosounder system software (Simrad EK60). The computers for controlling 

the rig and the echosounder, along with their position records were synchronized to 

show corresponding time.  

The cart and reel data were converted into nominal angular directions, for 

comparison with the split-beam measurements. A linear relationship between the two 

datasets was clearly demonstrated (Fig. 4). This was computed, in both the horizontal 

 and vertical ( ) directions, with a mean position discrepancy close to . The 

standard deviations of the angular residuals were found to be close to  for both 

directions. Visual observations at the test site revealed that the harbour water was a 

stratified mixture of fresh and salt water; this is probably the main cause of the 
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variability shown by the standard deviations. A plausible explanation of the 

discrepancies is that the assumed local reference position was not exactly located at 

the centre of the beam; however, the discrepancies might be an artefact caused by the 

transducer itself, as suggested by Jech et al. (2005). Still, the initial test proved that the 

rig performed as intended, without any slipping or spinning problems.  

 

3.2 Precision rig – field experiences on fishery vessels 

The first attempt at an in situ calibration was conducted in a fjord outside Bodø, 

Norway, in 2012. The rig was attached to the bulwark in front of the research vessel 

“R/V G. O. SARS” and the calibration sphere, a 64 mm diameter tungsten carbide 

(WC) sphere, was lowered in the sea until it was visible on the SX90 sonar-display. 

Assembling the rig was particularly laborious due to the equipment being new and 

rather complex, hence only one beam was calibrated during this exercise (Table 1).  

Apparently, the rig design was too sensitive to both the vessel movement and 

sea current, which made the calibration rather onerous. A stabilization weight attached 

to the sphere reduced the adverse effects caused by the sea current.  

In spite of the large size of the precision rig, it was evident that the rig’s ability 

to calibrate, given a particular attachment position, was confined to covering only one 

full sonar beam, or perhaps two partly-overlapping beams. Calibration of additional 

beams involved physical re-location of the rig. This involved 3 or 4 persons in the 
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lifting operation. If the vessel front crane could be used, 2 persons were still needed to 

guide the rig along the rail of the vessel forecastle. 

However, three sonar beams on three selected vessels have been successfully 

calibrated using the precision rig, (Table 1). Both “F/V ARTUS” and “R/V G. O. 

SARS” sonars were calibrated in the spring of 2013 in the harbour of Ålesund, 

Norway. In these experiments, the vessel sterns were firmly tied to the pier, 

minimising most of the unwanted vessel movement. “F/V EROS” was calibrated later 

in 2013 while anchored in a fjord adjacent to Bergen, in a calm location favourable for 

calibration conditions irrespective of the wind direction.  

The assembling, disassembling and re-location of the rig still proved to be both 

time-consuming and cumbersome, and it was only possible to calibrate three different 

beams within the designated time, a full working day per vessel. As a compromise, 

each calibration was assumed to be representative of all the beams within a defined 

sector. This compromise was based upon earlier calibration experience, taking account 

of the fact that adjacent beams are formed using mostly the same transducer elements 

both in transmit and receiving modes. Four sectors were defined to include a quarter of 

the beams; covering the port side, front, starboard side, and stern sectors. The system 

gain was computed for each representative beam and added to all beams within the 

designated sector. The vessel’s propellers generate turbulence and air bubbles giving 

echoes visible in most of the stern beams during normal surveying operations. 

Consequently, data from these beams are not included in the performance analysis. 
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3.3 Precision rig - general protocol 

While running the sonar in search mode, a single beam steered towards -5º tilt 

angle was selected for the calibration. The rig was mounted on the bulwark in a 

manner where the railway was close to perpendicular to beam. To locate the acoustic 

axis inside the selected beam, the sphere, 64mm WC, was carefully moved until 

maximum echo strength was observed in the sonar data. This is similar to the 

traditional procedure for calibrating single-beam echosounders (Foote et al., 1987). 

The reference position was to be set at this location which was assigned the 

coordinates (x, z) = (0, 0) cm. The coordinate x indicates the lateral position along the 

railway, with negative values indicating points to the left of the reference position. The 

z-coordinate is the depth of the sphere, with negative values indicating points below 

the reference position. A third coordinate, y, is the distance from the transducer to the 

target, measured directly from the sonar data; this was needed to compute the angular 

directions of the target through trigonometry. Next, the sphere was moved in a cross-

wise fashion by steering it to the following coordinates in succession: laterally (-100, 

0) cm, (100, 0) cm, (0, 0) cm, and vertically (0, 100) cm, (0, -100) cm and (0, 0) cm. 

Combining the rig positions with the corresponding time-tagged acoustic data (target 

range and echo strength) will give the two-way directivity pattern of one beam, similar 

to the one shown in Fig. 5.  
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3.4 Precision rig – developing the split beam  

 Until a within-beam target-tracking system is available on fishery sonars, an 

access to the transducer element data is a necessity for computing the target’s 

direction. The process for computing this direction is here only briefly described, but a 

full description of the theory will be submitted elsewhere. The elements nearest the 

direction of the beam was filtered and then divided into 4 quadrants. This is equivalent 

to the split-beam function on the echosounder (Carlson and Jackson, 1980; Ehrenberg, 

1983). Here, the direction, both horizontal and vertical, of the target is computed when 

the signal-phase difference between quadrants are divided with an angle sensitivity 

coefficient. An accurate target direction is found when the correct angle sensitivity 

coefficients are used. In our case, these coefficients were found when a 1:1 

relationship between the split-beam directions and the mechanical angles computed 

from the rig data output was achieved, similar to the result from Fig. 4. Assuming the 

elements performance are the same both between beams and between different sonars 

of the same model, these two sensitivity coefficients are the same for any beam. On 

suspicion of an inadequate accuracy of the target’s direction, the angle sensitivity 

coefficients may be corrected by following this presented protocol. Still, the two-way 

directivity pattern of a selected beam may now be sufficiently measured using the 

split-beam position (e.g. Fig. 5). 
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3.5 Multi-beam rig - protocol 

Since the precision rig had been used to verify adequate performance of the 

split-beam algorithm, through measurements on one beam of cylindrical multi-beam 

sonar, this calibration rig was replaced by the new multi-beam rig which was designed 

to allow a swifter procedure for calibrating several selected beams in one experiment.  

In order to cover a suitably large number of beams, the rig was moved between 

three locations around the bow of the vessel. These were on the bow itself, and on the 

port and starboard sides. Beams pointing aft were not examined. The sphere was 

steered to the acoustic axis of the first selected beam, aided by the split-beam 

algorithm, and 100 target-strength measurements in the far-field of the transducer were 

made while the sphere was held at this location. These measurements were sufficient 

to estimate the mean and variance of the selected beam’s transducer gain, thus 

completing its calibration. The same procedure was repeated in sequence for all beams 

within reach of the sphere at each rig location. The full beam pattern of several beams, 

each similar to figure 5, may be measured in an alternative and more detailed 

calibration protocol. However, this approach has not been prioritized due to the time 

constraints.  

3.6 Multi-beam rig - experiences 

In November 2013, the multi-beam sonars on “R/V G. O. SARS” and “F/V 

ARTUS” were calibrated in a calm fjord outside Bodø, using the multi-beam rig and 

the split-beam algorithm. As the vessel had to be anchored, a few beams on the 
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starboard side could not be measured due to interference from the anchor-chain echo 

(Fig. 6). Nevertheless, 26 beams on “R/V G. O. SARS” and 38 beams on “F/V 

ARTUS” were calibrated (Table 1) out of the 64 beams generated by each sonar. Due 

to time constraints, and the need to calibrate a larger fraction of the beams, only on-

axis calibration was conducted. The access to the split-beam direction helped us to 

move the sphere swiftly to the centre of each beam. 

Re-locating the rig was still fairly tedious; but the simpler mechanical design 

permitted more time for calibrations. There needs to be sufficient clear working area 

on the bow deck to facilitate rig operations. Some fishing vessels may have a rather 

small bow-deck area, or physical obstacles there such as cranes and anchors, which 

will restrict the calibration possibilities. On such vessels some of the sonar beams may 

be completely inaccessible.  

The multi-beam rig was, like the precision rig, sensitive to water current and 

vessel movement. In one instance, a passing vessel caused the sphere to swing like a 

pendulum. This effect was only noticed through the results obtained with the split-

beam algorithm. Additional echo-strength measurements were then made in order to 

ensure the collection of adequate good-quality data.  

More comprehensive documentation of the calibration results will be published 

elsewhere. Nevertheless, the results presented here are considered as typical. After 

several calibrations covering most of the beams were completed, the results showed 

only small differences in the system gain between adjacent beams. 10 beams within a 
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single sector on “R/V G. O. Sars” were calibrated in November 2013, where the mean 

gain was computed to be 33.36 dB (SD 0.15 dB), (Fig. 7). Beam number 1 and 3 were 

here ignored as these had a larger deviation, where the deviation was believed to be 

caused by small changes in the temperature and salinity mixture in the stratified 

surface layers immediately after deploying the sphere. The small difference between 

the adjacent beams was to be expected, as these are formed using many of the same 

transducer elements. Therefore, only 2 or 3 beams need to be measured at each well-

separated rig location during a swift calibration. This procedure was adopted when 

calibrating the sonars on “F/V KINGS BAY” and “R/V G. O. SARS”, during 2014 in 

Bergen (Table 1).  

Calibration of horizontally-observing acoustic equipment may occasionally be a 

difficult task, since small variation in the inhomogeneous medium causes the path of 

the beam to bend differently between pings. Inside fjords, the freshwater runoff may 

cause a significant stratification in the near surface region, where internal movements 

of these layers causes variation of the beam gain. Such variation was seen in the first 

beams in figure 7. Still, calibrations inside fjords have been preferred due to a 

comfortable working environment as well as being adequate for standard echosounder 

calibration. In addition, when the vessel lies still, any changes in the beam’s 

characteristics during automatic tilt compensation is prevented.  
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4. Conclusion 

The design and initial trials of two calibration rigs for use with multi-beam 

fishery sonars have been described, along with examples of calibration results. The 

results from the large and heavier, but more precise rig were used to develop a novel 

and elegant within-beam positioning algorithm, based solely on the acoustic data. To 

investigate the variability of the system gain over the full 64-beam fan, a second 

calibration rig was constructed and tested; it could measure many more beams within a 

reasonable time. Both rigs are large and somewhat cumbersome, but they enabled 

calibration of multi-beam fishery sonars nearly to the same accuracy as is commonly 

achieved for standard scientific echosounders. The larger spread in the calibration 

results for the sonar beams, compared to similar echo-sounder data is likely to be 

associated with greater variability in environmental factors. Hydrographical features 

such as thermoclines, often seen in fjords, could distort the transmission of near-

horizontal sonar beams, to a greater extent than occurs with vertical beams, with 

consequent effects on the calibration accuracy. This problem should be investigated 

further, in order to understand and mitigate the consequences for near-horizontal sonar 

calibrations. 
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Figure 3: Screen dump from the Simrad SX90 fishery sonar, while the vessel was 

encircling a large herring school (Norwegian Sea, Nov. 2013). The horizontal view is 

displayed in the larger window and the vertical view is shown in the lower left 

window. The herring schools are recognised by the strong red marks on the sonar 

image. 
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Figure 2: Main components of the precision rig used for positioning the calibration 

sphere with specified spatial precision, inside one selected acoustic beam. The rig 

includes a supporting frame (Blue) resting on the ship’s hull while its upper ends are 

securely fastened to the bulwark (Orange). Two extension rods (Black) are attached 

with hinges to the respective lower corners of the supporting frame. The 5 meter long 

railway (Green) is attached between the ends of the extension rod. A cart (White) with 

two stepper motors, one for lateral movement along railway and one for lowering the 

sphere, is attached to the railway. The railway with extension rods are at the tip 

connected to winches (Grey), allowing vertical positioning and adjustment of the 

entire railway.  
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Figure 3: Sketch of the multi-beam rig used to reach multiple beams from one rig 

location. An azimuthally rotating table is mounted on top of the tripod, moving the 

sphere in a circle centred on the rotating table. A glass fibre rod attached to the motor 

and the sphere support ensures a sufficiently long range between the sonar transducer 

and the calibration target. A motorized reel controls the vertical movement of the 

sphere. The end of the rod is attached to a mast mounted on top of the rotary table for 

stability. The tripod is attached to the deck using two industrial magnets to ensure rig 

stability and to prevent accidents.  
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Figure 4: Comparison of the mechanical angles and the measured split-beam angles 

(horizontal and vertical), for the calibration sphere. The split-beam angles are derived 

from a horizontally-directed 200 kHz Simrad split-beam echosounder. The nominal 

directions are computed from the precision-rig data and the acoustic range of the 

target. The computed mean angles and their standard deviations, for the horizontal 

 and vertical , angles are indicated in the figure. 
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Figure 5: Horizontal (dotted) and vertical (crossed) cross-sections of the two-way 

directivity pattern of an acoustic beam towards the port side of the SX90 mounted on 

“F/V Artus”, measured in March 2013. Quadratic regression curves are presented for 

the two cross-sections.  
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Figure 6: Illustration showing all the calibrated (“O”) beams measured on “F/V 

Artus” using the multi-beam rig. The un-calibrated beams (“X”) could not be reached 

due to working space limitations or anchor-chain interference. Beams pointing 

towards the stern were not included in the calibrations. 
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Figure 7: On-axis gain estimates of selected adjacent beams on the SX90 sonar of 

“R/V G. O. Sars” in November 2013.  
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Table 1: The total number of beams calibrated on various vessels, along with time and 

location of the calibration, and the rig used to steer the sphere.  

Vessel Time/Location Rig Used # of 
beams 

R/V G.O. Sars Fall 2012/Bodø Precision 1 

R/V G.O. Sars Spring 2013/Ålesund Precision 3 

F/V Artus Spring 2013/Ålesund Precision 3 

F/V Eros  Spring 2013/Bergen Precision 3 

R/V G.O. Sars Fall 2013/Bodø Multi-beam 26 

F/V Artus Fall 2013/ Bodø Multi-beam 38 

R/V G.O. Sars Fall 2014/Bergen Multi-beam 6 

F/V Kings Bay Fall 2014/ Bergen Multi-beam 9 
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Abstract 

Conventional ship-mounted vertically-oriented echosounders are poor at detecting 

organisms that are close to the sea surface. In contrast, fisheries sonars can ensonify 

near-surface waters and are a useful tool to cover the volumes that are unavailable to 

echosounders. When calibrated, sonars can be used to provide quantitative biomass 

estimates of pelagic aggregations. However, for sonar systems that have not been 

designed as scientific and research instruments, the quantification and verification of 

the stability of the system performance is of heightened importance, and should 

include how parameters such as the shape and gain of the beams vary with system and 

operational configurations. We present a practical methodology for absolute 

calibration of fisheries sonars when mounted on a ship, illustrate the achievable 

calibration accuracies and precision, and document their stability over time and for a 

range of operating parameters. This work forms an essential prerequisite to the routine 

use of such sonars for quantitative echo-integration surveys. 

1. Introduction 

Downward-looking, narrow-beam echosounders are the most commonly used tool 

for quantitative acoustic surveys of fish populations, being relatively simple to operate 

with well-developed analysis procedures for producing fish biomass estimates 
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(Simmonds and MacLennan, 2005). However, such ship-mounted echosounders are 

poor at detecting organisms that are close to the sea surface because most installations 

have the transducers mounted some metres below the surface to avoid the deleterious 

effects of air bubbles (Dalen and Løvik, 1981). In conjunction with the transducer 

near-field and ringing there is typically a distance of several metres below the sea 

surface for which no echoes can be quantitatively measured. Also, at typical survey 

speeds of about 5 m/s, the probability of detecting small aggregations that are close to 

the surface is much lower than at longer ranges, due to the small width of the acoustic 

beam. 

Modern fisheries sonars are typically used to search for pelagic fish schools, where 

they aid in finding and assessing the fish as well as monitoring the catch process (Ben-

Yami, 1994). Such sonars form acoustic beams from an array of transducer elements 

in a range of directions (Sherman and Butler, 2007). The most common arrangement is 

to form many narrow beams with oval cross-section that are emitted radially in all 

directions from the transducer, with a configurable tilt angle relative to horizontal. In 

effect, a surface analogous to a downwards-pointing cone with the apex at the 

transducer is formed. This is commonly called the horizontal mode. Additionally, 

some fisheries sonars can also form a vertical fans of beams with an arbitrary azimuth 

direction, commonly called the vertical mode. 

While fisheries sonars offer improved sampling of near-surface waters and have 

the potential to provide quantitative estimates of pelagic biomass (Brehmer et al., 

2006), they introduce other complexities. Ensonifying organisms at variable side-
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aspect causes increased variation in acoustic reflectivity due to the more variable fish 

orientation relative to the acoustic beam (Cutter and Demer, 2007; Tang et al., 2009; 

Holmin et al., 2012), a more complicated echo-integration method (Nishimori et al., 

2009), and acoustic ray bending due to stratified water masses (Lichte, 1919). 

Fisheries sonars provide information on schools metrics (Misund, 1990), speed 

(Peraltilla and Bertrand, 2014) and behaviour (e.g., Misund et al., 1996), but in most 

instances the amplitude information from each sonar beam has not been used in a 

quantitative manner that is analogous to the echo-integration method commonly used 

with narrow-beam echosounders. Lack of access to some form of raw signal data has 

restricted most work to analysis of the sonar’s presentation display (Brehmer and 

Gerlotto, 2001; Brehmer et al., 2006; Trygonis et al., 2009), with associated 

compromises related to dynamic range, linearity, and calibration accuracy. 

To make quantitative and effective use of amplitude data from sonar data requires 

that there be a known, consistent, and stable relationship between acoustic echo 

amplitude and recorded amplitude over the range of sonar operation modes that are 

used in a study or survey – that is, the sonar should be capable of being calibrated. In 

particular, for sonar systems that have not been designed as scientific and research 

instruments, the quantification and verification of the stability of the system 

performance is of heightened importance, and should include knowledge on how 

parameters such as the shape and gain of the beams vary with system and operational 

configurations. Most fisheries sonars provide the ability to set the acoustic frequency, 

pulse length, pulse type, beam width, and declination angle. For the sonars considered 
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in this paper the total number of unique combinations of these settings exceeds 98 000. 

When combined with the 64 beams in these sonars, there are more than six million 

potential calibration values. It is overwhelmingly impractical to calibrate all of these. It 

is instead essential to understand the independent effect of each setting, so that relative 

adjustments can be applied to a small number of representative beam calibrations. 

Variation in beam characteristics and the associated calibration can be predicted via 

theoretical considerations of the underlying sonar transmit and receive operations 

(Cochrane et al., 2003), but the actual performance of individual sonars can vary 

significantly from the theoretical (Cochrane et al., 2003). 

Calibration of echosounder systems can be achieved via a number of methods, such 

as reciprocity or a calibrated hydrophone (Foote et al., 1987), but the most practical 

and commonly used method is to use metallic spheres of known acoustic reflectivity 

(Foote and MacLennan, 1984). Sphere-based calibration has been demonstrated for 

multi-beam sonars, which produce a linear fan of beams, in controlled environments 

such as tanks or enclosed environments (Cochrane et al., 2003; Melvin et al., 2003; 

Foote et al., 2005; Lanzoni and Weber, 2011; Perrot et al., 2014) and for fisheries 

sonars, but without full quantification of the beam parameters (Bernasconi, 2012; 

Geoffroy et al., 2015). The routine calibration of fishery sonars in uncontrolled 

environments is however now practical via the availability of a calibration apparatus 

for ship-mounted sonars (Vatnehol et al., accepted), which can be used to measure 

system gain and the beam parameters required for echo-integration. Coupled with an 

implementation of the split-beam method to locate the sphere within the beam 
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(Vatnehol, submitted), this removes the need for more complicated sphere positioning 

systems. Together, these developments facilitate the complete calibration of ship-

mounted fisheries sonars in environments such as sheltered bays and fiords, rather than 

in tanks or enclosed environments. For the sonar calibrations presented here, the third 

and necessary development was the ability to record and post-process both beam-

formed and transducer element sample data. 

This paper presents a practical methodology for absolute calibration of ship-

mounted fisheries sonars. This methodology is applied to the Simrad SX90 and SU90 

fisheries sonars, illustrates the achievable calibration accuracies and precision, and 

quantifies their stability over time and for a range of operating parameters. This work 

forms an essential prerequisite to the routine use of such sonars for quantitative echo-

integration surveys. 

3 Methods 
3.1 Theory 

The Simrad SX90 fisheries sonar operates at a user-configurable frequency 

between 20 and 30 kHz inclusive. In horizontal mode utilises its 256 element 

vertically-oriented cylindrical transducer to form 64 receive beams with selectable 

declination relative to horizontal. The Simrad SU90 fisheries is functionally the same 

as the SX90 except that the cylindrical transducer array is taller, comprising 384 

elements and produces vertically narrower beams than the SX90 sonar. Both systems 

can transmit at a single frequency (labelled here as CW) or with a hyperbolic 

frequency modulated (FM) signal covering a 500 Hz bandwidth, at various pulse 
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lengths. The vertical beamwidth can also be set to one of three options (narrow, 

normal, or wide). Echoes are processed with a matched filter derived from the 

transmitted signal. The sonar records beamformed data in the form of complex 

demodulated, pulse-compressed estimates of the power received by each beam at a 

decimated sample rate determined by the sonar configuration (typically 4 kHz). For 

the horizontal beam mode, this is converted into backscattered target strength (TS) via 

an equation provided by the manufacturer: 

 

 

(1) 

where  is the received power (W), r the range between the transducer and target (m), 

α the absorption coefficient of sound in water (dB/m), Pt the transmit power (W), λ the 

acoustic wavelength (m),  the transducer gain in the direction of the target 

(dB), and  the beam tilt angle (degrees below horizontal). The volume backscatter 

strength (Sv) is derived from a similar equation: 

 

 

(2) 

where c is the acoustic sound speed (m/s), τ the pulse duration (s),  the Sa 

correction (dB) which accounts for the energy difference between the ideal square 
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transmit pulse and the actual transmitted pulse,  the on-axis transducer gain (dB), 

and  the equivalent beam angle (sr). 

Two methods of estimating the location of the calibration sphere in the acoustic 

beam were used. The ‘precision’ calibration rig gave the precise three-dimensional 

location of the sphere relative to a reference point, while the ‘multi-beam’ calibration 

rig gave precise estimates only in the vertical direction (Vatnehol et al., accepted). To 

facilitate the calibration process and to enable the use of the simpler and more flexible 

‘multi-beam’ calibration rig, the arrival angle of calibration echoes within each beam 

was estimated by the split-beam method (Burdic, 1991; Demer et al., 1999) applied to 

the sample data from the transducer’s individual elements. The use of the split-beam 

technique to estimate the angle of arrival of echoes requires an estimate of the ‘angle 

factor’, the conversion between the electrical phase difference of the arriving echoes at 

the transducer parts and the true arrival angle (Ehrenberg, 1979). This was estimated 

by experiments carried out using the ‘precision’ calibration rig (Vatnehol et al., 

accepted).  

Assuming that most of the transmitted energy from each beam is in the main 

lobe, the equivalent beam angle (ψ) was estimated from the integral of the beam 

pattern function fitted to the rig-derived sphere echo data:  

 , (3) 
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where b is the two-way beam pattern obtained from the sphere echo magnitude 

measurements. 

The echo range in the sonar files is not given directly, but must be derived from 

estimates sound speed in water, the time since sampling began, and any processing 

delays. Not all of the processing delays are necessarily compensated for by the sonar 

processing and the conversion between sample and range was assumed to be: 

 , (4) 

where dt is the time interval between samples (s), i the sample number (from zero to 

one less than the number of samples) and ro an empirically derived offset that is 

independent of the sonar operating parameters. This offset is caused by an 

approximate 4 ms delay in the signal processing operations of the sonar system that is 

not compensated for in the recorded echo amplitude data (pers. comm., O. B. 

Gammelsæter, Kongsberg Maritime). To verify that estimate, the true distance 

between the sonar transducer and the sphere was measured. The locations of the 

various pivot points of the ‘multi-beam’ calibration rig boom (Vatnehol et al., 

accepted) were measured relative to a common reference point on the vessel foredeck. 

The position of the pivot point relative to the sonar transducer was then calculated 

using dimensioned ship drawings. Given the azimuth angle of a particular sonar beam, 

the length of the boom, and the beam tilt angle, the distance between the sonar 

transducer and the sphere was calculated. The rig was adjusted so that the boom was 

horizontal and it was assumed that the sphere hung directly below the boom end and 
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that any motion of the sphere due to vessel or water movements was small. The true 

sphere range was estimated for multiple sphere ranges, sonar beams, and three pivot 

points. The mean difference between the true and sonar ranges was used as an estimate 

of r0 in equation (4).  

3.2 Calibration procedure 

Calibrations were carried out using SX90 sonars on three ships (RV G.O. Sars, 

FV Artus, and FV Brennholm) and using SU90 sonars on two ships (FV Kings Bay 

and FV Eros) when moored or anchored in fiords on Norway’s west coast. The water 

depth below the vessels was always greater than 30 m. 

The sonar calibration rig (Vatnehol et al., accepted) was affixed to the ship deck 

in the vicinity of the sonar transducer and the rig’s boom extended out over the side of 

the ship. A sphere was suspended from the end of the boom and lowered until it was 

visible in the sonar display. The position of the sphere in the beam was estimated 

either by ‘precision’ calibration rig, or by split-beam processing of the raw element 

sample data and the amplitude of the sphere echo estimated from the beam-formed 

data via equation (1). 

Five aspects of the sonar performance were then measured from five ships (Table 

2): 

 On-axis gain was estimated for multiple beams by centring the sphere in the 

selected beam and recording backscatter amplitude from at least 100 pings. The 

sphere was then moved to an adjacent beam and the procedure repeated. This 
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process continued for as many beams as possible, with changes to the rig’s 

location as required. This was performed on RV G.O. Sars and FV Artus. 

 The beam shape was estimated for selected beams by moving the sphere 

horizontally until it had left the selected beam, whereupon it was moved in the 

opposite direction until it had left the same beam from the other side. The 

sphere was then returned to the beam centre. The process was then repeated 

vertically. Several beams were mapped while systematically varying the 

acoustic frequency, formed beam width, and beam tilt angle. This was 

performed on FV Kings Bay. 

 The effect of pulse parameters on transducer gain was measured by keeping the 

sphere stationary in one beam while the frequency, pulse length and pulse type 

were systematically varied. This was performed on FV Brennholm. 

 The range from the transducer to the sphere was physically measured with the 

sphere at nine different distances. The range calibration was performed on FV 

Eros. 

 The medium-term variability of gain estimates was estimated by placing the 

sphere in the centre of one beam and echo backscatter amplitude over a period 

of approximately 25 minutes. This was performed on RV G.O. Sars. 

At least one conductivity-temperature-depth (CTD) cast was carried out during 

each calibration and used to estimate acoustic absorption (Francois and Garrison, 

1982), sound speed (Chen and Millero, 1977), and density (Fofonoff and Millard, 
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1983). No CTD was taken for the FV Brennholm calibration and nominal values were 

instead used (a temperature of 10°C and salinity of 35 PSU). 

 Two tungsten carbide spheres (with 6% cobalt binder) were used for the 

calibrations. The diameter was 75 mm for the FV Brennholm calibration and 64 mm 

for the other calibrations. These spheres were chosen for their relatively strong, 

smooth, and slowly varying reflectivity in the sonar’s operating range (20 to 30 kHz). 

They are also heavy (3.3 and 2 kg) and are less affected by water movements than the 

more commonly used smaller and lighter spheres. The expected backscatter strength 

was estimated using the theory for scattering by an elastic sphere (Hickling, 1962; 

MacLennan, 1981) in the environmental conditions experienced during the 

calibrations. 

The sonar calibrations on RV G.O. Sars, FV Artus, FV Kings Bay, and FV Eros 

used a 4 kW CW transmit pulse of 2 ms duration. The acoustic frequency was varied 

as required. The calibration on FV Brennholm used pulse durations of 1, 2, and 6 ms 

with a CW signal and pulse duration of 2, 4, and 6 ms with an FM signal. All six 

settings were used at operating frequencies of 20, 23, 26, and 28 kHz. 

The distance between the sonar transducer and calibration sphere was always 

greater than twice the estimated near-field range of the sonar beams. The near-field 

range was conservatively estimated using the equation for the near-field range of a 

rectangular planar transducer (Medwin and Clay, 1998): 
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 , (5) 

where rnf is the near field range (m), A the projected area of the sonar transducer 

(height multiplied by diameter, m2), and λ the acoustic wavelength (m).  

3.3 Analysis 

The on-axis transducer gain ( ) for each beam was estimated using custom-

written software that read the recorded sonar data files and produced a sonar image 

where a beam of interest could be selected and range and time period limits applied. 

The maximum amplitude of the sphere echo was then estimated for the selected beam, 

range, and time periods. The maximum echo amplitude was obtained from the peak of 

a quadratic interpolation to the three sample values that defined the peak (that is, the 

peak and one sample either side). The transducer gain was then estimated using 

equation (1). 

The beam mapping data were processed in a similar way, but with the addition 

of the sphere position obtained from the split-beam or the relative three-dimensional 

sphere positions (Vatnehol, submitted). An empirical beam pattern was defined as: 

  

 

 

(6) 
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where b is the two-way beam pattern, θ the vertical beam coordinate (°), θo the vertical 

beam offset (°), and θBW the vertical half-power beamwidth (°). Similar variables for 

the horizontal beam are given by the φ variables. Equation (6) was fitted to the sphere 

TS and position data by non-linear least squares minimisation and the vertical and 

horizontal beamwidths obtained. 

 

4. Results  

The mean difference between the sonar estimated sphere range and the 

measured range was 2.99 m (Figure 2), closely agreeing with the manufacturer’s 4 ms 

estimate of uncorrected processing delay (equivalent to 2.9898 m using the prevailing 

1494.8 m/s sound speed during the measurements).   

The estimated on-axis gain for individual beams in an individual sonar had a 

typical variation of ±0.5 dB, with some exceeding ±1.0 dB (Figure 3a,c). Overall, the 

mean gain variation was ±0.7 dB for RV G.O. Sars and ±0.8 dB for FV Artus (Figure 

3b,d). The variability in gain for a single beam over an extended period was 

approximately ±1 dB (Figure 4). 

The gain increased with longer pulse durations and higher frequencies with an 

asymptotic form (Figure 5). The relative change in gain with pulse duration was 

independent of change in frequency, and vice versa. The changes in gain were not 

affected by the pulse type (CW or FM). These systematic changes in beam gain were 

fitted, using least-squares minimisation, to yield a correction function: 
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 , (7) 

where G is the transducer gain relative to that obtained for a transmitted pulse of 

length 1 ms and frequency 20 kHz,  f is frequency (20-30 kHz) and τ pulse length (1-8 

ms).  

The empirical beam shape was a good representation of the measured beam 

shape (Figure 6) and the resulting estimates of beam width have a high confidence, 

albeit with some consistent variations close to on-axis that were vessel dependent. 

The trends in beamwidth with changing frequency, requested beamwidth, and 

beam tilt were as expected (beamwidth decreases as frequency increases, beamwidth 

increases with increasing requested beamwidth, and constant beamwidth with beam 

tilt, Figure 7). The trends in transducer gain were also as expected (gain increases as 

frequency increases, gain decreases as beamwidth increases, and gain remains constant 

with beam tilt, Figure 7). 

 

 

5. Discussion 

The use of fisheries sonars in a quantitative acoustic survey requires adequate 

calibrations over the range of sonar settings that might be used during the survey, or an 

understanding of the effect of the sonar settings on the calibration. Our experience in 



 

17 

 

such surveys is that there are five main settings that are varied (Table 3), but with 

sufficient planning these can be reduced to just one, the horizontal beam tilt angle. 

However, for echo-integration surveys there is also the requirement to maintain a 

constant sampling volume with respect to the expected fish depth distribution (this also 

has the benefit of constraining the fish ensonification angles and reducing the need for 

three-dimensional fish target strength estimates). Under this constraint the tilt angle 

should remain constant, thereby requiring the fixing of all sonar settings and ideally 

reducing the calibration exercise to using just the survey setting. However, it is not 

always practical to conduct a calibration at the same settings as would be used during a 

survey. For example, the best beam tilt angle for the calibration is determined by the 

local bathymetry, proximity of underwater structures, and the transducer to sphere 

range. This may not coincide with the desired survey tilt angle. Additionally, the 

transmitted pulse length used by the SX90 and SU90 sonars is determined by the 

maximum display range (longer display ranges automatically give longer transmit 

pulse lengths). Furthermore, a fast ping rate is desirable during calibration as it reduces 

the calibration duration and hence the operating range is best kept short, but for 

surveys the optimal display range is typically larger. Hence, even when using just one 

sonar setup for a survey it is still necessary to quantify how the sonar performance 

varies with some of the sonar settings. This is in contrast to conventional single-beam 

scientific echosounders, where it is feasible and normal to calibrate the system using 

the same settings as used during the survey.  
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An echosounder or sonar calibration has two purposes: to provide the 

conversion factor between the system response and physically realisable 

measurements, and to ensure that the system is working correctly. Ideally, one would 

calibrate all beams of a sonar to achieve both of these purposes, but this is a time-

consuming exercise and is difficult for the aft beams. However, for the SX90 sonar, a 

single beam is formed from a 12 by 8 array of transducer elements (Blomberg et al., 

2012), being 37.5% of elements in the transducer. Calibration of three beams spaced 

90 degrees apart from each other will utilise 87.5% of the elements and serve to check 

the correct functioning of that percentage of the transducer and transceiver elements 

and processing channels. Similarly, since adjacent sonar beams in the SX90 are 

formed from an almost identical set of transducer elements we hypothesise that the 

calibrated gain of an individual beam is strongly correlated with the gains of its’ 

adjacent beams. This implies that it is not necessary to calibrate adjacent beams 

because they will have substantially the same performance. However, the results 

obtained from RV G.O. Sars and FV Artus show a beam-to-beam gain variability of up 

to 2 dB (Figure 3), which we attribute mainly to variability in the calibration process 

and environmental variability, and not beam performance. Hence, to ensure a more 

robust and representative estimate of the gain of adjacent beams we recommend 

measuring the gain from three adjacent beams, and then repeating this for several well-

separated directions with the aim of exercising completely different sets of transducer 

elements. 
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The SX90 and SU90 sonars could be considered to be calibrated when all of the 

parameters in equations (1), (2), and (4) have been estimated for the set of operating 

modes that will be used during quantitative surveys. Variations in transducer gain were 

observed due to changes in frequency and pulse length, despite these terms being in 

equations (1) and (4). This indicates that these equations are not fully compensating 

for the effect of frequency and pulse length and emphasises the need to independently 

verify the calibration and effect of system parameters. This has been done for the 

SX90 and SU90 sonars and permits the calculation of a calibration for any frequency 

and pulse length combination via equation (7). 

The range provided by the sonar is not an accurate estimate of the true range, 

being some 3 m in error. Correcting for range is particularly important when 

calibrating at short ranges as a large error in the time-varied-gain can occur, leading to 

an incorrect gain estimate. In addition, since the calibration rigs that we used do not 

maintain a constant range between transducer and calibration sphere, the sphere TS 

can vary while moving the sphere around in the beam (in addition to changes due to 

location in the beam). This would lead to a greater variability in intra-beam gain 

estimates as well as a potential bias in gain. 

The work presented here does not account for any changes in beam 

characteristics (shape and gain) due to the automatic beam tilt stabilisation performed 

by the sonar. The beam forming should have minimal effect on the beam 

characteristics and equations (1) and (4) include a term that compensates for changes 

in gain due to beam tilt, but the efficacy of this has not been confirmed. This could be 
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tested by conducting a beam calibration while the attitude of the ship (or more simply, 

the motion-reference unit input to the sonar) was systematically changed. 

The estimated gain had a rather high variation, where the magnitude of the 

variability is seen to be different between vessel, between beams, and between times 

of calibration. Compared with the ±0.1 dB variability that is routinely achieved in the 

calibration of conventional echosounders (Knudsen, 2009), the sonar performs worse. 

The typical sonar gain variation within a single beam was around ±0.5 dB, however 

when a longer time interval was used, or several adjacent beams were measured, the 

variability was higher. A longer-term calibration from a single sonar beam (Figure 4) 

indicates that this variability is dominated by either changing propagation conditions 

or variation in sonar performance. We postulate two reasons for this – the sonar was 

not designed for stable quantitative scientific use and may not have high measurement 

stability, or variation in the propagation conditions between the sonar and the sphere 

may cause ray bending and associated changes in the acoustic wave incident upon the 

sphere. In addition, there is the potential for acoustic interference caused by multipath 

propagation, either via the sea surface, the seabed, or the ship’s hull. It is noted that all 

calibrations were conducted within sheltered fiords, where fresh water runoff and calm 

winds can result in significant stratification with the potential for short-term variations 

(Skarthhamar and Svendsen, 2010). All sound speed profiles taken during the 

calibrations showed some degree of stratification between the sonar transducer and 

sphere depths and we postulate that stratification, and short-term variation of, is the 
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dominant cause of the observed calibration variability. Consequently the use of 

calibration locations with well-mixed near-surface waters is recommended.  

Physical objects close to the vessel prevented calibration of some beams due to 

echo interference, while the ship superstructure and hull prevented us from placing the 

sphere into some beams, particularly to the aft of the sonar transducer. For example, 

the anchor chain caused a strong interfering echo in up to four beams at a similar range 

to the calibration sphere. When moored, wharf piles caused a similar problem.  

This paper has focussed on the horizontal mode beams. Calibration of the 

vertical mode beams would proceed in a similar manner and similar conclusions would 

be expected. 

For the calibration and characterisation of fisheries sonar performance we 

recommend the following activities be part of the calibration activities: 

1. Verify the range accuracy and apply a correction if necessary, particularly for 

the short ranges used during sphere calibrations, 

2. Measure the on-axis gain in three adjacent beams. Repeat this for three well-

separated directions, 

3. Calibrate with sonar settings that are as close as possible to the survey settings, 

or derive relationships to compensate for differences between calibration and 

survey settings, 

4. Measure the vertical and horizontal beamwidth to enable estimation of the 

equivalent beam angle. 
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This work addresses the fundamental requirement for quantitative echo-integration 

of marine organisms using fisheries sonars – calibration. Confidence in the 

quantitative output from an fisheries sonar then provides a firm basis for addressing 

the other challenges associated with non-vertical ensonification of marine organisms 

(such as the increased variability with fish orientation (Cutter and Demer, 2007), 

acoustic extinction (Foote et al., 1992; Zhao and Ona, 2003) and multiple scattering 

between single targets (Stanton, 1983)).  
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Table 2. The vessels and sonars used for the various calibration objectives. 

Calibration objective Vessel Date Sonar 
On-axis gain for multiple beams RV G.O. Sars 

FV Artus 
November 2013 SX90 

Beamwidth FV Artus March 2013 SX90 
Effect of frequency, requested beamwidth 
and tilt on gain and beamwidth 

FV Eros October 2015 SU90 

Effect of frequency and pulse length on 
gain 

FV Brennholm October 2012 SX90 

Range calibration FV Kings Bay October 2014 SU90 
Medium-term variation in gain RV G.O. Sars October 2015 SU90 
 

 

 

 

 
Table 3. The effect of commonly varied SX90 and SU90 sonar settings on 
performance. 

Sonar setting Affects 
Frequency Beam shape (G, ψ) 
Beamwidth Beam shape (G, ψ) 
Beam tilt Beam shape (G, ψ) 
Display range Pulse length (G) 
Pulse type Pulse length (G) 
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Figure 2. Comparison of sphere range estimated by the sonar and physically measured 

sphere range. The solid line is the sonar range correction model fitted to these data. 

The mean difference in range estimates is 2.99 m. 
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Figure 3. On-axis gain estimates and distribution for the November 2013 

calibrations of selected beams on the SX90 sonars of G.O. Sars (a, b) and 

Artus (c, d). The G.O. Sars estimates are for a beam tilt of –10° (·) and –25° 

(+), a transmit frequency of 26 kHz, using a CW pulse 2 ms in duration. The 

Artus estimates are for a beam tilt of –3°, transmit frequency of 30 kHz using 

a CW pulse 2 ms in duration. The vertical lines show the root-mean-square 

(RMS) of the gain estimates about the mean (±RMS). A beam direction of 0° 

indicates the bow increasing clockwise. 
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Figure 4. Variation in sphere target strength with time. The shaded region 

shows the variability over the preceding 60 pings (approximately 30 

seconds) and the solid dots the mean. 
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Figure 5. Relative changes of the beam gain with the changes in the pulse 

frequency (left panel) and with changes in the pulse duration (right panel). 

Dots indicate measured beam gain from the SX90 on FV Brennholm, and 

the line indicates the asymptotic regression. Jitter has been added to the x-

axis values to more clearly separate the data points, and the root-mean-

square (RMS) of the sphere echoes about the mean value is indicated by 

the vertical lines (of length 2RMS). 
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Figure 6. An example of the horizontal (dot symbol) and vertical (plus 

symbol) beam width data and the fitted quadratic beam shapes on FV Artus 

for one beam. (March 2013 calibration, beam 49, –5° beam tilt, 30 kHz 

transmit frequency with a CW pulse 1 ms in duration). 
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Figure 7. Changes in beam gain and vertical beamwidth as a result of 

changes in sonar parameters for the SU90 sonar on FV Eros. 
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