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Preface

The present work has been carried out during my employment as PhD-student at the
Department of Mathematics at the University of Bergen, Norway, lasting from August
2012 until November 2016. I spent the month of August 2015 on a research stay at
Monash University, Melbourne, Australia, which was partially funded by the Meltzer
Research Fund.

This thesis consists of two parts. In the first part, we will briefly introduce the problems
of multivariate and conditional density estimation, motivate the need for new methods,
and sketch the solutions that will be advocated in the second part.

The second part consists of three papers:

Paper 1 Håkon Otneim, Hans Arnfinn Karlsen, and Dag Tjøstheim. "Bias and band-
width for local likelihood density estimation." Statistics & Probability Letters 83.5
(2013): 1382-1387.

Paper 2 Håkon Otneim and Dag Tjøstheim. "The locally Gaussian density estimator
for multivariate data." Submitted for publication to Statistics & Computing.

Paper 3 Håkon Otneim and Dag Tjøstheim. "Non-parametric estimation of conditional
densities: A new method."



ii Preface



Acknowledgements

First and foremost, I would like to thank my supervisor, Professor Dag Tjøstheim, for his
great help, detailed feedback, contagious enthusiasm, and apparently endless patience
during my work on this project. The fact that he gave the first lecture I ever attended
at the University on calculating the mean and median of numbers almost ten years
ago, and that we have spent the last few weeks fine tuning the asymptotic theory of our
estimators, gives a telling picture of how much statistics he has taught me over the years.
Our meetings have always been pleasant, and I have never been afraid to discuss freely
in his presence, or even to ask stupid questions. I could not ask for a better mentor.
Thank you.

I also want to thank my two co-supervisors, Associate Professors Hans Karlsen and
Bård Støve. They have provided valuable feedback at key points during my time as PhD-
student, and they have been great colleagues during the daily life at the department,
and fun travel companions to various conferences throughout the world. I will also take
this opportunity to thank all my colleagues in the statistics group at the Department
of Mathematics, University of Bergen, past and present. You have created a fantastic
and stimulating environment that, I can honestly say, has been absolutely crucial to my
day-to-day well-being at work.

I am grateful to Professor Jiti Gao for hosting me at Monash University, Melbourne,
Australia, as well as all the other people at the Department of Econometrics and Business
Statistics at Monash who showed interest in my project and provided valuable input,
especially Rob Hyndman and Anastasios Panagiotelis.

My trip to Monash was partially funded by the Meltzer Research Fund, for which I
am very grateful.

The administrative staff at the Department of Mathematics are silent heroes in all
our scientific efforts and progression, be it in providing equipment, handling the money,
helping with forms and formalities, and, to be frank, tolerating crazy scientists on a daily
basis. That is impressive!

A big thanks goes out to the open source software community, especially the master
minds behind R, including all its maintainers and contributors, who slave along for no
other compensation than the progress and democratization of statistics and data science.

Finally, I would like to thank my wonderful wife and companion in life, Karina, and
our kids Kristian and Marie, who, without complaints, have endured my frustrations,
workload and emotional ups and downs during the past four years.

Bergen, June 2016
Håkon Otneim



iv Acknowledgements



Abstracts

Paper 1 ”Bias and bandwidth for local likelihood density estimation”

A local likelihood density estimator is shown to have asymptotic bias depending on
the dimension of the local parameterization. Comparing with kernel estimation it is
demonstrated using a variety of bandwidths that we may obtain as good, and potentially
even better estimates using local likelihood. Boundary effects are also examined.

Paper 2 ”The locally Gaussian density estimator for multivariate data”

It is well known that the Curse of Dimensionality causes the standard Kernel Density
Estimator to break down quickly as the number of variables increases. In non-parametric
regression, this effect is relieved in various ways, for example by assuming additivity
or some other simplifying structure on the interaction between variables. This paper
presents the Locally Gaussian Density Estimator (LGDE), which introduces a similar
idea to the problem of density estimation.

The LGDE is a new method for the non-parametric estimation of multivariate prob-
ability density functions. It is based on preliminary transformations of the marginal
observation vectors towards standard normality, and a simplified local likelihood fit of
the resulting distribution with standard normal marginals. The LGDE is introduced,
and asymptotic theory is derived. In particular, it is shown that the LGDE converges
at a speed that does not depend on the dimension. Examples using real and simulated
data confirm that the new estimator performs very well on finite sample sizes.

Paper 3 ”Non-parametric estimation of conditional density functions: A new method”

Let X = (X1, . . . , Xp) be a stochastic vector having joint density function fX(x) with
partitions X1 = (X1, . . . , Xk) and X2 = (Xk+1, . . . , Xp). A new method for estimating
the conditional density function of X1 given X2 is presented. It is based on locally
Gaussian approximations, but simplified in order to tackle the curse of dimensionality in
multivariate applications, where both response and explanatory variables can be vectors.
We compare our method to some available competitors, and the error of approximation is
shown to be small in a series of examples using real and simulated data, and the estimator
is shown to be particularly robust against noise caused by independent variables. We
also present examples of practical applications of our conditional density estmator in the
analysis of time series. Typical values for k in our examples are 1 and 2, and we include
simulation experiments with values of p up to 6. Large sample theory is established
under a strong mixing condition.
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Chapter 1

Introduction

1.1 The probability density function and its estimation

Let X be a stochastic variable, and denote by F (x) = P (X ≤ x) its probability dis-
tribution function. If F (·) is differentiable, the density function f(·) of F (·) is given
by

f(x) =
d

dx
F (x). (1.1)

Constructing estimates of the density function based on observed values of X is one of
the fundamental tasks is statistics. Not only does a good density estimate provide an
easily interpretable visualization of the behaviour of X — its realizations tend to fall
in the higher density regions more often than the lower density regions — it is also an
instrument which we may use to quantify further properties of X, such as moments,
quantiles and probabilities:

E(X) =

∫
xf(x) dx, Var(X) =

∫
(x− E(x))2 f(x) dx,

P (X ∈ A) =

∫
A

f(x) dx, qα(X) = F−1(α), where F (x) =

∫ x

−∞
f(t) dt.

Even if the theoretical density function does not exist in the strict mathematical sense
(1.1), it is often useful to calculate a density estimate anyway, either for the purpose of
data exploration, or as an intermediate step to more complex analyses. After all, real
data is discrete by nature since in practice no continuous variable can be recorded with
infinite accuracy. If it can, it is almost certainly not continuous.

The twentieth century saw the rise of three overall methods for estimating probabil-
ity models in general, and probability density functions in particular. The first is the
classical parametric approach, which is closely connected to the emergence of the maxi-
mum likelihood theory that was formalized by R.A. Fisher and others in the 1920s and
1930s (See Stigler (2007) for a comprehensive historical overview). It is generally easy to
fit a parametric model once it has been specified, and the theoretical foundation upon
which the classical parametric statistics rests is sound, solid and mature, and forms the
backbone of most introductory courses in mathematical statistics to this day. The pa-
rameter estimates determine the full model estimate, and they can often be analysed
and interpreted in their own right, as location-, scale- or rate-parameters in a density
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function, or as a regression coefficient governing the influence of a specific explanatory
variable in multiple linear regression.

It is not always straightforward to specify a parametric model, however, and even
worse; the practitioner will sometimes impose a parametric structure for the data-set
that is plain wrong. Whether the mistake stems from incompetence, old habits, or an
error in judgement, important features of the data may be missed, interpretation of the
parameter estimates will be questionable, and the ultimate decisions that are made based
on the analysis, will at best be sub-optimal, and in some cases cause serious damage.
The misuse of the parametric Gaussian copula has been blamed, rightly or not, to be
the cause of the 2008 financial crisis (Jones, 2009).

We avoid the problems caused by misspecified models in the non-parametric
paradigm. Instead of imposing a pre-specified structure, we estimate the probability
model based solely on the data. The default method for non-parametric density estima-
tion is the kernel estimator, which was introduced independently by Rosenblatt (1956)
and Parzen (1962). Suppose that the random variables X1, . . . , Xn are independent and
identically distributed with density function f(x). The kernel estimate of f based on
observations X1, . . . , Xn is given by

f̂(x) =
1

nh

n∑
i=1

K

(
Xi − x

h

)
,

where K(·) is a symmetric probability density function, and h is the bandwidth, or
window size, that determines the region of influence for each observation, the choice of
which is crucial to the performance of the estimator. The standard text on the kernel
density estimator is Silverman (1986), and the later years have seen advancements such
as transformation techniques (Marron and Ruppert, 1994), adaptive bandwidths (Terrell
and Scott, 1992), and higher- and infinite order kernels (Jones and Signorini, 1997; Politis
and Romano, 1999), to name a few central references.

The kernel estimator will always converge towards the true density function under
some regularity conditions, so one might ask why the maximum likelihood estimation of
parameters is still in use today, considering the risk of misspecification. It all comes down
to information. How much information does the data carry, and how much information
do we have before the data is even collected? In the parametric case, we assume a
certain structure, or family of models, based on experience perhaps, and the validity of
this assumption can, and should, be formally tested. Given the parametric assumption,
we can use all the information contained in the observations to estimate the relatively
small amount of remaining unknowns; the parameters.

In the strictly nonparametric case, the information contained in the data must be
used to estimate the entire model. Informally speaking, one might say that we have less
information per unit unknown in the latter case. In statistical terms, this means that the
variance of non-parametric methods is generally higher than for parametric methods. In
other words, we must pay the price of variance in order to let the data speak for itself,
and thereby reduce the misspecification.

The rapid emergence of powerful computing tools over the last few decades has fun-
damentally changed the field of statistics. This is of course also true in the special case
of density estimation. The framework of semi-parametric statistical methods embraces
the opportunities presented by the ability to calculate, evaluate, and optimize quickly
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and efficiently, in ways that we could scarcely dream about just thirty years ago. The
spirit of semi-parametric estimation is to avoid the “all-or-nothing”-situation with non-
or fully parametric methods, but rather compromise, and strike a balance between their
properties that is optimal in any given situation.

For example, we can use the logspline density estimator by Kooperberg and Stone
(1991) to fit a cubic spline to the logarithm of the unknown density function, with the
number and location of nodes being chosen automatically based on the data. If there
are many observations, one may allow the number of nodes to grow large, increasing the
flexibility of the method if there is enough information present to support it. We will use
this method actively in this thesis as a tool on the way to a semi-parametric estimator for
multivariate density functions. Other possibilities include the explicit mix of parametric
and non-parametric estimates in the method by Hjort and Glad (1995), and the local
polynomials by Fan and Gijbels (1996), which, although mainly a regression technique,
can be formulated as a density estimator as well.

Finally, we mention the local likelihood by Hjort and Jones (1996) and Loader (1996),
which works by fitting a parametric family locally to the unknown density. This concept
will play a central role in this thesis, and will therefore be explained in detail later on.

1.2 The curse of dimensionality

This thesis concerns the estimation of multivariate probability density functions. Denote
by X = (X1, . . . , Xp) a p-variate stochastic vector, and by F (x) = F (x1, . . . , xp) =
P (X1 ≤ x1, . . . , Xp ≤ xp) its distribution function. The multivariate density function, if
it exists, is defined in the same manner as in (1.1):

f(x) =
∂

∂x1 · · · ∂xpF (x).

Most of the discussion in the preceding section holds true also in the multivariate case.
Many parametric families of univariate density functions have multivariate generaliza-
tions, including of course the Gaussian distribution. Further, the famous Sklar’s (1959)
Theorem states that every continuous distribution function F (x1, . . . , xp), with p ≥ 2,
has a unique copula function C, such that

F (x1, . . . , xp) = C(F1(x1), . . . , Fp(xp)),

where Fi(·), i = 1, . . . , p are the marginal distribution functions for the variables in X.
This means that we can estimate the marginal distributions of the variables separately
from the dependence between them, which is governed by the copula function. There
exists several parametric families of copulas, on which there is a rich literature. See for
example Nelsen (2007) for an introduction to the topic.

The non-parametric kernel estimator also has a natural generalization to the multi-
variate case; let K(x) be a p-variate density function that is radially symmetric about
zero, and let H be a positive definite matrix of smoothing parameters. Using a random
sample (X1, . . . ,Xn), we estimate the unknown density f(x) by

f̂(x) =
1

n

n∑
i=1

1

det(H)
K(H−1(x−Xi)),
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which is usually simplified by restricting the smoothing matrix H to be diagonal.
So far, all seems well and good, but it turns out that both parametric and non-

parametric density estimation methods have serious problems when implemented in the
multivariate case. The reason is that we do not only have to construct an estimate
that is accurate for the individual (marginal) behaviour of each variable, it must also
capture the complete dependence structure between all the variables, which tends to grow
much harder for each additional variable. Again, it all comes down to the amount of
information required to construct an estimate with the desired accuracy, compared to the
amount of information that is contained in the data. It is reasonable that we must require
more data in the multivariate case, precisely to account for the extra information needed
in order to estimate the dependence structure of the unknown distribution in addition to
the marginal density functions. But how much more? Silverman (1986) gives an answer
in the case of the non-parametric kernel estimator: According to one measure, we need
842 000 observations in order for the ten-dimensional kernel estimator to achieve the
same accuracy as would only four observations in the one-dimensional case!

In the parametric framework, the problem is perhaps not so much the lack of data
as the lack of parametric models to try. Whether we fit a full distribution, like the mul-
tivariate normal or the multivariate t-distribution, or just the copula-function, of which
a moderate number of parametric families exists, we must essentially be able to summa-
rize a possibly complex dependence structure between multiple stochastic variables by
just a few parameters; and even if a given model does not strictly fail a goodness-of-fit
test, the data may, perhaps more often than we care to admit, be far too sparse to make
any sound inference about the validity of a given parametric family of densities.

The curse of dimensionality takes many forms, but in the specific problem of density
estimation it means that the number of observations needed to keep the precision of a
non-parametric density estimate grows sharply as the number of variables increases, or,
equivalently, the precision of a non-parametric density estimate based on a fixed number
of observations, decays sharply with dimension.

We can express the considerations above precisely in mathematical terms. Let f(·) be
the density function of the d-dimensional stochastic vector X, and denote by f̂P (·) the
parametric maximum likelihood estimate of f based on some parametric assumption,
and by f̂NP (·) a non-parametric kernel estimate. Both estimates are asymptotically
normal under some regularity conditions, with
√
n
(
f̂P (x)− f∗(x)

)
L→ N(0, σ21), and

√
nhd

(
f̂NP (x)− f(x)

)
L→ N(0, σ22),

(1.2)
where f∗ is the best approximant (in some sense) to f within the chosen parametric
family, and h → 0 is the smoothing parameter for the kernel estimator. The particular
expressions of σ21 and σ22 depend on the situation at hand, but are not interesting in
this context. We make two observations from these results. First, we see that the
dimensionality of the problem has no effect on the speed of convergence of the maximum
likelihood estimate. The asymptotic variance is not affected at all. The misspecification
error, however, will not go away unless we happen to be working within the correct
parametric family, which we have already argued becomes increasingly less likely in
several dimensions. The non-parametric estimate, on the other hand, converges to the
true density, but the rate of convergence slows down as

√
hd, which means that adding

just a few more variables to the problem, may increase the variance by several orders of
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magnitude.

1.3 Is there a way around?

The expressions (1.2) demonstrate that choosing between a parametric and a non-
parametric density estimate not only constitutes the choice between two extreme end-
points on a spectrum, but also that the distance between the two possibilities becomes
bigger in the multivariate case. We clearly need a semi-parametric compromise more
than ever, but do existing methods automatically scale up to serve the purpose? Not
quite, as we proceed to motivate briefly.

One of the main contributions of this thesis is to provide a version of the locally
parametric estimator by Hjort and Jones (1996) that is especially designed to work in
the multivariate case. Consider first the univariate problem, and assume that we wish
to estimate the unknown density f(x) based on the realized values of n independent and
identically distributed variables X1, . . . , Xn, each having density function f . The Hjort
and Jones (1996)-method requires us to choose a parametric family ψ(·;θ) for f(·), but
then provides a locally parametric estimate of f by fitting the parameter vector θ locally.
In each point x in the support of f , estimate the parameter vector by maximizing the
local log likelihood function

L(θ;X1, . . . , Xn) = (nh)−1
n∑

i=1

K(h−1(Xi − x)) logψ(Xi;θ)

−
∫

h−1K(h−1(x− y))ψ(y;θ) dy, (1.3)

where K and h still denote the kernel function smoothing parameter correspondingly.
This results in an estimated parameter vector θ̂(x), which, when substituted back into
the parametric family ψ, produces the local likelihood density estimate:

f̂LL(x) = ψ(x, θ̂(x)).

In Figure 1.1 we see a simple illustration of the local likelihood procedure in a uni-
variate example. In the left panel, we have plotted the Gamma(2,1)-density as a dashed
line. Using the local likelihood function (1.3) to fit the Gaussian distribution locally
based on 300 independent observations, results in two estimated parameters functions,
μ̂(x) and σ̂(x), that are plotted in the right hand panel. The solid line in the density plot
displays the estimated density function, which is just the univariate Gaussian distribu-
tion, with these estimated parameter functions in place of the corresponding parameters,
μ and σ.

The setup by Hjort and Jones (1996) provides a good compromise between fully
parametric, and fully non-parametric methods. The smoothing parameter h controls
not only the smoothness of the density estimate, but also the degree to which we trust
the local parametric family to be close to the truth. If the bandwidth grows to infinity,
the local likelihood function (1.3) will produce constant parameter estimates, which
corresponds to a standard, global, maximum likelihood estimate of the density. On
the other hand, if we let the bandwidth go to zero at a certain rate as the sample
size increases, we have a non-parametric density estimator with theoretical properties
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Figure 1.1: A univariate locally Gaussian density estimate of the Gamma(2,1)-density,
based on 300 observations

comparable to the kernel estimator (Hjort and Jones, 1996). In practical situations, with
a fixed and finite sample size, we will usually find ourselves somewhere in between these
two extremes, and seek a bandwidth that is optimal in that particular case.

Consider again the multivariate case where X is a p-variate stochastic vector with
density function f(x). The general local likelihood approach is not well suited to tackle
the curse of dimensionality on its own, however, and the reason is simple: Instead of
estimating the unknown, p-variate density function directly, we must rather estimate
several completely unknown, p-variate, parameter functions. If we, for example, were
to fit the three-variate Gaussian distribution to some data using this method directly,
we would have to produce nine estimated p-variate functions, one for each parameter in
the parametric family. It seems as if we have achieved very little, except for a heavy
computational burden.

The core contribution of this thesis is a simplified version of the Hjort and Jones
(1996)-strategy that is especially designed to perform well in the multivariate case, have
simple theoretical properties, and be easily implemented. We introduce the Locally
Gaussian Density Estimator (LGDE), and the general idea is to proceed according to
the following algorithm:

1. Transform the observations to approximate marginal standard normality using the
logspline density estimator by Stone et al. (1997).

2. To each pair (Zi, Zj) of transformed variables, fit the standardized bivariate Gaus-
sian distribution

ψ(zi, zj ; ρij) =
1

2π
√

1− ρ2ij

exp

(
− 1

2(1− ρ2ij)
[z2i − 2ρijzizj + z2j ]

)
(1.4)

locally, using the local likelihood function (1.3).
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3. Collect all the pairwise estimated local correlations in one p × p local correla-
tion matrix R̂(z) = {ρ̂ij(zi, zj)}, which is then used in the standardized p-variate
Gaussian density function in order to produce a density estimate on the marginally
Gaussian scale:

f̂(z) =
1

(2π)p/2|R̂(z)|1/2
exp

(
−1

2
zT R̂(z)−1z

)
. (1.5)

4. Transform back to the original scale.

5. If necessary, normalize the density estimate so that it integrates to one.

The details of these points will of course be presented in due time, when the necessary
notation has been established. A central result deserves reproduction in this preliminary
discussion, however: Denote by f̂LGDE(x) the resulting density estimate from the pro-
cedure described above. We will see that, under some regularity conditions,

√
nh2

(
f̂LGDE(x)− f0(x)

)
L→ N(0, σ23),

which, we will argue, represents a true middle ground between the convergence results in
(1.2). First of all, our new estimator does not converge to the true and unknown density
function f , but rather to its best approximant (in some sense) within the class of densities
that admits the pairwise dependence structure as described in the algorithm above. It
turns out that this class of functions is very flexible, and provides a good approximation
in many cases. On the other hand, the convergence rate is

√
nh2, no matter what

the dimensionality of the problem is, which is not surprising at all, precisely because
of the assumed pairwise dependence structure. Simply stated: we are able to reduce
the variance significantly by imposing a restriction on the dependence structure of the
stochastic vector, but pay by introducing some misspecification error, but, as we will
see, that is a very reasonable price in many cases.

1.4 The conditional density function

Obtaining the estimate of a high-dimensional joint density function, however fundamen-
tal it may be, is of somewhat limited practical use. The conditional density function,
on the other hand, is extremely useful in the formulation of a large, and diverse, set
of statistical methods, including regression analysis, dependence modelling, time series,
and the construction of Bayesian networks. Non-parametric estimates of the conditional
density can be useful in all stages of the analysis.

Partition the stochastic vector X = (X1, . . . , Xp) into two sub-vectors X1 and X2,
such that X1 = (X1, . . . , Xk) and X2 = (Xk+1, . . . , Xp). The Conditional density of
X1|X2 = x2 is given by

fX1|X2=x2
(x1|X2 = x2) =

fX(x1,x2)

fX2
(x2)

(1.6)

We will drop the subscripts on the density functions for easier notation.
Rosenblatt (1969) made the first systematic attempt at constructing a non-parametric

estimate of (1.6) by simply estimating the numerator using the kernel estimator, and
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putting the marginal density of this estimate in the denominator. If we use the Gaussian
kernel function, this simplifies to

fX1|X2=x2
(x1|X2 = x2) =

f̂H(x1,x2)∫
f̂H(x1,x2) dx1

=
f̂H(x1,x2)

f̂H∗(x2)
, (1.7)

where H∗ is the lower right block of H∗ corresponding to the variables in X2. It is
not necessarily true, however, that the bandwidths that are optimal for estimating the
joint density f(x), are optimal for estimating a functional of f , such as its derivatives,
quantiles, or, in this case, the conditional density of a subset of the variables. This has
triggered some attempts to improve the basic estimator (1.7), which include a collection
of bandwidth selectors by Bashtannyk and Hyndman (2001), a fast bandwidth selection
algorithm by Holmes et al. (2012), and the work by Li and Racine (2007), who provide
the practitioner with a conditional kernel density estimator that works in the general
multivariate situation, with a mix of continuous and discrete variables. The latter work
is also implemented in the R programming language (R Core Team, 2015) through the
np-package (Hayfield and Racine, 2008), which makes it very appealing to the general
practitioner. Faugeras (2009) acknowledges the problematic aspect of putting a possibly
low-valued and high-variance kernel density estimate in the denominator of (1.7), and
reformulates the problem using the copula density, with promising results.

Hyndman et al. (1996) starts a line of non-parametric conditional density estimators
that move away from the kernel estimator, and towards the semi-parametric framework.
The authors adjust the kernel estimator, so that it has mean equal to some better
performing non-parametric regression of the conditional mean than a standard kernel
smoother. Fan et al. (1996) formulate the problem as a locally linear or locally quadratic
least squares fit, while Hyndman and Yao (2002) restrict this method so that it is always
non-negative, and also introduce locally linear or locally quadratic models that are fitted
using local likelihood. This work has been implemented in R through the hdrcde-package
(Hyndman et al., 2013). Finally, Fan and Yim (2004) provide a new method for selecting
bandwidths for the local polynomial fits above, using cross-validation.

The second main contribution of this thesis is to develop a new conditional density
estimator, and it turns out the locally Gaussian multivariate density estimator that was
sketched in the preceding section serves as a natural starting point for this purpose.
It is well known that a subset of the variables in a multivariate normal distribution is
again jointly normally distributed, and further, that the conditional density constructed
from response- and explanatory variables that are all jointly normal, is also normally
distributed. Specifically, if Z ∼ N(μ,Σ), Z is partitioned into the subsets (Z1,Z2),
and the mean vector and covariance matrix is partitioned correspondingly;

μ =

(
μ1

μ2

)
and Σ =

(
Σ11 Σ12

Σ21 Σ22

)
,

then Z1|Z2 = z2 is jointly normal with expectation vector μ∗ and covariance matrix
Σ∗, where (Johnson and Wichern, 2007, Chap. 4)

μ∗ = μ1 +Σ12Σ
−1
22 (x2 − μ2), (1.8)

Σ∗ = Σ11 −Σ12Σ
−1
22 Σ21. (1.9)
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This result follows from the fact that the variables in Z2 are jointly normal, and direct
manipulation of the fraction (1.6), and points to a natural extension of the LGDE, so
that it can also be used for the estimation of conditional density functions.

Consider separate locally Gaussian estimates of the numerator and denominator of
(1.6), produced using the algorithm in the preceding section. Both estimates will be
on the form (1.5), up to the final back-transformation to the original scale. The key
observation to make here is that, in each point z, the local correlation matrix of the
marginal density estimate in the denominator, R̂22(z) say, is exactly the lower right
block of the local correlation matrix R̂(z) in the numerator, which is a consequence
of our pairwise estimation procedure. It follows that we can use the results (1.8) and
(1.9) directly to express the fraction of locally Gaussian density estimates as one locally
Gaussian density estimate, with local correlation and local covariance matrix given by

μ̂∗(z) = R̂12(z)R̂
−1
22 (z)z2,

Σ̂∗(z) = R̂11(z)− R̂12(z)R̂
−1
22 (z)R̂21(z),

where the indices mean the block-wise decomposition of R̂, following the same pattern
as in (1.8) and (1.9), and the expectations and variances are 0 and 1 respectively, as in
the pairwise normal distributions (1.4).

With minimal effort, we can therefore present a semi-parametric conditional density
estimator that allows several response variables as well as several explanatory variables.
Its finite sample performance turns out to be very good, and, in most cases examined by
us, superior to the few competitors that have publicly available computer implementa-
tions. The practical contribution of this work is the code for the implementation of the
new estimator, and the theoretical contribution consists of asymptotic results that are
parallel to those derived for the unconditional version of the LGDE, but proven under a
strong mixing condition, allowing dependent observations.

1.5 Summary of papers

1.5.1 Summary of Paper 1: ”Bias and bandwidth for local likelihood density estima-
tion”

Otneim, Håkon, Hans Arnfinn Karlsen, and Dag Tjøstheim. "Bias and bandwidth for local
likelihood density estimation." Statistics & Probability Letters 83.5 (2013): 1382-1387.

The article Locally parametric nonparametric density estimation by Hjort and Jones
(1996) is the main reference for this thesis. In it, the authors provide a complete frame-
work for using local likelihood to produce non-parametric, but locally parametric, prob-
ability density estimates. Their work appear in the same issue of the Annals of Statistics
as Local likelihood density estimation by Loader (1996), who tackle the same problem,
using the same tool, but Loader (1996) is more in line with the contemporary regres-
sion literature, in modelling the log-density function as a local polynomial. Hjort and
Jones (1996), on the other hand, provide the framework for fitting a parametric family
of densities locally.
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In Paper 1 Bias and bandwidth for local likelihood density estimation, we lay some
ground work. By fitting the normal distribution locally using the machinery by Hjort and
Jones (1996), we are able to demonstrate that it is a very appealing estimator for many
univariate density functions, compared to the traditional kernel estimator. In particular,
the locally Gaussian estimator appears to be much more robust against oversmoothing
than the kernel estimator.

We also investigate some theoretical issues of the locally parametric estimator. It
has been known for a while (cf. Tjøstheim and Hufthammer (2013)), that special care
must be taken when deriving the asymptotic properties of a locally parametric density
estimator with more than one parameter. In the two-parameter case, for example the
frequently used univariate normal distribution, it turns out that the covariance matrix
of the local parameters converges as (nh3)−1, instead of the usual non-parametric rate
of (nh)−1, where h is the smoothing parameter. We show in Paper 1 that the density
estimate has an additional bias term of the same order.

Further, we investigate the issue of estimating density functions with bounded sup-
port, which is known to cause bias problems when using the kernel estimator. Hjort and
Jones (1996) show that, if the chosen local parametric family has the same support as
the unknown density function, there will be no boundary issues. We show in Paper 1
that if that is not the case (for example if we fit the normal distribution locally to a den-
sity with bounded support), we can use the bias corrections that Jones (1993) propose
for the kernel estimator, for local likelihood estimates also.

1.5.2 Summary of Paper 2: ”The locally Gaussian density estimator for multivariate
data”

In this paper, we give a detailed account of the locally Gaussian density estimator, that
was sketched in Section 1.3. It is a well known problem that the non-parametric kernel
estimator, even though easily defined and calculated in higher dimensions, does not
work very well in the multivariate case. The explanation is simple: The estimation of a
density f(x) requires the number of observations to grow enormously fast as the number
of variables increases in order to keep a fair amount of accuracy, and that is usually not
practically possible.

Turning directly to local likelihood will not help us either, because that would en-
tail the estimation of just another multivariate function, the parameter θ(x), which, to
complicate matters even more, may itself be a vector of several components. We try
to simplify by describing the p-variate density function with a set of bivariate param-
eter functions, by means of a simplified version of a local multivariate Gaussian fit, as
described in Section 1.3.

Simplification of reality is absolutely necessary when estimating a multivariate density
function non-parametrically. We show through simulations that our estimator can be
trusted to provide very good results in a variety of situations, and still be robust, so that
it does not perform particularly worse than its competitors in difficult situations.

We prove large-sample results for the LGDE by mostly turning to existing theory,
but intermixed with some recent theory of copula estimation.
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1.5.3 Summary of Paper 3: ”Non-parametric estimation of conditional densities: A
new method”

As indicated in Section 1.4, we can use the local correlations that we estimate along the
way in order to produce the LGDE, to rather estimate a conditional density function.
This, we believe, can be of great practical use, because the estimator performs well, and
can be applied to a wide variety of problems, as we set out to demonstrate in Paper 3:
Non-parametric estimation of conditional densities: A new method.

The disposition of Paper 3 is of course very similar to that of Paper 2, with key parts
being the asymptotic theory and the presentation of practical examples. While much
of the theoretical considerations can be transferred directly from the unconditional to
the conditional case, we prove the large-sample properties of the conditional density
estimator under a new set of conditions. An important difference is that we replace the
requirement of independent samples with a strong mixing condition.
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Chapter 2

Computer code

All computer programs used in this thesis have been written in the R-programming
language (R Core Team, 2015). Being a self-taught programmer, I do not claim that
the code fulfills good programming standards to any particular high degree, but the
functions nevertheless do their job well enough.

I have compiled the key elements of my code into an R-package, that will enable the
reader to quickly put the methods described in the following pages into practice. The
architecture of the larger simulation experiments is not suitable for general publication,
however, but will of course be made available upon request to ensure easy reproducibil-
ity. The code can be installed into R by issuing the following commands (requires the
excellent devtools-package (Wickham and Chang, 2015) ):

library(devtools)
install_github("hotneim/lgde")

There are two main functions in this package:

multiLocal()

Estimates the multivariate density function of a data matrix using the
method described in Paper 2. Each row represents on observation, and
each column represents one variable. Optional arguments are bandwidths,
which, if not supplied, will use cross-validation to calculate the smoothing
parameters, and grid, which specifies the points where the estimate should
be evaluated. The grid-argument must have the same number of columns
as the data-matrix.

condLocal()

Estimates the conditional density using the method described in Paper 3.
Takes data of the same format as for the multiLocal-function, but one
must also supply a vector of conditions on the explanatory variables. The
function always assumes that the response variables come first, so if data is
an n×4-matrix with columns X1, X2, X3 and X4, supplying cond = c(1, 2)

means that we estimate the joint conditional density of (X1, X2|X3 =
1, X4 = 2). The grid must have the same number of columns as there are
response variables, and the bandwidths-argument has the same meaning
as above.

Although mainly invoked under the hood by the functions above, the following rou-
tines may come in handy as well:
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transLocal()
Transforms a multivariate data set to approximate standard normal
marginals, by estimating the marginals using the logspline-package
(Kooperberg, 2016).

HLocal()

Calculates the cross-validation bandwidths as described in Paper 2. As-
sumes standard normal marginals, so for a general data-matrix, use
HLocal(transLocal(data)$transformed.data). This is by far the most
time consuming element of the estimation process.

pluginLocal()

A quick and dirty plug-in approximation to the cross-validation band-
width selection routine. Takes two arguments: n is the number of ob-
servations and nvar is the number of variables. The function returns
a bandwidth object that can be used directly in the multiLocal- and
condLocal-functions, which contains 1.75× n−1/6 in all of its elements.

The following R-packages have been used, either in the functions mentioned above,
or along the way in simulation experiments, or the production of graphics and tables:

Package name Author(s) (Year) Purpose

copula Hofert et al. (2015) Simulation from and evaluation of
copula models

doMC Revolution Analytics (2014) Parallel processing
extrafont Chang (2014) Fonts in graphics
devtools Wickham and Chang (2015) Make an R-package
fastICA Marchini et al. (2013) Projection pursuit
gdata Warnes et al. (2015) The upperTriangle-function

ks Duong (2015) Multivariate kernel density estima-
tion

MBESS Kelley and Lai (2012) the cor2cov-function

mvtnorm Genz et al. (2016) Implementation of the multivariate
normal distribution

np Hayfield and Racine (2008) Non-parametric conditional density
estimation

Rlab Boos and Nychka (2012) Generate random Bernoulli vari-
ables

sn Azzalini (2015) The skew-normal and skew-t-
distributions

stringi Gagolewski and Tartanus (2015) Handle strings
stringr Wickham (2015) Handle strings
SuppDists Wheeler (2016) Generate inverse Gaussian variables
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Copas (1998) and Hall and Tao (2002). To the best of our knowledge, however, very little has been done to examine the

finite sample properties of local likelihood estimates and to compare them with kernel estimates. The second contribution

seeks to rectify this. Our numerical experiments suggest that local likelihood density estimates performwell, and potentially

better than corresponding kernel estimates. In particular, this is exemplified by using a local Gaussian family for a variety

of bandwidths in Section 3. Finally, we demonstrate in Section 4 that boundary effects as a function of the bandwidth can

be dealt with using familiar methods from non-parametric theory. We believe these results to be novel as well.

2. Asymptotic bias

For iid observations, the law of large numbers implies that the likelihood equations (1) converge in probability to∫
Kh(x − y)uj(y, θ){f (y) − φ(y, θ)} dy = 0, j = 1, . . . , p, (2)

as n → ∞ and the bandwidth h is held fixed. Following Hjort and Jones (1996) the population parameter θ0(x) = θ0,h(x)
is defined as the unique solution to (2) and again following Hjort and Jones (1996) we assume its existence throughout this

paper. Letφ0(x) = φ(x, θ0). Hjort and Jones (1996) investigate the asymptotic bias of the local likelihood estimate by assess-

ing the size of Êf (x) − f (x) = E(̂f (x) − φ0(x)) + (φ0(x) − f (x)) which in the one-parameter case is of order O((nh)−1 + h2).
They go on to conjecture that the h2-part is the first step in a pattern known to exist for local polynomials: h2-convergence

for one and two parameters, h4-convergence for three and four parameters and so on. We will see below that the analogy of

the (nh)−1-part also depends on the dimension p of θ , and that it seems to increase with larger p as h → 0. We use the fact

established by Hufthammer and Tjøstheim (2008) (see also Tjøstheim and Hufthammer, 2013, for higher dimensional θ )
that the covariance matrix of θ̂ , say Σθ̂ , is of order O((nh3)−1) in the two-parameter case. As a direct consequence we will

see below that E(̂f (x)−φ0(x)) is of order O((nh3)−1) as well. This leads to our main result E(̂f (x)− f (x)) = O((nh3)−1 +h2)
stated with regularity conditions at the end of this section.

Recall that Ui(θ) = ∂/∂θiLn(θ, X), and put Vij = ∂/∂θjUi(θ0) and Wijk = ∂/∂θkVij(θ0). Collect these quantities in the

2 × 2 matrices I = E{−Vi,j}i,j=1,2 and Ji = E{Wijk}j,k=1,2 for i = 1, 2, assuming they exist. Finally, write the estimate and

population parameter in terms of their components as θ̂ = (̂θ1, θ̂2)
T and θ0 = (θ0,1, θ0,2)

T and the difference between them

as Zi = θ̂i − θ0,i.
We approximate Eq. (1) by a second order Taylor polynomial about θ0 and take its expectation, noting that EUi(θ0) = 0

by (2). Following the lines of Cox and Snell (1968) for ordinary maximum likelihood estimates,

0 = Ui(̂θ) ∼

2∑
j=1

[
EZjEVij + Cov(Zj, Vij)

]
+

1

2

2∑
j=1

2∑
k=1

[
E(ZjZk)EWijk + Cov(ZjZk,Wijk)

]
, (3)

for i = 1, 2. Here we neglect the remainder; it being evaluated in Eq. (5) below. Taking both components into account, we

can write Eq. (3) more compactly using matrix notation,

I E(Z) ∼

{
2∑

j=1

Cov(Zj, V�j) +
1

2
Tr(Σθ̂ J�) +

1

2

2∑
j,k=1

Cov(ZjZk,W�jk)

}
�=1,2

, (4)

where Tr(·) denotes the trace of a matrix and where Z = (Z1, Z2)
T . Direct calculations and applications of the Schwarz

inequality show that the first and third term on the right hand side of (4) are not larger than (nh)−1 asymptotically. Further,

Hufthammer and Tjøstheim (2008) show that the matrix I is O(h2), and inspection of the components in J1 and J2 using the

same methodology reveals that these two matrices are of the same order as I .
It follows immediately that Êθ − θ0 has the same asymptotic order as the covariance matrix of θ̂ , which we have already

noted is O((nh3)−1).
We need to check that the remainder in the Taylor expansion above is dominated by its preceding terms. We do this

by assuming that Wi,j,k(θ) is continuously differentiable and that θ̂ converges almost surely to the population parameter

θ0, conditions for which are provided by Theorem 3 in Tjøstheim and Hufthammer (2013) in a more general bivariate time

series setting. The Taylor expansion (3) can be written exactly as

0 = Ui(θ0) +

2∑
j=1

(̂θj − θ0,j)Vi,j(θ0) + Si(θ0) + (Si(ξ) − S(θ0)), (5)

where ξ = (ξ1, ξ2)
T is a random quantity determined by the mean value theorem satisfying

‖̂θ − ξ‖ ≤ ‖θ0 − θ̂‖

with probability one, and where S(ξ) = (S1(ξ), S2(ξ))T is given by

Si(ξ) =
1

2

2∑
j=1

2∑
k=1

(̂θj − θ0,j)(̂θk − θ0,k)Wi,j,k(ξ).
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Since W is assumed to be continuously differentiable, |Si(ξ) − Si(̂θ)| ≤ C‖θ0 − ξ‖3 ≤ C‖θ0 − θ̂‖3 with probability one for

some constant C . The remainder is therefore asymptotically negligible. Our argument is completed by applying the delta

method to see that E(̂f (x) − φ0(x)) ∼ E(̂θ(x) − θ0(x)) = O((nh3)−1).
To sum up, we have the following main result: If f̂ (x) is the density estimate resulting from a local likelihood fit using a

two-parameter family, and if

(1) there exists a unique solution θ0 to Eq. (2),
(2) the local likelihood function is four times continuously differentiablewith respect to the parameter, which holds trivially

for the Gaussian family, and
(3) the parameter estimate θ̂ converges almost surely to the population parameter θ0; conditions for this being given by

Theorem 3 in Tjøstheim and Hufthammer (2013),

then

Êf (x) − f (x) = O((nh3)−1 + h2). (6)

Hufthammer and Tjøstheim (2008) show using the delta method that local likelihood density estimates regain the

usual asymptotic variance of order (nh)−1 in spite of the variance of the parameter estimates being of larger order. This

happens due to some cancellations that do not occur for the bias. The variance of order O((nh)−1) and squared bias of

order (h2 + (nh3)−1)2 is therefore balanced asymptotically by choosing the bandwidth to be proportional to n−1/5, which

is standard procedure in kernel estimation (see e.g. Silverman (1986)). This parallel will be exploited in Section 3.2 on

bandwidth selection.

It is worth noting that, Tjøstheim and Hufthammer (2013) go even further and show that the variance of the local

parameters is O((nh6)−1) when using the bivariate Gaussian family with its five parameters, and we conjecture that there

is a corresponding bias term of the same order.

3. The practical implementation

3.1. Choosing a parametric family

All the theoretical derivations performed by Hjort and Jones (1996) show that the parametric family φ(x, θ) should be

as close to the true density as possible in order to maximize performance. From a practical point of view, this means that

we should consider the nature of our data and make sure that our candidate family is actually able to reach the unknown f

with a proper set of parameters, which is the essence in assuming the existence of θ0 as the unique solution of Eq. (2).

There are, however, situations in which the parameter estimates themselves are more interesting than the density

estimates. Consider for example the idea in Tjøstheim and Hufthammer (2013) of estimating the local dependence between

stochastic variables as the local correlation resulting from a local bivariate Gaussian fit. This leads to the question to which

degree the Gaussian family could serve as a general family for local likelihood density estimates. It is indeed a flexible

family that can approximate many types of curves locally. We have carried out a number of experiments, some of which are

described below, in which the Gaussian family with good precision estimates non-Gaussian densities. A somewhat different

approach is explored by Loader (1996), who fits local polynomials using the same likelihood equations as we do.

We estimate four different distributions by fitting a Gaussian family and using a Gaussian kernel aswell, and compare the

results with the traditional kernel estimator. They are a bimodal normal distribution with parameters (μ1, μ2, σ1, σ2, p) =

(3, 5, 1, 0.5, 0.65), a t-distribution with one degree of freedom, a gamma distribution with parameters (α, β) = (2, 1) and
a normal inverse Gaussian distribution with probability density function

f (x) =
√

χ(ψ + γ 2) exp
(√

χψ
)
exp((x − μ)γ )

K−1

(√
(χ + (x − μ)2)(ψ + γ 2)

)
π

√
(χ + (x − μ)2)(ψ + γ 2)

with parameters (χ, ψ, μ, γ ) = (2, 1, 0, 1). In order to make a best case comparison, we calculate the best possible

bandwidth in each case in terms of minimum mean integrated squared error (MISE).

The results from our simulations are summarized in Fig. 1 and in Table 1. The mean squared errors have been calculated

using 200 data sets at each bandwidth. We make two suggestions based on our simulations. First, the Gaussian family is

capable of producing just as good, and in some cases better, density estimates than the non-parametric kernel estimator

for a wide variety of probability density functions. Second, the local likelihood density estimator is much less prone to

oversmoothing than the kernel estimator. This behavior is not unexpected considering what happens to the two types of

estimates as h → ∞. It is interesting to note, however, that the two errors seem to separate in size quickly after the optimal

bandwidth, so choosing a too large bandwidth will yield a smaller error when employing the local likelihood methodology.

3.2. Choosing the bandwidth

Based on our remarks concluding Section 2 on the parallel asymptotics between local likelihood and kernel estimation,

we find it natural to base a data driven bandwidth selector on existing theory.Whenusing the kernel estimator,weminimize
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(a) The bimodal Gaussian

distribution.

(b) The Student’s t-distribution. (c) The gamma distribution. (d) The normal inverse Gaussian

distribution.

Fig. 1. Mean integrated squared error for four different distributions fitted locally with the Gaussian parametric family (dotted line) and the kernel

estimator (dashed line) as a function of the bandwidth.

Table 1

Performance of local likelihood and kernel density estimators based on 200 data sets, each consisting of 1000 observations. We denote by hOPT the

bandwidth that minimizes MISE using the two methods (calculated through simulations), while h∗
PM and hSJ denote the bandwidths calculated by our

modified Park/Marron approach for local likelihood and the Sheather/Jones selector for the kernel estimator, respectively. MISE is the observed mean

integrated squared error at the optimal bandwidths, and we integrate over a region so large that increasing it even further gives the same result. Note that,

hSJ does not seem to work for the t-distribution in the kernel case. This is probably because the squared density integral which appears in the derivation

of hSJ does not exist for this distribution.

Distribution Local likelihood Kernel estimator

hOPT h∗
PM MISE hOPT hSJ MISE

Bimodal normal distribution 0.24 0.32 0.00132 0.22 0.23 0.00138

t-distribution 0.35 0.29 0.00089 0.27 0.02 0.00107

Gamma distribution 0.22 0.27 0.00172 0.21 0.22 0.00163

Normal inverse Gaussian dist. 0.41 0.31 0.00083 0.27 0.27 0.00098

the asymptotic mean integrated squared error (AMISE) by utilizing the bandwidth hAMISE = {R(K)/σ 4
K R(f

′′)}1/5n−1/5, where

R(g) =
∫
g2(x) dx and σ 2

g =
∫
x2g(x) dx. Unfortunately, the optimal bandwidth depends on the unknown f through R(f ′′),

so Park and Marron (1990) suggest to use the bandwidth that solves the equation

h =
R(K)

R(f̃ ′′
α(h))σ

4
K

n−1/5, (7)

whereα(h) is a known function of the bandwidthhwhich is optimized for estimatingR(f ′′), and f̃α(h)(x) is the kernel estimate

of f obtained using this bandwidth. As a crude modification to the local likelihood case, we propose to substitute ˜f ′′ in (7)

by the corresponding local likelihood estimate f̂ ′′. According to Hjort and Jones (1996), R(f ′′) should actually be replaced by

R(f ′′ − φ′′
0 ), but it is unclear how φ′′

0 can be estimated. They indicate that this could be done using the same bandwidth h as

in the estimation of f , but that gives inadequate results in our examples.

Sheather and Jones (1991) improve Park and Marron’s method in terms of convergence rates, but it would make little

sense to translate this improvement to our rather unpolished modification. We note, however, that in our examples, the

performance of local likelihood density estimates using our modified Park/Marron bandwidth selector performs at least as

well as, and in some cases better than kernel estimates with Sheather/Jones-bandwidths (not given in Table 1).

4. Estimating densities with bounded support

Awell knownproblemwith the kernel estimator is the increased bias that ariseswhen estimating a densitywith bounded

support. We assume throughout this section, without loss of generality, that our unknown density f is positive on [0, ∞)
only. We have in fact included one such density, the gamma distribution, in our comparison in Fig. 1 and Table 1 without

boundary correction, but this density tends to zero as x → 0 which makes it easier to handle. In a more general case, if f̃ (x)
denotes the kernel estimate, Marron and Ruppert (1994) show that, for x < h,

Ef̃ (x) = a0(p)f (x) − a1(p)hf
′(x) +

a2(p)h
2

2
f ′′(x) + O(h2), (8)

where x = ph, p ∈ [0, 1], the kernel K has support [−1, 1] (we use the uniform kernel K(x) = 1

2
1[−1,1] in the following

simulations), and ai(p) =
∫ p

−1
uiK(u) du. We regain the usual expansion Ef̃ (x) ∼ f (x) + (h2/2)f ′′(x) for x > h. Hjort and

Jones (1996) show that no additional bias occurs at boundaries in local likelihood estimates if the parametric family has the

same support as the unknown density. See Fig. 3(b) for an example where the parametric family respects the boundary of

the unknown density. We have argued, however, that the Gaussian family produces good estimates in a variety of settings,
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(a) No reflection. (b) With reflection method.

Fig. 2. Seven local likelihood density estimates of the exponential distribution f (x) = exp(−x)without any adjustment (a) and using the reflectionmethod

(b). Each data set consist of 1000 observations, and a bandwidth of 1.5 has been used.

but since the normal distribution has unbounded support, similar effects as (8) arise. Write Eq. (2) as

0 =

∫ x+h

0

K ∗
h (x − y)u0(y)f (y) dy −

∫ x+h

x−h

Kh(x − y)u0(y)φ0(y) dy, (9)

where the notation K∗
h indicates that we may actually use a modification of the kernel Kh in the local likelihood equations.

We proceed in the exact same manner as Marron and Ruppert (1994), and, starting with K ∗
h = Kh, arrive at

0 = a0(p)u0(x)f (x) − ha1(p)[u0(x)f (x)]
′ +

h2a2(p)

2
[u0(x)f (x)]

′′ − u0(x)φ0(x) +
h2

2
[u0(x)φ0(x)]

′′, (10)

which results in

Êf (x) = a0(p)f (x) − ha1(p)[u0(x)f (x)]
′/u0(x) + O(h2 + (nh3)−1) (11)

in the two-parameter case, where ai(p) =
∫ p

−1
uiK(u) du.

Jones (1993) presents several methods for dealing with boundary bias for the kernel estimator, and we will briefly look

at two of these below, to see that they apply just as well for local likelihood estimates.

4.1. The reflection method: h-convergence

A very simple method for ensuring consistency (but with bias of order h) is to reflect our data set about zero which

amounts to putting f̃R(x) = f̃ (x) + f̃ (−x). We see that this works for local likelihood as well by expanding (9), but this time

with −x in place of x:

0 = a0(−p)u0(x)f (x) − h{2pa0(−p) + a1(−p)}[u0(x)f (x)]
′

+ h2

{
2p2a0(−p) + 2pa1(−p) +

a2(−p)

2

}
[f (x)u0(x)]

′′ − u0(−x)φ0(−x) −
h2

2
[u0(−x)φ0(−x)]′′ + o(h2), (12)

where we have used the same calculations as Marron and Ruppert (1994) again. By adding (10) and (12) together and using

that a0(−p) + a0(p) = 1 and a1(−p) = a1(p), it follows that

E
(̂
f (x) + f̂ (−x)

)
= f (x) − 2h{pa0(−p) + a1(−p)} + O(h2 + (nh3)−1)

in the two-parameter case. The reflection method thus works in the same way for local likelihood density estimates as it

does for the kernel method. See Fig. 2 for a simple illustration using the exponential distribution.

4.2. Kernel modification: h2-convergence

Jones (1993) proposes tomodify the kernel function K to a function K ∗
h in order to obtain a∗

0(p) = 1 and a∗
1(p) = 0, where

a∗
i (p) is defined in the same way as for Kh, and thereby regaining the usual O(h2) convergence. From (10) we see that, this
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(a) Kernel corrected estimates. (b) Gamma parametric family.

Fig. 3. Seven realizations using (A) the kernel correction (n = 10 000, h = 0.1) and (B) using the Gamma parametric family (n = 1000, h = 0.5). The

true density is the exponential density f (x) = exp(−x).

will work also in the local likelihood case if we in Eq. (9) use the boundary kernel given by

K ∗(x) =
(a2(p) − a1(p)x)K(x)

a0(p)a2(p) − a21(p)
,

for which the desired properties are easy to verify.

The downside of such a kernel modification is that the parametric family could in some cases, local Gaussian being one

of them, exhibit large departures from the true density near the boundary, and in practice we need smaller bandwidths,

and hence more data to make the method essentially non-parametric in this area. See Fig. 3(a) for an example with 10000

observations, in which the bandwidth cannot be much larger than 0.1.
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The Locally Gaussian Density Estimator for

Multivariate Data

H̊akon Otneim Dag Tjøstheim

Abstract

It is well known that the Curse of Dimensionality causes the standard Kernel
Density Estimator to break down quickly as the number of variables increases. In
non-parametric regression, this effect is relieved in various ways, for example by
assuming additivity or some other simplifying structure on the interaction between
variables. This paper presents the Locally Gaussian Density Estimator (LGDE),
which introduces a similar idea to the problem of density estimation.

The LGDE is a new method for the non-parametric estimation of multivariate
probability density functions. It is based on preliminary transformations of the
marginal observation vectors towards standard normality, and a simplified local
likelihood fit of the resulting distribution with standard normal marginals. The
LGDE is introduced, and asymptotic theory is derived. In particular, it is shown
that the LGDE converges at a speed that does not depend on the dimension.
Examples using real and simulated data confirm that the new estimator performs
very well on finite sample sizes.

1 Introduction

The Curse of Dimensionality precludes the use of many common statistical methods in
higher dimensions. The problem is a consequence of the geometry of Euclidean spaces,
and will not be solved when the next generation of computing power arrives; it will poten-
tially get worse, as the amount and complexity of data increase. There exist techniques
for multivariate data analysis that relieve the effects of the Curse of Dimensionality in
various ways. This is especially true for non-parametric regression analysis, but to a
much smaller extent in density estimation. In this paper, we present a new estimator
for probability density functions that is especially designed to be flexible, yet robust,
when fitted to increasingly higher dimensional data (dimensions 2-10 in this paper) of
unknown parametric origin.

Suppose that the observations X1, . . . ,Xn are independent and identically dis-
tributed with an unknown density function, f(x), that we wish to estimate. Classi-
cal statistics provides two fundamentally different approaches to the problem. If we
know the functional form of the unknown density up to a set of parameters, they can
be estimated efficiently by maximum likelihood. If a parametric assumption cannot be
supported by the data, or prior knowledge, a non-parametric method such as the kernel
estimator is the natural alternative. It is well known, however, that the kernel esti-
mator breaks down quickly as the dimension of our data increases. Silverman (1986)
shows that we need close to a million ten-dimensional observations in order to produce
a kernel density estimate with the same accuracy as would only four observations in one
dimension.

1
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Techniques for dimensionality reduction exist, including the widely used Principal
Component Analysis. The reduced observation vector may still have too many dimen-
sions to produce a fully non-parametric estimate, though, possibly forcing the experi-
menter to choose a parametric model far from the true distribution. In many cases, that
means fitting the multivariate normal distribution, because the parameter estimates are
quick to calculate and easy to interpret.

There is a middle road, however, which can be labelled broadly as semi-parametric
density estimation. Methods include the local likelihood estimators by Hjort and Jones
(1996) and Loader (1996) and the combination of non-parametric and parametric es-
timates provided by Hjort and Glad (1995). A semi-parametric model can be con-
sidered as a trade-off between non-parametric flexibility and parametric performance,
making them very attractive in practical use, exemplified by the recent work by Geenens
(2014), who shows that the local likelihood variety by Loader (1996) combined with a
pre-transformation of the data solves the long standing problem of estimating densities
restricted to the unit interval.

Geenens et al. (2014) extend this methodology to the bivariate case, and provide a
non-parametric estimator of the copula density by first transforming the data to approxi-
mate standard normality, upon estimating the transformed density using local likelihood.
Although we are mainly interested in estimates of the density function on the original
scale in the present work, we will see that our approach is an attempt to extend the Gee-
nens et al. (2014)-methodology to the multivariate case, which becomes clear when we
show that their theoretical contributions are directly applicable to our new method.

In this paper, we use the local likelihood function that was proposed by Hjort and
Jones (1996) to fit a parametric distribution locally to an unknown multivariate density.
Just as in Geenens et al. (2014), we pre-transform the observations so that they have
approximate standard normal margins. We then fit the multivariate normal distribution
locally by carrying a simplified estimation procedure over from the global case. Asymp-
totic properties of the estimator are presented, and we show through simulations and a
real data example that the estimator works very well for a large class of non-Gaussian
data.

Our main motivation for transforming the data to standard normal marginals will be-
come clear in our formal presentation of the Local Gaussian Density Estimator (LGDE)
in Section 2, but it carries several advantages with it besides. The transformed multi-
variate density to be estimated has unbounded support, it has short tails, and all its
variables are on the same scale. Furthermore, several authors have noted that densities
become easier to estimate when they are transformed towards normality, see e.g. Wand
et al. (1991) and Ruppert and Cline (1994).

In Section 3, we present the asymptotic theory of our estimator, including a discussion
on the existence of a least false density function within the restrictions that we impose,
and towards which our estimate converges. In particular, our density estimate converges
at a rate that does not depend on the dimension. Practical issues, like bandwidth
selection and choice of the kernel function, are examined in Section 4. Sections 5 and
6 concern the application of the LGDE on simulated and real data, respectively. The
treatment is brought to an end in Section 7, where we make some concluding remarks,
and discuss various aspects of our approach.

2
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2 Description of the estimator

2.1 Motivation

A large number of dimensions does not necessarily mean trouble when we face the prob-
lem of density estimation. If we know that the observations are Gaussian, the means,
variances and covariances are estimated based on the first and second empirical moments
only. Dependence between a large set of stochastic variables is a complicated matter,
though, multivariate normality being a rather restrictive property. In general, depen-
dence between two variables must be modelled taking all other variables into account,
resulting in a daunting task of estimation if we have no prior assumptions on the gen-
eral structure. The same problem arises in the regression setting with a large set of
explanatory variables. Estimating the nonlinear regression Y = f(X1, . . . , Xp) + ε using
observations (Yi, X1i, . . . , Xpi), i = 1, . . . , n is more or less impossible for a moderately
large p because of the Curse of Dimensionality. A common simplification is the addi-
tive model, in which we assume f(X1, . . . , Xp) = f1(X1)+ · · ·+fp(Xp), disregarding any
interactions between the variables. The simplification may well be restrictive, but it is
computationally possible and may be our best guess in many situations. Producing reli-
able estimates of the complete dependence structure without some sort of restriction is
simply not an option. The LGDE has a similar flavour.

Let X1, . . . ,Xn be a random sample from the p-variate distribution with density
function f(x). The observations, as well as the variable x = (x1, . . . , xp)

T , are column
vectors of length p, so that Xi = (Xi1, . . . , Xip)

T . Denote by F (x) the cumulative
distribution function (cdf) corresponding to f , and further, let fi(xi) and Fi(xi) denote
the marginal densities and cdfs respectively for i = 1, . . . , p. The univariate standard
normal density and distribution function are identified by φ and Φ:

φ(z) = (2π)−1/2 exp
{
−z2/2

}
, Φ(z) =

∫
z

−∞

φ(y) dy.

We transform each observation vector to standard normality using the marginal cdfs
(assuming these known at the present stage) and the Gaussian quantile function, so that
observation number j becomes

Zj =
(
Φ−1 (F1(Xj1)) , . . . ,Φ

−1 (Fp(Xjp))
)
T

.

The marginal distributions of the transformed data are now standard normal, and the
joint density function, fZ(z) say, is given by

fZ(z) = f
(
F−1
1 (Φ(z1)) , . . . , F

−1
p

(Φ(zp))
)
×

p∏
i=1

qi(Φ(zi))φ(zi),

where qi(zi) = d/dz F−1
i

(zi), i = 1, . . . , p, are the marginal quantile density functions.
By a change of variables, we express the original density in terms of fZ and the marginal
distributions as

f(x) = fZ
(
Φ−1 (F1(x1)) , . . . ,Φ

−1 (Fp(xp))
)
×

p∏
i=1

fi(xi)

φ (Φ−1 (Fi(xi)))
. (1)

The decomposition of the density in (1) is parallel to what we find in the copula
framework of analysis. Sklar’s (1959) theorem states that any multivariate cdf can be

3
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expressed by a unique copula function of its marginals, enabling us to model dependence
between variables separately from the their individual marginal distributions. The copula
function is simply a cdf with standard uniform margins; the transformed density fZ in
(1) has standard normal margins, but contains complete information on the dependence
between the variables constituting our data, and its estimation is the main contribution
of this paper.

In fact, we believe that analyzing the Gaussian observations Z1, . . . ,Zn, which in
practice must be estimated from data making them into Gaussian pseudo-observations,
instead of uniform ones, is advantageous in many situations, especially in the non-
parametric paradigm, because distributions of real data are usually closer to being Gaus-
sian than uniform, with less tail distortions in the former case. This is illustrated by
Berentsen et al. (2014) in identification of copula structures, and discussed in detail by
Mikosch (2006).

2.2 Estimation of the marginals

The usual way of producing uniform pseudo-observations from the copula of f(·) is to
transform each marginal with the empirical distribution functions, which we denote by
F̃k,n(·), k = 1, . . . , p, so that the pseudo-observations on the standard normal scale is
given by

Ẑj =
(
Φ−1

(
F̃1,n(Xj1)

)
, . . . ,Φ−1

(
F̃p,n(Xjp)

))
T

. (2)

It is well known from the estimation of copulas that using pseudo-observations in gen-
eral affect the copula estimate (Genest and Segers, 2010), because the marginal empirical
distribution functions have the same

√

n-convergence rate as the final, empirical or para-
metric, copula estimate. In our case, however, we estimate the transformed density fZ
semi-parametrically, which results in a slower convergence of the order

√

nh2, where
h → 0 is the smoothing parameter. It is natural then, that using pseudo-observations
instead of genuine observations from fZ will not affect the asymptotic distribution of the
density estimate. It turns out that we can use the theory presented by Geenens et al.
(2014) directly, to show that this is, in fact, the case.

Contrary to Geenens et al. (2014), we are interested in density estimates on the
original scale, that is, we estimate the density function f(x) of X, and not the copula
density c(u1, . . . , up) associated with f . This is not a dramatic change, however, because
the relation between the two quantities are determined by the marginal distributions
only, with

f(x) = c(F1(x1), . . . , Fp(xp))

p∏
i=1

fi(xi). (3)

The marginal quantile- and density functions must again be estimated from the data, but
the empirical distribution function is not suitable to use in the back-transformation, as it
is neither invertible nor differentiable. Any other suitable estimates for these quantities
will work, however, and will not cause any trouble in the asymptotic results as long
as they converge faster than the

√

nh2-rate that we will see holds for the multivariate
density estimate.

A natural method for producing estimates of the quantile- and density function is
the one-dimensional kernel estimator. We achieve much better results in our finite-
sample simulation experiments if we rather employ the logspline method by Stone et al.
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(1997) for this purpose, and we prove that the logspline marginal estimates achieve an
appropriate convergence rate, under a regularity condition, in Theorem 5 in Section 3.

2.3 Estimation of the joint dependence function

Let ψ(·;θ) be a parametric family of p-variate density functions. Hjort and Jones (1996)
estimate the unknown density f using the sample X1, . . . ,Xn by fitting ψ locally. The
parameter estimate θ̂n = θ̂n(x) maximises the local log-likelihood function

Ln(θ,x) = n−1

n∑
i=1

Kh(Xi − x) logψ (Xi,θ)

−

∫
Kh(y − x)ψ(y,θ) dy, (4)

where K(·) is a kernel function that integrates to one and is symmetric about the origin,
h is a positive definite matrix of bandwidths, and Kh(x) = |h|

−1K(h−1
x). For small

bandwidths, the local estimate f̂(x) = ψ(x, θ̂n(x)) is close to f(x) in the limit as n → ∞,
because, if the bandwidth matrix h is held fixed and uj(·,θ) = ∂/∂θj logψ(·,θ) denotes
the score functions, we have

0 =
∂Ln(θ̂n, x)

∂θj

P

→

∫
Kh(y − x)uj(y,θh,K(y)) {f(y)− ψ(y,θh,K(y)} dy

for some value of θh,K(x) towards which θ̂n(x) converges in probability. For finite sam-
ple sizes, however, the Curse of Dimensionality comes into play as the dimension of
x increases, making the local estimates difficult to obtain at every point in the sample
space. One solution might be to increase the bandwidths so that the estimation becomes
almost parametric. We propose a different path around the Curse, directly exploiting
the decomposition (1). The first step is to choose a standardised multivariate normal
distribution as parametric family in (4) for modelling fZ in (1) locally:

ψ(z,θ) = ψ(z,R) = (2π)−p/2
|R|

−1/2 exp

{
−

1

2
z
T

R
−1
z

}
, (5)

where R denotes the correlation matrix. We refer to its local likelihood estimate R̂ =
R̂(z) as the local Gaussian correlation, see Tjøstheim and Hufthammer (2013) for theory
and applications in the bivariate case, including a time series setting. Using a univariate
local fit, the local Gaussian expectations and variances in (5) are constant and equal
to zero and one respectively, reflecting our knowledge that the margins of the unknown
density function fZ are standard normal.

Fitting the Gaussian distribution according to the scheme described above results in
a local correlation matrix at each point. Specifically, the estimated local correlations
are written ρ̂ij = ρ̂ij(z1, . . . , zp), i, j = 1, . . . , p, indicating that each parameter depends
on all variables. The dependence between variables is captured in the variation of the
parameter estimates in the p-dimensional Euclidean space, and its estimate maximises
the local likelihood function (4). As mentioned before, however, the quality of the
estimate deteriorates quickly with the dimension.

If the data were jointly normally distributed, however, there would be no dimensional-
ity problem, since the entire distribution would be characterised by the global correlation
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coefficients between pairs of variables, and their empirical counterparts are easily com-
puted from the data. A local Gaussian fit would then coincide with a global fit, and
result in estimates of the form ρ̂ij = ρ̂ij(Zi, Zj), where the arguments indicate which of
the transformed observation vectors have been used to obtain the estimate. This points
to a natural simplification that we may use in order to estimate the density fZ , analo-
gous to the additive regression model. Allow the local correlations to depend on their
own variables only:

ρ̂ij(z1, . . . , zp) = ρ̂ij(zi, zj). (6)

The resulting estimation is carried out in four steps:

1. Estimate the marginal distributions using the logspline method, and transform
each observation vector to pseudo-standard normality as described in Section 2.1.

2. Estimate the joint density of the transformed data using the Hjort and Jones (1996)
local likelihood function (4), the standardised normal parametric family (5) and
the simplification (6). In practice, this means fitting the bivariate version of (5) to
each pair of the transformed variables (Zi, Zj). Put the estimated local correlations

into the estimated local correlation matrix: R̂(z) = {ρ̂ij(zi, zj)}i,j=1,...,p.

3. Let f̂Z(z) = ψ
(
z, R̂(z)

)
and obtain the final estimate of f(x) by replacing fZ

with f̂Z , and the marginal distribution and density functions with their estimates
in (1):

f̂(x) = f̂Z

(
Φ−1

(
F̂1(x1)

)
, . . . ,Φ−1

(
F̂p(xp)

))
×

p∏
i=1

f̂i(xi)

φ
(
Φ−1

(
F̂i(xi)

)) . (7)

4. Normalise the density estimate so that it integrates to one.

The existence of population values corresponding to the estimated local correlations
is discussed in the following section. It is clear that the simplification (6) represents an
approximation for most multivariate distributions. The authors are aware of no other
distributions than those possessing the Gaussian copula, or step functions thereof as in
Tjøstheim and Hufthammer (2013), for which (6) is an exact property of the true local
correlations. In that case, the local correlations are constant, or stepwise constant, in all

its variables. As is the case for the additive regression model, exploring how restrictive
(6) is in practice, can primarily be done by trying it out on large classes of simulation
models and empirical data sets. A start is made in Sections 5 and 6 with a fairly varied
set of examples.

It is not difficult to find examples where (6) is not satisfied. There is an analogous, but
nevertheless different, formulation of (6) that may be easier to compare to the additive
regression assumption. The characteristic function of a Gaussian distribution is (in the
standardised case) given by exp(−x

T
Rx/2) where again R is the correlation matrix. The

analog to assumption (6) would then be that xT
R(x)x =

∑
i,j
xixjρij(xi, xj), whereas

in the regression case E(Y |X = x) = f(x) =
∑

i
fi(xi). The regression case can be

successively generalised to higher order interaction (see e.g. Sperlich et al. (2002)), the
first step being f(x) =

∑
i,j
fij(xi, xj), but the effect of the curse of dimensionality is

quickly felt for higher order interactions.
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The pairwise additivity in (6) is the natural assumption to make in the local Gaus-
sian case, because the multivariate Gaussian itself is based on pairwise covariances, but
unlike the additive regression, there is a distributional extension that can be made. The
Gaussian distribution is a member of the much larger family of elliptical distributions.
This family can again be characterised by pairwise covariances. The standard normal
marginals can be replaced by ’standard’ univariate elliptical distributions, and the in-
teraction may be described by local multivariate elliptical distributions with pairs of
local covariances because the characteristic function is on the form g(xT

Rx). Clearly, a
separate investigation is required to examine this closer.

In a sense, our approach is comparable to the popular vine-copulas (Bedford and
Cooke, 2002) within the parametric framework, that are popular for approximating de-
pendence between several variables with pairwise copulas. This entails of course that the
type of parametric model has to be chosen. Recent work by Nagler and Czado (2015)
gives a promising method for using pair-copulas for non-parametric multivariate density
estimation.

3 Asymptotic theory

Let us establish some notation, and then formulate results regarding the asymptotic
behaviour of the LGDE. We will proceed by first proving some convergence results on
the local Gaussian correlation for marginally standard normal variables, and then state
asymptotic normality for the multivariate density estimate.

Product kernels will be used in theory, as well as in practice, so the matrix of band-
widths, h, is diagonal, and h → 0 means that each element of h tends to zero.

For each pair of variables, we maximise the local log-likelihood function Ln(ρij, zi, zj)
in order to obtain the estimated local correlation for that pair. Indeed, the simplification
(6) means that we can develop most of the asymptotic theory by looking only at the
bivariate case. Keep therefore the pair of indices (i, j) fixed for the time being, so
that z = (zi, zj)

T , h = diag(hi, hj), and, for simplicity, write ρij(zi, zj) = ρ(z). The
standardised Gaussian family ψ(z, ρ) will represent the bivariate version of (5) in the
following. It will be seen in Lemma 1 below that we may ignore the fact that in practice Zi

has to be estimated by Ẑi = Φ−1(F̃i(Xi)), because we can translate to our use the results
of Geenens et al. (2014), who show that, under some smoothing conditions, using pseudo-
observations do not affect the asymptotic properties of their copula density estimator.

Denote by I the limiting integral in (5). As the sample size increases to infinity, the
local score function ∂Ln(z, ρ)/∂ρ satisfies the equation

I =

∫
Kh(y − z)u(y, ρ)

{
fij(y)− ψ(y, ρ)

}
dy = 0, (8)

where fij(z) is the joint density of (Zi, Zj), and the expression for u(·) = ∂ψ(·)/∂ρ
of course is known in our case, and has been written out explicitly in Appendix A.2.
Thus, as mentioned before, the estimate ρ̂n(z) aims at the solution of (8), which we
denote by ρh,K(z). There are two problems in perceiving ρh,K(z) as the ’true’ local
correlation function, however. First, it is hard to do any general analysis on existence
and uniqueness based on the integral in (8), considering that ρ = ρ(z) is an unknown
function of z. Second, ρh,K(z) depends on the bandwidths as well as the kernel function
K(·), while the true local correlation function for a given pair of variables should be a
property of their unknown bivariate density fij only.
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By letting the bandwidth tend to zero as the sample size increases, we solve the second
problem and make the first easier. To see this, we reproduce the Taylor expansions of (8)
in powers of h as provided by Hjort and Jones (1996). Let the index h, K to functions
ψ(z) and u(z) mean that we insert the parameter value ρh,K . It follows that,

uh,K(z)
{
fij(z)− ψh,K(z)

}
=

1

2

∑
k=i,j

σ2
Kk

h2
k

{
uh,K(ψh,K − fij)

}
′′

(z) +O((h2
1 + h2

2)
2), (9)

where σ2
Ki

=
∫
y2Ki(y) dy, and the cross-term is zero because of the symmetry of K.

The differentiation on the right hand side is taken with respect to zk. There is only
one such equation for each local correlation, and it follows readily that the limit ρ0(z) =
limh→0 ρh,K(z) must satisfy ψ(z, ρ) = fij(z). This is not enough to ensure the uniqueness
of ρ0, though. It is essential that ρ0(z) is the result of a limiting process as h → 0 in
(8). Said in another way, this means that the local fit is done in a neighbourhood of z
that shrinks to zero with h. Such a process eliminates fits of Gaussians that just pass
through the point z.

For a fixed h, the ρh can be obtained by minimizing the penalty function

qh,K =

∫
Kh(y − z)

{
ψ(y, ρ)− logψ(y, ρ)fij(y)

}
dy.

As seen in Hjort and Jones (1996), this can be interpreted as a locally weighted Kullback-
Leibler distance from f(·) to ψ(·, ρ(·)).

Let hn be a sequence of bandwidths tending to zero as n → ∞. If {ρhn,K
(z)}

converges towards the value ρ0(z), we take this to be the population parameter. This
essentially requires then (cf. Hjort and Jones (1996) and Tjøstheim and Hufthammer
(2013)), that there is a unique maximum of the local likelihood function once h is small
enough, and we include this as an assumption in the following theorem. This is akin to
the assumption of a unique maximum in global maximum likelihood estimation. The
continuity of ψ as a function of ρ ensures that the population parameter as defined above
automatically satisfies ψ(z, ρ0) = fij(z) (Even if a unique maximum should not exist, our
approach could still, as a purely data algorithmic tool, produce a good approximation
to the theoretical density f(x)).

The following theorems provide conditions for the consistency and asymptotic nor-
mality of the local correlation estimate ρ̂n(z), provided that the marginals of the obser-
vations are standard normally distributed.

Theorem 1. Let {Zn} be a sequence of bivariate iid random variables with with standard

normal marginals. Assume that

(i) for a sequence hn, n = 1, 2, . . ., converging to zero as n tends to infinity, there

exists a unique minimiser ρ0 of q(ρ) such that ρhn,K
(z) → ρ0(z),

(ii) the parameter space Θ for ρ is a compact subset of (−1, 1).

Then, for each z at which ρ0 exists, ρ̂n(z)
P

→ ρ0(z) as n → ∞.

See Appendix A.1 for a proof of this result. The local correlation estimate is asymp-
totically normal according to the following theorem:
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3.2 The locally Gaussian density estimator for multivariate data 39

Theorem 2. Denote by fij(z) the joint density function of {Zn}. Assume that the

conditions of Theorem 1 are satisfied, and further that

(iii) the sequence of bandwidths, hn, satisfies hn → 0, limn nhinhjn = ∞, and

(iv) the kernel function satisfies sup
z
|K(z)| < ∞,

∫
|K(y)|dy < ∞, ∂/∂zkK(z) < ∞

and limzk→∞ |zkK(zk)| = 0 for k = 1, 2;

Then √
nhinhjn (ρ̂n − ρ0)

L
→ N(0,M/J2),

where

M = fij(z)

(∫
K2(y) dy

)
, J = u(z, ρ0(z))ψ(z, ρ0(z)),

The preceding result is contained in the following, and more general, Theorem 3,
regarding joint asymptotic normality of the local correlations {ρ̂ij,n}i<j. Assume now
that the observations {Zn} are p-variate with standard normal marginals, and that we
calculate one local correlation for each pair of variables. There are d = p(p− 1)/2 pairs,
and denote by ρ = {ρk}k=1,...,d the vector of local correlations, and by ρ̂n its estimate.
In order to stress that ρ is a vector, and not a matrix, we use the single index k to
identify the individual components. The matrix of bandwidths is defined as before by
h = diag(h1, . . . , hp), but the symbol h2 now means the product of any two bandwidths
which we do not need to specify in the asymptotic analysis, because we assume that they
all tend to zero at the same rate.

Theorem 3. Let {Zn} be a sequence of p-variate iid marginally standard normal random

variables. Enumerate each pair of variables by k = 1, . . . , d, and for each of the pairs,

calculate the local Gaussian correlation. Assume that the conditions (i) - (iv) of Theorems

1 and 2 are satisfied.

The local Gaussian correlations are jointly asymptotically normal, with√
nh2

n
(ρ̂n − ρ0)

L
→ N(0,Σ),

where Σ is the diagonal matrix in which element (k, k) is the corresponding asymptotic

variance M/J2 that was defined in Theorem 2:

Σ(k,k) =
fk(zk)

∫
K2(yk) dyk

u2(zk, ρ0,k(zk))ψ2(zk, ρ0,k(zk))
. (10)

See Appendix A.2 for proof.
The following lemma ensures that the asymptotic theory does not change, even

though we in practice use marginally Gaussian pseudo-observations in the estimation
of the local correlations:

Lemma 1. Assume that conditions (i)-(iv) of Theorems 2 and 3 are satisfied, and assume

further that

(v) the marginal distribution functions F1, . . . , Fp are strictly increasing on their sup-

port,
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(vi) each pairwise copula Cij of (Xi, Xj) is such that (∂Cij/∂u)(u, v) and (∂
2Cij/∂u

2)(u, v)
exist and are continuous on {(u, v) : u ∈ (0, 1), v ∈ [0, 1]}, and (∂Cij/∂v)(u, v) and
(∂2Cij/∂v

2)(u, v) exist and are continuous on {(u, v) : u ∈ [0, 1], v ∈ (0, 1)}. In

addition, there are constants Ki and Kj such that∣∣∣∣∂2Cij

∂u2
(u, v)

∣∣∣∣ ≤ Ki

u(1− u)
for (u, v) ∈ (0, 1)× [0, 1],∣∣∣∣∂2Cij

∂v2
(u, v)

∣∣∣∣ ≤ Kj

v(1− v)
for (u, v) ∈ [0, 1]× (0, 1),

and,

(vii) each density ci,j of Ci,j exists, is positive, and admits continuous partial derivatives

to the fourth order on the interior of the unit square. In addition, there is a constant

K00 such that

c(u, v) ≤ K00 min

(
1

u(1− u)
,

1

v(1− v)

)
for all (u, v) ∈ (0, 1)2.

Then, Theorems 2 and 3 hold when the marginally Gaussian variables Zn are replaced

with the pseudo-observations Ẑn as defined by (2).

Assumptions (v)-(vii) are reproductions of the corresponding assumptions in Geenens
et al. (2014), who discuss their reasonableness, and prove a very similar result. See Ap-
pendix A.3 for a proof. We are now ready to state our main asymptotic result regarding
the convergence of the density estimate:

Theorem 4. Assume that we fit the LGDE to a sequence of p-variate iid random vari-

ables {Xn} with density function f(x). Assume that each pair of the transformed ob-

servation vectors {Zn} satisfies conditions (i) - (vii) of Theorems 1 to 3 and Lemma 1.

Assume further that

(viii) the estimates of the marginal densities and quantile functions that are used for the

back-transformations, are asymptotically normal with convergence rates faster than
√

nh2.

Let f0(x) be the LGDE density function, which is obtained by replacing fZ(·) with

ψ(·,R0) in (1). Then, in all x for which Fi(xi) ∈ (0, 1), i = 1, . . . , p, with f̂(x) es-

timated by the LGDE,√
nh2

n

(
f̂(x)− f0(x)

)
L
→ N(0, ψ(z, R0(z))

2g(x)2uT (z,R0(z))Σu(z,R0(z))), (11)

where

g(x) =
∏

fi(xi)/φ(Φ
−1(Fi(xi))),

and

z =
{
Φ−1(Fi(xi))

}
i=1...,p

.
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We refer to Appendix A.4 for a proof.
The trade-off we make by choosing the LGDE for non-parametric density estimation

is now evident. Not surprisingly, the approximation (6) keeps the convergence rate of
the density estimate at

√

nh2 regardless of the dimension, compared to the multivariate
kernel estimator that converges as

√

nhp. The price paid is that the LGDE converges to
an approximation f0(x) of the unknown density f(x), rather than f(x) itself. Simula-
tions provided in Section 5, however, indicate that the trade-off is very favourable for a
large class of distributions.

Assumption (viii) of Theorem 4 is important to ensure that the estimated back-
transformation of the density estimate does not influence the limiting distribution (11).
We conclude this section by presenting a result that justifies our use of the logspline
estimator by Stone et al. (1997) for this purpose.

Stone (1990) derives the asymptotic properties of the logspline estimator for den-
sity, distribution, and quantile functions. The results in that article are proven under
the assumption that the unknown density has compact support, however, which is too
restrictive for our purpose, but on the other hand, fairly simple to relax by using a trun-
cation argument. Indeed, the following result replaces the compactness assumption with
a condition on the marginal density functions limiting their tail thickness.

Theorem 5. Denote by f̂
i(·) and F̂i(·) the logspline estimates of the marginal density and

distribution functions respectively. Assume that fi(·) is twice continuously differentiable,

and that there exist constants M > 0, ε ∈ (0, 1/2), γ > 2ε/(1−2ε), and x0 > 0 such that

fi(x) ≤ M |x|−(5/2+γ) for all |x| > x0, i = 1, . . . , p. Then

√

n0.5+ε

(
f̂i(x)− f(x)

)
L
→ N(0, σ2

1),

and
√

n0.5
(
F̂i(x)− F (x)

)
L
→ N(0, σ2

2),

where the asymptotic variances σ2
1 and σ2

2 are specified by Stone (1990).

We refer to Appendix A.5 for a proof of this result and a discussion of the conditions.
If we need γ to approach zero, we see from this result that the convergence rate of the
logspline density estimate approaches n−1/4. In that case, it follows immediately that
we must also require the bandwidths to converge to zero fast enough so that n1/2h2

→ 0
in assumption (iii), in order for n1/4 to dominate nh2 in the limit.

4 Bandwidth selection

The general local likelihood density estimator by Hjort and Jones (1996) requires three
distinct modelling choices to be made by the practitioner. She must pick (i) a parametric
family ψ(·,θ) for local approximation, (ii) a kernel function K(·), and (iii) a smoothing
matrix h.

We have already settled the first point. Transforming the marginals to standard
normality leaves the standardised multivariate normal family (5) as the logical choice for
the parametric family, with the additional restriction (6) to open up for high-dimensional
applications. Points (ii) and (iii) are traditional non-parametric problems, but we argue
that they have natural solutions when using the LGDE as well.

11



42 Papers

We use the bivariate Gaussian product kernel function K(z) = (2π)−1 exp{−z
T
z/2}

for two reasons. First, K and ψ both being Gaussian functions means that the integral
in the likelihood function (4) has a closed form expression, which greatly simplifies its
numerical optimisation; Second, we will see below that the Gaussian kernel works very
well in conjunction with our bandwidth selector. Previous developments in this paper
imply that it is enough to look at the bivariate case.

There is a subtle difference between smoothing local likelihood- and kernel density
estimates. As the bandwidth goes to infinity, the kernel estimate loses all structure and
approaches zero at every point. The local likelihood estimate, on the other hand, is
smoothed towards a global maximum likelihood fit by the parametric family. One can
thus interpret bandwidth selection in the latter case as determining to which degree one
believes the parametric family to be the true underlying distribution of the data.

In most practical situations, however, we need a data-driven bandwidth selection
routine, and to this end, we adapt to our needs general schemes for model selection
that already exist. The principle of cross-validation has been applied in many statistical
methods. Stone (1974) provides a thorough treatment on the topic, Stone (1984) treats
bandwidth selection for kernel density estimates by cross validation, and Berentsen and
Tjøstheim (2014) use cross validation to select bandwidths for bivariate local likelihood
density estimates. The latter authors note, however, that the procedure is sensitive to
outliers, so raw data must be screened in advance. Hall (1987) investigates this phe-
nomenon and shows that the kernel function and the true density must have approxi-
mately the same tail thickness for cross-validation to work properly. This is the second
reason why the Gaussian kernel is such a natural choice for the LGDE; the density and
the kernel both having Gaussian tails means that no screening of the data is needed.

The Kullback-Leibler divergence between the true density and its estimate is defined
by

KL
(
f, f̂

)
=

∫
f(z) log

{
f(z)/f̂(z)

}
dz

=

∫
f(z) log f(z) dz −

∫
f(z) log f̂(z) dz,

where the last term depends on the bandwidth. It can be estimated by cross-validation,
and so for each pair of variables, we choose the bandwidth h = (h1, h2) that maximises

CV (h) = n−1

n∑
i=1

log f̂
(−i)
h

(Zi),

where f̂
(−i)
h

(·) is the bivariate local Gaussian density estimate calculated using the band-
width h, and without the observation with index i.

We also obtain adaptive bandwidths using the k-nearest-neighbour strategy, for which
the bandwidth used in a particular point z is taken to be the Euclidean distance to
the kth nearest observation measured from z. That way, we allow more details to
appear in areas with much data while keeping a fairly large bandwidth in the tails of the
distribution. We choose k using cross validation as above, as the maximiser of

CV (k) = n−1

n∑
i=1

log f̂
(−i)
k

(Zi),

where f̂
(−i)
k

(·) in the same way as above denotes the cross-validated density estimate that
is calculated using as bandwidth the distance to the kth nearest neighbour of Zi.
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3.2 The locally Gaussian density estimator for multivariate data 43

1. χ2
3 marginals, Gaussian copula with all parameters equal to 0.5

2. t(10) marginals, Clayton copula with parameter 0.9
3. Log-normal marginals, t-copula with 10 degrees of freedom
4. Uniform marginals with observations taken directly from the Clayton

copula with parameter 0.9
5. Mixture of two Gaussians centred at (0, . . .)T and (4, . . .)T respectively
6. Multivariate t(4) distribution

Table 1: Test distributions

To avoid overfitting, we must keep k from becoming too small. In practice, and in
the subsequent simulation experiments, we do this by requiring k to be at least 20, which
for moderate sample sizes seems to be a reasonable number.

5 Simulated data

We have developed a routine in the R programming language (R Core Team, 2015) for
the practical implementation of our estimator, which accompany this paper as supple-
mentary material. In it, the logspline estimator has been used not only in the final back
transformation of the density estimate, but also for estimating the marginal cumula-
tive distribution functions that is used to produce the pseudo-observations (2). Strictly
speaking, following Lemma 1 and its proof, the marginal empirical distribution functions
should be used for this purpose, but the logspline estimator, in our experience thus far,
has better finite sample properties. We believe that the asymptotic properties are the
same, since different convergence speeds, which is the essence of the argument proving
Lemma 1, still hold, as shown in Theorem 5.

The large sample properties in Section 3 show clearly that we trade asymptotic
unbiasedness for faster convergence if we choose the LGDE instead of the kernel density
estimator for multivariate data. We proceed to investigate the practical consequences of
doing so in a series of controlled experiments using simulated data.

There are many ways to evaluate the performance of a density estimator. When
introducing a new estimator, we seek a presentation that emphasises the advantageous
aspects, as well as the fallacies one may encounter in practical applications. We believe
that the LGDE enjoys two particularly beneficial properties that we wish to confirm:

• It approximates the unknown density by simplifying the dependence structure in
a way that is exact for distributions having the Gaussian copula (R(z) = R).
Therefore, the LGDE should work particularly well for distributions for which the
joint structure is not too far from normal. This is confirmed in our simulations,
but it also works well for many non-Gaussian joint structures.

• In the tail of the distribution, where there is little or no data, the LGDE does what
is perhaps most natural. It fits a Gaussian tail, based on the general direction
towards the main body of the data. The influence from the data will not change
much from point to point in the tail, nor will the local parameter estimates. The
kernel estimator, on the other hand, assigns density estimates in the tail by adding
up values far out in the tail of the kernels, which may well be zeroes if the kernel is
compactly supported. This effect becomes increasingly troublesome as the number
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Figure 1: χ2-distributed marginals with 3 degrees of freedom, Gaussian-copula with all
correlations equal to 0.5.

of variables increases, and is indeed a demonstration of the Curse of Dimensionality
(see e.g. Hastie et al. (2009), section 2.5).

We calculate density estimates for data from a selection of distributions (listed in
Table 1) that can be generalised to higher dimensions in a natural way. These include
various copula models, a multivariate t-distribution as well as a mixture of two Gaussians.
We use the integrated relative squared error (IRSE) as a measure of discrepancy between
the estimate and the true density because it is more natural to compare across dimensions
than the more common ISE. Further, the relative error emphasises the performance in
the tails. We also report the Hellinger distance (H, see Van der Vaart (2000), p. 211)
from the density estimate to the true density, so that

IRSE(f̂) =

∫ (
f̂(x)− f(x)

)2

f(x)
dx,

H2(f̂) = 1−

∫ √
f(x)f̂(x) dx.

For each distribution listed in Table 1, we generate data sets comprising n = 500
and n = 2000 observations and estimate their density using the LGDE with the two
bandwidth selection algorithms of Section 4 at m = 4000 grid points, {yj, j = 1, . . . ,m},
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Figure 2: t-distributed marginals with 10 degrees of freedom, Clayton-copula with pa-
rameter equal to 0.9.

that we generate from the same distribution, but independently from the data. We
repeat the procedure 27 = 128 times, and report the median of the estimated IRSE and
Hellinger error, which we obtain by Monte Carlo integration;

IRSE(f̂) ≈ m−1

m∑
j=1

(
f̂(yj)− f(yj)

)2

f(yj)2
,

H(f̂) ≈

√√√√1−m−1

m∑
j=1

√
f̂(yj)/f(yj).

We do the same for the kernel estimator, using a multivariate generalization of the
cross-validation algorithm by Bowman (1984) (plug-in bandwidths give similar results,
but are not included in the figures), the flexible, but parametric, skewed t-distribution
by Azzalini (2005), as well as the Projection Pursuit algorithm (PP) by Friedman et al.
(1984). PP estimates the univariate densities of a small number of highly non-Gaussian
linear projections of the data, and uses these to build a multivariate density estimate.
The latter is included for completeness and reference only, and we do point out that PP
cannot be expected to fare well in our simulation study. First, Friedman et al. (1984)

15



46 Papers

2 4 6 8 10

0
2

4
6

8

2 4 6 8 10

0
2

4
6

8

●

●

● ●

●

●

●
●

●

2 4 6 8 10

0
2

4
6

8

2 4 6 8 10

0
2

4
6

8

2 4 6 8 10

0
2

4
6

8

2 4 6 8 10

0
2

4
6

8

IRSE
n

 =
 5

0
0

2 4 6 8 10

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

2 4 6 8 10

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

●

●

●

●

●

●

●
●

●

2 4 6 8 10

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

2 4 6 8 10

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

2 4 6 8 10

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

2 4 6 8 10

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

Hellinger

2 4 6 8 10

0
2

4
6

8

2 4 6 8 10

0
2

4
6

8

●

●

●

●

●

●

●

●

●

2 4 6 8 10

0
2

4
6

8

2 4 6 8 10

0
2

4
6

8

2 4 6 8 10

0
2

4
6

8

2 4 6 8 10

0
2

4
6

8

n
 =

 2
0
0
0

2 4 6 8 10

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

2 4 6 8 10

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

●

●

●

●

●

●
●

●
●

2 4 6 8 10

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

2 4 6 8 10

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

2 4 6 8 10

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

2 4 6 8 10

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

Figure 3: Log-normally-distributed marginals with μ = 0 and σ = 0.4, t-copula with all
correlations equal to 0.7 and 10 degrees of freedom.

state clearly that PP is inaccurate in the tails, which will be greatly emphasised by
the IRSE. Second, PP seems to be very good at recovering sharp structures in high
dimensional data, but all but one of our test distributions are unimodal, and do not
have dramatic features. We also note here that the authors are not aware of publicly
available software that chooses the optimal number of projections for the PP. In these
experiments, we therefore choose the number of projections that actually minimises the
error. At last, we compute the error of the global Gaussian fit and compare it to the
local Gaussian fit, in order to quantify the severity of parametric miss-specification side
by side with the Curse of Dimensionality.

Figures 1-6 display the results from our simulations. Each figure represents one
distribution. The upper panels report results for the sample size n = 500, and the lower
panels show results for n = 2000. The panels on the left hand side report IRSE, while
the right hand panels display the Hellinger error. The horizontal axis represents the
number of variables.

Let us briefly comment on the individual figures.

Fig. 1. The marginals are χ2-distributed with 3 degrees of freedom, and the dependence
is governed by the Gaussian copula. In this situation the simplification (6) is
theoretically true, so the LGDE naturally outperforms all its competitors.
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Figure 4: Uniform marginals with observations drawn directly from the Clayton copula
in Figure 2.

Fig. 2. The marginals are t-distributed with 10 degrees of freedom, but due to the Clay-
ton copula, the distribution is asymmetric even after the initial transformation.
The LGDE with a global choice of bandwidths is clearly the best estimator if eval-
uated using IRSE or the Hellinger distance. Note that the parametric skewed
t-distribution beats all other nonparametric competitors.

Fig. 3. We introduce asymmetrical marginals and use a t-copula with 10 degrees of free-
dom. The LGDE is the overall best performer.

Fig. 4. In this case, we generate observations directly from the Clayton copula, meaning
that the marginals are uniformly distributed, and nonparametric methods can be
expected to exhibit boundary issues. We see clearly that the LGDE with the global
bandwidth selector is the best alternative here.

Fig. 5. Mixtures of distributions are not easy to recover under the restriction (6), but the
LGDE performs reasonably well in this case. The PP has been shown to estimate
the main body of mixture distributions very well (Hwang et al., 1994). This is the
only example for which the kNN bandwidth selector performs acceptably.

Fig. 6. The LGDE does not seem to cope very well with the t(4)-distribution in higher
dimensions. When weighing up the tail error, we see that fitting the Gaussian
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Figure 5: Mixture of two Gaussians; 0.7N(μ = 0, σ = 1, ρ = 0.5) + 0.3N(μ = 4, σ =
1, ρ = 0.1)

distribution globally is actually better than a local Gaussian fit, suggesting that
the cross-validation bandwidth is too small in this case. The skewed t-distribution
is naturally the best estimator here, because it contains the true distribution as a
special case. A local t-distribution estimator as discussed at the end of Section 2.3
would be expected to do better than the LGDE in this situation.

6 Real data

Let us apply the LGDE to a real data set. We have observed 1443 daily log-returns
from January 3rd, 2005, until July 14th, 2010 for five stock indices: the S&P 500 in
the US, the FTSE 100 in the UK, the German DAX 30, the French CAC 40 and,
finally, the Norwegian OBX. These data have been analysed by Støve et al. (2014)
using local Gaussian correlation in describing financial contagion. We estimate their
joint density using the LGDE and the kernel estimator. The true density function is
of course not available for a formal comparison, but a simple visual check will indicate
some appealing properties of our approach. We point out that this data set does not
satisfy the assumption of independence in our asymptotic results.

Figure 7a displays a cross section of the density estimate along a series of 2000
equally spaced points going diagonally through the data. The kernel estimator has been
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Figure 6: Multivariate t-distribution with 4 degrees of freedom.

calculated using the Wand and Jones (1994) plug-in bandwidth selection routine (Kernel
1), and we include a less smooth version, for which these bandwidths have been reduced
by a factor of 1.5 (Kernel 2). The LGDE has a sharp peak, and it decays smoothly
towards zero. The kernel estimator, on the other hand, does not seem to pick up the
peak equally well unless we reduce the bandwidths. In that case, however, its tails are
very wiggly and unstable, which is indicated in the smaller plot, where the logarithm of
the left tails of the density estimates are displayed. We have also included some contour
plots in Figure 7, and the same picture appears. The top two plots are projections of the
LGDE estimate on the US-UK-axes and the France-Norway-axes. The other variables
are held constant equal to zero. The second and third row show the kernel estimates
with plug-in bandwidths and plug-in bandwidths divided by 1.5 respectively. Again,
we do not know the true density, so it is hard to compare the quality of the estimates,
but the LGDEs are altogether more pleasing; their tails are smooth, and, if inspected
carefully, their main bodies display structure that are not visible in the kernel estimates.
The Pearson correlation coefficients for the two pairs in question, are 0.52 and 0.82
respectively.

Another way to evaluate the performance is to apply the LGDE on new observations
generated from a parametric model that has been fitted to the original data. If our
choice of model is not too far off, the fitted parametric density presumably shares key
characteristics with the true density. Pair Copula Constructions (PCC) are very flexible

19



50 Papers

0 500 1000 1500 2000

0
.0

0
0
.0

2
0
.0

4
0
.0

6
0
.0

8
0
.1

0

Logdensity of tail

LGDE

Kernel 1

Kernel 2

(a) Density estimate of real data. The hori-
zontal axis follows the index of the grid points.
The box show the logarithms of the left tails.

0 20 40 60 80 100

0
.0

5
0
.1

0
0
.1

5

True density

LGDE

Kernel 1

Kernel 2

(b) Density estimates for data generated from
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in modelling high dimensional dependence, see Aas et al. (2009) for details. In particular,
we fit a so-called R-vine to the original log-returns and generate new samples of the same
size. We cannot plot five-dimensional densities in their entirety, but Figure 7b indicates
our results. In order to create a suitable grid, we generate 1000 observations from the 5-
variate Gaussian distribution with the same mean and covariance matrix as the original
data, and evaluate the density function of the fitted PCC-model at these points; they
are then sorted by decreasing density value. Finally, we pick the first 100 points, and
plot their density value sequentially, as can be seen in the plot under the heading ’True
density’. We then generate 1000 data sets from the PCC-model, and estimate the density
at these points by the LGDE and the Kernel estimator, using the same bandwidths as in
the left hand figure. The results at each grid point are averaged and plotted along with
the true density in Figure 7b. Although the LGDE does not seem to coincide with the
“true” density perfectly, it is evident that the LGDE does a much better job than the
kernel estimator. We see clearly in this plot a substantial improvement over the kernel
estimator in the center of the distribution. The variability in the curves does not imply
non-smoothness of the estimated density surfaces, as subsequent grid points may be far
from each other in space.

7 Discussion

Building on existing methods, we offer a new way to tackle the fundamental problem of
non-parametric density estimation in higher dimensions. Instead of converging painfully
slow to the correct answer, as the traditional kernel estimator does, or quickly to some-
thing potentially very wrong due to a parametric assumption, the LGDE converges much
faster to something potentially much less wrong. We observe this phenomenon in our
subsequent analysis of simulated and real data.

The LGDE is not perfect; it cannot be, since the Curse of Dimensionality forces
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Figure 7: Projections of density estimates of the log-return data. The first two variables
in the left hand plots, the last two variables in the right hand plots. The other variables
are constant and equal to zero. The first row are LGDE estimates, the second row shows
kernel estimates using a plug-in bandwidth selector. The third row of plots displays
kernel estimates also, but all bandwidths have been reduced by a factor of 1.5.
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us to compromise, and there might be other ways to do just that. It is tempting to
search for further analogies to the nonparametric regression setting, in which one can
include higher order interaction terms in order to improve the fit. There is, however,
no obvious way to do the same thing for the LGDE, as we depend crucially on the
pairwise structure of the covariance matrix of the Gaussian distribution. This, on the
other hand, points to another possible extension as indicated at the end of Section 2.3.
The general elliptical distribution has the characteristic function exp(iμT

t)Ψ(tTΣt). Its
density function is symmetric about μ, and Σ is a symmetric, positive definite matrix
that is proportional to the covariance matrix if it exists. For the Gaussian distribution we
have that Ψ(x) = exp(−x/2), but our trick does not depend on any particular choice of
Ψ, but rather the covariance structure of its argument. The elliptical distributions could
therefore, in principle, replace the Gaussian in the LGDE, and we conjecture that the
results for heavy-tailed distributions will be improved if, for example, the t-distribution
with a fixed degree of freedom that is estimated from the data, is implemented using our
method.

The practitioner must keep in mind two issues when applying the LGDE to a mul-
tivariate data set. First, the density estimate does not integrate to one by definition,
and so it must be normalised in order to be a proper density function. This is true
also for the Projection Pursuit estimates, and can be accomplished by straightforward
Monte Carlo integration. Second, we compute the elements of the local correlation ma-
trix individually, so it is not positive definite by definition. In practise, however, the
authors have not experienced serious problems as a result. When the number of dimen-
sions is less than 10 or so, the local correlation matrix is positive definite at most grid
points, except, perhaps, some in the far tail of the distribution. If the number of vari-
ables increases towards 20, one might experience negative definite correlation matrices
at central points. One can then increase the bandwidths slightly until the problem goes
away. In one example, the authors fitted the LGDE to a 19-variate data set, and ob-
tained positive definite local correlation matrices at almost all grid points by multiplying
the cross-validation bandwidths by 1.5.

By its very construction, the LGDE works best when estimating densities that share
key characteristics with the Gaussian, such as unimodality and simple dependence struc-
tures. Our simplification (6) does not necessarily provide an optimal description of the
Gaussian mixture that is the subject of estimation in Figure 5. Although not obvious
from our particular choices of discrepancy measures, this is a typical case for which the
Projection Pursuit algorithm will give informative results (see e.g. Hwang et al. (1994)).
There is a potential for synergy between the LGDE and PP here. One can use PP as a
first exploratory step to reveal multimodality in the distribution. If the least Gaussian
projection of the data is unimodal, we will apply the LGDE with some confidence; if not,
we could estimate the location and the weight of a mixture using PP, and estimate the
individual components by the LGDE. Another example that is far from the Gaussian,
but for which the LGDE works well, is that of Figure 4.

Finally, we acknowledge that the kernel density estimator has been around for a long
time, and that many improvements have been made upon it such as variable bandwidths
and higher order kernels. Politis and Romano (1999) use infinite order kernels in order
to lessen the impact of the curse of dimensionality asymptotically. We have compared
the LGDE to the basic kernel estimator, however, because most such improvements can
be applied directly to the local likelihood case as well. For instance, Otneim et al. (2013)
show that the bias corrections by Jones (1993) for densities with bounded support carry
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over to the Hjort and Jones (1996) local likelihood unaltered. The implementations of
such improvements for the LGDE may be the topic of later studies.

A Proofs

A.1 Proof of Theorem 1

The method of proof is the same as that of Severini (2000, pp. 105-107) for ordinary
maximum likelihood estimates. The proof requires the additional assumption of uniform
convergence in probability of the local likelihood function:

sup
ρ∈Θ

|Ln(ρ,Z)− qhn,K
(ρ)|

P

→ 0 as n → ∞. (12)

The bivariate version of (5) satisfies condition (12) provided that condition (ii) is fulfilled.
To see this, consider ψ(·, ρ) as a function of the parameter; it is bounded and differentiable
to any order on the compact set Θ, and so is its logarithm. Thus g(ρ) = logψ(·, ρ)f(·)−
ψ(·; ρ) is uniformly continuous there, so for every ε > 0 there exists a δ > 0 such that if
|ρ1 − ρ2| < δ then |g(ρ1)− g(ρ2)| < ε. Multiplying with a kernel and integrating over a
different variable conserves this property, because if |ρ1 − ρ2| < δ, then

∣∣∣∣∫ Khn
(y − z)g(ρ1) dy −

∫
Khn

(y − z)g(ρ2) dy

∣∣∣∣ ≤ ∫
Khn

(y − z)|g(ρ1)− g(ρ2)| dy

< ε

∫
Khn

(y − z) dy = ε.

The ε and δ do not depend on h nor n, so {qhn,K
(ρ)} form an equicontinuous family of

functions. Further, and again exploiting the smoothness of ψ(·, ρ) on a compact set Θ,
the local likelihood functions are Lipschitz continuous there by the mean value theorem.
The conditions in Corollary 2.2 by Newey (1991) are thus satisfied, and condition (12)
follows thereof. It follows from the uniform convergence that

sup
ρ∈Θ

Ln(ρ,Z) = Ln(ρ̂,Z)
P

→ sup
ρ∈Θ

q(ρ) = q(ρ0).

The rest of the argument follows exactly that of Severini (2000) pp. 105-107 for ordinary
maximum likelihood estimates.

A.2 Proof of Theorems 2 and 3

We establish joint asymptotic normality of the local correlation vector by first follow-
ing the standard argument for ordinary maximum likelihood estimates in the bivariate,
and thus one-parameter case, and then apply a central limit argument, which amounts
to a proof of Theorem 2. Then we make use of the Cramèr-Wold device to include the
multi-parameter case. In the end, we show that the off-diagonal elements in the covari-
ance matrix vanish asymptotically. In the bivariate case, we must verify the following
conditions in order to use Theorem 7.63 in Schervish (1995) and Theorem 1A of Parzen
(1962):

(I) The parametric family ψ(z, ρ) is continuously differentiable with respect to ρ;
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(II)
∫
|u(z, ρ0)f(z)| < ∞;

(III) There exists a function Tr(z, ρ) such that for each ρ0 ∈ int(Θ) and,

sup
|ρ−ρ0|≤r

∣∣∂2Ln(ρ0, z)/∂ρ
2
− ∂2Ln(ρ, z)/∂ρ

2
∣∣
≤ Tr(z, ρ0)

with limr→0 ETr(Z, ρ0) = 0 (stochastic equicontinuity).

The parametric family is Gaussian, so condition (I) is obviously true. The local score
function u(z, ρ) = ∂ logψ(z, ρ)/∂ρ in the bivariate Gaussian case is given by

u(z1, z2, ρ) =
ρ3 − z1z2(1 + ρ2) + (z21 + z22 − 1)ρ

(1− ρ2)2
, (13)

and the stochastic variable Z = (Z1, Z2), having density fZ , has moments of all orders
since the marginals are standard normal. Therefore, E|u(Z, ρ)| < ∞, so (II) is satisfied.
Further, Andrews (1992) shows that uniform continuity of ∂2Ln(ρ)/∂ρ

2 as well as Lips-
chitz continuity of |∂2Ln(ρ, z)/∂ρ

2
−∂2L(ρ0, z)/∂ρ

2
| suffice for stochastic equicontinuity

as required in condition (III). The argument in Appendix A.1 goes through also here.
Using a one-term Taylor expansion of the local score function ∂Ln(ρ̂, z)/∂ρ, and

following Schervish (1995), p. 422, in writing 0 as oP
(
(nh2

n
)−1/2

)
, we get

∂Ln(ρ0, z)/∂ρ+Bn,h(ρ̂n − ρ0) = oP
(
(nh2

n
)−1/2

)
,

where Bn,h = ∂2Ln(ρ
∗, z)/∂ρ2, and ρ∗ lies between ρ0 and ρ̂. As n → ∞, this quantity

tends to its expectation, which we denote by Jh, and is given by

Jh =

∫
Kh(y − z)u2(y, ρ∗(z))ψ(y, ρ∗(z)) dy

−

∫
Kh(y − z)u′(y, ρ∗(z))[f(y)− ψ(y, ρ∗(z))] dy. (14)

The arguments of Hjort and Jones (1996), as well as the consistency of ρ̂n, can be used
to see that,

J = lim
h→0

Jh = u2(z, ρ0,k)ψ(z, ρ0,k).

Further, the variance of
√

nh2∂Ln(ρ0,Z)/∂ρ approaches Mh as n → ∞, where

Mh = h1h2

∫
(h1h2)

−2K2(h−1(y − z))u2(y, ρk,0(z))f(y) dy

− h1h2

(∫
Kh(y − z)u(y, ρ0(z))f(y) dy

)2

.

The second term vanishes as h → 0, so we have in the limit that

M = lim
h→0

Mh = u2(z, ρ0(z))f(z)

∫
K2(y) dy.

Following the details of Theorem 7.63 in Schervish (1995), it follows that√
nh2

n
(ρ̂n − ρ0)

L
→ N(0,M/J2),
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3.2 The locally Gaussian density estimator for multivariate data 55

provided that the quantity

Yn(z) =
1

n

n∑
i=1

Khn
(Zi − z)u(Zi, ρ0) =

1

n

n∑
i=1

Vni, (15)

is asymptotically normal, and this follows along the lines of Parzen (1962), which we
now proceed to establish.

Of the two terms comprising the local likelihood function (4), only the first depends
on data. It follows readily from Theorem 1A of Parzen (1962) that the variance of the
summands in (15), all identically distributed as Vn = Khn

(Z − z)u(Z, ρ0), satisfies

h2
n
Var(Vn) → fZ(z)u

2(z, ρ0)

∫
∞

−∞

K2(y) dy. (16)

Further, a simple Taylor expansion reveals that

E|Vn|
2+δ =

∫
∞

−∞

|Khn
(y − z) u(y, ρ0)|

2+δ

f(y) dy

=
1

(hn1hn2)1+δ

fZ(z)|u(z, ρ0)|
2+δ

∫
∞

−∞

|K(y)|2+δ dy

+ higher order terms. (17)

The quantity in (16) is finite because of assumption (iv) in Theorem 2. Further,

E |Vn − E(Vn)|
2+δ

nδ/2σ2+δ(Vn)
=

(hn1hn2)
1+δE|Vn − E(Vn)|

2+δ

(nhn1hn2)δ/2(hn1hn2)1+δ/2σ2+δ(Vn)
, (18)

which tends to zero as n → ∞ because of (16), (17) and the second part of assumption
(iv), and where, for a stochastic variable X, here and in the sequel we use the notation
σ(X) = sd(X). The summands comprising Yn(z) therefore satisfy the Lyapunov, and
thus the Lindeberg, condition, so Yn(z) is asymptotically normal.

Having established asymptotic normality for each ρ̂k (and proven Theorem 2), we ex-
tend the argument above to the p-variate, and thus d = p(p− 1)/2-parameter, case; let
ρ = (ρ1, . . . , ρd) be the vector of local correlations, let u(z,ρ0) = (u1(z,ρ0), . . . , ud(z,ρ0))
be the vector of score functions, defined before as uk(z,ρ) = ∂ψ(z,ρ)/∂ρk, and, finally,
note that Yn(z) = n−1

∑
n

i=1 Vni is now a stochastic vector, so that Yn(z) = {Ynk(z)}
d

k=1

and Vni = {Vnik}
d

k=1.
We proceed to show that ∑

k

tkYnk(x)
L
→

∑
k

tkZ
∗

k
, (19)

where t = (t1, . . . , td) and Z
∗ = (Z∗

1 , . . . , Z
∗

d
) are an arbitrary vector of constants, and

a jointly normally distributed vector respectively. Asymptotic normality of the vector
Yn(z) then follows from the Cramèr-Wold device (Billingsley (2008), p. 383). First,
if tYn(z) is asymptotically normal at all, it must converge to tZ

∗ because of Slutsky’s
theorem and the asymptotic normality of each of the Ynk. The normality of tYn(z)
follows immediately from the one-dimensional case by writing Wni =

∑
d

k=1 tkVnik so

that
∑

d

k=1 tkYnk(z) =
∑

n

i=1 Wni, where all summands are identically distributed asWn =∑
d

k=1 tkKhn
(Z − z)uk(z,ρ0) =

∑
d

k=1 tkVnk. Jensen’s inequality implies |
∑

d

k=1 Zk|
2+δ

≤

d1+δ

∑
d

k=1 |Zk|
2+δ, and so
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E |Wn − E(Wn)|
2+δ

nδ/2σ2+δ(Wn)
=

E |

∑
tkVnk − E(

∑
tkVnk)|

2+δ

nδ/2σ2+δ(
∑

tkVnk)

≤ d1+δ

d∑
k=1

|tk|
2+δ(hn1hn2)

1+δE|Vnk − E(Vnk)|
2+δ

(nhn1hn2)δ/2(hn1hn2)1+δ/2σ2+δ(
∑

tkVnk)
. (20)

Recall that all variables are on the same Gaussian scale, and that all bandwidths tend
to zero at the same rate. Therefore, it does not matter which bandwidths we use in
the above expression. Further, the variance in the denominator of (20) stays away from
zero because of (16). Following the same reasoning as in the univariate case (18), the
Lyapunov condition is satisfied for the Wn, implying (19), and so the vector Yn(x) is
jointly asymptotically normal.

It remains to show that the asymptotic covariance matrix is diagonal. Indeed, the
covariance between two local correlation estimates with no common index goes to zero
as n−1. If they share a common index, one can go through the arguments below once
again and see that their covariance Cov(ρ̂ij, ρ̂jk) tends to zero as (nhn)

−1. Both rates
are negligible compared to (nh2

n
)−1.

Assume without loss of generality that we have four variables Z1, . . . , Z4 with joint
density fZ(z) and that we estimate the local correlations ρ̂12 and ρ̂34 according to the
scheme described in Section 2. Again, we identify the parameters with single indices,
so that we in this case have ρ = (ρ1, ρ2). They are estimated independently from each
other by maximising the local likelihood functions Ln,1(ρ1, Z1, Z2) and Ln,2(ρ2, Z3, Z4),
as defined by Equation (4). Taylor-expanding the estimation equations Ln,1 = 0 and
Ln,2 = 0 about the population values ρ1,0 and ρ2,0 respectively, yields

0 =

(
∂Ln,1(ρ̂1)/∂ρ1
∂Ln,2(ρ̂2)/∂ρ2

)
=

(
S1(ρ̂1)
S2(ρ̂2)

)
=

(
S1(ρ1,0)
S2(ρ2,0)

)
+

(
∂S1(ρ

∗

1)/∂ρ1 0
0 ∂S2(ρ

∗

2)/∂ρ2

)(
ρ̂1 − ρ1,0
ρ̂2 − ρ2,0

)
,

where ρ∗
k
again lies between ρ̂k and ρk,0. More compactly, we write

(nh2)1/2(ρ̂− ρ0) = −U
−1(ρ∗)(nh2

n
)1/2S(ρ0)

where U is the diagonal matrix of derivatives. The non-zero elements in U converge, as
n → ∞ and h → 0 , to the quantities J1 and J2, which we have seen to be

Jk = u2
k
(zk, ρ0,k)ψ(zk, ρ0,k), k = 1, 2.

Denote by Mh the covariance matrix of
√

nh2S(ρ0). The diagonal elements of Mh

are given by

Mk = u2
k
(zk, ρk.0(zk))fk(zk)

∫
K2(yk) dyk.

The off-diagonal element in Mh is O(h2), because

M
(1,2)
h

= M
(2,1)
h

= h2

∫
Kh(y1 − z1)Kh(y2 − z2)u1(y1, ρ1,0(z1))u2(y2, ρ2,0(z2))fZ(y) dy

− a higher order term,

26



3.2 The locally Gaussian density estimator for multivariate data 57

Writing Jh = diag(Jh,1, Jh,2), where Jh,k was defined in (14), we collect these results

and write the covariance matrix of
√

nh2(ρ̂1, ρ̂2)
T in terms of its asymptotic order;

J
−1
h

Mh(J
−1
h

)T ∼

(
J−1
h,1 0

0 J−1
h,1

)(
Mh,1 h2

h2 Mh,2

)(
J−1
h,1 0

0 J−1
h,2

)
→

(
M1/J

2
1 0

0 M2/J
2
2

)
,

as h → 0, indicating that the asymptotic covariance between ρ̂1 and ρ̂2 tends to zero
as n−1. The same procedure must be repeated in order to establish Cov(ρ̂ij, ρ̂jk) =
O((nh)−1).

A.3 Proof of Lemma 1

By inspecting the preceding proof of Theorems 2 and 3, we see that Lemma 1 holds
if the asymptotic distribution of Yn(z) in (15) remains unchanged when we replace

the marginally standard normal observations Zn with their pseudo-observations Ẑn as
defined by (2). Apart from the factor u(·), this is exactly the same expression as analysed
in Proposition 3.1 by Geenens et al. (2014), so we proceed to show that this difference
does not alter their proof in any other way than a little more complicated algebraic
expressions.

We have assumed the bivariate kernel function to be the product of two univariate
kernels, so write in this section K(z) = K(z1)K(z2), even though that is a slight abuse
of notation. Further, and following the notation of Geenens et al. (2014), write

Jz,h(v) = K

(
z1 − Φ−1(v1)

h

)
K

(
z2 − Φ−1(v2)

h

)
× u(Φ−1(v)),

where v = (v1, v2) ∈ (0, 1)2. Thus, writing k(z) = K ′(z) and ui(z) = ∂u(z)/∂zi, we have

∂Jz,h

∂v1
= k

(
z1 − Φ−1(v1)

h

)
K

(
z2 − Φ−1(v2)

h

)
u(Φ−1(v))

hφ(Φ−1(v1))

+K

(
z1 − Φ−1(v1)

h

)
K

(
z2 − Φ−1(v2)

h

)
u1(Φ

−1(v))

φ(Φ−1(v1))
,

∂Jz,h

∂v2
= K

(
z1 − Φ−1(v1)

h

)
k

(
z2 − Φ−1(v2)

h

)
u(Φ−1(v))

hφ(Φ−1(v1))

+K

(
z1 − Φ−1(v1)

h

)
K

(
z2 − Φ−1(v2)

h

)
u2(Φ

−1(v))

φ(Φ−1(v1))
,

which means that the expressions for Rn(z), Bn,1(z) and Bn,2(z), as defined by Geenens
et al. (2014), in our case have four terms instead of just one, resulting from the multi-

plications of
∂J

z,h

∂v1
and

∂J
z,h

∂v2
. We will not write any more details here, because that will

necessitate a much bigger body of notation. Straightforward algebra, however, exploit-
ing the boundedness of K(z), k(z) (from assumption (iv)), and the boundedness of u(z)
(defined in (13)) for a fixed z, will reveal that each of our terms is smaller than a con-
stant times the corresponding term in Geenens et al. (2014), which is enough to prove
the result.
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A.4 Proof of Theorem 4

It follows from Lemma 1 and the delta method that f̂Z(z) is asymptotically normal.
It remains to show that the asymptotic normality still holds after the final back-
transformation (7), with suitable estimates for the marginal density and distribution

functions. Under assumption (viii), the normalised estimates
√

nh2
(
f̂i(xi)− fi(xi)

)
and

√

nh2
(
F̂i(xi)− Fi(xi)

)
both converge in distribution to the constant 0, which again

implies f̂i(xi)− fi(xi) = oP (1), and F̂i(xi)− Fi(xi) = oP (1). It follows that

φ
(
Φ−1(F̂i(xi))

)
= φ

(
Φ−1(Fi(xi))

)
+ φ′

(
Φ−1(Fi(xi))

) [
Φ−1

]
′

(Fi(xi))(F̂i(xi)− Fi(xi))

+ higher order terms,

where the second term is oP (1) in all x such that F (x) ∈ (0, 1). We can then write

f̂i(xi)

φ
(
Φ−1(F̂i(xi))

) =
fi(xi) + oP (1)

φ (Φ−1(Fi(xi)))
+

(
1−

oP (1)

φ (Φ−1(Fi(xi)))
+ · · ·

)

=
fi(xi)

φ (Φ−1(Fi(xi)))
+ oP (1),

from which it follows that
p∏

i=1

f̂i(xi)

φ
(
Φ−1(F̂i(xi))

) =

p∏
i=1

fi(xi)

φ (Φ−1(Fi(xi)))
+ oP (1).

By Slutsky’s Theorem, we have that f̂(x) as defined by equation (7) is asymptotically
normal. The expression for the asymptotic variance of the density estimate follows from
Theorem 3, Lemma 1, and the delta method applied to the asymptotic covariance matrix
of the local correlations (10), using the function (1).

A.5 Proof of Theorem 5

Stone (1990) provides large sample theory for logspline density estimates. The asymp-
totic bias is shown to be asymptotically negligible provided that the true density is
twice continuously differentiable. He shows further that f̂i is asymptotically normal
with asymptotic variance of order O(n−(0.5+ε)), where ε ∈ (0, 1/2) is a tuning parame-
ter that controls the rate at which new nodes are added in the logspline model. Stone
(1990) develops theory for compactly supported densities only, but we proceed using a
truncation argument to show that the asymptotic normality holds equally well for den-
sities fi satisfying fi = o(|z|−(5/2+γ)), where γ = 2ε/(1−2ε) (see below) is close to zero if
ε is small. If ε → 1/2, then k → ∞, which is intuitively reasonable because the number
of nodes will increase very slowly, meaning that the probability of extreme observations
beyond the smallest and largest node must necessarily be small.

Denote by Jn the number of nodes that are used to fit the logspline model to f(z)
based on iid observations Z1, . . . , Zn. Stone (1990) assume Jn = o(n0.5−ε). Construct a
sequence Ln, n = 1, 2, . . . that is o(Jn), and define a new stochastic variable by truncation;

Z(n) = Zn1|Zn|≤Ln
+ Un1|Zn|>Ln

,
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3.2 The locally Gaussian density estimator for multivariate data 59

where Un is uniformly distributed on [−Ln, Ln]. Let cn =
∫
|z|≤Ln

f(z) dz, then the density

of Z(n) is given by
f (n)(z) = c−1

n
f(z)1

|z|≤Ln
.

The index i in fi = fi(zi) is not important here, and will be omitted. Let f̂n be the

logspline estimate of f based on Z1, . . . , Zn, and let f̂
(n)
n be the logspline estimate of f (n)

based on Z
(n)
1 , . . . , Z

(n)
n . We wish to show that

√

n0.5+ε(f̂(z) − f(z)) is asymptotically
normal, and make the following decomposition:

√

n0.5+ε(f̂(z)− f(z))

=
√

n0.5+ε

({
f̂(z)− f̂ (n)(z)

}
+
{
f̂ (n)(z)− f (n)(z)

}
+
{
f (n)(z)− f(z)

})
. (21)

The first parenthesis converges in probability to zero provided that the tails of f are not
too heavy. To see this, assume that there exists a z0 > 0 such that f(z) < M1|z|

−s for
all |z| > z0 and some constant M1. It follows from elementary calculus that

P
(∣∣∣f̂(z)− f̂ (n)(z)

∣∣∣ > 0
)
≤ 1− (P (|Z| ≤ Ln))

n

≤ 1− (1−M2L
1−s

n
)n,

for a new constant M2. We have from a Taylor expansion that the right hand side is
O(n(1/2−ε)(1−s)+1) since Ln = o(Jn) = o(n0.5−ε), and so balancing this with the conver-
gence rate in the normal approximation, n1/4+ε/2, yields s∗ = 5/2 + 2ε/(1 − 2ε) as the
limiting value for s. Thus γ = 2ε/(1− 2ε).

It follows easily that the third parenthesis in (21) converges to zero if we assume that
f = o(|z|−s

∗

).
To see that the middle parenthesis in (21) is asymptotically normal, choose an ar-

bitrary constant T > 0. Then there exists a positive integer N such that [−T, T ] ⊂
[−Ln, Ln] for all n > N . Make a new decomposition:

√

n0.5+ε(f̂ (n)(z)− f (n)(z))

=
√

n0.5+ε

({
f̂ (n)(z)− f̂ (T )(z)

}
+
{
f̂ (T )(z)− f (T )(z)

}
+
{
f (T )(z)− f (n)(z)

})
(22)

If we let n → ∞ we have on the right hand side, and for any T according to the theory by
Stone (1990), an asymptotically normally distributed variable in the middle. The first
and third parentheses in (22) can be made arbitrarily small by choosing a large enough T .
It follows from Slutsky’s Theorem that the logspline estimates of the marginal densities
are asymptotically normal with convergence rate

√

n1/2+ε, provided their tails are thinner
than those of |z|−s

∗

.
The exact same argument as above goes through for the marginal distribution and

quantile functions as well, with convergence rate being equal to the usual
√

n.
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Non-parametric estimation of conditional densities: A

new method

H̊akon Otneim Dag Tjøstheim

Abstract

Let X = (X1, . . . , Xp) be a stochastic vector having joint density function
fX(x) with partitions X1 = (X1, . . . , Xk) and X2 = (Xk+1, . . . , Xp). A new
method for estimating the conditional density function of X1 given X2 is pre-
sented. It is based on locally Gaussian approximations, but simplified in order
to tackle the curse of dimensionality in multivariate applications, where both re-
sponse and explanatory variables can be vectors. We compare our method to some
available competitors, and the error of approximation is shown to be small in a se-
ries of examples using real and simulated data, and the estimator is shown to be
particularly robust against noise caused by independent variables. We also present
examples of practical applications of our conditional density estmator in the anal-
ysis of time series. Typical values for k in our examples are 1 and 2, and we include
simulation experiments with values of p up to 6. Large sample theory is established
under a strong mixing condition.

1 Introduction

The need for expressing statistical inference in terms of conditional quantities is ubiq-
uitous in most natural and social sciences. The obvious example is the estimation of
the mean of some set of response variables conditioned on sets of explanatory variables
taking specified values. Other common tasks are the forecasting of volatilities or quan-
tiles of financial time series conditioned on past history. Problems of this kind often call
for some sort of regression analysis, of which the literature provides an abundance of
choices.

Conditional means, variances and quantiles are all properties of the conditional den-
sity, if it exists, as are all other probabilistic statements that we might ever want to make
about the response variables given the explanatory variables. It is therefore clearly of
interest to obtain good estimates of the entire conditional distribution in order to make
use of all the evidence contained in the data, and to provide the user with a wide variety
of options in analysing and visualising the relationships of the variables under study.

The classical method for non-parametric density estimation is the kernel estimator
(Rosenblatt et al., 1956; Parzen, 1962), which in the decades following its introduction
has been refined and developed in many directions. Especially the crucial choice of
smoothing parameter, or bandwidth, has been addressed by several authors, including
Silverman (1986), Sheather and Jones (1991) and Chacón and Duong (2010). The kernel
estimator suffers greatly from the curse of dimensionality however, which quickly inhibits
its use in multivariate problems. Several alternative methods of estimation has been pro-
posed to improve performance if the subject of estimation is a joint multivariate density
function, most recently the LGDE (locally Gaussian density estimator) by Otneim and
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Tjøstheim (2016), which the work in the present paper takes as its starting point. Very
few methods exist for the non-parametric estimation of conditional densities though, es-
pecially if we do not wish to restrict ourselves to the cases with one-dimensional response
and/or explanatory variables. This lack of methodology is surprising, considering the
aforementioned importance of estimating conditional densities; the practical use of which
are of altogether greater interest than unconditional density estimates, as is illustrated
by some of its possible applications in Section 5.

In this paper we present a new method for estimating conditional densities based
on local Gaussian approximations. Let X = (X1, . . . , Xp) be a stochastic vector, and,
assuming existence, denote by fX(·) its joint density function. Further, let (X1;X2) =
(X1, . . . , Xk;Xk+1, . . . , Xp) be a partitioning of X. Then the conditional density of X1

given X2 = x2 is defined by

fX1|X2(x1|X2 = x2) =
fX(x1,x2)

fX2(x2)
, (1)

where fX2 is the marginal density of X2.
The problem of estimating (1) is not trivial. We do not observe data directly from

the density that we wish to estimate, so we need a different set of tools than those used
in the unconditional case. A natural course of action is to follow Rosenblatt (1969)
in obtaining good estimates of the numerator and denominator of (1) separately using
the kernel estimator, and use the definition directly. Chen and Linton (2001) provide a
discussion of choosing the bandwidths when using the kernel estimator to estimate the
components, as do Bashtannyk and Hyndman (2001). Li and Racine (2007, chap. 5)
give a unified approach to estimating conditional densities using the kernel estimator,
which allows a mix of continuous and discrete variables, and automatically smooths out
the irrelevant ones.

Unless one has a very good estimate of the marginal density, however, it is less than
ideal to put a kernel estimate in the denominator of (1). This is remedied by Faugeras
(2009), who writes the conditional density as a product of the marginal and copula
density functions in the bivariate case,

f
X1|X2(x1|X2 = x2) = fX1(x1)c {F1(x1), F2(x2)} , (2)

where fX1 is the marginal density of X1, F1 and F2 are the marginal distribution func-
tions, c is the copula density of (X1, X2), and estimates those separately using the kernel
estimator. The formula (2) can be generalized to the case of several covariates, but its
practical use in higher dimensions case is questionable because of boundary and dimen-
sionality issues, unless one obtains better estimates of the multivariate copula density
than provided by the kernel estimator, such as the local likelihood approach by Geenens
et al. (2014).

Hyndman et al. (1996) starts to move away from the kernel estimator by adjusting
the conditional mean to match a better performing regression technique, such as local
polynomials, while Fan et al. (1996) estimate the conditional density directly using locally
linear and locally quadratic fits, a method that Hyndman and Yao (2002) refine by
constraining it to always be non-negative. The latter authors propose in the same paper a
local likelihood approach which is based on some of the same machinery as we will employ
in this paper, and Fan and Yim (2004) provide a cross-validation rule for bandwidth
selection in the locally parametric models. These methods are to date implemented in
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the bivariate case only, however, where the response- and explanatory variables are both
scalars.

Indeed, the main motivation behind our new method is to provide an estimator that
can handle a greater number of variables without the requirement that either response
or explanatory variables are scalar.

Holmes et al. (2012) develop a fast bandwidth selection algorithm, while correctly
pointing out that bandwidth selection is a formidable computational and time-consuming
task in non-parametric multivariate density estimation. We argue that the curse of di-
mensionality is an even bigger problem, because it will not be solved by clever algo-
rithms, but is an inherent problem in all non-parametric analysis. We therefore base our
method on the newly developed locally Gaussian density estimator (LGDE) (Otneim
and Tjøstheim, 2016), which shows a promising robustness against dimensionality issues
when estimating the multivariate unconditional density function. By exploiting locally
the property of the Gaussian distribution that conditional densities are again Gaussian,
we will see that conditional density estimates are readily available from the LGDE.

This paper is organized as follows: In Section 2 we give a short introduction to the
LGDE method for multivariate unconditional density estimation, and in Section 3 we
show that extracting conditional density estimates from the LGDE is straightforward
and requires neither additional estimation steps, nor integration over the joint density
estimate. In Section 4 we prove consistency and asymptotic normality for our estimator
under a strong mixing condition, and proceed in Section 5 with a series of examples using
real and simulated data, indicating the wide potential of conditional density estimation.
Some concluding remarks and suggestions for further research follow in Section 6, and
we include an appendix that contains the technical proofs.

2 A brief introduction to the LGDE

Because of its close relationship with our conditional density estimator, we include here
a basic account of the LGDE. Suppose that we wish to estimate the full p-variate density
fX based on n independent observations X1, . . . ,Xn. Hjort and Jones (1996) provide a
general setup for fitting a parametric family of densities ψ(·,θ) locally to the unknown
density by maximising the local log-likelihood function in each point x;

θ̂(x) = argmax
θ
n−1

n∑
i=1

Kh(Xi − x) logψ(Xi,θ)−

∫
Kh(y − x)ψ(y,θ) dy, (3)

so that the estimated density is given by f̂X(x) = ψ(x, θ̂(x)). We use standard notation,
letting h denote a diagonal matrix of bandwidths, K(·) a symmetric kernel function
integrating to one, and Kh(x) = |h|

−1K(h−1
x). Denote by φ and Φ the univariate

standard normal density and distribution functions respectively,

φ(z) = (2π)−1/2 exp
{
−z2/2

}
, Φ(z) =

∫
z

−∞

φ(y) dy.

According to Otneim and Tjøstheim (2016), we can write the p-variate density function
fX as

fX(x) = fZ
(
Φ−1 (F1(x1)) , . . . ,Φ

−1 (Fp(xp))
) p∏

i=1

fi(xi)

φ (Φ−1 (Fi(xi)))
(4)
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where fi and Fi, i = 1, . . . , p, are the marginal densities and distribution functions of
fX , and fZ is the density function of a stochastic vector Z = (Z1, . . . , Zp) with standard
normal margins, and Zi = Φ−1 (Fi(Xi)).

We estimate fZ by locally fitting the standardized normal distribution,

ψ(z,θ) = ψ(z,R) = (2π)−p/2
|R|

−1/2 exp

{
−

1

2
z
T

R
−1
z

}
, (5)

with R = R(z) = {ρij(z)} denoting the correlation matrix, based on the marginally
Gaussian pseudo-observations

Ẑj =
(
Φ−1(F̂1(Xj1)), . . . ,Φ

−1(F̂p(Xjp))
)
T

, j = 1, . . . , n, (6)

where F̂k(xk), k = 1, . . . , p are estimates of the marginal distribution functions, which, in
our asymptotic results are assumed to be the empirical marginal distribution functions.
In (5), each correlation ρij(z) depends on the coordinates of the entire z-vector. In order
to circumvent the curse of dimensionality, we restrict ρij(z) so that it is only allowed to
depend on its own variables; i.e. ρij(z) = ρij(zi, zj). The corresponding estimate ρ̂(zi, zj)
is computed from the corresponding simplified pairwise local log likelihood so that we
can take

ρ̂ij(z1, . . . , zp) = ρ̂ij(zi, zj). (7)

This technique effectively reduces the estimation of fX to a series of bivariate problems,
which is reflected in the rate of convergence in the following asymptotic result, that holds
under some standard regularity conditions (Otneim and Tjøstheim, 2016) and proven for
sets of iid observations: √

nh2
n

(
f̂X(x)− f0(x)

)
L
→ N

(
0, σ2

fX

)
, (8)

where, in general, f0(x) 
= fX(x) is the population density towards which the LGDE
converges. Here, f0(x) is the simplified density obtained from (4) and (5) by replacing
fZ(z) with Ψ(z,R0), where R0 = {ρ0,ij(zi, zj)} and ρ0,ij is the true local Gaussian
correlation between Zi and Zj, as will be defined in Section 4.

Otneim and Tjøstheim (2016) propose two methods for bandwidth selection. Cross
validation is used to determine the bandwidths that minimise the estimated Kullback-
Leibler distance between the density estimate and the true density. They also employ the
k-nearest neighbour technique in order to obtain adaptive bandwidths, but simulation
results suggest that, of the two, the global bandwidth selector performs better. Indeed,
Hall (1987) shows that the performance of cross validation bandwidth selection depends
on the tails of the underlying distribution not being thicker than the tails of the kernel
function. By transforming the data to marginal standard normality, and using the
Gaussian kernel function, it follows that the cross-validation procedure is well suited for
selecting the LGDE bandwidths.

3 Estimating the conditional density

Conditional density estimates are in principle available from any non-parametric estimate
of the unconditional density of all variables. Let us return to the problem in Section 1,
and suppose that we obtain an estimate f̃X of fX in the process of estimating the left
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hand side of (1). The corresponding marginal density f̃X2 that ideally we should put in
the denominator of (1) is given by

f̃X2 =

∫
f̃X dx1,

but one must usually turn to numerical methods in order to obtain this integral, which
can be a costly affair in terms of computing power, especially when there are many
variables over which to integrate. Thus, estimating the marginal density directly from
the data is often quicker, but introduces a new source of uncertainty that, again, will be
difficult to handle in case of several explanatory variables.

We proceed to show that this problem is completely circumvented if we use the
LGDE strategy for estimation. As is well known for a multivariate Gaussian distribu-
tion, every conditional density that can be formed by partitioning the Gaussian vector
and computing the fraction (1), is again Gaussian, and where the (conditional) mean
and (conditional) covariance matrix in that Gaussian can be easily computed; see e.g.
Johnson and Wichern (2007, Chap. 4). This is of course also the case for the fraction
of Gaussians that are local approximations, and we can obtain estimates by using these
formulas. In more detail, starting from the p-variate density in (4),

fX1|X2(x1|X2 = x2) =
fX(x)

fX2(x2)

=
fZ(z1, . . . , zp)

fZ2(zk+1, . . . , zp)

k∏
i=1

fi(xi)

φ (zi)
,

where fZ/fZ2 can be seen locally as a fraction of a p-variate and a p−k-variate Gaussian
function, each with all expectations equal to zero, and with correlation matrices R(z)
and R22(z) respectively. The latter notation is natural because of the pairwise analysis,
so that R22(z) is exactly equal to the lower right block of R(z). Thus, in every grid
point z, fZ2 is exactly the marginal density of the p− k last variables of fZ , and we can
use the basic result for the multivariate normal distribution mentioned above to rewrite
the fraction. Partition R(z) into four blocks, of which the lower right block is R22(z):

R(z) =

(
R11 R12

R21 R22

)
Then

fZ/fZ2 = Ψ∗(z1, . . . , zk;μ
∗,Σ∗), (9)

where Ψ∗(·) is the general k-variate Gaussian density with expectation vector and co-
variance matrix given by

μ
∗ = R12R

−1
22 z2, (10)

Σ∗ = R11 −R12R
−1
22 R21, (11)

where z2 = (zk+1, . . . , zp). Note that we may use correlation- and covariance matrices
interchangeably, because all standard deviations are equal to one in fZ and fZ2 .

We can now obtain an estimate of fX1|X2=x2 essentially by plugging in local likelihood
estimates of R(z) = {ρij(zi, zj)}, resulting in

f̂X1|X2(x1|X2 = x2) = Ψ∗

(
ẑ; μ̂∗(ẑ), Σ̂∗(ẑ)

) k∏
i=1

f̂i(xi)

φ (ẑi)
, (12)

5



70 Papers

where μ̂∗(ẑ) and Σ̂∗(ẑ) are obtained by substituting local correlation estimates into

equations (10) and (11), and where we write ẑi = Φ−1(F̂i(xi)). Moreover, the second

factor in (12) requires estimates f̂i(xi) of the marginal densities fi(xi), i = 1, . . . , k. As
we will see in the next section, this can be any smooth estimate, and will not affect the
asymptotic results as long as they converge faster than

√

nh2. The current implementa-
tion of the LGDE uses the logspline estimator by Stone et al. (1997) for this purpose. It
is interesting to note that the computation resulting in (9), (10) and (11) can be done
directly on estimated quantities using results on fractions of exponential functions.

We modify the LGDE algorithm in Otneim and Tjøstheim (2016) according to the
discussion above, and estimate conditional densities by following these steps:

1. Transform each marginal observation vector to pseudo-standard normality using
(6).

2. Estimate the local correlation matrix of the transformed data by fitting the
Gaussian family (5) using the local likelihood function in (3) and the simplifi-
cation (7). In practice, this amounts to fitting the bivariate version of (5) to

each pair of approximately marginally standard normal variables (Ẑi, Ẑj), and let

R̂(z) = {ρ̂(zi, zj)}i,j=1,...,p.

3. Calculate the local mean and covariance matrix of f̂Z/f̂Z2 using the formulas (10)
and (11), so that the conditional density estimate becomes as given in (12)

4. Normalize the density estimate so that it integrates to one.

Again, we point out that our simplification of the dependence structure (7) in general will
result in an estimate of an approximation f0(·) of the true density f(·). We proceed in the
next section to discuss the nature of the simplification, to discuss regularity conditions,
and to explore the large sample properties of our method.

4 Regularity conditions and asymptotic theory

The following theorems on consistency and asymptotic normality state analogous results
to those found in Otneim and Tjøstheim (2016), but they are proven under a new set of
regularity conditions that allow for dependence between the observations X1, . . . , Xn.

The simplification (7) means that we estimate the local correlations pairwise, which
also means that it suffices to derive most of the asymptotic theory in the bivariate case.
Consider, for the time being, a pair (Zi, Zj) of marginally standard normal random
variables. Denote by ρ0(zi, zj) = ρ0(z) the local Gaussian correlation between them,
as will be defined below, and by ρ̂(z) its estimate, calculated using the bandwidths
h = (hi, hj) according to the algorithm in Section 3. Denote further by Ln(ρ(z), z) the
local log-likelihood function in (3) with the bivariate version of (5) as parametric family
ψ(·, ρ). For a fixed h > 0 (where all statements about the vector h in this section are
element-wise), denote by ρh the local correlation that satisfies

∂Ln(ρ; z)

∂ρ
→

∫
Kh(y − z)u(y, ρh) {fij(y)− ψ(y, ρh)} dy = 0 (13)

as n → ∞, where u(·, ρ) = ∂ logψ(·, ρ)/∂ρ, and fij is the joint density of (Zi, Zj). We
assume hereafter that ρh exists and is unique for any h > 0 (see also Hjort and Jones
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(1996) and discussion in Otneim and Tjøstheim (2016)). By letting h = hn → 0, at an
appropriate rate (see Assumption C), the local correlation in the expression above, as
mentioned in the previous section, satisfies

ψ(z, ρ0(z)) = fij(z), (14)

and we require the population value ρ0(z) to satisfy (14), cf. Hjort and Jones (1996) and
Tjøstheim and Hufthammer (2013). Assuming (14) is not enough to ensure uniqueness
of ρ0 just by itself, though, even in our restricted case with fij having standard normal
margins, and the expectations and standard deviations of ψ(·, ρ) being equal to zero
and one respectively. Consider for example the case where fij is the bivariate Gaussian
distribution with correlation coefficient ρ∗ 
= 0. It is obvious that ρ0(z) = ρ∗ is the
population parameter, but in the point z = 0, we see that ρ0 = −ρ∗ also satisfies (14).
In this and more general situations, such problems are avoided by approximating with a
Gaussian in successively smaller neighbourhoods. We must therefore make the following
assumption that guarantees a well defined population parameter at the point z:

Assumption A. For any sequence hn tending to zero as n → ∞ there exists for the
bivariate marginally standard Gaussian vector (Zi, Zj) a unique ρhn

(z) that satisfies
(13), and there exists a ρ0(z) such that ρhn

→ ρ0(z).

See Tjøstheim and Hufthammer (2013) for a discussion of Assumption A, and see
Berentsen et al. (2016) for a discussion of an alternative neighbourhood-free approach to
defining the population parameter by means of matching the partial derivatives of the lo-
cally Gaussian approximation with the true underlying density function. Assumption A
essentially ensures that we estimate the joint densities of each pair of transformed vari-
ables consistently, but the joint density f0(z) = Ψ(z,R0), where R0 = {ρ0,ij(zi, zj)}i<j,
and Ψ(·,R) is the standardized multivariate Gaussian density function with correlation
matrixR, is not necessarily equal to the true density of the standardized variables, which
we for simplicity denote by f(z). For this to be true, f(z) must be on the form

f(z) = Ψ(z,R0), (15)

and this is a restriction of a general density because the entire dependence structure
must be contained in the pairwise correlation functions ρ0,ij(zi, zj), which is true for
distributions with the Gaussian copula (for which the correlation functions are constant
in all directions), or a stepwise Gaussian distribution as described by Tjøstheim and
Hufthammer (2013), but it is difficult (and not paramount for our estimation procedure)
to find more analytic examples.

The class of density functions satisfying (15), H(f0) say, is much richer than the
Gaussian case, however, and our performance in estimating a given unconditional density
f(·) is clearly sensitive to the distance from f(·) to its best approximant in H(f0).

Imposing a sparsity requirement like (7) can be viewed in one of two ways. First,
as a modelling assumption that can be formally tested, and then discarded if the test
should fail. On the other hand, it can be viewed as a simplification of reality that arises
due to computational necessity, much like additivity in non-parametric regression. We
focus on the latter interpretation, and so the method must therefore be judged first and
foremost by its performance in practical situations, like those being presented in Section
5. We also refer to Otneim and Tjøstheim (2016) for comprehensive simulations and
discussions.
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Next, we introduce time series dependence. A strictly stationary series of stochastic
variables {Xn}, n = 1, 2, . . . is said to be α-mixing if α(m) → 0, where

α(m) = sup
A∈F0

−∞
,B∈F∞

m

|P (A)P (B)− P (AB)|, (16)

and where F
j

i
is the σ-algebra generated by {Xm, i ≤ m ≤ j} (Fan and Yao, 2003,

p. 68). We require the mixing coefficients (16) of our observations to tend to zero at
an appropriate rate, which means that we can turn to standard theorems in order to
establish the asymptotic properties of our estimator.

Assumption B. For each pair (i, j), 1 ≤ i ≤ p, 1 ≤ j ≤ p, i 
= j, {(Zi, Zj)}n is α-mixing
with the mixing coefficients satisfying

∑
m≥1 m

λα(m)1−2/δ < ∞ for some λ > 1 − 2/δ
and δ > 2.

The next assumption links allowable bandwidth rates with the mixing rate:

Assumption C. n → ∞, and each of the bandwidths h tend to zero such that

nh
λ+2−2/δ
λ+2/δ = O(nε0) for some constant ε0 > 0.

In the current context {(Zi, Zj)}n is a bivariate process with standard normal mar-
gins. In the statement of Theorem 3, Assumption B means that the general p-variate
observations {Xn} are α-mixing with the specified convergence rate for the mixing coef-
ficients. This distinction has no practical importance when transforming back and forth
between these two scales, because the mixing properties of a process are conserved under
any measurable transformation (Fan and Yao, 2003, p. 69).

We need a compact parameter space and some regularity conditions on the kernel
function in order to prove consistency and asymptotic normality for the local correlations:

Assumption D. The parameter space Θ for ρ is a compact subset of (−1, 1).

Assumption E. The kernel function satisfies sup
z
|K(z)| < ∞,

∫
|K(y)| dy < ∞,

∂/∂ziK(z) < ∞ and limzi→∞ |ziK(zi)| = 0 for i = 1, 2.

Theorem 1. Let {(Zi, Zj)}n be identically distributed bivariate stochastic vectors with

standard normal margins. Denote by ρ0(z) the local Gaussian correlation between Zi and

Zj, and by ρ̂n(z) its local likelihood estimate. Then, under assumptions A-E, ρ̂n(z)
P

→

ρ0(z) as n → ∞.

Proof. See Appendix A.1.

Fan and Yao (2003, pp. 76-77) provide a general central limit theorem for non-
parametric regression. It is applicable to the local correlations, with obvious adaptations
in order to achieve consistent notation. Assume now that {Zn} is a sequence of p-variate
observations having standard normal margins, and denote by ρ = (ρ1, . . . , ρp(p−1)/2) the
vector of local correlations, which has one component for each pair of variables. The
local correlations are estimated one by one using the scheme described above, and denote
by ρ̂ the estimate of ρ. Further, as all bandwidths are assumed to tend to zero at the
same rate, statements like h2 are taken to mean the product of any two bandwidths hi

and hj.
The local correlation estimates are then jointly asymptotically normal:
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Theorem 2. Under assumptions A-E,√
nh2

n
(ρ̂n − ρ0)

L
→ N(0,Σ),

where Σ is a diagonal matrix with components

Σ(k,k) =
fk(zk)

∫
K2(yk) dyk

u2(zk, ρ0,k(zk))ψ2(zk, ρ0,k(zk))
,

where k = 1, . . . , p(p − 1)/2 runs over all pairs of variables, fk is the corresponding

bivariate marginal density of the pair Zk, ψ(·) is defined in (5) and u(·) is defined in the

paragraph following equation (13).

When comparing with the corresponding result in Otneim and Tjøstheim (2016), we
see that the mixing has no effect on the asymptotic covariance matrix compared with
the iid case. See Appendix A.2 for proof.

The preceding theorems lead up to the following asymptotic result for the locally
Gaussian conditional density estimates, which is analogous to the corresponding result in
Otneim and Tjøstheim (2016) in the unconditional case. Denote by f0(x1|X2 = x2) the
locally Gaussian conditional density function of X1|X2 = x2 (where X = (X1,X2) does
not necessarily have standard normal marginals), which is obtained by replacing fZ/fZ2

with Ψ∗(z;μ∗

0,Σ
∗

0) in equation (12). The parameters μ∗

0 and Σ∗

0 are again obtained from
formulas (10) and (11) using the population values of the local correlations as defined in
Assumption A.

Following the algorithm in Section 3, we must estimate the local Gaussian correlation
for pairs of variables Ẑn = {(Ẑi, Ẑj)}n as defined in equation (6), that are not exactly
marginally standard normal, because the distribution functions Fi(·), i = 1, . . . , p must
be estimated from the data. In the same way as for the iid case in Otneim and Tjøstheim
(2016), we need some extra assumptions on the pairwise copulas between the compo-
nents in X to ensure that using the empirical distribution distribution functions instead
of the true distributions will not affect the asymptotic distribution of the LGDE con-
ditional density estimate. The following assumptions are taken directly from Geenens
et al. (2014), who derive the asymptotic properties of a local likelihood copula density es-
timator in the bivariate case, that is also based on transformations to marginal standard
normality.

Assumption F. The marginal distribution functions F1, . . . , Fp are strictly increasing
on their support.

Assumption G. Each pairwise copula Cij of (Xi, Xj) is such that (∂Cij/∂u)(u, v)
and (∂2Cij/∂u

2)(u, v) exist and are continuous on {(u, v) : u ∈ (0, 1), v ∈ [0, 1]}, and
(∂Cij/∂v)(u, v) and (∂2Cij/∂v

2)(u, v) exist and are continuous on {(u, v) : u ∈ [0, 1], v ∈

(0, 1)}. In addition, there are constants Ki and Kj such that∣∣∣∣∂2Cij

∂u2
(u, v)

∣∣∣∣ ≤ Ki

u(1− u)
for (u, v) ∈ (0, 1)× [0, 1],∣∣∣∣∂2Cij

∂v2
(u, v)

∣∣∣∣ ≤ Kj

v(1− v)
for (u, v) ∈ [0, 1]× (0, 1).
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Assumption H. Each density ci,j of Ci,j exists, is positive, and admits continuous
partial derivatives to the fourth order on the interior of the unit square. In addition,
there is a constant K00 such that

c(u, v) ≤ K00 min

(
1

u(1− u)
,

1

v(1− v)

)
for all (u, v) ∈ (0, 1)2.

These smoothness assumptions are quite weak, as can be seen from the discussion in
Geenens et al. (2014). Finally, we need to assume that the final back-transformation of
the density estimate converge faster than the nonparametric rate of

√

nh2:

Assumption I. The estimates of the marginal densities and quantile functions that are
used for the back-transformations in (12), are asymptotically normal with convergence
rates faster than

√

nh2.

As we use the logspline-estimator (Stone et al., 1997) for the back-transformations
in all our examples, we discuss its large sample properties in light of assumption I in
Appendix B. Another possible candidate is the basic univariate kernel estimator, which,
under some regularity conditions, converges as

√

nh.

Theorem 3. Let {Xn} be a strictly stationary process with density function fX(x).

Partition X into X1 = (X1, . . . , Xk) and X2 = (Xk+1, . . . , Xp), and let f̂X1|X2(x1|X2 =
x2) be the estimate of the conditional density fX1|X2 that is obtained using the procedure

in Section 3. Then, under assumptions A-I,√
nh2

n

(
f̂X1|X2(x1|X2 = x2)− f0(x1|X2 = x2)

)
L
→ N

(
0, ψ∗(z;μ∗

0,Σ
∗

0)
2g(x)2uT (z;μ∗

0,Σ
∗

0)Σu(z;μ∗

0,Σ
∗

0),

where

g(x) =
k∏

i=1

fi(xi)/φ(zi),

z = {zi}i=1,...,p = {Φ−1(Fi(xi))}i=1,...,p,

and u(z) = ∇ logψ∗(z,μ∗

0,Σ
∗

0), where the gradient is taken with respect to the vector of

local correlations.

See Appendix A.3 for a proof.

5 Examples

The asymptotic results of the preceding section will not give us the complete picture
on how the LGDE estimator of conditional densities behaves in practice for a finite
sample. We must also take into account that the simplification (7) of the dependence
structure could introduce an approximation error in practical applications, the size of
which depends on the problem at hand. We proceed to apply our new estimator to a
series of problems using real and simulated data, and compare it with existing methods.

It is customary in the copula literature to generate pseudo-observations by means of
the marginal empirical distribution functions, and this is why we can prove Theorem 3 by
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Figure 1: The integrated squared error of conditional density estimates of f
X1|X2,...,Xp

as
a function of p, generated from a density with exponential margins and a Joe copula
with Kendall’s Tau equal to 0.6.

mostly referring to existing results. The back-transformation (12) must be smooth and
invertible, making a standard marginal kernel estimate a natural choice. Extensive test-
ing, however, has revealed that we obtain better finite sample performance if we use the
logspline method by Stone et al. (1997) for marginal density and distribution estimates,
not only in the back-transformation (12), but also in generating the marginally Gaus-
sian pseudo-observations (6). The following examples, as well as the computer code that
accompany this article as supplementary material, therefore use the logspline estima-
tor for both of these purposes. We argue in Appendix B that the asymptotic properties
of the logspline estimator do not change when applied to α-mixing data compared to
independent data.

5.1 Conditional density estimation

5.1.1 Simulated data with relevant variables

In this section, we wish to investigate the sensitivity of various methods with respect
to the number of explanatory variables in the problem, and begin by presenting some
simulation experiments in which we generate data from test distributions, measure the
integrated squared error (ISE) of our conditional density estimate, and compare it with
the two natural competitors which are readily available for implementation: the näıve
approach, where the numerator and denominator of (1) are estimated separately using
the multivariate kernel estimator with the plug-in bandwidth selector of Wand and Jones
(1994), and the specialized kernel method by Li and Racine (2007), which we denote by

11
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Figure 2: The integrated squared error of conditional density estimates of f
X1|X2,...,Xp

as
a function of p, generated from the multivariate t-distribution with 4 degrees of freedom.

the name of the software package written in the R programming language (R Core Team,
2015) from which it can be calculated: “NP” (Hayfield et al., 2008).

The first test distribution has standard exponentially distributed margins, and the
dependence structure is defined by the Joe copula (see e.g. Nelsen (2013, p. 116,
distribution 6)) with parameter θ = 3.83, which corresponds to a Kendall’s Tau of 0.6
between all pairs of variables. For each dimension p, ranging from 2 to 6, we generate
27 = 128 data sets, and estimate the conditional density of X1|X2 = · · · = Xp = c,
with c being equal to 1,2 and 3 in this example. We calculate the ISE of the density
estimates numerically over 2000 equally spaced grid points, and graph the mean of the
estimated errors as a function of the dimension for two different sample sizes (n = 250
and n = 1000), see Figure 1.

The basic kernel estimator performs well in the center of the distribution, especially
in the example with sample size 1000. When we condition on values that are farther
out in tail, however, it quickly deteriorates as the dimension increases. This behaviour
is of course expected because of the curse of dimensionality. The NP-estimator is clearly
a major improvement to näıve kernel estimation of conditional densities, but in this
example we see that the LGDE approach is the overall best performer. It matches the
purely non-parametric methods in lower-dimensional cases, but also boasts a greater
robustness against increasing dimensionality than its competitors. The tail behaviour
of the LGDE is much better than the other two methods. It is governed by a Gaussian
distribution, which again is determined locally by the behaviour of f

X1|X2,...,Xp
in the tail.
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Figure 3: The integrated squared error of conditional density estimates of f
X1|X2,...,Xp

as a
function of p, generated from a density in which the first two variables are marginally log-
normal with a t(10)-copula, and the rest of the variables are multivariate t(5)-distributed,
independently from (X1, X2).

5.1.2 Simulated data from a heavy-tailed distribution

Otneim and Tjøstheim (2016) show that the unconditional version of the LGDE does
not work very well when fitted to the heavy-tailed t(4)-distribution. The reason for this
is not entirely clear, but one explanation is that the cross-validated bandwidths are too
small. The conditional version of the LGDE also starts to struggle when presented with
data from this distribution, as can be seen in Figure 2. It is expected that using the
t-distribution in the same pairwise and local manner as we use the Gaussian distribution
here, will improve this fit, and we discuss this more closely in Section 6. The conditional
density estimator by Li and Racine (2007) is the best alternative in this case if the
explanatory variables are not in the center of the distribution.

5.1.3 Simulated data with irrelevant variables

One challenge in estimating conditional densities is to discover, and take account of,
independence between variables. We have not addressed this problem explicitly in the
derivation of our estimator, contrary to the NP-estimator by Li and Racine (2007),
which smooths irrelevant variables away automatically. In our next example, however,
most of the explanatory variables are independent from the response variable, but they
are mutually dependent themselves. In the two-dimensional case with X = (X1, X2),
we generate data from a bivariate distribution with log-normal margins that has been
assembled using the t-copula with 10 degrees of freedom. For all dimensions greater than
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Figure 4: Estimate of the conditional density of the US log-returns conditioned on
Xt−1 = · · · = Xt−k = −1 with k = 1, 3, 7 respectively.

two, the remaining variablesX3, . . . , Xp are drawn from a multivariate t-distribution with
5 degrees of freedom, but independent from (X1, X2).

It turns out that our approach handles this case very well, see Figure 3. None of the
methods have errors that grow sharply with the dimension, which indicate that they more
or less ignore the extra noise that the extra dimensions contains. The LGDE-method
is clearly the best, however, according to this particular choice of error measure. The
explanation for this is the equivalence between independence and the local correlation
being equal to zero between marginally Gaussian variables, which in turn means that,
by construction, variables that are independent from the response variable will have very
little influence in the final conditional density estimate.

5.1.4 Real data with irrelevant variables

We can explore this property using a real data set as well. Consider a subset of the data
set which is also analyzed in Otneim and Tjøstheim (2016) comprising daily log-returns
on the S&P 500 stock index observed on 1443 days from January 3rd 2005 until July
14th, 2010. In this example we will use only the first 500 observations, so the financial
crisis of 2008 is not included in this particular analysis.

We know that there is very little extra information given the first lag in this time
series, thus estimating the marginal density of these log returns by conditioning on more
and more lags will not introduce more information, but rather noise, that should ideally
be ignored by the estimation routine.

Figure 4 displays the marginal density estimates of the data, calculated using the
three competing methods and conditioned on the preceding 1, 3 and 7 days’ values
respectively being equal to −1. All methods perform similarly in the first case in which
we condition on only one variable. In the second panel we condition on three lags,
which amounts to a four dimensional problem in terms of density estimation, and the
näıve kernel estimator, not surprisingly, struggles in this case. The other two methods,
however, the NP and the LGDE, remain largely unchanged, which indicates that they,
for the most part, ignore the additional two variables of data. When conditioning on 7
lags, the kernel estimator should not be trusted. The NP-estimator also appears to loose
some characteristics, like the sharpness of its peak and the fatness of its right tail. The
LGDE, on the other hand, seems to be the better performer in this case. Although the
estimate is slightly deformed compared to the other two figures, its main characteristics
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Figure 5: Australian temperature data, with estimated conditional density of the max-
imum daily air temperature, given a preceding recording of 10, 20, 30 and 40 degrees
Celsius respectively.

are conserved. The tails in particular shows great robustness compared to the other two
methods, and we believe that this behaviour to a large part explains its good performance
in simulation experiments, and we will also exploit this feature in Section 5.3.

5.1.5 Melbourne temperature data: comparison with local polynomials

The local polynomial conditional density estimators of Hyndman et al. (1996) and Hyn-
dman and Yao (2002) is in its current implementation restricted to the case where the
explanatory and response variables are both scalar, and is therefore not included in the
simulation experiments of the preceding subsection. We will, however, compare these
estimators to our approach using the Melbourne temperature data that is presented by
Hyndman et al. (1996). The data consists of daily recordings of the maximum air tem-
perature in Melbourne, Australia from 1981 until 1990. It is known that a low maximum
temperature one day most often results in a similar temperature the next day. Local
meteorological conditions, however, have the effect that a high maximum temperature is
often followed by either a large, or a much smaller observation, making the corresponding
conditional density bimodal. The Hyndman et al. (1996)-estimator, which in this exam-
ple is a local polynomial of order zero, recovers this phenomenon nicely, and although
our locally Gaussian estimator is not identical, it gives a similar picture, see Figure 5.
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Figure 6: The top panel displays a simulated time series. The lower left panel displays
the average of the estimated conditional densities of Xt|Xt−2 = 5, and the lower right
panel shows the unconditional diagonal local correlation between Xt and Xt−2, as well as
the same quantity when conditioned on the intermediate value Xt−1, with 95% empirical
confidence intervals.

The Hyndman and Yao (2002)-estimator is a locally quadratic polynomial, and mostly
agrees with the other methods, but seems to be slightly overfitting the density in the
lower right panel.

It is interesting to note that the bimodality of the LGDE-estimator is mirrored com-
pared with the local polynomials in the lower left panel.

5.2 Partial correlation and covariance

The partial autocorrelation function for a stationary time series at lag k is the correlation
between Xt and Xt−k, given the values of the intervening lags (Brockwell and Davis,
2013, p. 98). The concept of partial correlation is very important, especially in the
analysis of conditional dependencies in Bayesian networks. Partial local correlation is a
natural extension of local correlation in light of the new theory allowing for dependent
observations. Consider for example the nonlinear AR(1) model

Xt = 0.8Xt−1 + 0.5
√
|Xt−1|+ Zt,
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Figure 7: Value of the portfolio over a period of 1442 days.

Table 1: Proportion of observations exceeding the estimated VaR

Level

Method 0.005 0.01 0.05

LGDE 0.014 0.017 0.072
np 0.084 0.097 0.161
Kernel 0.117 0.134 0.187
Gaussian 0.045 0.064 0.125

where the Zts are independent standard normal innovations. One realization of length
500 is plotted in the upper panel of Figure 6. There is strong serial dependence in this
model. Indeed, if we estimate the joint density of the lagged values Xt and Xt−2 using
the LGDE methodology, the estimated local correlation is close to 1. This can be seen
in the lower right panel of Figure 6, in which the local correlation for 300 realizations
has been averaged and plotted as a solid line along the diagonal xt = xt−2, along with
the empirical 95% confidence interval. We do know from the Markov property of {Xt},
however, that Xt is independent of Xt−2 given Xt−1, and this is clearly reflected in the
estimated local covariance between the two variables for the joint conditional density of
(Xt, Xt−2)|Xt−1 = xt−1 (where xt−1 = 5 in this particular case), that has been plotted as
a dashed line. We use the term local covariance here, instead of local correlation, because
the diagonal elements in Σ as defined by (11) are no longer 1. As seen in the lower right
panel of Figure 6, the local covariance practically vanishes when the intermediate variable
is conditioned upon.

The average of the estimated conditional densities in question has been plotted along
its diagonal in the lower left panel of Figure 6.

5.3 Forecasting the value-at-risk of a portfolio

There is a vast literature available on portfolio optimization theory. A vital element
when selecting the optimal distribution of wealth over a set of assets is the estimation
of risk, of which the Value-at-Risk (VaR) is a common measure. The VaR of a portfolio
at level α is simply the upper (1 − α)-quantile of the loss-distribution of the portfolio,
which usually needs to be estimated from past data.

We look at the S&P 500 data from Section 5.1.4, as well as the corresponding log-
returns on the British FTSE 100 index and the Norwegian OBX, and consider the obser-
vations on all 1443 days. In this toy example, we will show that our conditional density
estimator may well be used as an instrument in estimating the VaR.

We wish to estimate the daily VaR of a portfolio consisting of each of these in-
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dices, equally weighted, conditioned on the observed log-returns on preceding days. The
log-returns of this portfolio is plotted in Figure 7. Denote by (X1, . . . , X4) the four-
dimensional vector that we observe each day, in which X1 is the value of the portfolio
that day, and X2, . . . , X4 are the values of its individual components on the preceding
day. On each day we estimate the conditional density of X1|X2 = x2, . . . , X4 = x4 and
calculate the α-level VaR by numerical integration. We do the same by using the non-
parametric kernel estimator by Li and Racine (2007), naive kernel estimator, as well as
by assuming the data to be jointly Gaussian and calculating the quantile from a fully
parametric fit. We start our analysis on day number 500, and for computational feasi-
bility, we calculate the bandwidths for all methods on the first day of analysis only, and
keep them constant throughout the period.

Table 1 displays the result of our analysis. For each method we count the proportion
of observations that exceed the estimated VaR on the corresponding day. We see that all
methods under-estimate the risk, but the LGDE-approach is clearly the better performer,
which we believe is due to its tendency to allow fat tails in the density estimates, see
e.g. Figure 4, even though it has a local Gaussian tail.

A thorough treatment of this topic would include pre-filtering of the data using
for example a GARCH-type model as found in Palaro and Hotta (2006), as well as
implementation of the LGDE in optimization over the portfolio weights, but that is
beyond the scope of this paper.

6 Conclusion and further work

Constructing non-parametric estimates of conditional density functions is a fundamental
problem in statistics, but it is difficult, because many of the existing methods rely either
on the traditional kernel density estimator, or on separate estimates of the numerator
and denominator in the definition of the conditional density, or, most often, both. This
could work in lower dimensional problems, especially if we keep ourselves away from the
tails of the distribution in question.

We have shown, however, that by using the LGDE methodology, both of these prob-
lems tend to disappear. The simplified locally Gaussian estimates cope far better in
higher dimensions than the kernel estimator, and it provides an explicit expression of
the conditional density estimates, without the need for separate estimates of the nu-
merator and denominator. The result is a general conditional density estimator for
continuous data that is robust against dimensionality issues, modelling error, as well as
noise induced by irrelevant variables.

These properties have been demonstrated through examples and asymptotic deriva-
tions. A more comprehensive theoretical analysis of the LGDE-framework and its possi-
ble generalizations remains to be developed, and will be the subject of later studies. For
example, the degree to which a general multivariate density function can be character-
ized by pairwise locally Gaussian correlations, or the distance between f(x) and f0(x)
in keeping with the notation from Section 4, is a challenge, cf. Otneim and Tjøstheim
(2016). Further, if the LGDE-approach can be labelled as a two-fold approximation com-
pared to the fully non-parametric, or p-fold, estimation procedure in which we omit the
simplification (7), it might be worthwhile to develop a general procedure allowing for
a k-fold model, in which each local correlation depends on k variables, with k increas-
ing, and these variables being selected based on data analogously to variable selection
methods in regression. In theory, this can be generalized even further by replacing the
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normal distribution as a building block, with another member of the family of ellipti-
cal distributions that also organizes its parameters in a covariance-like matrix structure.
Deriving conditional densities from such a general model requires more work, but should
in principle be possible.

A Proofs

A.1 Proof of Theorem 1

Except from a slight modification that accounts for the replacement of independence
with α-mixing, the proof of Theorem 1 is identical to the corresponding proof in Otneim
and Tjøstheim (2016), which again is based on the global maximum likelihood case
covered by Severini (2000). For each location z, that we for simplicity suppress from
notation, denote by Qhn,K

(ρ) the expectation of the local likelihood function Ln(ρ,Z).
Consistency follows from uniform convergence in probability of Ln(ρ,Z) towards Qhn,K

(ρ), conditions for which are provided in Corollary 2.2 by Newey (1991).
The result requires compact support of the parameter space, equicontinuity and Lip-

schitz continuity of the family of functions {Qhn,K
(ρ)}, as well as pointwise convergence

of the local likelihood functions. Compactness is covered by Assumption D, and the
demonstration of equi- and Lipschitz continuity in Otneim and Tjøstheim (2016) does
not rely on the independent data assumption. Pointwise convergence follows from a stan-
dard non-parametric law of large numbers in the independent case. Our assumption B
about α-mixing data, however, ensures that pointwise convergence still holds, see for ex-
ample Theorem 1 by Irle (1997), conditions for which are straightforward to verify in
our local likelihood setting.

The rest of the proof is identical to the corresponding argument by (Severini, 2000,
pp. 105-107).

A.2 Proof of Theorem 2

Consider first the bivariate case, in which there is only one local correlation to estimate.
The first part of the proof goes through exactly as in the iid-case of Otneim and Tjøstheim
(2016). We follow the argument for global maximum likelihood estimators as presented
in Theorem 7.63 by Schervish (1995). The statement of Theorem 2 follows provided that

Yn(z) =
n∑

i=1

K
(
|hn|

−1(Zi − z)
)
u(Zi, ρ0) =

n∑
i=1

Vni, (17)

is asymptotically normal, and this follows from a standard Taylor expansion. In the
iid-case, the limiting distribution of (17) is derived using the same technique as when
demonstrating asymptotic normality for the standard kernel estimator, for example as in
the proof of Theorem 1A by Parzen (1962). We establish asymptotic normality of (17)
in case of α-mixing data, however, by going through the steps used in proving Theorem
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2.22 in Fan and Yao (2003). Let Wi = h−1Vni, then

1

nh2
Var(Yn(z)) =

1

nh2

{
n∑

i=1

Var(Vni) + 2
∑ ∑

1≤i<j≤n

Cov(Vni, Vnj)

}

= Var(W1) + 2
n∑

j=1

(1− j/n)Cov(W1,Wj+1),

where

Var(W1) = E(W 2
1 )− (E(W1))

2

=

∫
h−2u2(z, ρ0)K

2(h−1(y − z))f(y) dy +O(h2)

=

∫
u2(z + hv)K2(v)f(z + hv) dv +O(h2)

→ u2(z, ρ0)f(z)

∫
K2(v) dv

def
= M(z) as h → 0,

and
|Cov(W1,Wj+1)| = |E(W1Wj+1)− E(W1)E(Wj+1)| = O(h2),

using the same argument once again. Therefore,∣∣∣∣∣
mn∑
j=1

Cov(W1,Wj+1)

∣∣∣∣∣ = O(mnh
2).

Fan and Yao (2003) require that

E(u(Zn, ρ0(z))
δ) < ∞ (18)

for some δ > 2, but this is of course true for our transformed data, because it is marginally
normal. In proposition 2.5(i) by Fan and Yao (2003) we can therefore use p = q = δ > 2
in order to obtain, for some constant C,

|Cov(W
|
,Wj+1)| ≤ Cα(j)1−2/δh4/δ−2.

Let mn = (h2
n
| log h2

n
|)−1. Then mn → ∞, mnh

2
→ 0, and

n−1∑
j=mn+1

|Cov(W1,Wj+1)| ≤ C
h4/δ−2

mλ

n

n∑
j=mn+1

jλα(j)1−2/δ
→ 0,

which follows from assumption B. Thus,

n−1∑
j=1

Cov(W1,Wj+1) → 0,

and it follows that
1

nh2
Var(Yn(z)) = M(z)(1 + o(1)).

The proof now continues exactly as in Fan and Yao (2003) using the ”big block small
block” technique, but with the obvious replacement of h with h2 to accommodate the
bivariate case.
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We expand the argument to the multivariate case using the Cramèr-Wold device.
Let ρ = (ρ1, . . . , ρd)

T be the vector of local correlations, where d = p(p − 1)/2, write
u(z,ρ0) = (u1(z,ρ0), . . . , ud(z,ρ0)) and let Sn(z) = {Sni(z)}

d

i=1, where

Sni =
n∑

n=1

uk(Zt,ρ0)K(|h|−1(Zt − z)).

We must show that ∑
k

akSnk

L
→

∑
k

akZ
∗

k
, (19)

where a = (a1, . . . , ad)
T is an arbitrary vector of constants, and Z

∗ = (Z∗

1 , . . . , Z
∗

k
) is

a jointly normally distributed random vector. Because of Slutsky’s Theorem, it suffices
to show that the left hand side of (19) is asymptotically normal. This follows from
observing that it is on the same form as the original sequence comprising Sn, with∑

k

akSnk =
∑
n

u∗(Zn,ρ0)K(|h|−1(Zn − z)),

where u∗(Zn,ρ0) =
∑

k
akuk(Zn,ρ0). It is well known that any measurable mapping

of a mixing sequence of random variables inherit the mixing properties of the original
series, so condition B is therefore satisfied by the linear combination. The new sequence
of observations satisfies (18) because it follows from Jensen’s inequality that for δ > 2,[

u∗(Zt,ρ0)∑
k
ak

]
δ

=

[∑
k
akuk(Zt,ρ0)∑

k
ak

]
δ

≤

∑
k
ak[uk(Zt,ρ0)]

δ∑
k
ak

,

so that

E[u∗(Zt,ρ0)]
δ

≤

∑
k

akE[uk(Zt,ρ0)]
δ

[∑
k

ak

]
δ−1

< ∞.

The off-diagonal elements in the asymptotic covariance matrix are zero using the
same arguments as in Otneim and Tjøstheim (2016).

A.3 Proof of Theorem 3

The key to proving 3 is to show that the asymptotic distribution of (17) remains un-
changed when the marginally standard normal stochastic vectors Zn are replaced with
the pseudo-observations

Ẑn =
(
Φ−1(F̂1(Xj1)), . . . ,Φ

−1(F̂p(Xjp))
)
T

,

where F̂i(·), i = 1, . . . , p are the marginal empirical distribution functions. This is shown
in the independent case under assumptions F-G in Otneim and Tjøstheim (2016), by
providing a slight modification to Proposition 3.1 by Geenens et al. (2014). The essence
in that proof is the convergence of the empirical copula process, which remain unchanged
if we replace the assumption of independent observations with α-mixing, according to
Bücher and Volgushev (2013).
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The multivariate delta method states that if
√

nh2(θn−θ)
L
→ N(0, A) and q : Rn

→ R

has continuous first partial derivatives, then
√

nh2(q(θn)−q(θ))
L
→ N(0,∇q(θ)TA∇q(θ))

(Schervish, 1995, p. 403)). In our case, q(ρ) = Ψ(z,R)g(x), and

∇q(ρ) = Ψ(z,R)g(x)u(z,R),

from which the result follows immediately.

B Large sample properties of the logspline estimator

The current implementation of our method in the R programming language (R Core
Team, 2015) uses the logspline method by Stone et al. (1997) for marginal density esti-
mation. The asymptotic theory for the logspline estimator is derived by Stone (1990),
but restricted to density functions with compact support. Otneim and Tjøstheim (2016)
relax this requirement using a truncation argument, so that the requirement of compact
support can be replaced by an assumption on the tails of the unknown density not being
too heavy.

In particular, Stone (1990) denotes by ε ∈ (0, 1/2) a tuning parameter that determines
the asymptotic rate at which new nodes are added to the logspline procedure. If ε is close
to zero, new nodes are added quickly to the procedure, and as ε → 1/2, new nodes are
added very slowly. Stone (1990) then provides the following asymptotic results (again,
under the assumption that the true density f(x) has compact support):

√

n0.5+ε

(
f̂i(x)− f(x)

)
L
→ N(0, σ2

1),

and
√

n0.5
(
F̂i(x)− F (x)

)
L
→ N(0, σ2

2).

Otneim and Tjøstheim (2016) show that these results hold if there exist constantsM > 0,
γ > 2ε/(1− 2ε), and x0 > 0 such that f(x) ≤ M |x|−(5/2+γ) for all |x| > x0, so the ’worst
case scenario’ with respect to assumption I when using the logspline estimator for the
final back-transformation, is ε being close to zero. In that case, we must require the
bandwidths to tend to zero fast enough so that n1/2h2

→ 0, but on the other hand, that
will allow γ to approach zero, and thus the tail-thickness of the density to approach that
of |x|−5/2.

What remains here is to show that these results hold also in the case where the
observations are α-mixing. This is easily done by replacing the use of the iid central limit
theorem (clt) in the proof of Theorem 3 in Stone (1990), with a corresponding clt that
holds under our mixing condition. For example, Theorem A by Peligrad (1992) proves
the clt under α-mixing provided that the mixing coefficients satisfy

∑
∞

n=1 α(n)
1−2/δ < ∞.

This condition follows from our assumption B.
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