A critical view on Public Key Infrastructures

Thomas Tjgstheim
Institute of Informatics

University of Bergen

26th February 2004

Acknowledgments

The completion of this thesis has required the help of many people.

Many Thanks to my two thesis supervisors Qyvind Ytrehus and Tor
Helleseth. Thank you for giving me confidence in myself and helping me
finish this thesis.

Many Thanks to my dad for helpful discussions, and for reading and
commenting on my thesis.

Many Thanks to Siren Steen and the Music Library in Bergen for
understanding, and giving me time to work on my thesis.

Many Thanks to Trond Rognebakke Bjorstad for helping me with technical
challenges in LaTeX.

Many Thanks to Vebjorn Moen for helpful discussions about
SkandiaBanken.

Many Thanks to Voss Fjellheiser and King Winter for helping me relax and
giving me loads of snowboarding fun.

Contents

1 Introduction

1.1 Motivationo
1.2 Public key cryptography
1.3 Digital certificates oL
1.4 Core PKIconcepts
1.5 Structure of thesis L.
2 Three different PKIs
21 PGP . .o
2.1.1 Private and public key rings
2.1.2 PGP trust model L.
2.1.3 Revocation of PGP certificates.
2.1.4 Critical noteso
2.2 SPKI/SDSI
221 Naming
2.2.2 The SPKI/SDSI authorization model
2.2.3 SPKI/SDSI trust model
2.2.4 Revocation of SPKI/SDSI certificates
2.2.5 Critical noteso o
2.3 X509 .o
2.3.1 Naming scheme L.
2.3.2 Authorization in X.509
2.3.3 X509 trust modelo oo
2.3.4 Revocation of X.509 certificates
2.3.5 Critical notes o o
2.4 A comparison of the three PKIs
3 Revocation mechanisms
3.1 CRL ...
311 DeltaCRL.
3.1.2 CRL distribution points

11
12
14

16
16
16
17
20
20
21
21
23
26
26
27
28
29
29
36
38
38
40

3.1.3 Dynamic CRL distribution points 43

3.1.4 Criticalnotes 44
3.2 Authenticated Dictionary L. 45
3.2.1 Criticalnotes 47
3.3 OCSP s 47
3.3.1 Criticalnotes 48
3.4 Short lifetime certificates 49
3.4.1 Criticalnotes 50
3.5 Discussion of revocation mechanisms 50

4 Known compromised certificate attack on named-server ver-

sion of TLS/SSL 52

5 Personal Security Environment 58
5.1 Software implementationsof PSEs 58
5.1.1 The personal entropy scheme 59

5.1.2 Software smart cards with cryptographic camouflage . 60

5.1.3 Critical notes 61

5.2 Smart card implementation of PSE 63
5.2.1 Criticalnotes 64

6 Access control in SkandiaBanken 66
6.1 Customer registration/Certificate enrollment 66
6.2 SkandiaBanken login 70
6.3 Brute force attack on PINcode 72
6.4 Discussion of brute force attack 76
6.4.1 Running time and possible control routines 76

6.4.2 Insecurity indata 78

6.4.3 Variations in attack strategy 79

6.5 Conclusion for this chapter 80

7 Summary and further work 82

Chapter 1

Introduction

The explosive growth and availability of the Internet have been important
factors in order to create a global online business market. People can now in
the comfort of their own home or office, communicate and trade with other
people independent of their geographic location. Issues like buying and selling
of merchandise, transfer of documents and production management are just
some examples of what can be done completely electronically. Although
the Internet has introduced many new possibilities, it has also presented
some new security challenges. Traditionally when dealing with any kind of
sensitive information, people have met each other face to face, assuring a
secure exchange of information. The trustworthiness of the other part could
be evaluated by gathering references that described the behavior of that part
in similar situations. The problem with the Internet is that it is a large
and open network, where it is easy to remain anonymous. When engaging in
online operations, several questions become central. How do the participating
parties know who they are communicating with? How can one assure that
no one is eavesdropping 7 Is there any guarantee that the information sent
between two parties is not intercepted and altered? What if one of the
parties denies the occurrence of a transaction? On which basis can a party
gain access to a resource, and how can one control which operations that are
performed on a resource?

The answer to these questions lies in the following main objectives in
information security [67]:

e Authentication is the assurance to one entity that another entity is who
he, she, or it claims to be.

e Confidentiality is the assurance to an entity that no one can read a
particular piece of data except the receiver(s) explicitly intended.

6

e Integrity is the assurance to an entity that data has not been altered
(intentionally or unintentionally) during transfer or with time.

e Non repudiation is the assurance, to the extent technically possible,
that entities remain honest about their actions. The most commonly
discussed form of non repudiation is that neither the sender nor the re-
ceiver of a message is able to deny the transmission taking place. The
basic idea behind non repudiation is that a user is cryptographically
bound to a specific action in such a way that a denial of that action,
to some extent, constitutes a confession of malice or negligence.

e Privilege management is a generic term for what is variously called
authorization, access control, rights management, permissions manage-
ment, capabilities management, and so on. Generally we can say that
privilege management is associated with what an entity can see and do.

1.1 Motivation

A Public Key Infrastructure (PKI) is generally considered to provide three
primary services: authentication, confidentiality and integrity. In addition a
PKI can enable the services of: non repudiation and privilege management.
Later in this chapter I will give a general PKI definition and describe some
important considerations in a PKI.

As more businesses are going online there has been an increase in the mar-
ket for PKIs. A PKI seems like an attractive way to solve security problems;
it comes in one package and can provide all the security services you need.
However, it is important to realize that a PKI is not some magic package
that you add to your system to make it secure. Before installing any PKI,
a careful analysis of the environment should be done in order to point out
which security services are needed, and determine how to implement those
services. A consequence of the increased focus on PKIs is that there currently
is a lot of commercial interests in PKI technology. Some of the larger PKI
vendors are: Verisign, Entrust, Baltimore Technologies, RSA security and
Microsoft.

The goal of this thesis is to provide a critical and vendor neutral view on
PKI solutions. The PKIs covered in this thesis are: PGP, SPKI/SDSI and

X.509. PGP (Pretty Good Privacy) is a free and open PKI with an interesting
trust model. PGP has proved popular especially for the use of secure email.
Some of the motivation for looking at PGP was to understand some of the
shortcomings that prevents PGP from being used in larger environments.
SPKI/SDSI (Simple Public Key Infrastructure/Simple Distributed Security
Infrastructure) is a new standard that emphasizes authorization. Today more
protected resources are being made available on the Internet. Therefore it
has also become more important to have good mechanisms for administrating
who can access those resources and also control which operations that are to
be allowed performed on those resources. X.509 is the traditional PKI, which
the majority of PKI vendors use as a basis for their implementations. The
motivation for studying X.509 was partly because it is the most widely used
PKI standard and partly to get a better understanding of the supposedly
complex trust model and naming scheme. In addition I wanted to look at
the use of X.509 attribute certificates for authorization, in order to compare
with the SPKI/SDSI authorization model.

After getting a better understanding of important elements of PKIs, I
wanted to focus specifically on storage of keys (Personal Security Environ-
ment, (PSE)) and revocation of certificates. The security of public key cryp-
tography is dependent on keeping the private keys secret. The weakest link in
a PKI is usually between the user and his key. In this thesis I take a critical
look at available software and hardware solutions for storing cryptographic
keys.

Revoking a certificate implies declaring a certificate invalid before its
validity period has ended. Unfortunately revocation is often a neglected
part of the PKI. The reason for this is that many revocation mechanisms are
complex and expensive to operate. Part of the problem is also understanding
the risks involved with not checking for revoked certificates. Many security
applications like for example SSL (Secure Socket Layer) and TLS (Transport
Layer Security), do not have automatic checks for revocation. In this thesis
I take a critical look at some of the main revocation techniques. I also try
to illustrate the potential dangers of not checking for revoked certificates, by
looking at a known compromised certificate attack on named-server version
of SSL/TLS.

After a critical study of theoretical PKI solutions, I wanted to look at a
real life example of a company that uses PKI technology. SkandiaBanken
was selected. This is a popular online bank in Norway. The purpose was to
look at different aspects of the PKI, like certificate enrollment, user login,
and understand specifically how authentication and authorization are imple-
mented in SkandiaBanken’s access control scheme. After discovering some
weaknesses in the scheme, a brute force attack was studied. The attack illus-

trated among other things that digital certificates must be carefully adopted
to the system in order to retrieve the intended security services.

1.2 Public key cryptography

Until the mid 1970s only one mechanism was publicly known for the secure
exchange of a message over an insecure channel. In order to communicate
securely the participants exchanged a secret key via a trusted secure com-
munication channel. The exchange was often done by meeting in person or
sending a trusted courier with the secret key. Crypto systems using this
mechanism are classified as symmetric key or conventional crypto systems.
The secret key is used both for encryption and decryption of a message.

In 1976 Diffie and Hellman discovered public key cryptography which
revolutionized the history of cryptography . The radical difference between
public key cryptography and symmetric cryptography is that two related but
different keys are used instead of one. The basic idea in a public key system
is that each user has a key pair consisting of a public key and a private key.
The public key is made publicly available and the private key is kept secret.
Anyone can encrypt a message with the recipient’s public key, but no one
other than the intended recipient who knows the private key can decrypt the
message. Security of public key crypto systems is based on the fact that it
is believed to be computationally infeasible to find the decryption key, given
only knowledge of the cryptographic algorithm and the encryption key 2.
However, it should be easy for the intended recipient to decrypt a message.
A desired property for public key systems is a trap-door one-way function,
which is easy to calculate in one direction and infeasible to calculate in the
other direction unless certain additional information is known [10]. Figure
1.1 gives an explanation of encryption and decryption in a public key system.

A big advantage when public key systems first were introduced was that
distribution of symmetric keys now was simplified. Without any prior com-
munication, the secret key can be encrypted with the recipient’s public key
and sent over an insecure channel. Previously one would often use special
couriers who delivered the keys before any communication could take place.
Public key cryptography also reduced the total number of needed keys for a
network of communicants. If symmetric encryption is used for a network with

!This is not entirely true as it was revealed in 1997 that individuals in the British
agency GCHQ knew of some of the concepts of public key cryptography as early as the
late 1960s. However, this was not known publicly.

2To this date it has not been mathematically proved that this is computationally in-
feasible, for any known scheme.

Encryption

Plaintext Encrypt Ciphertext

Key
Recipient’s Public Key

Decryption

Ciphertext Decrypt Plaintext

Key
Recipient’s Private Key

Figure 1.1: Public key cipher model

n people, each user needs one secret key for each of the n-1 other users in the
network. This gives a total of nxX(n=1 Jifferent keys for the whole network.
In comparison, if a public key scheme is used, each user only needs a private
and public key pair and access to the public keys of the other communicants.
This gives a total of 2n different keys.

Another advantage with public key cryptography is the support for digital
signatures. The concept of a digital signature is that a single entity can sign
some data and any number of entities can read and verify its accuracy. A
digital signature is more secure than a handwritten signature as it is believed
to be computationally infeasible for another entity to forge another entity’s
signature. A user Alice signs a message by encrypting the message with
her private key. Assuming good key protection, only Alice has knowledge
of her private key, so only Alice could have signed the message. Simplified
Alice sends the signed message together with the message in plaintext. Bob

10

verifies the signature by decrypting with Alice’s public key and verifies that
the decrypted message equals the message sent in plaintext.

The disadvantage of public key systems is that they have a much bigger
computational overhead than symmetric systems. Symmetric systems have
fast encryption and decryption algorithms since they are based on easily
implementable substitution and permutation functions. Public key systems
are also slower since they depend on bigger key sizes to provide good security.

Diffie and Hellman’s proposal solved many of the earlier problems related
to key distribution and authentication. However, it still remained to find a
secure and efficient way of distributing public keys. When making public keys
publicly available it is important to guard against forgery. That is, a user Eve
could pretend to be user Bob and send a public key to another participant
or broadcast such a public key. Until the forgery is discovered by Bob, Eve
can decrypt all messages intended for Bob and can also authenticate herself
as Bob by digitally signing documents with her private key. One of the first
proposals by Diffie and Hellman was to register each user’s public key in a
central trusted Public File, maintained by a trusted authority. Each entry in
the Public File consisted of a (name, public key) pair. The scheme suffered
from performance problems in being a central directory. Also there was the
vulnerability of someone tampering with the entries.

1.3 Digital certificates

In 1978 Loren Kohnfelder introduced the certificate, that was to simplify and
secure the exchange of public keys. In order to secure the binding between
names and public keys in the Public File, Kohnfelder made a new digital
signed data record, containing a name and a public key. He called this data
record a certificate [1|. His intention was to reduce some of the performance
problems with the Public File. Since the certificate was digitally signed it
could be given to untrusted parties.

Today we can classify certificates into three classes [69], shown in figure
1.2. The classification of a certificate is based on the binding being defined
in the certificate. We identify three bindings: name public key (for example
X.509 name certificates and PGP certificates), authorization name (for ex-
ample X.509 attribute certificates) and authorization public key (for example
SPKI/SDSI authorization certificates).

11

Identifier

Attribute Name certificate

certificate

Authorization
Authorization certificate Public key

Figure 1.2: Certificate classes

1.4 Core PKI concepts

A Public Key Infrastructure (PKI) consists of the services that are needed to
deploy and support technologies based on public key cryptography. In this
section I look at how the services of a PKI are provided and discuss some
general concepts and considerations in a PKI.

The core services of a PKI are: confidentiality, integrity and authenti-
cation. The services of authentication and integrity can both be achieved
through the use of digital signatures. Suppose Bob signs a message with his
private key and Alice successfully verifies the signature with Bob’s public
key. Assuming good key security, only Bob has knowledge of his private key,
and thus only he could have signed the message. Let us assume that Eve
intercepts the message and alters the contents. This would with very high
probability lead to a change that would break the validity of the signature
and therefore be discovered. The service of confidentiality can be provided
through the use of public key encryption. However, typically a PKI also has
support for symmetric ciphers for this purpose, where public key encryption
is primarily used for the exchange of symmetric keys.

The services of non repudiation and privilege management can be enabled
in a PKI since they build on the core PKI services. The primary purpose
of non repudiation is to gather evidence attesting to the validity of an event
that will be convincing to an impartial third party. Non repudiation is com-

12

plex, as it is crucial to protect the evidence and difficult to decide how much
evidence is needed to convince a third party. A central issue when presenting
evidence is secure time stamping. If we assume a private key compromise, it
must be possible to prove that this was the case for a specific time period.
Also the validity of the compromise must be confirmed with existing revoca-
tion mechanisms. However, the whole concept of non repudiation is finally
dependent on users protecting their private keys.

Privilege management deals with what an entity is allowed to see and do.
Let us assume we have an authority guarding a resource. Further we assume
that a number of entities have different privileges they can enforce on that re-
source, like read, write or execute. However, before admitting any privileges,
in many situations it is necessary to establish that an entity has a particular
identity or belongs to a specific group or role. Different PKIs offer differ-
ent solutions in binding authentication and privilege management together.
X.509 attribute certificates for example bind a name to an authorization. In
order to authenticate the certificate holder, there is a link inside the attribute
certificate to a name certificate. In the SPKI/SDSI infrastructure entities are
primarily identified by their public keys. A SPKI/SDSI authorization cer-
tificate binds an authorization to a public key, thereby linking authorization
and authentication directly.

The services of a PKI are based on public key cryptography. A public
key certificate (authorization and name certificates) secures the public key of
the certificate subject, and is therefore central in any PKI. In the following
I state some general considerations regarding public key certificates.

e Who issues certificates? Depending on the PKI this could either be a
trusted third party, another entity in the PKI or the certificate could
be self issued. Common for all PKIs is that the certificate issuer signs
the certificate and thereby claims the authenticity of the public key.
Some general considerations concerning issuing of certificates are: How
can multiple certificate issuers cooperate to cover the whole domain of
larger PKI environments? On which basis is a certificate issued? Does
there exist automatic methods for certificate reissuing? Are old keys
stored, so that old material can be decrypted? How are the private
keys delivered?

e How are certificates and corresponding private keys stored? What if
the private key is lost? In order to verify signatures and encrypt in-
formation to other entities it must be easy to obtain the certificates
of other entities. Some possible certificate storage devices are: X.500

13

directories, LDAP servers, Web servers, and corporate databases.

e How can it be determined that a certificate is valid? This includes
among other things of verifying the signature on the certificate, check-
ing that the certificate has not expired, that the certificate is being used
in a manner that is consistent with current policies and constraints and
that the certificate is on the correct format. Does revoked certificates
pose any harm to the environment? If so, what is the best revocation
mechanism for this environment?

e How do entities in the PKI refer to each other? In larger PKI envi-
ronments it can be difficult to separate one entity from another. To
protect against forgery there can only be a one-to-one relation between
an entity and a public key.

1.5 Structure of thesis

This thesis consists of seven chapters. Each section in chapters two, three,
four and five is followed by a critical notes section. The purpose of this was
to state personal opinions about the schemes, and point out strengths and
especially possible weaknesses. In some cases the criticism may seem obvious,
but is nevertheless important to discuss. Below follows a brief description of
each chapter:

e Chapter 2 describes the three PKIs: PGP, SPKI/SDSI and X.509.

e Chapter 3 describes four classes of revocation mechanisms. CRL (Cer-
tificate Revocation List) schemes, Authenticated Dictionary, OSCP
(Online Status Certificate Protocol) and short lifetime certificates are
covered.

e Chapter 4 describes a known compromised certificate attack on named
server version of TLS/SSL.

e Chapter 5 looks at different software and hardware approaches to stor-
ing public and private keys. Conventional password protected file, per-
sonal entropy, software smart cards and hardware smart cards are cov-

14

ered.

Chapter 6 looks at different aspect of the PKI in SkandiaBanken. Issues
like certificate enrollment and how authentication and authorization are
implemented is studied. A brute force attack is described by generating
Norwegian Social Security Numbers (SSNs). A discussion of different
attack methods and possible proprietary SkandiaBanken control mech-
anisms is made.

Chapter 7 gives a short summary of this thesis and lists some possible
further work.

15

Chapter 2
Three different PKIs

In this chapter I will look at the three PKIs: PGP, SPKI/SDSI and X.509.
The main focus in each PKI will be on how users in the PKI are identified,
structure of trust model and certificate revocation. For the SPKI/SDSI and
X.509 infrastructures I will also cover authorization .

2.1 PGP

Pretty Good Privacy (PGP) [10] is a program originally created by Phil
Zimmermann in 1991. PGP provides services for confidentiality and authen-
tication and is widely used for electronic mail and file storage applications.

2.1.1 Private and public key rings

Each user in the PGP infrastructure has a private and public key ring. The
private key ring holds the user’s public keys and corresponding encrypted
private keys. Several key pairs are used, to allow different keys when inter-
acting with different groups of correspondents. Another reason is to increase
security somewhat, by allowing users to periodically change key pairs.

Associated with each key pair entry is a KeylD, a userID and a time
stamp.

e The KeyID is used for indexing public keys and consists of the 64 least
significant bits of the public key. This will with very high probability
be a unique identifier for a public key in the key ring. Suppose Bob

1X.509 authorization is strictly not part of the X.509 PKI as X.509 attribute certificates
do not include a public key. However, the X.509 PKI is closely related, as authorization
is dependent on authentication. The motive was also to compare with the SPKI/SDSI
authorization model, where a specific authorization is linked directly to a public key

16

wants to exchange a symmetric key with Alice. Bob first encrypts the
symmetric key with one of Alice’s public keys, and sends with it the
KeyID. Alice uses the KeyID to find the public key that was used for
encryption and decrypts with the corresponding private key.

e The userlID is typically the user’s email, but other types of identifica-
tion are also possible. Given that the userID is different for each key
pair it can also be used to identify public keys in the user’s private key
ring.

e The time stamp indicates the date/time the key pair was generated.

A wuser’s public key ring contains the public keys of all the other users
this user communicates with. Typically this will be the public keys of people
with whom the user exchanges email.

2.1.2 PGP trust model

PGP’s trust model is commonly referred to as a web of trust model. PGP
users sign each other’s certificates, and each user progressively forms a web
of users which he/she trusts communicating with. For example, Alice signs
Bob’s certificate which she believes is authentic. Suppose Carl wants to
communicate privately with Bob. Bob forwards his certificate, and Carl
verifies the signatures on Bob’s certificate. Carl who trusts Alice as a signer,
recognizes Alice’s signature and will therefore also trust that Bob’s public key
is authentic. This is actually a bit simplified, as we will see later that Carl
can assign various degrees of trust, and can also decide how many trusted
signatures are needed to make a certificate completely valid. If Carl had not
known or trusted any of Bob’s signers, then Bob would have had to find other
signers which Carl trusts to sign Bob’s certificate.
PGP operates with two different versions of trust:

1. Trust in certificate, that describes how strong the binding between
userID and public key is believed to be. Each user who signs a cer-
tificate, attests to the authenticity of the binding between userID and
public key.

17

2. Signer trust, which describes how much a signer is trusted in certifying
other certificates. As we shall see later the two different trust types are
dependent on each other.

An entry in the public key ring consists of a PGP certificate (see Table
2.1) together with a trust flag byte. A trust flag byte consists of three different
fields: a signature trust field, an owner trust field and a key legitimacy field.

PGP certificate

Fields Explanations

PGP Public Key The public key for this entry

UserID The owner of this key, typically
given with the email address of the
owner.

KeyID The least significant 64 bits of this
key.

Time stamp The time of registering of the public
key.

Digital Signature | The digital signature of one or more
users that attests the authenticity
of the binding between public key
and user that appears in the certifi-
cate. Fach certificate owner signs
his/her own certificate, and other
users may also sign the certificate.
In general PGP certificates are al-
ways self-signed and may have more
additional signatures.

Table 2.1: Overview of fields in PGP certificate

e The key legitimacy field indicates to which extent PGP will trust that
this is a valid public key for the user. Three different values of trust are
used: undefined, marginal and complete. The higher the value of trust,

the stronger the binding between userID and public key is believed to
be.

e The signature trust field indicates to which degree a PGP user trusts a
signer in certifying public keys. Trust levels are: full, marginal, untrust-

18

worthy and unknown. Each users evaluation of the other signers is kept
secret and therefore only exists within each individual user’s public key
ring [61]. The trust evaluations are kept secret in order to protect each
PGP user’s personal opinion about other people’s trustworthiness, and
also because different people will have potentially different personal
opinions about who is a trustworthy signer and not.

e The owner trust field is assigned by the key ring owner and indicates
how much the certificate holder is trusted to sign other keys.

Suppose Bob is a PGP user. For each time Bob inserts a new certificate
in the public key ring, the following routine is performed:

1. PGP assigns a trust value associated with the owner of the public key.
If Bob is the owner, the public key also appears in the private key ring
and a value of ultimate trust is set. Otherwise Bob assigns a trust value
that indicates how much he trusts the certificate holder in signing other
certificates.

2. When the new certificate is entered, one or more signatures may be at-
tached to it. For each signature, PGP searches Bob’s public key ring,
to see if the signer is among the known certificate holders. Given so,
the owner trust field is assigned to the signature trust field. If not, an
unknown user value is assigned.

3. The calculation of the key legitimacy field is done automatically by
PGP and is based on entries in the signature trust field. Each user
can set configurable parameters that control how many complete or
marginally trusted signatures are needed to make a certificate com-
pletely valid. A certificate becomes valid if either one of these pa-
rameters are met. Otherwise if neither is met, but at least one type
(marginal, complete) a value of marginal trust is assigned to that cer-
tificate.

Periodically PGP scans the public key ring for updates. This is done
in a top-down process. For each owner trust field , PGP searches for all
signatures made by that owner and updates the signature trust field. The
key legitimacy fields are then also updated on the basis of the new signature
trust fields.

19

2.1.3 Revocation of PGP certificates

PGP certificates can be revoked for several reasons. A certificate holder can
for example suspect a private key compromise or he/she may have lost the
password to unlock the private key. Another revocation reason is simply
that a user may want to avoid the use of the same key over a longer period
of time. In the PGP infrastructure, only the certificate holder can revoke
his/her certificate. One exception to this is that the certificate holder can
choose a designated revoker, that revokes the certificate. This obviously
requires that the designated revoker is fully trusted, since the revoker will
need access to the private key. When a certificate is revoked the revoker
issues a key revocation certificate signed with the private key of the certificate
holder. The key revocation certificate has the same syntax as a regular PGP
certificate, besides it includes an indicator that explains that the purpose
of this certificate is to revoke the public key. The revocation certificate is
distributed on PGP certificate servers, warning all PGP users, and requesting
an update of affected public key rings.

2.1.4 Critical notes

The PGP trust model works well for groups with a small amount of people
in a closed environment, for example a small company or department. Under
these circumstances it is easy to make decisions based on trusting other
participants. Scaling the PGP trust model for larger communities is not easy,
because Alice from company A and Bob from company B has no common
point of trust.

A potential security hole in the PGP model is the use of multiple signa-
tures to authenticate one particular key. The theoretical reason for having
multiple signers is to add fault tolerance. In case one signer makes a bad
judgment (signs a certificate that should not have been signed), then the
lack of other signers will prevent the certificate from being verified. How-
ever, there is no guarantee that the key signers are completely independent.
There is a risk that one user could use different private keys to sign the same
certificate, or other signers could cooperate to force a certificate valid for
another user.

PGP allows users to define parameters, that define the number of com-
plete and marginal trusted signatures needed to make a certificate completely
valid. One drawback with this scheme is that, these parameters are forced
to be global. For instance two users who are trusted marginal as signers are
forced to have the same trustworthiness. In reality one marginally trusted
user might be twice as trusted as another marginally trusted users. One

20

way of eliminating the ambiguity in PGP trust levels, could be to assign
trust points. Each user can then define globally a trust bound, that defines a
certificate as completely valid.

PGP does not allow any trust chains [61]. A user accepts a certificate if
the number of complete or marginal trusted signers meets the requirements
set by that user. There is no transitivity, in the sense that if user A trusts
user B, who trusts user C, then A also trusts C. This obviously sets certain
limitations but can also be an advantage, as each user is only dependent on
his/her own trust decisions.

PGP works well for applications like secure email, and has a good trust
model for assisting in forming trust opinions about newly encountered par-
ties. However, its trust model becomes too weak for more complex appli-
cations like secure e-commerce. Also it is debatable how many people who
really understand and use the PGP web of trust model.

2.2 SPKI/SDSI

The SPKI/SDSI infrastructure is the result of the merging of two research
projects, namely SPKI and SDSI. The SPKI [4] (Simple Public Key Infras-
tructure) project focused on a simple and flexible authorization model. While
the SDSI [5] (Simple Distributed Security Infrastructure) part of SPKI/SDSI
focused more on a local name space architecture to create secure and scalable
computer systems.

2.2.1 Naming

A user in the SPKI/SDSI infrastructure is primarily identified by an asym-
metric public/private key pair. A public key (or its hash, if hashes are
collision free) is therefore a unique identifier for a user. However, it can
be difficult for users to refer to other users only by their public keys. The
SPKI/SDSI infrastructure solves this problem by allowing each user to build
up a local name space, consisting of local names. The main idea is that a
local name replaces a public key as an identifier. This is accomplished by
issuing a name certificate that defines the local name and binds it to a public
key (the subject field in the certificate). A local name consists of the certifi-
cate issuers public key and an identifier (<public key><identifier>). The
identifier acts as a nickname for the subject the local name has been defined
for. The advantage of this method is that the certificate issuer can choose
identifiers that are meaningful to him/her, that are easy to recognize and
remember. At the same time local names are made global, since other users

21

can identify a users local name space from the public key in the local name.

The SPKI/SDSI name certificate is a digitally signed document of the
form (Key, Name, Subject,Validity) . e signature CODSisting of a body of
four components and a signature [62]. Table 2.2 explains the components
of the name certificate.

SPKI/SDSI name certificate

Fields Explanations

Issuer The public key of the certificate is-
suer

Identifier Determines the local name that is
being defined.

Subject Determines the new meaning of the

local name. The subject can be a
public key, a local name in the is-
suers local name space or a local
name in another users local name
space.

Validity Specification | Time period during which the cer-
tificate is valid. The specification
has the form (t1,t2), specifying that
the certificate is valid from t1 to t2.

Table 2.2: Components in SPKI/SDSI name certificate

Local name spaces are linked when a user defines a certificate binding
between a name in its local name space to a name in another users name
space |6]. Figure 2.1 shows an example of name space linking.

1. KB Friend — KCarol_Smith
2. K, Carol _Smith — Kg Friend

Figure 2.1: An example of linking local name spaces

In this figure Bob issues a certificate that defines the local name: Kz Friend
that replaces the public key of his friend: Carol Smith. as an identifier.
Alice links her name space with Bob’s, by issuing a certificate that defines
the local name K, Carol _Smith that refers to the local name in Bob’s name
space. The advantage with this method is that if for example Carol Smith
changes her key pair, then the user who Alice refers to as Carol _Smith would

22

also automatically change. This is because of the indirect binding between
K, Carol _Smith and Kcgror smitn- Note that if Clarol Smith changed
her key pair, then Bob would have to change his definition of Friend and
issue a new certificate, stating the new public key of C'arol _Smith.

A fundamental notion in the SPKI/SDSI infrastructure is the definition of
group names. A group is characterized by a local name, defined by the owner
of the group. The local name consists of the owner’s public key followed by
the group name, for example: Kpg agents, stating the public key of the owner
Bob (B), followed by the group name: agents. A group owner defines a group
by issuing to each member, a name certificate that defines a link between the
local name of the group and this member’s key or name. It is also possible
to bind other groups to a group by issuing a certificate that binds the local
name of the group to the name of the group being added. One of the main
purposes of defining groups is to achieve easier management of Access Control
Lists (ACLs). Instead of having an entry for each group member, it suffices
with one single entry for the entire group, thereby reducing the size and
complexity of the ACL.

2.2.2 The SPKI/SDSI authorization model

A SPKI/SDSI authorization certificate binds a specific authorization to the
certificate’s subject. The specific authorization specified in the certificate
could be the right to access a resource like a particular web site, or read
a particular set of files, or login to a particular account. An authorization
certificate is a digitally signed five tuple of the form (Key, Subject, Tag,
Delegation, Validity) Table 2.3 explains the different fields
of the certificate.

A SPKI/SDSI ACL is a list of entries, where each entry has the following
required fields: subject, tag and delegation bit. These fields are the same as
those of a SPKI/SDSI authorization certificate. Optionally validity specifi-
cations and issuer fields can also be included. If the ACL is to be processed
and stored in a secure environment (for example behind a firewall), it is not
necessary to sign the ACL or include issuer fields.

How are the ACL and authorization certificates put together to form the
SPKI/SDSI authorization model? To clarify it might be best to illustrate
with an example. Let us assume that we have a user Alice, who wants to
protect some object, for example a web site. Alice starts by issuing autho-
rization certificates to users (public keys) that are to access the web site.
She also specifies in each certificate’s authorization tag exactly what kind of
operation that are to be allowed on the particular web site, for example read,
write and which links that can be furthered accessed. For some certificate

Issuer _Signature*

23

SPKI/SDSI authorization certificate

Fields

Explanations

Issuer

The public key of the certificate is-
suer.

Subject

Refers to the user (or users), who
are receiving the granted authoriza-
tion. The subject could be either a
public key, a local name or a group
name.

Tag

Explicitly states the authorization
being delegated in this certificate.

Delegation

A Boolean bit that is set to be true
or false. If true, the subject of this
certificate can delegate the speci-
fied authorization or subsets of it to
other users.

Validation

Specifies the validity period of the
certificate.

Table 2.3: Overview of fields in SPKI/SDSI authorization certificate

subjects she might choose to set the delegation bit in their certificates to be
true, so that those users can delegate the given authorization or subsets of
it to other users. After issuing the authorization certificates, Alice issues an
ACL with the entries corresponding to the certificate subjects she has issued
certificates to. In the following let us assume Bob requests access to Alice’s

web site.

1. Bob sends an initial request to access Alice’s web site, and also specifies
what kind of operations he wants to perform on Alice’s web site.

2. Alice denies the request, since the request is neither authorized or au-
thenticated. Instead Alice responds with a challenge : using this ACL
protecting the web site and this authorization tag formed from the ini-
tial request you must prove to me that you have the right to access
this resource. Alice will only approve the request given that Bob can
provide proofs of authentication and authorization. Bob is authorized
if he can present a valid certificate chain via the web site’s ACL to
himself. If Bob’s public key is already listed directly on the ACL, it is

24

not necessary to supply a certificate chain. An important observation
regarding authentication, is that it is not Bob that is authenticated,
but Bob’s public key that is authenticated.

3. Bob generates a chain of certificates, for example by using the certificate
chain discovery algorithm, for details see [7]. The output of the algo-
rithm is as follows: a certificate chain consisting of 0 or more signed cer-
tificates, that proves in this case that Bob is authorized to the operation
at the time interval specified in the time stamp. The certificate chain
is a chain of the form (SELF, Sy, Ty, D1,V7), (SELF, Sy, Ty, Dy, V3), ...,
(I;_1, Si, T;, D;, Vi), ..., (I,Bob’s public key, T, D, V). Where each cer-
tificate (I;_1,S;,T;, D;,V;) indicates the issuer, subject, authorization
tag, delegation bit and validity specifications. The leftmost or start of
the certificate chain is the certificate of the ACL owner (where SELF
indicates that it is a self-issued certificate). The chain ends in the
certificate of the user requesting the authorization. Bob signs the tag
given from Alice and sends this with the chain of certificates.

4. Alice approves Bob’s second request if the public key that verifies the
signature on the authorization tag is the same that the chain of certifi-
cates authorizes. Alice then checks that the certificate chain goes from
herself to Bob. The combination of the signed tag and the certificate
chain gives the intended proofs of authentication and authorization,
and, if fulfilled, will grant Bob access.

In addition to the authorization scheme presented, SPKI/SDSI provides
an additional fault tolerance mechanism in the ability to define threshold
subjects. A threshold subject can be defined in an authorization certificate
and states a requirement that k& out of n keys must sign a request (similar
to PGP’s web of trust) in order to get that request approved. The intention
is to increase protection. As an example, if we have a 2 out of 4 threshold
scheme then any two of the four key holders specified by the guardian, must
sign a request to get it approved. The fault tolerance is added since an
attacker now must compromise two out of the specified keys in order to fool
the guardian. An important assumption for the scheme to be efficient, is
that the signers have to be independent. A guardian should verify that the
different signatures belong to different users. The use of threshold subjects
adds a bit to the complexity of the SPKI/SDSI authorization model, but
might be useful for some applications.

25

2.2.3 SPKI/SDSI trust model

Each user in the SPKI/SDSI infrastructure is its own CA that can issue
name certificates and authorization certificates. Name certificates are issued
to build up a user’s local name space. There is no need for any rules or
statements concerning issuing of name certificates, since the issuer is the sole
authority on the local name, certificate subject binding. No other users can
question the quality of that binding. Users protecting a resource can issue
authorization certificates and can set their own policies and regulations on
the usage areas of the issued certificates.

The use of trust in the SPKI/SDSI infrastructure is transitive. This
becomes apparent from the certificate chains formed by delegation. Let us
assume a guardian Bob issues an authorization certificate to Alice, with the
delegation bit set to be true. Bob now trusts Alice in delegating the given
authorization or subsets of it to other users. Alice is also trusted in deciding
the further delegation depth by setting the delegation bit to true or false. Let
us assume Alice issues an authorization certificate (with the delegation bit
set to true) to Carol, who again issues a certificate to Dave. Dave will be
trusted to access Bob’s resource, given that he can present a valid certificate
chain that goes from Bob to Alice, to Carol and finally to himself.

2.2.4 Revocation of SPKI/SDSI certificates

The SPKI/SDSI infrastructure does not advocate for the need of any par-
ticular revocation mechanisms. The only validation check performed is to
check that the certificate has not expired. The SPKI/SDSI certificate guar-
antee is: "This certificate is good until the expiration date. Period." [9].
The argument behind this guarantee is simply that a certificate issuer in the
SPKI/SDSI infrastructure takes the consequences of the certificates he/she
issues. A user either issues name certificates to define his/her name space or
issues authorization certificates to protect access to some resource they are
controlling. The exception here is for users that have been delegated some
authority from a guardian, and have a responsibility on the behalf of the
guardian to make trustworthy decisions. However, what if a user’s private
key is compromised? SPKI/SDSI arguments for using certificates with short
lifetimes, thereby lessening the risk of compromised keys. In some situations
this might not be a good enough protection against compromised keys. It
is also resource and time consuming to have to reissue certificates at short
time intervals. SPKI/SDSI advocates using a Suicide Bureau (SB) or Key
Compromise Agent (KCA) |9] where users register their public keys. If a key
is compromised a "suicide note" is published to the SB, who will broadcast

26

it on the SB network. A user’'s SB can also issue a special "certificate of
health" [9] indicating that this public key was registered with this bureau
on this date, and since then no evidence has been received that the key has
been lost or compromised. The certificate of health can then be sent with
the original certificates of the user.

2.2.5 Critical notes

The SPKI/SDSI infrastructure is an infrastructure that focuses mainly on
authorization compared to authentication. It uses a local name space archi-
tecture that is enforced through users defining their local name spaces by
issuing name certificates. At the same time local names are made global,
since other users can identify a user’s local name space from the public key
in the local name. The advantage with a local name space architecture is
that each user can choose names to identify the other users that are easy to
recognize and easy to remember for him/her. It is also easier to scale the
SPKI/SDSI infrastructure since a local name only needs to be unique within
a users local name space.

The SPKI/SDSI authorization model provides several advantages. Maybe
one of the biggest advantages is that trust originates directly from the guardian
of the resource instead of from a trusted third party. Intuitively this seems
like a better solution compared to having the guardian trust a third party
that the guardian might not have any control over. The guardian can state
in detail what kind of operations an authorized user can perform on the
protected resource, by specifying this information in the authorization cer-
tificate’s tag. An advantage with this approach is that only one ACL can be
used to protect the given resource, where each authorized user might have
different specified operations they are allowed to perform on that resource.

The SPKI/SDSI infrastructure does not provide any mechanism for es-
tablishing the identity of users. Given a public key, who is the holder of that
public key? In the example with a guardian protecting a resource, it is left to
the guardian to determine which users shall be granted access. On which ba-
sis can a guardian determine which users (public keys) are to be granted any
authority? Part of the problem can be solved, since a guardian can delegate
to a more qualified user, the responsibility of determining which users should
be given access . To prevent any illegitimate users in gaining access, it must
either be difficult for illegitimate users to obtain legitimate key pairs, or the
guardian must have a good way of determining which public keys (users) to
trust. The latter might seem especially difficult for larger communities. It
may seem as if the SPKI/SDSI infrastructure is best suited for closed envi-
ronments like for example a company, where it is easier to control who is a

27

legitimate user or not. But even in a closed environment there is a risk for
an inside man to loan out his key pair to non users. One way of preventing
this could be to try to lock the private key in hardware.

A possible disadvantage with the SPKI/SDSI infrastructure is that there
currently is no acknowledged revocation scheme. Only the expiration date of
a certificate is checked for. However, revoked certificates pose a bigger threat
than obsolete certificates, because of the risk of a key compromise. The
SPKI/SDSI infrastructure provides some additional protection against key
compromises through the definition of threshold subjects. This unfortunately
adds a lot of complexity to the scheme, and it is debatable if guardians will
bother with this extra precaution.

Another possible weak point in the SPKI/SDSI infrastructure is that
there is little control on delegation depth. In the current scheme, if a user
receives some authority to delegate a specific authorization, it is up to that
user to determine if the receiving user also should be able to delegate the given
authorization to other users. The longer the chain of delegation becomes the
more probable it is that a mischievous user is able to obtain authorization. A
possible solution could be to use integer control instead of Boolean control,
to increase control of delegation depth.

The SPKI/SDSI infrastructure has many advantages and is especially well
suited for the use of access control. However, it is a quite new infrastructure
(1998) and has not yet been implemented in many commercial applications,
that are largely dominated by the X.509 infrastructure.

2.3 X.509

X.509 [11] is a recommendation for a framework for public key certificates
and attribute certificates published by the ITU-T, a standardization sector
within the ITU (International Telecommunication Union). X.509 is today
the most widely used certificate standard in Internet applications, exam-
ples include: secure MIME encoding (S/MIME), IP security, Secure Socket
Layer (SSL)/Transport Layer Security (TLS) and Secure Electronic Transfer
(SET).

X.509 certificates have developed through three versions, where the first
version was defined in 1988. The third version used today was defined in
1995. What primarily separates the third version from its ancestors is the
denotation of certificate extensions. The main purpose of adding certificate
extensions was to solve some of the problems of deploying versions 1 and 2
on a bigger scale. Each certificate extension can have different specified pur-
poses like: describing policies, assuring the identity of the certificate subject

28

or include authorization information to access some protected resource. In
general we can describe an extension as a three tuple of the form (type, crit-
icality, value). Where type indicates what kind of extension, the criticality
field indicates if the extension is marked critical or non-critical (marked by
the certificate issuer) and the value describes the explicit contents of the par-
ticular extension. Non critical extensions may be ignored by the certificate
user, for example an extension for alternate name and name attributes. A
critical extension should not be ignored by the certificate user, for example
an extension describing that the certificate should only be used for authen-
tication of the certificate owner. In addition to standard extensions that
are predefined, it is also possible for a certificate issuer to define their own
certificate extensions.

2.3.1 Naming scheme

The X.509 naming scheme is originally based on X.500, which was a global
online distributed directory service for certificates. In order to uniquely iden-
tify a user, each user was assigned a Distinguished Name (DN). In the X.509
infrastructure a certificate issuer binds a DN to a public key by issuing a
X.509 name certificate ? (see table 2.4). Figure 2.2 shows an example of a
X.509 certificate, generated with OpenSSL, an open source PKI toolkit [63].
In this example the DN of the certificate subject is the concatenation of the
following Relative Distinguished Names (RDNs): "C=NO, ST=Hordaland,
L=Bergen, O=Demo United, CN=0la Nordmann, Email: Olan@ii.uib.no".

An alternative or supplement to the DN scheme is the possibility of iden-
tifying a certificate owner by adding an extension called Subject Alternative
Name to the certificate. The extension indicates alternative name forms like
for example email address and URIs *. According to [64] the alternative
name form should be considered just as binding as the subject DN. Also if
the DN is null, one or more alternative name forms must be present, and this
extension must be marked critical.

2.3.2 Authorization in X.509

The X.509 infrastructure supports two methods for authorization. Autho-
rization information can either be placed in an extension in a name certificate
or in a separate attribute certificate.

2 Also referred to in literature as X.509 identity certificate or X.509 public key certificate.
3Uniform Resource Identifier, a generic term for all types of names and addresses that
refer to objects on the World Wide Web.

29

The placement of authorization information in name certificates is usually
undesirable for two reasons [65]. Firstly, there is the possibility of difference
in lifetimes for the validity of authorization information and the validity of
public key and name binding. Authorization information typically has a
short lifetime of only weeks or months, whereas the validity of public key
name binding is usually valid for much longer. Therefore the total useful
lifetime of the certificate is shortened. Secondly, the authority on name public
key binding is often a different authority than the authority on authorization.
The name certificate issuer therefore has to do some additional steps to obtain
the authorization information from the other authority. In some cases this
may not even be possible.

Realizing some of the shortcomings of name certificates for carrying au-
thorization information, the U.S American National Standards Institute (ANSI)
X9 committee developed an alternative approach, known as attribute cer-
tificates. An attribute certificate (see table 2.5) binds a name to a set of
attributes. Attributes will typically be information that describes authoriza-
tion information associated with the certificate holder, like: access privileges,
group memberships, policy specifications and roles. A certificate issuer can
either include standard attributes (see table 2.6) or define it’s own specific
attributes.

What is important to notice is that an attribute certificate binds at-
tributes to a name and not a public key. The attribute certificate is believed
to be tamperproof since it is signed by a trusted certificate issuer. However,
there is no way for a guardian (the certificate verifier) to control that the user
requesting access is the same user that is claimed in the attribute certificate.
The solution presented in [65] is to include a link to a name certificate within
the attribute certificate. An attribute certificate holder can be authenticated
by signing the request with the private key corresponding to the public key
in the name certificate.

There are two primary models for the exchange of attribute certificates:
The push model and the pull model. In the push model, attribute certificates
are pushed from the client to the server. In the pull model the server pulls
the attribute certificates from a repository or an on line attribute certificate
issuer. The push model has the advantage that performance is increased as no
search burden is placed on the server. The pull model has the advantage that
it can be implemented without changes to the client or to the client-server
protocol. The choice of the push or pull model depends on the surrounding
system requirements. The push model is especially suitable for inter-domain
cases where the client’s rights should be assigned within the client’s home
domain, whereas the pull model is suitable for inter-domain cases where the
client’s rights should be assigned within the server’s domain.

30

How does a guardian validate a request to access some object? A typical
verification sequence could be:

1. The guardian verifies the signed request from the user by applying the
public key from the user’s name certificate (public key certificate). The
guardian also verifies that the name certificate is signed by a trusted
CA and validates the signature from the CA.

2. The guardian verifies that the received attribute certificate is in ac-
cordance with the requesting user’s name certificate. This could for
example be accomplished by having a hash of the public key listed in
the attribute certificate. The guardian checks that the attribute cer-
tificate is issued by a trusted attribute certificate issuer. An important
note here is that Farrell and Housley [65] demand that this issuer is
directly trusted either by configuration or otherwise. This means that
currently there is no support for attribute certificate chains, and hence
no support for further delegation of authority. The guardian also checks
that the attribute certificate has not expired.

3. If the attribute certificate is verified, the guardian extracts the at-
tributes within the attribute certificate, and the user is allowed to
perform what has been specified in the attributes.

31

Certificate:
Data:
Version: 1 (0x0)
Serial Number: 9 (0x9)
Signature Algorithm: md5WithRSAEncryption
Issuer: C=NO, ST=Hordaland, L=Bergen, 0=Demo CAs, CN=https://skjor.ii.uib.no:8443
Validity
Not Before: Dec 18 12:30:38 2002 GMT
Not After : Dec 18 12:30:38 2003 GMT
Subject: C=NO, ST=Hordaland, L=Bergen, 0=Demo united,
CN=0la Nordmann, Email=olan@ii.uib.no
Subject Public Key Info:
Public Key Algorithm: rsaEncryption
RSA Public Key: (1024 bit)

Modulus (1024 bit):
00:fa:3f:b6:3a:56:1c:ad:56:19:55:cb5:a7:06:19:
d2:88:d1:58:ce:ba:f6:a4:bb:cl1:13:aa:3b:£2:0d:
al:al1:9c:37:32:0£:25:54:4d:a3:39:£d:23:21:bc:
el:0f:bd:81:ac:90:9f:1a:47:2a:97:cb:72:d7:14:
70:84:2c:20:12:18:¢c7:¢c8:a7:31:95:35:80:58:7b:
ca:72:ba:3f:a6:2c:c8:60:b1:40:24:de:76:11:16:
de:1£:9d:03:1a:08:69:99:00:ee:44:df:£1:bd:00:
83:44:02:9¢:04:0d:cf:85:09:8f:66:eb:2d:b6:44d:
31:9d:a0:a2:d4:9e:ac:£1:9b

Exponent: 65537 (0x10001)

Signature Algorithm: md5WithRSAEncryption
5£:19:48:27:27:¢c3:a29:d9:£5:11:90:15:44:9b:55:d6:54:47:
76:£1:9£:38:38:d0:72:ad:el1:84:ec:60:ad:2a:38:4f£:£8:27:
£3:0a:44:12:e6:00:39:a7:00:8e:fe:da:d8:91:3f:5a:33:b8:
2f:cf£:9d:72:3a:b7:29:35:¢c8:22:71:55:77:8b:3a:fa:1a:f2:
4c:32:f7:f0:72:¢c6:d0:54:12:6c:02:94:ef:4f:21:54:8a:72:
£6:56:a6:8a:b4:97:4b:cd:ab:08:3d:20:d4:c4:25:98:c8:97:
Bb:a7:cc:e3:ce:3b:54:1f:5e:20:6e:4c:a7:10:9£:98:6f:6a:
30:37}

Figure 2.2: Example of a X.509 certificate

32

X.509 name certificate

Fields

Explanations

Version

Identifies the version of the certifi-
cate (either 1,2 or 3)

Serial Number

Unique identifier for the certificate
relative to the certificate issuer.

Issuer

Distinguished Name (DN) of the
CA that issued the certificate and
must always be present

Validity

Indicates time period for which the
certificate is valid. Field is com-
posed of not valid before and not
valid after times.

Subject

Indicates the DN of the certificate
owner and must be non null unless
an alternate name form is used.

Subject Public Key Info

This field contains the public key
associated with the subject and
must always be present.

Issuer Unique ID

Optional unique identifier of the
certificate issuer, rarely used in im-
plementation practice.

Subject Unique ID

Optional unique identifier of the
certificate owner, also rarely used in
implementation practice.

Extensions

Optional standards, includes for ex-
ample: Authority Key Identifier,
Subject Key Identifier, Key Usage,
and many more.

SignatureAlgorithm

The algorithm used by the CA to
sign the certificate

SignatureValue

Identifier for algorithm used in com-
puting the digital signature on the
certificate.

Table 2.4: Overview of fields in X.509 name certificate

33

X.509 attribute certificate

Fields Explanations

Version Identifies the version of the certifi-
cate (either 1 or 2)

holder Holder of the attribute certificate

Issuer Distinguished Name (DN) of the
CA that issued the certificate and
must always be present

SerialNumber Unique identifier for the certificate

relative to the certificate issuer.

attrCertValidityPeriod

The validity period of this certifi-
cate

attributes

The payload, the attributes linked
to the certificate holder

Issuer Unique ID

Optional unique identifier of the
certificate issuer, rarely used in im-
plementation practice.

Extensions

Optional standards, includes for ex-
ample: Authority Key, Identifier,
Subject Key Identifier, Key Usage,
and many more.

SignatureAlgorithm

The algorithm used by the CA to
sign the certificate

SignatureValue

Identifier for algorithm used in com-
puting the digital signature on the
certificate.

Table 2.5: Overview of fields in X.509 attribute certificate

34

Standard attributes types in X.509

Attribute Type

Explanations

Service authentication

Provides information that can be
presented by the verifier to be inter-
preted and authenticated by a sep-
arate application within the target
system.

Access identity

Identifies the attribute certificate
holder to the server/service

Charging identity

Identifies the certificate holder for
charging purposes. Holders com-
pany can for example be the charg-
ing identity.

Group Presents information about holder’s
group memberships

Role Holds information about roles des-
ignated for the certificate holder

Clearance Clearance information about the

certificate holder (associated with
security labeling.)

Table 2.6: Explanations of standard attribute types in X.509

35

2.3.3 X.509 trust model

In this subsection I will only focus on the trust model for the X.509 name
certificate as there currently is no established trust model for the use of
attribute certificates.

A certificate issuer in the X.509 infrastructure is commonly known as a
Certificate Authority (CA). The CA issues certificates according to a self de-
fined Certificate Practice Statement (CPS) [66]. A CPS is a detailed descrip-
tion of practices followed by the CA in issuing and managing of certificates.
Within the CPS is the Certificate Policy (CP) that essentially describes the
intended use of the certificate.

What characterizes the X.509 trust model is that CAs are organized into
a hierarchy. How these CA hierarchies are built up will depend on the sur-
rounding environment of the PKI. Common for all hierarchic architectures
is that there are one or several root CAs. A root CA is the starting point of
trust, which all entities (intermediate CAs and users) holds as a trust anchor.

I will look at three ways of organizing CAs [67|: strict hierarchy of CAs,
distributed model and the web model that is currently used on the World
Wide Web today.

1. In the strict hierarchy of CAs there is only one root CA, followed by
0 or more levels of intermediate CAs. Each CA issues certificates to
its children entities, whether it be intermediate CAs or end entities
(users). All entities in the domain have a common point of trust in
the root CA. In order for communication and certificate processing to
work, each entity in the hierarchy must be supplied with the root CA’s
public key. How is secure communication between two users enabled
in this trust model? Let us suppose Bob’s certificate is signed by C A,
whose certificate is signed by C'A;, whose certificate is signed by the
root CA. The certificate processing consists of first constructing the
certificate path from Bob’s certificate to the root CA and then vali-
dating the path. Alice will only trust Bob if the following sequence
of verifications holds: Alice verifies the C'A; certificate with the root
key. Then Alice verifies the C' A, certificate with the public key of C'A;.
Finally she verifies Bob’s certificate with the public key of C As,.

2. In the distributed trust model, trust is distributed between two or more
root, CAs. In practice this configuration consists of several linked strict
hierarchies, as each root CA may have 0 or more subordinate CAs.
Figure 2.3 shows an example of a CA hierarchy with multiple root CAs
and intermediate CAs and the users shown as the last line of boxes in

36

the figure. The different root CAs can be interconnected by means of
cross certification, shown as dotted lines in figure 2.3.

Root CAs

Intermediate
CAs

Figure 2.3: Example of a CA hierarchy with multiple CA roots

Let us assume Alice is part of the domain belonging to root C'A; and
Bob is part of the domain belonging to root C'A,. Initially Alice might
only trust entities which have been signed by C'A;, and Bob only trusts
entities which have been signed by C'A,. In order for Bob and Alice to
establish communication C'A; and C' A, can cross certify each other by
letting C'A; sign C'Ay’s certificate and vice versa. Now Alice can verify
C' Ay’s certificate with her trusted copy of C'A;’s public key, and then
verify Bob’s certificate, using her now-trusted copy of C'A,’s public key.

. In the web model a number of root CA certificates are pre installed into
the browser. Examples of CA vendors that are default in Netscape
and Explorer browsers are: Verisign, Entrust Technologies, Thawte
Certification Division and Baltimore Technologies to name a few. A
user can also modify the initial set of certificates, by adding or deleting
certificates. The certificates hard coded into the browser determines
which public keys the browser user will initially trust as CA roots for
verification.

The structure of the web model is somewhere in between the strict
hierarchy model and the distributed trust model. Like the distributed
trust model, the web model consists of two or more strict hierarchies.
Typically the web model will have many CA roots as browsers from
Explorer and Netscape have up to a hundred pre installed root CAs.
What separates the web model from the distributed trust model is that
root CAs are not connected by means of cross certification. In order

37

for a browser user Bob to communicate with users from other domains,
he is made a relying party of all domains represented in the browser.
In this way Bob can communicate with all other users that are part of
the same domains that he is. Figure 2.4 shows an example of the web
model.

(]

Root CAs

Intermediate
CAs

End-
Entities

Bob Bob Bob

Figure 2.4: Example of a web model hierarchy

2.3.4 Revocation of X.509 certificates

X.509 supports a number of different revocation techniques that I will cover
in chapter 3.

2.3.5 Critical notes

The X.509 certificate standard has been the dominating certificate standard
in Internet applications till now. The advantage with the X.509 standard
is that it has a general and flexible format. Part of the reason that X.509
has become so widely distributed is that it was available as an international
standard at the time when a number of vendors were ready to begin imple-
menting products. In being the most used certificate standard, X.509 has
also received a lot of criticism. What has especially been criticized is the
uniqueness of DN names, trust issues, and general complexity in certificate
processing.

How unique are DNs? A CA verifies that the DN of the certificate subject
is unique within the CA’s domain. This means that a user can have different
DNs in different domains or the same DN in different domains. So we do not
always have a one-to-one relation between DN and certificate holder. Also
there is the possibility of two users in different domains having the same DN.

38

This can particularly be a problem when different CA domains are connected
through cross certification.

Another problem with the current DN scheme is that of making unique
DNs within larger CA domains. The problem has been attempted solved
by adding more personal attributes, like employee number, Social Security
Number and email. This practice is unfortunate as it can lead to privacy
concerns, as the DN of the certificate subject is often stated in plain text
inside the certificate. Another drawback with more detailed DNs is that it
becomes harder for a user to recognize other users in the same domain.

We see that there is a problem with using DNs as globally unique identi-
fiers. In practice the certificate extension: subject alternative name is often
used either with a DN or as a separate identifier.

The use of attribute certificates for authorization is not a mature field,
and there are few implementations that support X.509 attribute certificates.
One reason that attribute certificates have not yet been put into wide use is
that there currently is no established infrastructure around attribute certifi-
cates. For example there is no support for chaining of attribute certificates,
since an attribute certificate issuer must be directly trusted. In the X.509
authorization model trust flows from the certificate issuer instead of from
the guardian of the resource. The advantage of this approach is that it may
be easier for the trusted third party to issue and manage certificates. How-
ever, the result is lack of control, for example the guardian might have little
control on which basis a user has issued an attribute certificate.

What is actually meant with the term trust in the X.509 infrastructure?
The ITU-T Recommendation X.509 specification, defines trust as: "generally,
an entity can be said to trust a second entity when it (the first entity) makes
the assumption that the second entity will behave exactly as the first entity
expects" [11]. The problem with this statement is that it is hard for users
to quantitatively measure expected behavior in another entity. So how can
users decide if a CA is to be trusted or not? CAs are often self issued (root
CAs) or depend on self issued CAs (intermediate CAs). A possible help for
users is the Global Trust Register [68], that distributes a list over the most
commonly used root CA public keys. The list is distributed in a secure non
electronic way. However, for the web model, the browser vendor defines for
the browser user which CAs to trust. Even though it is possible for users
to modify the pre installed list, it is debatable if most users are educated
enough to do this.

The CPS describes some of the legal responsibilities of the CA, in the
case of for example a certificate compromise. This can be assuring for users,
the problem however is that a CA defines its own CPS. Unfortunately CPSs
have a tendency to be long documents explaining why it is not the fault of

39

the CA if something goes wrong.

2.4 A comparison of the three PKIs

Table 2.7 summarizes and describes some of the differences and similarities
in the SPKI/SDSI, PGP and X.509 infrastructures.

40

Infrastructure

Characteristics

Specification

SPKI/SDSI Trust model Trust originates from the guardian of the re-
source. In order to access a resource a user
has to provide a chain of certificates from the
guardian to this specific user’s public key. A
user in the chain delegates its authorization to
the next user in the chain.

Name Space Local

Revocation None. Advocates using a Suicide Bureau and
issuing special certificates of health.

Certificate Issuer | Each user can issue certificates. No CA struc-
ture.

Certificate Types | Name certificate, binds a name to a public key.
Authorization certificate, binds an authoriza-
tion tag to a public key.

Signatures Each certificate contains one signature and be-
longs to the issuer of the certificate.

PGP Trust model Web of Trust = "multiple path of certification,
to achieve fault tolerance in compensation for
the fact that amateur certifiers are signing cer-
tificates "[17].

Name Space Global

Revocation Certificate owner issues a key revocation cer-
tificate

Certificate Issuer | Each user can issue certificates.

Certificate Types | Name certificate, binds a public key to a userID
and keyID.

Signatures Each certificate can have multiple signatures.
The first signature belongs to the issuer of the
certificate.

X.509 Trust model Hierarchical

Name Space Global

Revocation

Supports different revocation mechanisms like
for example CRLs and OSCP.

Certificate Issuer

Only a CA can issue a certificate. The CA’s
are organized in a hierarchy of trust.

Certificate Types

Name Certificate, binds a public key to a name.
Attribute certificate, binds a name to a set of
attributes.

Signatures

Can have multiple signatures in the case of
cross certification.

Table 2.7: Comparison of SPKI/SDSI, PGP and X.509

41

Chapter 3

Revocation mechanisms

Revoking a certificate implies declaring a certificate invalid before its va-
lidity period has ended. There are many reasons for revoking a certificate,
for example suspected key compromise, detected key compromise, change of
subject name and change of relationship between a subject and an authority
[18]. In the following subsections I will not concentrate on why a certificate is
revoked, but look at some of the main mechanisms for certificate revocation.

3.1 CRL

Certificate Revocation List (CRL) [18] is the traditional method for revoca-
tion of certificates. A CRL is a time stamped, digitally signed list of cer-
tificate serial numbers belonging to revoked certificates inside a CA domain.
Figure 3.1 shows the ASN.1 syntax of a CRL [24].

CertlflcateRevocatlonLlst = SIGNED SEQUENCE{
signature AlgorithmIdentifier,

issuer Name,
lastUpdate UTCTime,
nextyU UTCTime,

ate
revok éj Certificates
SEQUENCE OF CRLEntry OPTIONAL}

CRLEnNtry ::=SEQUENCE{

userCertificate SerialNumber,
revocationDate UTCTime}

Figure 3.1: ASN.1 syntax for CRL

A CRL can be thought of as an equivalent to a blacklist of credit cards
not to be accepted. A CRL is issued periodically by the CA covering the
certificate domain. A CRL has a validity period from the time it was issued
to the time for the next expected update, specified in the nextUpdate field. A

42

new CRL is either issued at the expected update time or before if a specific
event occurs, like the revocation of a CA certificate. It is important to notice
that at any time only one CRL for a domain is valid [25]. The CRL scheme is
part of the X.509 standard which also supports some of the CRL extensions.
One of the main critiques against CRLs have been that they do not provide
the intended service and are too costly to implement [9, 21]. Even so, CRLs
are among the most widely used revocation mechanisms, primarily due to
the different extensions and modifications of the basic CRL scheme that
can provide better performance. There is a number of modifications and
extensions available either as standards or only proposals. 1 will therefore
only cover a few of the well-known standards.

3.1.1 Delta CRL

Delta CRLs are X.509 CRL extensions supported by X.509 version 2 and up.
Delta CRLs provide a way for limiting the number of reissues of a full size
CRL. A delta CRL is a digitally signed list of only the last changed entries
since the full size CRL was issued. This is a big advantage since Delta CRLs
are generally much smaller that the full size posting of a CRL, and therefore
also can be updated and reissued at a higher rate with less cost.

3.1.2 CRL distribution points

CRL distribution points is another X.509 CRL extension, and is supported
by X.509 version 3. The CRL distribution point scheme is another scheme
that tries to improve performance by addressing the size of a CRL. This is
done by dividing the total population of a CRL for one CA into a number of
segments, where each segment is associated with a CRL distribution point.
Each certificate has a pointer to its CRL distribution point so that the verifier
can effectively check revocation information for this certificate. The main
advantage with this scheme is that it is more scalable, since the segments
can be distributed on different hosts/directories and each verifier will with
high probability request less than all segments.

3.1.3 Dynamic CRL distribution points

One problem with the CRL distribution points scheme is that a subject is
assigned to one segment for the whole lifetime of that subject’s certificate.
The issuing CA has to define a static partitioning of the subjects in the
domain before issuing a certificate.

43

Two CRL extensions are defined in [22|, suggesting a method of dynamic
partitioning of segments. A CRL Scope Field contains a scope statement
that indicates a range of certificates that are covered by the associated CRL
partition. The CRL Status Referal Field associates scope statements with
CRL distribution points.

A certificate verifier can from the CRL distribution point referred in the
certificate, obtain a CRL with a Status Referal extension. This extension

might include the current certificate and a pointer to a new location for the
CRL.

3.1.4 Ciritical notes

The CRL scheme has some obvious weak points. In practice CRLs do not
fulfill the requirement of recency, that is to provide freshly updated infor-
mation for applications that depend on this. There will always be a delay
between a revocation event and the reissuing of a CRL, whether it be sec-
onds, minutes, hours or days. The more often a CRL is issued the better
security against use of revoked certificates, but at the same time performance
in terms of bandwidth use and processing delay will increase. One way to
decrease traffic is to allow clients to cache a CRL. However, this will not
work well in practice. Either the CRL has too long validity time and serves
little or no use, or clients will have to download a new CRL at rapid time
intervals in order to get good security.

Another point of interest is when a new CRL is issued. As mentioned
before there can only be one valid CRL for a domain at any time. This means
that all the clients will have to fetch a new CRL at the same time, creating a
peak load that can easily lead to a break down. There is also a vulnerability
for a Denial of Service (DoS) attack at this stage.

Other considerations are the length of a CRL. If a CA is covering a large
domain of clients, the size of the CRL can become very large and consume
even more resources. This however I think is not one of the main problems
with the scheme, and can be solved by applying the many modifications and
extensions to the basic CRL scheme.

The CA is responsible for maintaining the CRL, but what kind of guar-
antee is there for the CA’s own certificate? In [18] the use of Authority
Revocation Lists (ARLs) are mentioned. It is a CRL that is only used for
managing revoked CA certificates. The ARLs are issued by CA-certifying
CAs. This is one way for clients to check the status of the CA certificate in
their domain. Unfortunately it adds to the complexity of an already complex
revocation mechanism, and there is given no guarantee for the CA-certifying
CA. In practice a compromised CA private key or certificate is very rare, and

44

if it happens the CA vendor will probably make sure every client finds out
through newsgroups and mailing lists. Sun did this when their CA key was
compromised [27].

3.2 Authenticated Dictionary

An Authenticated Dictionary (AD) is a data structure that supports au-
thenticated membership queries and update operations [31]. A typical im-
plementation of an AD is based on the use of a hash tree, where the leaf
nodes represent certificate serial numbers and the root is signed by the CA.
Currently only Certificate Revocation Tree (CRT) implementations of ADs
are being used on a larger scale, and I will therefore only focus on this im-
plementation of ADs.

The Certificate Revocation Tree scheme was introduced by Kocher [29]
in 1998 and is based on the use of Merkle hash trees [28]. A CRT system is a
three party scheme consisting of a Certificate Authority (CA), directories and
end users (certificate verifiers). The CA collects the revocation information
from for example a CRL and builds the CRT. All the certificates for a domain
are divided into ranges by sorting the certificate serial numbers. Let C; be
a certificate with serial number i. A range is defined by <a,b> where a and
b are the serial numbers of two revoked certificates and where all certificates
with serial number m in the range a<m<b are not revoked. The ranges
are compiled into data structures Lg, Lq, ..., Ly_o, Ly_1, where N is the
number of revoked certificates. In addition the reason for revocation, date of
revocation and other related information can be packed in the data structure.
The leaf nodes of the hash tree are constructed by using the hash function
H:Ny; = H(L;), where Ny, indicates the hash value of node i at level 0 in
the tree. A node at the next level of the Merkle hash tree is computed by
concatenating the hash value of its two children nodes, for example N; o —
H(Noo||No1). The CA computes all the values up to the tree root: N,
where 1 is the height of the tree (r=logy(N), if the tree is complete). The
root of the tree and other information like expiration date of the tree is then
signed.

The digitally signed root and the tree is then distributed to directories,
which basically are sets of servers that makes the data available to all end
users. The directories do not have to be trusted since the root is digitally
signed by the tree issuer, and an end user who obtains the data, only has to
check that the data from the directory is not defect or expired.

To understand how the CRT scheme really functions it is best to look
at an example. Let us assume that we have 7 revoked certificates with the

45

following serial numbers: 5, 8, 9, 13, 17, 23 and 42. The CA first divides
all certificates from one domain into ranges defined by the given revoked
certificates, and creates the data structures Ly, ..., L7, shown in figure 3.2.
The leaf nodes of the tree are calculated by applying the hash function H to
the data structures Ly, ..., Ly, the rest of the tree is determined from these
leaf nodes. Let us assume that an end user Bob wants to verify a chain of
certificates. For each certificate he sends the serial number and the name
of the certificate issuer to the nearest directory, since a CRT can include
certificates from several CAs. The directory responds with the Merkle tree
leaf for each certificate, the smallest number of intermediate nodes needed
for Bob to calculate the tree root and the the digitally signed root. Let us
assume that one of the certificates Bob requested revocation status for, has
serial number 59. For this serial number the directory will then respond with
the values L7, Nyg, N1 and Ny (shaded in gray in figure 3.2), which are
the values needed for Bob to calculate the root node: N3,. Bob verifies that
his calculated root equals the submitted root from the directory. In addition
Bob should also verify the signature of the root, check that the leaf node
describes the right certificate, and check that the CRT has not expired.

H

(ows) | Lo |> No N_H

H > NLO y
69 | 1l=

H H

69 L2l Ny

H

019 | = g

sign
w1 | =] ng f ()

H H H

w2 | s> s "

H y N1
@) /
N3

H

(42,high) E N7

N1

%

R 4

Figure 3.2: Sample CRT

46

3.2.1 Ciritical notes

The efficiency of the CRT scheme is really good. The amount of bandwidth
needed is much less than for other schemes since the amount of data only
increases with the logarithm (base 2) of the number of leaf nodes [28]. The
computational load for both tree issuer and end user in constructing the root
is also low, since low cost hash functions are used in the calculation. Another
performance saving element is that an end user requesting the status for a
chain of certificates only has to perform one signature verification operation.
Another bandwidth advantage is that the directory only sends a subtree of
the CRT needed for the end user to compute the root, contrary to the CRL
scheme where the whole CRL is transmitted to the verifier. The performance
advantages of the CRT scheme has lead to the adaption of CRTs in several
commercial applications [32].

The CRT scheme is still a new concept and not yet an official standard
so there can still be some unknown disadvantages with the scheme. One
obvious weak point is updating of the revocation tree. Since all intermediate
nodes in the tree are dependent on each other, the whole tree or large parts
of the tree will have to be reconstructed for each update. The question then
is how often should a CRT be updated. The answer is as often as possible
to provide good timeliness but at the same time offer good performance.
Naor and Nissim present a better solution for updating by using a 2-3 trees
described in [30].

The communication in the scheme goes either between CA and direc-
tory or between end user and directory. As for all schemes depending on a
database there is a possibility for a DoS attack by flooding the directory with
a large number of queries.

3.3 OCSP

Online Certificate Status Protocol (OCSP) [23] is a standardized protocol for
certificate revocation checking. In theory OCSP is especially designed to be
an alternative for operations that require recently updated revocation infor-
mation. In [23] high-value fund transfers or large stock trades are mentioned
as examples.

An OCSP protocol session consists of an exchange of messages between
a requester and a responder. The requester first sends an OCSP request for
one or more certificates that the requester wants to check revocation status
for. The responder receives the OCSP request and first checks that it has
the right semantics and that the request contains the information needed by

47

the responder. If any of these conditions are not fulfilled an error message is
returned, otherwise a signed OCSP response message is sent. The signature
requirements stated in [23] require that the signature either be by the CA that
issued the certificate, from a trusted responder or by a responder designated
by the CA. The signed response message includes the revocation status for
the certificates listed in the initial request. Each certificate is given one of the
possible status values good, revoked or unknown. The state good indicates
that the certificate has not been revoked. The revoked state indicates that
the certificate has either been revoked for a limited time or permanently. The
unknown state indicates that the responder does not know anything about
the certificate being requested. When receiving the response the requester
should go through a checklist, that among other things include validating the
signature, comparing the identity of the signer with the intended responder,
for more details see [23].

One of the performance problems with the OCSP scheme is that the
responder has to sign each response message. This causes a big processing
delay, one solution OCSP provides is to pre process or pre construct OCSP
responses prior to the actual request. In this way the requesters do not have
to wait for their responses to be processed, and the responder will be able to
handle more queries. Every preprocessed response has a time period ranging
from when it was made to when the next update will at the latest happen.
Unfortunately it also leads to a larger delay between a revocation event and
updating of the certificate status. Another problem with this approach is
that since the requester can ask for the status of more than one certificate,
the number of possible preprocessed responses can get exceedingly large.

In [23] several security considerations of the OCSP scheme are mentioned.
One obvious weak point is a DoS vulnerability. Since the process of signing is
so expensive an attacker can easily flood the responder with a huge number
of requests and eventually crash the system. The attacker can also exploit
the fact that error messages are unsigned. The attacker can send a huge
number of false error messages to the requesters and block them from service.
Another security consideration is that the attacker can replay a preprocessed
response for a certificate that had status good but that currently is revoked.
This can be a possible scenario because the preprocessed response can still
have valid time period, even though the certificate has been revoked.

3.3.1 Ciritical notes

As mentioned in the introduction of this subsection, OSCP is in theory es-
pecially designed for time critical applications that depend on recently up-
dated revocation information. Whether this works in practice or not depends

48

on several factors. First of all the OSCP scheme only describes the actual
OSCP protocol, that is the message exchange between requester and respon-
der. There is no description of how the OSCP server or responder receives
its revocation information. Implementations may choose different sources
for obtaining revocation information. Whatever revocation source is chosen,
the OSCP scheme will still suffer from the weak points of that revocation
scheme. However, the certificate verifier may be able to achieve more re-
cently updated information, since the verifier does not have to download a
CRL for example and use unnecessary resources for storing. The OCSP re-
sponder will probably have better resources for storing and can provide more
frequent updates.

The OSCP protocol defines three different status values a certificate can
have. These definitions are too vague and should be replaced with some
easier and more concise terms. For instance the value good means that a
certificate has not been revoked, but gives no guarantee that the certificate
has not been expired. The unknown state is also unclear, and can basically
mean anything from the certificate never having been issued to the responder
not finding the right CRL for it. A certificate could for example have the
status either valid or non valid. A certificate could be non valid if it is either
revoked, expired or if it is impossible to find information for this certificate.
Optionally, the non valid field could have an add-on field, describing why the
certificate is not valid.

3.4 Short lifetime certificates

The certificates used today typically have relative long lifetimes lasting a
year or several months. Certificates with long validity times have increased
probability of a compromised key event or another event that should cause re-
vocation of the certificate. An ongoing discussion is if it is possible to replace
all or parts of revocation systems with certificates that have short lifetimes.
Proponents argue that short lifetime certificates reduce the risk of an event
that should imply revocation of the certificate. In [9] Rivest introduces a
new certificate guarantee, where a certificate is definitely valid between time
periods datel-date2 and expected to be valid from date3-expiration date. For
operations where high risk is involved (for example high value fund trans-
fers) the verifier definitely will want a certificate with lifetime in the range
datel-date2. Less risky operations can accept a certificate which is expected
to be valid. This approach can limit the number of certificate reissues, and
thereby also reduce the load on the CA.

The SPKI/SDSI infrastructure suggests using no revocation scheme, ex-

49

cept for key compromise events, where a Suicide Bureau is used together
with specific certificates of health, described in the SPKI/SDSI subsection.

3.4.1 Ciritical notes

The main problem with short lifetime certificates is the increased load on
the CA. The rate of certificate reissues must stand in relation to the security
vulnerabilities for the given environment. What is the best proof, a newly
reissued certificate or newly updated revocation information? If a certificate
holder must have the ability to get a certificate reissued at any time, then this
is probably more resource demanding than updating revocation information
that typically have predefined periodic updates. Frequent reissues may lead
to peak loads for the CA and periods without service. Naor and Nissim
presents a solution in [30]. Instead of reissuing certificates, certificates are
updated, this is carried out by the use of a hash tree, and each user has to
update his own path to the root node.

3.5 Discussion of revocation mechanisms

In this chapter we have looked at four different classes (identified by Myers
in [33]) of mechanisms for revoking certificates. It is hard to say that one
revocation strategy is superior to all others, since the strategies all have their
pros and cons. Instead of developing a global revocation standard, I think it is
important to identify the most important requirements for each environment
and then apply the best suited revocation mechanism.

One of the most crucial requirements of revocation solutions is that the
revocation information is recent, to prevent the use of revoked certificates.
None of the current revocation mechanisms can provide total protection
against revoked certificates, and I do not think it is realistic that PKI users
can not tolerate any exposure to revoked certificates. However, for environ-
ments where the use of revoked certificates can have a serious impact, it
is important that the revocation information be updated at a high enough
rate to keep exposure to revoked certificates at a minimum. Other impor-
tant parameters for evaluating revocation mechanisms besides recency are
: security, scalability, standard compliance and performance (for example
bandwidth use and processing delay).

An alternative solution can be to mix several revocation mechanisms to-
gether. Both the OCSP and the CRT scheme are for example dependent on
revocation sources, like CRLs. One advantage with this scheme is that it
can increase performance, scalability and timeliness. Unfortunately this will

50

also add to the complexity of the scheme. There can also be a problem with
non-repudiation. If several revocation sources are used, it can be difficult
or impossible to prove what source an end entity has been using at a given
moment [18].

Unfortunately revocation mechanisms are one of the most expensive parts
of a PKI. A survey done by the MITRE Corporation in 1994 estimated that
yearly running expenses of an authentication infrastructure derive almost
entirely from administration of revocation [20]. Much of the reason for these
high costs is that the revocation information has to be updated as often as
possible to prevent the use of revoked certificates.

51

Chapter 4

Known compromised certificate
attack on named-server version of

TLS/SSL

A compromised public-key certificate is a valid certificate where the corre-
sponding private key is known to someone other than the owner of the cer-
tificate. A compromise is classified as either known or unknown, depending
on whether the compromise is discovered or not. As soon as a compromise
is detected, the certificate should be revoked and the owner should request a
new certificate.

An unknown compromised certificate represents a big threat as there is
no way for a certificate user (certificate verifier) to discover the compromise.
An attacker with access to the compromised private key can fake signatures
in the certificate owner’s name, and also decrypt all encrypted information
sent from the certificate owner.

However, a known compromised attack might also be a threat. The ar-
ticle [44] describes a known compromised attack on named-server version of
TLS/SSL. A named-server version of TLS/SSL means that only the server
side is authenticated, while the client remains anonymous. This is the sce-
nario for instance for many online shopping sites. The known compromised
certificate incident is defined to be an incident where:

1. The private key of the certificate owner is discovered compromised.
2. The owner revokes the certificate.

3. The owner obtains a new certificate from the CA.

The TLS protocol [45] is a successor of the SSL protocol and is also back
wards compatible with SSL. So it suffices to only describe the attack on the

52

TLS protocol, as the same attack can be mounted on the SSL protocol. Table
4.1 gives an overview of the notation used in the named-server version of TLS
while table 4.2 shows the six message stages in the protocol.

C—S:
S—=C:
S—=C:
C—S:
S—C:
C—S:

where

and

3

1

ZHvaxx
s

{}KRZ
{}KUl

{i7 KUi}KROA

Public key for subject i.

Private key for subject i.

Client.

Server.

Time stamp generated by subject i.
Random nonce generated by sub-
ject i.

Signed by subject i, with key KR;.
Encrypted by subject i with key
KU;.

Subject i’s public key certificate.

Table 4.1: TLS Notation

(Ne, Te) (M)
(Ns, Ts) (M2)
{Sa KUS}KROA (M3)
{Ne}rus (My)
{H(KAB7AB57(M17M27M37M4))}KAB (M5)

{H(Kap, ABs, (M1, My, Mz, My))} g,

—~
=
~

Table 4.2: TLS Protocol

KAB - F((N07T07N57T5)7NIC’)

ABs = "server finished", ABg = "client finished"

The master key K 4p is calculated by a function F, that takes as input
the messages M; and M, in addition to the master secret N(. The first two
messages are sent in plaintext, so we see that an attacker needs access to
the master secret N{, in order to calculate the master key K 5. One way

53

of stealing the master secret N, is by a Man-in-the-Middle (MITM) attack
combined with the use of a compromised server certificate. The attack will
only succeed under the assumption that the client/user fails to check the
status of the server certificate. This is unfortunately a reasonable assumption
as most clients/users fail to test if the server certificate has been revoked.
Very few applications today support revocation mechanisms like CRL or
OCSP. For SSL/TLS, CRL or OSCP must be run separately from SSL/TLS
[47]. Typically the user will be using a web browser client like Netscape
or Explorer, where SSL. and TLS are integrated. The TLS protocol will be
transparent for the user and a X.509 certificate will be sent to authenticate
the server. The web browser will only warn the user if one of the following
is not true :

1. The certificate has been signed by a recognized CA
2. The certificate is currently valid and has not expired

3. The common name on the certificate matches the Domain Name Server
(DNS) name of the server

As described in the subsection on the X.509 trust model most browsers
today have a list of trusted authorities already hard coded into the browser
cache, defining for the user which CAs to trust or not. The first check
consists of checking if the CA is listed in the initial set of trusted CAs and
verifying the signed certificate with the public key of the given CA. If one
of the points 1-3 are not true, the browser will present a warning dialogue
window. Given that the all points are verified, the client responds to the
server with a challenge encrypted with the public key presented in the server
certificate, as part of the TLS protocol. The server authenticates itself by
successfully solving the challenge, proving that it possesses the private key
to the certificate.

What the browser does not do is to check if the certificate has been
revoked. This is up to the user. The normal user is typically not very
security oriented so he/she does not bother to check with a CRL or other
revocation mechanisms. Also a potential risk as we saw in the section on
revocation, is that the revoked information has not been updated, as none of
the currently implemented revocation mechanisms can absolutely guarantee
completely updated information at all times. So we see that the MITM
attack on named server version on TLS/SSL is a real threat. Also, making
the problem worse are pre made hacker tools that can be downloaded so
that people without highly detailed knowledge can carry out the attack. The
MITM attack on named server TLS/SSL for example can be deployed with
a hacker tool called dsniff developed by Dug Song [46].

54

Table 4.3 shows the attack protocol on named server TLS, while figure 4.1
gives a short explanation of each step in the attack protocol.

C—S5: (Nc,Tc)

S—C: (NS,TS)

S — (O)I : {SaKUS}KRcA

(S)I —C: {S, KU’S}KRoA

C — (S : {N¢}ruy

(C)[— S {N,C}KUS

S — (C)] : {H(Kap, ABs, (Ml,M2,M§,Mi’))}KAB
(S)YI — C : {H(Kap, ABs, (M, My, M}, M}))

C — (S)] : {H(Kap, ABs, (M1, Mo, My, M1))}
() — S : {H(Kap, ABs, (My, My, M3, My)) } g , .

" SSRESE
~— ~— — N —

==

s

O~ Ot
~—

AN AN AN AN AN AN AN AN AN
=
<

S5

Table 4.3: Man-in-the-Middle attack on named server TLS

The attack does not work on versions of TLS/SSL where both the client
and server is authenticated (named server, named client version). The reason
for this is message M, in the protocol:

C—S:{C, KUC}KRCA, {N’C}KUS, {...H(My, My, M), ...}KRC (My)
The parts shown as "..." are tags and other parameters that are not
important for this discussion. We see that the hash of the first three messages
is signed with the private key K R¢ of the client. The attacker is unable to
fake the clients signature as he does not have access to the client’s private key
K R¢. The attack is discovered in message steps M5 and Mg where different
hash values are computed as a result of the attacker failing to fake message
My.

%)

The compromised certificate is sent
to the client, assuming the client
is either unable to or do not check

the status of the\certificate.

)

Intercepts the master secret.
Decrypts with the compromised
private key. Calculates the

master secret.(3
Signs hash of messages

previously sent from intruder
and server, and master secret.

(6)
(6)
Intercepts signed hash from

the client, so that the server
side can not realise that

The intruder intercepts the updated
certificate sent from the server.

(6

Encrypts master secret with
the updated public key.

14\

(&)

Intercepts hash of master key '
and the 4 first messages sent
intentionally for the client.

(5

Sends signed hash of messages
previously sent from intruder

the compromkéd public key
has been used.

56

and client, to\géther with the
master secret.

Figure 4.1: Description of MITM attack on named server TLS

57

Chapter 5

Personal Security Environment

A Personal Security Environment (PSE) can be thought of as a container
that stores the private and public keys (certificates) of a user. The main
purpose of the container is to protect the keys and make the keys available
for the owner in a simple, but safe manner. PSE implementations can roughly
be divided in two: a wide variety of software solutions and different smart
card approaches, which I will consider in the following sections.

5.1 Software implementations of PSEs

Conventional software implementations of PSEs usually consists of a DES or
AES encrypted file. A key owner is prompted for a password from which a
symmetric key is derived ! in order to decrypt the file. The main disadvantage
with this approach is that the normal user has a tendency to choose bad
passwords that are easy to guess. The problem is that users choose passwords
that are easy to remember, consisting of real words (words that are listed in a
dictionary) and that are short in length. This introduces a vulnerability for a
dictionary attack. A dictionary attack uses an application that tries to crack
the password by generating different words and combinations from available
dictionaries. With todays fast computers and easily accessible hacking tools
this becomes a simple task for the attacker. A metric for evaluating the
strength of a password is obtained by looking at its entropy, which is a
mathematical measure of possible patterns within random data [36]. For
each random variable X with outcomes X = {zy, ..., z,} having probabilities
D1, ..., Pn, the entropy of the variable X is defined to be [60]

'Some general methods for deriving a key from a password are described in PKCS #5
[34], for example by hashing the password together with a salt.

58

H(X) =~ pl(x)logyp(). (5.1)
zeX

According to [35] English has about 1.3 bits of entropy per character, this
means that the average encoding of a 30 character English password can be
represented by about a 40 bit string, so breaking the password is comparable
to doing a brute force attack on a 40 bit key. With non English characters,
symbols like #, &, etc. , uppercase and lowercase there is generously 4 bits
of entropy per character. So to protect against a brute force attack, the user
should choose random-looking passwords consisting of at least 14 characters.
This is comparable to doing a brute force attack on a 56 bit key, which is still
possible, but requires some resources. Obviously choosing passwords of 14
characters and more is not very user friendly, and either the user will choose
a shorter and easier password to remember or write down the password. The
worst case scenario is where the security of the network is only as good as
the weakest password. Such a scenario could consist of a set of users having
access to some sensitive database, where the attacker can gain access to the

database by cracking the weakest password.

5.1.1 The personal entropy scheme

The second method I will look into uses personal entropy to protect the secret
key. The full scheme is described in the article [37]. Instead of depending
on the protection of one single password, the scheme encrypts the PSE with
the answers to several personal questions, hence the term personal entropy.
The scheme is designed in such a way that a user can forget a subset of
the answers and still recover the secret key, whereas the attacker will have
to guess a large subset of the answers to break the scheme. The scheme
uses a secret sharing technique (modified Shamir [38] scheme is used) with
parameters n and t, where t<n and the secret data is divided into n parts.
The encryption of the n parts is carried out separately and the passwords
should be independent of each other. The scheme is designed so that if a
user forgets up to (n-t) of the parts, it is still possible to recover the secret.
An attacker on the other hand will have to guess at least t of the passwords
to be able to retrieve the secret. The best brute force attack, given that the
passwords are truly independent of each other is to pick t of the n passwords
with as little total entropy as possible.

Encryption of the secret s :

1. Ask the user n questions : ¢i,..., g, to generate the answers aq,..., a,

59

2. Generate a random number 7, that is used as a salt.

3. Compute the hash of question, answer and salt : h; = H(¢; + a1 +
Ts)yeury by = H(gn + an + 75).

4. Divide the secret s into n parts : sq,..., s, according to the (n,t) thresh-
old scheme.

5. Encrypt the n parts by applying corresponding hash value : Ej, (s1) =
Clyerey En, (Sn) = n

6. Keep qi, ..., qn, 75 and ¢y, ..., ¢, and discard the rest.

Recovering the secret s :

!

1. Ask the user the n questions and retrieve the answers : a, ..., al,

2. Calculate the hash values consisting of salt: r,, answers and questions
thy = Hig + ay + 1), oy by, = Hgn + a;, +75)

3. Decrypt the cipher texts by adding the corresponding hashes : Dy (¢1),
ceny Dh’n (Cn)

4. By using the (n,t) threshold scheme recover the secret s by choosing a
subset of t shares.

5.1.2 Software smart cards with cryptographic camou-
flage

The main idea in this scheme [39] is that only one password will decrypt the
true key, while many passwords will produce decryptions that apparently
look like the real key. An attacker doing a brute force (dictionary) attack
will recover many plausible keys and not be able to separate the right key
from the others. The only way the attacker allegedly can test if he has
the right key is to try to authenticate himself by signing a challenge from
an authentication server/entity. If the scheme is properly implemented and
followed, the number of possible keys is too high and the attacker will be
suspended access due to multiple authentication failures. So under the right
circumstances the PSE will be protected against a dictionary attack, much
the same way a smart card does, but completely in software.

In most software implementations of PSEs there are several ways for
an attacker to verify if he has the true private key or not. Therefore it is
important to eliminate these possibilities in order to make the scheme work.

60

One problem with encrypting the whole representation of the private key is
that it contains some structure defined by the format. Hence the attacker can
encrypt all possible keys with the format and all false encryptions will with
high probability not give the same structure. A good example mentioned in
[39] considers encrypting the modulus of an RSA key, where almost all false
decrypts will have moduluses with small factors, unlike the true modulus.

An important restriction in the camouflage scheme is that the user’s pub-
lic key must be kept secret, and only trusted authorized users can have access
to it. If the attacker knows the public key he can easily check if he has the
corresponding private key, by for example encrypting some known text with
the public key and verifying with the private key and see if he gets the same
text. It is also important to protect signatures made by the user. If the sign-
ing process has been done in some standard form , for example with PKCS#1
[40] where the private key is first hashed and then padded in a deterministic
way. Then the attacker can get hold of the data signed and can test all keys
by signing the data and compare against the original signature. This attack
can be prevented by padding the data in a random way with the aid of a
secure pseudo-random generator.

5.1.3 Critical notes

In this section we have looked at three different software implementations of
PSEs. The traditional software implementation consist of an encrypted file,
where the encryption key is derived from the users password. This scheme
is vulnerable to brute force/dictionary attacks, where much of the problem
lies in the fact that users choose passwords that are easy to remember, hence
easy to break. The fact that todays computers are only getting faster and
faster only increases the problem, requiring longer and more difficult pass-
words. A safe key is roughly around 80 bits, and this is comparable to a 20
character password consisting of apparently random symbols. One way to
guard against brute force attacks is to slow down the amount of passwords
that can be checked for. A common way of hindering dictionary attacks is
to use a salt. The salt is consists of 12 random bits that are padded with the
user’s password. The salt is stored in plain text together with the password
file. When a salt is used the words in the dictionary need to be padded
with each of the 2'2 = 4096 possible values of the salt. What is important
to notice is that the use of a salt only stops attacks that aim at finding a
random person’s password. Since the salt is stored in plain text it is possible
to do regular dictionary attack on a single user with this salt value. Another
method for slowing down the attack is for example to hash the user-password
a large number of times before storing it. What might be hard to accomplish

61

in practice, is to find suitable solutions that at the same time can slow down
a dictionary attack and still be fast enough not to be of any annoyance for
regular users.

The personal entropy scheme solves some of the user problems with the
first scheme. Instead of having to remember long complicated passwords
the user can instead answer the questions of many personal questions to
unlock the PSE. However, experience [37| has shown that finding good general
questions is hard. The best solution which gives the highest entropy per
password/answer is to let users construct their own questions that trigger
some personal memory. However, many users are either reluctant to make
questions or can not come up with good questions. Another possible problem
with the scheme is that an attacker can gather a database on its subject, by
for example tracking information on the Internet or from others.

Another problem is the size of questions that have to be answered. Let us
assume that the questions can all be answered with English first names; from
[37] we have that this will give an entropy of about 8 bits per password. If we
would like a key of about 96 bits we have to choose t=12, from [37] we have
that the corresponding n must be 20 or larger 2. So in order to provide good
security against a brute force attack we see that a large number of questions
have to be answered by the user. The size of t becomes a trade off between
security and user-friendliness.

The advantages of the personal entropy scheme is that it is easy to imple-
ment and does not require any extra resources or suffer from any restrictions.
One solutions mentioned in [37] is to combine the personal entropy scheme
with the standard scheme to avoid user annoyance. The main idea is to use
the high entropy password to unlock a password with low entropy that is easy
to remember, for example a 4 digit PIN. The low-entropy password could be
used for all authentication operations until system shutdown.

The software smart card scheme is not vulnerable to a brute force attack
given that is implemented and used in the correct settings. The scheme is
not dependent on long passwords, but makes it infeasible to do a brute force
attack by making it impossible for the attacker to distinguish the correct key
from the many false keys. Compared to a hardware smart card there is not
any need for buying smart cards or card readers. A disadvantage compared
to the hardware implementation of a smart card is that all cryptographic
calculations are carried out on the host processor, and is thus more vulnerable
to unauthorized copying from viruses.

The software smart card key scheme has several restrictions and its usage

2Given that the user answers each question correctly with probability 0,95 and that the
probability is close to 1 (0,99998) that the user will answer t of the n questions correct.

62

areas are therefore also limited. The scheme is most suited for use of digital
signatures in a closed PKI where only trusted entities can verify signatures.

5.2 Smart card implementation of PSE

A smart card setup of a PSE consists of a smart card together with a smart
card reader connected to the host computer. Typically an authorized user will
have to use a PIN code together with the card in order to gain access to the
system. Generally a cryptographic smart card contains the private and public
keys (certificates) of a user and also has the ability to do some cryptographic
calculations on the smart card, like digitally signing a document.

A smart card is a portable storage device that is embedded with either
a microprocessor and a memory chip or only a memory chip. Memory-only-
cards have a limited number of possible functions, usage areas are for ex-
ample storage of telephone credits, transportation tickets or electronic cash.
Having the microprocessor embedded makes it possible to add and delete
information and also do some calculations on the actual card. Cards with
microprocessors are dependent on some kind of energy support to power the
microprocessor. Smart card with microprocessors are classified into contact
cards and contactless cards, depending on how the card receives its energy
[42]. Contact cards have gold plates or contact pads that communicate via
direct electrical contact with the card reader. Often keyboards, PC’s and
PDA’s have built in card readers. Contactless cards communicate via radio
frequency (RF). A small wire loop is embedded inside the card and this acts
as an inductor to supply energy to communicate with the reader. When the
card is put into a RF field an induced current is created in the wire loop,
and this is used as the energy source. The smart card readers for contactless
cards usually consists of a serial interface for the computer and an antenna
that communicates with the card.

Smart cards where invented in 1974 by inventor Roland Moreno and are
used in a wide variety of applications today. "A typical smart card to-
day has an 8-bit microprocessor operating at 5 MHz, 256 to 1024 bytes of
RAM, 6 to 24 KB of ROM, 1 to 16 KB of EEPROM (Electrically Erasable
Programmable Read-Only Memory), and sometimes an on-board encryption
module" [41]. Figure 5.1 shows a general crypto smart card setup.

Physical attacks on smart cards can be categorized into two main cate-
gories : invasive and non-invasive attacks [43]. A non-invasive attack (also
known as a eavesdropping or side-channel attack) concerns all attacks on
the smart card where the chip package on the smart card is left untouched.
Examples of frequently used non-invasive attacks are tampering with supply

63

EEPROM
Input

e
AP Dﬁg“ CPU CRYPTO
Output MODULE
| - m

RAM ROM

Figure 5.1: Basic crypto smart card configuration

voltage and clock signal to the CPU. By applying under-voltage and over-
voltage it is possible to disable protection circuits and force the CPU into
making wrong decisions. This can also be achieved by reducing the clock
frequency, which will have the effect that the transistors will scale differently
to the reduced frequency and can cause a possible error. By doing compre-
hensive testing it is possible for the attacker to find out which instructions
are forced by applying different voltages and clock frequencies.

Non-invasive attacks are dangerous since they are hard to detect and do
not require any expensive equipment. However, a successful attack requires
a great deal of testing to determine the effect of various attack methods
and the attacker must also have a very detailed knowledge of the different
components in the chip package.

Invasive attacks are more complicated and require expensive equipment.
The first step in the attack is to remove the chip package from the smart
card. Once the chip has been opened it is possible to glue the chip to a
test package and perform several attacks. A laser cutter is used to move the
passivation layer, usually consisting of silicon oxide or nitride. With the help
of a microscope and several micropositioners it is possible to access the stored
data via the memory bus where all the data is available at a single location.
Invasive attacks are more serious as it is possible to read information stored
on the card, however they are far more expensive than non-invasive attacks.

5.2.1 Critical notes

Storing cryptographic keys on a smart card has several advantages. As men-
tioned in 5.1 most software implementations of PSEs suffer from a brute force

64

attack vulnerability. The fact that computer speeds are increasing more and
more only makes the attack more feasible. However, when the keys are stored
on a smart card, there is no way for the attacker to try a brute force attack
on the key space, as long as he does not have any access to the actual smart
card. The attacker can of course try to steal a card and then try a brute force
attack on the PIN code. Typically a PIN code is 3 to 8 digits long and there
is a three time rule so that the attacker will be denied access after typing the
incorrect PIN code three times. But as we saw earlier once the attacker has
the actual smart card it is possible to do invasive and non-invasive attacks.
These attack forms are a real threat, but the actual risk is lower since only
few attackers have the detailed knowledge required to carry out the attack,
and the case of a stolen card is not that frequent.

Another advantage with crypto smart cards is that cryptographic oper-
ations can be done on the card. This way it is harder for viruses or Trojan
horses to copy or tamper with information. However, smart cards are vul-
nerable to certain types of virus attacks. Let us assume that we want to sign
a document, the smart card receives the hash of the proposed document and
signs the hash on the card by using the embedded encryption module. Then
there could be a possibility for a virus switching the hash of the document
with the hash of a completely different document, saying something like :
"T give you my house and car". The problem is that the scam often is not
detected before it is used against the user.

The use of smart cards for storing cryptographic keys/certificates has
not yet been put into wide use. Some of the reason for this is the relative
high cost of buying smart card readers and smart cards. Another problem
is that there are lot of competing companies developing different standards
that often are incompatible. Other problems are limited storage space and
potential trust splits. Trust splits can occur when a party responsible for
example for the manufacturing of the card can take over the functionality of
for example the card owner.

65

Chapter 6

Access control in SkandiaBanken

In this chapter I will present an outline of SkandiaBanken’s access con-
trol scheme. The outline has been based on information found on Skan-
diaBanken’s web pages [48] and from email contact with SkandiaBanken’s
technical support [49] '. Tt has been difficult to find precise information as
the scheme is developed by the company EDB Fellesdata [52| and the fact
that details of the scheme are proprietary. I will discuss possible security
holes, and how these could have been used to compromise a SkandiaBanken
account. In particular I am interested in studying a real-life example where
digital certificates are being used for authentication. It is also important to
illustrate that the analysis of a security protocol is very difficult, due to the
many ways in which an attacker can take advantage of the protocol environ-
ment.

6.1 Customer registration/Certificate enrollment

SkandiaBanken is a bank that specializes in online banking services. In Nor-
way it opened the 27th of April 2000, and it is a branch of the Swedish
SkandiaBanken. SkandiaBanken in Norway has about 140 employees and
more than 200,000 customers.

When registering as a new customer, one has to fill out a form shown in
figure 6.1. SkandiaBanken first controls that the entered SSN (Social Security
Number) is valid 2. Given a valid SSN, SkandiaBanken verifies that the en-
tered name matches the SSN and sends a registered mail to the address listed
in the national register. The customer can then collect a four digit PIN code

!The information gathered is based on the existing SkandiaBanken scheme July 2003.
2This is done by verifying that the two last control digits calculate correctly based on
the first nine and ten digits of the SSN.

66

. . [Eeamsine + [Fondahandal + [Hyhatar v
“’I_‘“‘“I'“ [Bank V [#hsshandsl ¥ |Kontaktess _ ¥| = =0 =
nken DI rET

L3

F_

V| Sparemdl ey Bvar # | L0099 InR bemeo 8li kunde

1 adaelsnummart I postadrasss

Wear cpprme § ot du mb ha offisisll Vennliget cpegi en grdig E-post sdresse,
bosteds adrazae for & kurne bli kunde,

Spwrsmal®

Swar®

Ettomaun®

For § kunne idantificars dag huit du mB ringe til aes uil ui
v ovaranstammalia ma Wk shrivar b, 4t Spmeam] baca du w4t subrat L FoaLE
det # waisbrart | Folkuregistarat “Hriitkan Farge kadde oz b i farsbe b

[o« T

Figure 6.1: Customer registration

at the nearest post office. During the process of looking at SkandiaBanken’s
customer registration, some interesting observations were done. Several dif-
ferent SSNs were tried with different made up names and emails. Table 6.1
shows some of the SSNs tried and the response from SkandiaBanken on each
one. We see from table 6.1 that SkandiaBanken does not give appropriate
responses for some SSNs. Apparently SkandiaBanken first checks if a SSN is
valid by calculating the two last control digits. Then it checks that the new
customer is 18 or older. When testing for age SkandiaBanken does not only
look at the birth date, but also uses the individual number as an indicator of
age. If age and SSNs verify correctly the customer’s name and SSN is tried
matched against the name and SSN listed in the national register. We see
that there is a bug for the last SSN. As shown in figure 6.1 and table 6.1 we
see that it is a valid SSN and the name Bill Gates is apparently not checked
for in the national register. The reason for this could be that the information
is not available for people born before 1900 or SkandiaBanken simply do not
expect customers of this age 3. Figure 6.1 shows the response to the fake
registration.

Before login into the account, the customer has to download a personal
certificate and possibly a server/SkandiaBanken certificate . The customer
must download a new personal certificate for each new host that is being used
to connect to SkandiaBanken. A user downloads a certificate by entering the

3 After meeting with SkandiaBanken’s head of security in Bergen it was discovered that
the reason this SSN was not checked for was because the person with this SSN was dead.

4This will depend on which browser the customer is using. Newer versions of Explorer,
for example, already have SkandiaBanken listed as a trusted authority and the certificate
is hard coded into the browser.

67

[oversikt » [Fandshandel ¥ [Nyheter v]

s Nt ol
=

I + [r3dgiuning +[Spersmdlog svar v] Lossinn | Demo Bl kunde

Fodselsnummer* E-postadresse®
26059765131 [sucker@natmail.com
Ver appmerksam dum3 ha offisiell Vennligst oppgi en gyldig E-post adresse

bostedsadrasse for & kunne bli kunde.

Sporsmal*
Formnavn®

[How's your security dain
ET

Svart
Etternawn®

Juho knows
|Gates N s

Far & kunne identifisere deg hvis du m3 ringe %l o=s vil vi her
Naun m3 oppgis | cverenstemmalse med at du skrivar inn st sparemAl bare du vet suaret p8. F.eks:
det som er registrart | Folkeregistarat. “Hyilken farge hadde jag pd min ferste bil?*
Talafon Talafon
hjemme Mobiltelefon arbeid
sseoazie |

Wennligst oppai minst skt talefonnummer.

onsdag 62 2003 1028:39 © SkandiaBanken 2001

Dversikt » | Fondshandel » [Hyheter »

Skandi

B Bankfjenester b | Aksiehandel ¥ | Kontskt oss »
Lin v | REdgivning » [sparsmil og svar #| 29310 EIoe) Bli kunds

Du er nd registrart som kunde | Norges ferste rene nettbank; SkandiaBanken, I lspet av et par
hald ken. Straks

de din PIN til Skandiak

dager vil du motta en rekommandert sending
du har hentet din PIN kan du ta banken i bruk. Lykke til!

onsdag B/8 2003 10:33:02 @ SkandiaBanken 2001

Figure 6.2: Fake customer registration

68

SSN SkandiaBanken Explanation

response
30100090045 | SSN on the wrong | Two last control dig-
format. its calculate wrongly.
30100090046 | Sorry we have an age | Person with this SSN
limit of 18. born in the year
2000.
10018590056 | Sorry we have an age | SSN does not belong
limit of 18. to real person, indi-

vidual number (900)
in SSN belongs to
person born in pe-
riod 2000-2054 and
not 1985.
10018439714 | The given informa- | SSN is valid but
tion does not match | name and SSN do not
against the informa- | match

tion registered in the
national register.
26059765131 | Registered as a cus- | SSN is valid and be-
tomer longs to a male born
in 1897.

Table 6.1: Testing of SSNs

4 digit PIN code along with the corresponding SSN. There is a three time
rule, meaning that a user who types the incorrect PIN code three times will
temporarily lose access to the account. The customer then has to contact
SkandiaBanken who will issue a new registered mail with a new PIN code.
An interesting observation is that given any valid SSN of a SkandiaBanken
customer, it is possible to deny this customer access by entering the wrong
PIN code three times.

If PIN code and SSN match, SkandiaBanken issues a X.509 certificate for
this user and a corresponding private key is generated. Where and how the
personal user certificate and private key is stored depends on the browser
used. Mozilla 1.01 for example stores all certificates in the file cert7.db and
corresponding private keys are stored in key3.db. The keys are stored in
a software security device [50]. The user must enter a master password to
unlock any private key from the PSE. A similar system applies to Netscape
browsers.

69

Certificate Viewer:"skandiabanken"
General [Details |

This certificate has been verified for the following uses:
Status Responder Cerlificate

SkandiaBanken Internetbank Ca01

(=] SkandiaBanken &B
ational Unit (OU) SkandiaBanken &B
Serial Mumber 06:19:30:3E:00:00:00:00:00:03
Issued By
Common Mame (M) SkandiaBanken Internetbank

(=] SkandiaBanken &B

Grganizational Unit (OU) SkandiaBanken &B

validity

Issued On 03s21s2000

Expires On 03/21/2015

Fingerprints

SHa1 Fingerprint 4E:D5:TE:9641:AT42:B342:66:4A4:DB:F24D:CO:BC:CAFO:DE:F1
MMDS Fingerprint 56 TE:B2:4C:95:41:65:FAE3:3CBE:AZ:69:66:1C:DD

Figure 6.3: SkandiaBanken certificate

SkandiaBanken uses two self-issued X.509 Verisign certificates, a CA01
and a CAO02 certificate. The reason for this is probably to divide the customer
population between different CA’s to achieve easier issuing and managing of
certificates. Figure 6.3 shows an example of a SkandiaBanken CAO1 cer-
tificate and figure 6.4 shows the details of the certificate. Some important
differences between the server certificate and customer certificate are :

1. The common name (CN) field is set to the name of the customer and
the organization (O) field is set to the SSN of the customer.

2. The validity of a client certificate is only for a year.

3. The certificate is issued by SkandiaBanken CA02 or CA01

6.2 SkandiaBanken login

SkandiaBanken secures the transaction between the client and server by us-
ing SSLL 128 bits with two way authentication embedded. Simplified this
means that the transaction between client and server is encrypted with a 128
bit session key and that both the client and server are authenticated. The
following is an outline of the SkandiaBanken login as the details are kept
secret:

1. The customer enters the SkandiaBanken login menu and the browser
initiates an SSL session with the SkandiaBanken server. Most of the

70

Certificate Viewer:"skandiabanken"
[General 1| Details |

Certificate Hierarchy
SkandiaBanken Internetoank CAa01

Certificate Fields
Subject
= Subject Public Key Info
Suhject Public Key Algorithm
Subject's Public Key

Bl

Object Identifier (2 5 23 14)
Certificate Key Usage

Chbiect ldentifier (2 5 23131
Field Value
30 45 02 41 00 a8 70 a9 32 Sb 41 es 71 89 £3 B4

£ Extensions
Object Identifier (1 36141 31121 1)
[=]

72 20 20 2 2b od 21 od ba £a 31 B4 SE 14 23 ba
7E Ze 1o ef £3 85 EZ 4a fo d1 18 0% ac 11 £d &b
££ 74 27 ol 7E bE aE Gf 3¢ o4 fc 34 2f 32 74 de
2z 46 3c 62 83 02 03 01 00 01

Figure 6.4: SkandiaBanken certificate details

steps of the SSL session are transparent to the user, and are done
automatically between browser and server.

. The browser sends a challenge to the SkandiaBanken server. The server
authenticates itself by signing the challenge with its private key and
returns it to the browser along with its certificate path. The browser
automatically verifies the signature by applying the public key listed
in the SkandiaBanken certificate. The browser also checks that the
certificate chain ends in a trusted point. The browser will inform the
user if the certificate is issued by a non trusted CA, the certificate’s
validity period has ended or if the certificate’s common name (CN) does
not match the domain name (DN) of the server. There is no automatic
check for revocation status of the server certificate.

. The user chooses a certificate and enters his/her PIN code and cor-
responding SSN. The browser sends a message that includes a signed
challenge and certificate path. SkandiaBanken verifies the signature
by applying the public key listed in the user certificate. In addition
SkandiaBanken should also verify that this certificate belongs to the
correct customer by comparing the SSN in the certificate with the SSN
entered by the user. After the initial handshake a session key is ex-
changed to encrypt the transaction. The customer finally gains access
to the account by entering a valid PIN code.

71

6.3 Brute force attack on PIN code

SkandiaBanken advocates having a user-friendly security solution [51]. All
you need to log into SkandiaBanken is your PIN code in combination with
your SSN and personal certificate. The only thing the user is requested to
remember is the 4 digit PIN code. One of SkandiaBanken’s slogans are :
"Our code is so simple that you simply remember it. There is a certain
element of security also in this" ®. I agree that having a PIN code with only
4 digits might prevent a user from writing the code down or storing it on
their cellular phone. However, a 4 digit PIN code is not very secure against
a brute force attack, there are only 10000 possible PIN codes and more than
200000 SkandiaBanken users. SkandiaBanken’s argument is that the PIN
code is only valid together with the user’s SSN and personal certificate, so
it is sufficient to use a 4 digit PIN code. In the following I will try to prove
that argument is dubious.

An attacker doing a brute force attack on the PIN code supposedly needs
the corresponding personal certificate and SSN. However, the attacker only
needs the SSN as the attacker can verify a PIN code by attempting to down-
load a new certificate. The attacker hence has three attempts at guessing
the correct PIN code for each SSN belonging to a SkandiaBanken customer.
Thus there is a probability of ﬁ that the attacker will guess the correct
PIN code for a given SSN. We see that if the attacker is able to acquire the
SSNs of many SkandiaBanken users there is a pretty good probability that
the attacker will be able to gain access to several accounts.

How easy is it for an attacker to acquire SSNs? The Norwegian SSN is
actually not confidential [53] information. Given a reasonable documentation
for its use, the SSNs can be requested from the national register. Many
public institutions like hospitals, banks and tax authorities have legal access
to people’s SSNs, but it can be difficult for private persons to argue for the
need of many SSNs. Therefore it might be better for an attacker to generate
the SSNs. This is not hard given the infrastructure of the Norwegian SSN
[54]:

The Norwegian SSN consists of 11 digits: x1xox3245T611%213¢C1Ca.

T1T2x32425%¢ . indicates the birth date of this individual in the order ddm-
myy.

SFreely translated from [51].

72

111223 : Is called the individual number that is used to separate people born

C1Co

on the same date. The national personal register gives SSNs in the
order of birth messages that are received. They start with the high-
est available valid individual number for that day and proceeds down
wards for each new message. The individual number is based on the
century the person is born in, shown in table 6.2. It is also possible to
distinguish boys from girls by looking at i3, which is odd for boys and
even for girls.

are control digits that are calculated as weighted sums of the respec-
tively first 9 and 10 digits.

cl = 11 — (31’1 + 71’2 + 61’3 + T4 + 81’5 + 91’6 + 47,1 + 57,2 + 223)(m0d11))

Cy = 11— (51’1 —|—4£U2 —|—3£U3 —|—2£U4 —|—7£U5 —|—6£U6 —|—521 —|—422 —|—323 +201)(m0d11))

When generating a SSN the highest available individual number for the

given birth date is chosen. However, if either ¢; or ¢, is calculated to
be 10 (modll) the SSN is discarded. We can assume a uniform distri-
bution of when ¢; and ¢, are calculated to be 10 (mod11) and give an
estimate over how often this will happen:

plerUea) = pler) +ple2) — pler M) = (&) + (&) = ()2 = ().

Individual number | Year in birth date | Born

500-749 >54 1855-1899
000-499 1900-1999
500-999 <55 2000-2054

Table 6.2: Correspondence between individual number and birth date

We see that an attacker easily can generate SSNs. However, we have to
take into consideration whether a generated SSN belongs to a real person and
if the SSN belongs to a SkandiaBanken user. I will look at three different
ways of generating SSNs. The purpose of the two first methods are mostly to
illustrate some of the possible problems with this attack strategy. Afterwards
I will discuss different assumptions and the likelihood of an attack.

I first make some general assumptions:

73

e Some SSNs are dummy numbers due to errors with birth date registra-
tion, immigrants for instance can have incomplete information about
exact birth dates. Also some generated SSNs will probably belong to
dead people. The number of these SSNs for this attack are so few that
I will not consider them in the probability calculations. Also I will
exclude any numbers for leap days since this will complicate our SSN
generation.

e It can be discussed if an attacker is better off with guessing two or
three times for each SSN. For now we assume the attacker only guesses
two different PIN codes for each attack. The reason for this is that an
attacker then probably can verify more PIN code SSN combinations
without being detected as quickly. If three wrong attempts are made
the customer with this SSN will temporarily be denied access. A large
number of denials in a short time period would seem suspicious. I will
discuss the possibility of guessing three times later.

e We assume that it is possible to develop a program or script that can
login to SkandiaBanken’s pages and automatically enter different SSNs
and PIN code pairs.

e We have to consider using many hosts in the attack, as it can seem
hard to spoof the IP address of one host and get the response from
SkandiaBanken if the PIN code SSN combination was correct or not. |
will discuss this in more detail later.

I start by looking at a best case scenario for SkandiaBanken where we
generate all possible SSNs for people that are 18-100 years old. This way we
guarantee covering the SSNs of all 200000 customers in SkandiaBanken. All
of SkandiaBanken’s customers are born in the 20th century and are therefore
given individual numbers in the range 000-499. Hence for each day in the

year we get 500 possible SSN, but an estimate of % will be invalid numbers.

We get the following amount of SSNs : (500) x (365) x (83) x (1) ~ 12, 3million.

P(Guessing correct PIN code for one SSN) = —2_ = _1

10000 — 5000
P(At least cracking one PIN code) = 1 - P(cracking no PIN codes).

200000
) (2000000

P(At least cracking one PIN code) = (1 — (gg%

~ 1.

74

200000 __
5000 40.

Anticipated number of cracks when checking all SSNs : =

The drawback, from the attacker’s point of view, is of course the huge
number of SSNs that he/she has to check for. A large portion of the SSNs
will neither belong to real people nor to SkandiaBanken users. We see that
there is not only a problem with the efficiency of the attack, but also there is
a high probability for SkandiaBanken detecting the traffic amount as being
suspicious. One way of increasing the ratio of SkandiaBanken SSNs is to
concentrate the attack on a specific age group that we know has a high
frequency of SkandiaBanken users. From [55] we have that 34 % of customers
in pure online banks, like SkandiaBanken are males in the age group 26-35
years old. We therefore generate all possible SSNs for all males that are
between 26-35 years old. We then guarantee getting the SSN of all males in
this age group that are customers in SkandiaBanken. The expected number of
customers in SkandiaBanken in this age group hence are: (200000) x (0.34) =
68000.

Number of SSNs : (250) x (365) x (10) x (192) ~ 754132.

P(At least cracking one PIN code) = (1 — (%)(68000)) ~ 1.

Anticipated number of cracks when checking all SSN one time: p = %990 ~

5000
13.6.

It is seen that the number of SSNs has been decreased, and there is a
higher concentration of SkandiaBanken customers in this age group. How-
ever, one still has to generate a lot of SSNs belonging to non-existing people.
In the last generation advantage is taken of the assigning of SSNs to new
born and immigrants. As mentioned before a person is given the highest
available SSN for that day. Instead of generating all SSNs for one day we
can use birth statistics to shorten the amount of SSNs. For the period corre-
sponding to males in the age group 26-35 there is an average of about 30824
births [56] per year. This gives an average of: 30824/365 = 84 births pr day.
I will disregard the fact that immigrants also are assigned SSNs and discuss

later a more precise estimate of SSNs assigned to people born in the period
1969-1977.

Number of SSNs : (84) x (365) x (10) = 306600.

The probability of a successful attack will be approximately the same as for
our previous generation, given that our estimation of SSNs is accurate.

75

6.4 Discussion of brute force attack

I have looked at three different ways of generating SSNs belonging to Skandi-
aBanken customers. The last method involved the least number of SSNs and
contained the highest percentage of SkandiaBanken SSNs. I will therefore
focus the discussion on the last attack method. What I would like to discuss
further are assumptions about:

1. Running time.
2. Possible control routines in SkandiaBanken.
3. Insecurity in data.

4. Variations in attack strategy.

6.4.1 Running time and possible control routines

The running time will depend on work load, CPU power and possible control
routines in SkandiaBanken. I will assume a standard CPU is used as proces-
sor speed is not the main problem. The work load consists of generating a
set of SSNs and testing each SSN against SkandiaBanken. We can assume
that the generation of SSNs is straightforward given the infrastructure of the
Norwegian SSN. The bottleneck is the testing of each SSN. One has to make
a program or script that can automatically log into SkandiaBanken’s certifi-
cate download menu and enter a SSN together with two different PIN code
combinations. Giving a precise estimate over the number of SSNs that can
be checked for in a certain time interval is difficult when one has not actually
implemented and tested a program that does it. However, the biggest uncer-
tainty lies in the fact that SkandiaBanken’s control routines are proprietary.
A strategy for an attacker would therefore be to first try to establish a rough
sketch over SkandiaBanken’s control scheme. One way of doing this is to use
an anonymous IP address, for example by logging onto a wireless network
without access control (e.g many home networks). It is then possible to run
a series of tests and study how SkandiaBanken reacts to different events.
The attacker could for example study for a given time period the amount of
allowed:

1. Certificate download attempts.
2. Traffic from one IP address.

3. Failed certificate download attempts.

76

Given an outline of SkandiaBanken’s authentication and control scheme
the attacker can then optimize a brute force attack.

How could a global control on the number of certificate download at-
tempts influence the attack? This could certainly limit the speed of the
attack, as the attacker would not be able to test as many SSNs. However,
SkandiaBanken has to allow users to download new certificates every time
they use a new host. So a reasonable amount of certificate downloads must
be accepted. The advantage for the attacker is that he or she can spread
the attack over time and gather PIN code SSN pairs before carrying out the
actual attack. Suppose that 306600 SSNs are generated, trying to cover all
boys born in the time period 1969-1977. One can look at the time perspective
when checking different sets of SSNs each day. Table 6.3 shows some different
scenarios, the second column indicates how many percent of SkandiaBanken’s
customers this corresponds to. The third column shows the anticipated time,
given that one can check that many SSNs each day.

SSN pr day | % Time
1000 0.5% ~ 307 days
5000 2.5% ~ 62 days
10000 5% ~ 31 days
20000 10% ~ 16 days

Table 6.3: Running time overview

What could be bad news for an attacker is if SkandiaBanken has control
mechanisms for detecting a suspicious amount of failed certificate download
attempts. There is already some control, as each user is only allowed to enter
the wrong PIN code two times. The problem is if there is some sort of global
control surveying the total amount of failed certificate download attempts
in for example one day. Any such limit would probably be lower than the
number of valid certificate download attempts. This is only speculations, and
the attacker can still try to find a number of SSNs lying near SkandiaBanken’s
allowed limit.

Given that SkandiaBanken has implemented control on the amount of
traffic from one IP address this could complicate the attack further. How-
ever, there are several strategies the attacker could apply to try avoid being
detected. One alternative is to only try a few SSN PIN code combinations
each day. This of course takes long time, but will still represent a security
risk, as the attacker over time probably will find at least one PIN code SSN
pair. Another possibility could be to spoof IP addresses from one or more

77

hosts. The problem is not that of finding valid IP addresses, but the attacker
also needs to know if a SSN PIN code pair was valid so the attacker needs
a way of acquiring the response from SkandiaBanken. According to [57| this
is difficult, but it is possible to sniff the response if an IP address is spoofed
on the same subnet as the real machine is on. A more complex strategy is to
make other hosts do the work for the attacker. One way of doing this could
be to first make a program that automatically logs into SkandiaBanken and
tests SSNs for valid PIN code combinations. The attacker can then try to
spread this program to many hosts, either via a virus or Trojan horse. The
attacker could use a good random picker that distributes the set of SSNs to
the hosts. What remains for the attacker is to get the results back from the
infiltrated hosts. This could be achieved by having a trigger in the program
that logs onto for example an IRC server when a PIN code SSN match has
been found. The attacker can then withdraw the information from the IRC

server®.

6.4.2 Insecurity in data

In our last generation of SSNs we used the mean of boys born in the age
period 1969-1977. This could give an inaccurate result as birth rates vary
with month and also from year to year. Also I have not considered immigrants
at all. One way to include immigrants is to use statistics over the national
population sorted by age and sex [59]. Further one would like to decrease the
generation of SSNs of non existent people as much as possible in order to do
the attack both quicker and reduce the probability of detection. This can be
accomplished by for example generating half of the expected SSNs for that
day. This way we have a very high probability of generating SSNs of only real
people, because of the chronological assigning of individual numbers. The
total population of males in the age group 26-35 is 340414 [59], this gives
an average of & 94 SSNs for each day. If we generate for example 47 valid
SSNs for each day, we generate: (47) x (365) x (10) ~ 171550 SSNs. We can
assume every person in this age group has the same probability of being a
SkandiaBanken customer, independent of the SSN. So we can further assume
that we generate half of all the customers in the age group 26-35.

Number of SkandiaBanken customers in this age group: 68000.

This could be done by using iroffer [58], a software program that acts as a file server
for IRC

78

We cover 34000 of these customers.

Anticipated number of cracks for one cycle of the SSNs is then:

__ 34000 __
~ 5000 6.8

6.4.3 Variations in attack strategy

The attack strategy we have presented so far focuses on SkandiaBanken not
detecting any part of the attack. Another strategy could be to use an anony-
mous [P address and not worry about any part of the attack being detected.
Instead of spreading the attack over time to avoid detection, we could focus
on verifying as many SSNs as possible before SkandiaBanken reacts. The
advantage of doing the attack quickly is that this might surprise Skandia-
Banken and several PIN code SSN pairs can be found before SkandiaBanken
gets the chance to respond. How is it possible to increase the speed of the
attack? The attacker could start by guessing three times for every SSN.
This will increase the probability of guessing correctly and at the same time
suspend all customers whose PIN codes are incorrectly guessed three times.
This will create even more chaos for SkandiaBanken, and might be an ad-
vantage for the attacker. In order to do the attack as quickly as possible the
attacker can use many different hosts and parallel processing. If we look at
the probability, when guessing three times, and using the same set of SSNs
as earlier:

Anticipated number of cracks: p = (34000) X (55255) = 10.2.

One can also increase the attack efficiency slightly by using PIN code
filtering. One can assume that PIN code numbers with all 4 digits equal or 3
equal digits in the PIN code are rare, and most likely will either be changed
by the customer or are not issued by SkandiaBanken. The number of possible
PIN codes then becomes: 10000 — (10) — (4 x 9 x 10) = 9630.

The expected number of cracks then becomes: 1 = (34000) x (525) ~ 10.6.

Another point worth mentioning is that after several attacks have been
made, an attacker can make a list of SSNs belonging to SkandiaBanken cus-
tomers for later attacks. It could be interesting to test if SkandiaBanken
reacts differently when guessing incorrectly three times for a SSN not be-
longing to a SkandiaBanken customer. The attacker can then filter out all
SSNs not belonging to SkandiaBanken customers and increase the efficiency
of the brute force attack even more.

79

6.5 Conclusion for this chapter

I have looked at some aspects of SkandiaBanken’s access control system. I
have looked at the registration of a customer (certificate enrollment) and
the main structure of SkandiaBanken’s login scheme. Further, I have dis-
cussed the possibility of a brute force attack on the PIN code. Several weak
points have been discovered in SkandiaBanken’s present solution. Maybe
most important is that SkandiaBanken’s use of certificates seems to have lit-
tle security function. SkandiaBanken’s access control scheme consists of three
main objectives: identification, authentication and authorization. Simplified
we can say that proof of identification in the scheme is the customer’s SSN,
proof of authentication is the users certificate and that the 4 digit PIN code
authorizes the user to access his/her account. As has been seen in the brute
force attack, an attacker only has to check SSNs and PIN code pairs in order
to try to download a new customer certificate. This is a convenient solution
for customers as they only have to remember a 4 digit code. The trade off is
bad security, the SSNs are too easy to generate and the PIN code is too short
to withstand a brute force attack. One way of guarding better against brute
force attacks could be to use a user name instead of a SSN. The reason this
is not done is probably because it is easier to automate customer registration
by using an SSN with the corresponding name against the national register.

One of the weakest points discovered in the scheme is that it is possible
to exclude any customer by trying the incorrect PIN code three time for this
customer’s SSN. By using the SSN generation described earlier it is possible
to quickly do a huge Denial of Service (DoS) attack and shut down service for
a significant amount of SkandiaBanken’s customers. This is hard to defend
against, and the attack can be repeated as long as the present solution exist.

Another problem is that SkandiaBanken has little control over its own
security solutions. The company EDB Fellesdata has made the current solu-
tion, which again uses elements of Verisign products in it. This can not only
cause trust splits, but can also be a problem when it is important to respond
quickly to attacks.

I have only studied a brute force attack on SkandiaBanken, which I think
gives a good overview of the security of the system. There are also many
other possible attack types that I have not had time to study. What could
be especially interesting is looking at the danger of logging attacks. That
is attacks that logs input from the keyboard. This could for example be
done by either attaching a hardware device to the back of the machine or
using software. Certain situations are more exposed to this kind of attack,
for example when using an Internet cafe. It is also possible to spread logging
programs via viruses or Trojan horses.

80

81

Chapter 7

Summary and further work

In this thesis, I have taken a critical look at PKI solutions. I started by iden-
tifying some important security considerations when engaging in electronic
transactions. By looking at the three PKIs: PGP, SPKI/SDSI and X.509, I
showed that there are many ways of organizing a PKI. The number of people
in an environment, and the service and security requirements of an environ-
ment will all influence the structure and complexity of a PKI. Further, I have
studied in a more general perspective, mechanisms for certificate revocation
and different solutions for storing cryptographic keys. Finally, different PKI
aspects in SkandiaBanken’s access control scheme were studied. A copy of the
chapter on SkandiaBanken was sent to SkandiaBanken’s division in Bergen.
A meeting was agreed upon 1st of December 2003. SkandiaBanken is now
currently changing some of its solutions, and have started logging the email
and mobile phone number of customers. The weaknesses described in this
thesis will most likely be fixed.

I ended Chapter 1 of this thesis with some general considerations about
PKIs. Many of these considerations were studied in the thesis but I did not
have time to look into the following:

e On which basis is a certificate issued? In order to guard against forgery
it is important to have good procedures that secures the identity of the
entity requesting a certificate. However, care must be taken so that
personal information is kept secret.

e How is the private key delivered? Is the private key generated in such
a way that the certificate issuer can not obtain any information about
the private key? How does the browser communicate with the PSE

when a user signs a document online? Which risks are associated with
this?

82

A lot of the current implementations of PSEs only focus on protecting
the private key. Little research has been done on the necessity of also
protecting public key certificates. This is for example relevant to Skan-
diaBanken, as an attacker could learn SSNs by studying the certificates
of customers.

How can one communicate between different PKIs? Cross certification
is one solution. However, this adds complexity, and there can be a
problem with multiple certification paths and CAs operating with dif-
ferent certificate validity times. Another possibility is the use of bridge
CAs.

Discussion of certificate lifetimes. Why is it often one year? How does
key size relate to the lifetime of a certificate?

How are old keys stored? This is important in order to decrypt old
information and for non repudiation purposes.

83

Bibliography

[1] Loren Kohnfelder’s bachelor thesis in electrical engineering. Towards a
Practical Public Key Cryptosystem (1978).

[2] CCITT Rec. X.501 (1994) | ISO/IEC 9594-2:1994, Information Technol-
ogy - Open Systems Interconnection - The Directory: Models.

[3] Advances in public key certificate standards, Security, Audit and Con-
trol, 13 (1995, ACM Press/SIGS AC,9-15).

[4] Carl Ellison, B. Frantz, B. Lampson and T. Ylan. RFC 2693:
SPKI Requirements. The Internet Society. September 1999. See
ftp://ftp.isi.edu/in-notes/rfc2693.txt. Last visited 20th Febru-
ary 2003.

[5] Ronald L. Rivest and Butler Lampson. SDSI - A Simple Distributed
Security Infrastructure. See http://theory.lcs.mit.edu/
“rivest/sdsil0.ps. Last visited 20th February 2003.

[6] Toni Nykanen. Attribute Certificates in X.509. November 2000.
See http://www.hut.fi/ tpnykane/netsec/final/. Last visited 24th
February 2004.

[7] Dwaine Clark, Jean-Emile Elien, Carl Ellison, Matt Fredette, Alexander
Marcos, Ronald L. Rivest. Certificate Chain Discovery in SPKI/SDSI.
See http://theory.lcs.mit.edu/"rivest/ClarkeE1E1FrMoRi-
CertficateChainDiscoveryInSPKISDSI.ps. Last visited 24th Febru-
ary 2004.

[8] Dwaine Clarke’s Master’s thesis. SPKI/SDSI Http Server/Certificate
Chain Discovery in SPKI/SDSI.September 2001. See
http://theory.lcs.mit.edu/"cis/theses/clarke-masters.pdf.
Last visited 24th February 2004.

84

[9] R. Rivest. Can We Eliminate Certificate Revocation Lists? In
Proc. of Financial Cryptography 98; Springer Lecture Notes in Com-
puter Science No. 1464 (Rafael Hirscfeld, ed.), February 1998. See
http://theory.lcs.mit.edu/rivest/revocation.pdf. Last visited
24th February 2004.

[10] William Stallings. Cryptography and Network Security: Principles and
Practice. Second edition. Prentice Hall 1998.

[11] ITU-T X.509 (93)| ISO/IEC 9594-8:1995 Information Technology - Open
Systems Interconnection - The Directory Authentication Framework.

[12] ITU-T Recommendation X.500 to X.525(1993)|ISO/IEC 9594:1994, In-
formation technology - Open Systems Interconnection - The Directory.

[13] See http://www.ejeisa.com/nectar/dedica/3.2/doc0001.html.
Last visited 18th March 2003.

[14] S.Farell [Baltimore Technologies|, R.Housley [RSA Laboratories|. An In-
ternet Attribute Certificate Profile for Authorization. April 2002. See
ftp://ftp.isi.edu/in-notes/rfc3281.txt. Last visited 20th March
2003.

[15] Warwick Ford, and Michael S. Baum. Secure Electronic Commerce:
Building the Infrastructure for Digital Signatures and Encryption. Pren-
tice Hall PTR, 1997, page 251.

[16] Ravi Sandhu. SSL, PKI and Trust. 2002. Lecture notes.

[17] Carl Ellison. SPKI/SDSI and the Web of Trust. 4 April 2001.
See http://world.std.com/“cme/html/web.html. Last visited 24th
February 2004.

[18] Andre Arnes, Mike Just, Svein J. Knapskog, Steve Lloyd, Henk Mei-
jer. Selecting Revocation Solutions for PKI, in Proceedings of the 1999
Symposium on Network and Distributed System Security.

[19] A. Arsenault and S. Turner. PKIX Roadmap. Internet Draft, "Work in
progress, IETF PKIX working group", October 1999.

[20] Stefan A.Brands. Rethinking Public Key Infrastructures and Digital
Certificates: Building in Privacy. Page 11. MIT Press, 1st edition August
28th, 2000.

85

[21] Silvio Micali. Efficient Certificate Revocation. Technical report, Mas-
sachusetts Institute of Technology, March 1996.

[22] ITU and ISO/IEC. Final Proposed Draft Amendment on Certificate
Extensions. April 1999.

[23] Michael Myers, Rich Ankey, Ambarish Malpani, Slava Galperin,
and Carlisle Adams. X.509 Internet Public Key Infrastructure: On-
line Certificate Status Protocol. IETF RFC2560, June 1999. See
http://www.ietf.org/rfc/rfc2660.txt. Last visited 31th March
2003.

[24] RFC 1422 - A.2 Certificate Revocation List Syntax. February 1993

[25] Andre Arnes. Public Key Certificate Revocation Schemes. Queens Uni-
versity, Kingston, Ontario, Canada. February 2000.

[26] Petra Wohlmacher. Digital Certificates: A survey of Re-
vocation Methods. University of Klagenfurt, Austria. See
http://www.acm.org/sigs/sigmm/MM2000/ep/wohlmacher/.

Last visited 22nd April 2003.

[27] Peter Gutmann. Everything you Never Wanted to Know about
PKI but were Forced to Find Out. University of Auckland. See
http://www.govis.org.nz/insecurity/pgutmann.pdf. Last visited
24th February 2004.

[28] R. Merkle. Secrecy, Authentication, and Public Key Systems. Ph.D.
Dissertation, Department of Electrical Engineering, Stanford University,
1979.

[29] Paul C. Kocher. On Certificate Revocation and Validation. Chief Scien-
tist, Valicert.

[30] Moni Naor and Kobi Nissim. Certificate Revocation and Certificate Up-
date. Weizmann Institute of Science.

[31] Hiroaki Kikuchi, Kensuke Abe and Shohachiro Nakanishi. Performance
Evaluation of Public-key Certificate Revocation System with Balanced
Hash Tree. Tokai university.

[32] Patrick ~ McDaniel —and Aviel Rubin. A Response to
"Can We Eliminate Certificate Revocation Lists?". See
http://www.patrickmcdaniel.org/pubs/finc00_pres.pdf. Last
visited 24th February 2004.

86

[33]

[34]

[35]

[36]

137]

[38]

[39]

[40]

[41]

[42]

[43]

M.Myers. Revocation: Options and Challenges. In Rafael Hirschfield,
editor, Financial Cryptography, volume 1465, pages 165-171, Anguilla,
British West Indies, February 1999. Springer.

PKCS #5 - Password-Based Cryptography Standard, RSA
Laboratories Technical Note, Version 2.0, March, 1999. See
http://www.rsasecurity.com/rsalabs/pkcs/pkcs-5/index.html.
Last visited 12th May 2003.

Bruce Schneier, Security in the real world: How to Evaluate Security
Technology, remarks from CSI’s Netsec Conference in St. Louis, MO, on
June 15th, 1999.

Chris Thorn, Randomness and Entropy - An Introduction. 2003.
See http://www.giac.org/practical/GSEC/Chris_Thorn_GSEC.pdf.
Last visited 24th February 2004.

Carl Ellison, Chris Hall, Randy Milbert and Bruce Schneier. Pro-
tecting Secret Keys with Personal Entropy, 28 October 1999. See

http://www.schneier.com/paper-personal-entropy.pdf. Last vis-
ited 24th February 2004.

A. Shamir, How to Share a Secret, Comm. of the ACM 22, 11, Nov.
1979, pp. 612-613.

D. N. Hoover and B. N. Kausik. Software Smart Cards via Cryptographic
Camouflage. See http://www.arcot.com/products/arcot_ieee.pdf.
Last visited 24th February 2004.

PKCS+#1: RSA Encryption Standard, RSA Labora-
tories. Technical = Note, version 2.1, June 2002. See

http://www.rsasecurity.com/rsalabs/pkcs/pkcs-1/index.html.
Last visited 16th May 2003.

Ronald Ward, Secure Telecommunications, ECE 636. Survey of Crypto-
graphic Smart Card Capabilities and Vulnerabilities.

Tolga Kilicli. Smart Card HOWTO, revision 1.04 2001. See
http://en.tldp.org/HOWTO/Smart-Card-HOWTO. Last visited 28th
May 2003.

Sergei P. Skorobogatov. Copy Protection in Modern Microcontrollers.
See http://www.cl.cam.ac.uk/"sps32/mcu_lock.htm. Last visited
29th May 2003.

87

[44] W. Wen, T. Saito and F. Mizoguchi. Science University of Tokyo, Japan.
The "Ex-employee" Attack on Certificate-based Authentication Proto-
cols.

[45] T. Dierks, C. Allen. RFC 2246. The TLS Protocol Version 1.0.
See http://rfc.sunsite.dk/rfc/rfc2246 .html. Last visited 9th July
2003.

[46] Dug Song. University of Michigan. See http://www.naughty.monkey
.org/dugsong. Last visited 11th July 2003.

[47] Atsuko Miyaji, Wu Wen and Seiichiro Hangai. Cryptography and Com-
puter security. Review of Radio Science 2000-2002.

[48] See http://www.skandiabanken.no/SKBWeb/NO/Oversikt/
pressemeldinger /pressemelding_030402.pdf. Last visited 21st
July 2003.

[49] Ricky Sookermany, customer support in SkandiaBanken 21st July.

[50] See http://www.mozilla.org/projects/security/pki/psm/help_21
/glossary.html. Last visited 24th July 2003.

[51] See http://www.skandiabanken.no/skbweb/No/ , questions and an-
swers menu with the submenues technical and security. Last visited 28th
July 2003.

[52] See http://www.edb.fellesdata.no/ Last visited 28th July 2003.

[53| Forvaltningsloven §13. See http://www.cfje.dk/cfje/Lovbasen.nsf/
(ID)/LB0016524370pendocument. Last visited 24th February 2004.

[54] See http://www.skatteetaten.no/personer/folkeregistrering/
article. jhtml?articleID=14068. Last visited 31st July 2003.

[55] Monica Hjorth. "En kartlegging av netth@nkkunders holdninger. Hov-
edfagsoppgave i Informasjonsvitenskap. Universitetet i Bergen. Novem-
ber 2002.

[56] Seehttp://www.ssb.no/emner/02/02/10/fodte/tab-2003-04-30-01.html.
Last visited 12th October 2003.

[57] Seehttp://www.lasr.cs.ucla.edu/classes/239_1.spring03/slides/
lecture2.pdf. Last visited 20th October 2003.

88

[58]
[59]

[60]

[61]

62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

See http://www.iroffer.org. Last visited October 22nd 2003.

See http://www.ssb.no/emner/02/01/10/folkemengde/ . Last visited
October 22nd 2003. Prentice Hall 2002.

Wade Trappe and Lawrence C. Washington. "Introduction to cryptog-
raphy with coding theory".

See http://www.cs.ucl.ac.uk/staff/F.AbdulRahman/docs/pgptrust.html.

Last visited November 11th 2003.

Joachim Biskup and Sandra Wortman, University of Dortmund, Infor-
mation Systems and Security. Towards a Credential-Based Implementa-
tion of Compound Access Control Policies. November 11th, 2003.

See http://www.openssl.org/. Last visited 19th December 2003.

See http://www.faqgs.org/rfcs/rfc3280.html. Last visited 5th Jan-
uary 2004.

S. Farrell and R. Housley. "An Internet Attribute Cer-
tificate Profile for Authorization". April 2002. See
http://www.ietf.org/rfc/rfc3281.txt.Last visited February
24th 2004.

See http://www.ietf.org/rfc/rfc2527 .html. Last visited 13th Jan-
uary 2004.

Carlisle Adams and Steve Lloyd. Understanding PKI. 2003 by Pearson
Education, Inc. Second Edition.

See http://www.cl.cam.ac.uk/Research/Security/Trust-Register/.
Last visited January 20th 2004.

See http://www.simc-inc.org/archive9900/Feb00/ellison/s1d001.htm.

Last visited January 22th 2004.

89

