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Chapter 1

Introduction

In this chapter, we present the motivation behind this work, its goals, and some
basic definitions from graph theory.

1.1 Abstract

Domination in graphs is a thoroughly studied subject that has recently been
generalised to Broadcast Domination and the Optimal Broadcast Domination
problem [7] by D. J. Erwin. Whether the Optimal Broadcast Domination prob-
lem is generally solvable in polynomial time is still unknown, but research per-
formed by Jean R. S. Blair, Pinar Heggernes, Steve Horton, and Fredrik Manne
has yielded polynomial time algorithms for Optimal Broadcast Domination on
interval graphs, series-parallel graphs and trees [1].

The main part of this work has been to implement each of the algorithms for
interval graphs, series-parallel graphs, and trees so that it would be possible to
use these algorithms in a practical setting, either in research or as part of soft-
ware applications. We have also used the implementations to test the practical
limitations of the algorithms and how the running time turns out in practice on
arbitrary interval graphs, series-parallel graphs, and trees, and how likely it is
that the optimal dominating broadcast differs from a trivial solution.

Also as a part of this work, we have detected and corrected some errors found
in [1], and constructed some simple graph classes that yield easily predictable
solutions to the Broadcast Domination problem.

1.2 Implementation

Implementation[22]: In engineering and computer science, an imple-
mentation is the practical application of a method or algorithm to
fulfill a desired purpose. For example, one might create a computer
program that sorts a list of numbers in ascending order. To do so,
one would implement a known method of sorting.

Each algorithm is implemented as a stand-alone, command line program
written in standard C, and is optimised as much as possible without losing code
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readability. The preprocessing functions are not optimised much, because their
running times are almost unnoticeable compared to the algorithms themselves.

To make the algorithms easy to use, the programs have been designed to
be as similar as possible to standard Unix and Linux command line tools by
satisfying the following conditions:

e Source code is written in C.

e Programs are runnable from the command line.

All input is read from the standard input stream and all output is written
to the standard output stream.

Source code is machine-independent.

Program parameters and input format explained by supplying command
line parameter --help.

The advantages motivating this approach are:

modularity The programs can easily be used as part of other programs, completely
hidden from the end user. For example, a graphical graph editing program
can at any time translate its graph to the format accepted by these pro-
grams, call up the algorithm in the background, and display the result as
a part of its own graphical output.

batch programming All operating systems provide command line batch file programming of
some sort. This allows the user to specify that a program should be run
multiple times, once on every graph in a given list, and write the results to
a text file. This is very useful when the program may take several minutes
or hours to run on a graph. Most of the tests in Chapter 7 were (and
should be) run by batch files.

usability Because the text-based interfaces of the programs are similar to standard
command line tools, anyone familiar with Unix-like systems should be
able to understand how to use the programs without having to read any
external documentation.

speed The programming language C is renowned as the optimal choice when fast
running time and control of memory usage are vital to the program.

All source code for the algorithms, graph generation programs and auto-
mated tests, as well as some sample data, is available from http://www.ii.uib.
no/“helgeh/master/ or by e-mailing the author at helge.holm@gmail.com.

The source code has not been given as an appendix to the thesis, mainly
because C code is notoriously unreadable and as such would not be of much
interest to the reader, and also because adding the collected source code would
triple the number of pages in the thesis.

1.3 Definitions and terminology

This section will describe the concepts, definitions and terminology of graph
theory that will be needed to explain and understand the Broadcast Domina-
tion problem described in Chapter 2. The definitions of the three graph classes
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interval graphs, trees, and series-parallel graphs will be given in Chapters 3, 4,
and 5, respectively, along with their corresponding algorithms.

1.3.1 Graphs

Graphs are used to model many real-world or theoretical problems to make
them easier to analyse and solve mathematically. Some of the most popular and
practical uses are the many graph algorithms for “shortest path”, which may
be used to find the fastest driving route from one city to another, the minimum
number of moves necessary to solve a puzzle and so on.

A graph G = (V,E) counsists of a set of vertices V and a set of edges E.
A vertex is a single point in the graph, each edge is a connection between two
vertices, and each pair of vertices connected by an edge are said to be adjacent to
each other and incident to the edge connecting them. (This will be more formally
defined further down.) In the case of a bus transit map (pictured in Figure 1.1),
the vertices can be bus stops and each edge can be the buses traveling between
two stops. In the case of a puzzle (pictured in Figure 1.2) the vertices can be
board configurations and the edges valid moves between configurations.

The size of a graph is given by the number of vertices n = |V| and the
number of edges m = |E|. Unless otherwise specified, when n is given as part of
an expression, for example in O(n?), it always denotes the number of vertices.
Likewise, m denotes the number of edges unless otherwise specified.

Salhus Tellevik Asane Sentrum

()

Figure 1.1: A simplified bus transit map

A simplified map of the available bus routes between the locations
Salhus and Sentrum in Bergen. If we want to travel from one loca-
tion to another with the minimum number of buses, we can apply
the Shortest Path algorithm to this graph. If we want to travel from
Salhus to Sentrum as fast as possible, we can generate all possible
routes (avoiding routes that visit the same location twice) from Sal-
hus to Sentrum from the graph, and then use a bus time table to
calculate how long each route will take.

A directed edge from u to v would mean there was an edge from v to u but
not from u to v. However, we will only be dealing with undirected graphs where
we assume that for each edge from u to v there is also an implicit edge from
v to u. There are several popular notations for describing edges. For example
uv, (u,v), {u,v} are all identical for undirected graphs. We will mostly be using
(u,v) because it most resembles the syntax used in programming languages.
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Figure 1.2: A puzzle represented as a graph

A wvery small cut-out of a graph representation of a well-known puz-
zle toy called a “15-puzzle”. The goal is to put all the numbers in
an ascending sequence by repeatedly sliding an adjacent numbered
square into the empty square. The vertices are the puzzle configura-
tions, and the edges are valid moves connecting the configurations.
The problem of solving a given puzzle can now be reduced to the
problem of navigating this maze graph where we start at the config-
uration matching the one we are given, the exit from the maze is at
the solution configuration, and we can only move from configuration
to configuration by the edges. Since there already exist many good,
proven algorithms for navigating a graph, we will not have to think
up, analyse and prove a new algorithm for solving these puzzles; it is
sufficient to show how to generate the graph (maze) from the puzzle
and prove that a solution to the maze is a solution to the puzzle.
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Formally, two vertices u and v are said to be adjacent, or neighbors, if and
only if the edge (u,v) € E. Also, both v and v are incident to (u,v). The neigh-
borhood, or set of adjacent vertices, of u is defined as N(u) ={v € V : (u,v) €
E}. The neighborhood of a set S of vertices is given by N(S) = [J,cg N(v) —S.

An induced subgraph is a graph that can be generated by a subset of the
vertices of the original graph, and is defined as: G’ is an induced subgraph of
G if V(G'") C V(G) and E(G") = {(u,v) : u,v € V(G') A (u,v) € E(G)}. We
will be using the notation G[S] to denote an induced subgraph of G where
V(GIS]) = S.

A path of length k is a graph described by a sequence of k + 1 vertices
V1,V2,...,Uk41 Such that B = {(vj,vi41) 11 <i<k}land V ={v; : 1 <i <
k + 1}. The length of a path is thus given by the number of edges, |E|. We say
that the path given by the sequence v, v2,...,v, connects v; and v,. We will
use the notation P;, where j > 0, to denote a path of j vertices and length j —1.

A pair of vertices u,v in a graph G are said to have distance d if the shortest
path connecting the two nodes has length d, and we define d(u,v) to be the
distance from u to v. Note that a shortest path from » to v in G is also an
induced subgraph of G.

The eccentricity, e(v), of a vertex v is the length of the longest of all the
shortest paths from v to any vertex of G, or e(v) = maxyey d(u,v). Simply put,
the eccentricity of v is the maximum distance to any other vertex.

The diameter, diam(G), of a graph G is simply the largest eccentricity in
G, or max,eq e(v), and the radius, rad(G), of G is the smallest eccentricity in
G, or min,eg e(v). All vertices v € V where e(v) = rad(G) are called central
vertices. Note that, by definition, no shortest path between any two vertices in
G can be longer than diam(G).

A cycle of length k is a graph described by a sequence of k + 1 vertices
v1,V2,...,Uk, v such that E = {(v;,viq1) : 1 <i <k} U {vg,v1} and V = {u; :
1 <4 < k}. The length of a cycle is given by the number of edges, and we use
the notation Cj, where k > 1, to denote a cycle of k vertices. Unless otherwise
specified, a cycle is assumed to be a simple cycle, meaning that each vertex in
the cycle is incident to exactly two edges. Note the similarity to the definition
of a path, and that by adding an edge between the first and last vertex in a
path, we get a cycle. Cycles are often induced subgraphs, called induced cycles.

A complete graph is a graph where each vertex is adjacent to every other ver-
tex, i.e. Vy,vev(u,v) € E. The notation K will be used to describe a complete
graph containing k vertices.

For a given graph G, a clique is a set of vertices S C V(@) such that G[S]
would be a complete graph, i.e. Vy ,es(u,v) € E.

Unless otherwise specified, all graphs in this work are simple, meaning they
have no more than one edge between any two vertices, and connected, meaning
that for any pair of vertices there exists a path between them.

1.3.2 Graph classes

A graph class is a set of limitations used to identify graphs that share specific
properties. A graph is said to be a member of a graph class if it satisfies the
given limitations of the class, and a graph may therefore be a member of several
classes. For example, all paths are also interval graphs, series-parallel graphs
and trees.
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Since graphs often are models of real world situations, they usually have
some inherent limitations that can be exploited to make problem solving easier.
A very simple example is the path class, as defined above. Almost every problem
that is difficult or practically impossible to solve for general graphs are trivial
to solve for paths due to their simple structure.

A recursive graph class is a class in which any sufficiently large member of
the class can be formed by successively joining smaller members of the class at
specific vertices called terminals.!

This work will mainly deal with the three graph classes interval graphs,
trees and series-parallel graphs in Chapters 3, 4 and 5 respectively, but some
specially constructed classes will be used for testing and for demonstrating some
of the properties of the Broadcast Domination problem. These constructed graph
classes will appear in Chapter 6.

1.3.3 P and NP

When discussing the difficulty of solving a problem, it is useful to try to clas-
sify the problem with regard to the problem classes P and NP. Formally, P
is the class of languages that are decidable in polynomial time on a determin-
istic Turing-machine, and NP is the class of languages that are decidable in
polynomial time on a non-deterministic Turing-machine[6].

As all computers today are deterministic, and we know of no way to emulate
a non-deterministic computer in polynomial time, this translates roughly to P
containing practically solvable problems and NP containing practically unsolv-
able problems.

We know that PCNP, but whether P=NP or PCNP is unknown. The com-
mon belief is that PCNP.

If a problem B is in NP, and a polynomial time solution to B implies a poly-
nomial time solution to all problems in NP, then B is said to be NP-complete.

Whether Broadcast Domination is NP-complete is still an open problem,
which will be described in more detail in Chapter 2.

1.4 Outline of the thesis

Chapter 2 will describe the Optimal Broadcast Domination problem and the
necessary terminology needed to understand the rest of the chapters. It will
also describe some of the many properties of Broadcast Domination.

Chapters 3, 4, and 5 will center around the algorithms for interval graphs,
trees, and series-parallel graphs, respectively. They will define and describe their
corresponding graph class, present the corresponding algorithm from [1] and
which considerations had to be made to create working implementations, and
give an example of how the finished algorithm runs.

Chapter 6 will present a few simple graph classes for which the Optimal
Broadcast Domination problem is easily solvable, and describe how the optimal
broadcast cost can be found in constant time.

Chapter 7 contains the details of and results from the tests we have run on
the implementations. We have tested the correctness and performance of the

1See [2] for a more formal explanation, or [3] and [4] for examples on how a recursive
structure can be used to solve graph problems.
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implementations, and also how often the optimal broadcast cost differs from a
trivial solution.

Chapter 8 describes some additional algorithms that had to be implemented
to create usable programs.

Chapter 9 will sum up the results of all the preceding chapters, and present
all the opportunities for further research that have surfaced while working with
this thesis.



Chapter 2

Broadcast Domination

In this chapter we will describe in detail the Broadcast Domination problem and
the related definitions and terminology needed to understand how the algorithms
solve the problem.

The following two sections 2.1 and 2.2 are heavily based on [1], with added
examples and figures.

2.1 Introduction and motivation

Domination in graphs is a well known and thoroughly studied subject [8, 9].
A dominating set in a graph G is a subset of the vertices of the graph, V(G),
such that every vertex in V(G) is either in S or has an element of S as one
of its neighbors. Equivalently S U N(S) = V. The optimal dominating set, i.e.
where S is as small as possible is defined as v(G). A real world application of
this problem [10] is to view the vertices as cities, and each city must be able to
hear a radio station. A city will hear the radio station if it is located in the city
itself or in a neighboring city. The standard optimal domination problem seeks
a dominating set of minimum cardinality, i.e. S must be as small as possible.
See Figure 2.1 for an example.

This has later been generalised to the r-domination problem [11, 12], where
each vertex in V must either be in the dominating set S or at a distance at most
r from some vertex in S. This again translates to radio stations that can reach
farther cities than its immediate neighbors. See Figure 2.2 for an example.

Recently, D. J. Erwin introduced the concept of Broadcast Domination[7] in
which the broadcast stations (i.e., vertices in the dominating set) are permitted
to have different transmission powers. This is a more realistic model of broadcast
reachability than the standard domination problem, since transmitters are not,
in general, identical. For example, FM radio stations are distinguished both by
their transmission frequency and by their ERP (Effective Radiated Power). A
transmitter with a higher ERP can transmit further, but it is more expensive
to build and to operate. Based on this, the broadcast domination problem seeks
to compute an integer valued broadcast function f on the vertices, such that
every vertex of the graph is at a distance at most f(v) from some vertex v that
has f(v) > 0. A broadcast domination is optimal if it minimises the sum of the
costs of the broadcasts across all vertices in the graph. These costs are typically

10
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Figure 2.1: Example: dominating set

A dominating set, marked as black vertices. Each vertex v is either
dominating (v is black) or has at least one dominating neighbor (v
is white).

Figure 2.2: Example: r-dominating set

An r-dominating set for r = 2.
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taken to be the f(v) values, but could more realistically be a function over the
f(v) value. Other related broadcast problems are discussed in [13].

[1] also refers to f(v) as the broadcast power or broadcast strength, of v. Since
the two notations mean the same, we will only be using “broadcast power”, or
simply “power”.

Figure 2.3: Example: a broadcast dominating set

A broadcast domination of a graph, with total cost 4. The broadcast
vertices are marked with their corresponding broadcast value.

i

Figure 2.4: Example: minimal-cost broadcast dominating set

An optimal broadcast domination of a graph, with total cost 3. Note
that this is also a radial broadcast.

The standard optimal domination problem (v(G)) is NP-hard on, for exam-
ple, planar graphs [14], bipartite graphs [15] and chordal graphs [16], but can
be solved in polynomial time on, for example, AT-free graphs [17], permuta-
tion graphs [18] and interval graphs [19]. Some variants of the problem, like the
ones previously mentioned, have straightforward reductions from the standard
domination problem, showing that they are NP-hard on arbitrary graphs. How-
ever, the computational complexity of optimal broadcast domination on general
graphs is an open problem [13].

The algorithms implemented in this work, all from [1], solve the optimal
broadcast domination problem on interval graphs (Chapter 3), trees (Chapter
4), and series-parallel graphs (Chapter 5) in polynomial time.

Easy polynomial time solutions for the broadcast domination problem have
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been found for paths, cycles, complete graphs, grid graphs, and for some graph
classes constructed specifically to have easy polynomial time solutions; 1-cater-
pillars, teeth and boxes. In each of these cases, there are optimal solutions that
either are also solutions to the standard domination problem, or have exactly
one non-zero broadcast located at the center of the graph [13]. The classes of
graphs addressed in [1] and this work do not exhibit this property. Most of these
“easy” classes and their solutions will be described in detail in Chapter 6.

2.2 Definition

A function f : V = {0,1,...,diam(G)} is a broadcast if for every vertex v € V,
f(v) < e(v). The set of broadcast dominators defined by f is the set Vy = {v €
V @ f(v) > 0}. The set of vertices that a vertex v can hear is H¢(v) = {u €
Vi 1 d(u,v) < f(u)}. We will omit the subscript f when the broadcast function
is clear from the context. The cost of a broadcast f incurred by a set S C V
is f(S) = X es f(v). Thus, f(V) is the total cost incurred by the broadcast
function f. We say that G has an f(V)-broadcast.

A broadcast is dominating if |H(v)| > 1 for every vertex v of G. The term
~5(G) denotes the minimum cost of a dominating broadcast on G. We will refer
to a dominating broadcast of cost 7,(G) as an optimal dominating broadcast,
or simply optimal broadcast. See figures 2.3 and 2.4 for examples of dominat-
ing broadcasts. Although a broadcast function is allowed to assign values from
{0,1,...,diam(G)}, we never need to assign values larger than rad(G) to any
vertex in order to achieve an optimal broadcast. Choosing a central vertex v,
i.e. a vertex with minimum eccentricity, and assigning f(v) = rad(G) while as-
signing f(w) = 0 to all other vertices w, defines a dominating broadcast on G.
We will call such a broadcast a radial broadcast. For some graph classes, a radial
broadcast is also an optimal broadcast, and such graphs are called radial [13].
However, for interval graphs, series-parallel graphs and trees, radial broadcasts
are not necessarily optimal, as can be seen from Figure 2.5.

1 2 3 4 5 6
Q@@@G@ Radial broadcast 1
1 2 3 4 5 6
QQQ@GO Radial broadcast 2
1 2 3 4 5 6

Q@Q@@Q Optimal broadcast

Figure 2.5: Example of radial solution not being optimal

A radial broadcast f requires f(vs) or f(vs4) to be 3, which is the
radius of a path of 6 vertices. However, a dominating broadcast f’ of
cost 2 can be achieved by assigning f'(v2) = f'(vs) = 1. Note that a
path is also an interval graph, series-parallel graph and a tree (more
about this in Chapter 6).
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A broadcast is efficient if every vertex hears exactly one broadcast, that is,
for every v, |H(v)| = 1. The following result from [13] is central to several of
the results in [1].

Theorem 2.1. (Dunbar et. al. [13]) Every graph G has a v,(G)-broadcast that
is efficient.

A more restricted problem is NP-complete, which follows immediately by re-
striction from dominating set. Restricted Broadcast Domination (RBD):
Given a graph G = (V, E), and positive integers K, M < |V, is there a broadcast
domination f of G such that:

> f(w) S K [\ max f(v)

veV

2.3 Additional notations

In order to describe the algorithms for this problem, some extra notations will
be used. The notations common to more than one algorithm are as follows.

2.3.1 Effective power

As defined above, a broadcast originating at v of power k will dominate any
vertex at distance k or less from v. Now, if we look at a neighbor u of v, the
same broadcast will dominate any vertex at distance k — 1 or less from u, and
we say that the broadcast from v has effective power of k — 1 at u.

We define effective power as follows: A broadcast of power k, originating at
v, will have effective power k — d(v,w) at any vertex w.

2.3.2 Overdominance and underdominance

The algorithms for trees and series-parallel graphs work by utilising dynamic
programmang. This means they are gradually combining possible broadcasts for
subgraphs until the optimal solution for the entire graph is calculated. Because
the possible broadcasts for a subgraph G; C G do not have to be neither
dominating nor optimal, G; may sometimes need broadcasts originating from
a vertex v € G,v ¢ G to be dominated, and in this case we say that G is
underdominated. If G is not underdominated, we say that G is overdominated.
If a broadcast originating from G can be heard outside of G, we say that G is
properly overdominated. If G is overdominated but not properly overdominated,
we say that G is exactly dominated.

We define G; C G to have an underdominance of i if G; needs a broadcast of
effective power at least ¢ originating from outside G to be efficiently dominated.

We define G; C G to have an overdominance of i if a broadcast originating
in G1 can be heard by a vertex v € G,v ¢ G1 at minimum distance i from
any vertex in (G; and no broadcast originating in G; can be heard by a vertex
v € G,v ¢ G1 at minimum distance ¢ + 1 from any vertex in G;. Thus, ¢ denotes
how far away from G; the overdominance can reach.

We define G1 C G to have an exact dominance, or an overdominance of 0, if

(G is dominated and no broadcast originating in G; can be heard by any vertex
v € G,v¢G.
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Any overdominance of ¢ > 0 is a proper overdominance.
For an example of how overdominance and underdominance applies to sub-
trees, see Figure 2.6.

Figure 2.6: Example of overdominance and underdominance in a tree

This figure shows how underdominated and overdominated partial
solutions for subtrees can be combined to an optimal solution for the
entire tree. A possible solution for the subtree T5 has an overdomi-
nance of 2, since the broadcast at vertex 2 can be heard by a vertex
at distance 2 from any vertex in T5. A possible solution for the sub-
tree Ty has an underdominance of 1, since it must hear a broadcast
of effective power 1 from outside of Ty for vertex 8 to be dominated.
Because the broadcast from vertex 2 will have an effective power of
1 at a vertex in N(T3), the two partial solutions can be combined to
yield an efficient, optimal solution for 77 .

Overdominance and underdominance can also be specified for each endpoint
of G1, with almost identical definitions:

We define u € G1 C G to have exact dominance if v is dominated but has
an effective power of 0.

We define uw € G; C G to have an underdominance of 7 if G; needs a
broadcast of at least i originating from a neighbor of u outside G1 to be efficiently
dominated.

We define u € G; C G to have an overdominance of 0 if it is exactly domi-
nated, or an overdominance of ¢ if a broadcast originating from u can be heard
by a vertex v € G,v ¢ G at minimum distance 4 from any vertex in G and no
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broadcast originating in G can be heard by a vertex v € G,v ¢ G at minimum
distance i + 1 from any vertex in G;. If a vertex has overdominance of ¢ > 0, it
is properly overdominated.

For an example of how overdominance and underdominance applies to end-
points of subgraphs, see Figure 2.7.

The overdominance or underdominance of a vertex or subgraph is said to be
the dominance condition of the vertex or subgraph.

Figure 2.7: Example of overdominance and underdominance in a series-parallel
graph

This figure shows how underdominated and exactly dominated par-
tial solutions for subgraphs can be combined to an optimal solution
for the entire series-parallel graph.

A possible solution for the subgraph G4 has exact dominance at
both endpoint vertices 1 and 4.

A possible solution for the subgraph G4 5 has underdominance of 1
at both endpoint vertices 4 and 5.

A possible solution for the subgraph G5 s has exact dominance at
both endpoint vertices 5 and 8.

Combining the solutions for the three subgraphs will yield an effec-
tive, optimal broadcast domination for the entire graph G = G 3.
Series-parallel graphs, series-parallel construction, and the defini-
tions of left and right terminals will be described in Chapter 5.



Chapter 3

Interval Graphs

In this chapter we will describe the graph class of interval graphs and the cor-
responding Minimum Broadcast Domination algorithm, an example of how the
algorithm runs on a small graph, and the details of turning the algorithm into
a working implementation. The algorithm runs in time O(n?®), where n is the
number of vertices in the input graph. It also requires O(n?) space for its two
tables.

3.1 Interval graphs

Interval graphs is a graph class modeling overlapping intervals on a real line,
for example a timetable of social events (see figures 3.1 and 3.2).

12:00 13:00 14:00 15:00 16:00  16:30

| L) Event.l
|.... Event2
|.... Event 3.
....Event4
... Event s
,,,,, Event 6
|....Event7
... Event8

Figure 3.1: Interval Graph example 1

This representation of an interval graph shows a timetable of avail-
able social events. Each black line indicate one event and is a vertex
of the interval graph. Horizontally overlapping lines will be adjacent
vertices in the graph.

3.1.1 Definition

A graph G = (V, E) is an interval graph if sets of consecutive integers (intervals)
can be assigned to each vertex such that the intervals I(u) and I(v) overlap if
and only if (u,v) € E.

It is possible to generate the list of edges by knowing only the intervals of
the vertices, and to generate a list of the intervals of the vertices by knowing

17
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Figure 3.2: Interval Graph example 2

The intervals from Figure 3.1 pictured as a graph. The numbering
of the vertices correspond to the ordering of the events, i.e. vertex 3
corresponds to event & and so on.

only the edges. Therefore we will sometimes refer to both interval ¢ and vertex
1 as v;.

More formally, a graph G = (V, E) is an interval graph if there exists an inter-
val I(v) for eachv € V and I(u)NI(v) # 0 for all (u,v) € E and I(u)NI(v) =0
for all (u,v) ¢ E. Interval graphs can be recognised and the corresponding in-
tervals of the vertices of the graph can be constructed in linear time [20]. The
interval graph property is hereditary [21], thus induced subgraphs of interval
graphs are also interval graphs. A graph G is a proper interval graph if G is an
interval graph where no interval is completely contained in another vertex, i.e.
Pu,v e V(G) :unv=u.

We will refer to the lowest and highest interval endpoints of a vertex v as
the left (I(v)) and right (r(v)) endpoints of v, respectively. An interval graph
will always have one or more leftmost vertices, the vertices with the lowest left
endpoint, and one or more rightmost vertices, the vertices with the highest right
endpoint. The left eccentricity, e;(v), of an interval v denotes the length of the
shortest path from v to the leftmost vertex, and the right eccentricity, e,(v), of
an interval v denotes the length of the shortest path from v to the rightmost
vertex. The vertices of an interval graph can be sorted in non-decreasing order of
their left endpoints in linear time[1]. Let V = {v1,v2,...,v,} be the sorted order
of the vertices of a given interval graph G = (V, E). We will always assume that
the vertices of a given interval graph are sorted in this manner. We define Gj;
to be the subgraph of G induced by vertices v;, viy1,...,v;j, with 1 < < j <n.

We will refer to the left endpoint of a set of vertices S as the minimum of
all left endpoints of the vertices in S, and vice versa for the right endpoint of
S. Thus, [(V) = min,ev{l(v)} and 7(V) = max,ecv{r(v)}.

3.1.2 Useful properties

The class of interval graphs has some useful properties that can be exploited
both in the algorithm and in the correctness tests. We have observed and proved
the following Claim 3.1 and Lemma 3.2 which will be used in Chapter 6.

Claim 3.1. For any interval graph G = (V,E), there exists a path P C
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G such that |[E(P)| = diam(G) and every v € V overlaps with the interval
[[(V(P)),r(V(P))].

Proof. Given an interval graph G = (V| E) sorted by non-decreasing left end-
points, we choose P such that |E(P)| = diam(G) and r(V(P)) — I(V(P)) is
maximised, and we assume the vertices in P to be numbered py,ps,...,pp|,
also ordered by non-decreasing left endpoints. Note that this ordering may not
correspond with their order in P.

It is obvious that any vertex v not adjacent to any vertex in P must be
outside the endpoints of P. For simplicity, we assume that r(v) < [(V(P)). We
will now show that we can create a path @ from v to p|p|, such that |[E(Q)| >
diam(G).

We define @ as the path connecting v and pyp|. If |[E(Q)| < |E(P)|, then
|E(P)| # diam(G), which is a contradiction of the definition of P. If |[E(Q)| =
|E(P)|, then r(V(Q)) — L(V(Q)) < r(V(P)) — I(V(P)), which is also a contra-
diction of the definition of P.

For I(v) > r(V(P)), the result is analogous.

Thus, if there exists a v outside the intervals of P, there must also exist
a shortest path @ such that |E(Q)| > |E(P)|- By definition of diam(G), this
would imply that |E(Q)| = diam(G), which again would contradict the fact
that |E(P)| = diam(G). O
Lemma 3.2. For any interval graph G, rad(G) = [%(G)-I
Proof. Let G = (V, E) be any interval graph and let P C G be a path such that
|E(P)| = diam(G) and every v € V is adjacent to at least one p € P. By Claim
3.1, such a P exists.

Recall the definition of rad(G) as the minimum e(v),v € V, and that the
corresponding v is a central vertex. There exists no vertex v € V such that
e(v) < e(p) for any p € P, because then P would not be a shortest path. We
now know that the central vertex c¢ in G must also be the central vertex in P,
and thus the radius of G must be equal to the radius of P.

The radius of a path P is simply [‘Eg—P)l-‘, and that gives us rad(G) =
diam(G)
g u

Note that for a general graph, Lemma 3.2 does not hold. For example, for a
graph G = (4, both the radius and the diameter is 2, as pictured in Figure 3.3.

Figure 3.3: Lemma 3.2 does not hold for a C4

e(v1) = e(v2) = e(v3) = e(vq) = 2, therefore rad(G) = diam(G) =
2.
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The rest of this section is heavily based on [1], but the example at the end
is new.

A broadcast with f(v;) > 0 is, by definition, heard by exactly those intervals
vj where d(v;,v;) < f(v;). Therefore, [1] establishes a method for constructing
shortest paths in interval graphs. Assuming that ¢ < j, the shortest path P =
{vi = po,p1,...,pr = v;} that we will be using is defined such that p;4q is
chosen to be the vertex of N(p;) with largest right endpoint, for each ¢ between
0 and k — 2. A formal algorithm for this process, which is called SP, is given
below:

1: Algorithm Shortest Path (SP)

2: Input: An interval graph G, two vertices v;,v; where ¢ < j.

3: Output: A path P between v; and v; containing a minimum number of
edges.

k=0

Pr =Y

P = {p:}

: while p;, ¢ N(v;) do

Choose py11 to be an interval in N (pg) with largest right endpoint
P =PU{pi1}

100 k=k+1

11: end while

12: P=PU {’l)j}

© PSP T R,

Corollary 3.2[1]. Let f be a dominating broadcast function on G with v; € V5.
If v; hears v;, where i < j, then every vertex vy, hears v;, for i <k < j.

Corollary 3.3[1]. If d(v;,vi) = d(vi,vj) =t for some i, k, j satisfying i < k <
J, then d(vs,vq) =t for every q satisfying k < ¢ < j.

A shortest path P from v; to vj, where j < ¢, can be found in a similar
manner as in algorithm SP; the only difference is that one selects an interval
with the smallest left endpoint in each step. Due to the fact that we have ordered
the intervals by their left endpoints, we do not get a similar result as Corollary
3.2[1] when j < i. This is reflected in the following observation:

Observation 3.4[1]. Let d(v;,v;) =t with j < i, and let P be a shortest path
between v; and v; found as described above. Then for any k with r(vy) < l(pi—1),
we have d(v;,vy) > t.

It follows from Observation 3.4[1] that even if v; hears v;, there might exist
a v, with j < k < i, such that vy does not hear v;. For this situation to happen,
we must have [(v;) <l(vy) and r(vg) < l(pt—1), where t = d(v;, v;). Both proper
interval graphs and efficient broadcasts in general avoid this situation, as stated
in the following corollary.

Corollary 3.5[1]. Let f be a dominating broadcast function on G with v; € V5.
If G is proper interval or f is efficient, then the following is true: If v; hears v;
with j < i, then every vertex vy hears v;, for j < k < i.

For proper interval graphs we get a result analogous to Corollary 3.3[1].

Corollary 3.6[1]. If G is proper interval and d(vi,vg) = d(v;,v;) =t for some
k,j,i where k < j < i, then d(v;,vq) =1t for each value q with k < ¢ < j.
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[1] also present a result that resolves one of the open problems in [13]:
Theorem 3.7[1]. For any proper interval graph G, v(G) = v(G).

The following example shows that the above theorem does not apply to
interval graphs in general. Let G = (V, E) be the interval graph defined by
V ={a,b,¢,d,e, f} and E = {(a,b), (b,¢),(c,€), (e, f), (c,d)} (see fig. 3.4). With
f(¢) = 2 an optimal broadcast of total cost 2 is achieved. However, this cannot
be achieved by assigning f(v) = f(w) = 1 for any pair of vertices v,w € V.

a b c d e

O—O——0O-0

Optimal broadcast domination

O—O—O0—O—O

Optimal domination

Figure 3.4: Why Theorem 3.7[1] does not apply to a general interval graph.

We see that there exists a broadcast dominating set of cost 1, (G) =
2, whereas no arrangement of the dominators can yield a dominating
set of cost v(G) = 2. Therefore v,(G) = v(G) does not hold for
general interval graphs.

3.2 The algorithm

The following section and Section 3.2.1 are heavily based on [1], with a few minor
corrections. The pseudocode for MLD and MinRad, as well as the examples
has been added as part of this work.

We now present the dynamic programming algorithm for computing an op-
timal efficient broadcast on an interval graph G in O(n®) time. This time com-
plexity is achieved with the help of an O(n?) time preprocessing that computes
radial broadcasts on all subgraphs G;;. Although here we only compute the cost
of an optimal solution, extending the results to compute the broadcast function
itself is theoretically straightforward and does not increase the time complex-
ity. In the implementation of the algorithm, we have added functionality for
outputting the broadcast function.

It follows from corollaries 3.2[1] and 3.5[1] that an optimal, efficient broad-
cast consists of a set of broadcast dominators that each dominate exactly one
subgraph G;; and nothing outside of G;. Since the solution is efficient, there
is no overlap between these graphs. Noting that in a connected graph we will
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never have a broadcast dominator that dominates only itself, we get the fol-
lowing recursion for finding a minimum cost non-radial efficient solution for
Gij:

= mi t(i, k t(k+1,5
o z,g}clgjOp (i, k) + Opt(k + 1, 5)

The minimum cost of dominating G;; and nothing else is then given by
Opt(i, j) = min{ MinRad(i, j), v}
An example of this equation is illustrated in Figure 3.5.

Opts
1 2 3 4 5

Opty MinRad
4 5 1 2 3 4 5

=
N

Figure 3.5: How the algorithm calculates the final solution for a graph of 5
vertices.

For all three tables, the position (row,col) indicates the induced
subgraph of all vertices v;, row <i < col. The tables Opts and Opt,
are actually the same table Opt, but have been separated for illus-
tration purposes. The optimal cost 75(G) will in this case be the
value stored in Opt(1,5). As indicated by the figure, the value in
Opt(1,5) is calculated as Opt(1,5) = min{ Opt(1,1) + Opt(2,5),
Opt(1,2) + Opt(3,5), Opt(1,3) + Opt(4,5), Opt(1,4) + Opt(5,5),
MinRad(1,5) }.

Note that it might happen that there does not exist an efficient optimal
solution for one or both of G and G41,; that cannot be heard from outside of
these subgraphs. If this is the case we set Opt(i, j) = oo. If we consider G;j, then
an efficient optimal solution exists if and only if G;; can be decomposed into
one or more non-overlapping graphs, each dominated by exactly one broadcast
dominator that cannot be heard from outside of this subgraph.

Initially, we determine for each ¢ and j, ¢ < j, whether there exists a radial
broadcast for G;; that cannot be heard from outside of G;;. If a radial solution
exists, then its cost is stored in MinRad(i, 7). If there is no such solution then
MinRad(i,j) = oo. The following O(n?) time dynamic programming algorithm,
which is called Interval Broadcast Domination (IBD), progresses by building
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efficient optimal solutions to all G;; containing [ intervals before moving to
graphs containing [+ 1 intervals. The correctness and the O(n?) time complexity
of IBD follows from the above discussion. Some variables has been renamed
from [1] to make the pseudocode clearer.
Algorithm Interval Broadcast Domination (IBD)
Input: An interval graph G
Output: 7, (G)
Compute all radial solutions and place them in a table MinRad.
forv=1ton—1do
Opt(v,v + 1) = MinRad(v,v + 1)
end for
:forl=2ton—1do
forv=1ton—1do
v = min’*! 2 {Opt(v,u) + Opt(u + 1,v + 1)}
Opt(v,v + 1) = min{MinRad(v,v +1),v}
end for
: end for
: Return Opt(1,n) = v(G)

© PP TNy
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3.2.1 Computing radial solutions

We now describe how MinRad(i,j), a radial broadcast needed to dominate
exactly G;;, can be computed efficiently for all 4, j. If no such solution exists, i.e.
if all radial solutions can be heard from outside of G;;, then MinRad(i, j) = co.

We first consider what part of the graph would be dominated if we were to
set f(vg) =t,t > 0. Let v; and v; be the lowest and highest numbered vertices
that are dominated by f(v), respectively. It follows from corollaries 3.2[1] and
3.5[1] that every vertex in G;; must hear f(vy) if we are going to consider vy
as a candidate for a radial broadcast dominator. We will look at G and Gy;
separately starting with Gy;.

Since any sub-path of a shortest path is also a shortest path, it follows that
if v = po,p1,-..,pr = v; with ¢ > 1, is a shortest path from vy to v; given by
Algorithm SP, where k < j, then there is a shortest path of length ¢t —1 from p;
to v;. Similarly, if there is a shortest path of length t—1 from p; to v; then there is
a shortest path from vy, to v; of length ¢t — 1 if vyp; € E; otherwise the shortest
length is ¢t. In terms of broadcast domination this means that f(vy) = ¢ will
dominate exactly the same set of verticesin G, ,, as f(p1) = t—1. Assuming that
k < p1, by Corollary 3.2[1], every vertex in Ggy1,p,—1 will also hear f(vi) = t.
Thus if v; is the highest numbered vertex that can hear f(v,,) =t — 1 then
f(vx) =t will dominate Ggy1,; and no vertex in G411 . Setting f(vg) = 1 will
dominate Gy41,; where v; is the highest numbered vertex with I(v;) < r(vg).
This value can be found by searching through the neighbors of vy.

3.2.2 The complete algorithm

The complete algorithm, called Maximal Right Domination (MRD), is given
below. This algorithm returns a table R(k, f(vx)) containing the maximum value
q € H(vg) for each vy € V and 1 < f(vg) < er(vg). In order to perform these
computations efficiently, the vertices should be processed in order of decreasing
left endpoints. For each vertex v;, we search for the highest numbered adjacent
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vertex in order to determine the reach of f(vg) = 1. We then search for its
neighbor v, with the largest right endpoint. From this we copy the values for
how far f(vy) =t will reach in G, 1 <t < e(vy).
1: Algorithm Maximal Right Domination (MRD)
2: Input: An interval graph G, ordered by nondecreasing left endpoints
3: Output: A table R(k, f(v;)) = max{qlvy € H(v,)} with 1 < f(vg) <
er(vy) for each vy € V.

4: for k = n downto 1 do

5 R(k,1) = max{qli(v,) < r(ve)}

6:  Choose p; to be an interval in N (vg) with largest right endpoint.
7. fori=1toe.(p1) do

8: R(k,i+1) = R(p1,1)

9:  end for

10: end for

11: Return R

Determining the value of R(k,1) for each v has an accumulated cost of
O(m) = O(n?). Since at most n — 1 values are set for each interval, the overall
time for MRD is O(n?).

The computation of which lower numbered vertices will be dominated by
f(vg) =t is similar. The main difference is that not every f-value on a vertex
might yield a broadcast that can be used in an efficient solution. Assume f(vg) =
1 and that v, is the lowest numbered vertex adjacent to vy, ¢ < k. Then, from
Corollary 3.5[1] it follows that if there is any vertex in G,41,—1 not adjacent
to vy then f(vg) =1 cannot be used in building an efficient solution. To obtain
values for f(vg) > 1, it is sufficient to copy these from the same v,. This follows
since vy will dominate the same vertices using power t as vy does with power
t — 1. And if f(vg) = ¢t — 1 cannot be used in an efficient solution then neither
can f(vg) = t. The total computation can be carried out in time O(n?).

Combining the results for which vertices f(vg)) = t will dominate, we can
decide whether this can be used in a radial solution of some Gj;. If this is the
case and t is lower than the previous lowest f() value used in this graph, we set
MinRad(i,7) = t. For all values of ¢ and j where there does not exist a radial
solution that cannot be heard from outside of G;;, we set MinRad(i,j) = oo.
It follows that the whole process can be carried out in time O(n?).

The algorithm Maximal Left Domination (MLD) and the algorithm for
calculating the MinRad table (MinRad) were not formalised in [1] and have
been developed according to their textual descriptions:

1: Algorithm Maximal Left Domination (MLD)
2: Input: An interval graph G, ordered by nondecreasing left endpoints
3: Output: A table L(k, f(vx)) = min{qlvy € H(vq)} with 1 < f(vy) < e, (vg)
for each vy € V.
: fork=1ton do
¢ = min{g|r(v,) > I(v)}
L(k,1) = v,
for i =L(k,1)+1tok—1do
if r(v;) < l(vg) then
L(k,1) = o0
10: break loop
11: end if

© P IS T B,
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12: end for
13:  for i =1 to ¢(vy) do

14: L(k,i+1) = L(q,%)
15: end for
16: end for

17: Return L

1: Algorithm Minimal Radial Solutions (MinRad)
2: Input: An interval graph G

3: Qutput: A table MinRad, containing all radial solutions.
4: Order G by left endpoints.

5: R=MRD(G)

6: L= MLD(G)

7: for i =1ton do

8 for j=iton do

9: MinRad(i,j) = oo

10: end for

11: end for

12: for k=1 ton do

13:  for | = max{e;(k),e.(k)} downto 0 do
14 i = L(k,min{l, e;(k)})

15 j = R(k,min{l,e.(k)})

16 if MinRad(i,j) > [ then

17 MinRad(i,j) =1

18 end if

19: end for

20: end for

21: Return MinRad

An example of a MinRad table is shown in Table 3.1.

3.2.3 Corrections

After implementing the algorithm and testing it on teeth graphs (described in
Chapter 6), the algorithm turned out to yield incorrect output. By discussing
this problem with Pinar Heggernes, it turned out to be a misprint in the descrip-
tion of the MRD algorithm. While [1] stated that the vertices should be ordered
by non-decreasing right endpoints, ordering the vertices by non-decreasing left
endpoints made the algorithm give correct output.

3.3 Implementation details

In addition to the actual algorithms shown here, we had to implement a method
of reading an interval graph from the standard input.

We chose to simply read and store the interval graph as a list of intervals
and automatically create an adjacency matrix. Since we will only use the tables
Opt and MinRad in the main algorithm, the interval list and adjacency matrix
is freed from memory after the calculation of MinRad is complete.

The tables L and R, as specified in the algorithm, are of height n and with
different width for each vertex. The width for the table at a vertex v would be
e;(v) for the L table or e,.(v) for the R table. However, this will in practice give
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[(MinRad || 1] 2] 3] 4] 5] 6] 7] 8] 910 11

1] oo | o0 1] o0 | o0 | o 2 1 2 2 3
2 co|oo|oo|oo |00 |00 |00 |00]| 00|
3 0 | x| © 1 1| || oo o
4 o0 |00 | oo | oo |oco| 00| 00| 00
5 0 | o0 |00 |oo|oo| 00|
6 o | o0 1|oo| 00| o0
7 o | 1| oo 2
8 o | 0o 1] o
9 o0 | 00 1
10 oo | o
11 00

Table 3.1: Example of a MinRad table

This is the result from running MinRad where the input G is the
interval graph from Figure 3.8. For clarity, the fields of MinRad(i, j)
where i > j have been left blank. See how this table indicates that
there exists a radial solution of cost 3, and that a radial solution on
each of the subgraphs G s and Gy 11 is a solution of cost 2.

an overhead in memory management which we would like to avoid. We have
thus declared each table to be of constant width diam(G). This will require a
bit more memory, but it does not exceed the O(n?) space usage of the algorithm,
and the tables L and R can be discarded after calculating the MinRad table.
The calculation of diameter is done in linear time, by a trivial extension of the
shortest path algorithm presented in Section 3.1.2.

The added functionality for calculating the broadcast function is done by
keeping track of how each value is calculated. In the case of the MinRad table,
we are keeping track of which vertex the radial solution originates from, and
for each cell (7,j) of the Opt table, which other cells in the Opt table or the
MinRad table turned out to give us the value in (4, 7). This results in a binary
tree structure where the root is the optimal cost and the leaves are references
to the MinRad table. By traversing this structure to find the leaves, we will
know which exact vertices are used in the optimal dominating broadcast, and
how much broadcast power is assigned to each vertex.

3.4 Test run

We will now show an example of how the algorithm will run on a modified
version (Figure 3.6) of the interval graph pictured in Figure 3.2.

For clarity, we will first assign arbitrary matching intervals to the vertices
and sort the vertices by ascending left endpoints, which results in the list of
vertices v1 = [1,1],v2 = [1,2],v3 = [1,7],v4 = [3,4],v5 = [3,5],v6 = [4,6],v7 =
[6,7],vs = [7,8],v9 = [8,9],v10 = [9,10],v11 = [10,11], illustrated in Figure 3.7.

For convenience, we have stored the list of intervals in a file “testgraph”.
Now we will run the algorithm, with the —b option to indicate that we also
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>< O—C0—C—O

Figure 3.6: Sample input graph

A modified version of the graph from Figure 3.2. The original graph
would only need a single radial broadcast of power 1 originating
at event 5 to be optimally dominated, which would not result in a
very interesting example. The numbers shown next to the vertices
correspond to their ordering by increasing left endpoints.

11 // 11 intervals in graph
11 // 0ee... (event 7)
12 // oo......... (event 8)
17 // o————- 0.... (event 5)
34 // ..00....... (event 1)
35 // ..0-0...... (event 4)
4 6 // ...0-0..... (event 2)
67 /] ... 00.... (event 3)
7 8 /] ... 00... (event 6)
8 9 /] ... o0o.. (new)

9 10 /] ... oo. (new)

10 11 /] e oo (new)

Figure 3.7: Input data for test run

Note that only the numbers on the left side are passed to the pro-
gram. The input format can be displayed by running the program
with the --help option.
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want the program to output the broadcast function in addition to the optimal
cost.

# ./interval-graph-broadcast-domination -b < testgraph
Minimum Broadcast Domination: 2

Broadcast function f(v)=Zx*:

£(1)=0 £(2)=0 £(3)=1 £(4)=0 £(5)=0 f(6)=0 £(7)=0 £(8)=0
£(9)=0 £(10)=1 £(11)=0

#

We can see in Figure 3.8 that this is indeed a dominating broadcast.

Figure 3.8: Optimal solution to test graph

The results from the test run of the algorithm, plotted into the input
graph from Figure 3.6.



Chapter 4

Trees

In this chapter we will start by describing the trees class and the correspond-
ing algorithm for Minimum Broadcast Domination, the details of turning the
algorithm into a working implementation, and an example of how the imple-
mentation runs on a small tree graph.

The algorithm runs in time O(nh), where n is the number of vertices and h
is the height of the input tree. It also requires O(nh) space to store its n tables.

4.1 Trees

Trees are commonly used to represent completely hierarchical structures, such
as computer file systems, Internet forums and also robots (see Figure 4.2). How-
ever, trees are not inherently hierarchical in structure, and Figure 4.1 shows an

unrooted tree.
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Figure 4.1: Tree example 1

A rooted tree modeling a simple robot.

4.1.1 Definition

A graph G is a tree if and only if it satisfies one of the following equivalent
conditions.
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Figure 4.2: Tree example 2

A simple, unrooted tree.

e (G is connected and has no simple cycles.

e ( has no simple cycles and, if any edge is added to G, then a simple cycle
is formed.

e (G is connected and, if any edge is removed from G, then it is not connected
anymore.

e Any two vertices in G are connected by a unique simple path.
e (G contains no cliques of 3 or more vertices.

Note that as all these conditions are equal, it is impossible to satisfy one condi-
tion without satisfying all five.

When the tree is made to represent a hierarchical structure, one vertex is
selected to be the root of the tree. Any tree with a root is a rooted tree, and it is
assumed that any tree mentioned in this work is a rooted tree unless otherwise
specified.

Rooted trees can be defined recursively as: A tree T is either empty or
consists of a root vertex and terminal r and a list of subtrees T1,7%,7T3,...,Tk
where k£ > 0. The root vertices of the subtrees are each connected to r by an
edge. We call them the children of r, and r is the parent of its children. Any
vertex with no children is called a leaf.

We define the height of a tree as the eccentricity of the root, i.e. the distance
from the root to the farthest leaf. The height of the tree pictured in Figure 4.1
is 2, while the height of the tree pictured in Figure 4.2 can be anything from 4
(the radius of the graph) to 8 (the diameter of the graph) inclusive, depending
on which vertex is selected as root.

4.1.2 Useful properties

If the root of the tree is set to be a central vertex, i.e. one with the smallest
eccentricity, the tree will be of minimum height. Since the running time is de-
pendent on the tree height, the central vertex should always be chosen as root
when passing the input tree to the algorithm.
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4.2 The algorithm

The following algorithm was first described in [1] and has been used in this work
with no modifications, except for some corrections to the pseudocode.

Let T be a tree with root v,.. We denote the subtree rooted at vertex v by
T,, and hence T' = T,,, . For a subtree 7T, and efficient broadcast domination f
of T', we have the following three possibilities for v, the root of T: 1) f(v) > 0,
which will cover v and vertices both in T, and in other parts of 7" through the
parent edge of v; 2) f(v) = 0 and v hears some broadcast originating in T},; and
3) f(v) = 0 and v hears some broadcast originating outside of T, through the
parent edge of v.

Recall from Chapter 2 the notions of underdomination (domjp < 0) and
overdomination (domy, > 0). Let cost, be an array associated with vertex v and
indexed from —h to h inclusive. The value of cost,[i] will be the minimum cost
for an efficient broadcast domination of T, with domination condition i. The
algorithm will compute the cost, values in a bottom-up fashion. Elements of
costy, [i] for ¢ < 0 are not considered when reporting the solution since these
represent configurations where T,,, = T contains vertices which hear no broad-
cast.

Suppose v is a leaf. Then the cost,[i] = 0 for i < 0, since an efficient broad-
cast domination f that covers v through its parent will not have a broadcast
originating at v. Note that there is no efficient broadcast function on a single
vertex that has an exact domination. Hence, we set cost,[0] = co. Finally, the
only way we can achieve a proper overdomination of value ¢ for leaf v is to set
f) =1i. A complete formula for cost, when v in a leaf is given below:

0 ifi<o,
costyli] = 0o if i =0,
i ifi>1

Now consider computation of the cost vector cost,[i] for T, where v has
children vy,vs,...,v.. When ¢ < 0, an underdomination of ¢ in T}, is equivalent
to an underdomination of ¢ + 1 in each T3, 1 < k < ¢ (exact domination
if i + 1 = 0). Thus, the cost incurred for T, is the sum of costy,[i + 1] over
all children vy of v. When ¢ = 0, there cannot be a broadcast originating at
v, and since we require f to be efficient, exactly one child subtree of v must
have a proper overdomination of 1, and all other child subtrees must have exact
domination. If 4 > 0, either f(v) =4, or f(v) = 0 and exactly one child subtree
of v has proper overdomination i + 1. If f(v) = i, then each of the child subtrees
must have underdomination of —i. If, on the other hand, exactly one child
subtree has proper overdomination i + 1, then all other child subtrees must have
underdomination —i. These relationships are formalised in the equations given
below when v is not a leaf.

BestChild, (i) = 1r<nkigc costy, [t + 1] + Z cost,, [—i]
T 1<j<c,j#k
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(> costy,[i+1] ifi <0,
1<k<c
costy[i] = { 19k%e costy,[1] + Z costy, [0] if i =0,

1<j<c,j#k

min{ | i+ Y costy[—i] | ,BestChild,(i) p ifi>0
1<k<c

\

The dynamic programming approach described above results in the following
algorithm TBD. TBD computes the cost, array of each vertex v in T, starting
from the leaves, and processing a vertex only after the cost arrays of its children
have been computed.

1: Algorithm Tree Broadcast Domination (TBD)

2: Input: A tree T rooted at a center vertex v,.

3: Output: v, (7).

4: for every vertex v in T' (traversed in post-order) do

5: fori=—htohdo
6: Sum(i) = 0;
7: InfinityCount(i) = 0;
8: for each child v of v do
9: if costy, [i] = oo then
10 InfinityCount(i) = InfinityCount(i) + 1;
11: else
12: Sum(i) = Sum(i) + cost,, [i];
13: end if
14: end for

15: end for
16:  costy[—h] = Sum(—h + 1)
17: fori=-h+1to —1do

18: if InfinityCount(i+ 1) <0 then
19: costy[i] = Sum(i + 1);

20: else

21: costy[i] = 00

22: end if

23: end for
24:  costy[0] = oo;
25:  if InfinityCount(0) <1 then

26: for each child v of v do

27: if cost,,[0] = oo then

28: cost,[0] =min{cost,[0], cost,, [1] + Sum(0)};

29: else if InfinityCount(0) = 0 then

30: cost, [0] =min{cost,[0], costy, [1] + Sum(0) — cost,, [0]};
31: end if

32: end for

33:  end if

34: fori=1toh—1do
35: BestChild(i) = oo;
36: if InfinityCount(—i) <1 then
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37: for each child v, of v do

38: if cost,, [—i] = co then

39: BestChild(i) =min{BestChild(i), costy, [i + 1] + Sum(—i)};
40: else if InfinityCount(—i) = 0 then

41: BestChild(i) =min{BestChild(i), costy, [i+1]+Sum(—i)—costy, [—i]};
42: end if

43: end for

44: end if

45: if InfinityCount(—i) = 0 then

46: costy[i] =min{(i + Sum(—i)), BestChild(i)};

47 else

48: costy[i] = BestChild(i);

49: end if

50: end for

51:  costy[h] = h + Sum(—h);

52: end for

53: vp(G) :minogigh{costvk [l]},

54: Return v,(G)
An example of the cost tables for an entire tree is shown in Figure 4.3.
The running time analysis can be found in [1], and will not be repeated here.

4.2.1 Corrections

After implementing and testing the original algorithm, we found that it yielded
slightly incorrect answers to the test graphs because of some errors in the pseu-
docode: When filling in cost, for i < 0 and 7 > 0, the value oo as an element of
a sum was treated as 0. A value of oo in the summation will now always result
in the sum being 0o. Also, there were two typographical errors: An 4 had to be
corrected to —¢ and a vy was corrected to Vyoot-

The pseudocode was then corrected, and the corrections were accepted by
the authors of the algorithm.

4.3 Implementation details

Since the algorithm requires a rooted tree, we can represent the tree as a list
of children for each vertex. The input format for the input tree was chosen to
be this list, as it would require very little translation of data structures. This
implies that the root of the tree must be given beforehand, instead of being
optimally chosen by the implementation. The optimal root for an input tree
would be a central vertex, since it minimises the height h of the tree. Though
finding the central vertex of a tree can be done in linear time by repeatedly
remove all leaves from the tree, it would require that the input tree was first
given to the program as a general graph and then translated to a child list
format before passing it to the algorithm, generating much overhead.

The implementation has been extended to also calculate and return the
broadcast function f, if the user requests it. To calculate each f(v), we will
need to see which of the cost values for v were used in the optimal value. This
can be done by remembering, for each index of each cost vector, which of the
values from the cost vectors of the children were used in the final value of the



CHAPTER 4. TREES

Optimill cost

L 4 & & &

Ty e £

13

Figure 4.3: A tree of size n = 16 with calculated cost tables

The cost tables are indexed with the overdominance values in the
upper half and the underdominance values in the lower half. The
dotted arrows and circled values indicate which values turn out to
be part of the optimal solution and which other values they are
calculated from, and are used to determine the broadcast function
for the tree (also plotted in). Note that the cost vectors are calculated
in post-order, and the dotted arrows are calculated afterwards, in
pre-order.
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current index and whether the value indicates a broadcast originating from the
current vertex. Then we will have, for each cost index of the root, a tracing tree
whose vertices consist of exactly one cost index from each vertex in the input
tree. By traversing the tracing tree rooted at one of the optimal values found
at the root, we can extract the broadcast value from each vertex.

To save memory, the tracing trees are not calculated during the execution
of the algorithm. Instead, the optimal tracing tree will be calculated on the fly
by pretending to calculate the affected table values again from the top down.
This will clearly not increase the asymptotic running time of the algorithm,
as we will only repeat a small fraction of the original calculations, and tests
(Chapter 7) of the implementation show it is practically bounded by memory
rather than processing power, so sacrificing speed for memory is necessary to
make the implementation able to handle as large problems as possible.

Also, to save memory, we could let the implementation allocate and de-
allocate calculation tables on the run. Thus, after calculating the tables for
vertex v, we can free the tables of the children from the memory. If we also do
not allocate memory for the tables of v until we actually get to v, the algorithm
will usually be able to perform with less required memory. However, since we
need to backtrack through these tables to retrieve the broadcast function, we
have not found this optimisation useful enough to implement.

4.4 Test run

We will now run the algorithm on the tree from figure 4.3. We have constructed
a list of children for each vertex, as listed in figure 4.4.

The list has been written to a file called “testgraph”. We will run the algo-
rithm with the —b option to indicate that we also want the program to output
the broadcast function, not just the optimal cost.

# ./tree-broadcast-domination -b < testgraph

Minimum Broadcast Domination: 3

Broadcast function f(v)=Zx*:

£(1)=0 £(2)=0 £(3)=0 £(4)=2 £(5)=0 £(6)=1 £(7)=0 £(8)=0 £(9)=0
£(10)=0 £(11)=0 £(12)=0 f£(13)=0 £(14)=0 f£(15)=0 £(16)=0

#

These broadcasts have already been plotted into Figure 4.3, and a careful
examination of the figure will show that this is the only optimal dominating
broadcast for this tree.
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Figure 4.4: Input data for test run

This list corresponds to the graph pictured in Figure 4.3.

Only the numbers to the left of the “//” will be passed to the pro-
gram. The input format is displayed in detail by running the program
with the --help option.



Chapter 5

Series-Parallel Graphs

In this chapter we will start by describing the graph class of series-parallel
graphs, how the definition differs from the one given in [1], and the correspond-
ing algorithm for Minimum Broadcast Domination. The rest of the chapter
contains the details of turning the algorithm into a working implementation
and an example of how it runs on a small series-parallel graph.

The algorithm runs in time O(nr*), where n is the number of vertices of
the tree decomposition given as input, and r is the radius of the corresponding
series-parallel graph. It also requires O(nr?) space for its 4n tables.

5.1 Series-parallel graphs

Series-parallel graphs is a recursively defined graph class which is most com-
monly used to model electric circuits. Of all the graph classes described in this
work, series-parallel graphs are usually the most difficult to understand at first.

5.1.1 Definition

The class of series-parallel graphs is a graph class where each series-parallel
graph G has 2 terminals, and each terminal is a vertex in G. To denote the left
and right terminals of G, we use t(G) and tr(G), respectively. Every series-
parallel graph, except for the base graph K», is composed from exactly 2 smaller
2-terminal graphs (this is why it is called a recursive graph class) joined together
by either a parallel operation or a series operation.

Let G = (V, {tL(G),tr(G)}, E) and let G; = (V;,{tL(G;),tr(G;)}, E;) for
j = 1,2 be 2-terminal graphs. Define the series operation as s(G1,Gs) = G
if t1(G1) = t(Q), tr(G1) = tr(G>), and tg(G2) = tgr(G). This operation
associates tr(G1) with ¢ (G2) and then the resulting vertex loses its status as
a terminal. Finally, define the parallel operation as p(G1,Gs) = G if t1(G1) =
tr,(G2) = tr(G) and tg(G1) = tr(G2) = tr(G). Note that in each case, the
resulting graph G has two terminals. See Figure 5.1 for an example of a small
series-parallel graph being constructed.

Note that, in [1], two more operations were described, namely left jackknife
and right jackknife. These are not generally found in definitions of series-parallel

37
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graphs, and the corresponding formulas in the algorithms were also omitted.
Therefore, they have been left out of this work as well.

The reversed construction of a series-parallel graph is called the decomposi-
tion. This decomposition can be described by a decomposition tree where the
root of the tree is the original graph and the leaves are all Kss, or edges. The
tree identifies two children for each non-leaf vertex of the tree, and an associated
operation (series or parallel) that joins the children to create the parent.

Series-parallel graphs can be recognised and a corresponding decomposition
tree can be constructed in linear time [5]. See Figure 5.2 for an example of a
decomposition tree for a series-parallel graph with 9 edges.

£

\ -
: PARALLEL G.@

5,88
W

Figure 5.1: Tllustration of series-parallel graph construction

A series-parallel graph Cy constructed by recursively joining smaller
series-parallel graphs.

5.1.2 Useful properties

Every series-parallel graph has a corresponding decomposition tree which is a
rooted binary tree. The algorithm can work on this tree instead of the orig-
inal graph, which makes the calculations simpler since it has a much cleaner
structure.

5.2 The algorithm

The following section is taken more or less directly from [1] except for some
minor corrections. The proofs for the lemmas and the algorithm have not been
repeated here.

Given a broadcast function f: V — {0,1,2,...,7}, we say that dominance
condition (dompr,,domg) exists if the following holds.

e f dominates G; except for vertices within distance —domy, of tx(G;) for
k € {L, R} whenever domj, < 0 and



CHAPTER 5. SERIES-PARALLEL GRAPHS 39
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Figure 5.2: Decomposition tree example

A complete decomposition tree for the series-parallel graph G. L and
R denote the ty, and tg, respectively, of each vertex. Note that since
we join exactly two terminals at each point, this is a binary tree.

e f would dominate hypothetical paths of length dom; joined to tx(G;)
whenever domy, > 0.

If domy, < 0 we say t1(G;) is underdominated and if domy > 0 we say t;(G;)
is overdominated. The definition of a dominance condition allows portions of G;
to be undominated at the current vertex in the decomposition tree only when
there is a requirement (indicated by the negative domy, value) for the under-
dominance be corrected at some point closer to the root of the decomposition
tree.

Now we can define Pg,(domr,,domg) to be the lowest cost of a broadcast
function on G; given that dominance condition (domp,dompg) exists in G;. P
will be either N, L, R, or B to represent neither, left, right, or both termi-
nals having a non-zero broadcast originating there, respectively. For example,
L¢,(1,—2) represents the lowest cost of a broadcast function in G'3 that provides
an overdominance of 1 at the left terminal, has an underdominance of —2 at
the right terminal, has a broadcast originating at ¢7,(G3), and has no broadcast
originating at tg(Gs).

The following properties of optimal broadcast dominations will be useful in
establishing the correctness of our series-parallel algorithm.

Lemma 4.1[1]. Let f be an optimal broadcast domination of a series-parallel
graph G and consider a graph G; = (V;, {tr(G:),tr(G:)}, E;) in the decomposi-
tion of G. Let dg,(tL,tRr) be the distance in G; between tr,(G;) and tgr(G;).

o If f is applied to G; is such that domp = f(tr(G;)) > 0 and domp < 0 =
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f(tr(Gy)), then —(dompg + dg, (tr,tr) + 1) < f(tL(Gy)).

e If f is applied to G; is such that domg = f(tr(G;)) > 0 and domp < 0=
f(tL(Gi)), then —(domy + dg, (tr,tr) +1) < f(tr(Gi))-

This means that a negative dompg can never demand to have the vertices
already dominated by domr dominated by some other broadcast and vice versa.

Lemma 4.2[1]. In any optimal broadcast domination f of a graph G = (V, E),
if there are two neighbors v,w € V such that f(v) > 0 and f(w) > 0, then

f(w) = f(v).

Given a series-parallel graph G, the algorithm computes the values of Ng;,
Lg,, Ra,, and Bg, for each graph G; in a decomposition tree of G, in a bottom-
up fashion. Since an optimal broadcast function will have f(v) < r forallv € V,
we restrict the dominance conditions to ranges from —r to r. The next subsection
describes how to compute the N, L, R, and B arrays for leaves. Subsections
5.2.2 and 5.2.3 present the recursive relationships that allow the computation
of Pg,(domp,dompg) for P € {N,L,R, B} for every non-leaf graph G; in the
decomposition tree. Subsection 5.2.4 presents the main algorithm. The equations
described in the three subsections are summarised in Tables 5.1, 5.2, and 5.3.

5.2.1 Initialisation

Recall that each leaf in the decomposition tree of a series-parallel graph corre-
sponds to a Ks. The following discussion of how to initialise the four cost arrays
Nk, , Lk,, Rk,, and Bk, is summarised with the equations in Table 5.1.

For the case of Nk, (i-e. f(tL(K2)) = f(tr(K2)) = 0), no broadcast origi-
nates from within the K. Clearly, then, to lead to a valid broadcast domination
of the series-parallel graph, the dominance condition of the Ky must indicate a
demand that will eventually dominate the K». The dominance conditions indi-
cating such a demand are identified in the following observation.

Observation 4.3[1]. Let f be a broadcast domination for a series-parallel graph
G and consider an edge Ko = (Vi,),{tL(K2),tr(K>2)}, Ex,) corresponding to
a leaf in the decomposition of G. If f applied to Ky is such that f(tr(Ks)) =
f(tr(K>2)) =0, then domy, + domp < —2.

We use the value co to represent invalid dominance conditions. All other
cases are set to 0, representing zero cost when no broadcast originates from the
K.

Recall that Lk, represents f(tr,(K2)) > 0 and f(tg(K2)) = 0, in which case
the cost due to the K is simply f(tr(K2)). Thus, we must enter f(tr,(K>)) for
all dominance conditions where domy = f(t1(K2)) and dompg together with
domy, lead to a valid broadcast domination of the final graph G.

Observation 4.4[1]. Let f be a broadcast domination for a series-parallel graph
G and consider an edge Ko = (Vi,, {tL(K2),tr(K2)}, EK,) corresponding to a
leaf in the decomposition of G. If f is applied to Ko is such that f(tr(K2)) >0
and f(tr(K2)) =0, then dompg < domy,.

This observation gives us the first line in the equation for Lg,; the second
line is a result of Lemma 4.1[1]. The third line is not in the original algorithm
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[1], but had to be added to make the algorithm yield correct results (more about
this in Section 5.3). Initialisation of Rk, is analogous.

Intuitively, we must set Bk, (domy,dompg) = oo whenever the dominance
condition renders one of the values of domy, and dompg superfluous. The condi-
tions when this occurs were formalised in Lemma 4.2[1].

0 if domrp +domp < —2

Ng., (d d =
K2 (dom., dom ) {oo if domr, + dompg > —2

(0 if domg > domy,
if d < —(d 2
L, (domy,domg) = { °° if domp < (domp, + 2)
00 if domp, <0

dom otherwise

0 if domy, > domg
i <_ )
Ry, (domp,dompg) = < o0 1 domyp < —(dompg + 2)
00 if domp <0

(domp otherwise

domp +dompg if domp = domg >0

Bk, (domp,,dompg) = .
o0 otherwise

Table 5.1: Initialisations for Algorithm SPBD

5.2.2 The series operation

The formulas discussed in this section are shown in Table 5.2.

Consider a vertex G in the decomposition tree that is formed by G =
s(G1,G2), and consider the computation of Lg. Note that allowable configu-
rations with an originating broadcast at t7(G) and no originating broadcast at
tr(G@) must either come from Bg, and Lg, or from Lg, and Ng,. Other pairs
either fail to have the specified originating broadcast, or are incompatible in
the sense that tg(G1) cannot be associated with ¢5,(G2) because one has an
originating broadcast and the other does not.

For the case of Bg, and Lg,, tr(G1) and t1(G2) have an identical origi-
nating broadcast i. The formula simply compares these options for all of the
relevant ¢ values, and uses one of the minimum values as a candidate value for
Lg(domy,,dompg). Note that the cost of the originating broadcast at tgr(G1) =
tr,(G2) is subtracted since its cost is represented in both the cost of dominat-
ing GG1 and the cost of dominating G, but it only belongs once in the cost of
dominating G.
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For the case of Lg, and Ng,, no subtraction is needed since tg(G;1) and
tr,(G2) have no originating broadcast. Now either G provides overdomination
that must at least cover any underdomination in G5, or vice-versa, as represented
by the last two lines in the formula for Lg(domy,,domg). When all of these
cases are considered, Lg(domy,,domp) is assigned the lowest cost if a broadcast
function in G with dominance condition (domr,dompg) that has a broadcast
originating at t1,(G) but has no broadcast originating at tg(G).

Similar arguments justify the recursions given for Ng, Rg, and Bg.

( min Rg, (domy,1) + Lg, (i,dompg) — i
<i<r

1<i<
Ng(domp,dompg) = min { 0<i1<1§i2r_1 Ng, (domr,j) + Ng,(—i — 1,dompg)
Lo, 22 Ng, (domp,—i — 1) + Ng,(j,dompg)

( min Bg, (domy,,i) + La, (i,domg) — i

1<i<r
Lg(domy,domg) = min { 0<Z,I<T}_i£1“1 Lg,(domp, j) + Ng,(—i — 1,domg)
Lo D Lg,(domy,—i — 1) + Ng,(j, domg)

( min Rg, (domL,i) + Bg, (i,domR) —1

1<i<r
R (domy,,dompg) = min { 0<if<ri_igr71 Ng,(domy, j) + Rg,(—i — 1,dompg)
: N i1 .
Lo, Rin | N, (domp,—i—1) + Rg,(j,domg)

( min Bg, (domy,, i) + Bg,(i,domg) — i

1<i<lr
Bg(domp,,dompg) = min ¢ 051’2‘%«-1 Lg,(domy, j) + Ra,(—i — 1,dompg)
oo 20 Lg,(domp,—i —1) + Rg, (j,domg)

Table 5.2: Equations for the G = s(G1, G2) operation

5.2.3 The parallel operation

The formulas discussed in this section are shown in Table 5.3.

Consider the computation of Lg(domy,dompg) when G = p(G1,G2). When
domy, > 0, we need to compare configurations in Gy and G2 where both graphs
have the appropriate originating broadcast at ¢, and where one graph provides
domp at tg. The other graph can then provide anything between —(dompg + 1)
and domp at tg, thereby guaranteeing that the resulting graph will provide
domp at tg. The other half of Lg(domy,,dompg) (i.e. when domy, < 0) is com-
puted analogously.
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Similar arguments justify the recursions given for Ng, Rg, and Bg.

5.2.4 The main algorithm

We have defined initialisations for leaves in a decomposition tree for a series-
parallel graph, and recursive equations for computing the cost of an optimal
broadcast domination for the series and parallel operations. An algorithm to
compute the cost of an optimal solution for an entire graph G would simply
find the lowest cost for which there is no underdominance in the {N, L, R, B}
arrays at the root of the decomposition tree. The details of this algorithm, which
is called SPBD, are given below.
: Algorithm Series-Parallel Broadcast Domination (SPBD)
: Input: A series-parallel graph G and a decomposition tree T, for G.
: Qutput: 1, (G).
r =rad(Q)
: for each leaf G; in Ty do

Use the formulas in Table 5.1 to compute Ng,, Lg;, Rg,, and Bg,.
end for
: repeat
G; = an unprocessed vertex in Ty whose children have been processed.
if Gz = S(Gl,GQ) then

Use the formulas in Table 5.2 to compute Ng;, Lg;, Rg,, and Bg,;.
else if G; = p(G1,G2) then

Use the formulas in Table 5.3 to compute Ng,, Lg;, Rg;, and Bg,.
end if
: until the root of T; has been processed.
T =R
: fori=0tor do
for j =0tor do

T = min {:E:NG(iJj)JLG(iaj)aRG(i7j)7BG(i7j)}
end for

I i ol e
e S AN el

: end for
: Return z = y(G)

[1] further proves the correctness of the algorithm and gives an upper bound
on the running time with the following results.

N N
N =

Lemma 4.5[1]. Every possible minimal broadcast function on a series-parallel
graph G is considered during execution of Algorithm SPBD.

Theorem 4.6[1]. Given a series-parallel graph G, Algorithm SPBD computes
an optimal broadcast domination function of G in O(nr*) time.

We will not repeat the proof of the running time O(nr*) here, but note that,
as every edge in the series-parallel graph is a leaf in the decomposition tree, and
because the number of vertices in a binary tree containing [ leaves is 2] — 1, the
size of the series-parallel decomposition can be described as 2m — 1, where m
is the number of edges in the series-parallel graph. This means we can give the
running time of the algorithm as O(mr*), and consequently, the algorithm uses
O(mr?) space.
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Bg(domy,,dompg)

= Bg, (domy,dompg) + Bg,(domy,dompg)

—domy, — dompg

Lg(domy,,domp)

in Lg,(domy,dompg) + Lg,(domy,i) — domL} i dome > 0
_ ) —(domgr¥1)<i<domgr | Lg,(domy,i) + Lg,(domy,dompg) — domy, R =
= in LG1 (domL, domR) + LG2 (domL, ) domL } if domp < 0
domp<i<—(domr+1) | L, (domy,i) + Lg,(domr,domg) — domp, R
Rg(domy,, dompg)
wmin Lg,(domy,,dompg) + Lg,(domy,,i) — domy, if domy, > 0
_ ) —(domr+1)<i<domr | Lg,(domr,,i) + Lg,(domr,,dompg) — domr,
- . Lg,(domy,domg) + Lg,(domy,i) — domg | .
min if domp, <0
domy <i<—(domr+1) | Lg,(domr,,%) + L, (domy,,domg) — domp,

\

min
—(domr+1)<i<domp
—(dompr+1)<j<domgr

min
—(domr+1)<i<domp
domp<j<—(dompgr+1)

min
domp <i<—(domp+1)
—(dompr+1)<j<domr

min
domp <i<—(domp+1)
domp<j<—(domgr+1)

2

G

2

G

5

&h

G

5

£53

G

5

Stk

G
Ng

Ng(domy,,dompg)

domp,dompg) + Ng, (i, j
domy, j) + Ng,(i,dompg
i,dompg) + Ng,(domy,j

1

X )
( )
1 (4 )
. (4,7) + Ng,(domp,dompg)
Ng, (domp,,dompg) + Ng,(i, )
(domp,j) + Ng,(i,domg)
(i,dompg) + Ng,(domyp,j)
.(i,J) + Ng,(domy,,dompg) )
Ng, (domr,dompg) + Nag, (4, j)
,(domp,j) + Ng,(i,domg)
. (i,dompg) + Ng,(domr,j)
. (4,7) + Ng,(domr,,domp)
Ng, (domp,dompg) + Nag, (4, j)
(domp,j)+ Ng,(i,domg)
(i )
(i )

(i,dompg) + Ng,(domp, j

.(i,7) + Ng,(domp,dompg) )

if domp,domg >0

if domy, > 0 and domp <0

if domy, < 0 and dompg >0

if domp,dompg <0

Table 5.3: Equations for the G = p(G1, G2) operation
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IN[-2]-1]0]+1]+2] | B[ -2]-1]0]+1]+2]
-2 1 2 2 2 00 -2 x| 0| 0| 00
-1 1 2 2 2 00 -1 o | oo | oo | 00
0 1 2 2 2 00 0 x| 0| 0| 00
+1 2 2 2 4 00 +1 || o0 | 00 | o© 3 00
+2 || 0| 0| 0| 00 +2 || 0| 0| 0| 4
| L[[-2]-1]0]+1]+2] R [[2]-1]0]+1]+2]
-2 |0 |0 | o | o -2 x| 0 | © 2 2
-1 x| 0| 0| o0 o0 -1 o | 00 | © 2 3
0 o0 | 00| 00| > 00 0 o0 | 00 | 0O 2 3
+1 2 3 3 3 00 +1 || 0 | 0 | © 3 2
+2 2 3 3 2 00 +2 || oo | 00 | 0 | o0 00

Table 5.4: Example of the N, L, R, and B tables for a vertex in a graph of
radius 2

Rows are indexed by the domp value, columns are indexed by the
domp value. This is actually the final values of the root vertex of
the test run in Section 5.4.

Every non-infinite value of non-negative domy, and dompg represents
a possible dominating broadcast. See how the non-negative values of
these tables indicate an optimal solution of cost 2.
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5.2.5 Corrections

The original algorithm, as given in [1], was missing some constraints in the
calculations of the L and R tables and thus treated some impossible solutions
as feasible solutions. Specifically, when a vertex was said to be in both the
dominating set and dominating < 0 vertices outward, i.e. L(domy, < 0,dompg)
and L(domp,domgr < 0). This made the implementation give some slightly
wrong answers to the test graphs, and it was corrected by constraining the L
tables to contain the value infinity where domj < 0 and the same for the R
tables where dompg < 0. This has been confirmed as correct by Prof. Steve

Horton, one of the authors of [1].

5.3 Implementation details

Since the algorithm only works on the decomposition tree and not the actual
series-parallel graph, we decided to take just the decomposition tree as input
to the algorithm, assuming that the first vertex in the input is the root of
the decomposition tree. However, we have also created a program for finding
a decomposition tree given a series-parallel graph, so that anyone wanting to
run the algorithm will not be required to manually decompose a series-parallel
graph.

In addition to the actual algorithm and the equations described in this chap-
ter, we also had to create a method for calculating the radius and diameter of
a series-parallel graph given its decomposition. We chose to simply create the
corresponding series-parallel graph adjacency matrix from the leaves!, run the
Floyd-Warshall All-Pairs-Shortest-Path algorithm on the adjacency matrix to
get a distance matrix, and extract the radius and diameter from the distance
matrix. It is a bit complicated to compare the running time for the Floyd-
Warshall algorithm, which runs in time O(n®) to the main algorithm, which
runs in time O(nr?) (or O(mr?)), but a little testing showed that the Floyd-
Warshall algorithm completed in less than a second on a graph on which the
main algorithm took several hours to run. The adjacency matrix and distance
matrix are discarded before the algorithm starts, so we use no extra memory.
The complete algorithm is given in Chapter 8.

The added functionality for calculating the broadcast function is done sim-
ilarly to how it is done in the implementation for interval graphs: by keeping
track of, for each value z in each table, which other values contribute to the
final value z. A simple backtracking from an optimal value to each of the leaves
will yield the vertices whose values come from the L, R or B tables of the leaf.
The terminals of these leaves will be broadcasting vertices in the series-parallel
graph, and the dom, and dompg values for the leaves gives the broadcast power.

As with the trees algorithm, we could save memory by letting the imple-
mentation allocate and de-allocate calculation tables on the run. Thus, after
calculating the tables for vertex v, we can free the tables of the children from
the memory. If we also do not allocate memory for the tables of v until we
actually get to v, the algorithm will be able to perform with less required mem-
ory. However, since the algorithm is bounded by processing time rather than
memory, there was no need to implement this optimisation.

1Each leaf of the decomposition tree is an edge in the corresponding series-parallel graph.



CHAPTER 5. SERIES-PARALLEL GRAPHS 47

5.4 Test run

We will now run the algorithm on the series-parallel graph from the top of
Figure 5.2. We have arbitrarily numbered the vertices and constructed a list of
decomposition tree vertices (see Figure 5.3). The list has been stored in a file
named “testgraph”.

17 // 17 vertices in decomposition tree
017 16 1 7 P // vertex 1
1000120L // vertex 2
10002 3L // vertex 3
130013L // vertex 4
14 003 4L // vertex 5
110045 L // vertex 6
11005 7L // vertex 7
12003 6L // vertex 8
12006 7L // vertex 9
1323138 // vertex 10
1467 47S // vertex 11
158937S // vertex 12
16 104 1 3 P // vertex 13
1551137 S // vertex 14

[y
¢

16 14 12 3 7 P // vertex
11315178 // vertex
1001701L // vertex

[
~N ®

Figure 5.3: Input data for test run

The text to the right of the “//” is commenting, and will not
be passed to the program. The ordering of the values in each of
the vertex lines is “parentIDy, leftChildID,, rightChildID,
leftTerminall Dy,  rightTerminall Dy,  Operation,”  where
Operation is either S, P, or L, for series, parallel and leaf,
respectively. ID; refers to a vertex ID in the decomposition tree,
and ID- refers to a vertex ID in the series-parallel graph. Running
the program with the —-help option will also display the requested
input format.

We will run the algorithm with the —b option to indicate that we also want
the program to output the broadcast function, not just the optimal cost.

# ./series-parallel-broadcast-domination -b < testgraph
Minimum Broadcast Domination: 2

Broadcast function f(v)=Zx*:

£(1)=0 £(2)=0 £(3)=1 £(4)=0 £(5)=1 £(6)=0 £(7)=0

#

The result from the test run is plotted into the graph in Figure 5.4.
This result is very different from the results in chapters 3 and 4, as the
returned solution is clearly inefficient (but still optimal). Contrary to the algo-
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rithms for trees and interval graphs, the algorithm for series-parallel graphs will
consider every possible optimal solution. This means that, although there still
does exist an efficient, optimal solution (see Figure 5.5), whether the algorithm
will find an efficient optimal solution or a non-efficient solution of the same cost
is completely arbitrary.

1

Figure 5.4: Non-efficient, optimal broadcast on example series-parallel graph

This is the result returned by the algorithm. Note that the broad-
casts from vertices 3 and 5 overlap at vertex 4.

Figure 5.5: Efficient, optimal broadcast on example series-parallel graph

This is one of the alternative optimal solutions the algorithm did
not return. It is a simple radial broadcast, so it is clearly efficient.



Chapter 6

Special Case Graphs

To give a better understanding of how the structure of a graph affects its optimal
broadcast domination, we have chosen a few simple graph classes that yield
easily predictable results.

Because of their predictability, the following graphs will reappear as test
graphs in Chapter 7.

6.1 Paths

As is evident from the definition in Chapter 1, paths are a very simple graph
class. We will now show that the solution to the Broadcast Domination problem
on paths is simple as well. Recall that P,, denotes a path containing n vertices
and n — 1 edges.

Lemma 6.1. A path P, has v, (P,) = |—§-|

Proof. We want to know, for a given broadcast, the ratio for how many vertices
can be dominated per broadcast power unit. A broadcast of power 1 on a vertex
v will dominate v and the two neighbors of v, and for each added +1 power it will
dominate two additional vertices. This gives us the formula CoverRatio(p) =
%. CoverRatio(1) = 3 gives the ratio of 3 vertices covered for a broadcast
power of 1, and it is easy to see that CoverRatio(p) < 3 for all p > 1. Therefore,
the minimum cost broadcast to dominate a path P, consists of a number of
broadcasts, each of power 1: By setting an evenly spaced third of the vertices
to have a broadcast of power 1, we can dominate the entire path with cost

7b(Pn) = |-%-| - U

For simplicity, we have defined paths as a series of connected Pss in the
example Figure 6.1. Note that for the broadcast to be efficient, it is sometimes
necessary to unite two broadcasts at one end of the path, but this has no effect
on the total cost. Figure 6.2 shows how this can be done.

Any graph that is a path is also a series-parallel graph, an interval graph
and a tree. This is trivial to verify by reading the definition of the respective
graph classes.

A path P, has the largest radius r = [251] of all graphs of size n. Assuming
we choose the central vertex as the root of a tree, the tree height h is equal

49
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Broadcast on
3 joined atoms: Q—@—Q—Q—@—Q—Q—@—Q
Figure 6.1: Path construction and optimal broadcast domination

The path in the above figure has been simplified to show how the
broadcast grows in relation to the graph size.

Rest of path

Figure 6.2: Maintaining broadcast efficiency in a path

For any path P = (V, E). When |V| mod 3 = 1, an even distribution
of [%-‘ broadcasts of power 1 will overlap at exactly one vertex.

For simplicity, we assume this to happen at the rightmost end of the
path (we can easily rearrange the broadcasting vertices so that this
is the case). We can now unite the two rightmost broadcasts such
that all 4 rightmost vertices are covered and the broadcast does not
overlap with the rest of the graph. The total cost is the same, and
the broadcast is now efficient. When |V| mod 3 = 2 we will not get
an overlap.
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to the radius r. Since r is a factor in the memory usage for the series-parallel
algorithm, and h is a factor in the memory usage for the tree algorithm, we can
consider paths to be worst case input for these algorithms. The algorithm for
interval graphs will will use the same amount of resources for any two graphs of
the same size. This means we can use paths to test the practical limitations of
the implemented algorithms, i.e. how long paths can we input into the program
before it runs out of memory or takes more than, for example, 12 hours to finish.

6.2 Cycles

Since a cycle C = (V, E) is basically a path with one added edge incident to

the two endpoints, it is clear that it can also be optimally dominated by [|3L|-|
evenly spaced broadcasts of power 1. However, it is slightly more complicated
to maintain efficiency when |V| mod 3 # 0. Figures 6.3 and 6.4 show how
to maintain efficiency when the entire cycle can not be broken into Pss. For

simplicity, we will assume that |V| > 6.

777777777777777777 ,R,es;l,dcycltf«»/‘/'/

Figure 6.3: Maintaining broadcast efficiency in a cycle case A

When |V| mod 3 = 1, an even distribution of [%1 broadcasts of

power 1 will overlap at exactly two vertices. For simplicity, we assume
that the overlapping vertices are at distance 2 from each other (we
can easily rearrange the broadcasting vertices so that this is the case)
and thus both have one broadcast in common. The vertices covered
by the three overlapping broadcasts constitute a Py, which can be
dominated by a single broadcast of power 3. The total cost is the
same, and the broadcast is now efficient.

A cycle of size |V| > 3 is not a tree, since this would imply that there exists
at least two different paths between two vertices, contradicting the definition of
a tree.

A cycle of size |V| > 4 is not an interval graph for a similar reason, namely
that there would have to exist two paths P;, P> between any two vertices u, v,
u < v (thus right(u) < left(v)) and no edge joining a vertex x € P; to a vertex
y € P, except where € {u,v} or y € {u,v}. Since the intervals of the vertices
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777777777777777777777 7777Kegl,ufcyde;—/f—”"/‘

Figure 6.4: Maintaining broadcast efficiency in a cycle case B

When |V| mod 3 = 2, an even distribution of [%l-l broadcasts of

power 1 will overlap at exactly one vertex. The vertices dominated
by the two overlapping broadcasts constitute a Ps, which can be
dominated by a single broadcast of power 2. The total cost is the
same, and the broadcast is now efficient.

of any path from right(u) to left(v) has to contain every integer in the interval
[right(u),left(v)], and any two vertices with overlapping intervals are adjacent,
this means that for any two paths P;, P, from u to v, there exists at least one
pair of overlapping intervals € P,y € Py, ¢ {u,v},y ¢ {u,v}. Therefore,
there cannot exist a cycle of size |V| > 4 in an interval graph. A cycle of less
than 4 vertices is a clique, which can exist in an interval graph.

All cycles are series-parallel graphs. They can be constructed with [V| — 2
concurrent series operations to create a path, followed by one parallel operation
to join the two endpoints of the path.

6.3 1-Caterpillars

First, we will define the graph class star. A star consists of at least one vertex
vy and edges E = {(v,,v) : v # vp,v € V}, where v, is evidently the central
vertex.

A caterpillar is a graph created by joining k arbitrary stars G1,Ga, ..., Gy
with edges connecting the central vertex of each G;,1 < ¢ < k such that there
exists exactly one path connecting the central vertices of G; and Gj. In the case
of caterpillars, we call each star a segment, and in each segment v, is called the
body vertex and all vertices {v : v # v, } are called hair vertices.

A I-caterpillar is a restricted caterpillar where each segment is a P». See
Figure 6.5 for an example.

Despite its similarity to a path, a 1-caterpillar G = (V,E) can only be

optimally dominated by a radial broadcast of total cost [‘VLH-I, as indicated

by Figure 6.5. Thus, 1-caterpillar is a radial graph class.

Lemma 6.3. A I-caterpillar G = (V, E) has 1(G) = [‘V‘T—m-‘
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join join

Atom:

)

Broadcast on
5 joined atoms:

:
009

Figure 6.5: 1-Caterpillar construction and optimal broadcast domination

A 1-caterpillar of size 2k is created by joining k segments as described
in 6.3.

Proof. To prove this, we use the fact that for any broadcast function of optimal
cost 7, there exists at least one efficient broadcast function also of optimal cost
~p, and show that there exists no efficient broadcast function of cost v, < rad(G):

Any broadcast not dominating every vertex in G will leave at least one SG
where the body is dominated and the hair is undominated. It is clear that to
dominate any such hair with any other broadcast we also have to dominate the
already dominated body adjacent to the hair, creating an inefficient overlap.
Therefore, we have to dominate every vertex in G by a single broadcast for
the broadcast domination to be efficient. Since the lowest cost broadcast for
dominating every vertex in G is a broadcast of power rad(G) placed at a central
vertex, the optimal dominating broadcast function for G has total cost v, =
rad(Q@). Since diam(Q) is the length of the path connecting the hair of SG; and

the hair of SG v, , diam(G) = % + 1, and the radius of any interval graph (see
2
further down how a 1-caterpillar is an interval graph) H is rad(H) = [%(H)-I ,

i .
we have that for any 1-caterpillar G, v,(G) = [QTH-‘ = [MT“-‘ O

A 1-caterpillar is a tree, since there exists no more than one path between
any pair of vertices.

A 1-caterpillar is an interval graph, because the intervals |J; <, <, {[2i+0,2i +
2],[2i + 1,20 + 1]} yield a 1-caterpillar of size |V| = 2k. o

It is impossible to create a 1-caterpillar of size |V| > 6 by following the rules
of series-parallel composition. Since we can only connect two segment by their
body vertices, this means at least one segment needs to have the body vertex
as both the left and right terminator. This can not be obtained by following the
series-parallel composition rules, so therefore 1-caterpillars of size |V| > 6 are
not series-parallel graphs. A 1-caterpillar of size |V| = 2k < 6 is a simple Py,
and clearly a series-parallel graph.
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6.4 Teeth

A teeth graph G = (V, E) of size 2k — 1 is an overlapping series of k C3s, where
V={vi:1<i<k}and

v
E = {(vi,vit1) : 1 <i <|V|} U {(vgi_l,vmﬂ) 1< < {%J } 7

which is probably easier to understand by looking at Figure 6.6. Teeth is also a
radial graph class.

join

Atom: i join

Broadcast on
4 joined atoms:

Figure 6.6: Teeth construction and optimal broadcast domination

A teeth graph of size 2k — 1 is created by joining k Css.

Lemma 6.4. A teeth graph G = (V, E) has v(G) = [IVL—I-I =v(G).

Proof. Similarly to 1-caterpillars, a teeth graph G can only be dominated effi-
ciently by a single broadcast dominating every vertex of G: For any broadcast
that does not dominate every vertex in (G, there exists at least one C5 C G
where at least one vertex of the Cs is undominated. This means that for any
two broadcasts of any power, there exists at least one C3 where either the broad-
casts overlap, or not every vertex of the C3 is dominated. In the case where two
broadcasts dominate 2 of the vertices of a C5, the undominated vertex u will
be the one with degree 2 in the original graph, and thus a third broadcast can
not reach the u without overlapping with at least one of the two other broad-
casts. Since any broadcast overlap is inefficient, and any optimal solution has
an equivalent efficient broadcast function, a teeth graph can only be optimally
dominated by a single, and therefore radial, broadcast.

The diameter of a teeth graph G is d(v1,v}y/|). Since the edges of the shortest
path connecting v1 and vy is given by the second part of the formula for
calculating the edges of G above, diam(G) = MT_I Since the radius of any
interval graph (see further down how a teeth graph is an interval graph) H is

rad(H) = [%(H)-‘, we have rad(G) = di”g’(c) = [‘VLA-‘, and consequently
1(G) = |'_|V‘\1—1-|_ -

A teeth graph of size |V| > 3 is trivially not a tree, because it contains at
least one Cj.
A teeth graph is an interval graph. The intervals for a teeth graph of size

V] are {[1,2]} U { (20,23 + 1], (20,2 + 2] s 1 < < M2
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A teeth graph is a series-parallel graph. We can create each C3 with the op-
erations parallel(serial(Ps, Ps), P») and then join the Css by serial operations
to get the teeth graph.

6.5 DBoxes

A bozxes graph is essentially a wide path, but its structure is easier to describe
as a l-caterpillar with added edges such that each pair of consecutive segments
is a clique, as shown in Figure 6.7.

Atom: joiﬁﬁ : % ﬁ~' :j:oin

Broadcast on
4 joined atoms:

Figure 6.7: Boxes construction and optimal broadcast domination

A boxes graph constructed by joining smaller boxes graphs each of
size |V| = 6. The construction is simplified to illustrate how the
optimal domination cost is related to the graph size. A boxes graph
can actually be of any size as long as |V| mod 2 = 0.

Contrary to 1-caterpillars but similar to paths, the optimal broadcast dom-
ination of a boxes graph is not one radial broadcast, but a number of evenly
spaced broadcasts of power 1.

Lemma 6.5. A bozes graph G = (V, E) has 4(G) = [l%l-l

Proof. In a boxes graph G = (V, E), any vertex with an originating broadcast
of power 1 will dominate itself and its 5 neighbors, for a total of 6 vertices. For
each added +1 power it will dominate another 4 vertices. This results in the
formula CoverRatio(p) = w describing, for a single broadcasting vertex,
how many vertices are dominated per domination power. We can easily see that

CoverRatio(p) < CoverRatio(1) for any p > 1. Therefore, we will need [lﬁﬂ]

evenly spaced dominators of power 1 to optimally dominate a boxes graph G

with total cost 7,(G) = [%-‘, as indicated by Figure 6.7. O

For a boxes graph of size |V| mod 6 # 0, we can maintain broadcast ef-
ficiency in the same way as we would for paths, by joining two overlapping
vertices at one end of the graph.

A boxes graph of size |V| > 2 is clearly not a tree, since it contains cliques
of more than 2 vertices.

A boxes graph of size |V| > 2 is not a series-parallel graph, since it is
impossible to create a clique of size 4 by following the rules of series-parallel
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composition. At some time during the construction of a clique of size 4, we
must have created a P; where the central vertex is not a terminal. Since there
is no way to attach a neighbor to a vertex that is not a terminal, we cannot
connect the central vertex of the P; to a new vertex and create a clique of size
4.

A boxes graph of any size |V| mod 2 = 0 is an interval graph, because the
intervals U1<i<% {(24,2i + 2), (2i,2i + 3)} yield a boxes graph.

Note that, similarly to paths, we could add edges between the vertices of
both ends to create a “boxes cycle” which would result in the same optimal
broadcast cost as for boxes graphs. However, this would be neither an interval
graph, a series-parallel graph nor a tree. Consequently, we can not run any of
the algorithms on such a graph, so it is not very relevant to this work.



Chapter 7

Testing

In this chapter, we will describe in detail how the implementations were tested,
and the corresponding test results. There are three different types of tests we
will perform; correctness tests, performance tests, and how often an optimal
broadcast differs from a trivial solution. Each type of test has been covered in
a different section.

All tests in this chapter will be performed on a 2.26 MHz Pentium 4 work-
station computer with 512 MB RAM and 512 KB level 2 cache.

We will in this chapter sometimes use “algorithm” and “implementation”
interchangeably, but it should be clear from the context when there is a need
to differentiate between them.

We will only describe the test results from the final, working versions of the
implementations.

7.1 Test data generation

To perform a test, we will of course need suitable input for the programs. We
have created programs for generating two different types of data; the easily
predictable special case graphs from Chapter 6, and randomly generated interval
graphs, series-parallel graphs and trees.

We will use most of the special case graphs only for correctness testing, but
paths will be also be used for testing comparative performance and the practical
limits of all three algorithms.

A random instance of each graph class is better suited for more realistic
testing, since it potentially represents any conceivable input graph. We will
therefore use these for testing performance and for testing how much optimal
dominating broadcasts differ from radial solutions.

Even more realistic scenarios would be to find real data of a structure cor-
responding to series-parallel graphs, interval graphs, and trees, like a computer
chip map, a large table of flight times, and an organisation chart for a large
corporation, respectively. However, such data were not easily obtainable in a
usable format.

57
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7.1.1 Special case graphs

As mentioned in Chapter 6, an optimal broadcast for paths, cycles, 1-caterpillars,
teeth graphs and boxes graphs can always be calculated from the graph size.
This makes them immediately useful for correctness testing since the result is
trivial to verify. In addition to this they are trivial to generate and verify, so
there is very little chance of giving the algorithms garbage input!.

The errors that were detected in the algorithms for interval graphs and series-
parallel graphs showed up when testing the implementations on these graphs
(see respective chapters 3 and 5 for details). Many programming errors were
also detected, and subsequently corrected, during these tests.

7.1.2 Randomly generated graphs

For more realistic test scenarios, we will need to test the implementations on
random instances of their corresponding graph classes.

Since randomly generated graphs are a bit more complex than the graphs
from the previous section, we also had to test the actual graph generation pro-
grams before we could use them, to make sure they did not produce garbage
input. These tests were fairly trivial and will not be covered here.

We will mainly be using randomly generated graphs for testing the running
time and how the optimal broadcast cost is related to graph size and radius,
but have performed some manual correctness tests on small graphs.

7.1.3 Generation of test graphs

The following subsections describe in detail how the test graphs are generated
for each graph class.

We have created one stand-alone program for each graph class, and the
output is in the same format as the input for the implementations. This means
we can create automated tests by ordering a computer to repeatedly pipe? a
randomly generated graph through the algorithm, and store the result and how
much time the algorithm spent in a file.

Special case graphs

The generation of each special case graph class is trivial and has already been
described in Chapter 6, so we will not present any pseudocode for the generation
of these graphs.

Random interval graphs

The simplest way to generate a random interval graph is to start with an empty
interval graph and add n completely random intervals with endpoints in the
range [0, k] where k is a chosen integer > 0. However, this tends to generate

lGarbage input is a computer term meaning “wrong/bad input”. For example, if you
wanted a calculator to evaluate % and accidentally typed 4322//7 or 4332/7, you would
give the calculator garbage input. This would in turn result in garbage output, in the form of
a program crash, an error message, or a useless answer.

2Piping is to let one program receive its input from the output of another program. For
example, in a Linux shell environment by typing “progA | progB”. progB will now take its

input from progA’s output.
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“lumpy” graphs, meaning that there almost always exists a vertex that is in-
cident to over 90% of the rest of the vertices in the graph. Since this means
the resulting graphs could generally be dominated at a total cost of 1, 2 or 3
completely regardless of their size, we had to add a restriction: We will in ad-
dition require a parameter [ denoting the maximum allowable interval width.
This proved to result in more interesting graphs.

Now we have one last requirement for the output graph; namely that the
graph is connected. For an interval graph to be connected means that there
exists at least one path connecting the leftmost vertex to the rightmost vertex.
We make use of this definition by first generating a series of randomly overlap-
ping intervals, with interval width in the range [1,1], stretching from leftmost
endpoint 0 to rightmost endpoint k. Also, the left and right endpoints of each
successive vertex must be at least 1 larger than the corresponding endpoints of
the previous vertex.

For simplicity, we want to reduce the number of parameters to the algorithm
by eliminating k:

Observation 7.1. An interval graph of n vertices can always be represented
with intervals in the range [1...n].

Proof. k = n is sufficient to allow for the generated graph to be a path of
length n, i.e. a connected graph of size n with the least amount of overlap. Since
increasing k£ will only add the possibility to generate graphs containing less
overlap, there is no need for k > n. Also, k < n will only yield the possibility to
generate graphs containing more overlap, which can also be gained by increasing
l. We can therefore safely assume that k¥ = n does not restrict the structure of
the generated interval graphs, making the algorithm simpler. |

1: Algorithm Generate Interval Graph

2: Input: An integer n denoting the size of the output graph and an integer [
denoting the maximum interval length to be used.

3: Output: An interval graph represented by a set I of n intervals, with max-
imum allowable interval length of [.

: right Border = 0

: leftBorder = —1

10: while (rightBorder < k —1) do

11:  width = randomIntegerInRange([1,1])

12:  right = randomIntegerInRange([1,width]) + rightBorder

13:  left = right — width

14:  // assure new interval’s left endpoint is larger than the leftBorder value
15:  // move the interval if necessary

16: if (left < leftBorder + 1) then

4: /] — assert connected graph
5: let verticesLeft =n

6: k=n

. 1=

8

9

17: right = right + (leftBorder — left + 1)
18: left = leftBorder + 1
19: end if

20:  // truncate interval if it now passes outside the valid range
21:  if (right > k) then
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22: right =k — 1

23:  end if

24: I =TU{(left,right)}

25:  werticesLe ft = verticesLeft — 1

26: leftBorder = left

27:  rightBorder = right

28: end while

29: // — generate the remaining intervals

30: while (verticesLeft > 0) do

31:  werticesLeft = verticesLeft — 1

32:  width = randomIntegerInRange([1,1])
33:  left = randomIntegerInRange([0, k — width])
34:  right = left + width

35: I =TU{(left,right)}

36: end while

37: Return [

Random Trees

The simplest way to randomly generate a tree of size n is to start with a tree
containing a single vertex (the root) and iteratively add n — 1 vertices where
each new vertex is set as a child of a random, existing vertex. However, this
proved to generally produce trees with a rather large degree close to the root,
and low degree close to the leaves. Due to this, we found it necessary to introduce
a parameter w which constrains the number of children each vertex can have
(constraining the maximum degree of the tree to w + 1).

1: Algorithm Generate tree

2: Input: An integer n denoting the size of the output tree and an integer w

denoting the maximum number of children allowed per vertex.

3: Output: A tree T = (V, E) of size n with maximum degree w + 1.

4: V. ={w} // the root

5 B = @
6: for i =1 ton do
7:  parent = random vertex from V with degree < w
8 V=Vu {U,’}
9: E=FU {(Uparentaui)}
10: end for
11: Return T' = (V, E)

Random Series-Parallel Graphs

Every series-parallel graph can easily be generated from its decomposition tree.
Therefore, to generate a series-parallel graph G we start by generating a random
binary tree T; and declaring this to be the decomposition tree of G. Then, we
randomly assign either the series operation or the parallel operation to all non-
leaf vertices of Ty, with the constraint that a vertex cannot be assigned the
parallel operation if none of its children is assigned a series operation. This is
to avoid double edges, which have no effect on the broadcast domination of the
graph.

Generating the left and right terminals for each vertex is fairly trivial, and
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it also makes generating a graph from the decomposition tree trivial: Since
the leaves in a decomposition tree constitutes all the edges of a graph, we can
generate the graph linearly: V = {1,2,...,k}, E = {(t£(G:),tr(G;) : G, is aleaf
in T;}, where k is the number of distinct terminals in Ty4. See the pseudocode
for Generate Series-Parallel Decomposition Tree for details on calculating
the terminals.

The part of the algorithm that generates the binary tree is a bit tricky, so
we have extracted it from the main algorithm. It starts by creating a random
ordering R of the vertices, but assuring that the root is the first element in R,
and creating two pointers on the list, p; and p,. p; points to the leftmost vertex
that is not yet a part of the tree, and p, < p; points to the leftmost vertex that
is part of the tree but has not yet been assigned two children. It then inserts
RI[0] (the root) into the tree and sets p, = 0 and p; = 1. Then, the algorithm
will repeat the following until p, = n: Let p be a random number in the range
[pp, Pt — 1], and set ¢; = R[p; + 0] and c2 = R[p; + 1]. Add ¢; and ¢ to the tree
and assign them to be the children of R[p]. Switch R[p] and R[p,]. Increase p,
by 1 and p; by 2.

1: Algorithm Generate Random Binary Tree GRBT
: Input: An integer n denoting the size of the output tree.
: Output: A binary tree T = (Vr,,, ET,, ) of size n.
Vi, =0
Er, =0
R =1ist[0,1,...,n — 1]
: shuffleR[1...n —1]
pp=0
pr=1
: while p; <n do
C1 = R[pt + 0]
Cy = R[pt + 1]
p = randomIntegerInRange([pp, pr — 1))
Vr, =V, U{c, e}
ETB = ETB U {(R[p]acl)7 (R[p]ac2)}
swap = R[p,]; R[pp] = R[p]; R[p] = swap
Pt =pt+2
Pp=Dp+ 1
: end while
: Return T’z = (VTB R ETB)
Because the algorithm for series-parallel graphs only operates on the tree
decomposition, we do not need to build and output the resulting graph.

Note that the algorithm will not know the size of the resulting series-parallel
graph until it is finished, as it depends on how many vertices are assigned the
series operation. This gave us a little trouble during testing, since we wanted
graphs of a particular size. To remedy this, we had two choices:

© ® I >T e
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eI R

e Keep generating random series-parallel decompositions until the algorithm
outputs a graph of the size we want.

e Rework the graph generation algorithm to assure the resultant graph is of
a specific size.

As the number of vertices in a series-parallel graph is completely dependent
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on the number of series operations in the decomposition tree, we would have
to create a specified number of series operations, a random number of parallel
operations, combine these in such a way that no double edges are created, and
add a fitting number of leaf vertices. Since the first option proved to be both
quick and painless, there was no need to invent, prove, implement, and test a
new algorithm.

1:
2:
3:

N

Algorithm Generate Series-Parallel Decomposition Tree

Input: An integer n denoting the size of the output tree.

Output: A decomposition tree Ty = (T's = (Vryg, Ery),0p,tL,tr), where
Tp is the binary tree structure, op, ¢t and tgr are arrays such that op[v;]
stores the series-parallel operation of v;, t1,[v;] stores the left terminal of v;
and tg[v;] stores the right terminal of v;.

: op = array of size n
: tr = array of size n

tgr = array of size n

: VTB = GRBT(n)

: // randomly assign operations to vertices
:fori=0ton—1do

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37
38:
39:
40:

if vertex ¢ is a leaf in Tg then
opli] = LEAF
else
setop = randomQO f(PARALLEL,SERIAL)
if setop = SERIAL then
op[i] = SERIAL
// the following line assures we will get no double edges
else if setop = PARALLEL then
if leftChild(i) = S or rightChild(i) = S then
op[i| = PARALLEL
else
op[i] = SERIAL
end if
end if
end if
end for
// calculate terminals for vertices
prd = a pre-order traversal of Tg.
tr[prd[0]] = 0 // the terminals of...
tr[prd[0]] =1 // ...the root
termCount = 2
fori=1ton do
if op[prd[i]] = SERIAL then
t1 = tr[prd[i]]
ty = t3 = termCount
ty = tr[prd[i]]
termCount = termCount + 1
tr[leftChild[prd[i]]] = t1
tr[leftChild[prd[i]]] = t2
tr[rightChildprd[i]]] = t3
tr[rightChild[prd[i]]] = ta
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41:  else if op[prd[i]] = PARALLEL then
42: t1 =t3 = tL[pTd[i]]

43: to =14 = tR[pTd[i]]

44: tr[leftChild[prd[i]]] = t1

45: tr[leftChild[prd[i]]] = t2

46: tr[rightChild[prd[i]]] = ts

47: tg[rightChild[prd[i]]] = t4

48: end if

49: end for

50: Return Ty = (T, 0p,tr,tR)

7.2 Correctness

Software testing[23]: Software testing is a process used to identify the
correctness, completeness and quality of developed computer soft-
ware. Actually, testing can never establish the correctness of com-
puter software. It can only find defects, not prove that there are none.
There are a number of different testing approaches that are used to
do this ranging from the most informal ad hoc testing, to formally
specified and controlled methods such as automated testing.

To test the correctness of the implementations, we will use automated tests
with the special case graph classes specified in Chapter 6 as input data.

In theory, we would only need to test for those graph sizes where the solution
was structurally different. For example, for a 1-caterpillar graph we would have
to test for 3 graph sizes: For |V| = 2, where v(G) = v(G), for |V| = 4,
where we have 2 feasible solutions, and for |V| = 6, where we have one single
solution ~;(G) # v(G). However, as in all computer programs, there is always a
possibility for programming errors in the implementations. Programming errors
do not generally follow any conceivable logic, so we wanted to test for a few
more graph sizes to increase our confidence in the results. Since the tests could
be automated, we tested for every legal graph size up to a specified value chosen
such that the tests would not take too long to run.

The results (Table 7.1) show that the algorithms and their implementations
perform according to expectations. As the algorithms themselves are mathemat-
ically proven to be correct, and the implementations are mathematically trivial
translations from the algorithms, we are confident that both the algorithms and
the implementations are correct.

We have also performed some ad hoc correctness tests based on randomly
generated graphs, but they were very informal and will therefore not be de-
scribed here.

7.3 Performance

In this section, we will try to give an understanding of the practical performance
of the algorithms. Note that since we are running on a single workstation com-
puter, these test results should not be taken very literally, but more as an
indication as to how the running times of the algorithms turn out in practice.
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class of G interval for |V(G)| | interval graphs | SP-graphs | trees
path [1,100] | pass pass pass
cycle [3,100] | n/a pass n/a
1-caterpillar [2,100] | pass n/a pass
teeth [3,99] | pass pass n/a
boxes [2,100] | pass n/a n/a

Table 7.1: Results from automated correctness test

The three rightmost columns indicate how the implementation of
the algorithm for the specific graph class performed according to
expectations, or n/a where the input graph cannot be represented
in the corresponding graph class.

Before we can perform any tests on running time and comparative perfor-
mance, we need to know which problem sizes can realistically be tested. Infor-
mal testing showed us that the implementation of the algorithm on trees was
bounded by memory constraints, and that the implementations of the algorithms
on interval graphs and series-parallel graphs were bounded by available time.
For example, the series-parallel implementation ran for 6 full hours on a path
of size 200, and when we tried to run it on a path of size 300, it ran for over 32
hours before it was terminated to make the computer available for more useful
tasks. We decided that problem sizes which took longer than 1 hour would be
unmanageable for testing.

As described earlier, paths are worst-case input to all algorithms, so we tested
how large paths the implementations could handle within the given bounds. The
limits are displayed in Table 7.2. Because of the very limited hardware available,
we have not attempted to test the performance of the implementations on larger
problem sizes, as such results would not be very useful. Any practical applica-
tions of the implementations on large problem sizes would most likely want to
both parallelise the algorithms and run them on computers more powerful than
a mere workstation, yielding a completely different performance.

None of the algorithms contain any noticeably large constants in their asymp-
totic running times.

7.3.1 Testing all three algorithms on paths

In addition to being worst case input, paths are also a subclass of interval
graphs, series-parallel graphs and trees. This means that for any given path, we
can run it on all three algorithms and compare the results. However, since the
algorithms had radically different running times, there was no common graph
size interval which gave useful results. Therefore, we have run each algorithm on
20 different path sizes up to the corresponding limit of the algorithm (as given
in Table 7.2) and noted how much time each implementation needed. Since a
path of n vertices has a radius of [251], and O(n) vertices in its decomposition
tree, the running times for the interval graph algorithm, the series-parallel graph
algorithm and the tree algorithm will be O(n?), O(n®), and O(n?), and the space
requirements will be O(n?), O(n?), and O(n?), respectively.
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Results

The results are displayed in Table 7.3, and and have also been plotted graphically
in Figure 7.1. For each algorithm in the figure, we have also plotted the running
times of the other two algorithms as dotted lines, which illustrates how much
they differ in running time. Note that the vertical axis of the tree algorithm is
measured in seconds, while the other two are measured in minutes.

The results for the tree algorithm show an irregular decrease in running time
from the second largest to the largest problem. Such irregularities are not sur-
prising when we are using almost all available system memory on a workstation
computer, and subsequent test runs also give the same irregularity. We suspect
this to happen because some low-priority, resource-consuming processes which
are normally run by the operating system are suspended because there is not
enough memory available for them. Thus, our program will get more of the
available processor time.

It appears from Figure 7.1 that the algorithm for series-parallel graphs will
not be able to handle a significant increase in problem size unless it is drasti-
cally optimised (see 9.3.1). However, the interval graph algorithm and the tree
algorithm would benefit from adding more processing power and more memory,
respectively. Also, the algorithm for trees could benefit from sacrificing some of
its speed for memory, as it runs out of available memory long before its running
time exceeds 3 minutes.

algorithm | V] | bounded by
interval graphs 6000 | time (1 hour)
series-parallel graphs 150 | time (1 hour)
trees 32500 | memory

Table 7.2: Practical limitations for each implementation

7.3.2 More general tests

We also want to see how the implementations perform on randomly generated
instances of their corresponding graph class, as these make for more realistic
results.

Since the running time may vary for several graphs of the same size, we
have performed several runs for each graph size on each graph class, and cor-
respondingly reduced the size interval such that none of the implementations
would use more than 10 minutes had we run them on paths of the same size.
The maximum degree of each tree was constrained to 6 to avoid “bushes”, and
all intervals were constrained to be of maximum width % (5% of the maximum
possible interval width).

We will perform 5 runs for each graph size on interval graphs and trees,
and 10 runs for each graph size on series-parallel graphs, as randomly generated
series-parallel graphs turned out to give less predictable running times.

In addition to the size of the input graph and the running time, we also
want to know the values affecting the running time. Thus, we have output the
height of the trees, the number of vertices of the series-parallel decomposition
trees, and the radiuses of the series-parallel graphs (see 8.2 for how the radius
is calculated).
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| [V(G)] | time
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1m36s

2400
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4mb3s
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11m38s
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4500

19m16s

4800
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30m2s

5400

36mb3s

5700

45m1bs
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54m28s

Interval graphs
time O(n?)
space O(n?)

LIV(G)] [ time | | [V(G)] | time |
17 | Os 1625 | Os
24 | Os 3250 | 1s
31 | 1s 4875 | 2s
38 | 4s 6500 | 4s
45 | 8s 8125 | 8s
52 | 17s 9750 | 12s
59 | 30s 11375 | 12s
66 | 55s 13000 | 17s
73 | 1m29s 14625 | 30s
80 | 2m25s 16250 | 28s
87 | 3m30s 17875 | 36s
94 | 5m21s 19500 | 42s
101 | 7m22s 21125 | 53s
108 | 10m38s 22750 | 1m2s
115 | 14mls 24375 | 1mlds
122 | 19m29s 26000 | 1m25s
129 | 25m18s 27625 | 1m38s
136 | 33m20s 29250 | 1mb2s
143 | 41m36s 30875 | 2m40s
150 | 54m19s 32500 | 2m23s
Series-parallel graphs Trees
time O(nr?) time O(nh)

space O(nr?)

space O(nh)

Table 7.3: Running times for all algorithms on worst case input
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Figure 7.1: Running times for all algorithms on worst case input
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Results

The results are displayed in Table 7.4, and are plotted in Figure 7.2 along with
their corresponding running time on paths (in dotted lines).

As expected, the performance of the interval graph algorithm is the same on
randomly generated graphs as for paths, as its running time is only dependent
on the number of vertices in the input graph.

Also as expected, the performance of the tree algorithm was vastly improved,
as the height of the input trees is much lower. The height of a “path tree” of
32500 vertices is 16250, whereas in the randomly generated tree the average
height was 23.2.

The performance of the series-parallel algorithm was also significantly better,
because the radius of a randomly generated series-parallel graph is much smaller
than for a path. The radius of a path of 107 vertices is 53, while for the randomly
generated graphs of the same size, the average radius was 15.2.

As is easily seen in the figure, running the algorithm on two series-parallel
graphs of the same size can give very different running times. This is mainly
because two series-parallel graphs of the same size can be very different, and thus
they have different radius values and different decomposition trees of different
sizes. Also, the number of parallel versus series vertices in the decomposition
tree will affect the running time. By looking at the tables in Chapter 5 we see
that the calculation of the parallel operation is much more time consuming than
the series operation.

7.4 Optimal cost versus radius

It will also be interesting to see how much the optimal broadcast cost actually
differs from the cost of a radial broadcast. If the optimal broadcast cost for one
algorithm is nearly always equal to a radial broadcast, that is 74(G) = rad(QG),
then it is less probable that we will find much practical use for the algorithm.
To test this, we have run the algorithms on randomly generated graphs up
to size 1000 for trees and interval graphs and 100 for series-parallel graphs.
We selected 20 equidistant sizes for each graph class, and generated 20 graphs
of each class for each size. Since the degree of a tree may affect the optimal
dominating broadcast cost, we have tested both for trees of maximum degree
3 and for trees of maximum degree 6. All intervals were constrained to be of
maximum width 10, which will result in larger radiuses for larger graphs.

7.4.1 Results

The results of the test are shown in Table 7.5. Contrary to our expectations,
trees with degree 3 had the same number of radial broadcasts being optimal as
trees of degree 6.

From the results we see that for an arbitrary tree, a radial broadcast is almost
always an optimal dominating broadcast. The results from the interval graphs
and series-parallel graphs, however, show that the cost of a optimal dominating
broadcast is usually less than that of a simple radial broadcast.

We can therefore conclude that, if a practical use for broadcast domination
appears, the algorithms for interval graphs and series-parallel graphs are im-
mediately useful, but the algorithm for trees is unlikely to be useful on general
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avg. avg. | avg. | avg. avg. | avg.
[V(G)] time [V(G)| | time n T [V(G)| | time h
185 0.0s 12 | 0.0s 20.2 | 3.8 1625 | 0.2s | 154
370 0.6s 17| 00s | 41.0| 5.7 3250 | 04s | 17.0
555 1.8s 22 | 0.0s| 53.8| 6.3 4875 | 0.4s | 194
740 4.0s 27| 01s| 674 | 7.1 6500 1.0s | 18.8
925 8.0s 32| 0.1s 79.8 | 8.1 8125 1.0s | 20.0
1110 13.8s 37| 01s| 928 | 7.6 9750 1.6s | 19.4
1295 22.2s 42 0.1s | 104.6 8.9 11375 1.8s | 19.8
1480 | 33.0s 47 | 0.8s | 118.2 | 10.5 13000 | 2.6s | 22.0
1665 47.4s 52 0.8s | 128.8 | 10.8 14625 3.0s | 214
1850 | 64.8s 57 1.0s | 145.8 | 104 16250 | 3.6s | 22.0
2035 | 86.6s 62 | 2.1s | 158.6 | 11.0 17875 | 4.2s | 21.4
2220 | 113.4s 67 2.2s | 1716 | 11.6 19500 5.0s | 21.2
2405 | 144.8s 72 | 4.3s | 182.8 | 14.0 21125 | 6.8s | 22.4
2590 | 181.8s e 1.6s | 199.0 | 11.0 22750 | 8.6s | 22.8
2775 | 227.0s 82| 3.3s | 2074 | 12.6 24375 | 9.4s | 224
2960 | 278.2s 87 | 2.5s | 226.6 | 10.6 26000 | 11.0s | 22.4
3145 | 339.4s 92 9.7s | 2354 | 134 27625 | 12.8s | 22.2
3330 | 406.2s 97 T4s | 2474 | 13.8 29250 | 17.2s | 24.0
3515 | 487.0s 102 9.7s | 259.8 | 154 30875 | 20.6s | 23.6
3700 | 579.6s 107 | 11.2s | 275.8 | 15.2 32500 | 21.4s | 23.2
Interval graphs Series-parallel graphs Trees
time O(n?) time O(nr*) time O(nh)

space O(n?)

space O(nr?)

space O(nh)

Table 7.4: Running times for all algorithms on randomly generated graphs

trees. However, it is possible that trees of a special structure can benefit from
the algorithm (see 9.2.3).
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Figure 7.2: Running times for all algorithms on randomly generated graphs
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avg. avg. | avg. avg. avg. | avg.
V(GQ)| | rad(G) | v(G) | diff. [V(G)| | rad(G) | w(G) | diff.
50 415 | 4.05| 0.10 5 2.00 | 2.00 | 0.00
100 775 | 7.50 | 0.25 10 3.50 | 2.95 | 0.55
150 11.20 | 10.80 | 0.40 15 510 | 4.30 | 0.80
200 15.00 | 14.60 | 0.40 20 540 | 4.55 | 0.85
250 18.35 | 17.95 | 0.40 25 710 | 595 1.15
300 22.10 | 21.55 | 0.55 30 7.95 7.05 | 0.90
350 25.65 | 24.95 | 0.70 35 8.65 7.60 | 1.05
400 29.50 | 28.60 | 0.90 40 10.05 | 8.60 | 1.45
450 32.45 | 31.65 | 0.80 45 10.05 | 9.05 | 1.00
500 36.20 | 35.20 | 1.00 50 1090 | 9.75 | 1.15
550 40.30 | 39.30 | 1.00 55 10.70 | 9.65 | 1.05
600 44.10 | 42.55 | 1.55 60 9.75 | 9.05 | 0.70
650 47.05 | 46.00 | 1.05 65 11.65 | 10.80 | 0.85
700 50.85 | 49.75 | 1.10 70 13.25 | 12.15 | 1.10
750 54.50 | 53.05 | 1.45 75 12.95 | 11.50 | 1.45
800 58.60 | 57.15 | 1.45 80 13.85 | 12.65 | 1.20
850 61.90 | 60.30 | 1.60 85 14.90 | 13.15 | 1.75
900 64.75 | 63.05 | 1.70 90 13.30 | 11.55 | 1.75
950 68.40 | 66.80 | 1.60 95 14.20 | 13.05 | 1.15
1000 72.15 | 70.75 | 1.40 100 14.50 | 13.85 | 0.65
Interval graphs Series-parallel graphs
avg. avg. | avg. avg. avg. | avg.
V(@)| | rad(G) | v(G) | diff. [V(G)| | rad(G) | w(G) | diff.
50 6.05 | 6.05 | 0.00 50 7.90 7.90 | 0.00
100 7.65 | 7.60 | 0.05 100 9.65 | 9.65 | 0.00
150 8.70 | 8.65 | 0.05 150 11.35 | 11.30 | 0.05
200 9.30 | 9.30 | 0.00 200 12.15 | 12.15 | 0.00
250 9.90 | 9.90 | 0.00 250 12.95 | 12.90 | 0.05
300 10.80 | 10.80 | 0.00 300 13.45 | 13.45 | 0.00
350 10.55 | 10.50 | 0.05 350 14.15 | 14.10 | 0.05
400 10.70 | 10.70 | 0.00 400 14.20 | 14.20 | 0.00
450 11.10 | 11.10 | 0.00 450 14.90 | 14.90 | 0.00
500 10.80 | 10.75 | 0.05 500 15.30 | 15.30 | 0.00
550 11.45 | 11.45 | 0.00 550 15.65 | 15.65 | 0.00
600 11.40 | 11.40 | 0.00 600 15.70 | 15.70 | 0.00
650 12.15 | 12.15 | 0.00 650 15.90 | 15.90 | 0.00
700 11.90 | 11.85 | 0.05 700 16.65 | 16.60 | 0.05
750 12.45 | 12.45 | 0.00 750 16.50 | 16.50 | 0.00
800 12.60 | 12.60 | 0.00 800 16.95 | 16.95 | 0.00
850 13.15 | 13.15 | 0.00 850 17.25 | 17.25 | 0.00
900 12.80 | 12.80 | 0.00 900 17.65 | 17.60 | 0.05
950 13.00 | 13.00 | 0.00 950 17.95 | 17.95 | 0.00
1000 13.00 | 13.00 | 0.00 1000 18.00 | 18.00 | 0.00
Trees of degree 5 Trees of degree 2

Table 7.5: Average rad(G), average v4(G), and average rad(G) — 7(G) for 20
runs on each graph size.



Chapter 8

Additional Algorithms

This chapter describes two additional algorithms that were not presented in [1]
but are necessary for the implementations to be useful. They are both sufficiently
simple and efficient that it was probably faster (and more fun) to formalise
them from scratch rather than trying to find existing, more efficient and still
sufficiently simple algorithms.

8.1 Computing the series-parallel decomposition
tree

During implementation and debugging it was necessary to create a sub-program
that generated the decomposition tree for a given series-parallel graph G, since
it was a lot of work to do this manually and the algorithm needed to be tested
on graphs consisting of at least a few hundred vertices.

Also, it is assumed that anyone who wants to use the implementation to find
the optimal dominating broadcast of a series-parallel graph would not want to
decompose the graph manually.

Assume each vertex in G has an associated unique integer in the range
[1...n] and that the edges of G are stored in a table E(1...n,1...n) where
E(u,v) denotes the number of edges between u and v. We will also be using
a table of lists, R(1...n,1...n), for storing the reference from an edge to its
corresponding vertex in the decomposition tree. Thus, R(4,7) contains a list of
the vertices in the decomposition tree corresponding to all the edges between
¢ and j in the currently decomposing graph. After each iteration of the main
loop, B(u,v) = |R(u, ).

The algorithm will, in each step, shrink G by either removing one double edge
(reverse parallel operation) or shrinking a P3 to a P, (reverse serial operation).
: Algorithm Series-Parallel Decomposition (SPD)

: Input: A series-parallel graph G with adjacency table E
: Output: The series-parallel decomposition tree of G

D := new, empty decomposition tree

R := new table of sets, of size |V(G)| x |V (G)|.

. // initialization phase

:foru=1ton—1do
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8: forv=u+1tondo

9: w := new decomposition-vertex(left-terminal= w, right-terminal= v,
SP-operation= NON E, left-child= 0, right-child= 0)
10: D.add(w)

11: R(u,v) := {w}

12:  end for

13: end for

14: // decomposition phase

15: while |E(G)| > 1 do

16:  Find, if possible, a u € V(G) such that degree(u) = 2
17:  if found u then

18: v1, vy = u’s two first neighbors.

19: E(vy,u) =0

20: E(u,vs) :=0

21: E(vi,v9) := E(v1,v2) +1

22: w := new decomposition-vertex(left-terminal= vy, right-terminal= vy,

SP-operation= SERI AL, left-child= R(v1, ), right-child= R(u,v2))
23: D.add(w)
24: R(v1,v2) := R(v1,v2) U {w}

25:  else

26: find u,v such that E(u,v) > 1

27: V1 :=uU,Vy =0

28: r1,T2 = two first elements of R(v1,v2)

29: E(’Ul,vz) = E(’Ul,vz) -1

30: w := new decomposition-vertex(left-terminal= vy, right-terminal= vy,
SP-operation= PARALLEL, left-child= r;, right-child= r5)

31: D.add(w)

32: R(v1,v2) := R(vy,v2) U {w} — {r1,7m2}

33:  end if

34: end while
35: Return D

Proof. At each step of the decomposition phase, the exact part of G that was
removed in that step can be constructed from the new vertex of the decompo-
sition tree. Thus, the entire original graph G can be constructed from the final
decomposition tree and the algorithm is correct. |

8.1.1 Running time and resource usage

The initialization phase takes time O( ). Since each iteration of the while
loop will reduce the number of edges in G by one, it will take time O(|E(G)|).
Finding a vertex of degree 2 can be done in time O(n) if we keep count of the
neighbors of each vertex at all times. Finding a double edge can be done trivially
in time O(|E(G)|). Since the number of edges is bounded by n?, this gives a
total running time of O(n*). Although this is not by any means an ideal running
time, it is sufficient for our purposes.

As for memory usage, the only data structures used, apart from the graph
and the decomposition, is the table R. Since this table takes no more space than
the input graph, the memory used by this algorithm is of no concern.

n(n—1)
2
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8.2 Computing the radius and diameter

In 7.4 in the test chapter, and in the algorithm for series-parallel graphs, we
needed to know the radius of the input graph.

Since the radius and diameter of a general graph G are defined as rad(G) =
min{max{d(u,v) : v € V(G)} : v € V(G)} and diam(G) = max{max{d(u,v) :
v € V(GQ)} : u € V(G)}, the simplest way to calculate them is to first generate a
table of the length of the shortest path between each pair of vertices, and then
apply the definitions directly to the table. Floyd-Warshall All-Pairs-Shortest-
Path (APSP) algorithm creates such a table and its running time of O(n?) is
faster than the main algorithm of the series-parallel algorithm, so it was fast
enough for our purposes.

1: Algorithm Radius and Diameter
: Input: The edge table E from a general graph G
: Qutput: Radius and diameter of G
: // Floyd-Warshall algorithm
Do = E(G)
for 1<k <ndo
for1<u<ndo
for 1 <v<ndo
Dy[u,v] := min{Dg_1[u,v], Dg—1[u, k] + Dg—1[k,v]}
end for
end for
: end for
: // Radius and diameter calculation
: radius 1= minyecy {maxycy {Dn[u, v]}}
: diameter := maxy, yev {Dn[u,v]}
: Return radius, diameter

© PSPPI RN

e o T e
S UE W N RO

8.2.1 Proof of correctness

There is no need to prove the Floyd-Warshall algorithm here, and the calcu-
lation of radius and diameter are straightforward from their definitions, so the
algorithm is correct.

8.2.2 Running time and resource usage

The running time of the Floyd-Warshall APSP algorithm is O(n?®) and the cal-
culations of radius and diameter are both O(n?), so the overall running time is
O(n®). By discarding the D-tables that are no longer accessed, i.e. for each iter-
ation k, we can discard Dy_1, the memory requirements of the Floyd-Warshall
APSP algorithm is 2n? integers.



Chapter 9

Conclusion

This chapter will summarise the work that has been described in the preceding
chapters, and present the opportunities for further work that have turned up
while working on this thesis.

9.1 Summary

The algorithms from [1] that were described in Chapters 3, 4, and 5 have been
implemented into usable programs and extended to yield an optimal broadcast
function as part of the output. During the implementation and preliminary
testing, we detected some small errors in the original algorithms, which have
been corrected. All the corrections have been approved by the authors.

Automated correctness tests have given the expected results, and combined
with the formal proofs of the algorithms, we see this as sufficient proof that the
algorithms are now correct and that the implementations follow the algorithms
correctly.

The results from the performance tests have shown how large input data the
implementations can be expected to handle when run on a modern workstation,
and is also an indication of how large input data the algorithms themselves can
reasonably be expected to handle in any situation.

The tests on how the optimal dominating broadcast cost relates to the radius
of the input data have shown that for interval graphs and series-parallel graphs,
there usually exists a solution which is not radial. Therefore, should a practical
use for Optimal Broadcast Domination appear, the algorithms are immediately
useful.

The algorithm for trees, however, is practically useless for general trees, as
the optimal solution very rarely differs from a radial broadcast. Thus, for the
trees algorithm to have practical use, some subclass of trees must be found that
has a specific structure where optimal broadcasts are usually not radial (see
9.2.3).

All source code for the algorithms, graph generation programs and auto-
mated tests, as well as some sample data, is available from http://www.ii.uib.
no/~“helgeh/master/ or by e-mailing the author at helge.holm@gmail.com.
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9.2 Further work

Anyone who wishes to perform further work in this area may be interested in
looking into the problems presented in the following sections.

9.2.1 Parallel implementation

To be able to run the algorithms on very large problem sizes, it would be useful to
implement the algorithms in such a way that they could be run on multiprocessor
computers.

For example, the trees algorithm and the series-parallel algorithm could cut
the input tree (remember that the series-parallel algorithm works on a decom-
position tree) at some specific height such that it would produce k different
subtrees, pass each subtree to a different processor, and then calculate the re-
maining top of the tree on a single processor. The algorithm for interval graphs,
however, has no obvious way to partition the workload, but research can prob-
ably develop such a method.

9.2.2 Broadcast function and partitioning of vertices

Given an efficient, dominating broadcast f on a graph G, we can also partition
G such that each subgraph is optimally dominated by a radial broadcast. This is
done by numbering all broadcasting vertices b1, ba, - - - , bg, and let each partition
V; contain only b; and those vertices dominated by b;. Each induced subgraph
G[V;] is then a graph of radius f(b;).

Because f is efficient, the distance in G from b; to any vertex not in V; is
always more than f(b;).

By investigating this further, it may be possible to find that Optimal Broad-
cast Domination is related to some partitioning problem.

9.2.3 Tree structure benefiting from Optimal Broadcast
Domination

By the above observation that the distance in G from b; to any vertex not in
V; is more than f(b;), it may be possible to devise a tree structure where the
optimal broadcast will not be radial by first partitioning the vertices and then
create the tree from the partitioning.

Although it is not very useful to run the algorithm on such a constructed
tree, it may be possible to find some problem where we somehow know that a
tree has this structure. Then, the algorithm may be used to find the subtrees
corresponding to the original partitions.

9.3 Variable cost function

As mentioned in Chapter 2, a cost function where the cost of providing a broad-
cast f(v) is not equal to f(v) would yield a more realistic problem specification,
and the authors of [1] claim that the algorithms can easily be adapted to a dif-
ferent cost function. However, if the cost function is polynomial we are no longer
guaranteed that there exists a broadcast that is both optimal and efficient (see
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figure 9.1). Since the algorithms for trees and interval graphs are both designed
and proven under the assumption that for every optimal dominating broadcast
there exists an efficient dominating broadcast of equal cost, a different broadcast
cost function can not be used without reworking these algorithms.

1 2 3 4

Optimal, non—efficient broadcast
Total cost: 2

Non-optimal, efficient broadcast
Total cost: 4

Figure 9.1: Example of non-linear cost function

Given the graph G above and the cost function cost(f(v)) = f(v)?,
we see that the only optimal broadcast will be f(v2) = f(v4) =1
with a total cost v;(G) = 2, as nothing less will be able to dominate
G, and all other broadcast values than 1 will be larger than the
optimal cost 2. In the optimal graph, vs can hear both v2 and vy, so
it is not an efficient broadcast.

The algorithm for series-parallel graphs is not proven under this assumption,
so it should still work with other cost functions.

9.3.1 Speeding up the algorithm for series-parallel graphs

The reader may have noticed that the algorithm for series-parallel graphs per-
forms a lot of redundant calculations. Following is a method for eliminating this
redundancy, which was unfortunately not implemented in the algorithm due to
time constraints.

Since all leaves in the decomposition tree are structurally equal, i.e. they are
K>s, a series-parallel operation on two leaves vy, v, will yield the exact same
subgraph as the same series-parallel operation on two other leaves v3, vs. This
observation can be generalised further: Any two vertices in the decomposition
tree whose corresponding subtrees are identical (disregarding all left and right
terminals), yield identical subgraphs and thus identical computation tables. For
a vertex v, we may exactly describe v by the operations performed in the subtree
rooted at v. We will call such a description the operation history of v. An
example of an operation history for a Cs is p (s (s (K3, K3),s (K2, K3)), Ks),
where p(a,b) is a parallel operation on subgraphs a and b, s(a,b) is a series
operation on subgraphs a and b, and the K»s are leaves.

We can store each calculated set of the calculation tables (N, L, R, and
B) in a list indexed by operation history, and not re-calculate a set of tables if
their corresponding operation history is already stored in the list. Each vertex
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v; in the decomposition tree would then store a reference to the set of tables
corresponding to the operation history of v;.

For simplicity, we will assume that the decomposition trees are balanced (i.e.
of minimum height), and we will refer to the calculation of a set of tables N, L,
R, and B as one calculation.

For a decomposition tree of height h, this would result in the number of
calculations for height h — 1 to be at most 2, since there can only exist two
different subgraph structures at this height, namely the ones resulting from
series operations and the ones resulting from parallel operations. At height h—2,
we have a maximum of 22 = 4 distinct subgraph structures, and to generalise,
at height j, we will have a maximum of 2?7 distinct subgraph structures. The
other way around, at height j we will have a maximum of 27 different vertices,
also bounding the number of different operation histories for that height. See
Figure 9.2 for a simple illustration.

2 possible
operation histories

1 vertex

height

1 possible
operation history

2" vertices

Figure 9.2: Number of calculations needed per tree height

As a result, the maximum number of calculations performed per tree height
will be at tree height %, and the number of calculations will be halved for every 1
height upwards and downwards. In the existing algorithm, the maximum number
of calculations performed per tree height is at the bottom of the tree, and the
number of calculations are halved for every 1 height upwards. This means the
number of calculations needed in the existing algorithm would be 2"+ — 1, and
in the modified algorithm the number would be 2(2"/2+1 —1).

Since the decomposition tree is a binary tree with m leaves, where m is the
number of edges in the corresponding series-parallel graph, the height is logs (m).
This gives us 2m—1 calculations for the existing algorithm, and 2((2m—1)'/2-1)
for the modified algorithm. Asymptotically, this is a reduction from O(m) to
O(y/m) which is a significant optimisation.

Although these calculations are based on the assumption that the decom-
position tree is balanced, this method should still significantly speed up the
algorithm.
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