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Abstract

In management of patients with cancer, MR imaging has become increasingly important. The rapidly
growing interest in continually developing MRI methods reflects a growing need, not only to evaluate
the disease at the time of diagnosis, staging and treatment planning, but also to perform successive
examinations during “treatment follow-up”. Due to recent technical advances in MRI sequences, post-
processing techniques and development of novel and improved contrast agents, new MRI methods such
as dynamic contrast enhanced MRI (DCE-MRI) has become available. By DCE-MRI, tumors can be
characterized regarding microvascular physiology and their state of angiogenesis.

This study addresses important issues using DCE-MRI as a tool for describing (microenvironmental)
tumor physiology. The experimental part was performed using a selection of data sets acquired in a
collaborative study denoted the “NG-2 project”. In this study, nude rats having implanted subcortical
glioblastoma multiforme (GBM) underwent successive multispectral MRI scans including dynamic T;-
weighted monitoring of tissue contrast enhancement. The novel “macromolecular weighted” contrast agent
Gadomer-17 was used for dynamic MRI measurements.

Using the dynamic MRI measurement data, two slightly different compartment models (denoted the Su
model and the Tofts model, respectively) were applied to analyze the tissue tracer concentration time
curves, from which physiological model parameters, related to permeability i.e. wash-in and wash-out of
tracer in tissue, were estimated.

The aim was to evaluate the models with respect to (i) their theoretical assumptions, (ii) their applicability
to differentiate tumor physiology (by analyzing the same tumor at different time-points), (iii) their appli-
cability to describe microvasculature of normal tissue regions and (iv) goodness-of-fit between observed
data and the theoretical models. Moreover, the pharmacokinetic DCE-MRI procedure was evaluated con-
cerning operator dependent variability in derived model parameters (i.e. “manual region of interest (ROI)
delineations” and “ROI selection using image templates from different contrast agents”).

Results showed variation due to manual ROI tracings and operator variability. Model parameter values
were more difficult to reproduce when using Gd-DTPA enhancement compared to Gadomer-17 as template
for the delineations, reflecting physiological differences underlying the enhancement patterns obtained
with contrast agents of different molecular weights. Spatial sampling of smaller ROIs within one single
tumor showed spatial heterogeneity in estimated parameter values, even in tumor areas which visually
possessed homogeneous contrast enhancement. Visually, contrast enhancement in tumor regions enabled a
better model-fit than in healthy tissue regions. However, healthy tissues obtained very low contrast agent
concentrations during the dynamic scanning, which probably makes the models less applicable in normal
tissues, using Gadomer-17 as a tracer. Pizel-wise analysis at two different time-points revealed increased
permeability during time, and a decrease in wash-out rate. This was found in two out of three cases. Such
information may have treatment implications because higher permeability leads to better drug delivery
(macromolecules) to tumor tissue. Additionally, a low wash-out rate is likely to enhance therapy effects as
the molecules are trapped in tumor tissue for a longer time. One tumor case in the pizel-wise analysis was
already large and heterogenous at the first time-point, and showed a decrease in permeability during time,
possibly reflecting maturation of angiogenic vessels with reduced leakage of macromolecules. By goodness-
of-fit assessment, using Akaike’s information criterion (AIC), I found the Su model more appropriate than
the Tofts model in fitting the calculated concentration time curves, taking into consideration the handicap
by Tofts model of having only two degrees of freedom, compared to three free parameters in the Su model.

ix



In conclusion, the DCE-MRI method possesses great possibilities in assessing microvascular physiology
of tumors. DCE-MRI is, however, also hampered with methodological pitfalls that are demonstrated in
this thesis, being aware that my data are sparse. Such methodological problems will be less influential
and easier to interpret when a standardized method (concerning scanning protocol, contrast agent type,
pharmacokinetic model and presentation of data) is accepted. Also, more studies are needed, including
histopathological examinations and other(micro)imaging modalities, to better understand the relationship
between local physiological processes and the observed DCE-MRI time courses.



Acronyms and abbreviations

AIF Arterial input function

Axial slice In brain imaging, the plane with coordinates going from left - to - right and front - to - back
DCE-MRI Dynamic contrast enhanced imaging

By External magnetic field measured in Tesla

BBB Blood-brain barrier

BOLD Blood oxygen level dependent contrast technique
CA Contrast agent

CBF Cerebral blood flow

CM Contrast media

CNR Signal-to-noise ratio

CNS Central nervous system
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CT Computer tomography

ECS Extra cellular space

Echo Induced signal in the receiver coil cased by rephasing of protons; either a gradient echo or a spin
echo

EPI Echo planar imaging

EES Extravascular extracellular space

FID Free induction decay; a plot of NMR signal as a function of time

FLAIR Fluid-attenuated inversion recovery sequence to suppress signals from cerebro spinal fluid
fMRI functional MRI methods; often used in connection with the BOLD technique

FOV Field of view; area of anatomy covered in the image

GBM Glioblastoma multiforme

Gd Gadolinium

Gd-DTPA Gadolinium-diethylenetriaminepentaacetic

GE Gradient echo pulse sequence; one that uses a gradient to generate an echo

GM Grey matter
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LDsy; Dose which is lethal for 50% of the test subjects
MMCM Macromolecular-weighted contrast media

MR/MRI Magnetic resonance imaging; the process of creating an image based on differences in NMR
signal from different places in a sample

MS Multiple sclerosis

MSE MSE represents mean of SSE for all pixels within ROI. SSE is the sum-of-squares errors, here used
as criteria for goodness-of-fit

NG-2 Proteoglycan hypothesized to mediate tumor growth by increasing tumor angiogenesis
NMR Nuclear magnetic resonance

Pharmacokinetic MRl DCE-MRI (using pharmacokinetic models in data analysis)

PK Pharmacokinetics

PS product Product of membrane permeability (P) and surface area (S) for which the membrane is
permeable.

r; Contrast agent relaxivity; the ability of the agent to increase Ti-relaxation rate (i.e. shorten T;-
relaxation time)

RARE Rapid acquisition with relaxation enhancement —pulse sequence

ROI Region of interest; a selected subset of pixels in an image

SE Spin echo pulse sequence; one that uses a 180°rephasing pulse to generate an echo
S| Signal intensity

TE Time from excitation pulse to echo, readout delay

TR Time to repetition, time between successive pulses

T, Time constant describing recovery of longitudinal magnetization after

T2 Time constant describing disappearance of transverse magnetization
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1. Introduction

Development of nuclear magnetic resonance imaging

Following the discovery of x-rays in 1895, brain mapping methods and neuroimaging tech-
niques have quickly advanced. About 50 years ago, scientists found that when certain
nuclei were placed in a magnetic field, they absorbed energy in the radiofrequency range
and re-emitted this energy during the transition to their original energy level [35]. This
phenomena was named nuclear magnetic resonance (NMR!). NMR, provides the basis for
magnetic resonance imaging (MRI).

The NMR signal emitted from the excited nuclei carry encoded information about the
physical and chemical environment of the nuclei. Hence, the signal provide information
about the composition of the tissue in which the nuclei is situated. Signals diverted from
a great number of NMR signals are spatially encoded and make the foundation for an MR
image.

Discoveries concerning the NMR phenomena have been awarded the Nobel Prize in 1952
(physics), in 1991 (chemistry), in 2002 (chemistry) and in 2003 (medicine). The first
clinical MRI equipment was available at the beginning of the 1980s. Over the past 20
years, MRI has become a powerful tool for evaluation of the anatomical and morphological
characteristics of nearly all organs in the body. MRI of the brain and spinal cord is
especially known for its excellent spatial resolution, and the progress of MRI as a clinical
tool has been extraordinary [55]. Nearly all brain disorders lead to alterations in water
content, which is reflected in the MR image. A difference in water content of less than
one percent is enough to detect pathological changes in an MR image. In addition, a
number of MRI techniques that allow evaluation of functional or physiological parameters,
while preserving anatomical specificity, have been developed. This greatly improves the
powerfulness of MRI in medical contexts. These techniques are termed functional MRI

! Nuclear because only the nucleus of the atoms react, magnetic due to the need of a strong external mag-
netic field, and resonance because the frequency of the RF pulse must match the precession frequency
of the precessing nuclei.
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(FMRI2).

Dynamic imaging adds the dimension of time to the anatomical detail of conventional MRI,
and thereby allows evaluation of functional properties. Recently, dynamic MRI has been
proposed as a valuable tool for diagnosis and prediction of response to treatment of cancer.
By assuming the hypothesis that tumor growth rates correlates with vascular permeability,
the degree of vascular leakage measured by MRI gives valuable information concerning a
tumors ability to expand and metastasize |95]. An evaluation of pharmacokinetic models
used to extract such information from dynamic MRI scanning is the main issue of this
thesis.

1.1. Tumor physiology and aggressiveness assessment

Even though the struggle against cancer is continuously progressing, there is a number of
battles left to fight. Cancer is still one of the most leading causes of death in many indus-
trialized countries. The success or failure of cancer treatments depend on tumor physiology
as well as sensitivity to treatment such as chemical therapy and radiotherapy [45]. Tumor
physiology is further dependent on the interaction between oncogenic expression and envi-
ronmental factors in the tissue in which the tumor is situated. To make matters even more
complicated, transformation of oncogenic expression seems to occur as response to envi-
ronmental changes and makes tumors more resistant to treatment [92|. New developments
of MRI methods possess, however, good possibilities of improving cancer diagnostics and
planning of therapies.

Tumors display large spatial and temporal heterogeneities in their blood supply, or per-
fusion. Despite apparently generally good blood supply, areas of tumors can suffer from
hypoxia and necrosis due to abnormalities in the tumor capillary bed, often with con-
sequently high interstitial pressure. Of particular functional importance, tumor vessels
possess high degree of capillary leakage. Vessel leakiness seems to correlate with histologi-
cal grade and malignant and metastatic potential of tumors [17, 36].

The abnormal characteristics in tumor vasculature is closely connected to angiogenesis;
the process through which new blood vessels develop from already pre-existing vessels.
Angiogenesis is required for a tumor to grow beyond a certain size and become aggres-
sive [12, 29, 27|. Angiogenic vessels have certain features, such as increased permeability
or capillary leakage. Attention have been paid to develop methods of visualizing these
characteristics in order to display more accurate diagnosis concerning severity of cancer.
In addition, treatment failure have, in some cases, been hypothesized to be related to vari-
able anti-cancer drug penetration into tumors. Thus the question of molecular penetration
into tumors remain highly important [99].

2FMRI techniques in general are briefly described in Appendix C
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Figure 1.1.: Structural features of tumor vasculature. Tumor vessels commonly possess fragile,
leaky vessels with arterio-venous shunts and blind ends. Because of its chaotic vasculature, the tumor
vascular network may have transiently or chronic occluded parts, resulting in areas of hypoxia [9].

One of the difficulties concerning diagnostic evaluation of tumors is to determine their
potential of progressive growth and their metastatic ability. For years, microvessel density
(MVD) has been used as indicator for tumor aggressiveness and metastatic potential, as
neovascularization facilitates metastasis by providing access to the circulation. However,
researchers have found conflicting results when testing this hypothesis [59]. It is suggested
that the different results may be caused by the pronounced heterogeneity of MVD within
each individual tumor. Histological examinations have shown that capillary permeability is
increased in malignant tumors. Permeability is suggested to be a better estimate of tumor
aggressiveness compared to MVD [20]. Studies have shown correlation between histological
tumor grade and increased capillary permeability [80]. This increased permeability is
attributed to angiogenic activity [36]. As the vascular endothelial growth factor (VEGF)
is known to induce neoangiogenesis in tumors, uncontrolled high VEGF expression may be
used as an other indicator of tumor aggressiveness. The MRI technique dynamic contrast
enhanced MRI (DCE-MRI) is postulated to provide a non-invasive prognostic indicator
analogous to both VEGF expression and MVD count [14, 49, 68|.

1.2. Imaging tumor physiology with MRI

Perfusion is central to our understanding of the tumor environment [30]. Dynamic imaging
after intravenous injection of contrast agent and application of pharmacokinetic models,
reveal transendothelial transport of the contrast agent in perfused tumor regions. The
transport of contrast agent across the endothelium is a reflection of the integrity of the
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microvessel wall [79]. By application of kinetic models, DCE-MRI display the kinetics of
the distribution of contrast agent within tissues, opposed to conventional contrast MRI
which shows enhancement as a result from both vascularity of tissue and accumulation
of agent in the tissue interstitium. By applying a two-compartmental pharmacokinetic
analysis, physiological characteristics of tumors can thus be evaluated. Parameters such as
the intravascular volume of tumor, interstitial space volume of tumor, and the transport
rates between plasma and extravascular extracellular space (EES) of the tumor can be
derived. This technique is often referred to as pharmacokinetic MRI. Pharmacokinetic
MRI is developed to provide local estimates of microcirculatory parameters, mainly in
tissues in which there exists an increased capillary permeability. Pathological increased
capillary leakage caused by dysregulated formation of new blood vessels contributes to
several malignant, ischemic and inflammatory disorders (e.g. diabetic disease, MS-plaques
and malignant tumors) [11].

The evaluation of tumor physiology provided by DCE-MRI may be important in a diag-
nostic perspective and for the purpose of treatment planning. In addition, MRI provides
steady-state physiological tumor information and can be used as a tool in a “follow-up”
of tumor response to treatment. Interest in DCE-MRI was stimulated by early observa-
tions that high increase in signal enhancement and fast rates of signal enhancement both
appeared to correlate with well vascularized viable tumor regions. In contrast, normal
tissues and benign tumor regions revealed more moderate rates and degree of signal en-
hancement [99]. As mentioned, the enhancement differences between benign and malignant
lesions have been attributed to higher vascular volume and /or permeability associated with
angiogenesis in malignant tissues [93].

The technique of DCE-MRI is now becoming increasingly widespread, not only for improv-
ing the accuracy of diagnostic imaging, but also in research into aspects of microcirculation
and assessment of microvascular changes following treatment. Moreover, the method may
predict the aggressiveness of the tumor [95|. In addition, development of new therapeutic
agents for cancer therapy, such as those inhibiting angiogenesis and thus affect microvas-
culature, has increased the importance of standardizing this powerful MRI method [28].

1.3. Tracer kinetics and pharmacokinetic modeling

Earlier work in tracer kinetics has been carried out by physiologists using radioactive
tracers in animals which were sacrificed to measure the tracer concentration in tissues of
interest [102]. In dynamic contrast enhanced imaging, however, tracer kinetics is employed
nearly non-invasively® by application of pharmacokinetic (PK) model to dynamically mea-
sured MRI data.

3DCE-MRI is considered non-invasively compared to e.g. histological assessment of angiogenesis. How-
ever, the method requires intravenously injected tracer and can thus not be considered fully non-



1.4. The NG-2 study

Pharmacokinetic modeling is the process of developing mathematical descriptions for the
rates of absorption, distribution, metabolism, and elimination of drugs and metabolites in
biological systems. Pharmacokinetic models are widely used to predict the kinetics of chem-
ical residues in the environment, to solve pollution problems and to help understand the
results of toxicological studies. Therefore, a number of different models exists, e.g. com-
partmental and non-compartmental models, physiologically pharmacokinetic based models
and population pharmacokinetic models [110]. Both models evaluated in this thesis are
two-compartmental models and will be further described later (cf. Section 5.2).

Numerous studies have been performed using dynamic contrast enhanced MR imaging
as a tool in describing physiological characteristics of tumors and other conditions, such
as (MS). The technique is however not yet standardized, or routinely included in clinical
studies. Great variations exists in imaging procedure; concerning among others; choice of
sequence parameters, type and dose of contrast agent, and time and speed of injection. In
addition, different pharmacokinetic models to extract physiological parameters from the
imaging series, have been developed.

Recently, the importance of MRI development was addressed when “The Nobel Assem-
bly at Karolinska Institutet" awarded "The Nobel Prize in Physiology or Medicine” for
2003 to Paul C. Lauterbur and Peter Mansfield for their discoveries which have led to
the development of modern Magnetic Resonance Imaging, representing a breakthrough in
medical diagnostics and research. “Improved diagnostics in cancer” was given as one of the
arguments for the award*.

1.4. The NG-2 study

This thesis work is performed using MRI data from a larger study which I have denoted
the “NG-2 study”. I hereby briefly introduce the main topics and aims of this project.

In a research collaboration between the University of Bergen, University of Trondheim
and SINTEF Unimed Trondheim, multispectral and dynamic contrast enhanced MRI was
successfully performed in examination of 17 immunodeficient nude rats at five and seven
weeks after sub-cortical implantation of human glioblastoma (U251N) spheroids. The
tumors were of either wild type; slow growing tumors, or NG-2 positive; rapidly grow-
ing/aggressive tumors. The neural stem cell receptor NG-2 promotes angiogenesis causing
acceleration of vascularization and thereby growth of tumors. An important aim of the
project was to investigate tumor aggressiveness (in terms of angiogenesis, permeability,
growth rate, tumor volume, edema and necrosis) and compare NG-2 positive tumors with
NG-2 negative wild type (WT) glioblastomas. An additional objective embraced compar-

invasively. DCE-MRI has therefore commonly been referred to as a nearly non-invasively technique.
4Cite: “press release” at http://www.nobel.se/medicine/laureates/2003 /press.html.
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ison of pharmacokinetic models developed for assessment of neovascular characteristics in
animal tumor volumes.

I was kindly given access to the MRI-data from this project in order to use the dynamic
scans for evaluation of two pharmacokinetic models developed to characterize tumor mi-
crocirculation.

1.5. The objectives of this thesis

Several approaches of pharmacokinetic (PK) analysis have been proposed to achieve re-
liable measurements of physiological parameters from DCE-MRI. The theoretical models
differ in their assumptions, mathematically implications and also in estimated parameters
describing the physiology of the tissues.

In this thesis, two pharmacokinetic two-compartmental models developed for evaluation of
microcirculatory parameters will be evaluated. The models have previously been described
by Su et al. [94] and Tofts et al. [105], reviewed in [102, 104]. The theoretical basis of the
models is presented in Section 5.2. Both models have been fitted to a selection of dynamic
MRI tissue concentration data (from experiments in the “NG-2 project”) using nonlinear
least-square estimation.

The following work includes both theoretical and experimental parts. A theoretical overview
is given in Chapters 2—- 5. The aim was to address tumor microcirculation and give a fairly
detailed description of methodological issues related to DCE-MRI, focusing on the two
different pharmacokinetic models by Su and Tofts, respectively. Problematic issues con-
cerning these models and pharmacokinetic MRI in general will be given in Chapter 8.

The “experimental part”, where the two pharmacokinetic models have been applied to
DCE-MRI scans of implanted intracranial glioblastomas is presented in Chapter 6. The
purpose of this part was to investigate and demonstrate methodological aspects of estima-
tion of physiological microcirculatory parameters based on DCE-MRI in conjunction with
pharmacokinetic models (Su and Tofts).

I wished to study the variability of parameter estimates due to operator-dependent factors.
Variability may be partly caused by manual outlining of ROIs. Additionally, choice of
“background” image (i.e. the different enhancement pattern of the various tracers) used as
“template” for ROI-tracings were evaluated with respect to variability. Also, variation in
parameter-values from “smaller, enhanced” ROIs was studied and related to heterogeneity
assessment. An additional aim was to address the applicability of the pharmacokinetic
models to healthy tissues. Finally, it was of interest to compare the two models by a
numerical “goodness of fit” criteria to see if one of the models were better aimed to fit the
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actual MRI derived concentration data than the other. Results are given in Chapter 7 and
discussed in Chapter 8.

Some background information and technical reports are given in appendixes. Readers are
assumed to be familiar to basic principles of MRI.
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2. Tumor Physiology

Capillaries of healthy tissues form anastomosis and create a three-dimensional vascular
network in the tissues. The complex network of microvasculature provides a large surface
area and minimizes diffusion distance to enhance the efficiency of transporting nutrients
and waste products between blood and cells [25]. This intra- and extravascular exchange
of fluids and solutes is exerted by the mechanisms of diffusion and convection [52, 84, 95|.
The mechanisms of fluid exchange between compartments are more closely described in
Appendix A.

In addition to the characteristic features of microvasculature, brain capillaries employ wall-
specializations which selectively isolates the extravascular space of brain parenchyma from
the blood compartment. This blood-brain barrier (BBB) tightly controls the extracellular
environment in the brain in order to protect the nervous system. A common feature of
malignant brain tumors however, is their ability to compromise the blood-brain barrier
function, thus increasing the permeability which subsequently lead to brain edema by
allowing free diffusion of large molecules and other blood components into the nervous
tissue [87].

Tumors are commonly known to have a high degree of lesion heterogeneity, both within
and between subjects. From a physiological perspective, the most important difference
between tumors and normal tissues lies exactly in the vasculature [9]. Tumor vasculature
commonly consists of two different types of vessels; 1) ingrowing vessels from host tissue
and 2) newly generated (angiogenic) vessels. Tumor microcirculation often displays abnor-
mal characteristics. In general, tumors are dramatically heterogeneous in terms of their
perfusion, oxygenation and metabolism. Although overall blood supply to tumor may be
good!, abnormal characteristics of the tumor vessels may cause areas of necrosis and hy-
poxia. Especially is malignant brain tumors such as e.g. glioblastoma multiforme, known
to be highly vascularized and to possess central areas of necrotic tissue, surrounded by
patches of viable tumor tissue [107]. Although generally increased, vascular permeability
in tumors is also highly variable, both within individual tumors and between tumors.

LA common feature of malignant tumors, is the observation of increased fractional blood volume, often
associated with increased MVD counts[81]).



2. Tumor Physiology

Vascular permeability is referred to as the transendothelial transport of compounds across
the blood vessel wall into the interstitial space of the tumor [95]. As mentioned in Chap-
ter 1, the degree of permeability is known to correlate with the tumors ability of progressive
growth, ability to metastasize and the respondment to treatment [23, 96]. This correlation
provides a basis for MRI-permeability assays, such as DCE-MRI, for staging of malig-
nant tumors [43]. Furthermore, the hyperpermeability of tumor vessels to macromolecular
plasma solutes is known to be related to VEGF (vascular endothelial growth factor)?.

Microscopic tumors, originated as avascular aggregates of malignant cells can grow to
a certain size (1-2 mm?®) by simple diffusion of nutrients and metabolic waste products.
This diffusion-limited®, prevascular stage can be maintained for a prolonged period until the
process of angiogenesis is up-regulated. To grow beyond this limited size, a vascular supply
has to be established. The tumor itself is, however, not capable of generating vessels and
must recruit new blood vessels by vasculogenesis® and angiogenesis [6, 12|. Initially there
are only minor pre-existing host vessels enclosed by the tumor, until the host is stimulated
to generate new vessels by angiogenesis. The tumor will then enter the vascular phase;
characterized by exponential growth and following clinical symptoms [20, 27|. The exact
mechanisms which control angiogenesis is not fully understood, but a known connection
between angiogenesis and both primary tumor growth and metastasis is established. This
makes the basis for the development of techniques for non-invasive assessment of tumor
biology [36].

2.1. Angiogenesis

Angiogenesis is the complex, multistep process by which new vessels grow toward and into
a tissue by sprouting of capillary buds from existing microvessels [6, 72]. The process is
tightly regulated by stimulators, inhibitors and interaction between different cell types.
An equilibrium between proangiogenic and antiangiogenic factors causes vessel growth by
angiogenesis to occur at a very small extent in healthy adults [59]. Important physio-
logical processes such as embryogenesis, corpus luteum formation, and wound healing are
controlled by acceleration of angiogenic generation of capillary vessels. Angiogenesis also
plays a crucial role in pathophysiological states, such as rapid growth and metastasis of
tumors. Additionally, angiogenesis is considered a pathological characteristic in conditions
such as diabetic retinopathy and rheumathoid arthritis [20].

2VEGF is a multifunctional cytokine secreted at high levels by many malignant tumor-related cells (cf.
Section 2.1).

3For supply of oxygen and nutrients, mammalian cells are located within 100-200 um of blood vessels
-the diffusion limit for oxygen [12].

*Vasculogenesis is defined as de novo generation of blood vessels. Vasculogenesis is an essential component
of embryonic development, whereas angiogenesis accompanies organ growth and regeneration [72]
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Figure 2.1.: A schematic illustration of the causes, characteristics and consequences of tumor
microenvironment. Hypoxia and acidosis are products of poor perfusion and elevated metabolism,
respectively. The hypoxic and acidic microenvironment in tumors significantly affect treatment and pro-
gression of cancer. The most well-studied effects of the tumor microenvironment are the physiological
resistance to chemo- and radio-therapies. This resistance may be direct effect of pH and O», or caused by
reduced perfusion in general. The illustration is from Gillies et al. [30].

.- Angiogenic
" factors
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Figure 2.2.: Tumor growth requires neovascularization.. Angiogenic stimulating factors elaborated
by the tumors and tumor-associated inflammatory cells induce angiogenesis by interaction with endothelial
cells and pericytes in neighboring capillaries. This interaction stimulates formation of new capillary buds
and prepares the local environment for their ingrowth [6]. A; Tumors less than 1-2 mm? receive oxygen and
nutrients by diffusion from host vasculature. B; Growth beyond this size requires generation of new vessel
network. Tumors secrete angiogenic factors that stimulate migration, proliferation, and neovessel formation
by endothelial cells in adjacent established vessels. C; vascularization of tumors occur by angiogenesis,
facilitating progressive growth (http://www.meniscus.com /horizons/3-2figs.ppt).
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The onset of angiogenesis in pathology might be caused by a failure in the growth factor-
feedback system [14]. Growth factors which is normally tightly controlled become unreg-
ulated and induce endothelial proliferation. Factors influencing angiogenesis are derived
both from tumor cells and infiltrating cells such as macrophages and fibroblasts. The de-
gree of angiogenesis in a tumor is thus a result of complex interactions between tumor cells,
capillary endothelial cells, pericytes and recruited immune cells. Control is executed as a
balance of angiogenic promotors and inhibitors [59]. A net positive balance of angiogenic
factors will induce endothelial cells to rapidly proliferate and form new blood vessels.

The vascular endothelial growth factor (VEGF), originally described as vascular perme-
ability factor (VPF), is an important angiogenic stimulator [56]. This heparin-binding
angiogenic glycoprotein seems to be the angiogenic promoter which is most responsive to
the abnormal physiological environments occuring in solid tumors; hypoxia, extracellular
acidosis and substrate deprivation [29]. VEGF is secreted from transformed tumor cells
and acts as a mitogenic factor for endothelial cells in the tumor surroundings. Activated
endothelial cells release proteases, proliferate and migrate towards the tumor [56]|. In ad-
dition, VEGF induces a dramatic increase in vascular permeability® causing leakage of
macromolecular serum proteins into the interstitium. This leakage provides an ideal ma-
trix in which new capillary buds can grow [6]. Thus VEGF seems to play a critical role
in tumor angiogenesis and peritumoral edema associated with brain tumors [56]. VEGF is
presumably necessary for metastasis, which in turn is closely connected to angiogenesis of
new vessels |2, 95].

To summarize: as a response to a signal (e.g. hypoxia), angiogenic promotors (e.g. VEGF
and acidic and basic fibroblast growth factors) induce release of cytokines from tumor cells
(and endothelial cells). In turn, cytokines activate endothelial cells which proliferate and
migrate along a fibrin skeleton towards the source of the angiogenic stimuli. A lumen is
formed in the vascular sprout by adhesion of intracellular vacuoles initiated by contact
between cells. Meanwhile, a degradation of the extracellular matrix, initiated by changes
in the proteolytic balance, is performed by the pericytes. The fibrinolysis and degradation
of the extracellular matrix prepares the tissue environment for ingrowth of new vessels.

2.2. Tumor microvasculature

Microvessels initiated by angiogenesis do not resemble the microvasculature of the host tis-
sue. These newly formed vessels exhibit a series of structural and functional abnormalities.
Typical features of tumor vasculature might include [29, 59]:

5Production of nitric oxide (NO) appears to be regulated by VEGF. NO is primarily responsible for
vasodilation and the increased vascular permeability seen in tumor vessels [71].
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e Spatial heterogeneity and chaotic structure without normal branching structure.
e Elongated and coiled vessels.

e Arterio-venous shunts, blind loops and alternating vascular diameter.

e Acutely collapsed vessels and transiently collapsing vessels.

e Increased endothelial proliferation rate.

e Vessel walls with lack of endothelial component, and basement membrane.

e Gaps in the endothelium.

e Poorly differentiated, fragile and leaky vessels (leading to hemorrhage and edema),
lacking in smooth muscle cell lining.

e Lack of response to normal regulation of blood flow.

e Vasculature is frequently unable to match the rapid growth of cancer cells resulting
in areas of hypoxia and necrosis.

Thus, vascular organization in solid tumors is chaotic with extensive branching, arteriove-
nous shunts and blind vascular endings. Furthermore, blood flow in tumors is not accu-
rately regulated to meet the metabolic demand or functional status of the tissue. Typically,
tumors exhibit central necrotic areas. Necrosis is most likely induced by hypoxia and nu-
trient deprivation due to reduced blood flow to the central region of the tumors as elevated
interstitial pressure might cause collapse of angiogenic vessels[45, 108]. Interstitial hyper-
tension can cause compression of vessels inside the tumor and limit uptake of agents [113].
In addition, the extracellular space is lager than normal due to degeneration of healthy
extracellular matrix. AV shunts will cause local bypass by a fraction of the blood [59].
Additionally, adjacent to necrosis, areas of hemorrhage resulting from fragile angiogenic
vessels might be present. [108]

Incomplete or missing endothelial lining (tight junctions) and basement membranes are
suggested to be responsible for increased permeability. In addition, VEGF in itself in-
creases permeability presumably by vesiculo-vacuolar organelles which have connections
with both surfaces of the vessel wall (cf. Figure 2.5, Section 2.3). The hyperpermeability
to macromolecules is considered essential to angiogenesis as it allows plasma proteins to
seep into the tumor interstitium, forming the matrix favoring in-growth of new capillaries.
In addition, leakage permits emigration of cancerous cells, allowing metastasis to occur [69].

As described above, some tumor regions receive hypoxic and nutrient depleted blood caused
by the chaotic structure and the expansion of the EES, leading to a longer diffusion distance.
Additionally, only 20-80% of the vascular system in tumors is functional at a given time.
This may enhance the perfusion heterogeneities [29]. Jain [45] modeled that the temporal
and spatial heterogeneity in tumor blood flow can be a result of;
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2. Tumor Physiology

e clevated geometric and viscous resistance in tumor vessels
e coupling between high vascular permeability and elevated interstitial fluid pressure

e vascular remodeling by intussusception®

He further described four different regions in tumors, based on their perfusion rates. Two
regions; the awvascular necrotic region and the semi-necrotic region, have low perfusion
rates. The stabilized microcirculation region and the advancing front region however, have
very variable perfusion rates which may even be higher than in normal tissue. The het-
erogeneities in blood supply within a tumor are reflected in the spatial distributions of
therapautic and diagnostic agents, and can thus be exploited by temporal and spatial
visualizing of contrast agent uptake, as in dynamic MRI.

Although high vascular permeability is a characteristic feature of tumors, process of matu-
ration of vessels may lead to reduced vessel permeability in certain regions [19]. As normal
neovessels grow and maturate, they acquire a more complete basement membrane and
pericytic covering, both reducing endothelial permeability. VEGF is thought to regulate
this vascular maturation, and hence vessel permeability [14].

2.3. Delivery of particles to tumor tissue

A blood borne molecule or particle that enters tumor vasculature reaches cancer cells via
the following processes; distribution through the vascular compartment, transport across
the vessel wall and transport away from the vessel wall within the interstitium. Each of
these processes may involve diffusion and convection. In addition, molecules can bind or
be metabolized during their journey from blood to cells [44, 45].

Transport of molecules within the tumor vasculature is governed by the vascular morphology
and the blood flow rate, where the first includes the number, length, diameter and geometric
arrangement of various blood vessels.

Transvascular transport is governed by three important parameters: the surface area for
exchange, transport parameters’ and the concentration and pressure gradients across the
vessel wall. Both vascular permeability and hydraulic conductivity of tumors are signifi-
cantly higher than in normal tissue. However, it is important to keep in mind that although
tumor vessels may lack “permselectivness” in general, not all tumor vessels are leaky [45].

6In intussusception, interstitial tissue columns are inserted into the lumen of pre-existing vessels and
partition the vessel lumen [12].

"The transport parameters; vascular permeability, hydraulic conductivity and reflection coefficient are
discussed in subsection A.2 on page 131.
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Figure 2.3.: Physiological barriers in tumors; a) Schematic illustration of a heterogenously per-
fused tumor with a well-vascularized periphery, a semi-necrotic intermediate patch and a non-vascularized
(necrotic) center-region. Immediately after an intravenous injection, injected molecules are delivered to
perfused regions only; b) Low interstitial pressure in peripheral region permits adequate extravasion of fluid
and molecules; ¢) Macromolecules diffuse slowly towards central region of the tumor. Additionally, outflow
of interstitial fluid from tumor transports molecules back to normal tissue by convection. Furthermore,
interstitial movement of molecules in tumor may be hindered by binding and/or metabolism [45].

When extravasated, further transport of molecules within the tumor interstitium may be
hindered by the high pressure in central regions of the tumor, which can create a small
amount of outward convection. The molecules have to overcome this convection to diffuse
into the tumor.

2.3.1. Pathophysiology of tumor permeability

Although the hyperpermeable nature of tumor microcirculation is well documented, it
remains controversial as to which pathways are predominantly responsible for tumor hy-
perpermeability (and hence macromolecular transvascular transport). Increased perme-
ability, and thereby macromolecular transport across blood vessels in brain tumors with
loss of BBB-function, has been shown to occur via opening of the tight junctions between
endothelial cells in the BBB [1]. Other findings suggest that the characteristic increase
in permeability in tumor vessels is probably related to up-regulation of vesiculo-vacuolar
organelle (VVO) function due to high levels of VEGF expression [49]. Additional routes
of macromolecular leakage might include fenestrations, transendothelial cell pores and/or
phagocytosis [38, 107]. Dvorak et al. [26, 22| suggest that it is possible that VVOs and
endothelial pores are related structures; in response to vasoactive mediators, pores may de-
velop from a rearrangement of VVO vesicles and vacuoles to form a larger membrane-lined
vacuolar structure, and eventually, channels of sufficient size to allow passage of macro-
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Figure 2.4.: An outline of the pathophysiologic concept of neoangiogenesis, presented by
Knopp et al. [49]. Growth of tissue which has exceeded its local blood supply results in regional hypoxia
and hypoglycemia, which stimulates release of e.g. the potent angiogenic stimulator VEGF. VEGF acts
locally on nearby capillaries to increase endothelial permeability (which immediately leads to extravasion
of macromolecules). Increased permeability not only increase the supply of nutrients, but also present
an important mechanism of the metastatic process, allowing passage of tumor cells into the circulation.
Increased permeability might be caused by VVOs. The number and leakage of these VVOs is regulated
by VEGF. Also, Gd-chelated contrast agents use this route for extravasion. In a longer term, VEGF will
stimulate mitosis in endothelial cells from local blood vessels which thus divide and develop a new vascular
infrastructure to supply the tumor. The angiogenic mechanism is also responsible for breakdown of local
connective tissues, preparing the local environment for ingrowth of new vessels [41, 49].

molecules. Thus, hyperpermeability in brain tumors may be determined by a combination
of both the size and number of pores, and transport via VVOs [107].

VVOs are grape like clusters of interconnecting uncoated vesicles and vacuoles found in
both tumor microvessels and post-capillary venules (cf. Figure 2.5). Macromolecular trac-
ers are shown to preferently cross hyperpermeable tumor vessels through these clusters of
vesicles and vacuoles which span the entire thickness of vascular endothelium cells pro-
viding a connection between the vascular lumen and the extracellular space. The VVOs
might also be the most important pathway for the Gadolinium chelated agents used in
MRI, especially for the preclinical MMCMs [22, 38, 49]. The individual vesicles and vac-
uoles comprising VVOs are bounded by membranes and interconnect with each other and
with the endothelial cell plasma membranes by means of stomata that are closed with thin
diaphragms. VEGF is likely to be responsible for the opening of these stomata in hyperper-
meable tumor vessels, thereby accounting for the relatively free passage of macromolecular
tracers (and plasma proteins) through tumor vessel VVOs.
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Figure 2.5.: Vesiculo-vacuolar organelles. Computer generated three-dimensional reconstruction
modeling a portion of venular-VVO from mouse skin. There are two openings to the vascular lumen
(E-F) and four to the abluminal surface (A) [22].
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3. Modeling of tracer kinetics using
compartments and rate constants

In DCE-MRI, the local microcirculation in tumors (and other tissues) is exploited by
modeling the kinetics of injected contrast agents.

3.1. Kinetics and pharmacokinetics

The topic of kinetics address the measure of the rates of reactions, and the study of the
variables that affect the rates. The rate of a process or reaction describes how fast it occurs,
and is often expressed as the change in e.g. concentration per unit time, %. Kinetics is
of great importance in all fields of medicine, biology and biochemistry. Bacterial growth
rates and radioactive decay are both examples of processes which depend on rates of

reactions [101].

Pharmacokinetics (PK) combines the topics of pharmacology and kinetics, and studies
the rates of absorption, distribution, metabolism and elimination/excretion of drugs and
metabolites in biological systems [45, 110].

While pharmacokinetics as a topic describes the macroscopic effects of tracer distribution
and eliminations on measurable concentrations, the additional topic of physiology deals
with the processes determining tracer distribution on the microscopic level, as described
by parameters [100].

A pharmacokinetic model is a mathematical description of drug disposition® in the body.
A complete model mathematically addresses all four flow rates named above. By means
of their quantitative nature, pharmacokinetic models have for years been used as a tool
for studying and predicting concentrations of drugs in the body as a function of time and
dose. They are also used to predict the kinetics of chemical residues in the environment, to

!The term disposition as defined in pharmacokinetics denotes the combined action of distribution and
elimination when the plasma concentration time course cannot be determined (Port et al 1999, AIF).
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solve pollution problems and to provide knowledge of toxicology. As a result, a variety of
different pharmacokinetic models exists; such as compartmental and non-compartmental
models, physiologically based pharmacokinetic models, and population based pharmacoki-
netic models [110].

Compartmental modeling is based on classic kinetics which views the body as a series of
compartments in which the drugs are distributed. Exchange of drugs or chemicals between
the different compartments is described by rate constants which correspond to the flow rates
of absorption, distribution, metabolism and excretion/elimination. Notice that the com-
partments in a compartmental model are not strictly physiological or anatomically based,
and do not always represent real physical body volumes. In some cases, a compartment
can refer to a chemical state (a metabolite of the drug).

In compartmental models, a compartment is actually considered to be a homogeneous and
well mized hypothetical volume or unit. Different units interact by exchanging chemicals.
An animal body can be considered to contain a number of compartments, or a restricted
anatomical region can be divided into compartments in which tissues are kinetically con-
nected. Two-compartmental models can e.g. describe a plasma compartment in interaction
with a tissue compartment.

Organisms are best described as the sum of a network of compartments [110]. A one-
compartment model is best suited if the exchange between potential (sub-) compartments
is so fast that they can be considered as one single unit, i.e. if the drug concentration in
different compartments reach equilibrium simultaneously. Very few chemicals have these
chemical properties, and multi-compartmental models would give a more realistic repre-
sentation of the drug disposition in the body. In a multi-compartmental model, more
than one exponential is needed to describe the decay of drug concentration with time. It
can be difficult to identify and estimate more than three exponents in a multi-exponential
equation. Consequently, two-compartmental and three-compartmental models are most
frequently used to represent a drugs behavior in an animal body.

3.1.1. Two-compartmental modeling

When injected drugs do not distribute evenly amongst all the organs, a one-compartmental
model would not provide accurate information about the drug disposition in the body (cf.
Section 3.1). A two-compartmental model in which drug disposition is bi-exponential would
be a better choice. In the two compartment model, the drug is assumed to distribute into
a second compartment, but elimination is assumed to occur from the first compartment
only. Although this is a simplification, the model can provide information of flux rates in
and out of specific organs.

The theoretical models used in pharmacokinetic MR imaging are typically two-compartmental
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3.1. Kinetics and pharmacokinetics

models where the body (or region of interest, ROI) is considered as two compartments; a
central compartment and a peripheral compartment. The first is usually blood or blood
plasma while the latter can represent a tissue. The two compartments is connected through
a leaky membrane. Intravenous injected tracer (or MRI contrast agent) will immediately

Y
o

E

Figure 3.1.: A general two-compartmental model. Intravenous injected tracer will distribute within
a central compartment blood with tracer concentration Cp and volume Vg, and a peripheral compartment
tissue with tracer concentration Cr and volume Vyp. Tracer is eliminated through the kidneys from the
central compartment alone (kaCp). Tracer flux between compartment 1 (blood) and compartment 2
(tissue) is denoted kjo, and kio for the opposite direction.

distribute in the central compartment and simultaneously in the peripheral compartment.
Tracer fluxes (amount of tracer per unit time) between compartments are described by
transport constants (ki and ko; in Figure 3.1).

In pharmacokinetic MRI, tracer concentration is measured? indirectly by recording alter-
ation of signal intensities. It is desirable to estimate the transport constants and possibly
the volume fractions?.

If the body is considered as two compartments where tracer is injected in the central
compartment, the tracer concentration in plasma can be shown to exhibit a bi-exponential
decay when all tracer is injected. The time course of plasma concentration is determined
by the dose, injection time, normal distribution within the body, and elimination through
kidneys [94]. Tissue-tracer time course, as measured by a time series of signal intensities
in DCE-MRI, is dependent on several factors [78|:

2By knowledge of the contrast agents effect on the signal intensity, contrast concentration can be decided.
3Volume of compartments per unit volume of tissue.
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Figure 3.2.: Time course of tracer in two-compartmental models. A bi-exponential decay in tracer
plasma concentration follows an intravenous injection. Immediately after the end of an injection, plasma
concentration will decay rapidly caused by both distribution to peripheral compartment and elimination
from kidneys (a-phase). After equilibrium, the decay is slower, caused by elimination alone (3-phase).

e Histology/physiology of the tissue (especially the microvasculature and the blood-
brain barrier).
e Distribution volume of the contrast agent.

e Given concentration and dose of contrast agent.

Original T;-relaxation of the tissue.

The agents relaxivity in the actual tissue for a given temperature and field strength.

The MRI scanning method (equipment and sequence parameters).

Tracer concentration during time in each compartment is illustrated in Figure 3.2. Ini-
tially the plasma drug concentration will decay rapidly due to distribution into the second
compartment and the (e.g. renal) elimination from plasma. After reaching equilibrium, the
plasma drug concentration declines more slowly caused by elimination alone. Simultane-
ously, tissue concentration will build up to a maximum concentration at equilibrium and
subsequently decay due to elimination of tracer from the compartments.
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Tumor vasculature can be investigated by time-dependent tissue delivery of injected con-
trast agent [30].

4.1. Effects of MRI contrast agents

In MRI, the signal intensity at a given location in the image depends on a combination
of different factors such as proton density, relaxation times and intrinsic variations in the
magnetic susceptibility (cf. Section B.1, Appendix B). When these properties vary between
regions, good image contrast is achieved.

Exogenous contrast agents (CA) affect the relaxation times of the tissues, thus enhanc-
ing signal intensity-differences between them, They are valuable in detecting pathologies
such as tumors, infection, infarction, inflammation and post-traumatic lesions. Moreover,
use of contrast agents has made development of several new functional MRI techniques
possible!. An introduction to commercial (and future) MRI contrast agents and their
pharmacokinetics is given in Appendix B.

The predominant effect of paramagnetic agents (Gadolinium chelates) at low doses (e.g.
0.1-0.2 mmol/kg) is shortening of T;-relaxation time. This effect is displayed as enhance-
ment of signal intensity in T;-weighted imaging [6]. Clinically approved contrast media for
intravenous injections are low molecular agents such as Gadolinium-diethylenetriaminepentaacetic
(Gd-DTPA). Gd-DTPA is considered a low molecular agent, possessing a molecular weight
of 0.58 kDa. However, transvascular transport (i.e. the product of permeability-surface
area (PS-product)) is more accurately reflected using a contrast agent which is transported
across the vessel wall at a rate slower than its perfusion [45, 96, 109]. Macromolecular con-
trast agents, whose advantages have been demonstrated in preclinical studies, most likely
possess such permeability-limited extravasation [7]. In this study, dynamic MRI measure-
ments were performed using the novel contrast agent Gadomer-17 as enhancement media.

!Some of the FMRI techniques applicable in cancer diagnostics are briefly presented in appendix C.
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4.2. Gadomer-17

Gadomer-17 is a new synthetic dendritic gadolinium complex chelating 24 Gd ions, which
causes high density of gadolinium per molecule of contrast agent. Gadomer-17 has a molec-
ular weight of 17 kDa. However, due to its molecular shape, the CA possess an apparent
molecular weight of 30-35 kDa [37] . A slower molecular tumbling rate causes Gadomer-17
to have a high T;-relaxivity compared to low-molecular-weight agents (<1 kDa) such as
Gd-DTPA [60].

Trimesoyl triamide represents the central core of the Gadomer-17 molecule. The molecule
employs 18 lysine amino acid residues, binding 24 Gd(dota)-monoamide complexes, at-
tached to the central core. The gadolinium complexes are thus situated on the surface
of the dendrimer [66]. The complete Gadomer-17 complex has a low osmolality (about
380 mOsm/kg) and low viscosity (approximately 7 mPas) [60].

Gadomer-17 has been described as a medium-molecular /macro-molecular blood-pool agent.
After an intravenously injection Gadomer-17 distributes almost exclusively within the in-
travascular space with minimal extravasion. This agent thus have a smaller volume of
distribution space compared to the monomer agents which distribute in both the intravas-
cular and the extravascular compartment. Additionally, Gadomer-17 have a longer lasting
vascular enhancement compared to clinically available agents. Even though Gadomer-17
possess sufficient intravascular retention, the molecule is small enough to undergo fast and
quantitative elimination from the body via glomerular filtration [60].

Gadomer-17

Molecular Weight (nominal) 17,454 kDa
Molecular Weight (apparent) 30-35 kDa
Gd-concentration 500 mmol/1
Plasma Protein binding n.d %

Partition coefficient (at pH 7,6; butanol (water)) | 0,0002

Blood /plasma elimination ta: 2,4 min

Half life (Rat) tB: 37,5 min
Clearance (CL total), plasma 9,5 ml min~! kg !
Distribution volume (Vss), plasma (rat) 0,14 L/kg

Table 4.1.: Physiochemical and pharmacological properties of Gadomer-17. These data was
kindly provided by Dr. B. Misselwitz (Schering) by personal mail correspondence. Relaxivity data were
also received. These are presented in Table D.8, Appendix D.

Misselwitz et al. [60] tested elimination of Gadomer-17 after a single i.v. injection in rats.
The dendritic chelate was rapidly and completely eliminated from the body, mainly via
glomerular filtration. No long-term accumulation or retention of the agent was detectable
in organs or tissues. 75% of the injected dose was present one minute after injection.
At five minutes post-injection, 21% was present in blood, and only 1% was still present
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4.3. Contrast agent relaxivity

at 30 minutes post-injection. It was observed an early, rapid decline (half-life of about
two minutes), characterized by distribution in vascular space and partly renal elimina-
tion. Distribution volume in this initial (o) phase was assessed to be about 0.044 L/kg in
rats. The distribution volume thus reflects the plasma-volume, which is about 0.03 L/kg.
Due to their larger size, macromolecular weighted contrast media have in general smaller
distribution volume than do small-molecular weighted agents.

As described, tumor tissues have large extracellular volumes and will thus show strong
enhancement of contrast agents. Agents of low molecular weight will, however, pass un-
selectively across a leaky tumor vessel. Contrast agents of larger molecular size, which
mainly acts as blood-pool agents remaining in the vasculature, can thus provide a better
information on the leakage status of a vessel [97].

Su et al. |96], estimated vascular pharmacokinetic parameters using three different contrast
agents; Gd-DTPA (<1 kDa), Gadomer-17 (35 kDa) and Albumin-Gd-DTPA (70-90 kDa).
It was found that by using Gd-DTPA, one could differentiate between benign and ma-
lignant tumors, but not between tumors of different grades. However, Gadomer-17 could
distinguish high from low grade tumors, but could not detect differences between low grade
tumors and benignant tumors (which despite differences in origin showed surprisingly sim-
ilar enhancement patterns). The largest agent could differentiate both, but achieved low
contrast to noise ratio and thus high variability. Additionally, biological concerns such as
long retention in the body limits this agent for human use.

4.3. Contrast agent relaxivity

Relaxivity characterizes the efficiency with which an agent enhances water relaxation and
thus signal intensity, and can be defined as follows:

The proton relazivity, r1 of an agent represents the enhancement of the re-
laxation rate of water protons in the presence of the paramagnetic compound
compared with that in pure water, referred to a 1 mM concentration of Gd [67].

In pharmacokinetic MR imaging, information about the agents’ relaxivity is required in
order to determine CA tissue concentration from measured signal intensity (cf. Section 5.2).

The relaxivity effect on the contrast agent concentration |Gd| on the T;-relaxation of the
water protons can be expressed as:

ARl = — — — = Tl[Gd] (41)
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where AR; denotes the change in relaxation rate. 1/T; is the T; relaxation rate in presence
of contrast agent (R;) and 1/Tq is the precontrast relaxation rate (Rip). The relaxivity
(r1) is the increase in relaxation rate per unit concentration of tracer, given in mM™!sec™?
[21, 37, 91, 104]. Thus, the higher the concentration and/or the relaxivity of Gd, the shorter
the blood T; and the higher the blood signal intensity in T,-weighted images, assuming
that Equation 4.1 holds for a wide ranges of Gadolinium concentrations [115].

Compared to monomers, macromolecular contrast agents gain increased relaxivity from
their increased molecular weights [67]. In general, Gadomer-17 relaxivity is about 3.5—4.5
times the Gd-DTPA relaxivity [97]. Specifically, the novel agent possesses a relaxivity of
14.7 mM~!s7! at 2 T and 40 °C in bovine plasma (Misselwitz, Schering).
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5. Dynamic contrast enhanced
Imaging

The method of dynamic contrast enhanced MRI (DCE-MRI) will here be described, both
in general and in conjunction with the two pharmacokinetic models which were applied to
extract physiological parameters from the recorded MRI data sets. When used in combina-

tion with pharmacokinetic modeling, DCE-MRI is often referred to as pharmacokinetic
MRI.

5.1. Introduction to DCE-MRI

Conventional MRI is a relatively slow imaging technique. In the late 1980s, when rapid
imaging sequences became available, MRI thus possessed new possibilities. Rapid serial
imaging made it possible to follow the dynamic signal intensity changes after contrast
injection. The basis of such contrast enhanced dynamic imaging' is to;

inject a bolus of a contrast agent into the vasculature (typically a vein) while
rapidly acquiring images (repeatedly) from the anatomical region of interest
being perfused. The recorded contrast agent behavior, in terms of changes in
signal intensities, is then visualized and described mathematically. In some
applications, the time course data are fitted to pharmakocinetic models such
that physiological model parameters can be estimated, and parametric images
be generated.

As opposed to conventional X-ray CT imaging, signals forming the basis of MR images, are
generated from the body itself. Image contrast is derived from differences in signal intensity
emitted from proton-spin populations located in various physico-chemical environments in
the body tissues. By being sensitive to different types of information from the induced NMR,
signal, distinctive image contrast mechanisms can be expoited by selecting appropriate

'DCE-MRI as opposed to To*-weighted dynamic susceptibility contrast MRI (DSC-MRI) is briefly elu-
cidated in Appendix C.
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pulse sequences. In its simplest form, this is referred to as image-weighting, producing e.g.
T;-weighted, To-weighted, or proton density (PD) weighted images [16, 35, 76, 77, 111, 112].

In this study, a Ti-weighted DCE-MRI technique was used, in which image contrast is
based on differences in T4-relaxation times between tissue voxels. While tissues with long
T;-relaxation times (e.g. CSF and edema with high fraction of mobile water) generates low
signals and thereby dark pixels, tissues with short Ti-relaxation times (e.g. adipose tissues
with less proton mobility) generate higher signal intensities, shown as brighter pixels. If we
inject a contrast agent, such as Gd-DTPA, with a T;-shortening effect on water protons in
its vicinity, we will observe enhanced signal intensity in regions where the contrast agent
is transported (vessels) and accumulated (tissue).

Figure 5.1.: Time course of signal intensity from one single pixel (right panel) within selected region
of interest (left panel) covering a part of the tumor region (implanted glioblastoma multiforme). The
dotted line is the result of smoothing the pixel-based curve in the time domain. Maximum signal intensity
in the pixel was achieved 5-7 minutes after bolus injection of a MRI contrast agent (Gadomer-17).

If an anatomical region is sequentially imaged over time after a bolus of contrast agents has
been intravenously injected, a signal-intensity curve can be generated for each resolution
cell (pixel or voxel) in the image. In the first phase (minutes) following injection, the
contrast agent may gain access to the extravascular space? and cause signal increase due to
shortening of tissue Ti-relaxation times. During time, signal increase thus arise from both
the vascular and the interstitial compartments. The injected contrast agent can also diffuse
into tissue compartments further away from the vasculature, including areas of necrosis or
fibrosis. Over a period, typically lasting several minutes to half an hour, the agent diffuses
back into the vasculature (descibed with the rate constant k,) from which it is excreted
from the body (mainly by the kidneys) [69].

After acquiring such DCE-MRI time series, the data can be assessed in two ways: (i)
by explorative or descriptive analysis of signal intensity changes (S(t)), denoted semi-
quantitative analysis, or (ii) by model-based quantification of contrast agent concentration

2Contrast agents (CA) approved for bolus injection in humans, distribute in the vascular- and extravas-
cular (extracellular) space (cf. Appendix 4).
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change (C(t)) and estimation of microvasculatory parameters typically using multicom-
partment, pharmacokinetic modeling techniques. This methods is entitled (quantitative
analysis or pharmacokinetic MRI). The latter approach is employed in this thesis.

5.1.1. Applications and features of DCE-MRI

DCE-MRI provides important applications to biomedical research by adding the dimen-
ston of time to anatomical imaging. Morphological changes are often more unspecific than
are physiological changes. By using DCE-MRI, pathologies and effects of therapy can be
detected before changes in volume or (static) signal intensity can be measured by conven-
tional diagnostic tools. By demonstrating changes in enhancement curves such as slower
initial enhancement, decreased amplitude and slower wash-out, DCE-MRI provides a direct
and early evidence of therapeutic effects [14].

Compared to other imaging modalities such as PET, X-ray CT, ultrasound or SPECT,
DCE-MRI has a number of advantages: (i) the signal to noise ratio and contrast to noise
ratio of MR images are high, (ii) temporal resolution is usually adequate regarding the
underlying dynamics being studied, (iii) spatial resolution is often comparable to that
of corresponding anatomical images, which can be acquired in the same imaging session,
and (iv) the scanning procedure can be repeated several times (follow-up) without harm
to the subject. Moreover, conventional histopathological techniques for characterization
of microvascualature (such as tumor invasion or spread) are, contrary to MRI, invasive.
Such methods can thus not be repeated frequently. Moreover, using histopathological
approaches, the animals may have to be sacrified to perform the tissue investigations. Fur-
thermore, isolated regional biopsies hardly reflect the spatial heterogeneity which typically
occurs in tumor vasculature [41]. With DCE-MRI, the entire tumor or tissue region can be
sampled with high spatial resolution, demonstrating both anatomical (i.e. vascular volume)
and physiological (i.e. permeability) features [8].

Interest in DCE-MRI has grown largely with the development of antiangiogenic and neoad-
juvant strategies for tumor therapy. Although angiogenic inhibitors represent a novel strat-
egy for tumor therapy, DCE-MRI can monitor conventional therapy as well, because vessel
loss is the final common pathway for many therapies such as cytotoxic therapies, radiation
treatment and local therapies (e.g. cryotherapy®) [14]. While cytotoxic therapy effects can
be measured by changes in enhancement kinetics in the tumor, success of radiation therapy
can be detected as a decrease in vascularity [14]. Even though MRI-based assessment of
therapy response can be sensitive, it lacks specifity, reflecting the fact that killing tumor
cells, in all cases ultimately results in vascular compromise[68]. So, although DCE-MRI
can serve as an early marker of therapy response, underlying nonvasular changes can not
be assessed.

3Cryotherapy denotes use of low temperatures in medical therapy.
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For the purpose of therapy planning, it is established that tumors with higher initial per-
meability often respond better to chemotherapy because more cytotoxic drugs are delivered
to the target areas [14, 48]. Thus, in conventional cytotoxic cancer treatment, DCE-MRI
can be of value by predicting the grade of drug delivery to all regions of tumor [45]. In
addition, more permeable tissues can receive more oxygen, and are therefore initially more
radiosensitive.

Parameters derived from DCE-MRI in conjunction with pharmacokinetic modeling tech-
niques have in some cancers been able to predict prognosis. The method have also been
shown to discriminate between scar tissues and recurrent tumor in breast [68].

Methodological problems and challenges with DCE-MRI

Although several promising areas for clinical utilization continually arise, also drawbacks of
the method are emerging as the DCE-MRI is further used, both in preclinical and clinical
studies. Application of DCE-MRI do not substitute for histopathological investigations.
Microscopic disease may still be present even if DCE-MRI studies show no evidence of
tumor. Some malignant processes can also mimic benign contrast kinetics - and some
benign processes (e.g. inflammation) can mimic malignant contrast kinetics. Furthermore,
changes on DCE-MRI after therapy may be non-predictive, and physiological changes in
tumor caused by therapy does not necessarily affect overall patient survival [14].

The method is less applicable in body regions which are heavily affected by respiratory
motions (such as lungs and liver). In other body regions, such as the brain, in which
invasive procedures can be prohibited, DCE-MRI is of great value. Although DCE-MRI
is a relatively easily performed scanning procedure, great care must be exercised in pre-
contrast acquisitions (baseline [14]), injection rate and dose of contrast agent.

As will described later, pixel-by-pixel estimation and corresponding histograms of the pa-
rameters from pharmacokinetic models can provide information about tumor heterogeneity
in a selected region. Although pixel-mapped analyses provide good visualization of tumor
heterogeneity, pixel-based estimations can be difficult, or not even feasible |68]. On the
other hand, ROI-based measurements are limitated by the fact that they must be obtained
from comparable regions to be valid in serial studies. This is because tumor heterogeneity
alone could account for an apparent change in measurements [14].

As already mentioned, many cancers display characteristic enhancement patterns: rapid
and high amplitude wash-in, followed by a relatively rapid wash-out. Benign lesions and
healthy tissues are shown to enhance and wash-out more slowly. It is however important
to keep in mind that microscopic disease can be present even though DCE-MRI assys do
not reveal any signs of tumor. Although extensive neoangiogenesis is a distinctive feature
of larger tumors, small clusters of malignant cells, do not exhibit detectable neoangiogenic
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properties. DCE-MRI can thus only detect tumors in which “the angiogenic switch” has
been turned on [47].

DCE-MRI exhibit great sensitivity to sites of in-angiogenic activity, but a number of benign
processes and high-risk lesions also enhance, reducing the specificity of the method [68|.
Enhancement of non-malignant tissues can be caused by fibroadenomas, inflammatory
conditions, scar tissue, dysplastic changes, sklerosing adenosis, radial scar, atypical ductal
hyperplasia, of lobular carcinoma in situ [63].

Another factor contributing to the uncertainty of quantitative data acquired with dynamic
imaging is the wide scatter of blood volumes, transit times etc. in different organs, or even
within similar organ structures. These differences may be substantial and can overlap the
values of pathologies |77]. Liney et al. [53] go far in claiming that quantifications of DCE-
MRI (breast lesions) have not yet shown a conclusive benefit over empirical approaches
which are widely used in clinical settings, taken into account that signal intensity not
directly reflect contrast agent concentration and analysis thus is complicated.

Although DCE-MRI has an enormous potential and have also entered the clinical stage,
further research is needed to better understand the biological basis of the enhancement
curves, the estimated parameters - and their changes. More efforts are needed to develop
(standardized) DCE-MRI methods that in the best way fulfill the assumptions of the
applied pharmacokinetic models. Alternatively, new physiological models are needed to
explain the DCE-MRI contrast mechanisms coming into play. Thus, preclinical studies are
still very important, particularly when using contrast agents that are not yet approved for
humans, or when the host or the tumor itself is under (genetically) experimental control.
Such animal studies will enable MRI monitoring of novel therapies in conjunction with
other in vivo assays. Moreover, they provide the ability to precisely cross correlate DCE-
MRI with other imaging techniques [14].

5.2. The quantitative approach - tracer kinetic
modeling

As menationed, using dynamic MRI with bolus injection of a contrast agent (hereafter
denoted tracer), quantitative information about regional tissue-enhancment from the signal
intensity time courses can be obtained. A simplistic and frequently applied quantification-
method is based on parameter extraction directly from the observed signal intensity time
courses ,S(t), either pixel-by-pixel (pizel-wise), or region-by-region (ROI-wise, i.e. by spatial
averaging).

One example of such semi-quantitative approach is calculation of 7790 from the intensity
curves. The T90 parameter represents the time taken to achieve 90% of the maximal
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enhancement, defined as the increase in signal intensity in a pre-determined time period
(i.e. baseline). The measure is simple to compute. According to Jackson & Jayson [42],
it is found to be relatively free from variations due to changes in dose of contrast agent,
DCE-MRI imaging sequence parameters, or scanner settings. This favors reproducibility
of the “T'90-method”. A drawback concerning the 790 measure is its failure to distinguish
between contrast changes resulting from intravascular changes and those resulting from
actual leakage. The value of 790 will be highly affected if large vessels are present in
a voxel, and may thus provide a problem when analyzing large regions of interest since
separation of signal change effects due to blood flow and contrast leakage is impossible.
Contrary to the study by Jackson & Jayson [42|, Jackson [41] claimed that metrics such
as 790 has the disadvantage of being unpredictably affected by variations in scanning
protocol. Padhani et al. [68] also claim semi-quantitative measures to be limited by the
fact that they do not accurately reflect CA concentration in the tissue and can be influenced
by scanner settings. Additionally, it can be difficult to understand what semi-quantitative
metrics mean physiologically and whether they are robust to variations in cardiac output.

One way out of these problem with extracting metrics directly from the “raw” signal in-
tensity time curves, is attempting to estimate inherent physiological parameters through
application of an appropriate mathematical (PK) model*. The purpose of such mathemat-
ical modeling is

to define the relationship between observed data (i.e. a time series of signal
intensites) and the physiological (microvascular) parameters that affect the time
course of the injected tracer.

In DCE-MRI, various pharamacokinetic models has been used for this purpose, based on (i)
converting signal intensity (S) to tracer concentration (C), and (ii) by introducing compart-
ments and intercompartment fluxes of tracer to formally describe underlying physiological
transendothelial transport and tracer accumulation in the tissues (i.e. pharmacokinetic
modeling).

In favor of such pharmacokinetic (PK) quantification, the calculated dynamic concentra-
tion curve C'(t) is much more independent of methods and conditions used to acquire the
dynamic MRI measurements than S(¢) is [77, 99]. Moreover, with the use of tracer kinetic
modeling, there is the potential for extraction of important biological information that is
not obtained by simple analysis of the signal intensity time courses.

4This approach is analogous to estimating the apparent T1- or T2-relaxation times in tissue from observed
data using appropriate solutions (for the applied pulse sequence) of the Bloch equations.
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5.2.1. Tracers in pharmacokinetic MRI

In general, tumor vessels are shown to have wide endothelial junctions, a large number of
fenestrae and transendothelial channels which may have been formed by vesicles, and a
disrupted or absent basement membrane (cf. Chapter 2. These properties allow leakage
of large molecules into the interstitium in which they are further distributed by molecu-
lar diffusion and convection due to pressure gradients within the interstitial space. The
size of the molecules is therefore a major factor determining extravascular transport and
distribution [95].

Most contrast enhanced MRI studies of tumors have been performed with low molecular
weighted contrast agents such as Gd-DTPA. The molecular size of these chelates may,
however, be too small to detect small differences in permeability and hence distinguish
between benign and malignant tumors (i.e. tumor vessels are non-selective for passage
of small molecules) [37]. The rapid distribution of Gd-DTPA is thus not dependent on
transvascular transport. Hence, Gd-DTPA is not the most favorable agent to assess vas-
cular permeability. Conversely, the distribution of a macromolecular agent is determined
by transvascular transport. After intravenous injection, macromolecular agents (>30 kDa)
would remain mainly in the vasculature, and leak into tissue depending on the degree of
vessel permeability. In addition, they more closely match the size of the pores in capillary
vessels [37, 54, 95].

Furthermore, the vascular volume can be more accurately assessed using agents which
remain in the vasculature for a prolonged period of time [96]. Use of macromolecular
agents in DCE-MRI is still at the preclinical stage, but very promising [14, 68|.

Contrast agent dose and injection procedure

Rinck and Muller [78] recommended a dose of 0.1 mmol/kg of body weight for gadolinium-
based (extracellular) agents as a lower limit of diagnostically sufficient contrast enhance-
ment for clinical imaging at all field strengths (0.0002-4.7 T). It was further implied that
increasing the dose would influence positive contrast enhancement more at high than at
low fields. However, high doses (above 0.2 mmol/kg) can cause reversed enhancement due
to competitive Ty effects.

Choyke et al. [14] propose a slow bolus injection duration (40-60 seconds). Several imaging
time points can then be obtained during the injection period. These time samples are
important for establishment of the wash-in phase of the curve. If injection speed is fast
compared to imaging speed, only one, or few, time points determine the wash-in phase.
If very few data points from this initial phase of tracer uptake are present (i.e. if bolus
injection is very fast), proper estimation of vascular volume fraction can be difficult [109].
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On the other hand, a rapid bolus achieves a given tissue concentration of agent in a shorter
time and may require a lower dose than a more slowly injected bolus [103]. Additionally,
errors in estimated exchange rates caused by renal failure is reduced using a short bolus
injection [41, 48, 47, 103].

Tofts and Berkowitz [103] compared constant infusion rate injections with bolus injections,
and found that in case of reduced renal function, the error in calculating permeability from
a certain value of enhancement is lower for the bolus than for infusion. Alteration in kidney
function, will affect the clearance of contrast from plasma and thus the blood concentration
curve, and the error will increase with time. As a particular tissue concentration (and hence
enhancement) is reached earlier with a bolus than with an infusion of same dose, a bolus
permits permeability to be measured earlier than does an infusion (i.e. total imaging time
can be shorter).

At last, a bolus injection is not only much easier performed (no special equipment except
from a timer is needed), but it has a significantly higher reproducibility compared to
infusion method which often fail to produce steady plasma concentrations. Bolus injections
produce more efficient and effective procedures which require less total tracer and less
imaging time [42].

5.2.2. Assessing tissue contrast concentration
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Figure 5.2.: Signal intensity course converted to contrast-concentration curve. In DCE-MRI,
signal intensity with time (S(t), upper right curve) for selected ROI within tumor must be converted to Gd-
concentration with time (C(t), lower curve) in order to extract physiological parameters by PK modeling.
Open circles represent time points for acquired images. These curves are generated for a selected tumor
region demonstrated in upper left image as a bright spot.

As there is no standard units for signal intensity (SI) in MR imaging, the signal intensity
curves (S(t)) derived from dynamic measurements, provide only qualitative characteristics
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of bolus passage through tissues. However, application of pharmacokinetic models requires
physical quantities such as concentrations. Therefore the intensity time curve must be
converted to a concentration time curve (C(t)) which is fitted to a theoretical model of
pharmacokinetics to acquire quantitative information of physiological parameters.

Signal intensity in any pixel in the image depends on both the local tissue parameters;
proton density, T -relaxation time and Ts-relaxation time, and on the sequence parameters;
echo time (TE) and repetition time (TR). For spin echo sequences (SE), as used in this
study, signal intensity (SI) in a pixel at a given time will be given by (assuming TR >>
TE):

SI = p-eTB/T2) (1 — CTRITH] [94] (5.1)

where TE is the echo time (i.e the time from excitation pulse to collection of signal from
echo), and TR is the repetition time of the sequence (i.e. the time between two 90° exci-
tation pulses). p is the proton density, whereas T; and Ty is the tissue T;-relaxation time
and tissue Ts-relaxation time, respectively.

Assuming negligible CA effects® on p and T, the relative change in signal intensity is given
by:
[(CA)  [1— el TR/T)
ngp_ SICA) _ [1—el TR
ST [1 — e(—TR/Tlo)]

where SI(CA) is the signal intensity in presence of contrast agent and SI represents the
signal intensity in absent of contrast agent, given from baseline (pre-contrast) images ac-
quired prior to injection. T; (unknown) represents the T;-relaxation time in presence of
contrast agent, and Ty is the inherent tissue T;-relaxation time without contrast agent
influence. Ty is calculated from a series of SE images with different TR times, to obtain
co-registered T;-maps.

(5.2)

As described in Chapter 4 (cf. also Appendix B), Gd-based MRI contrast agents affect
signal intensity by shortening T-relaxation times of the protons in tissues in which injected
contrast agents accumulate. Generally, shortening of T; will increase relaxation rate (R;
= 1/T;). Assuming that the increase in relazation rate (Ry) is directly proportional to the
concentration of Gd-based tracer® we have:

4] = (Til _ Tim) « :—1 (5.3)

where CA is the total tissue concentration of tracer, T is the relaxation time at a given
tracer concentration (i.e. the shortened value), Ty is the relaxation time in absence of
tracer (i.e. intrinsic T; of the tissue) and r; is the relaxivity of the actual contrast agent at

5T, « Ty in most tissues. So, if CA have equal effects on Ty and Ty, the relative drop in Ty will be
relatively larger than the relative increase in Ts.

bie. ARy = (7; — q7) = k-[CA], where k is a contrast agent dependent constant denoted T;-relaxivity
(=r1)
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a given field strength and temperature [37, 77]. A “fast water exchange regime” assump-
tion, implying “equal” T relaxation in extra- and intracellular spaces, has been generally
accepted [21].

Thus, the concentration time curve, C(¢) can be solved from Equations 5.2 and 5.3 using
plug in values for TR, r&edmer=17 T o from T;-maps, and ASI from the observed signal
intensity time curve, S(%).

Notice that inherent tissue T;-relaxation times must be estimated in order to generate
the concentration time course (Figure 5.3). By fitting the resulting concentration-time
curve curve to pharmacokinetic models, values of physiological parameters such as e.g.
permeability, vascular volume fraction and volume of leakage space can be derived.

Figure 5.3.: Time course of tissue contrast is a result of change in T;-relaxation. Time course
of tissue concentration (in mM, left panel), and corresponding T;-relaxation (in ms, right panel) after
bolus injection of Gadomer-17. Due to the injection of contrast agent, T;-relaxation time is shortened,
causing signal intensity to increase (by-passing effect). It can be seen from this figure that maximum effect
is reached about 7 minutes post-injection.

5.2.3. The compartment model by Tofts et al.

Dynamic MRI data were in this thesis analyzed using two differnt pharmacokinetic models,
the Tofts model and the Su model, respectively. To give a general description of the “Tofts
model” used in this thesis, the concepts and model assumptions, presented in three previous
reports by Tofts and coworkers [105, 102, 104], is presented in the following.

A pioner in pharmacokinetic modeling applied to dynamic contrast enhanced MR imaging
of pathologies is Paul Tofts at University College in London. The Tofts model is, in the
Matlab-implementation being used, reduced to solving Equations (6a) and (6b) in [105],
using nonlinear least-squares data fitting to estimate the model parameters k (“transfer
coefficient”) and v; (“fraction of lesion tissue that the leakage space occupies”).

Tofts compartment model is graphically introduced in Figure 5.4. The notations and

36



5.2.  The quantitative approach - tracer kinetic modeling

symbols being used are presented in Table 5.1. Two compartments are considered in case
of brain lesions: a central plasma compartment and a peripheral lesion compartment. The
two compartments are connected through a leaky membrane. The tracer is injected into
the vascular compartment. Only the central compartment is in “direct” connection with
the kidneys, by which injected tracer finally is excreted from the body.

Bolus injection

of contrast agent
Not present in brain

-
-

Fl
“+

"Whole body .' Leakage space
Extracellular Extravascular

Plasma Krans

space . extracellular

(lesion) space

L

K2
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Figure 5.4.: The compartment model of Tofts & Kermode (1991) [105]. The parameters esti-
mated by Tofts model in this thesis are the transfer constant, K" between the blood plasma and the
extravascular extracellular leakage space (EES), and the fraction, v, of EES per unit volume of tissue.
From these two parameters we also obtain ke, = K" /v,, the rate constant between EES and blood
plasma. The lesion leakage space (EES) is conceptually the abnormal space in pathological tissue to which
the tracer has access, and which is distinct from normal extracellular space. Other parameters used in
the calculations are; the time-dependent plasma concentration, C),(t), and blood plasma volume per unit
volume of tissue, v,. The “whole body” extracellular compartment is used to derive the equation for the
plasma concentration curve, Cp(t), as a bi-exponetial decay curve. This derivation incorporates the rate
constant K7, describing the flux rate of tracer per unit concentration difference between plasma and extra-
cellular whole body space, and excretion rate, K> of tracer from plasma in the kidneys. The two amplitudes
and the two decay rates of the bi-exponential plasma curve could be estimated from experimental plasma
concentration data provided by Dr. Misselwitz, Schering for the “NG2 project”.

The Tofts equation being fitted to the data (cf. e Equations (6a) and (6b) in [105]) is:
Ct(t) = D{bleimlt + b267m2t + bgeimst} (54)

where D is the injected dose of contrast agent, ms = K3 [y, is the ratio (= k.p) between the two free
parameters in the model; by = K%3"q, /(m3 —my), by = K*¥a; /(m3 —my), b3 = —(b; + b2). The pairs
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Symbol Definition Unit
Ktrans Volume transfer constant between blood plasma and EES min—!
(Kin = Kout = K'ra"3): same as k [105], and k75° [102]
Ve Volume of extravascular extracellular space per unit volume of tissue -
(interstitial space, leakage space) 0 < v, <1
kep Rate constant between EES and blood plasma min !
(kep = Ktrans/ve)
D Injected dose of contrast agent mM kg~!
Vp Volume of blood plasma per unit volume of tissue, 0 < v, <1 -
V; Total tissue volume ml
V, Total blood plasma volume. V, =v,V; = (1 — Het)V, ml
V. Total extravascular extracellular (EES) volume ml
(O Tracer concentration in arterial whole blood mM
Cy Tracer concentration in veneous whole blood mM
E Initial extraction ratio (fraction), when there is no backflux from -
ESS to plasma; E = (C, — C,)/C, [104] e:q.(21) 1 — ¢~ PS/F(1-Hct)
G, Tracer concentration in (arterial) blood plasma mM
Cp=Ca/(1 - Hct)
Ce Tracer concentration in EES (leakage space) mM
C Tracer concentration in tissue. C; = Cpv, + Ceve = Ceve mM
(assuming contribution from plasma compartment is negligible)
P Tissue density; assuming p =1 g ml™!
F Capillary flow of whole blood per unit mass of tissue ml g~! min™!
P Total permeability of capillary wall cm min~!
S Surface area of capillaries per unit mass of tissue cm? g_1
PS The permeability surface area product per unit mass of tissue, m] min—! g_l

Table 5.1.: Parameters and units in Tofts pharmacokinetic model. The parameters K!"**% and
Ve, listed above the double horizontal line, are the two parameters in the Tofts model being estimated from
the calculated concentration-time curves (using nonlinear least-squares fitting). I have also reported ROI-
wise and pizel-wise results for the calculated the k., parameter - which corresponds to the Ky (= ka/ve)
parameter in the Su model. EES = extravascular extracellular space; Hct = hematocrit (volume fraction
of whole blood taken up by cells). Table has been modified from Tofts [102] and Tofts et al. [104].
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5.2.  The quantitative approach - tracer kinetic modeling

of constants a; and as, and m, and my are the concentration amplitudes and decay constants, respectively.
These were specified from the bi-exponential plasma concentration curve data provided by Dr. Misselwitz,
Schering.

The tri-exponential Equation (5.4) is a solution of an initial value problem related to a coupled linear
system of first-order differential equations. This coupled linear system can be formulated directly from the
compartment model using simple “conservation of mass” principles, the above solution and its assumptions.
Following assumptions were included in the compartment model by Tofts et al. [105]:

e After bolus injection, tracer is distributed instantaneously in central compartment
and simultaneously to the peripheral compartment. At time zero, the plasma con-
centration (C,) equals the dose injected divided by the volume, V, (C,(0;) = D/V,,
C.(04) = 0). Immediately after all tracer is injected, the plasma concentration will
start to decline.

e The plasma compartment has a tracer concentration C, and a volume fraction v,’.

The lesion compartment, or EES, has a tracer concentration C, and a volume v, per
unit volume of tissue (0v,1).

e All tracer injected and distributed within the EES compartment will in time return
to plasma and eventually be eliminated through the kidneys (K; > Kj).

e Signal from intravascular tracer was ignored by assuming a very small vascular com-
partment compared to the EES (v, < v.). Thus tissue tracer concentration was
defined to C; = Cgve.

e Tracer was assumed to be well mixed within compartment.

e Flow is assumed high enough (PS < F) to replace tracer leaking out of plasma, thus
preventing that C, is locally depleted due to leakage of tracer. The venous tracer
concentration (C,) thus equal the arterial tracer concentration (C,).

e The flux of tracer from plasma to EES was assumed proportional to the transcapillary
difference in tracer concentration. The transport of tracer is isodirectional; i.e. the
transport rate out of plasma equals the rate of transport back into plasma. At time
of equilibration, tracer concentration in plasma equals tracer concentration in EES

(Cp = Ce).

e Basically, Tofts model imply that when intravascular signal contribution is ignored,
contrast agent in tissue depend upon three important factors; the time course of
plasma concentration, the influx volume transfer constant (K%"¢) and the fractional
EES volume (v.). Mathematically, tracer flux is expressed by: 92t = K'2(C,, — Cy /v

7(VP = Vp/Vt) and V, = Vb(l—HCt).
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The estimated transfer constant K™ reflects a combination of flow (F'), permeability of
capillary wall (P), and capillary surface area (S). In case of sufficient flow where tracer
flux between plasma and leakage space is permeability limited (i.e. PS < F'), we will have
K'rans ~ PSp (as assumed above). In cases where flux of tracer across the endothelium
are flow-limited (i.e. F < PS) we will have K% ~ Fp(1 — Hct).

5.2.4. The compartment model by Su et al.

The second compartmental pharmacokinetic model employed in this thesis is referred to as
the Su model [94]. The Su model is also a two-compartment model (which includes blood
plasma and extravascular extracellular space, respectively), but in contrast to the Tofts
model a vascular volume fraction (v,) is also included, whereas the Tofts model ignores
the contribution of intravascular tracer to the total tissue concentration.

The Su model also includes two different transport constants, ki from plasma to interstitial
space and ks from interstitial space back into plasma, as opposed to the Tofts model which
assumes only simple diffusive transport with isodirectional tracer-flux between the two
compartments. In contrast to the Tofts model, the Su model thus allows convection as
an additional tracer-transport mechanism between plasma and extravascular leakage space
(and back-flux from interstitium to plasma). Taking Starling forces into consideration, the
transport constants k; and ks need no longer to be equal.

Beside concentration gradients, driving forces for transvascular flow® will be proportional
to the capillary permeability surface area product (PS), and the difference between the
capillary hydrostatic pressure (P,) and the interstitial hydrostatic pressure (P;) minus the
difference between capillary osmotic pressure (COP,) and the interstitial osmotic pressure
(COP;). Starling forces also explain “permeability edema” which can occur in tumor regions
with leaky capillaries (peritumoral edema). Aspects of transendothelial transport and fluid
balance (included Starling forces) have been introduced in Appendix A.

A graphical representation of the Su model is given Figure 5.5. Symbols and their def-
initions are given in Table 5.2. Further description of implications important for the
Matlab-implementation of Su (and Tofts) model have also been added here. These have
been written in footnote-size as they represent “methodological issues”.

In contrast to Tofts model, which assumes a single bi-exponential plasma concentration
decay curve, the Su model introduces a two-step plasma curve (cf. Figure 5.6):

_ {(a1 + ag)/to}t = (ao/to)t if t <t
Cp(t) - { ale—ml(t—to) + a2€_m2(t_t0) lf t > tO (55)

8Su et al. describe diffusion as proportional to S(C,-C.) and convection as proportional to the vessels
leakage rate, which itself is proportional to [S(P,-P;) - (COP,-COP;)] (cf. Appendix A).
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of contrast agent
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Figure 5.5.: The compartment model of Su, Jao & Nalcioglu (1994) [94]. The Su model as-
sumes total concentration of tracer in tissue (Cy(¢)) to be defined by contributions from both the plasma
compartment (Cp(t),vp) and the leakage space (Ce(t),ve). The model allow concentration of tracer in
blood and EES to be expressed explicitly, and derives a parameter-estimate representing vascular volume
fraction (blood volume). The Su model allows different transport constants in and out of tissue; k; and k,,
respectively. This implies that mechanisms for transvascular transport of tracer may include convection
(i-e. transport is not exerted by diffusion exclusively). The three free parameters derived by the Su model
are Dy, D; and K5 (cf. Table 5.2). These are related to vascular volume fraction, tracer accumulation in
tissue (i.e. permeability) and rate of wash-out from tissue, respectively. Tracer accumulation in tissue (D;)
is theoretically related to Tofts “permeability-parameter” K¢ and wash-out rate (K>) is by definition
comparable to Tofts efflux rate constant k.p.
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5. Dynamic contrast enhanced imaging

Symbol Definition Unit
Dy Derived parameter related to the initial rising slope of the mM
concentration time curve and vascular volume fraction; i.e. Dy = vpag
D, Derived parameter related to the rate of tracer accumulation mM min~
in the interstitial space (EES); i.e. D1 = veaoK1
K, Transport constant for tracer from interstitial space (EES) back min~?
back to the plasma compartment, Ky = k2 /ve
ky Transport constant from plasma compartment to interstitial space (EES) min *
ko Transport constant from interstitial space (EES) back into plasma min—!
Vp Plasma volume fraction in selected ROI -
e.g. plasma volume per voxel volume
Vp Vascular fraction of whole blood in selected ROI -
vp = vp(1 — Het)
Ve Leakage space volume fraction in selected ROI -
e.g. EES volume per voxel volume
Cp Plasma tracer concentration (amount of tracer in plasma per unit volume) mM
C. Leakage space tracer concentration, i.e. the amount of mM
tracer accumulating in EES per unit volume
Cy Total tissue concentration, i.e. Cy(t) = vpCp(t) + veCe(t) mM
Ky Transport constant from plasma to EES, related to leakage space min—!
ie. K1 = ki/ve
ag Maximum tracer concentration in plasma (ag = Y., a;), occuring mM
at time t =t
to Time from start of injection (¢ = 0) to time of peak min
plasma concentration, i.e. Cp(to) = ag
At Delay time from start of injection (¢ = 0) to tissue delivery min
ie. Cp(t) =0for 0 <t < At
m; Decay rate of the i-th term in the multi-exponential plasma concentration min~!
decay model, i =1,...,n
a; Amplitude (weight factor) of the i-th term in the multi-exponential
plasma concentration decay model, i =1,...,n
n Number of terms in the multi-exponential plasma concentration -
decay model (the Su model assumes n = 2, i.e. bi-exponential decay)
X The ratio of amplitudes, a; /a2 defined in the plasma concentration model -

Table 5.2.: Parameters and units in the Su pharmacokinetic model. The parameters Dy, D; and
K>, listed above the horizontal double line, are the three parameters in the Su model that are estimated
from the calculated concentration time curves (using nonlinear least-squares fitting). Note that the present
notation is slightly different from that used in the original report by Su et al. [94], in order to be consistent
with the previous formalism of the Tofts model (Table 5.1). EES = extravascular extracellular space. Hct
= hematocrit .

42




5.2.  The quantitative approach - tracer kinetic modeling

where ag is the maximum tracer concentration in plasma (occurring at ¢ = tg), m; and my are the decay
rates of each of the terms in the bi-exponential decay, and a; and a- are the corresponding concentration
amplitudes. The plasma concentration model is motivated from the following reasoning. Just after bolus
injection, the plasma concentration increases steadily following linear increase from ¢t = 0 to the time point
t = to when maximum plasma concentration is attained. The most important factor determining ¢y, is
injection time (which is kept fixed in all experiments). to is assumed equal between animals or between
different ROIs in the animal (justified experimentally by Su et al. (1994), who found very little variation,
so that the parameter t, could be specified rather than estimated)®.

The second branch of the the plasma concentration function defined in Equation 5.5 incorporates a weighted
sum of two exponential decay terms. The first term relates to the fast distribution of tracer throughout
the body, with amplitude (weight factor) a; and decay rate m;. The second term relates to a slower phase
of renal elimination/clearance, characterized by weight factor as and decay rate ma.

Methodologically, for calculating the plasma curve in the Su model, the decay rates m; and my were
fixed, and so were the concentration amplitudes a; and as (and the ratio z = a;/ay). Since we wanted
to compare the pharmacokinetic models of Tofts et al. and of Su et al. for a given experiment, and even
for a given pixel, these parameters were all set the same in the two models'?. Viewed from a faster time
scale, the plasma concentration Cp(t) might be characterized by a small delay At such that C,(t) = 0
when 0 < ¢ < At and Cp(t) = (ao/to)t for At <t < to. This delay At will thus describe tracer delivery
time to tissue. In our implementation we have neglected this delay time since it occurs very early along
the observed time courses and also at a finer time scale (At < 9 s in [94]).

Combining the plasma concentration time curve, Cp(t) described in Equation( 5.5) with the following two

equations (derived from the model in Figure 5.5)

dcC,
dt

=k Cp— ks C, (5.6)

Ve
or equivalently, % = K7 Cp — K> C, (using the definitions of K; and K5), and
Ci(t) = vp Cp(t) + ve Ce(t) (5.7)

we arrive at the solution for the total tissue concentration curve (cf. Equation (9) in [94]):

Poff) + dip e -+ Re(5) e
o) o) (e e s
t(t) = < + (Do+ﬁ) (H%)e—m(t—to) (5.8)
+ [ 0+ 2 - ()
D 1 —Ka(t— 1
\ - Kz—1m2 (m)] € ) if t> tO

The three model parameters being estimated by an iterative nonlinear least-squares fit (i.e. nlinfit in
Matlab) to calculated tracer concentration time curves, were Dy, Dy and K> (cf. Figure 5.5 and Table 5.2).
Initial parameter guesses in the fitting procedure were taken from values in Table 2 of [94]).

9%t is regarded as a universal constant for the experimental protocol used in this thesis.
0Their values (a; = 38.8, az = 0.79 [kg 17!] (z = a1/as = 49.2) and m; = 0.417, my = 0.027) were
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Cp(t), t0=0.7, A0=0.50 (98 frames) ) Ce(t), 10=0.7, A0=0.50, K1=0.25, K2=0.48 (98 frames) )
T T T T T T T T T T T

0.08[

Plasma [Gd]
Leakage space [Gd]
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Figure 5.6.: Plasma-time course and tissue-time course of intravenously injected Gd-DTPA
(Su’s model). The time course of gadolinium plasma concentration (left) is determined by injection
dose, injection time, normal distribution within the body and clearance via the kidneys. In Su’s model,
plasma tracer concentration is assumed two-parted (i.e. a linear increase followed by a decay). The right
panel demonstrates Cr(t); the time course of contrast agent concentration in tissue, which is fitted by
non linear-least squares to estimate parametric values related to physiological processes. In other words,
each tissue concentration curve has its own characteristics which can be described by Dy, D; and Ko; peak
enhancement is determined by D;, the decay rate is determined by K, and initial rising slope corresponds
to Do.

5.3. Approach to the problems

DCE-MRI as a method have previously been tested extensively, both experimentally and
clinically, as a method to characterize tumors regarding the state of angiogenesis and other
characteristics of microcirculation. However, an established technique is not yet gener-
ally accepted (neither for scanning nor post-processing of dynamic data) and quantitative
outcomes of DCE-MRI are thus not easily compared —which in turn makes physiologi-
cal interpretation of the estimated parameters difficult. Additionally, the type of contrast
agent best suited for DCE-MRI is yet not decided. Therefore, a main goal of this thesis
was to demonstrate feasibility and pitfalls related to DCE-MRI estimations using two dif-
ferent theoretical PK models (denoted Su’s model and Tofts’ model). The MRI data being
analyzed were obtained using the novel contrast agent Gadomer-17 which is considered
macromolecular compared to the commercial Gd-DTPA.

Thus, for a selection of multispectral data sets (acquired in the “NG-2 study”), parameter
estimation were performed using both Su’s model and Tofts’ model. The pharmacokinetic
models were intentionally evaluated with respect to their theoretical assumptions, their
applicability to describe and differentiate tumor physiology (evaluated by analyzing tu-
mors development during time), their applicability to describe microvasculature of normal
tissue regions and their numerical fit to the recorded dynamic data. Moreover, opera-

obtained from plasma concentration curve data provided to the “NG2 project” by Dr. Misselwitz.
Time from injection to peak plasma concentration, to, was set fixed to 0.5 min (as in Su et al., 1994).
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tor dependent variability was evaluated, due to (i) manual delineation of ROIs and (ii)
ROI selection on basis of different CA enhancement-templates. Additionally, a comparison
analysis (Akaike’s information criterion) was performed to see which of the PK models was
more likely to be correct (i.e. provided the best fit). Both ROI-wise and pizel-wise analysis
were performed. Their respective advantages and disadvantages have consequently been
discussed.

By addressing these issues, I wished to contribute to a closer general understanding of
DCE-MRI as a tool in assessing physiology of microvasculature. More specifically, the
“problem areas” which have been studied are:

e Operator variability due to manual ROI depiction

e Variability of ROI tracing-outcomes using Gd-DTPA as enhancement tem-
plate compared to those using Gadomer-17 as enhancement template

e Addressing spatial heterogeneity within the tumor region by depicting
several smaller ROIs.

e Differences in parameter estimates (and variance in fit) between four dif-
ferent tissue regions.

e Differences between week-five and week-seven NG-2 tumors (i.e. time de-
velopment).

e The goodness of model-fit to observed data

The “problem areas” are further described in Section 6.5.
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6. Methods and material

The present work is based on the multidisciplinary “NG-2 Project”. The MRI examination
protocol was developed by Cecilie Brekke in collaboration with Christian Brekken (SINTEF
Unimed MRI Center, Trondheim). I took part in the animal scanning at the MRI center in
Trondheim during the “fifth-week post-implantation scanning”. My supervisor converted
and imported scanning data into Matlab and wrote the Matlab-code being used.

Using these tools and a carefully selected set of multispectral data from the imaging experi-
ment, [ have performed subsequent image analysis, statistical evaluation and interpretation,
as reported in Section 6.4 in order to provide an evaluation of DCE-MRI as a method for
assessment of physiological parameters.

6.1. MR scanning procedure

6.1.1. Subjects

Repetitive cerebral MRI scans were successfully performed on 17 immunodeficient Nude
rats (Han: rnu/rnu Rowett), at five and seven weeks after implantation of brain tumors
(human glioblastomas) as a part of the “NG-2 project”.

Suspensions of spheroids containing about 4000 human glioblastoma (GBM) U251! spheroid
cells had been stereotactically injected into the right subcortex of the rats. The injection
site was localized 1.5 mm right of the sagittal suture, 0.5 mm posterior to bregma and at a
depth of 1.5 mm from the brain surface. The rats had been anesthetized with subcutaneous
injection (fentanyl/fluamisone/midazolam) prior to surgery. For aggressive tumors, human
glioblastoma? cell lines was transfected with the rat NG-2 gene® prior to injection. The

! American Type Culture Collection, Rockville, Maryland.

2@Glioblastoma multiforme (GBM, grade IV astrocytoma) is the most common and most aggressive of the
primary brain tumors.

30ver expression of NG-2 have been correlated with aggressive tumor development in terms of increased
growth rates, cellular proliferation and angiogenesis [13].
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implantation procedure will not be further exploited as it was part of an other project.

The rats were of both sexes. Nine rats had parental wild type tumor (slow-growing),
while the remaining eight had a NG-2 positive tumor (fast-growing/aggressive). Af-
ter surgery, the animals had been given a recovery time of one week before they were
transported to Trondheim, where they got additional two weeks of recovery prior to MRI
scanning.

Prior to the experiment, a few animals went through pilot tests to optimize the imaging
sequences and procedure. It was decided to perform the study using Gadomer-17 for
dynamic enhancement imaging. Because of its stronger ability to shorten T;-relaxation
time (i.e. higher R1 effect, cf. Section B.1, Appendix B), pilot tests revealed higher signal
enhancement in dynamic scan using this novel contrast agent compared to the commercial

Gd-DTPA.

Before and after examination, the rats were kept in the animal facilities at St. Olavs
Hospital in Trondheim. Effort was made to keep the environment as pathogen-free as
possible to avoid infections. In case of illness such as infections —or behavioral symptoms
due to the brain tumor, animals were to be sacrificed.

6.1.2. Examinations

MR examinations were performed by Cecilie Brekke (University of Bergen), Christian
Brekken and Tina Bugge (both SINTEF Unimed MRI Center, Trondheim).

The rats underwent successive MRI scans on a 2.35 T Bruker Biospec Avance DBX -
100 horizontal bore magnet (Bruker, Germany). The animals were placed in a rat-head
radiofrequency (RF) coil with inner diameter of 4 cm during scans. To ensure stable tem-
perature while anesthetized, the rats were placed supine on a cradle filled with circulating
fluorocarbons at 37-38 °C. Total time of imaging experiment was about 130 minutes with
a total scan time of approximately 80 minutes.

Prior to MR examination each animal was first anesthetized with 3.5% Isofluran in a
mixture of 70%/30% N3/O, and further continuously kept anesthetized during scanning
with 2.0% Isofluran in a mixture of 70%/30% N3/O,. The anesthetic gas was provided
by a face mask. Total time of anesthesia was in a range of 2 hours—+to 2 hours, 45 minutes.

When anesthetized, a polyethylene catheter was placed in right femoral vein for intravenous
injection of contrast agent. The wound was anesthetized with Xylocain spray and sutured.

After the MR scanning procedure, the catheter was removed. The rat was kept in a cage
by itself to make sure the bleeding had stopped before being re-united with its cage-mates.
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Figure 6.1.: The scanner and anesthesia equipment. The MRI scanner (left panel) being used was
a 2.35 T Bruker Biospec Avance DBX-100 with 40 cm bore size. Right panel shows equipment by which
animals were anesthetized.

All animal procedures were performed using protocols approved by The National Animal
Research Authority (Oslo, Norway).

6.1.3. Enhancing agents

In the “NG-2 project”, two contrast agents of different molecular weights were used to
enhance tumors. The new dendritic contrast agent Gadomer-17 were used for dynamic
scanning (cf. Section 4.2). The molecular shape of this agent causes a relatively large
apparent molecular weight of 30-35 kDa. It is therefore to be considered as a macromolec-
ular (or mediomolecular) weight agent compared to the commercial Gd-DTPA (Omniscan,
Amersham Health), which were used post-dynamic to provide accurate delineation of tu-
mor. Gd-DTPA possess a molecular weight of 0.58 kDa. Properties of this agent have been
elucidated in Appendix B.

Most DCE-MRI studies are performed with low molecular weight Gd-chelates leaking
through the smallest capillary pores in tumor. However, larger molecular weight agents will
leak from the microvessels at a rate related to the number and size of the pores, and other
active transport mechanisms such as vesiculo vacuolar organelle [14, 24]. Hence, in case
of tumor heterogeneity with patches of abnormal and leaky microvasculature, Gadomer-17
has the potential to more accurately describe this heterogeneity compared to conventional
low molecular weight MRI contrast agents like the Gd-DTPA family [60, 109].
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Both types of agents have neutral pH and low osmolarity. They are also both completely
eliminated from the body, mainly via renal excretion [64, 60, 85]. Pharmacokinetic prop-
erties of both agents have been described in Chapter 4 (Gadomer-17) and in Appendix B
(Gd-DTPA).
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Figure 6.2.: Tissue uptake of Gadomer-17 and Omniscan. Leakage of Gadomer-17 is permeability
limited due to its large effective molecular size and thus provide a better visualization of tumor hetero-
geneity than does Gd-DTPA (Omniscan?™). Left panel: Image from the dynamic series of an aggressive
(NG-2) tumor. Tumor is enhanced by Gadomer-17 and reveals a clearly heterogeneous appearance with
high peripheral contrast leakage surrounding dark hypodense necrotic regions. Right panel: Image of the
same tumor from the post-contrast image. Tumor is enhanced by Gd-DTPA and shows higher and more
homogeneous contrast agent leakage, not differentiating the intra-tumor regions as well as Gadomer-17.

After performing the dynamic MRI measurements, Gd-DTPA was given as a bolus injection
prior to a Ty-weighted scanning in order to provide a good delineation of solid tumor tissue.

6.2. Experimental imaging design

Figure 6.3 illustrates the five sequences which were acquired from each animal at both five
and seven weeks after implantation. The order in which scans were measured , and the
duration of each series is given in table 6.1.

A gradient echo scout scan, performed in sagittal direction, was used to localize tumor in
order to plan slice geometry of the following sequences and to ensure coverage of the entire
lesion. It was important that slice positions in all sequences were the same (i.e. in register)
so that the following multispectral analysis would be valid.
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Imitial scanning (5 weeks)

T2 FLAIR Tl-maps DCE post Gd T1

Follow-up scanning {7 weeks)

T2 FLAIR Tl-maps DCE post Gd T

79 min

Figure 6.3.: The experimental design. For each animal, five measuring sequences were applied, here
denoted T2, FLAIR, T1-maps, DCE, and post-Gd T1 (for details see table 6.1). The entire imaging
protocol was repeated two weeks later (Courtesy: Cecilie Brekke).
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Series # Type of measurement Duration

1 GEPI-rat-scout 3 min
2 RARE-8-T9-128-60 8 min
3 FLAIR-8-128-60-2500 21 min
4 M SME-T;-5 (2000) -
5 M SME-T;-5 (1500) -
6 M SME-T;-5 (500) -
7 M SME-T;-5 (300) -
8 M SME-T;-5 (100) 7 min
9 DYNA-T{-ROTTE-20 30 min
10 SME-T;-256 10 min
Total scan time: ~80 min

Table 6.1.: Time-frame of the MR procedure The order and the duration of the different measuring
sequences used in each rat examination GEPI = gradient-echo planar imaging, RARE = rapid acquisition
with relaxation enhancement , FLAIR = fluid-attenuated inversion recovery , SME-T;-5 = spin echo
sequence with five different TR times and total scan time of 7 min, DYNA-T; = dynamic contrast enhanced
scanning with injection of Gadomer-17, SME-T;-256 = high resolution (256 x 256) spin-echo sequence,
post-Gd-DTPA contrast injection.

The successive five measuring sequences were performed using variations of the fast spin-
echo technique. Together, the Ty sequence and the FLAIR sequence enables separation
between edematous tissue and free liquid such as cerebro spinal fluid (CSF). A series of
five spin-echo images with different TRs (2000 ms-500 ms) were acquired to estimate
the T;-relaxation times of tissues in absence of contrast agent. As explained earlier (cf.
Section 5.1), Tj-relaxation is needed for conversion from observed signal intensities to
contrast agent concentration in the dynamic data. As the last sequence in the procedure,
a single multislice contrast enhanced T;-weighted series was acquired after injection of
Omniscan (0.1 mmol/kg) to provide accurate delineation of tumor and for assessment of
tumor volume.

6.2.1. Details of the imaging protocol

Scan parameters for all measurements applied for at each examination in the “NG-2 study”
are presented in Table 6.2. Ty maps and dynamic scanning were acquired with three
slices, positioned on basis of the RARE image slices, to cover central parts of the tumor.
In addition, FLAIR and post-contrast slices were scanned with geometrically placement
equal to the RARE slices.
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Scout RARE FLAIR SE TR-5 Dynamic T1 post
Main ROI/ Lesion-  CSF- T1- Microvas.  Tumor-
purpose slice pos. vol. vol. estim. status vol.
FOV [mm] 60 30 30 30 30 30
Matrix 256 128 128 64 64 256
No. slices 3 11 11 3 3 10
Slice thk [mm] 3 1 1 3 3 1
NEX 2 4 2 1 2 4
Interslice [mm] 3.3 1.2 1.2 3.5 3.5 1.2
Pack ext [mm] 9.6 13 13 10 10 11.8
Slice orient SAG AXI AXI AXI AXI AXIT
TE [ms] 5.3 60 60 8.8 ) 13
TR [ms] 50 6000 6000 X 122.5 407
TT [ms] - - (2500) - - -
Scan time [min] 1 8 21 7 32 10
No. images 3 11 11 3 189 10

Table 6.2.: The MRI protocol.Scan parameters of the scout series and the five successive pulse se-
quences included in the multispectral imaging protocol (cf. Figure 6.3).

6.3. The dynamic scanning

For dynamic MRI measurements, a three-slice dynamic T; weighted series (TR/TE =
122.5 ms/5 ms) was acquired. Contrast agent (0.2 mmol/kg Gadomer-17) was given as
a short bolus (duration about 12 seconds) after four baseline pre-contrast images were
measured. The following enhanced images were acquired at 59 time frames, with a temporal
resolution of 16.7 seconds for the first 30 frames, and a temporal resolution of 43 seconds
for the remaining frames (cf. Figure 6.4). Thus, the total number of repetitions (or time
frames), including the four pre-contrast acquisitions, was 63. Aquisition time for each
frame was 15.7 seconds* and total sequence time was 32 minutes.

Based on information in the Ty-weighted images, the middle slice of the dynamic T;-
weighted was positioned such that it transected the center of the tumor. Thus, the dynamic
image series from the slice where tumor area was maximum in the Ty-weighted sequence was
used, together with the corresponding images from the other sequences, in the multispectral
analysis.

This thesis is focused on data from the dynamic scanning acquired in the “NG-2 Project”.
The other sequences have therefore only been briefly mentioned. However, some further
information about these sequences are given in Appendix D.

4Total acquisition time = TR x matrix x NEX = 122.5 ms x 64 x 2 = 15.68 s.
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Time schedule for the dynamic contrast enhanced MRI scan
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Figure 6.4.: Time schedule for the Gadomer-17 contrast enhanced dynamic imaging. Vertical
solid line indicate i.v. bolus injection of Gadomer-17. The bolus injection, lasting about 12 seconds, was
started 5 seconds prior to start of scan #5 (to). The first 30 frames had a frame-to-frame time interval of
16.7 s in order to better sample the fast initial dynamics of the contrast enhancement. After a short delay
(vertical broken line), the remaining 33 acquisitions had a longer time interval (43 s) since the late phase
of contrast enhancement exhibits a slower dynamics.

6.4. Post-processing: multispectral analysis and
model-based parameter estimation

In this section all processing steps are reported, from data conversion to visualization of
parameter estimates and final statistical analysis. All processing and image analysis were
performed using inhouse Matlab® codes (Matlab v.6.5).

6.4.1. Converting Biospec 2dseq data to Matlab format

Image data from the MRI-examinations used in the present work were all burnt on CD
and transferred to UiB for further analysis. The first preparation step was to convert
the “Bruker proprietary binary 2dseq image files” (uint16) to Matlab format for each of
the five pulse sequences in the protocol and for each animal examination. During this
conversion proper naming conventions for all multichannel studies were introduced, such
as wty_land2_8_1_9.mat, denoting measuring series #9 (dynamic Gadomer-17 contrast
enhanced T1-weighted series) from session #1 (five weeks after implantation) in wild type
animal #8 of those in this group being scanned twice; and ng2_1and2_3_2_4_8.mat, de-

noting measuring series 4-8 (spin echo sequence with five different TRs for T1-estimation)

5Matlab (MathWorks, Inc., Natick, MA; www.mathworks . com) is a commercial software-tool with a pow-
erful scripting language for technical computing and visualization of data.
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6.4. Post-processing

from session #2 (follow-up, seven weeks after implantation) in animal #3 (expressing NG-2
tumor type among those in this group being scanned twice).

6.4.2. Image alignment of multichannel acquisitions

a) b)

Channels, or imaging measurements NG 2-2

E =7 o) FLAR ST (20)
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Figure 6.5.: Coregistration of imaging channels for generation of multispectral data. Data
from the five imaging channels ( a) and c¢)) were coregistrated to generate multispectral data which could
be analyzed by pharmacokinetic models. In b) we see coregistration which were successful and hence
included in the study. While d) shows coregistration of an experiment excluded for further analysis due
to misalignments.

With the midslice image (or the one transectioning the largest part of the tumor) from
the T post-contrast series as base, the corresponding slices from the other sequences were
decided for each examination. Given the multichannel images from this slice, the first
processing step in the data analysis chain was resampling to a common 256 x 256 matrix
(using bicubic interpolation) and spatial co-registration of all five channels (RARE, FLAIR,
SE with five TRs, dynamic T1-weighted sequence with Gadomer-17, T1-weighted post-Gd-
DTPA).

To improve the validity of the multispectral analysis, the resampled channel-images were
aligned using a graphical user-interface for careful selection of corresponding control points
with a normalized cross-correlation technique to further adjustment of each pair of control
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points. A linear conformal transformation from control point pairs was then computed and
applied to all channel images, including all frames within the DCE-series and the sequence
of images used to compute the Ti-maps. The resulting realignment was visually checked
(cf. Figure 6.5) by simple images subtraction in order to confirm accurate correlation
between the different image channels prior to further analysis.

Thus, a multispectral image of the selected slice consisted of a feature vector:
[RARE, FLAIR, [SE TR2000, TR1500, TR500, TR300, TR100], [DYN1,...,DYNeg3|, T1 POST Gd|,

having 71 components (cf. Figure 6.3). This collection of 71-dimensional multispectral
images from all animal examinations were saved in Matlab format, and a subset of these
images were used in the further analysis.

6.4.3. T; estimation

In order to apply tracer kinetic models, contrast concentration had to be derived from the
signal intensity data. As described in Section 5.2, contrast concentration can be determined
from signal intensity when contrast agent relaxivity and inherent tissue T; are known.
From the five TR measurement acquired in the scanning procedure of the “NG-2 project”,
T,-relaxation times were estimated by standard nonlinear least-squares method.

6.5. Analyzing the dynamic data using tracer kinetic
models

Having established the concentration-time curves, the main focus of this thesis was to
demonstrate parameter estimation by pharmacokinetic models introduced by Su et al. [94]
and Tofts et al. [102], respectively. The pharmacokinetic parameters were fitted to the
concentration time curves using non linear least-squares data fitting by the Gauss-Newton

method where in general, N data points (¢;,v1), i = 1,...... , N are fitted to a non-linear
continuous model having M adjustable parameters p;, 7 = 1,....., M. The model can be
written as y(t) = y(¢; p1, ....,par). For each model, in each of the selected examinations,

for each ROI and each pixel within the ROI, and for each model parameter p;, the fitted
value p; was estimated.

Regions of interest (ROIs), in which parameters were estimated, were drawn using a manual
cursor. Parameter estimation were done either ROI-wise (i.e. the mean of the image data
within each ROI was calculated for the dynamic images, resulting in one single time-
intensity data set) or pizel-wise (time-intensity data were obtained for each pixel within
the chosen ROI).
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6.5. Analyzing the dynamic data using tracer kinetic models

The implemented Matlab-codes being used to estimate microcirculatory parameters from
the two models, are given in Appendix E.

Experiments were performed using the two pharmacokinetic models which were elucidated
with respect to their:

e Theoretical assumptions, including contrast agent requirements

o Their applicability to differentiate tumor physiology (i.e. NG-2 tumors at post-implantation

week five versus post-implantation week seven), including operator dependent inter-
action (e.g. “manual delineation” and “different CA enhancement used as basis for
ROI selection”

o Their applicability to describe microvasculature of normal tissue regions

e Their fit to the obtained dynamic data
For selection of rat examinations, following criteria were used:

1. Inclusion of multispectral examinations showing large and clearly delineated tumor
regions in the T;-weighted post-Gd-DTPA component (channel five).

2. Exclusion of multispectral images where co-registration was unsuccessful, evaluated
by visual inspection of difference images between channels, or cine loops of channels
representing serial imaging (channel three and channel four, Figure. 6.5).

3. Inclusion of examinations from both the wild type (WT) tumor group and the ag-
gressive (NG-2) tumor group.

4. Inclusion of examinations of animals having both fifth-weeks post-implantation scans
and seventh-weeks post-implantation scans, to assess tumor growth and changes in
pharmacokinetic parameters.

From these criteria, ten (out of 17 successful) examinations were selected for further analy-
sis. Of these ten examinations, four were from week five and six were from week seven-scans.
Only two examinations of wild type tumors were included (whereas one were from week
five and the other from week seven-scans).

In the experimental part, the following methodological issues and problems have been
addressed:

1. Variability in estimated microvasculatory parameters related to the operator vari-
ability of manual ROI determination (i.e. tracing of ROIs).
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6. Methods and material

2. Variability in parameters estimated from ROIs drawn from Gd-DTPA enhanced tem-
plate compared to those depicted from Gadomer-17 enhanced template, i.e. different
contrast agents in the “background image” which is used for ROI deter-
mination.

3. Variability in parameters derived from smaller ROIs of both enhanced and non-
enhanced tumor regions, i.e. assessment of spatial heterogeneity within the tumor
TeGLOMN.

4. ROI-wise analysis of four different tissues; to elucidate model fit and differences in
estimated parameters between tissues (i.e. “regional differences”).

5. Parameter estimation at the pixel-level to reveal and depict differences between
week-five and week-seven NG-2 tumors (i.e. time development ).

6. The goodness of model-fit, of the Su model and the Tofts model, to the observed
data (i.e. contrast agent concentration time curves) in both the tumor regions and in
healthy tissues.

These issues are further described in the following sections.

6.6. ROI-wise parameter estimation

6.6.1. Operator variability of manual ROI determination

When analyzing DCE-MRI measurements with application of a pharmacokinetic model,
the region of interest (ROI), in which one want to estimate model parameters, has to be
determined. This is usually done by the researcher (operator) by manually tracing the
boundary of the cancerous lesion. Such a procedure has a clear methodological weakness
since it is not precisely reproducible and is also subject to the operator’s judgment in
each case. It therefore affects the degree of “validity” or reproducibility of pharmacokinetic
DCE-MRI studies in a way that is hard to predict or account for statistically. Thus, in
this part of the investigation, I wished to address variability and sensitivity of ROI-based
parameter estimates due to manual delineation of tumor-ROlIs.

Three (NG 3-2, NG 7-2 and WT 3-2) out of the ten examinations (cf. Section 6.5) was
chosen for this analysis. The choice was made on the basis of apparent clearly delineated
tumor edges in both the dynamic scan and the post-Gd-DTPA scan (cf. Figure 6.6). For
each of the threee examinations, ROI tracing and parameter estimation was employed
five times. The dynamic measurement image frame number® 30 provided basis for the

6Frame #30 represents a time of six-seven minutes post-Gadomer-17.
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6.6. ROI-wise parameter estimation

manual tracings. ROI was carefully delineated to include the enire tumor region each time.
Tracings did not exclude central necrotic tissue, however surrounding fat and parenchymal
tissue were tentatively avoided.

To evaluate variation in parameter estimates between the five consecutive tracing exper-
iments, the mean and the standard deviation was computed for each pharmacokinetic
parameter. Additionally, for comparison of variability in different distributions (i.e. pa-
rameters), the coefficient of variation (CV) was computed for each parameter from both
models. The coefficient of variation (i.e. variability) is given as:

CV = SD/M x 100 (6.1)

where SD denotes standard deviation and M represents the mean. CV represents the
relative variation and can thus be used to compare variation in different sets of data based
on different measure scales.

The physiological properties extracted from the time-course of tracer distribution (in each
of the two pharmacokinetic models) from the five repeated ROIs in three different exam-
inations, were thus tabulated to give the mean, standard deviation, and the coefficient of
variation (CV). The results are given in Table 7.1 for the Su parameters, and Table 7.2 for
the Tofts parameters.

6.6.2. Use of different background information that guides ROI
determination

I was also interested to see if ROI-tracing based on different images with distinct depictions
of the tumor regions (i.e. enhancement distribution) affected the parameter estimates. More
specifically, I was interested in the parameter-variability when the ROIs were manually
delineated from the post-Gd-DTPA image compared to using one of the frames in the
Gadomer-17 dynamic scan.

As demonstrated in Figure 6.6, contrast agent enhancement reveal differences (especially
in tumor periphery and central areas) using eighter Gadomer-17 or Gd-DTPA. Testing
variability in ROI tracings from both may imply if the enhancement distribution using
one of the agents is more representative for tumor regions in which models are applicable
(compared to the enhancement pattern of the other agent).

This part of the study was based on the fact that tumor edges are generally more clearly
presented (tumor is more enhanced) in the post-contrast (Gd-DTPA enhanced) image
than in dynamic (Gadomer-17 enhanced) images. In some of the early (fifth week post-
implantation) scans of NG-2 tumors, and in many of the wild-type (WT) tumors, the
tumor edges could be difficult to define visually from information in the dynamic scans.
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6. Methods and material

Dynamic Post Gd-DTPA

Figure 6.6.: Subjects in evaluation of manual ROI. The figure shows Gd-DTPA enhanced (right)
—and Gadomer-17 enhanced (left) measurement of the three tumors which were used to manually draw
ROIs in order to evaluate operator variability in pharmacokinetic parameter estimates. These subjects
were also used for investigation of “template-related” variability. The squares in upper left corner of each
image represent reference-areas to account for image noise.
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6.6. ROI-wise parameter estimation

This observation supports criticism regarding difficulties and subjectiveness with manual
ROI determination. Initially, it seemed that drawings were more easily repeated in Gd-
DTPA enhanced tumor-images. However, theoretically PK modeling better apply when
using contrast agent of higher molecular weight. Gadomer-17 is such an agent, whose leak-
age depends upon hyperpermeable vessels. Both the Su- and the Tofts model, as used in
this thesis, were implemented with Gadomer-17 based kinetics (decay rates and concentra-
tion amplitudes). Thus theoretically, Gadomer-17 enhanced areas might provide the best
background for ROI-tracings. It was therefore of interest to see if parameter variability
was affected by the image channel used for tumor delineation, considering the fact that the
pharmacokinetic models are applied to Gadomer-17 kinetics (dynamic measurements) and
not to the post-Gd-DTPA.

Thus, five new ROI-tracing experiments (in the examinations shown in Figure 6.6), delin-
eating the entire tumor region, were done. This time using information from the post-Gd-
DTPA image to guide the tracing. Complete tracing results are reported in Figure 7.1.

6.6.3. Heterogeneity assessment by smaller ROls

In one examination (NG 3-2), ROI-wise analysis were performed in 13 different smaller
ROIs. Of these ROIs, some were in enhancing areas, or hotspots (n = 7), while some
were in non-enhanced tumor parts (possibly necrotic areas), dark spots (n = 6). The
purpose of this part of the study was to assess tumor heterogeneity in terms of parameter
variations between multiple small ROIs within a tumor (i.e. assess parameter variability
between tumor regions exhibiting the same visual degree of enhancement). ROIs drawn for
this part of the analysis is shown in Figure 7.4, page 73.

6.6.4. Analyzing ROIs of four different tissues (“regional
differences”)

As pharmacokinetic models are theoretical models and not models developed for our data
exclusively, it was of interest to see if one of the models applied (visually) seemed better
fitted to the concentration data than the other. Furthermore, I wanted to evaluate the fit
to the concentration-time courses from ROIs covering entire tumor compared to the fit to
concentration curves from smaller ROIs in tumor. These smaller ROIs represented highly
enhanced homogeneous regions. In addition, model curves from ROIs of healthy tissues
(grey matter and muscle tissue) were evaluated and compared to the “tumor tissue fit”

Additionally, parameter estimates were evaluated to elucidate eventual regional differences
and/or relation between parameters. More specifically, I wanted to demonstrate relation
across regions in the theoretically related parameters from both models: blood-tissue per-
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Figure 6.7.: Four different tissue ROIs for elucidation of regional differences. Parameters from
both models were estimated for these four different ROIs in nine examinations. Additionally, model fit
were elucidated by visual evaluation of fitted model curves for each ROI (in each of the nine trials). The
four different ROIs were “Uniformly enhancing subregion of tumor” (upper left), “brain tissue (grey matter)
region” (upper right), “muscle tissue region” (lower left) and “whole tumor region” (lower right).

62



6.7. Parameter estimation at the pixel level

meability (D1 and K'"*) and wash-out of tracer from tissue (Ko and k). Further, I
wished to assess the relation between D; (Su) and K" (Tofts) and the relation between
K (Su) and ke, (Tofts) running least-squares linear regression analysis.

In nine examinations, four ROI-wise parameter estimations were thus executed in each:

e Uniformly enhancing subregion of tumor
e Brain tissue (grey matter) region
e Muscle tissue region

e Whole tumor region

Tumor ROIs (“whole tumor” and “enhanced tumor” area) were traced from dynamic frame
number 30 in all cases, and “normal tissue” ROIs were traced from Ty-weighted (RARE)
sequence. Evaluation of fit was done by visually inspection of enhancement curves.

6.7. Parameter estimation at the pixel level

6.7.1. Time development

Data were also analyzed using a more demanding procedure with pizelwise estimation
of the pharmacokinetic parameters to see if parametric maps and their corresponding
histograms generated by estimations from individual pixels in tumor ROIs revealed a more
heterogeneous pattern in seventh week tumors than in fifth week tumors. Also, I wanted
to demonstrate parameter chances which may be related to time related development of
tumors.

ROI covering entire tumor was manually drawn from dynamic measurement image in each
examination. Estimated parameters were presented as parametric maps with calculated
mean of pixel-values, and in histograms showing the parameter distribution.

6.7.2. “Goodness-of-fit” analysis

For a more conclusive comparison of the fit for both models, a statistical measure of
“goodness-of-fit” (Akaike’s information criterion, AIC) was derived from pizel-wise analy-
sis of four different tissue-ROIs in three examinations (NG 3-2, NG 7-2 and WT 3-2). The
regions of interest were manually traced to include 30-50 pixels and represented following
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tissues; “viable tumor”, “tumor necrosis”, “healthy grey matter” and “healthy skeletal mus-
cle”. Areas of high Gadomer-17 enhancement were defined as viable tumor tissue while
areas of no enhancement were defined to be necrotic tissues. Grey matter areas and muscle

tissue were determined from the anatomical To-weighted (RARE) sequence.

For each pixel time course in each of these regions (for each examination) the parameters
defined in the models by Su et al. and Tofts et al. were fitted using non-linear least-squares
data fitting (cf. Section 6.5, page 56).

Akaike developed an information theoretical-based method for comparing two models to
one data set. The Akaike approach does not rely on P values or the concept of statistical
significance, and is applicable even when one of the models to be compared is a simpler
case of the other (nested model). The AIC method provides determination of which model
is likely to be correct, and quantify how much more likely [61|. The AIC is defined by:

AIC =N -ln (‘%TE> +2K (6.2)

where N is the number of time points, SSE is sum-of-squares errors and K equals M + 1,

where M denotes the number of model parameters. Thus the AIC takes both SSE” and
the number of model-parameters into account. In Su’s model three parameters were fitted
(Dy, D1 and K3) while Tofts model determined two parameters by nonlinear least-squares
fit (K" and v,).

The sum of squares errors, SSE (for each examination, each pixel at each time-point) were
calculated as:

N
SSE; = ek (6.3)
k=1
where €} = y; — Y(tyz,... 5 ) is the residual in the time course for pixel i. k =1,...., N

is the number of the actual time-frame (N = 63) for the DCE-MRI series. Corrected AIC
were calculated by:

2K (K +1)
N-K-1
The model with the lower AIC, is more likely to be correct. The difference in AIC between
the Su and the Tofts model is denoted AAIC,. The probability that the correct model (of
the two) has been chosen, is computed as:

AIC, = AIC + (6.4)

0.5AAIC,

Probability = (6.5)

1 + GO.SAAIC’C

For comparing the Su and the Tofts model, the probability that one model is correct (i.e.
Tofts) was thus divided by the probability that the other model (i.e. Su) is correct. This
evidence ratio or relative likehood is defined as [61]:

Prob. Tofts model is correct 1

Evidence ratio = (6.6)

Prob. Su's model is correct — e0-5AAIC

The Matlab-code used for comparison of “goodness-of-fit” for the two models by the
Akaike’s method is given in Appendix E.

"The sum of square errors represents the sum of the estimate’s deviations from target (i.e. the “measured”
concentration). The mean of square errors may be denoted MSE.



7. Results on pharmacokinetic MRI

The two different pharmacokinetic models (cf. Section 5.2) evolved by Su et al. [94] and
Tofts et al. [105], respectively, were applied on a subset of examinations as described in
Section 6.5. The estimated Tofts’ parameters were:

K [min~!] , v, (0 < v, < 1) and ke, [min™!].

K'ens is the influx volume transfer constant, representing the product P-S of the per-
meability (P) and surface-area (S). PS is usually denoted “permeability” for short. v,
denotes the fractional leakage volume accessible to the actual tracer, and k, is the efflux
rate constant which represents wash-out of tracer from tissue. The parameters derived by
the model by Su et al. were:

Dy [mM], D; [mM/min] and Ky [min™!].

These are related to vascular volume fraction, tracer accumulation in tissue (i.e. perme-
ability), and rate of tracer wash-out from tissue, respectively.

Thus, both Dy (Su) and K" (Tofts) are parameters related to permeability, or tracer
leakage into tissue. Correspondingly do Ky (Su) and and k., (Tofts) both reflect tracer
wash-out from tissue.

Here, results are given for estimated parameters when the calculations were done from all
pixels within carefully traced ROIs (i.e. ROI-wise analysis), and when data were analyzed
pixel-by-pixel (i.e. pizel-wise analysis), without user interaction'

'However, in case of automated pixel-by-pixel analysis, I also made (rough) ROI tracings to reduce
computation time (exclude parameter estimation in non-interesting tissue or in background air).
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7.1. Results from ROI analysis

7.1.1. Results from operator variability of ROl determination

In this section, results are given from both the “operator variability of manual ROI deter-
mination” experiment, and the “use of different contrast agent enhancement for guidance
ROI determination” experiment. Parameter-variability was assessed by standard deviations
and by computing the coefficient of variation (cf. Section 6.6.1). Coefficient of variation
quantifies measurement-error relative to the size of the parameters [70].

The manual tracings from three tumor cases (NG 3-2, NG 7-2, WT 3-2) were analyzed.
From Figure 7.1, demonstrating ROI tracings from five independent trials on these three
different animal examinations, we see that manually delineated ROIs representing the
whole tumor region are hard to reproduce precisely. To demonstrate the effect of this
intra-operator variability on the parameter estimates in the delineated tumor region, each
trial result is depicted in Figure 7.2 for the Su model parameters, and in Figure 7.3 for the
Tofts model parameters. The corresponding means, standard deviations, and coefficients
of variation are given in Table 7.1 (Su-model) and Table 7.2 (Tofts-model).

Intra-operator variability of parameters in the Su model is tabulated in Table 7.1. Variation
in Dy was slightly higher when the post-contrast Gd-DTPA images were used as template
compared to using visual guidance from the Gadomer-17 image. However, D, estimates in
case NG 7-2 showed very small variability. The same tendency of larger variability using the
post-contrast Gd-DTPA image as template was also found for the D; and Ky parameters.
Again, this effect was smallest in case of the NG 7-2 examination. The parameter Ky in
the WT 3-2 case was the only parameter showing largest variability using Gadomer-17 as
enhancement template. However, this parameter case revealed low variability using both
“tracer-templates”. From Figure. 7.2 we see that parameter estimates for the individual
trials were all within + 1.96 standard deviations from the sample mean across all five
trials, indicating repeatability of parameters estimates within a reasonable interval (~ 95%
confidence interval around mean).

Parameter variations in the Tofts model are summarized in Table 7.2. Tracings using the
post-contrast Gd-DTPA image as template gave generally larger variability in K", v,
and k., estimates compared to tumor delineations using the Gadomer-17 information. One
exception to this finding was slightly lower CV in k, (related to Su’s Kj) for case WT
3-2 when using Gd-DTPA information compared to Gadomer-17 information for tumor
delineation. Moreover, Tofts’ parameter estimates were all within £1.96 SD from the
sample mean (cf. Figure 7.3).

Notice that one case (NG 3-2) exhibited twice as high CV (i.e. variability) for all parameters
(both models) using the Gd-DTPA template compared to the Gadomer-17 template.
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Summary of results from operator variability of ROl determination

For all six pharmacokinetic parameters estimated in this experiment, the operator variabil-
ity had largest influence when tumor delineation was based on the post-contrast Gd-DTPA
image information. Moreover, the variability, in terms of CV, across the different param-
eters and template information being used, was substantial (CV range: 0.77-13.90). As
seen from these experiments, one should be careful in interpretation of changes in phar-
macokinetic parameters, and include the inherent methodological variability (“noise”) that
are due to manual ROI delineation.

DO D1 KQ

Case Templ. | Mean SD CV |Mean SD CV |Mean SD CV
NG 3-2 P 0.027 0.002 7.06 | 0.048 0.004 891 | 0.044 0.003 6.01
NG 7-2 P 0.026 0.000 1.38 | 0.040 0.001 1.67 | 0.058 0.002 2.62
WT 3-2 P 0.036 0.001 3.96 | 0.066 0.004 5.59 | 0.036 0.000 0.77
NG 3-2 D 0.028 0.001 3.31 | 0.051 0.002 4.65| 0.045 0.001 3.31
NG 7-2 D 0.027 0.000 0.78 | 0.042 0.000 1.07 | 0.059 0.001 2.09
WT 3-2 D 0.038 0.000 1.21 | 0.070 0.001 2.12 | 0.036 0.000 1.25

Table 7.1.: The effect of intra-operator variability on parameter estimates (Su model). The
column “Templ.” denotes type of template image for ROI tracings: P = post-contrast Gd-DTPA image, D
= Gadomer-17 dynamic image. Sample mean, standard deviation (SD) and coefficient of variation (CV)
are computed over all five trials, each aiming to delineate the whole tumor region.

trans
K Ve kep

Case Templ. | Mean SD CV | Mean SD CV | Mean SD CV
NG 3-2 P 0.007 0.001 8.90 | 0.163 0.023 13.90 | 0.041 0.002 5.97
NG 7-2 P 0.006 0.000 1.66 | 0.102 0.004 3.48 | 0.054 0.001 2.51
WT 3-2 P 0.009 0.000 5.51 | 0.266 0.017 6.28 | 0.034 0.000 0.90
NG 3-2 D 0.007 0.000 4.64 | 0.170 0.013 7.84 | 0.042 0.001 3.35
NG 7-2 D 0.006 0.000 1.10| 0.104 0.003 2.88 | 0.055 0.001 1.98
WT 3-2 D 0.010 0.000 2.10| 0.288 0.008 2.61 | 0.033 0.000 1.29

Table 7.2.: The effect of intra-operator variability on parameter estimations (Tofts model).
The column named “Templ.” denotes template image for ROI tracings: P = post-contrast GAd-DTPA image,
D = Gadomer-17 dynamic image. Sample mean, standard deviation (SD) and coefficient of variation (CV)
is computed over all five trials, each aiming to delineate the whole tumor region.
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a)

ROIs manually delineated from post Gd-DTPA

ROIs manually delineated from post Gd-DTPA

ROIs manually delineated from dynamic

ROIs manually delieated from post Gd-DTPA

ROIs manually delineated from dynamic

Figure 7.1.: Repeated manual delineation of the whole tumor region; The variation in pharma-
cokinetic parameters may be partly caused by variability in user defined ROT selection (i.e. intra-operator
variability). Manually ROIs, aiming to cover the whole tumor region, were traced for three examinations:
a) NG 3-2, b) WT 3-2, and ¢) NG 7-2. Results from using the post-contrast (Gd-DTPA) image as tem-
plate (“background”) are depicted in upper panels. Results from using a time frame from the dynamic
Gadomer-17 series as template are shown in lower panels.
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Figure 7.2.: Parameter variation (Su model) due to intra-operator variability of ROI tracings.
ROI trial numbers (1, 2, 3, 4, 5), each aiming to delineate the whole tumor region, correspond to the order of
ROI masks depicted in Figure 7.1. a) Variation (deviation from sample mean) in the Su model parameters
using post-contrast (Gd-DTPA) image as template. b) Variation (deviation from sample mean) in the Su
model parameters using a time frame from the dynamic Gadomer-17 series as template. The horizontal,
unbroken line is the sample mean, and the two dashed lines denote +1.96 SD, respectively, from sample
mean across the 5 trials. 69
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Figure 7.3.: Parameter variation (Tofts model) due to intra-operator variability of ROI trac-
ings. ROI trial numbers (1, 2, 3, 4, 5), each aiming to delineate the whole tumor region, correspond
to the order of ROI masks depicted in Figure. 7.1. a) Variation (deviation from sample mean) in the
Tofts model parameters using post-contrast (Gd-DTPA) image as template. b) Variation (deviation from
sample mean) in the Tofts model parameters using a time frame from the dynamic Gadomer-17 series as
template. The horizontal, unbroken line is the sample mean, and the two dashed lines denote £1.96 SD,
rﬁ?pectively, from sample mean across the 5 trials.



7.1. Results from ROI analysis
7.1.2. Results from heterogeneity assessment by smaller ROls

After having investigated the effect of operator-variability of “whole-tumor” delineation on
the parameter estimates, and variability using two types of contrast agent information (Gd-
DTPA and Gadomer-17), tumor heterogeneity in terms of parameter variations between
multiple small ROIs in the tumor region was assessed. Results from this part of the study
are reported below.

Figure 7.4 depicts the spatial sampling of small (and large) ROIs within the tumor region
of a single examination (NG 3-2). The corresponding Su and Tofts models (concentration-
time courses) are shown in Figure 7.5, and the corresponding numeric parameter values are
given in Table 7.3. To make proper distinction between the different ROIs being traced,
the following terminology was used:

e delineations of small intra-tumoral regions expressing high signal intensity were de-
noted “enhanced™” ROIs,

e small intra-tumoral regions with low signal intensity were denoted “non-enhanced™
ROlIs,

e large ROIs, covering the whole tumor, were denoted “whole tumor” ROIs.

Box and whisker plots for the Su model parameter and the Tofts model parameter, grouped
according to region type (“enhanced”, “non-enhanced”, “whole tumor”), are shown in Fig-
ure 7.6. Using this graphical representation of data distributions, I could more clearly
inspect the spatial heterogeneity of the pharmacokinetic parameters within the NG 3-2
tumor. Notice the variability in parameter estimates even within types of tumor regions
that looks visually the same (i.e. “enhanced”, or “non-enhanced”). It can also be seen that
the pharmacokinetic parameters have generally larger values in “enhanced” tumor regions,
compared to “non-enhanced” regions, with little overlap of the inter-quartile ranges be-
tween the corresponding distributions. One exception to this finding was the overlapping
distributions of v, estimates in “enhanced” and “non-enhanced” regions. Correspondingly,
inspection of tabulated values in Table 7.3 show that for all parameters, mean values were
higher in “enhanced” regions compared to “non-enhanced” regions (again except for v).
As would be expected, “whole-tumor” ROIs possessed values in between those for viable
and non-viable areas (n = 2). Variability (CV) of estimated parameters were larger in
“non-enhanced” regions (except for Ky and k,) compared to “enhanced” regions. Within
“enhanced” ROIs, the parameter variations (CV) were highest for Ko and ke,.

2Regions displaying high signal intensity presumably represent “viable” areas which express high degree
of cell proliferation and angiogenic activity.

3Central areas displaying low signal intensity are likely to represent non-viable regions of necrotic/fibrotic
tissue.
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Figure 7.5 show MRI-measured concentration-time curves and the fitted Su- and Tofts
model (for the 15 ROIs) revealing spatial heterogeneity within the NG 3-2 tumor. From
these fifteen fitted tissue-time courses it seem like “enhanced” ROIs generally acquire a
steeper up-slope (i.e. “wash-in”), a higher total concentration and a faster decay compared
to “non-enhanced” ROIs.

Summary of results; spatial heterogeneity

I have shown that the estimated pharmacokinetic parameters display different values in
different parts of the tumor , and that such differences exist even between regions where
signal intensity visually was very similar. This might reflect spatial heterogeneity in tumor
physiology. Moreover, the parameter values in the Su model and in the Tofts model
were generally higher in “enhanced” tumor regions compared to “non-enhanced” regions. I
also found that in “enhanced” tumor regions, probably corresponding to areas with viable
tumor cells and proliferation, variation /heterogeneity was more pronounced for parameters
reflecting wash-out rates (i.e. Ko and k.,) than for parameters describing blood-tissue
permeability (i.e. Dy and K"s).

7.1.3. Results from regional difference in four tissue ROIls

As described in Section 6.6.4, four different ROIs were analyzed (ROI-wise) in nine ex-
aminations. The intention of this experiment was to elucidate model-fit and parameter
estimation from different tissue-ROIs using both models. Results are graphically presented
in Figures 7.7 7.9.

Visual inspection of the curve-fit to “observed” concentration data in this experiment re-
vealed no clear tendencies concerning the “goodness-of-fit” of one model compared to the
other (Figures 7.7- 7.9). However, Su’s model seemed to better account for the early
maximum concentrations than Tofts’s model did. Su’s model gave thus impression of a
higher maximum tissue-tracer concentration and a more rapid wash-out than Tofts model.
Moreover, this property of Su’s model (better fitting early peak concentrations) was more
pronounced in case of healthy tissues compared to tumorous tissue.

The observed concentration data obtained in healthy tissue ROIs were scattered compared
those in tumor ROIs. Thus, for both models, fit seemed poorer in healthy tissues (grey
matter and muscle tissue) than in tumor ROIs. However, tracer concentrations were gen-
erally much lower in healthy tissue (especially in grey matter) compared to tumor tissue,
and the signal increases and fluctuations during the time course were close to the noise
level in healthy tissues. Hence, the model fit in healthy tissue ROIs, showing very little
Gadomer-17 enhancement, was probably more towards fitting the noise in the dynamic
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13-15

Figure 7.4.: Assessment of spatial heterogeneity of parameters within tumor region (NG 3-
2) using multiple small ROIs. Pharmacokinetic parameters in both the Su and the Tofts model were
estimated from 15 different intra-tumoral regions in examination NG 3-2, using ROI-wise analysis. ROIs
numbered 1-6 and 12 represent “enhanced” parts of tumor. ROIs numbered 7-11 were delineations of
“non-enhanced” tumor regions, while ROI number 15 was taken to represent total “non-enhanced” area of
tumor. Two approximations of “whole tumor” ROIs are numbered 13 and 14, respectively.
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estimated Su and Tofts models showing spatial
heterogeneity within tumor region (NG 38-2). Pharmacokinetic parameters in both the Su and the
Tofts model were estimated ROI-wise in each of the 15 different intra-tumoral regions (labeled # 1 — #
15) according to the numbering in Figure 7.4. Notice the use of a fixed y-axis in all panels to better depict
the spatial heterogeneity in tracer concentrations and the corresponding “wash-in” and “wash-out” time



7.1. Results from ROI analysis

ROI No. pixels Dy D; Ky, Ko  y, kep
“ Enhanced”

# 01 69 0.031 0.052 0.033 0.007 0.229 0.031
# 02 35 0.024 0.043 0.034 0.006 0.188 0.031
# 03 62 0.034 0.060 0.043 0.008 0.206 0.040
# 04 61 0.032 0.059 0.053 0.008 0.164 0.049
# 05 60 0.035 0.062 0.052 0.008 0.174 0.048
# 06 60 0.037 0.071 0.054 0.010 0.191 0.050
# 12 387 0.039 0.075 0.048 0.010 0.229 0.044
Mean 0.033 0.060 0.045 0.008 0.197 0.042
CvV 14.63 18.07 19.95 17.89 12.78 19.73

“Non-enhanced”

# 07 20 0.019 0.033 0.023 0.005 0.210 0.022
# 08 85 0.019 0.035 0.036 0.005 0.142 0.034
# 09 90 0.027 0.052 0.031 0.007 0.251 0.028
# 10 74 0.027 0.053 0.029 0.007 0.273 0.027
# 11 297 0.020 0.036 0.035 0.005 0.150 0.033
# 15 453 0.027 0.048 0.037 0.007 0.191 0.035
Mean 0.023 0.043 0.032 0.006 0.203 0.030

CV 18.14 21.61 16.30 21.43 26.01 16.61

“Whole-tumor”

# 13 1715 0.027 0.050 0.043 0.007 0.170 0.040
# 14 1938 0.027 0.048 0.046 0.007 0.154 0.042
Mean 0.027 0.049 0.044 0.007 0.162 0.041

CcvV 1.67 289 386 286 6.79 3.96

Table 7.3.: Resulting parameters in each of 15 tumor ROIs; Parameter estimated from fitting
the pharmacokinetic models of Su and Tofts in each of the 15 tumor regions depicted in Figure 7.4 (NG
3-2). CV = coeflicient of variation. Notice that K, and k., are both higher in “enhanced” tumor regions
compared to “non-enhanced” regions; and that the same holds for Dy and K!7?"%. Also, D; mean is higher
for “enhanced” areas, however, the opposite is true for v.. Notice also that in “enhanced” tumor regions
the parameter variation (CV) is slightly larger for K> and k,, compared to Dy and K'™o"*
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Figure 7.6.: Parameter dispersion across tumor subregions. Box and whisker plots depicting
the Su model (a) and Tofts model (b) parameter distributions across “enhanced” and “non-enhanced”
subregions, as well as “whole-tumor” region (cf. tabulations in Table 7.3). Boxes have lines at the lower
quartile, median (middle red line) and upper quartile values. Whisker lines are drawn vertically up to
largest parameter value and down to smallest value.
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time series than fitting the signals, except for a small initial increase. In one of the nine
examinations (NG 1-1) No Gadomer-17 uptake in grey matter tissue was found, and no
reasonable model-fit could be obtained. In all other cases, both the Su model and the Tofts
model could be fitted to the data with visually acceptable results.

Inspecting Gadomer-17 peak concentrations across all tissue regions in all nine examina-
tions, total tissue tracer concentration was found to be in the range of 0.01-0.04 mM for
grey matter and 0.05-0.11 mM for muscle tissue. In tumor ROIs (both “whole-tumor” ROIs
and “enhanced” ROIs included) these peak values varied in the range of 0.05-0.20 mM. Both
WT tumors at week-five showed tissue concentrations below 0.1 mM, while the WT tumors
at week-seven, and all NG-2 positive tumors (at both times) showed contrast concentrations
above 0.1 mM. Notice that different concentration scales has been used in figures 7.7- 7.9
to better depict the curve fittings.

Whether ROIs covering entire tumor, or smaller ROIs covering only viable (i.e. enhanced)
tumor regions gave the best fit between pharmacologically modeled curves and the observed
concentration data, was not possible to determine by visual inspection. However, in one
case (NG 7-2) the pharmacokinetic model fit seemed better when using time-course data
from only the enhancing part of the tumor compared to the whole (heterogeneous) tumor
region.

Wash-out rates (decay) seemed to be higher in healthy tissues than in tumor tissues. This
is not consistent with literature findings and might be explained by the low tracer uptake
(i.e. low signal response) in these tissues. Theoretically, no uptake should be seen in healthy
tissues, especially not in brain tissues where the blood-brain barrier is intact. The observed
signal intensity changes in healthy tissue areas might thus be due to presence of tracer
within the microvasculature during bolus passage.

Figure 7.10 displays regional difference between the four regions for mean value of all six
estimated parameters. The figure indicates that parameters are related across regions.
Between regions, we see that permeability (Dy and K% plasma volume fraction (D)
and fractional EES volume (v,) are ordered as: |[“enhanced” > “whole-tumor” > “muscle” >
“GM”). Conversely, tissue tracer wash-out rates (K, and k.,) revealed regional parameter
values in exact opposite order: [“GM” > “muscle” > “whole-tumor” > “enhanced”].

Additionally, it was desired to see whether the estimated parameters from the different
models were (linearly) related to each other, and if they were related across regions of
different tissues (cf. Figure 7.11). As mentioned, the theoretical kinetic models, D; and
K®rens should be highly correlated in that both parameters expresses the transfer rate of
tracer from the blood compartment to leakage space (i.e. permeability or PS-product).
Also, K5 and k, should be positively correlated since both parameters represents rate of
tracer back-flux.

Histograms in Figure 7.11 demonstrate that both the permeability measure and the back-
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7. Results on pharmacokinetic MRI

flux rates from the two models were proportionally related between the four regions. Scatter
diagrams (Figure 7.12) revealed a tight linear relation between D; and K" whereas
relation between K, and k.,, was piecewise linear (cf. figure legend).

While permeability (D; and K'%") was estimated higher in tumor tissues than in healthy
tissue ROIs, back-flux rates (Ky and k.,) showed higher mean values in healthy tissues.
Regarding healthy tissues, the fast but very small concentration increase and the fast wash-
out rates might reflect bolus passage in the microvasculature and not (slow) leakage to the
tissue compartment as accounted for by the pharmacokinetic models.

Summary of results; regional differences in four tissue ROls

I have demonstrated that the peak Gadomer-17 tissue concentration range in different
tissues is ordered as: tumor (0.05-020 mM) > muscle (0.05-0.11 mM) > grey matter (0.01-
0.04 mM). Both the Su model and the Tofts model can be used to fit the time course data
from ROIs covering tumor tissues and also some normal tissues. However, the Su model
seems to better adapt the initial peak concentration, compared to the Tofts model. Tissues
with low tracer uptake (e..g. grey matter) show scattered concentration measurements and
may possess poorer model-fit. A poorer fit may possibly be due to poorer signal to noise
ratio. Furthermore, a highly linear correlation between D; and K%"* was demonstrated.
“Regional difference” in these parameters showed highest permeability in enhanced (i.e.
viable) tumor tissue. In contrast to literature findings, wash-out was estimated higher in
healthy tissues. Howewver, the rapid wash-out in healthy tissues may reflect simple bolus
passage of the macromolecular contrast agent in the highly vascularized tissue - and not
transvascular leakage.

7.2. Results from pizel-wise analysis

pizel-unse parameter estimation of tumor tissues were performed in a subset of experi-
ments as described in Section 6.7. Region of interest was traced to cover entire tumor
(central tumor areas of necrotic/fibrotic tissues were not excluded). For each pixel in re-
gion of interest, K" (representing the influx volume transfer constant), v, (representing
the EES volume fraction) and ke, (representing the efflux rate constant), were estimated in
accordance with Tofts et al. [102]. Furthermore, D, (related to fractional blood volume),
D; (related to leakage of tracer to tissue) and K, (related to wash-out from tissue) were
estimated with reference to Su et al. [94].

Parametric maps and corresponding histograms for each parameter were made to elucidate
heterogeneity and spatial distribution of the different parameters. The parameter values
were coded according to the color scales shown to the right of each parametric map.
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Figure 7.7.: Elucidation of differences in model fit between four selected ROIs, and between
the two theoretical models used (Examinations 1-3) Solid line: Su model; Dashed line: Tofts model;
1st column: Enhancing part of tumor; 2nd column: Grey matter region; 3rd column: Muscle region; 4th
column: Whole tumor region. (Notice different concentration scales on y-axis).
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Figure 7.8.: Elucidation of differences in model fit between four selected ROIs, and between
the two theoretical models used (Examinations 4-6) Solid line: Su model; Dashed line: Tofts model;
1st column: Enhancing part of tumor; 2nd column: Grey matter region; 3rd column: Muscle region; 4th
column: Whole tumor region. (Notice different concentration scales on y-axis).
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Figure 7.9.: Elucidation of differences in model fit between four selected ROIs, and between
the two theoretical models used (Examinations 7-9) Solid line: Su model; Dashed line: Tofts model;
1st column: Enhancing part of tumor; 2nd column: Grey matter region; 3rd column: Muscle region; 4th
column: Whole tumor region. (Notice different concentration scales on y-axis).
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Figure 7.10.: Regional differences in pharmacokinetic parameters (examinations 1,...,9 and
4 ROIs. a) Estimated parameters in the Su model. b) Estimated parameters in the Tofts model. The
order of examinations 1,...,9 (i.e. y-axis) is the same as that in Figs. 7.7-7.9.

82



7.2.  Results from pizrel-wise analysis

0.08 T T
[ mean D1 (+ SD) [mM/min]
Bl mean Ktrans (+ SD) [1/min]

0.07

0.06

0.05

0.04

0.03

0.02

0.01

Enhancing tumor Brain tissue (GM) Muscle Whole tumor

0.4

T
[ mean K2 (+ SD)
Il mean kep (+ SD)

0.35F T h

0.3 7

0.25 b

1/min
o
N
T
1

0.151 7

0.1 h

0.05 i

Enhancing tumor Brain tissue (GM) Muscle Whole tumor

Figure 7.11.: Related parameters in the Su- and the Tofts model show regional (ROI) depen-
dencies. Here is shown the related parameters: a) Permeability; D; and K"%"% and; b) Wash-out rates;
K> and ke, in four different ROIs denoted “whole tumor”, “brain tissue” (grey matter), “muscle” (striate
muscle tissue) and “enhancing tumor” (uniformly enhanced tumor part). Parameters were obtained from
nine animal examinations (cf. figs. 7.7-7.9). Sample mean value of parameters, pooling the 9 examinations,
were used for histograms. The “GM” parameters in examination ng2 land2 1 1 (NG 1-1) were excluded
from calculations (since no Gadomer-17 effect was observed in grey matter for this case). Notice that
parameters in a) are given in different units using a common scale. 83
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Figure 7.12.: Estimated parameters from the two models are linearly related to each other.
Least squares linear regression analysis, pooling all 9 examinations, was performed to assess; a) the relation
between K% and Dy (permeability), and; b) the relation between k., and K (wash-out). The latter
indicate a piecewise linear relation between small (K3, k,)-values (tumor = V), and between higher values
(probably representing microvascular bolus passage in normal tissues = o), with slightly different slopes.
For simplicity we have estimated a single regression line for the whole range of parameter values.
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7.2.  Results from pizrel-wise analysis
7.2.1. Results from “time-development”

To illustrate tumor development during time (denoted “time development”), parametric
maps and corresponding histograms for three tumors are presented at both five- (“first
scanning”) and seven weeks (“second scanning”) post-implantation (Figures 7.13- 7.30).

In two of the three tumors (NG 1 and NG 2), mean permeability (D; and K*"*), mean
plasma volume fraction (Dg), and mean leakage volume fraction (v.) increased during
the time between scans. Moreover, histograms displaying dispersion of these parameters
illustrated increased heterogeneity at the second scan. Conversely, mean wash-out rates
(K5 and k., ), and their spread, decreased with time. In contrast, the third tumor (NG
7) exhibited opposite time-development, displaying reduced plasma volume fraction and
permeability at second scan. This tumor also displayed a large increase in tumor volume,
with development of central necrosis. Notice that permeability values in NG 7 were higher
in first scan than permeability values in the two other tumors at second scan.

Summary of results; change in parameters with time

Pixel estimation of microvascular parameters in region of interests covering entire tu-
mor (including central areas of necrosis/fibrosis) showed that in two of three cases, the
permeability-surface area product and the fractional blood volume increased with time.
The same two cases revealed a decrease in flux rate back to blood, and an increase in leak-
age volume to Gadomer-17. Increase in parameter dispersion with time was also observed,
except for Ky and ke,

Figure 7.13- 7.15 (NG 1), Figure 7.19- 7.21 (NG 2) and Figure 7.25- 7.27 (NG 7) demon-
strate “time-dependent” parameter changes for three different tumors, estimated in accor-
dance with Su’s pharmacokinetic model. The same phenomenon (i.e. tumor development
with time), estimated by Tofts model, is presented in Figure 7.16— 7.18 (NG 1), Fig-
ure 7.22- 7.24 (NG 2) and Figure 7.28- 7.30 (NG 7).
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7. Results on pharmacokinetic MRI

D, - first scanning:

NG 1-1: DO n=159, mean=0.011 (SD 0.004) | Colorscale: 10°tmM

D, - second scanning:

NG 1-2: DO n=2427, mean=0.031 (SD 0.014) | Colorscale: 10°CmM

23

121

119

25

200

NG 1-1: DO n=159 [182], min=0.0015 max=0.0233 (median 0.0103)
T T

. . . . .
0.01 0.02 0.03 0.04 0.05 0.06 0.07
mM

NG 1-2: DO n=2427 [2721], min=0.0081 max=0.0734 (median 0.0284)
T

0.01 0.02 0.03 0.04 0.05 0.06 0.07
mM

Figure 7.13.: Time development of Su parameter Dy in animal NG 1; illustrating increased
plasma volume at the second scan (represented by increased mean value and increased fraction of yellow
patches). Histograms show higher dispersion (i.e. a more heterogenous distribution of Do) with time.
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7.2.  Results from pizrel-wise analysis

D, - first scanning:

NG 1-1: D1 n=159, mean=0.026 (SD 0.008) | Colorscale: 10°CmM/min

49

NG 1-1: DO n=159 [182], min=0.0111 max=0.0491 (median 0.0262)

. . .
0.02 0.04 0.06 0.08 0.1 0.12
mM

D, - second scanning:

NG 1-2: D1 n=2427, mean=0.053 (SD 0.023) | Colorscale: 10°ChM/min

NG 1-2: DO n=2427 [2721], min=0.0142 max=0.1268 (median 0.0493)
180 T T T T T T

Figure 7.14.: Time development of Su parameter D; in animal NG 1; illustrating increased
permeability at the second scan (represented by increased mean value and increased fraction of yellow
patches). Histograms show higher dispersion (i.e. a more heterogenous distribution of D;) with time.
Notice that high-permeability spots in first scan is only present in peripheral parts of the tumor.
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7. Results on pharmacokinetic MRI
D, - first scanning:

NG 2-1: D1 n=275, mean=0.025 (SD 0.009) | Colorscale: 10°CmM/min
44

. NG 2-1: DO n=275 [308], min=0.0043 max=0.0439 (median 0.0244)
[ ) 35 T T T T T T T T T T

. . . . . .
0.01 0.02 003 0.04 0.05 0.06 007 0.08 0.09 0.1
mM

D, - second scanning:

NG 2-2: D1 n=1087, mean=0.039 (SD 0.018) | Colorscale: 10°CmM/min

NG 2-2: DO n=1087 [1220], min=0.0114 max=0.1090 (median 0.0360)
120 T T T T T T T T T T

0
0.01 0.02 0.03 0.04 005 0.06 0.07 008 0.09 0.1
mM

Figure 7.20.: Time development of Su parameter D; in animal NG 2; illustrating increased
permeability at the second scan (represented by increased mean parameter value). Histograms show
higher dispersion (i.e. a more heterogenous distribution of D) with time. Notice that high-permeability
spots in first scan is only present in peripheral parts of the tumor.
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7.2.  Results from pizrel-wise analysis

K, - first scanning:

NG 1-1: K2 n=159, mean=0.094 (SD 0.063) | Colorscale: 10%/min

294

E 1243 NG 1-1: DO n=159 [182], min=0.0387 max=0.2935 (median 0.0661)
50 T T T T T

0.05 0.1 0.15 0.2 0.25
mM

K, - second scanning:

NG 1-2: K2 n=2427, mean=0.070 (SD 0.042) | Colorscale: 10°/min

NG 1-2: DO n=2427 [2721], min=0.0008 max=0.2141 (median 0.0545)
350 T T T T T

0.05 0.1 0.15 0.2 0.25
mM

Figure 7.15.: Time development of Su parameter K, in animal NG 1; illustrating decreased
wash-out rate at the second scan (represented by decrease in mean value). Histograms show slightly less
dispersion with time.
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7. Results on pharmacokinetic MRI

Ktram¢ _ first scanning;:

NG 1-1: Ktrans n=164, mean=0.003 (SD 0.001) | Colorscale: 10%/min

NG 1-1: DO n=164 [182], min=0.0010 max=0.0062 (median 0.0033)
18 T T T T T T T T

8 10 12 14 16
x107°

K'rans _ second scanning:

NG 1-2: Ktrans n=2466, mean=0.007 (SD 0.003) | Colorscale: 10%min

NG 1-2: DO n=2466 [2721], min=0.0018 max=0.0170 (median 0.0065)
180 T T T T T T T T

x10°

Figure 7.16.: Time development of Tofts parameter K" in animal NG 1; illustrating increased
permeability at the second scan (represented by increased mean value and increased fraction of yellow
patches). Histograms show higher dispersion (i.e. a more heterogenous distribution of D;) with time.
Notice that high-permeability spots in first scan is only present in peripheral parts of the tumor.
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7.2.  Results from pizrel-wise analysis

Ve - first scanning:

NG 1-1:ve n=164, mean=0.055 (SD 0.035) | Colorscale: 10%/min

160

F 4128 NG 1-1: DO n=164 [182], min=0.0000 max=0.1598 (median 0.0542)
25 T T T

0.2 0.3 0.4 0.5 0.6
mM
Ve - second scanning:
NG 1-2:ve n=2466, mean=0.145 (SD 0.090) | Colorscale: 10%min
629
r 1568
r 506 NG 1-2: DO n=2466 [2721], min=0.0147 max=0.6291 (median 0.1277)
300 T T T T T T
3 -445

0.1 0.2 0.3 0.4 0.5 0.6
mM

Figure 7.17.: Time development of Tofts parameter v, in animal NG 1; illustrating increased
fractional leakage volume at the second scan (represented by highly increased mean value). Histograms
show higher dispersion (i.e. a more heterogenous distribution of v.) with time.
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7. Results on pharmacokinetic MRI

kep - first scanning:

NG 1-1: kep n=164, mean=0.082 (SD 0.046) | Colorscale: 10*/min

kep - second scanning:

NG 1-2: kep n=2466, mean=0.061 (SD 0.030) | Colorscale: 10%/min

206

1189

1172

NG 1-1: DO n=164 [182], min=0.0346 max=0.2061 (median 0.0624)
35 T T T T T T T T T T

0.02 0.04 006 008 01 012 014 016 018 0.2
mM

NG 1-2: DO n=2466 [2721], min=0.0103 max=0.1471 (median 0.0521)
250 T T T T T T T T T T

0.02 004 006 0.08 01 012 014 016 018 0.2
mM

Figure 7.18.: Time development of Tofts parameter k., in animal NG 1; illustrating decreased
wash-out rate at the second scan (represented by decrease in mean value). Histograms show less dispersion

with time.
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7.2.  Results from pizrel-wise analysis

D, - first scanning:

NG 2-1: DO n=275, mean=0.014 (SD 0.006) | Colorscale: 10°tmM

29

F 24 NG 2-1: DO n=275 [308], min=0.0012 max=0.0295 (median 0.0143)
30 T T T

. . . .
0.01 0.02 0.03 0.04 0.05 0.06
mM

D, - second scanning:

NG 2-2: DO n=1087, mean=0.022 (SD 0.012) | Colorscale: 10°CmM

NG 2-2: DO n=1087 [1220], min=0.0047 max=0.0691 (median 0.0200)
120 T T T T

Figure 7.19.: Time development of Su parameter Dy in animal NG 2; illustrating increased
plasma volume fraction at the second scan (represented by increased mean value). Histograms show
higher dispersion (i.e. a more heterogenous distribution of Dg) with time.
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7. Results on pharmacokinetic MRI

K, - first scanning:

NG 2-1: K2 n=275, mean=0.161 (SD 0.090) | Colorscale: 10°/min

K, - second scanning:

NG 2-2: K2 n=1087, mean=0.053 (SD 0.020) | Colorscale: 10%/min

472

1430

1387

NG 2-1: DO n=275 [308], min=0.0507 max=0.4716 (median 0.1478)
60 T T T T T T T T T

0.05 01 0.15 0.2 025 03 035 04 045
mM

NG 2-2: DO n=1087 [1220], min=0.0095 max=0.1373 (median 0.0509)
120 T T T T T T T T T

1001 1

60 R

40 |

005 01 015 02 025 03 035 04 045
mM

Figure 7.21.: Time development of Su parameter K, in animal NG 2; illustrating decreased
wash-out rate at the second scan (represented by decrease in mean value). Histograms show noticeably

less dispersion with time.
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K'o"$ _ first scanning;:

NG 2-1: Ktrans n=274, mean=0.003 (SD 0.001) | Colorscale: 10%/min

K'roms _ second scanning:

NG 2-2: Ktrans n=1107, mean=0.005 (SD 0.002) | Colorscale: 10%min

7.2.  Results from pizrel-wise analysis

40 T T

NG 2-1: DO n=274 [308], min=0.0003 max=0.0056 (median 0.0029)
T

120 T T

NG 2-2: DO n=1107 [1220], min=0.0015 max=0.0146 (median 0.0048)
T

x107°

Figure 7.22.: Time development of Tofts parameter K" in animal NG 2; illustrating increased
permeability at the second scan (represented by increased mean parameter value). Histograms show higher
dispersion (i.e. a more heterogenous distribution of D) with time.
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7. Results on pharmacokinetic MRI

Ve - first scanning:

NG 2-1:ve n=274, mean=0.032 (SD 0.018) | Colorscale: 10%/min

Ve - second scanning:

NG 2-2:ve n=1107, mean=0.113 (SD 0.043) | Colorscale: 10%min

79

171

164

292

265

1238

1211

NG 2-1: DO n=274 [308], min=0.0042 max=0.0788 (median 0.0282)

30

120

0.1 0.15 0.2 0.25
mM

NG 2-2: DO n=1107 [1220], min=0.0197 max=0.2923 (median 0.1090)
T T

0.05 0.1 0.15 0.2 0.25
mM

Figure 7.23.: Time development of Tofts parameter v, in animal NG 2; illustrating increased
fractional leakage volume at the second scan (represented by highly increased mean parameter value).
Histograms show higher dispersion (i.e. a more heterogenous distribution of v.) with time.
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7.2.  Results from pizrel-wise analysis
kep - first scanning:

NG 2-1: kep n=274, mean=0.100 (SD 0.033) | Colorscale: 10%/min

166

L 1141 NG 2-1: DO n=274 [308], min=0.0443 max=0.1655 (median 0.1008)
25 T T T T

kep - second scanning:

NG 2-2: kep n=1107, mean=0.049 (SD 0.019) | Colorscale: 103 /min

NG 2-2: DO n=1107 [1220], min=0.0105 max=0.1124 (median 0.0470)
120 T T T T T T T T

Figure 7.24.: Time development of Tofts parameter k., in animal NG 2; illustrating decreased
wash-out rate at the second scan (represented by decrease in mean value). Histograms show less dispersion
with time.

97
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Dy - first scanning:

NG 7-1: DO n=529, mean=0.045 (SD 0.018) | Colorscale: 10°CmM

r 177 NG 7-1: DO n=529 [583], min=0.0151 max=0.0920 (median 0.0395)
80 T T T T T T

001 002 003 0.04 005 0.06 0.07 008 0.09
mM

D, - second scanning:

NG 7-2: DO n=3663, mean=0.025 (SD 0.013) | Colorscale: 10°CmM

NG 7-2: DO n=3663 [3967], min=0.0014 max=0.0639 (median 0.0242)
250 T T T T T T T T T

Figure 7.25.: Time development of Su parameter Dy in animal NG 7; illustrating increased
plasma volume fraction (represented by decrease in mean parameter value) with time. Histograms display
a corresponding dispersion decrease.
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7.2.  Results from pizrel-wise analysis
D, - first scanning:

NG 7-1: D1 n=529, mean=0.101 (SD 0.039) | Colorscale: 10°CmM/min

220

NG 7-1: DO n=529 [583], min=0.0363 max=0.2202 (median 0.0926)
T

D, - second scanning:

NG 7-2: D1 n=3663, mean=0.042 (SD 0.023) | Colorscale: 10°ChM/min

NG 7-2: DO n=3663 [3967], min=0.0042 max=0.1058 (median 0.0412)
250 T T T T

0.15 0.2

Figure 7.26.: Time development of Su parameter D; in animal NG 7; illustrating decreased
permeability (represented by lower mean parameter value) with time. Histograms display decrease in
dispersion.
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7. Results on pharmacokinetic MRI
K, - first scanning:

NG 7-1: K2 n=529, mean=0.035 (SD 0.010) | Colorscale: 10%/min

61

r 152 NG 7-1: DO n=529 [583], min=0.0161 max=0.0615 (median 0.0329)
80 ; ; ; ; . . .

. . . .
0.08 0.1 0.12 0.14
mM

K, - second scanning:

NG 7-2: K2 n=3663, mean=0.054 (SD 0.025) | Colorscale: 10°/min

NG 7-2: DO n=3663 [3967], min=0.0000 max=0.1496 (median 0.0530)
450 T T T

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
mM

Figure 7.27.: Time development of Su parameter K, in animal NG 7; illustrating increased
wash-out rate (represented by higher mean parameter value) at second scan. Histograms display increased
dispersion.
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7.2.  Results from pizrel-wise analysis
K'o"$ _ first scanning;:

NG 7-1: Ktrans n=527, mean=0.013 (SD 0.005) | Colorscale: 10%/min

30

NG 7-1: DO n=527 [583], min=0.0046 max=0.0296 (median 0.0123)
T T

80

0.005 0.01 0.015 0.02 0.025
mM

Ktrans _ second scanning:

NG 7-2: Ktrans n=3697, mean=0.006 (SD 0.003) | Colorscale: 10°/min

NG 7-2: DO n=3697 [3967], min=0.0006 max=0.0136 (median 0.0057)
200 T T T T T

180 1

160 R

140 q

120 q

100 q

80 1
60 1
40 |
20 1
0.005 0.01 0.015 0.02 0.025
mM

Figure 7.28.: Time development of Tofts parameter K!"*"% in animal NG 7; illustrating decreased
permeability (mean parameter value is halved) at second scan. Histograms display decreased dispersion
as well.
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7. Results on pharmacokinetic MRI
Ve - first scanning:

NG 7-1:ve n=527, mean=0.384 (SD 0.161) | Colorscale: 10°/min

754

Ve - second scanning:

NG 7-2:ve n=3697, mean=0.133 (SD 0.119) | Colorscale: 10%/min
1000

600

500

400

300

200

100

NG 7-1: DO n=527 [583], min=0.0000 max=0.7545 (median 0.3934)
90 T T T T

01 02 03 04 05 06 07 08 09 1
mM

NG 7-2: DO n=3697 [3967], min=0.0000 max=1.0000 (median 0.1186)
1000 T T T T T T T T T

. . u
04 05 06 07 08 09 1
mM

Figure 7.29.: Time development of Tofts parameter v, in animal NG 7; illustrating largely
decreased EES volume fraction (represented by huge decrease in mean parameter value) at second scan.

Histograms display decreased parameter dispersion.

102



7.2.  Results from pizrel-wise analysis
kep - first scanning:

NG 7-1: kep n=527, mean=0.037 (SD 0.013) | Colorscale: 10°/min

67

NG 7-1: DO n=527 [583], min=0.0170 max=0.0669 (median 0.0324)
100 ; , ! , :

.
0.02 0.04 0.06 0.08 0.1
mM

kep - second scanning:

NG 7-2: kep n=3697, mean=0.052 (SD 0.024) | Colorscale: 10%/min

NG 7-2: DO n=3697 [3967], min=0.0016 max=0.1198 (median 0.0500)
400 T T T T T

0.02 0.04 0.06 0.08 0.1
mM

Figure 7.30.: Time development of Tofts parameter k., in animal NG 7; illustrating increased
wash-out rate (represented by increase in mean parameter value) at second scan. Histograms display
increase in dispersion with time.
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7. Results on pharmacokinetic MRI

7.3. Results from “goodness-of-fit”

To determine which model best fitted to the actual concentration data in both tumor tissue
and healthy tissue data, three examinations were employed with pizelwise analysis of four
ROIs each. The ROIs were chosen from viable tumor tissue, central necrotic tumor tissue,
grey matter and striate muscle. All ROIs were manually chosen to include 30-50 pixels.

Figure 7.31, 7.32 and 7.33 demonstrates the four ROI-tracings and fitted curves from six
selected pixels within each ROI for case NG 3-2, NG 7-2 and WT 3-2. Fitted concentration-
time courses demonstrated difference in the two models for all illustrated pixels. Addition-
ally, the fitted model-curves revealed following characteristics:

e Necrotic tumor regions revealed scattered /dispersed concentration data (“poorer” fit),
slower uptake rates and slower wash-out rates than did viable tumor regions.

e Healthy tissue-regions revealed lower tissue tracer concentrations than observed in
tumor tissue-regions.

e Model-fit from Su was better fitted to maximum concentration in tissues than model-
fit by Tofts.

e Difference between fitted curves from the two models was larger in healthy tissues
than in tumor tissue-regions.

A pizel-wise, numerical goodness-of-fit analysis in four ROIs were performed in these three
examinations. “Goodness-of-fit” can be determined by SSE (sum of squares errors). How-
ever, since Tofts model is simpler than Su’s model (i.e. involves fewer free parameters),
comparison of the models were done using Akaike’s information criterion (AIC, cf. Sec-
tion 6.7.2). The calculations obtained were SSE-mean and SSE-range for both models,
AIC,mean and AIC.-range for both models, AAIC.(Su — Tofts) mean, AAIC, range,
the probability and the evidence ratio.

Calculations for each ROI in the three tumors revealed a lower AIC, score for Su’s model,

implying that Su’s model is most likely to be correct. All calculations obtained are given in
Table 7.4.

Summary of results; “goodness-of-fit”

I have elucidated that Su’s model and Tofts’ model employ slightly different curve-fit to
observed concentration data. Variance between models seemed larger in healthy tissues.
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7.3. Results from “goodness-of-fit”

Figure 7.31.: Elucidation of “goodness-of-fit” for the two pharmacokinetic models. Pizel-Wise
model fit (i.e.parameter estimation) for a NG positive tumor (NG 3-2) in ROIs covering; a) viable tumor
(n=49); b) necrosis (n=40); c) grey matter (n=32); d) striate muscle (n=37). n denotes number of pixels
included in each ROI. The fitted curves are shown for pixel number 5, 10, 15, 20, 25, and 30 within the
ROIs. Su model is given with continuous lines (red), and Tofts model in broken lines (blue). The figure
demonstrates a difference in the fit of the two models for all pixels in each ROI. However, difference between
models was most pronounced in healthy tissues. Which model fits the actual data most accurately can not
be determined visually. Notice the different concentration scales in tumor (column a) and b)) and health
tissues (column c) and d)).
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7. Results on pharmacokinetic MRI

a)

Figure 7.32.: Elucidation of “goodness-of-fit” for the two pharmacokinetic models. Pizel- Wise
model fit (i.e.parameter estimation) given as example for a large NG tumor at seventh week (NG 7-2).
Model fit were performed in four different ROIs covering; a) viable tumor (n=49); b) necrosis (n=40);
c¢) grey matter (n=32); d) striate muscle (n=37). n denotes number of pixels included in each ROI. The
fitted curves are shown for pixel number 5, 10, 15, 20, 25, and 30 within the ROIs. Su model is given with
continuous lines (red), and Tofts model with broken lines (blue). The figure demonstrates a difference in the
fit of the two models for all pixels in each ROI. However, difference between models was most pronounced
in healthy tissues. Which model that fits the actual data most accurately can not be determined visually.
Notice the different concentration scales in tumor (column a) and b)) and health tissues (column c) and

d)).
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7.3. Results from “goodness-of-fit”

Figure 7.33.: Elucidation of “goodness-of-fit” for the two pharmacokinetic models. Pizel- Wise
model fit (i.e.parameter estimation) for a wild type tumor (WT 3-2) in ROIs covering; WT 3-2; a) viable
tumor (n=49); b) necrosis (n=40); c) grey matter (n=32); d) striate muscle (n=37). n denotes number of
pixels included in each ROI. The fitted curves are shown for pixel number 5, 10, 15, 20, 25, and 30 within
the ROIs. Su’s model is given with continuous lines (red), and Tofts’ model with broken lines (blue). The
figure demonstrates a difference in the fit of the two models for all pixels in each ROI. However, difference
between models was most pronounced in healthy tissues. Which model that fits the actual data most
accurately can not be determined visually. Notice the different concentration scales in tumor (column a)
and b)) and health tissues (column c) and d)).
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7. Results on pharmacokinetic MRI

NG 3-2, vi, n—36

NG 7-2, vi, n—=49

WT 3-2, vi, n=37

Su Tofts Su Tofts Su Tofts
SSE 816.7 1991.0 2092.0 5677.5 2673.8 7919.1
AIC, 162.9 216.3 209.2 270.5 211.5 267.5
A AIC, (S-T) -53.4 -61.3 -56.0
Probability (Su) 100% 100% 100%
Evidence ratio (T/S) 0 0 0
NG 3-2, ne, n—=47 NG 7-2, ne, n—=40 WT 3-2, ne, n—=xx
Su Tofts Su Tofts Su Tofts
SSE 1471.1 1770.8 819.5 901.0 1956.4 3118.2
AIC, 194.4 204.0 135.2 139.0 186.1 218.3
A AIC, (S-T) -9.6 -3.8 -32.2
Probability (Su) 92.9% 80.1% 96.3
Evidence ratio (T/S) 0.090385 0.314998 0.201759
NG 3-2, GM, n=41 || NG 7-2, GM, n=32 || WT 3-2, GM, n—46
Su Tofts Su Tofts Su Tofts
SSE 917.1 1120.7 242 .4 356.4 398.9 553.9
AIC, 164.4 175.2 80.9 103.9 117.2 134.5
A AIC, (S-T) -10.8 -23.0 -17.4
Probability (Su) 97.7% 99.6% 99.6%
Evidence ratio (T/S) 0.025099 0.003620 0.003881
NG 3-2, mu, n=33 NG 7-2, mu, n=37 WT 3-2, mu, n=41
Su Tofts Su Tofts Su Tofts
SSE 6958.1 10539.7 1460.2 1936.0 1247.5 1540.3
AIC, 243.4 269.3 178.0 195.1 172.9 184.4
A AIC, (S-T) -25.9 -17.1 -11.6
Probability (Su) 100% 99.9% 98.0%
Evidence ratio (T/S) 0.000059 0.001109 0.022042

Table 7.4.: Tabulations for comparison of models by Akaike’s information criterion (AIC).
Outliers are excluded. For all cases: N=63 time-points. Numbers of parameters estimated (K) is three
for Su’s model, and two in case of Tofts’ model. SSE is the sum of squares errors in mean of n pixels,
and AIC, is the corrected AIC in mean of n pixels. The model scoring lowest AIC, is most likely to be
correct. Su’s model attained lowest AIC, score in all cases in this trial (i.e. four different ROIs in each of

three tumors).
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7.3. Results from “goodness-of-fit”

By MSE (mean of sum of squares errors) and AIC -score, Su’ s model revealed the lowest
values for all four ROIs in these three tumors (cf. table 7.4). Thus, the Su method was
most likely to be correct to the data obtained According to this comparative AIC analysis,
the probability that the Su model is most likely to be correct (among the two) is highest
for viable tumor ROIs.

However, neither MSE nor AIC_-score could be used as “goodness-of-fit-criteria” for com-
parison between tumor tissues and healthy tissues as they do not take the low tracer uptake
in healthy tissues into account.
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7. Results on pharmacokinetic MRI

NG 3-2
post Gadodiamid T1 slice 6 DCE Gadomer-17 slice 2, frame 28 R=chl, G=ch2, B=zeros
10 20 30 40 50 10 20 30 40 50
NG 7-2
post Gadodiamid T1 slice 6 DCE Gadomer-17 slice 2, frame 28 R=chl, G=ch2, B=zeros
WT 3-2

post Gadodiamid T1 slice 6 DCE Gadomer-17 slice 2, frame 28 R=chl, G=ch2, B=zeros

Figure 7.34.: Enhancement patterns of Omniscan and Gadomer-17. Omniscan (left panel) and
Gadomer-17 (center) showed a different enhancement pattern, here demonstrated for three tumors (corre-
sponding slices and time-points). The colored maps (right panel) demonstrate the overlaps and differences
in enhancement, where Omniscan-enhancement (Gd-DTPA) is coded red, and Gadomer-17 enhancement
is coded green. Thus, yellow coded areas represent enhancement of both contrast agent types. Black areas
represent no contrast enhancement. Distinction between the two types of contrast agent is evident in
reflection of both tumor boundaries and central areas. Dominant Gd-DTPA enhancement (red) is seen in
the interfaces “tumor—surrounding tissue” and “tumor—central necrosis”. Notice that slice thickness in dy-
namic and T; post-contrast scan were 3 mm and 1 mm, respectively. Thus, partial volume effects (caused
by averaging of different structures or tissue types in voxels [77]) are more pronounced in dynamic images.
However, using the dynamic mid-slice of tumor, this effect is smaller than if “peripheral slices” (involving
both tumor tissue and healthy tissue) had been used.
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8. Discussions and conclusions

As a large variety of MRI techniques have revealed microvascular structure and function, a
meaningful comparison of results from different studies can be difficult, if not impossible.
Differences are seen in imaging technique (equipment, sequences), in contrast administra-
tion (type of contrast agent, dose of injected agent, method of administration), and in the
post-processing of dynamic data (generation of contrast-time curves, PK model applied
etc). Some of these aspects have been elucidated in this thesis and will be discussed in
this chapter. Aspects of DCE-MRI concerning acquisition technique is beyond the scope
of this thesis' and will not be discussed.

8.1. ROI-wise analysis

The first step in DCE-MRI parameter estimation, is identification of the tumor region.
This is however not always an easy task, especially if the cancer is a non-focal mass and /or
if the neighboring normal parenchyma also exhibited some degree of enhancement [93].

Questions concerning i) variability of operator defined ROIs, ii) background information
inherent in “Gadomer-17 enhanced” and “Gd-DTPA enhanced” images, iii) assessment of
tumor heterogeneity by choosing smaller ROIs, and iv) regional differences were carried
out by ROI-wise analysis. A mean signal intensity-time curve was computed for entire
region of interest in each case. Generally, by ROI-wise pharmacokinetic analysis, physio-
logical parameters can be estimated. However, more detailed spatial distribution (i.e. local
heterogeneity) can not be assessed based on such ROI analysis.

8.1.1. Variability due to manual tracing of ROls

The validity of a diagnostic tool depends not only on its accuracy, but also on its reliabil-
ity [62]. In this study, identification of cancerous regions was done manually, i.e. operator-

MRI acquisitions, including injection procedures, were not under experimental control in this work.
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8. Discussions and conclusions

defined (irregular) ROIs were traced with a manually controlled cursor. In this part of my
work, each ROI was outlined to include as much tumor tissue as possible (not excluding
central tumor fibrosis or necrosis), although excluding fat and surrounding normal tissues.
ROI depiction was repeated five times.

Descriptive statistics were calculated: within-tumor standard deviation and within-tumor
coefficient of variation (i.e. variability). Results demonstrated variability in parameters
due to manual outlining. Even though all parameters were within 95% confidence interval
(in every trial), variability were shown to be inherent in subjective ROI analysis. Manual
tracings of tumor boundaries are, as shown in this study, hard to reproduce. Therefore,
one should be cautious using DCE-MRI derived parameters based on manual tracings in
clinical contexts (such as in tumor characterization or assessment of therapy response).

A number of studies concerning manually versus automatic (or semi-automatic) methods of
outlining ROIs have been carried out, e.g. |28, 53, 63|. It has been generally concluded that,
in addition to differences in acquisition and quantification methods (scanning protocol and
pharmacokinetic model used), variability in subjective ROI selection contribute to make
the interpretation of estimated parameters more complex [63]. Variation in repetitive
ROIs have been reported even when traced by the same experienced operator, as also
demonstrated in this study. A solution to this problem can be to employ automated or
semi-automated methods [62]. In a study, Liney et al. [53| found that semi-automated
methods reduced variability compared to subjective ROI analyses. Liney et al. compared
two semi-automated methods of ROI analysis with a user-defined method in a selection of
breast tumors. User-defined ROIs were selected by an experienced radiologist. One semi-
automated method used a 9-pixel square mask to select the area of greatest enhancement,
while the third ROI was produced by determining pixels which were within 10% of the
maximuim signal intensity.

Although poor perfusion, contrast agents may gradually seep into necrotic regions. Au-
tomatic approaches taking into account the time it takes for each area (or pixel) to be
enhanced should be considered when determining necrotic regions.

In conclusion, results demonstrated that manual tracings of ROIs is not an extremely re-
producible and robust method for determining and reporting tissue specific parameters.
Sensitivity to operator performance adds to the total variability in microvasculatory es-
timates. The smaller biological differences one want to discern, the more severe is this
operator-derived “noise”.
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8.1. ROI-wise analysis

8.1.2. Use of different background information for ROI
determination

Additional manual ROI tracings were performed as discussed above (three trials, each
repeated five times), however, using Gd-DTPA enhanced image as depiction template. In
general, parameter variability was higher in Gd-DTPA depicted ROIs than in ROIs outlined
on basis of Gadomer-17 enhancement. One tumor exhibited about twice as high CV using
the Gd-DTPA template compared to the Gadomer-17 template (for all parameters in both
models).

From the presented results (Table 7.1 and 7.2), it was evident that more reproducible
parameter estimates were obtained when a Gadomer-17 enhanced template was used as
background. This may be related to the fact that Gd-DTPA enhanced templates possess
higher tracer leakage due to the agents smaller molecular-weight. Consequently, a Gd-
DTPA enhanced tumor region may include parts or boundaries which are not enhanced
using Gadomer-17. Pixels that are subject to this effect will influence the resulting param-
eter value.

As seen in Figure 6.6 dynamic (Gadomer-17 enhanced) and post-contrast (Gd-DTPA en-
hanced) images reveal enhancement differences for all three cases, especially concerning
tumor peripheral- and central “boundaries”. To explore the differences between them,
enhancement for the two agents have been color coded in Figure 7.34. Substantial en-
hancement differences (between the two agents) are seen in viable tumor rims and cen-
tral necrosis. Some central areas possessing no enhancement of Gadomer-17 did actually
enhance using Gd-DTPA as contrast agent. Thus Gadomer-17 seem to display higher
heterogeneity in its enhancement.

The different enhancement pattern in tumor, observed at comparable points in time (Fig-
ure 7.34), communicate different properties of physiology within tumor microenvironment.
The results may imply that the tested pharmacokinetic models better apply to tumor-
enhancement by a macromolecular tracer. However, slightly different results might have
been obtained if central necrotic region were excluded from the ROIs. Non perfused regions
affect the results |[93]. In my study, however, necrotic areas were always included in the
ROIs. Thus, variation, using either of the two contrast agents as template, is likely to
reflect micro physiological differences inherent in the peripheral enhancement of tumors.

In the literature, manual ROIs has been reported to be identified from different image
channels (e.g. from To-weighted anatomical images) [114]. In the multispectral image data
used in this thesis, Gd-DTPA enhanced images provided the (visually) most distinct and
well defined tumor margins. However, manual outlining of ROIs from these images gave
larger variability in parameter estimates compared to tracings from dynamic measurements
(using Gadomer-17). A possible explanation for this finding is that Gadomer-17 enhance
only the “most” leaky areas. Enhancement with Gd-DTPA can extend beyond this areas,
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towards central necrotic region and peripheral tumor boundaries. Gd-DTPA enhanced
areas can thus include pixels where a Gadomer-17 based? pharmacokinetic model is less
applicable. As stated in Kim et al. [46], agents such as Gd-DTPA have a 20% to 80%
single-pass extraction fraction both in normal and malignant tissues. Contrary, Gadomer-
17 have a small (< 5%) single-pass extraction fraction in normal vessels. Additionally,
as Gd-DTPA are smaller molecules, there are less diffusion hindrances within the tumor
interstitium, resulting in larger areas of enhancement.

In conclusion, cancerous region were best identified from the Gd-DTPA enhanced images.
However, as demonstrated in Figure 7.34 the two different contrast agent types possess
different CA-enhancement disposition in the same tumor. Furthermore, pharmacokinetic
models assuming a generalized blood-concentration course based on Gadomer-17 decay
rates and concentration amplitudes, are likely to be more appropriate when ROIs are
depicted from Gadomer-17 enhancement rather than Gd-DTPA enhancement. My findings
of less parameter variability between repetitive ROI tracings using Gadomer-17 template
compared to Gd-DTPA template support this theory.

8.1.3. Heterogeneity assessment by smaller ROls

As mean values in ROI analysis do not take interior tumor heterogeneity into account, it
might be preferable to select several smaller regions within a tumor rather than determine
a mean value for the entire tumor [63].

By selecting several smaller ROIs from viable (enhanced) parts of tumor and some from
“necrotic” (non-enhanced) areas, it was desired to demonstrate spatial parameter variation.
Additionally, I wanted to investigate whether areas in tumor that seemed to possess the
same degree of enhancement, were heterogenous in terms of the estimated parameters in
the Su- and Tofts models. Spatial differences were confirmed.

Also the “necrotic” areas revealed differences (heterogeneity) in estimated parameters. This
may imply that not all non-enhanced (Gadomer-17) areas are necessarily consistent with
developed necrosis. Reduced perfusion (not fully developed necrosis) in areas may hinder
leakage of Gadomer-17. Another explanation to non-enhanced areas can be that newly
formed vessels mature and become less permeable to Gadomer-17 during time [14]. As
seen in Section 6.6, some tumor regions which appear non-enhanced with Gadomer-17,
appear enhanced with Omniscan. This should be taken into consideration when deciding
that central necrotic/fibrotic tissues shall be excluded.

Although heterogeneity was found within both “enhanced” and “non-enhanced” regions,
there was a trend concerning difference in time course between them. As would be ex-

2Both models (Su and Tofts, respectively) as used in this thesis are regarded as Gadomer-17 based because
they employ concentration amplitudes and decay rates derived from Gadomer-17 kinetics in blood.
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pected, enhanced regions generally showed a steeper up-slope, higher total concentration
and a faster decay (wash-out) compared to non-enhanced regions (compare e.g. ROI 11
and 12 Figure 7.5). Concentration data from “non-enhanced” did not (visually) reveal a
more dispersed distribution than those from “enhanced areas”. However, the smaller ROIs
obtained more dispersed data than the two “whole tumor” ROIs did (large ROIs improve
SNR [70]).

Smaller “enhanced” ROIs showed variability in parameter out-comes. These areas possessed
the same visual degree of enhancement (i.e. signal intensity). Within these “enhanced”
regions, parameter variations were highest for Ky and k,. If automated ROI selections
(e.g. threshold segmentation [97]) are used, these findings of heterogeneity may indicate the
need to differentiate between different ROI selection criteria even within the same tumor.

The variance in parameters estimated for ROIs that correspond to visual “non-enhanced”
intra-tumor regions, may represent presence of low perfused areas, and not necessarily
necrosis. On the other hand, the variation may also express a “non-validity” of the pharma-
cokinetic models in these low- or non-flow regions. Due to insufficient perfusion to necrotic
and semi-necrotic areas, delivery of contrast agent is flow-limited rather than permeability-
limited [94, 97]. In such areas, models that assume permeability-limited transport constants
are thus not applicable. However, visual inspection of model curves fitted to the concen-
tration time courses (Figure 7.5) did not reveal poor fit. Visually, “non-enhanced” ROIs
may thus represent low perfusion/low permeability areas, and not necessarily necrosis.

8.1.4. Regional differences in four tissue ROls

tissue-concentration curves derived from healthy tissues (grey matter regions and muscle
tissue regions) revealed very low peak tissue concentration of contrast agents. Moreover,
for both models (Su and Tofts), curve-fit seemed to be poor in healthy tissues compared
to tumor tissues. However, concentration data in these areas were scattered, making it
difficult to visually evaluate the quality of fit.

Evaluation of data-fitting revealed no conclusive visual difference between “whole-tumor”
ROIs and “enhanced tumor-part” ROIs. Maximum tracer concentration was, however,
slightly higher for enhanced ROI in all nine cases due to larger mean signal intensity in
the ROIs restricted to enhanced regions only. Comparing “whole tumor” ROI analysis and
“hotspot” (enhanced) analysis, Su et al. [93| reported a steeper up-slope, higher enhance-
ment magnitude and a more rapid wash out phase for hotspots. In this study, the higher
enhancement magnitude could be easily identified.

Difference between curve-fit by Su’s model and by Tofts model was prominent for healthy
tissue ROIs. Su’s curve revealed higher maximum tissue concentrations and higher rate
constants for tracer-flux back to blood (cf. Figures 7.7, 7.8 and 7.9). Both models showed
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visually a “better” fit to tumor tissue than to healthy tissues, but it could not be decided
from visual inspection alone which model provided the best fit.

Although the low Gadomer-17 tracer uptake in healthy tissues might indicate that the
models are not applicable to these regions, they were nevertheless included for assessment
of regional differences (cf. Figure 7.11) in permeability (D; and K"%"¢) and out-flux rate
(Kg and k.,). In a study by Padhani et al. [70] it was proposed to use healthy tissue ROIs
as reference to which the calculated DCE-parameters can be normalized to compensate for
variations in physiological factors, such as cardiac output and blood pressure, that might
affect parameter estimates. This assumes narrow ranges of kinetic parameter variability in
healthy tissues.

In this study, permeability (K"*"* or D;) was shown to be highest in enhanced ROIs,
and higher in tumor than in healthy tissues. Notice that both models (Su and Tofts)
actually estimated some “permeability” in healthy tissue. This “permeability” is even seen
in grey matter, in which the blood-brain barrier should not allow transvascular transport
of macromolecules such as Gadomer-17. Remember, however, that permeability is not
measured directly. Permeability is rather an assumption made in the models to describe
the observed data. If the signal intensity raises for a short period of time, and then falls
again, the models will consider this as permeability —regardless of the cause of the intensity
change. In my experiments, it is likely to assume that such a short-durated signal intensity
change may reflect “first pass” of contrast agent in highly vascularized normal tissues. Thus,
permeability may have been incorrectly measured in areas without transcapillary leakage
(i.e. healthy tissues).

Bi-variate scatter plot of parameters describing permeability in the two models (i.e. K!rens
versus D;) showed that they were highly correlated (Figure 7.12). This indicates that
they reflect closely related physiological processes. K" (min~!, Tofts) represents the
permeability-surface area product per unit volume of tissue, while Dy (mM/min, Su) is pro-
portional to volume of extravascular extracellular space, the maximum plasma tracer con-
centration and the transport constant from blood to tissue (K;). D is described to reflect
contrast agent accumulation in the intravascular space. K, reflecting the permeability-
surface area product is not expressed explicitly by Su’s model.

Ky (Su) and ke, (Tofts), expressing the out-flux rate of tracer from tissue, demonstrated
higher values in normal tissues than in tumors tissues (cf. Figure 7.11) . This is not
consistent with reports in the literature [97, 96|, and may represent another indicator of
the “non-validity” of the models in healthy tissues. A bi-variate plot of these parameters
revealed a piecewise linear relationship (cf. Figure 7.12) with low values of Ky and ke,
representing tumor, and higher values representing healthy tissues. Again, the high values
(of Ky and k.,) estimated in grey matter and muscle are likely to reflect bolus passage in
the microvasculature of these tissues, and not wash-out of tracer from tissue.
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8.2. Pixel-Wise analysis

In ROI-wise analysis, the mean of the signal intensities within a selected ROI is calculated
for each of the dynamic images, resulting in a single time-intensity curve which conceals
tumor heterogeneity[63]. In pixel analysis however, time-intensity data curves are employed
for each pixel within the selected ROI. Using pixel-wise quantitative analysis, results can
be presented as parametric images®, and corresponding histograms of calculated parameter
can be plotted. Advantages of pixel mapping techniques include; 1) improved assessment
of the heterogeneity of tissue enhancement and; 2) elimination of the need for selective
placement of user-defined ROIs [8]. Furthermore, Tofts and Berkowitz [103] stated that
even though the exact relationship between concentration and enhancement is known for
a homogeneous region of tissue, it is not possible to estimate the exact relationship for a
heterogenous region of tissue, unless the enhancement values within all parts of the region
is known (i.e. pizel-wise analysis).

However, researchers present conflicting opinions about the value of pizel-wise estimation.
Comparing ROI-wise whole tumor analysis with pixel-by-pixel analysis of whole tumor, Su
et al. [93] found good correlation of the resulting parameters from the two methods. The
researchers suggested that the correlation may be in part caused by use of computer as-
sistance when defining ROIs, and that pizel-wise analysis does not provide any additional
quantitative information (besides demonstrating the tumor heterogeneity) compared to
ROI-wise analysis. The pizel-wise approach can be computationally heavy and is usually a
very time consuming process. As a reward, the parametric maps may help improving diag-
nostic accuracy and revealing heterogeneity. Comparing manually selected (non-automatic)
ROI estimation with whole tumor pixel estimation, generally favor pizel-wise information
as the ROI-selection method affects the results.

The methodological problems with pixel-by-pixel parameter estimates includes the possi-
bility of not being able to estimate parameters in a pixel, or that the estimate is not valid
(the model assumptional requirements are not fulfilled). Such problems may be due to
noise or movement artifacts. It may also be that the pixel in question is not enhanced.
Alternatively, there can be numerical problems with the estimation algorithm. In this
study, pixel estimates that were located outside the 2.5-97.5 percentile range, as defined
from the pizel-wise distribution from the whole region of interest (cf. Figures 7.13- 7.30),
were excluded to reduce such “artifacts” in the parametric images. In this way there might
occur “voids” within the ROI, where the template image intensity is depicted instead,
marking the occurrence of such outliers. The resulting parametric map will thus enable
calculation of sample means and standard deviations as well as histogram plots, showing
the heterogeneity of parameter distribution within the restricted ROI.

3Notice that for the parametric maps, the numerical range of each parameter is typically (pseudo-) color
coded with the color scale shown beside the corresponding map.
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Inspecting the generated parametric maps from pizel-wise analysis (Figures 7.13— 7.30),
blood-tissue permeability maps (represented by D; and K'"¢) indicate relatively large
areas of low to medium permeability (red and orange color, respectively), surrounded
by hotspots of high permeability (yellow) in small tumors (“week-five” scans). However,
permeability maps of larger tumors (“week-seven” scans) exhibited large central areas of
very low, or zero, permeability.
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Possible explanations for such central low permeability are [5]:

e Lack of perfusion (such as in necrotic regions),
e High interstitial pressure (as expected in central areas of tumors) and/or

e Presence of mature capillaries with very low permeability

Both fractional blood volume, and permeability have been proposed as characteristic fea-
tures of tumor aggressiveness [81]. Blood volume maps (Dy) and permeability maps (D)
showed great similarities regarding location of areas with low values and the location of
“hotspots”. An example of this is seen when comparing Dy and D; maps from seventh week
scan of NG tumor one (cf. Figures 7.13 and 7.14. These maps show spatial relations (of Dy
and Dq) in the tumor. The highly heterogenous nature of blood volume (i.e. perfusion) is
reflected in Figure 7.13. The chaotic structure of tumor vasculature is known to cause an
unbalanced blood supply and thus tumor regions with transiently or chronically hypoxic.
Further, a temporal and spatial heterogeneity of blood flow in tumors, is increased by the
fact that only 20-80 % of the microvessels are perfused at a given time [29].

In small tumors, wash-out maps and permeability maps showed nearly a reciprocal re-
lationship, i.e. high permeability areas correspond to low wash-out rate areas, and vice
versa. One example of this is is seen when comparing K¢ and k., in fifth week scan for
tumor NG one (cf. Figures 7.16 and 7.18) which show spatially a nearly inverse relation.
Wash-out rate maps for the three large tumors (seventh week) demonstrated low wash-out
for the largest tumor, and medium to high (although highly heterogenously distributed)
wash-out rates for the two other tumors.

High permeability to contrast agent in small tumors could be related to angiogenic activ-
ity forming new, initially highly permeable micro-capillaries. The subsequent maturation
of angiogenic vessels may decrease observed permeability due to extensive coverage with
pericytes and smooth muscle cells. This progressive maturation of angiogenic vessels in
tumors imply that young (and thereby small) tumors contain a higher fraction of immature
and leaky vessels compared to larger tumors which have continued to grow and possess
vessels with a decreased permeability [5, 48]. It is tempting to suggest that maturation
of angiogenic vessels, and increased central interstitial pressure with corresponding edema
formation, may contribute to the low parameter values observed in the largest tumor (NG
7-2). However, histological examination will be necessary to make more valid interpretation
of the model based DCE-MRI findings.

8.2.1. Time development

To assess parameter changes in tumor during its development, mean parameter value for
the entire tumor (all pixels) at both fifth and seventh week post-implantation were com-
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puted for each of three tumors (three different animals). Two of these three cases showed
parameter changes as would be expected with tumor growth. In these two tumors, the
permeability-surface area product (D; and K*"*) the fractional blood volume (Dgy) and
the fractional leakage volume (v.), accessible to Gadomer-17, increased during the two
weeks between scans. In contrast, the flux rate of tracer returning to the vasculature
(Ky and k.,) revealed a decrease. The findings indicating increased blood-tissue perme-
ability, intravascular volume fraction* and tracer leakage volume was expected as these
features represent characteristics of tumor aggressiveness [29]. Also, an increase in param-
eter dispersion, reflecting heterogeneity (which in turn reflects tumor aggressiveness), was
demonstrated (cf. Section 7.2.1).

In their “NG-2 study”, Brekke and Chekenya (at present time unpublished) also found
reduced wash-out rates in NG-2 tumors at the second time-point. Such reduced wash-
out rates are inconsistent with findings reported by Su et al. [97, 96, 98]. Brekke and
Chekenya show their findings to be neither contrast agent dependent (reduced outflux
was also observed using Gd-DTPA), nor model dependent (as both Su’s and Tofts’ model
revealed a decrease in wash-out).

The development of reduced out-flux rates in NG-2 tumors analyzed in this thesis is most
likely caused by increased formation of low-perfused, or necrotic areas as demonstrated
in the parametric images. Contrast agent elimination from such low-exchange tissues is
known to occur at slow rates [46, 58, 71]. A treatment implication of this phenomenon;
high permeability and low wash-out properties of tumors, may be important for molecular
drug-treatment. A high-molecular drug would easily leak from blood to tumor tissue and
remain trapped there for a prolonged time.

Notice that “time-development” was studied using parameter mean of all the individual
pixel (representing a single global value for the entire region). If used alone, parameter
mean conceal heterogeneity. From Figures 7.13— 7.30 it is also seen that parameter his-
tograms are not always unimodal and symmetric. In such cases of asymmetric skewed
distribution, the sample mean (as in ROI-wise analysis) would not provide an appropriate
statistical point estimate of the “typical” parameter value in the region of interest. Instead,
their 25th, 50th and 75th percentiles could have been a better choice for representing pa-
rameter estimations at different time points, such as proposed by Galbraith et al. [28] and
used by Bogin et al. [5]. And, obviously, it is not spatially or physiologically accurate to
report a parameter mean of all the individual pixel values (i.e. a single global value for the
entire region) as parametric images and histograms revealed a rather heterogenous tumor
tissue response.

4Notice that intravascular volume fraction measured as Su’s Dy is related to blood flow by the fact that
DCE-MRI can only detect functional vessels with flowing blood.
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8.3. “Goodness-of-fit”; comparison of models

The visual difference in fit between the two models were largest in healthy tissues (Su
seemed more appropriate than Tofts). However, in these cases there were extremely low
tracer uptake with a large dispersion of data in the concentration time course. This dis-
persion might reflect the noise level in these time courses (i.e. bolus passage) so that the
PK model will not be valid or enable reasonable parameter estimation. In tumor tis-
sues, the difference in fit was less evident, but again, Su’s model revealed a slightly better
“goodness-of-fit” by visual inspection. Such difference in fit might be related to differences
in model-assumptions, the derivations to obtain the final model equation, or simply the
incorporation of one more free parameter in the Su model.

The quality of fitting the parametric models of Tofts and Su to the calculated concentration
curves was first assessed through calculation of the sum of square errors (SSE). However,
SSE does not provide a good measure for comparison of models which do not fit the same
number of parameters. A model consisting of many parameters is usually more “expressive”
and “adaptable” to data than a model with fewer parameters [110]. The curve generated
by the most complicated model equation (i.e. more parameters) will nearly always have a
lower sum-of-squares because it is more flexible [61]. On the other hand, we want as simple
model (few parameters) as possible to account for the biological processes being involved.

Therefore, The Akaike’s information criteria (AIC,) was used to determine how well data
supported each model. The Akaike’s information criterion provides a numerical means to
select an the most appropriate model from a set of competing models [110]. The approach
takes both SSE and difference in number of fitting parameters into account. The model with
lowest AIC, score is most likely to be correct. The term AAIC, tells how much more likely
one model is compared to the other. In addition, Su and Tofts model were also compared
with an AIC.-based likelihood ratio. An advantage of using AIC is that the approach is
less rigid than that of statistical hypothesis testing. Moreover, the AIC, approach can
be easily extended to compare more than two models [61]. However, Akaike’s method is
dependent on the magnitude of the observed data points [110]. Thus fit in “healthy tissue”
regions could not be compared to fit in “tumor” regions using this criteria.

“Goodness-of-fit” analysis by AIC.-score revealed numerically a better fit for Su’s model
(compared to Tofts model) in all four “tissues” (i.e. enhanced tumor, non-enhanced tumor,
grey matter and muscle) in each of the three cases being assessed. Possibly this better
adequacy of Su’s model fit is caused by Su’s two-part equation for describing contrast agent
kinetics in blood compartment (Su’s fitted curves seemed visually to better account for the
early peak tissue contrast agent concentrations). The theoretical differences inherent in
the two models, which may explain their different fitting properties, is further discussed in
Section 8.4.1.

In conclusion it has been demonstrated that Su’s model was most likely better than Tofts’
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model to describe the observed concentration time courses in these experiments. This
could be concluded from the AIC. analysis, taken into account the “handicap” of Tofts
model using only two parameters (compared to Su’s three parameters). I could however,
not numerically demonstrate that the models fitted poorly to data from healthy tissues
compared to data from tumor tissues. Do do so, we would need a method that takes the
low concentration in healthy tissues into account. Besides, numerical fit is not equivalent
with with model validation.

Even though Su’s model provided the best fit, future studies may prefer Tofts’ model
which provides more commonly unified parameters, possibly providing an easier biological
interpretation (cf. consensus proposal by Tofts et al. [104]).

8.4. General methodological discussion

8.4.1. Theoretical differences in the two models

Several drawbacks concerning application of pharmacokinetic models have been addressed
by different groups. The data obtained may not fit the model chosen. In addition, each
model makes a number of assumptions that may not apply for every tissue or tumor type, to
the type of contrast agent used, or to the actual MRI method applied [68]. Furthermore, the
kinetics and physiological properties that may be extracted from the time course of tracer
distribution depend upon an appropriate theoretical model and the related assumptions
used to interpret data. The two models which were applied in this thesis (i.e. the Su-model
and the Tofts-model) will be theoretically discussed here.

As described in Section 5.2, one difference between the Su model and the Tofts model lie
in the mathematical formula determining the generalized plasma concentration-time
curve. In contrast to Tofts et al., Su et al. assume plasma concentration to consist of
two parts; first a linear increase to a maximum concentration and second a subsequent
bi-exponential decay (cf. Figure 5.6). This linearity of plasma concentration during time
to may be a reasonable approximation since we are interested in tracer behavior on a much
longer time scale (~ 30 min) than the brief period after the bolus injection (~ 30 s), needed
for plasma concentration to peak. As already mentioned, the divided modeled plasma curve
in Su’s model may explain the better fit to maximum tissue tracer concentration compared
to Tofts’s model.

Secondly, Tofts model assumes isodirectional flux. This implies that diffusion is the
major mechanism for transvascular transport of tracer. Contrary to Tofts model, Su et al.
allow two different transport constants between the compartments and thus employ the
possibility of convection as a transport mechanism. As described in Section 2.3, the exact
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mechanisms for increased extravasation of tracer in tumor tissue remain unclear. However,
both Gadomer-17 and Gd-DTPA are suggested to have diffusion as major mechanism of
transport [43, 97, 96]. Thus, isodirectional transport may be a reasonable simplification
for dynamic studies using Gadomer-17.

Finally, the Su model includes intravascular signal contribution and thus estimation
of vascular volume fraction. Whether Tofts model, neglecting intravascular contribution
and the possibility of two different transport rates, is too simple or not, is a returning,
but yet not answered, question. Some have claimed the neglect of intravascular contri-
bution to be incorrect and to cause false high levels of permeability (K*"), especially
when using a macromolecular tracer [41]. As one voxel generally contains both vasculature
and tissue, perfused volume of these vessels may be an important factor governing the
estimated parameters. Physiological specificity may be increased by including a plasma
volume term (v,C,) as originally done by Su et al. [94], where contributions from blood
vessels and extravascular components to the contrast uptake rate are separated (assuming
a general arterial input function, AIF orC'(t)). Tofts et al. [102] argue that neglecting
vascular volume fraction contribution apply if perfusion is low, as in MS-lesions. Further,
Su et al. claim that K; and K5 can not be assumed equal in tumor tissue. Only in healthy
tissues where vessels are non-leaky and diffusion is the main mechanism for tracer trans-
port, it can be assumed that the transport rate for influx and efflux of tracer are equal [94].
Macromolecular agents have a smaller distribution volume than do low-molecular agents.
Neglecting intravascular tracer might thus be less accurate using Gadomer-17 as a tracer
rather than Gd-DTPA. Modifications of the Tofts’s model to specifically include the in-
travascular signal contribution, and thus reduces errors due to false elevated K" have
been proposed [10, 104]. Others have suggested that neglecting of vascular volume contri-
bution (and permeability-limitation) is reasonable for many healthy tissues including fat
and muscle, but probably not for pathological tissues [70].

The permeability-limitation (F' > PS) assumed in both models, implies that perfusion
must be high enough to replenish the amount of tracer leaking out of the microvasculature
(i.e. local blood concentration is prevented from depletion). Although this assumption
may not be satisfied for Gd-DTPA because of high leakage [94], Gadomer-17 most likely
fulfill this requirement [109]. In malignant tumor tissues, K" is suggested to reflect a
combination of permeability-surface area product and tissue perfusion (although vessels
in general are more permeable than in normal tissues) because flow and permeability are
highly heterogenous throughout the tumor. In healthy brain tissues however, with a tight
blood-brain barrier and high perfusion, the rate at which contrast agents extravasate is
limited by vessel permeability [28, 69].

Glioblastomas, are among the most vascularized solid tumors in humans [56]. It therefore
likely to believe that viable tumor areas fulfill the requirement of permeability-limitation
using Gadomer-17 as tracer. On the other hand, central areas of rapidly growing tumors
commonly display inadequate blood flow due to reduced local perfusion pressure, resulting
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from a combination of inadequate (angiogenic) vascularization and increased interstitial
tumor pressure [49]. One can thus question whether these central areas of tumor fulfill
requirements regarding sufficient flow. If blood flow is compromised, accumulation of
tracer in the tissue would be flow-dependent and neither of the models would provide a
good estimate of permeability (which may be the case in tumor central areas).

High permeability to Gd-DTPA has been observed in both normal vessels and tumor
vessels [46]. Differentiation between malignant and benign tumors is therefore problematic.
The selective hyperpermeability to macromolecules (in microvessels of cancers) does not
extend to smaller molecular probes (less than 1 kDa) with exception of the brain [7]. As
assessed by Verhoye [109], the diffusive transvascular transport of high-molecular contrast
agents is slower than for low molecular weight agents, and may therefore be rate limiting in
tracer-uptake (i.e. permeability-limited) rather than in blood perfusion. Higher molecular
weight agents, such as Gadomer-17 would provide the most reliable measure of permeability
as their transport is more likely to be permeability-limited than transvascular transport of
low molecular contrast media.

The time varying plasma concentration is an important factor determining the contrast
agent behavior in tissue and is determined mainly by four factors; dose, injection time,
normal distribution within body and clearance from body [94]. Both the Tofts model and
the Su model assume a time varying description of the blood concentration of contrast agent
(Cp(t), regarded as the arterial input function, AIF) generalized for all subjects in a study.
As mentioned above, C,(t), or AIF, is assumed different in the two models. Rijpkema et
al. |75] suggested that some kind of normalization concerning the AIF should be applied
in order to minimize variations among patients and different measurements caused by
variable systemic blood supply. This could be achieved by using signal enhancement of
healthy tissue (e.g. in liver) as a reference, or by measuring concentration-time curves of
the contrast agent in a feeding vessel within the imaging volume. The latter method would
provide a more direct reference of the individual time course of tracer concentration in
blood. However, both approaches involves additional time-consuming concerns.

Assuming a standardized blood curve, individual characteristics of capillary architecture
and transit time have been neglected in the presented analysis.

8.4.2. Conversion to CA concentration

Both models depend on estimated contrast concentration. Conversion from signals, mea-
sured by dynamic MRI, assumes (i) an increase in Ti-relaxation rate which is propor-
tional to tissue tracer concentration and (ii) a constant relaxivity Different studies solve
these problems by assuming that their protocol (i.e. sequence, CA-dose) maintain the re-
quired proportionality [68]. Also, some works assume linearity between contrast agent dose
and signal intensity |79], thus avoiding measurements of inherent (pre-contrast) tissue T;-
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relaxation times. The ability to measure Ryo (i.e. 1/T;) in each individual subject (in each
voxel within ROI) is important since the native T; vary widely. As is typical in DCE-MRI
studies, methodological variations exists regarding measurement of the native T; and thus
estimation of changes in contrast agent concentration transformed from signal intensity
data. The accuracy of various methods to obtain T; maps differs [42]. Anyhow, although
there may be methodological weaknesses in e.g. the T; estimation, this would be consistent
between examinations being compared in a study.

Furthermore, the relation between the MRI measured signal intensity data and contrast
concentration assumes that CA exerts minimal effect on tissue Ty times. This has been
proven true for doses below 0.2 mmol/kg [78].

Assuming a constant relaxivity, implies that contrast agent relaxation is a constant at the
given field strength and temperature and is independent of tissue environment. However,
in a study by Stanisz and Henkelman [91], it was found that GD-DTPA relaxivity depends
on the environmental macromolecular content in the tissue.

In addition, conversion from signal intensity to concentration requires a fast water ex-
change. Both models assumes fast water exchange between intra- and extracellular space
so that whole blood relaxes with one single T; value®. According to Donahue et al. [21]
this is true for low contrast agent concentrations. The approximation is supported by the
fact that the exchange between e.g. red blood cells and plasma (ms) is significantly faster
than the relaxations times (s). An adequate model for brain tissues employ slow exchange
between vascular and extravascular compartments and fast cellular water exchange [54].

8.4.3. Concluding remarks on the model assumptions

When analyzing DCE-MRI data by pharmacokinetic modeling one has to be aware of the
assumptions that are made in the chosen model. Physiological interpretation of parameters
estimated by such models may not always be trivial. As an example is the constant Kens
(Tofts model) not dependent on permeability alone, but may also be affected by other
physiological parameters |75]. The Tofts model is simple, but provides complex parame-
ters. K express the features of blood flow, blood volume, endothelial permeability and
endothelial surface area, but the specific contribution of each cannot be identified [41].

Despite the complexity lying in the parameters, pharmacokinetic analyses are theoretically
attractive since they provide information connected to the underlying physiology of the
tissues [42|. However, these complicated models are prone to errors that can compromise
reproducibility. A simple strategy to solve these problems would be to derive parameters

5Even though contrast agents are excluded from certain compartments, they may affect water magneti-
zation (i.e. relaxation times) in non-contrast compartments (i.e. cells) if water molecules move between
compartments [21].
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directly from the signal intensity curves, as usually done in clinical examinations (semi-
quantitative analysis, cf. Section 5.1). However, such metrics extracted directly from in-
tensity data hold the drawback of being sensitive to MRI scanning methods, so scanning
procedure must be designed to minimize variations due to scanning and scaling parameters
when utilizing semi-quantitative parameters [42]. However, Knopp et al [49] confirmed that
the intensity of contrast enhancement in a lesion, which is often used as a clinical diagnostic
tool, is not the best measure to differentiate malignant and benign lesions. Instead, the
pharmacokinetic exchange rate (K"*"%) showed significant differences between benign and
malignant breast tumors. In addition, K'"%"¢ were mentioned as the quantitative parameter
that most closely correlates with VEGF expression. In tumors without elevated expression
of VEGF, a correlation between the parameter and microvessel density (MVD count) was
detected.

Even though semi-quantitative methods have been proven clinically valuable, model based
quantification methods are required to get a closer understanding concerning the micro-
physiological basis of the enhancement curves.

Although one (or more) model assumptions is not valid, it can still be possible to directly
compare parameters acquired serially in a given subject, and in different subjects examined
at the same or different scanning sites. Such parameter comparison however, requires that
the contrast agent concentration can be measured accurately, and that the type, volume
and method of administration are consistent [68].

Regarding parameter assumptions in healthy tissues, Galbraith et al. [28] found when com-
paring Tofts parameters from tumors with parameters from muscle tissues (ROI analysis),
that the mean values of all parameters were lower for muscle than for tumor. The study
also demonstrated a slightly worse reproducibility for muscle than for tumors. Padhani
et al. [70] estimated DCE-MRI parameters in normal pelvic tissues and found that fatty
tissues and the femoral head were unreliable tissues from which to obtain kinetic parameter
estimates because of their poor enhancement. Findings from normal tissues in this study
may be consistent with the conclusion made by Padhani et al. Concentration data ob-
tained from healthy tissues, were spread (and of low magnitude). The models adjustment
to these data could therefore not be evaluated by visual inspection alone.

8.4.4. Concluding remarks on Gadomer-17 as
“permeability-tracer”

Traditionally, the low molecular Gd-DTPA (<1 kDa) is used in DCE-MRI permeability
assays. However, although Gd-DTPA provide the ability to differentiate permeable tumor
vessels from normal vessels, only poor discrimination between tumors of different grades
have been shown [95|. Additional differentiation have been seen using Albumin-GD-DTPA,
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but biological concerns such as protein poisoning limits use of this agent in clinical scan-
ning [96]. The novel contrast agent Gadomer-17 (30-35 kDa), chosen as tracer to assess
microvascular characteristics in the “NG-2 project”, can be cleared quickly via the kidneys,
and have a high tolerance dose.

As they are more likely to possess a permeability-limited transport, macromolecular con-
trast media are suggested to reveal vascular properties (e.g. permeability) more accu-
rately [7, 114, 98]. Moreover, permeability assessment using macromolecular contrast
agents are shown to correlate with histological tumor grade [17]. Specifically, Gadomer-17
have been shown to detect changes in response to therapy at an earlier stage and with
greater sensitivity than Gd-DTPA [97].

As stated by Verhoye [109], the choice of pharmacokinetic model for assessing Gadomer-
17 uptake in tumor is not obvious due to the intermediate size of this agent. But its
uptake in tissue is more likely to be diffusion (permeability) limited rather than flow-
limited compared to Gd-DTPA. Although, determination of permeability limited perfusion
requires a tracer which leak through capillaries at a rate slower than its flow [5], flow-limited
situations, in which K"%"¢ represents flow, are commonly found in parts of the tumor (e.g.
in central necrosis). Neglecting the intravascular tracer concentration, as was done in Tofts’
model, produces larger errors when using Gadomer-17 because this agent have a smaller
distribution volume than Gd-DTPA.

While some studies (using low molecular agents) have shown correlation between tumor en-
hancement and microvessel density (cf. Section 1.1), others revealed no correlation [8, 17].
Furthermore, permeability (as estimated by DCE-MRI) is found to depend on VEGF ex-
pression (in addition to MVD counts) [49]. Although optimistic results regarding Gadomer-
17 as a tracer (cf. Section 8.4.4), mediomolecular agents (i.e. 15-30 kDa) have been reported
to show poor correlation with histological tumor grade [6]. Thus more studies are urged to
provide an established DEC-MRI technique (concerning scanning method, contrast agent
and PK-model) by which validation depends upon established surrogates of angiogenesis
(i.e. MVD count and VEGF expression).

8.5. Conclusions

In this study it is demonstrated that variability in DCE-MRI outcome (i.e. physiologi-
cal parameters) is partly caused by manual, subjective tracings of ROIs. Moreover, the
macromolecular contrast agent Gadomer-17, used in the dynamic series (for which the
pharmacokinetic models were fitted), seemed better suitable as “template” information
for ROI delineations compared to post Gd-DTPA images. Smaller ROIs demonstrated
spatial variations which may be related to the extremely heterogenous nature of tumors.
Estimated parameter values were associated with tissue type and varied between different

127



8. Discussions and conclusions

tissue regions. There were also some tight correlations between parameters of the two mod-
els being tested. Furthermore, healthy tissue regions were characterized by very low (and
relatively highly dispersed) contrast concentration during the dynamic scans. This latter
finding might indicate that the pharmacokinetic models were less applicable to normal
tissue compared to tumor tissue using Gadomer-17 as a tracer.

Pixel-wise analysis with resulting parametric maps and histograms, at fifth and seventh
week post-implantation, demonstrated parameter changes, presumably reflecting microcir-
culatory changes (e.g. angiogenesis, leakage, compromised capillary flow). Finally, the Su
model seemed to provide a better (numerical) fit to the calculated concentration curves in
tumor regions than the Tofts model did.

The findings in this study (and other recent studies, e.g. [14, 65, 68, 71|) support the
need for more standardized methods regarding imaging protocol (including T1-estimation
and determination of contrast agent kinetics in blood), contrast agent type, contrast agent
injection procedure and data analysis in the assessment of tumors using DCE-MRI.

Using several methods for presentation of data will provide more conclusive results when
assessing tumor microcirculation from DCE-MRI measurements. However, further studies
are needed in order to validate DCE-MRI findings using these post-processing tools. Only
those methods (of MRI procedures and data presentation) that are shown to correlate with
accepted surrogates of angiogenesis (e.g. VEGF expression and MVD counts) should be
selected for clinical use.
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A. The cardiovascular system

The heart and the blood vessels form the cardiovascular system which continuously provides fast transport
of oxygen, nutrients, waste products and heat trough the body. As the heart pumps, oxygenated blood
flows trough the aorta which progressively branch to form arteries —and later even narrower vessels,
arterioles. The arterioles branch extensively to form the dense network of capillaries in tissues and organs.
Capillaries reunite to form venules and veins leading back to the heart and pulmonary circulation to be
re-oxygenated.

The general function of the circulation is to serve the metabolic needs of the tissue in order to ensure
that the cells can perform their physiological tasks. The site of nutrient delivery to cells is across the
thin walls of the capillaries, where also exchange between plasma and interstitial fluids takes place. These
small exchange vessels constitute the major functional parts of the cardiovascular system, governing both
volume of each compartment and the nutrient requirements of the cells [52].

A.1. Physiology of cerebral Circulation

Brain tissue has a high metabolic rate, extracts a large amount of oxygen from blood and has a limited
ability to use anaerobic glycolysis for metabolism compared to other organs [74]. Thus, brain tissue is
sensitive to alterations of blood flow, and the main task of the cerebral circulation is to maintain a constant
delivery of oxygen and glucose to the brain.

The low capability of anaerobic metabolism is caused by the fact that neurons have high energy require-
ments due to transport of ions across their membrane!. Secondly, neurons only have a slight store of
glycogen and oxygen within the tissue. The human brain is therefore extremely sensitive to lack of oxygen.
A man will become unconscious after a few seconds of cerebral hypoxia, while minutes of oxygen deficit
can cause irreversible cell damage and cell death.

Cerebral oxygen consumption in the brain accounts for about 20% of the total oxygen consumption in a
normal resting human. The brain receives 14-15% of the resting cardiac output (5-7 liters/min in adults)
although brain mass accounts for only about 2% of the total body mass. About 40% of the human brain
consists of grey matter with mainly neuronal cell bodies. Grey matter receives a large amount of blood
per unit time, about ten times the average for the whole body. White matter, which consist primarily of
myelinated processes of neurons, is also well perfused, although less than grey matter.

! The high metabolic rate in neuronal cells is caused by continuous pumping of ions across their membrane
in order to conduct signals [33].
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Blood Supply

The brain is supplied with blood mainly by the internal carotid arteries and the vertebral arteries, the latter
forming the basilar artery. The posterior and anterior circuits of cerebral circulation are interconnected
by communicating arteries forming the circle of Willis [25]. The circle of Willis provides a safety factor
by ensuring blood supply to the whole brain even if one of the main supplying arteries should become
occluded.

ACA

VA

ASA

Human Rat

Figure A.1l.: The circle of Willis supplies the brain with blood. From Farkas and Luiten, 2001 [25].
Anatomy of vessels in Willis circle in human (A) and rat (B) cerebral circulation. Abbreviations: ACA,
anterior cerebral artery; ACOA, anterior communication artery; AICA, anterior inferior cerebellar artery;
ASA, anterior spinal artery; BA, basilar artery; ICA, internal carotid artery; MCA, middle cerebral artery;
PCA, posterior cerebral artery; PCOA, posterior communicating artery; SCA, superior cerebellar artery;
VA, vertebral artery.

As described by Farkas & Luiten, 2001 [25], the finest branches of the vascular tree, the brain capillaries,
form anastomoses and create a dense tree-dimensional vascular network. While arteries regulate blood
pressure, the function of the brain capillaries is to maintain the blood-brain barrier (BBB) and sustain
continuous exchange of nutrients, electrolytes and waste products between blood and neural tissue. The
capillary bed has larger surface-exchange area than all other parts of the circulation, due to the extensive
branching into a large number of thin vessels.

The dense capillary network provides large exchange area and minimizes the diffusion distance to ensure
efficient transport of substances between blood and tissues. In general, grey matter has nearly three times
higher density of capillaries than white matter [52]. Moreover, differences in density correlates with the
energy demand and activity of a particular brain region. Sensory association centers are more heavily
vascularized than motor centers, showing that capillary density is higher in metabolically active brain
region [25]. Many mental and cognitive tasks are executed in well defined brain areas. Neuronal activity
in a brain region raises the metabolic rate in the area. Cerebral circulation must therefore be capable of
making regional adjustments of blood flow [52]. Berne & Levy, 1998 [4] stated that total cerebral blood
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flow is constant, but that regional cortical blood flow is associated with regional neural activity.

Flow through a blood vessel is described as the quantity of blood that passes a given point in the vessel
in a given period. Major determinators of blood flow is the pressure difference (or gradient) between the
two ends of the vessel, and the vascular resistance to flow which occurs as a result of friction against the
inside vessel wall [33]. Cerebral blood flow is tightly controlled by both systemic and local mechanisms.
While vasoconstriction? mediated by autonomic fibers exerts a rough modulation, finer tuning of regional
blood flow involves local (i.e. myogenic and metabolic) mechanisms.

A.2. Transendothelial transport

Transcapillary fluid balance aims to maintain constant fluid volume in the tissue interstitium, and thereby
prevents edema. Balance is determined by three important factors:

1. The properties of the capillary membrane
2. The transcapillary hydrostatic pressure

3. The transcapillary colloid osmotic pressure

The relationship between these factors was first described by Ernest H. Starling (1896), and the factors
are often referred to as Starling forces [52].

The transcapillary fluid flux (i.e. the net capillary fluid filtration, J,) can be described quantitatively by
following equation (“Starling hypothesis”):

J, = K;[(P. — P;) —0(COP, — COP;)] = K; xAP (A1)

where P, and P; are the hydrostatic pressures in capillary and interstitium, respectively. w. and 7; are
the corresponding colloid osmotic pressures in capillary and interstitium. o is the reflection coefficient
for proteins®. K;* denotes the capillary filtration coefficient which includes the surface area (S) and the
hydraulic conductivity (“water permeability”, L,). The net capillary filtration pressure (AP) is the pressure
created from the imbalance between hydrostatic and osmotic pressures Thus the transcapillary fluid flux
(Jy) can be determined by the product of capillary hydraulic conductivity and the net filtration pressure
across the capillary wall [73, 113].

Material is rapidly transported over large distances by means of convection (“wash along”) as the heart
causes a stream of blood flowing through the vessels. The rapid transportation of molecules through the
vasculature is governed by the vascular morphology and the blood flow rate; the first being influenced
by the number, length, diameter, and geometric arrangement of various blood vessels [52]. Transport of
material across the vessel wall, on the other hand, is mainly governed by diffusion. However, there is a
minor contribution to transvascular transport of material from convection as well.

The intra- and extravascular exchange of fluid and solute molecules in a tissue is thus determined by two
mechanisms; diffusion and convection® [52, 95].

2Vasoconstriction is provided by contraction of vascular smooth muscle cells (VSMC).

3¢ = 1 for impermeable vessels, ¢ = 0 for freely permeable vessels.

* The capillary filtration coefficient, representing hydraulic conductivity, is denoted K; by Wiig et al. [113]
®Convection, or wash along/solvent drag refers to mass movement of fluid [84].

131



A. The cardiovascular system
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Figure A.2.: Transendothelial transport and fluid balance; the transcapillary-interstitial fluid ex-
change system as overviewed by Wiig et al [113]. The transcapillary hydrostatic (P) and colloid osmotic
pressure (here: COP), in capillary and interstitium, determine capillary fluid flux. Ky and o are capillary
hydraulic conductivity and capillary reflection coefficient, respectively. Capillary net filtration pressure re-
sults in a net fluid filtration (J, ) which is removed by lymph flow. Collagen and hyaluronan are components
of loose connective tissue.

In addition to the transluminal concentration- and pressure gradients (Starling forces, refer Eq. A.1) and
the surface area available for exchange, three important parameters are responsible for the transport of
molecules across the vessel wall;

1. vascular permeability (related to diffusion),
2. hydraulic conductivity (related to hydrostatic convection (J,)), and

3. the reflection coefficient (related to osmotic convection).

These transport parameters depend on the number and width of endothelial junctions and trans-membrane
channels of the vessel wall for a given size of molecule [95].

To summarize, the majority of solutes transported from blood to tissue is transferred by simple diffusion.
Only a minor amount of solutes follow by bulk flow of fluid (solvent drag) [74]. The convection process
can, however, be important for macromolecule transendothelial transport [52].

Diffusion

The rate of diffusion is described by Fickts law, first presented in 1855t [52]:

AC
Js=—-DS— A2
’ Az (4.2)
The mass of solute transported by diffusion per unit time (J,), depends on the transluminal concentration
difference (AC) and the diffusion distance (Ax). The ratio of these is referred to as the concentration
gradient. In addition, diffusion rate depends on the surface area (S) and the diffusion coefficient (D). The
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negative sign implies that diffusion is a “downhill” process along the concentration gradient. D represents
the intrinsic velocity of the molecule and depends on temperature, viscosity and molecular size. For most
solutes, D is inversely proportional to the cube root of the molecular weight [52]. Thus small molecules
have higher diffusion velocity than does larger molecules.

Hydraulic conductivity

As mentioned, fluid movement across the vessel wall, depends on pressure gradients created by the heart
and the hydraulic conductivity (“water permeability”) of the membrane. The hydraulic conductivity is
defined as the filtration rate (J,), and depends on the porosity of the membrane.

Convection

Solute movement by convection depends on both the filtration rate (hydraulic conductivity) and on the
reflection coefficient (osmotic conductivity). The reflection coefficient (o) of a molecule refers to the
selectivity and pore sizes of the membrane. If a solute diffuses through the membrane as freely as water,
then (o) equals 0. A molecule which have a (o) of 1, is totally reflected by the pores and do not pass
across the membrane. Plasma proteins usually have a (o) value of 0.9 [74, 52]. The protein permeability
(¢ < 1) can be increased, for example in case of Histamine release, or in angiogenic vessels.

A.3. Features of the blood-brain barrier

The blood-brain barrier (BBB) is a specialization of the walls of brain capillaries which selectively isolates
the extracellular space of brain tissue from the blood. Building blocks that execute BBB function include;
endothelial cells, irregularly occuring pericytes and astrocytic end feet attached to the outside vessel wall.
The endothelial cells form the inner layer around the capillary lumen. They are closely connected by tight
junctions [25]. By means of tight junctions, specific transport proteins, absence of fenestrations and almost
no transport via pinocyte vesicles, BBB vessel walls perform fine and ready control of the extracellular
environment in the brain. The brain capillary endothelial forming blood-brain barrier possesses special
characteristics. Additionally to tight junctions of extremely low permeability, these endothelial cells have
low rates of fluid phase endocytosis and specific transport- and carrier molecules. Another feature of the
endothelial cells is the high number of mitochondria which provide energy for the specific transporters of
the blood brain barrier.

Figure A.3 illustrates the composition of a capillary wall. The extremely tight junctions effectively seal
the paracellular transport pathway. While the inner side of the endothelial cells creates the vessel lumen,
the outer side is surrounded by a basement membrane consistent of a tri-laminar extracellular matrix of
collagen and proteins. The elements are produced by the cerebral capillary endothelial cells [25]. The
basement membrane on the abluminal surface splits in places to enclose pericytes, which have contractile
and phagocytotic properties. The outer portion of the basement membrane may be further expanded
beyond the pericytes, especially in capillaries. This expansion forms a collagen-filled space containing
“perivascular cells” and microglia (CNS macrophages) [1]. Astrocytic end feet are in close relation to the
endothelial cells and perivascular cells by surrounding the basement membrane.
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Figure A.3.: Cells in the microvessel wall (from Abbott et al. [1]). Cerebral arteriolar (left) and
capillary (right) walls are formed by different cell types. The capillary blood-brain barrier is formed by
the endothelial cells.

Gloor et al. [31] define BBB function as restriction of the non-specific flux of ions, proteins and other
substances into the central nervous-system environment. The unique features of the blood-brain barrier
serve to maintain homeostasis in the CNS by protecting the nervous environment from the harmful com-
positional fluctations occuring in the blood, and allow selective uptake of essential substances. Fluctations
of a certain substance in the blood will therefore not be reflected in the extracellular brain tissue. This is
important because the membrane potential of the nerve cells is sensitive to extracellular alterations of ionic
composition (e.g. a raise in extracellular potassium will cause depolarization). Disruption or breakdown
of the BBB is associated with a number of CNS disorder such as tumors, infarction or inflammation [31].

Injury to the brain, whether it is caused by disease, tumors, direct trauma, inflammatory substances or

chemical toxins, which cause breakdown of the BBB, will allow free diffusion of large molecules and other
blood components, such as toxic compounds and potassium, into the nervous tissue [87].
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Routes across the brain endothelium
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Figure A.4.: Routes across the blood-brain barrier (from Huber et al. [40]). Transport mech-
anisms and structures which provide BBB function; (1) paracellular diffusion, (2) trans-cellular diffusion,
(3) cation channels, (4) ion symports, (5) ion antiports, (6) facilitated diffusion active transport, (7) active
transport, (8) active antiport transport and (9) endocytosis (mediated by receptors).

Figure A.4 illustrates different pathways through the blood-brain barrier. Because of the tight junctions
between adjacent endothelial cells, the paracellular pathway is impermeable to solutes. Even transport of
ions and water is restricted. Only small lipophilic solutes (less than 600 Da), as well as gases such as oxygen
and carbon dioxide, can generally pass through the BBB by passive diffusion. Nutrients are selectively
transported into the brain via different surface transporters in the BBB (e.g. the insulin-independent
GLUT-1 transporter provides transport of glucose across the BBB). BBB possesses only a small amount
of pinocytic vesicles. Endocytosis is however important in transportation of e.g. some hormones [40].

Recent studies indicates that the tight junctions of the BBB have a dynamic structure which can be tem-
porarily altered during pathological states. Modulation of the cytoarchitecture provides BBB protection
of the CNS environment despite illness. A total disruption, or breakdown, of the blood brain barrier can,
however, occur during extreme conditions or prolonged pathological states [40]. Generally tumor microves-
sels are unusually leaky to macromolecules. The structural basis of this leakiness remains unclear, but
suggested possibilities will be discussed in section 2.3.
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B. MRI contrast agents and tracer
kinetics

Although inherent contrast in MR imaging is considered to be greater than in all other imaging modal-
ities, some diagnostic questions require application of exogenous contrast agents (CA) [76]. Rinck [77]
summarized the goals of MRI contrast agents as following:

e Improvement of tissue contrast, tissue characterization and overall sensitivity and specificity. These
factors cause improvement of diagnosis and therapy.

e Monitoring of function, using functional imaging techniques (FMRI)

e Reduction of artifacts, imaging time and overall costs.

An important feature of MRI contrast agents compared to contrast agents used for other modalities, is
that the agent itself is not visualized in MRI. Rather, the agents effect on the spinning protons behavior
is detected. The agents used in MRI are therefore referred to as indirect contrast agents [86].

Changes in MRI signal-intensity depend on the effect that the contrast agents exert upon the magnetization
of the water molecules in tissues. Contrast agents affect water magnetization, or proton spins, in two dif-
ferent ways; either by direct relazivity (T ) effects or by indirect susceptibility (T2) effects. Although most
agents exert both relaxivity and susceptibility effects, one effect usually dominates. Which effect dominates
depend on contrast agent concentration, imaging technique and tissue distribution properties [21].

Generally, MRI contrast agents can also be classified from the compartments in which they are distributed:
(1) intravascular (“blood-pool”) agents, (2) intravascular, EES agents and (3) intravascular, EES, intra-
cellular agents. All MRI agents clinically approved for humane use at present time, belong to the second
class due to small molecular weights. Today, DCE-MRI is thus clinically performed using “class 2” agents
which distribute in both intravascular space and extravascular extracellular space (EES). Macromolecular
(weighted) agents which retain in the intravascular space for a prolonged time have been proven more
effective in DCE-MRI [17]. However, such agents currently still remain at a pre-clinical stage [18].

B.1. Gadolinium Chelates

Clinically, paramagnetic contrast agents are the most frequently used in MR imaging. Most common is
the lanthanide metal Gadolinium (Gd®t) chelated with a ligand to minimize its inherent toxicity. Di-
ethylenetraminepentaacetic acid (DTPA) is such a compound. The complex of Gd-DTPA was the first
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B. MRI Contrast agents

MR contrast agent approved for in clinical use. Gd-DTPA form a stable, low molecular water-soluble
contrast agent, mainly excreted by the kidneys. The different contrast agents clinically approved for are
Gadolinium chelated with derivates of either acyclic DTPA or the macrocyclic ligand DOTA [83, 116].

Positive (paramagnetic) MRI agents, such as Gd-DTPA, primarily shorten T;-relaxation times and thereby
increase signal intensity on T)-weighted images, while negative (super-paramagnetic) agents decrease Ta-
relaxation time and hence create a signal loss on Ts-weighted images in tissues in which the agent is
accumulated [64, 77]. Due to seven unpaired 4f sub-orbital electrons, each Gadolinium molecule injected,
creates a large dipole moment compared to that possessed by the proton [88]. In T;-weighted images,
a shorter T;-relaxation time produces a stronger signal because a larger population of protons relax in a
given period of time. Such concentration-dependent signal enhancement is favorable when imaging regions
with little inherent contrast, or imaging deep regions that normally is shielded by the periphery (which
causes decreased SNR) [83].

The effects the contrast agents exerts on tissue T;- and Ts-relaxation times are actually similar, but since
T, is much higher than T»!, the predominant effect at low doses (0.1-0.2 mmol/kg) is shorter T; and thus
brighter area of interest in T;-weighted images [76]. T; shortening caused by presence of CA is commonly
referred to as the R1 effect.

As described, MRI contrast agents have two ways of action to increase contrast between tissues; direct
relaxation effects and / or indirect susceptibility effects. At higher doses (above 0.2 mmol/kg), gadolinium
chelates execute susceptibility effects. Magnetic susceptibility is described as the ability of a substance
to become magnetized when influenced by an external magnetic field [77, 111]. This functional property
of matter produces shortening of Ty and To* times (R2 effect of the contrast agent). The R2 effect
represents a loss of phase coherence of transverse magnetization resulting in a signal loss in areas in which
the agent has accumulated. This R2 effect, created by the production of magnetic field gradients between
the lumen of a vessel and the surrounding tissue, provides the basis for bolus contrast (T2-weighted)
perfusion imaging [76].

Additionally to Gadolinium, other exogenous agents suited for perfusion imaging include dysprosium,
macromolecular agents (e.g. Gd bound to albumin), superparamagnetic nanoparticles (e.g. iron oxide
particles) and microbubbels. At present these are still under clinical trials, and not yet approved for
clinical use. However, a formulation of iron oxide particles is available, but not approved for bolus use [88].

Pharmacokinetics of Gd-based agents

The pharmacokinetics and toxicity of paramagnetic contrast agents depend on their ligand (i.e. chelating
agent). Free gadolinium has a biologic half live of several weeks and is excreted mainly through the kidneys
and the liver. Chelation with e.g. DTPA alters the biodistribution and pharmacokinetic properties of the
compound. A Gadolinium-complex will after chelation, exhibit an 500-fold increase in the rate of renal
excretion [85].

In Norway, following Gadolinium-chelates are clinically validated for intravenous injection (per August,
2002): Even though these agents (cf. Table B.1 and B.2) have different chelating ligands, they have
remarkably similar mechanisms of actions, pharmacokinetics and rates of side effects when administered
as 0.5 M solution intravenously at doses of 0.1 mmol/kg. They are all water-soluble and have low molecular

!The percentage decrease in T; relaxation rate is larger than the percentage decrease in T, relaxation
rate.
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B.1. Gadolinium Chelates

Agent Generic name Trade name Producer

Gd-DTPA dimeglumingadopentat Magnevist  Schering A. G.
Gd-DOTA meglumingadoterat Dotarem Guerbet S. A.
Gd-DTPA-BMA gadodiamide Omniscan Amersham Health
Gd-HP-DO3A gadoteridol ProHance Bracco International
Gd-DO3A-butriol  gadobutrol Gadovist Schering AG

Table B.1.: Intravascular class 2 agents. Gadolinium-based extracellular fluid space (ECS) contrast
agents approved for clinical use at present time (August, 2002). Table is modified from Myhr et al [64]).

Agent Enhancement pattern Shape Ionisity ~ Osmolarity
Gd-DTPA positive linear ionic high
Gd-DOTA positive macrocyclic ionic high
Gd-DTPA-BMA positive linear non-ionic low
Gd-HP-DO3A positive macrocyclic  non-ionic low
Gd-DO3A-butriol positive macrocyclic  non-ionic low

Table B.2.: Properties of gadolinium-based ECS agents. Table is modified from Myhr et al [64]).

weight (about 500 Da). In addition they have quite similar physical size and relaxivity?. Notice, however
that Gadovist is marketed as 1.0 M solution as opposed to the other agents which is 0.5 M solutes. As a
consequence, Gadovist has about twice the Osmolarity of the 0.5 M non-ionic solutes. However, in general,
ionic (“charged”) agents possess higher osmolality compared to the non-ionic (“neutral”) chelates [64].
The osmolality of the agents range from 630 (Gd-HP-DO3A) to 1950 (Gd-DTPA) mmmol/kg of water.
Studies on rat models have revealed that agents with higher osmolality have higher incidence of necrosis,
hemorrhage and edema as a result of extravasion of the agent. This is not proven in humans [85]. The
osmotic load injected for MRI imaging is however very low compared to that in for example an computer
tomography (CT) imaging procedure.

The gadolinium agents presented in Table B.1 are all non-specific They do not function as markers of
specific cells. Hence they do not accumulate in, or influence only certain tissues or organs. Following
intravenous injection, the agents distribute rapidly within the extracellular fluid space and is eliminated
by glomerular filtration in the kidneys. Gadolinium chelates have an elimination half-life of approximately
1.5-2 hours [85]. The distribution half-life is estimated to be about four minutes. Thus, concentration of
agent in blood is half reduced after only four minutes. This explains the requirement for instrumentation
and methods to perform rapid imaging.

Dissociation of the chelated Gadolinium complex represents a concern related to toxicity because free
Gadolinium is quite toxic. Copper and zinc, which are normally present in the blood in small amounts,
have a competing affinity for the chelate and will cause some dissociation. However, the total concentration
of released free Gadolinium is very low and is cleared rapidly by the kidneys. Thus, normal renal function
prevents accumulation of free Gadolinium. In general, macrocyclic agents release less free Gadolinium
than the linearly DTPA derivates. The difference however, is found to be insignifficiant [83].

An advantage of the DOTA derivates is lower viscosities at physiological temperature. Lower viscosity
make the agents diffuse more rapidly and pass through the needle more quickly. A more rapid diffusion

2The relaxivity of an agent represents the agents ability to affect proton relaxivity and is defined as
relaxation rate enhancement per unit concentration of the agent.
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reduces the burning sensation due to osmolality when the solution enters the blood stream [83].

All Gadolinium-based ECS agents (except Gadovist) are produced with a solute concentration of 500 mM
for intravenous use. Recommended dose is 0.1 mmol/kg — 0.2 mmol/kg. Increasing the dose above the
recommended may have both beneficial and unwanted effects. Depending on the field strength it may
facilitate detection of some diseases, such as small CNS lesions with minimal BBB disruption. In other
pathological states however, an increased dose can cause loss of contrast because T (susceptibility) effects
can be dominating at high concentrations of contrast agents [77].

B.2. Side effects

The side effects of Gd based contrast agents are few, relatively minor and rare [83].

The different Gadolinium chelates appear to have remarkably similar safety profiles as well as effectiveness.
The total incidence of adverse reactions of all types for each of the agent ranges from approximately 2-4%3.
However, the majority of adverse events occur at an incidence of less than 1% [86].

The most common reactions to MRI contrast agents include general symptoms such as nausea, headaches,
emesis and hives, and local injection site symptoms such as pain, warmth, local edema and burning
sensation. Other ocationally observed reactions are vomiting, allergic reactions, vasodilation, dizziness,
chills, syncope and metallic taste in the mouth.

Anafylactic reactions are reported to have an incidence of about 1:100 000-1:500 000 [86]. The possibility
of getting a life threatening anafylactic reaction is higher for patients with a clinical history of asthma
or other respiratory disorders. Delayed reactions have been reported, and it is therefore important that
patient disponated of reactions are observed for a time after injection. Contrast injection to pregnant
patients is not recommended unless the potential benefit outweighs the potential risk [82, 85].

The LDjo values* reported for MRI contrast agents are quite high and are set in a range between
9 and 15 mmol/kg for most of them.

Future agents

Extracellular agents such as Gd chelates given as bolus injection (i.e. with injection time below 60 seconds)
attain high initial first pass concentration which decreases instantaneously after the end of the injection.
The agent is diluted with the total blood volume, it leaks from the capillaries to the extracellular space in
most tissues, and it is eliminated from the body by the kidneys. Thus, vascular imaging using extracellular
agents is limited to investigation of the first pass kinetics through the tissues.

An important goal in contrast agent development is intravascular agents or blood pool agents. These

3In a study done by Nelson et al. in 1995, it was found that the rate of adverse reactions show an
injection rate dependency. The rate of reactions was estimated to 2.2% in slow injections, while the
rate increased to 2.9% with bolus injection [82].

4L.Ds is defined as the dose of a drug that when administrated to test animals, results in acute death of
half of the population [85].
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agents remain in the vascular space for a prolonged time and their tissue uptake is limited (e.g. by their
shape and size) so that they can selectively display blood vessels. Intravascular agents therefore have a
wider imaging window. If needed, the examination can even be repeated [77].

Blood pool agents as an application to MRI will be advantageous in imaging areas such as perfusion, deter-
mination of blood volume, determination of capillary leakage and determination of lymph node metastasis
after interstitial injection [60].

Ideal intravascular agents should, in addition to sufficient retention in the vascular space and fast elimi-
nation, have high r; relaxivity® to make T; as short as possible, and simultaneously low rsrelaxivity since
a high T» relaxation rate would avoid spin dephasing effects [77].

Several approaches for intravascular agents have been proposed; (i) liposome encapsuled Gd-chelates, (ii)
low-molecular paramagnetic chelates with strong affinity to plasma proteins and (iii) ultra-small super-
paramagnetic iron oxide particles. Another proposal presented is macromolecular compounds which due
to their molecular size show no or only little extravasion; Gd labeled BSA, polylysine derivates, dextranes
and dendrimers [60].

In addition to research to find the ideal contrast agent specific for the intravascular space, other organ-
or tissue-specific contrast agents are developed. Some are already approved for clinical routine use, and
other are still under trial. Three different liver specific contrast agent are currently approved for clinical
use in Norway, one being paramagnetic positive, and two being superparamagnetic negative. The first
is taken up in hepatocytic cells and enhance T relaxation. Non-pathological liver tissue will thus show
high intensity compared to pathological areas. The negative, liver-specific agents are superparamagnetic
iron oxide particles. After intravenous injection, these nanoparticles will be taken up with phagocytosis
in Kupffercells in liver, in spleen and in bone marrow. Normal tissues will show negative contrast i.e. low
signal while pathological areas exhibit normal signal intensities [64].

Still, one of the ultimate goals in MRI contrast agent research is the development of pathology-seeking com-
pounds which would actively target pathological sites such as tumors (e.g. antiangiogenic markers). Many
new development of specific tumor targeting contrast agents are promising, but none have yet reached the
clinical stage. As example, both gadolinium mesoporphyrin (Gd-MP) and manganese tetraphenylporphyrin
(Mn-TPP) show non-specific tumor enhancement during early imaging phase and excellent enhancement
of non-viable tumor parts in delayed imaging phase. Additionally, tumor-specific monoclonal antibodies
labeled with gadolinium have been tested in animal trials. These enhance specific tumors and antibody
sites after infarction and infectious diseases [77].

Dendrimers

As early as in the late 1970s, researchers took interest in synthesis of molecular compounds with long
branches radiating from a central macromolecule. The success of this early research led to synthesis of
dendrimers. A polyamidoamine (PAMAM) series of dendrimers was synthesized, and named starburst after
star branched polymers and the Greek word dendra for tree. Today, the term dendrimers is used to describe
highly branched spherical polymers. Two types of polymers are commercially available; polyamidoamine
(PAMAM) and diaminobutane (DAB). The dendrimers (both PAMAM and DAB dendrimers) are highly
soluble in aqueous solutions and have an unique surface covered by primary amino groups. These surface

5The r; relaxivity describes the ability of the contrast agent to affect the tissue T;-relaxivity (cf. section
4.3).
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amino groups make the dendrimers useful in binding large numbers of chelating agents to a single core [50,
51]. Dendrimers as MRI contrast agents (e.g. Gadomer-17) are not yet approved for clinical settings.
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C. Functional MRI

A brief description of some of the methods which may be included in the term functional MR imaging
(FMRI) is given in this chapter to introduce their general principles and their applications in imaging of
the brain.

FMRI

Dynamic contrast enhanced MRI, as used in this thesis, is one of several MRI techniques which belongs
to the group termed functional Magnetic Resonance Imaging (FMRI). Functional imaging using MRI has
been a significant scientific discipline in the last decade [39]. The evolution of the method have been of
large interest in different research fields such as neuro-science, physiology, psychology and psychiatry as it
reveals different aspects of brain function. Functional brain MRI has been defined as following;:

Functional MRI brain imaging is the application of MRI techniques to investigate cerebral
physiology while preserving anatomic specificity [89].

A number of different techniques and imaging parameters can be used in FMRI. The choice of which
method to use is based upon the specific requirements for each experiment. FMRI based evaluation
of physiological processes includes molecular mobility of water (diffusion), microvascular hemodynamics
(tissue perfusion), brain activation (neuronal activity), and blood-brain barrier permeability [90].

Generally, cerebral FMRI is used to demonstrate brain function by visualizing changes in chemical com-
position of brain areas, or changes in the flow of fluids that occur in the brain. Because blood perfusion
and energy metabolism in the brain is closely related to neural activity, FMRI can provide information
about how the brain is working [57]. Until recently, information concerning brain functioning were limited
to electrical recording methods or methods using radio nucleides, which all provides less spatial resolution
than FMRI [3]. FMRI appears to have excellent spatial sensitivity compared to any other method for
visualizing functional parameters such as PET, SPECT, EEG!.

As in many other MRI methods, functional imaging has revealed critical dependence upon both signal-to-
noise ratio (SNR) and contrast-to-noise ratio (CNR). The latter is, in MRI, associated with detection of
differences in signal intensity and is thus closely connected to the problem of exact localization of signal
origin, spatial resolution.

'PET = positron emission tomography, SPECT = single photon emission computed tomography, and
EEG = electro enchephalogram.
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The rapid development of FMRI techniques can in part be related to the accelerated development and im-
provement of instrumentation and techniques (imaging techniques as post-processing methods). Especially
has the establishment of echo planar imaging (EPI) and other fast imaging techniques been of major im-
pact since speed (temporal resolution) is a requirement for functional imaging. In FMRI, the experimental
setup may be designed to “sacrifice” spatial resolution for the sake of temporal resolution [106].

BOLD-fMRI

The term fMRI most traditionally refers to the blood-oxygen-level-dependent (BOLD)-fMRI method,
which over the past few years has become one of the major experimental tools for analyzing cognitive
processes in the human brain [39]. The method is widely used for mapping of brain regions by imaging
of functional activation during sensory or motor tasks or with cognitive processing. As BOLD-fMRI
provides information concerning oxygenation, itt may also be important for imaging of tumor physiology
by monitoring changes in tissue concentration of deoxyhemoglobin [29].

In general, the MRI signal intensity reflects the concentration of water within a sample and is also depen-
dent on the chemical and physical environment in which the water molecules are situated. In BOLD-MRI,
parameters are optimized to make signal intensity and image contrast dependent on concentration of deoxy-
hemoglobin in a sample [39]. The oxygen required for brain metabolism is supplied by the hemoglobin com-
ponent of the blood. The BOLD method is based on the fact that the susceptibility effects of hemoglobin
depends upon whereas it carries oxygen or not. Deoxyhemoglobin have shorter rate of signal decay (i.e.
shorter Ty*-relaxation time) than oxyhemoglobin. Thus, changes in oxygenation of the blood can be vi-
sualized as signal change in To* weighted images. Upon neural activity in an area, the cerebral blood
flow to the active areas increases remarkable and brings more oxyhemoglobin. This reduces the fraction of
regional deoxyhemoglobin, and the increase in blood flow to regions with neural activity can thereby be
observed as increase in signal [15].

Diffusion-weighted imaging

Diffusion-weighted imaging (DWI) methods utilizes the signal loss associated with the random thermal
motion of water molecules in the presence of magnetic field gradients to derive a parameter: the apparent
diffusion coefficient (ADC). ADC directly reflects the translational mobility of water molecules in the
tissues. This non-invasive method thus measures self diffusion of water within body tissue. The diffusion
coefficient is known to be altered in some pathological states. Clinically, DWI is especially promising
in early detection and assessment of stroke. The method can also be seen as a valuable tool in tumor
characterization, monitoring of terapy changes and evaluation of for example multiple sclerosis [30, 55].

Dynamic perfusion-weighted imaging

Dynamic perfusion MRI is performed using a combination of rapid imaging techniques and bolus injection
of Gadolinium chelates. Such bolus tracking methods are classified into two groups; Ts*-weighted dynamic
susceptibility contrast MRI (DSC-MRI) [88] and T;-weighted Dynamic Contrast Enhanced MRI (DCE-
MRI) [32]. The first is the method most often referred to when using the term perfusion imaging. The
latter, DCE-imaging, is used as imaging method in this thesis.
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DSC-MRI: T,*-weighted dynamic susceptibility contrast imaging

This method of dynamic perfusion imaging employ bolus injection of exogenous contrast that remain re-
stricted to the vascular compartment so that rapid Ts*-weighted imaging of the first pass kinetics reflect
cerebral perfusion. The method is often denoted Perfusion imaging (PWI). PWI is not an enhancement
technique. Instead it depends upon the negative, susceptibility effects of the Gadolinium agent, and is thus
less applicable if the blood-brain-barrier is absent or disrupted. BBB leakage would reduce compartmen-
talization of the agent and thus diminish the susceptibility effect. Because of dilution of the bolus when
circulating through the body, circulation characteristics have to be evaluated from the “first pass” of the
agent through the brain.

Perfusion MRI is commonly used complementary to diffusion MRI as a diagnostic tool in e.g. stroke
assessment. Because microvascular blood flow is altered in early stage of most pathological states, perfusion
MRI is a particularly clinically important method [88].

DCE-MRI; dynamic contrast enhanced T;-weighted MRI

Contrary to the dynamic Ty-weighted perfusion imaging, this method do not provide assessment of the
first pass of the bolus injection, but rather the agents distribution within the first minutes after injection.

The method is based on the fact that injected exogenous contrast agents freely diffuse across the blood-
brain barrier and distribute in proportion to delivery rates or perfusion. A rapid T;-weighted imaging
sequence “detect” the kinetics of the contrast agent over time. By application of a compartmental analysis
model, parameters related to permeability and vascular volume fraction can be estimated [1]. This method,
highly applicaple for understanding tumor microcirculation and drug access to tumor, is often denoted
pharmacokinetic MRI when used in conjunction with such theoretical models. Aspects of pharmacokinetic
MRI, or DCE-MRI, have been revealed in this thesis.
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D. MR Imaging protocol

Following chapter includes information about the imaging sequences acquired in the "NG-2 study"; why
they were included in the study, and which sequence parameters they were obtained with.

T, weighted (RARE) sequence

To-weighted images display differences in the transverse decay characteristics. Most pathological states
reveal an elongation of Ty. Ts is found sensitive to pathology because the Ty decay (milliseconds) is much
more rapid than the T;-relaxation (second). Thus a small change in Ty would cause a larger prosentage
difference than would the same change in Ty [34]. To avoid T; contribution, TR is chosen to be long
enough for the longitudinal magnetization in all tissues to be recovered.

In the “NG-2 project” a sequence of Ty weighted images were performed with spin echo (SE) technique in
axial slice orientation. Ty weighting is known to achieve good visualization of tumor separated from normal
brain tissue. The contrast in a Ty-weighted image is mainly determined by differences in Ty relaxation
times between fat and water [77]. A TE long enough for both fat and water to receive Ty decay will reveal
these differences in Ty contrast [77]. As tumors have high water content, they can be well demonstrated
in Ty sequences. The sequence had a turbofactor of eight echoes. Consequently TE could not be too long
(eight echoes must be collected for each TR) even though long TE causes better contrast (but weaker
signal).

FLAIR

A fluid attenuated inversion recovery (FLAIR) sequence was performed with same geometry as the To
(RARE) sequence. The saturation method allows suppression of fluid, in particular cerebro spinal fluid
(CSF) to display lesions otherwise obscured by CSF (which is normally producing high signal). FLAIR
is a valuable complementary sequence to the standard Ty weighted sequence because in the latter, bright
CSF can obscure tissue and hide pathology [77]. The inversion time (TI) in CSF of rats had been tested
in pilot trials. The preparation pulse blocks signal from CNS so that edematous tissue (tumor tissue) and
CFS can be distinguished. Pathological states with only minor elevation in water content can thus be
distinguished from normal tissue. High signal (bright) in both sequences shows edema. However, areas
which appears bright in Ty and dark in FLAIR, is not edema but free liquid (CSF).
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Parameter Ty | FLAIR
FOV 3 cm 3 cm
Matrix 128 128
No slices 11 11
Slice thickness 1 mm 1 mm
NEX 4 2
Gap 1,2mm | 1,2 mm
TE 60 ms 60 ms
TR 6000 ms | 6000 ms
TI 2500 ms
Turbofactor 8

Table D.1.: Scan parameters, RARE and FLAIR
T, Maps

Pre-contrast T1-weighted SE measurements were obtained from five sequences of axial slices with the exact
same geometric slice placement and orientation. All acquisition parameters remained the same in the five
series, except TR which had following values; 2000 ms, 1500 ms,500 ms, 300 ms and 100 ms. The purpose
of these five sequences was to estimate T; relaxation times; for assessment of the time course of contrast
agent in blood, and for tissue characterization. The other scan parameters for T1 maps were; FOV = 3,
matrix = 64x64, no slices = 3, slice thickness = 3, NEX =1, slice gap = 3.5 TE(eff) = 8.8.

TR=2000: min=0.00, max=255.00, mean: =76.33, std=71.42

TR=100: min=1.32, max=74.17, mean=18.81, std=10.00

TR=300: min=0.33, max=113.41, mean=33.61, std=25.22

Figure D.1.: Example of (noise scaled) SE acquisitions (study ng2_1and2_4_2) with TE = 8.8 ms and TR
= 2000, 1500, 500, 300, 100 ms, respectively. The lower right figure shows noise-corrected signal intensity
versus TR time in pixel (80,120). This pixel is also labeled (white) in the SE images. This series of images
is used for pixel-wise nonlinear least squares estimation of T1 relaxation times. Further description of
these calculations were beyond the scope of this thesis.
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T weighted dynamic contrast enhanced sequence
(DCE)

A dynamic Ty weighted series of images with time resolution of 16.7 s (increased to 43 s after acquisition
of frame 30) seconds was acquired. Contrast agent (0.2 mmol/kg Gadomer-17) was given as a short bolus
(duration about 12 sec) after four baseline precontrast images. With TR/TE of 122.5/5 ms, a set of
contrast enhanced images at 59 frames was acquired. Total acquisition time of each frame was 15.7 sec.
Total sequence time was 32 minutes. By planning geometry on the basis of the Ty sequence, mid-slice of
the sequence was set to correlate with center of tumor (i.e. the slice showing the largest appearance of
tumor in the Ty weighted sequence). Injection had a duration of about 12 seconds with start five seconds

FOV 3 cm
Matrix 64x64
No slices 3
Slice thickness 3 mm
NEX 2
Gap 3.5 mm
TE 5 ms
TR 122.5 ms

Table D.2.: Scanning parameters dynamic sequence.

prior to start of scan #5 (tg). The first image of slice two after bolus injection will therefore be acquired
12.84 seconds after start of injection (7.84 sec + 5 sec). For exact time resolution of the dynamic scanning,
see section 6.3

T, Post contrast

Following the dynamic scanning, a bolus injection of 0.5 mmol/kg conventional Gd-DTPA (Omniscan,
Amerham Health) was given about two minutes prior to acquisition of a Ty weighted imaging sequence.
The sequence was acquired to provide good delineation of tumor. Sequence slices had the same geometry
as slices in the RARE and FLAIR sequences.

Normal soft tissue T; values are markedly different from each other and can thus provide good contrast
between different tissues. To achieve T;-weighting, Ts effects have to be minimized by choosing a short TE.
TR should be shorter than T; to reveal differences between tissues. Tissues with lower T, show higher
signal. The contrast agents additionally reduce T; time in tissues in which it is distributed, providing
higher signal from these areas. This increase in T;-relaxation after Ty shortening, is directly proportional
to the concentration of the contrast agent in that tissue. The contrast agents have an additional effect in
shortening in Ty which tend to counterbalance the wanted effect on T;. However, the Ty reduction is of
minor magnitude compared to the T; shortening which is determined to be the predominant effect of the
contrast agents used.
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FOV 3 cm
Matrix 256x256
No slices 11
Slice thickness 1 mm
NEX 4
Gap 1.2 mm
TE 13 ms
TR 407 ms

Table D.3.: Scanning parameters post contrastT; sequence.
Contrast agent doses

For the dynamic imaging, Gadomer-17 (Schering AG; 0.5 mmol/ml) were given at a dose of 0.2 mmol/ml
as intravenous bolus injection at the immediate start of the dynamic scanning (though after four baseline
images were acquired). Omniscan (Amersham Health; 0.5 mmol/ml) at a dose of 0.5mmol/kg were given
2 minutes before start of the post-contrast T; sequence. Injection volumes of both contrast agents are
given in table D.4, and D.5, D.6 and D.7.

The doses of Gadomer-17 and Omniscan was given to each animal, decided as following: i.e. animal with
weight of 117 g. Gadomer-17 was given at a dose of 0.2 mmol/kg. Weight of 0.117 g gives: 0.2 mmol/kg
- 0.117 kg = 0.024 mmol. Further: 0.024 mmol / 0.5 mmol/ml = 0.048 ml = 48 pl. In addition, 200 microl
of dead space volume must be injected due to the length of the catheter. The injection dose in this case
was therefore 250 pul Gadomer-17. Omniscan was injected at a dose of 0.5 mmol/kg. For an animal
weighing 117 g this means an volume of 117 ul in addition to 200 pl in dead space volume. The total
injection volume was therefore 320 pl. Due to the length of the catheter, there was a dead space volume
(dsv) of 200 uliter. Hence, a saline flush after bolus injection could not be done.

Rat | Weight | Volume, Gad-17 Injected Volume | Volume, Omn Injected volume

kg in ml incl 0.2 ml dsv in ml incl 0.2 ml dsv
1 0.196 0.087 0.280 0.196 0.400
2 0.195 0.078 0,.280 0.195 0.395
3 0.198 0.079 0.280 0.198 0.400
4 0.170 0.068 0.280 0.170 0.370
5 0.125 0.050 0.250 0.125 0.325
8 0.153 0.061 0.260 0.153 0.350
9 0.126 0.050 0.250 0.126 0.325
10 | 0.103 0.041 0.240 0.103 0.300
11 | 0.102 0.041 0.240 0.102 0.300

Table D.4.: Doses and injected volumes, WT tumor animals, fifth-week scans.
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Rat | Weight | Volume, Gad-17 Injected Volume | Volume, Omn Injected volume
kg in ml incl .,2 ml dsv in ml incl 0.2 ml dsv
13 | 0.192 0.077 0.280 0.192 0.390
14 | 0.188 0.075 0.280 0.188 0.390
15 | 0.121 0.048 0.250 0.121 0.320
16 | 0.133 0.053 0.255 0.133 0.335
17 | 0.117 0.047 0.250 0.117 0.320
18 | 0.120 0.048 0.250 0.118 0.320
20 | 0.105 0.042 0.240 0.105 0.305
23 | 0.143 0.057 0.260 0.143 0.345
Table D.5.: Doses and injected volumes, NG-2 tumor animals, fifth-week scans.
Rat | Weight | Volume, Gad-17 Injected Volume | Volume, Omn Injected volume
kg in ml incl 0.2 ml dsv in ml incl 0.2 ml dsv
1 0.203 0.081 0.280 0.203 0.405
2 0.209 0.084 0.285 0.209 0.410
3 0.209 0.084 0.285 0.209 0.410
4 0.182 0.073 0.270 0.182 0.380
5 0.144 0.058 0.260 0.144 0.340
8 0.171 0.068 0.270 0.171 0.370
9 0.137 0.055 0.255 0.137 0.335
10 | 0.121 0.048 0.250 0.121 0.320
11 0.102 0.041 0.240 0.102 0.300

Table D.6.: Doses and injected volumes, WT tumor animals, seventh-week scans.
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D. MR Imaging protocol

Rat | Weight | Volume, Gad-17 Injected Volume | Volume, Omn Injected volume
kg in ml incl 0.2 ml dsv in ml incl 0.2 ml dsv

13 | 0.193 0.077 0.280 0.193 0.395

14 | 0.204 0.082 0.280 0.204 0.405

15 | 0.149 0.059 0.260 0.149 0.350

16 | 0.135 0.054 0.255 0.135 0.335

17 | 0.135 0.054 0.255 0.135 0.335

18 | 0.150 0.060 0.260 0.150 0.350

20 | 0.111 0.045 0.245 0.111 0.310

21 0.140 0.056 0.260 0.140 0.340

Following animals have been included as subject in this theseis:

e The animals number 13, 14 and 20 in Table D.5 correspond to examinations NG 1-1, NG 2-1 and
NG 7-1 respectively.

Table D.7.: Doses and injected volumes, NG-2 tumor animals seventh week scans.

e Rat no three (Table D.6) corresponds to examination WT 3-2.

e The rats numbered 13, 14, 15, 19 and 20 in Table D.7 corresponds to the selected examinations

NG 1-2, NG 2-2, NG 3-2, NG 6-2 and NG 7-2 respectively.

Relaxivity data, Gadomer-17

Following data was received from Bernd Mizzelwitz on request (by mail). By further correspondence he
suggested to assume a Tirelaxivity (r1) of 14.7 mM~'s™! (bovine plasma at 40°C and 2 T) in pharma-

cokinetic analyses of the dynamic data.

Medium Temperature | Field Strength I Iy
L/(mmolxs) | L/(mmolxs)

Water 40C 0,47 T 17,3 22,2

Bovine plasma 40C 0,47 T 18,7 21,3
Water 20C 15T 13,7
Bovine plasma 20C 15T 15,7

Dog blood 37C 1,6T 16,9 221

Dog plasma 37C 1,5 T 17,8 21,4
Water 40C 2T 13,4
Bovine plasma 40C 2T 14,7
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E. Implemented Matlab codes

For each pixel time-course in each of these regions we first fitted the pharmacokinetic parameters defined
in the model by Su et al. (i.e. Dy, D;, and K>) and in the model by Tofts et al. (i.e. K!"%"® and v,)
using nonlinear least-squares data fitting by the Gauss-Newton method.

In the Su et al. model (denoted S) we have implemented
[BETA,R,J] = nlinfit(t, C, @tissue_cons_fixed my_t0, BETAO_fixed_t0); where the initial pa-
rameters are:

DO_init = 0.11; % 0.11 [mM]
D1_init = 0.57; % 0.57 [mM/min]
K2_init = 0.30; % 0.30 [1/min]

BETAOQ_fixed_t0 = [DO_init, D1_init, K2_init];

and the function
[C] = tissue_cons_fixed_my_tO(beta, t)
is defined by:

t0 = 0.5; % fixed value from Su et al.

DO = beta(l);

D1 = beta(2);

K2 = beta(3);

% if t <= t0

I1 = find(t <= t0);

al_le = DO * (t(I1)/t0);

a2_le = (D1 / (K2xK2*t0)) * (exp(-K2*t(I1)) - 1);
a3_le = (D1/K2) * (t(I1)/t0);

C_le(I1) = al_le + a2_le + a3_le;

% if t >= t0

I2 = find(t > t0);

alphal = 0.417;

alpha2 = 0.027;

x = 49.2; (A1 = 38.38 kg/1l; A2 = 0.79 kg/1)

f1 = (DO + (D1 / (K2 - alphal)) ) * ( x / (1+x) );
al_gt = f1 * exp(-alphalx*(t(I2)-t0));
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E. Implemented Matlab codes

£f2 = (DO + (D1 / (K2 - alpha2)) ) * (1 / (1+x) );
a2_gt = f2 * exp(-alpha2*(t(I2)-t0));
£3 = (D1/(K2*K2%t0)) * ...

(exp(-K2*t0) - 1) + (D1/K2) - (D1/(K2-alphal))=*(x/(1+x)) - ...
(D1/(K2-alpha2))*(1/(1+x));
a3_gt = £3 * exp(-K2*(t(I2)-t0));

C_gt(I2) = al_gt + a2_gt + a3_gt;
C =C_le + C_gt;

In the Tofts et al. model (denoted T') we have implemented
[BETA,R,J] = nlinfit(t, C, @tofts_tissue_conc_func, BETAQ);
where the initial parameters are:

Ktrans_0 = 0.1; [1/min]\\

(Verhoye et al (2002) found 0.18 \pm 0.05 in tumor)
ve_0 = 0.5;

BETAO = [Ktrans_0, ve_0];

and the function
[C] = tofts_tissue_conc_func(beta, t)

is defined by:

k = beta(l); % k = Ktrans: volume transfer constant [min~-1]

ve = beta(2); J extravascular volume fraction per volume tissue 0 < ve < 1
kep = k/ve; % derived rate constant

D =0.2; % [mmolxkg~-1] injected CA dose

ml = 0.417; 7 [min~-1] rate constant for biexponential plasma conc decrease

m2 = 0.027; % [min~-1] rate constant from the litterature ...
al = 38.38; % [kg*l~-1] concentration amplitude
a2 = 0.79; % [kgx1l~-1] concentration amplitude

% Tofts & Kermode (1991) Egs. (6a) and (6b)

m3 = kep;

bl = kxal / (m3-mil);

b2 = k*a2 / (m3-m2);

b3 = - (b1+b2);

C = Dx(blxexp(-ml*t) + b2*exp(-m2*t) + b3*exp(-m3*t));

Goodness-of-fit criteria (AIC) were coomputed using the following Matlab code:

% N = number of samples in time (63)

% J = number of pixels within ROI (varies)
M_su = 3; % DO, D1, K2

M_tofts = 2; % Ktrans, ve

K_su = M_su+i;

K_tofts = M_tofts+1;

mm = 1000; % i.e. conc. unit in micromol
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for j=1:J

end

SSE_su(j) = mm*res_su(:,j)’ * mm*res_su(:,j);
SSE_tofts(j) = mm*res_tofts(:,j)’ * mmxres_tofts(:,]);
AICc_su(j) = N * log(SSE_su(j)/N) + ...
2+%K_su + (2*K_su*(K_su+1))/(N-K_su-1);
AICc_tofts(j) = N * log(SSE_tofts(j)/N) + ...
2*%K_tofts + (2*%K_tofts*(K_tofts+1))/(N-K_tofts-1);
delta_AICc(j) = AICc_su(j) - AICc_tofts(j);
evidence_ratio(j) = 1.0/exp(-0.5*delta_AICc(j));
prob(j) = exp(-0.5xdelta_AICc(j))/(1+ exp(-0.5*delta_AICc(j)));
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