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Abstract

Multivariate complexity is a prominent field that over the last decades has de-
veloped a rich toolbox, not only to tackle seemingly intractable problems, but
also to describe the boundaries of tractability in a richer and more fine-grained
way. In this thesis we survey the research directions emerging after the question
of fixed-parameter tractability has been settled. That is, we define and exemplify
structural parameters, polynomial kernelizations, branching techniques, subexpo-
nential time algorithms and parameterized approximation algorithms. In addition,
we display techniques for proving lower bounds for all of the above mentioned
directions. After this, we give new results within this parameterized framework
for several classic graph problems.

The problems studied in this thesis can naturally be divided into two groups; graph
modification problems and structural graph problems. With respect to graph
modification problems, we study problems where one is to remove a small set of
vertices in order to break the graph into small connected components. We also
study problems where, instead of deleting vertices, we are to add and/or remove a
small number of edges in order to obtain a graph that adheres to a specific set of
properties. We resolve several questions in the literature with respect to modifying
a graph to a threshold graph or to a chain graph. We prove that editing to such
graphs is NP-hard and, under the widely believed Exponential Time Hypothesis
(ETH), not solvable in 2o(

√
k) · nO(1) time. We also provide polynomial kernels and

subexponential time parameterized algorithms running in time 2O(
√

k log k) + nO(1)

for all three edge modification variants into both graph classes.

We also consider edge modifications into H-free graphs, where H is any finite set
of forbidden induced subgraphs, on bounded degree input graphs. We prove that
for a fixed maximum degree Δ, both edge editing and edge deletion to H-free
graphs in at most k operations, admit polynomial kernels with kO(Δ log Δ) vertices.
Then, via the framework of cross-compositions we prove that there is a finite set H,
such that completion to H-free graphs does not admit a polynomial kernelization
algorithm on bounded degree graphs, when parameterized by the bound on the
number operations k, unless NP ⊆ coNP/poly.

With respect to structural graph problems, we first provide several results for
bandwidth. We prove that, assuming ETH, there is no significant improvement
over the classic dynamic programming algorithm by Saxe [SIAM’80]. In particular,
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we prove that, assuming ETH, there is no f(b)no(b) time algorithm for deciding
whether the bandwidth of a graph is at most b. This result remains true when
restricted to trees of pathwidth at most 2. By the same reduction, we prove that
deciding whether the bandwidth of a graph is at most b, when parameterized
by b, is W[1]-hard when restricted to the same set of trees. Furthermore, we
provide the first approximation algorithm for computing the bandwidth of trees,
where the approximation factor depends solely on b. We then extend this result to
graphs of bounded treelength, a rich graph class containing among others chordal
graphs and graphs of bounded hyperbolicity. We also provide a characterization
of graphs of small bandwidth for the same graph classes. In particular, the
most general of these results states that a graph of bounded treelength can
only have high bandwidth if it has high local density or high pathwidth, or if it
contains a slight modification of a bandwidth obstruction introduced by Chung
and Seymour [Discrete Mathematics’89].

Finally, we provide a constant factor approximation algorithm for computing the
treewidth of a graph that runs in O(ckn) time. The algorithm either provides
a tree decomposition of width 5k + 4 or concludes that the treewidth of the
input graph is larger than k. This algorithm improves several known results,
like the one by Robertson and Seymour [JCTB’95] and Reed [STOC’92] and
Amir [Algorithmica’10]. We point out that there are many important problems in
the literature, for example computing a vertex cover, a dominating set or a steiner
tree of a graph, that can be solved in O(ckn) time if provided a tree decomposition
of width at most O(k). The algorithm presented, is the first that can provide such
algorithms with a tree decomposition of sufficiently small width, without being the
bottleneck of the composed algorithm: That is, an algorithm that first computes
a decomposition of width O(k) and then solves the problem in O(ckn) time.
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Chapter 1

Introduction and motivation

Since the formalization of computing, researchers have explored the computability
of various tasks, trying to decide which tasks can be solved by a computer and
which are resistant to computational efforts. Since the middle of the last century
and up until today, an increasing amount of research has been directed towards
the question of which problems can be solved efficiently by a computer, and which
can not. In the beginning of the 1970’s, Cook and Levin independently published
their seminal papers [Coo71, Tra84] formally introducing the question of P versus
NP. The idea, first stated by Edmonds [Edm65], is that the problems feasible to
solve in a reasonable amount of time are the ones that can be solved in polynomial
time. As a result P is defined to be exactly these problems. The problems that
are hard for the class NP, a class containing P, are believed by most researchers
not to be solvable in polynomial time and hence to be difficult to solve—if not
outright impossible. This classification scheme, where one either manages to solve
a problem in polynomial time or prove that a problem is NP-hard, is utilized by
researchers in both industry and academia every day.

However, the story often goes as follows; a particular problem is considered
important, followed by scientific efforts resulting in the conclusion that the problem
is NP-hard. Now what? The problem has been classified as tough to solve, but we
still need to solve it. In this case, several approaches have been introduced by the
computer science community over the years. All of them take the original quest of

“solving the problem optimally in polynomial time”

and relax at least one of the requirements. Either by slightly changing “the
problem”, while ensuring that the instances we would like to solve are still covered,
or by accepting that the instance will not be solved “optimally”, but still somewhat
satisfactory. The last possibility is to allow spending more than “polynomial time”
to obtain an optimal solution. In this way we hope to partially circumvent the
hardness of the original quest and solve our problem in a satisfying manner.

3



4 CHAPTER 1. INTRODUCTION AND MOTIVATION

A guinea pig

Before we continue to illustrate the different relaxations, we are in the need of a
guinea pig; i.e., a problem to highlight the various relaxations on. For our purposes
the classic graph problem Vertex Cover is perfect. It is easily explained and
admits simple results for all the techniques we are going to discuss. In Vertex

Cover you are given a graph G and an integer k and the question is whether
there exists a subset X of V (G) of size at most k such that all edges of G are
incident to at least one vertex in X. Note that Vertex Cover is one the 21
problems Karp proved to be NP-complete as early as in 1972 [Kar72]. Due to this,
we do not expect to be able to solve this problem in polynomial time.

Figure 1.1: A graph together with a gray vertex cover of size 8. Observe how all
edges in the graph have at least one gray endpoint.

Approximation algorithms

An extensively studied approach to cope with NP-hardness is to relax the require-
ment of optimality. Instead of an optimal solution, we are providing a possibly
non-optimal solution together with a guarantee for how good the output solu-
tion is, either in terms of the optimal solution or the input instance. This is
the field of approximation algorithms, a topic on which several books have been
written [Hoc96, WS11, Vaz13]. For an optimization problem, OPT denotes the
value of the best solutions for an instance and is well-defined as long as there
exists a valid solution. For a minimization problem, an algorithm is said to be a
c-approximation if the algorithm either gives a solution of value at most c · OPT or
correctly concludes that no solution of value at most OPT exists. Very similarly
one can define c-approximation algorithms for maximization problems.

Before we display the folklore 2-approximation algorithm for Vertex Cover

we first recall the following: Given an instance (G, k) and a solution X, it holds
for every edge uv in G that at least one of u and v is contained in X. The idea of
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the algorithm is that instead of trying to decide whether u, v or both are to be in
the solution, we just add both of them to the solution. Then we remove the two
vertices and all incident edges from the graph and repeat the process with another
edge until the graph is edgeless. After termination, clearly every edge of G has at
least one endpoint in X. The proof of the algorithm being a 2-approximation is
based on the observation that whenever the algorithm includes both endpoints of
an edge into the solution, any solution, and in particular an optimal one, would
have to take at least one of the endpoints. Hence the constructed solution ends
up being not more than twice the size of an optimal solution. Interestingly this is
the best known approximation algorithm for Vertex Cover and, assuming the
unique games conjecture, it is NP-hard to improve upon this [KR08].

Exponential time algorithms

Another option is to relax the requirement of having polynomial running time and
move into the field of exponential time algorithms. This is also an extensively
studied approach [FK10]. These algorithms do give optimal solutions, but at the
expense of running in exponential time. The simplest exponential time algorithm
for Vertex Cover goes as follows: For every subset X of V (G) report yes if X
is a valid solution of size at most k before the algorithm terminates, and no if no
such X is found. There are 2n subsets of V (G) and for each of these subsets we
spend linear time checking if all edges are covered. Hence, this gives us a 2n(n+m)
exact exponential time algorithm. Further improvements can be made by branching
techniques evaluating local decisions regarding the solution. The currently best
known exact algorithms are by Robson [Rob86] and Bourgeois et al. [BEPvR12],
both running in time O(1.212nnO(1)). And while the first has a slightly better
base of the exponent, the second one runs in polynomial space.

Restricting input

Yet another approach is to restrict the generality of the problem. It is often the
case that the instances of the problem that we are interested in are of a specific
structure. Such structures present themselves in problems arising from nature
and industry. Suppose that we are only interested in solving Vertex Cover on
forests, that is, on graphs without cycles. The following observation is sufficient
to devise an optimal algorithm: If u is a leaf in the graph, in other words a vertex
with a single neighbor v, there is an optimal solution containing v. This is due
to the fact that u can only cover the edge uv, while v can potentially also cover
other edges. Observe that a forest always has at least two leaves and remains a
forest when deleting vertices, hence being a hereditary property. It follows that we
can find a leaf u, add its neighbor v to the solution and remove v and all incident
edges from the forest. Then, as long as there are edges in the forest, repeat the
procedure with another leaf. This yields a linear time algorithm if we are careful
enough to keep a list of the leaves in the forest, instead of searching for them.

But what if your graph is not a forest, but still quite close? In such cases you
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might still be able to devise a polynomial time algorithm. And what if you have
several such algorithms, which one should you choose? This brings us to the world
of multivariate complexity.

1.1 Multivariate complexity
Occurrences of using multiple variables in complexity can be found as early as
1972 in the seminal paper by Edmonds and Karp [EK72] on maximum flow. In
particular, it has been used to describe the complexity of graph algorithms in terms
of both the number of vertices (n) and the number of edges (m). However, we all
know that the number of edges in a graph is bounded by the square of the number
of vertices. And hence, the complexity of various graph algorithms, including
breadth-first search, depth-first search, Dijkstra’s algorithm and so forth, all could
be described only in terms of the number of vertices. But this would imply that a
simple graph traversal no longer would be of complexity O(n+m), but O(n2). The
O(n + m) bound indicates that the algorithm would terminate within a second on
an instance with a million vertices and edges. However, the promise of the O(n2)
bound is more along the lines of termination within hours. Thus, even though
both upper bounds are formally correct, the classic O(n + m) yields a far more
descriptive picture of the complexity of the algorithm at hand. And, not only
does this finer analysis by introducing more variables give a better description of
the complexity of existing algorithms, it also provides a tool for guiding further
algorithmic development. This is the very idea that parameterized complexity
captures and further develops upon. A field that there has been written numerous,
now classic, books on: Downey and Fellows [DF99], Flum and Grohe [FG06],
Niedermeier [Nie06], Downey and Fellows [DF13] and Cygan et al. [CFK+15].

1.1.1 A gentle introduction to parameterized complexity
In this thesis we will consider a parameterized problem as a problem where each
input instance comes with one integer that is predefined as a parameter. Based
on this we can define the notion of a problem being fixed-parameter tractable, or
equivalently, belonging to the class FPT. An example of such a problem would
be Vertex Cover parameterized by the requested solution size k. We say that
such a problem is fixed-parameter tractable if there exists an algorithm solving
problem instances of size n with parameter value k in time O(f(k) · nO(1)) for
some computable function f .

As a first example, we will give such an algorithm for Vertex Cover pa-
rameterized by k, the requested solution size. Recall the observation we made
when developing an approximation algorithm for the problem, namely that for
any edge uv in the input graph G either u or v is to be in the solution. In the
approximation algorithm we exploited this by picking both of the vertices in the
solution and then proving that this strategy would yield a solution that is at most
twice the size of an optimal solution. Now, however, we have more time at hand,
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namely a factor f(k), and this we should utilize. What if we tried adding the two
vertices, one at the time, to the solution before we recursively cover the remaining
edges? First, we could try adding u to the solution and recurse on the instance
(G − u, k − 1): Here G − u since all edges incident to u gets covered and k − 1 since
we are only allowed to add k −1 additional vertices to the solution. If the recursive
call decides that (G − u, k − 1) is a yes-instance, we return yes. Otherwise, we
recurse on the instance (G − v, k − 1). If both recursive calls fail, we know that
(G, k) is a no-instance and hence we return this.

If at any time in the recursion we get an edgeless graph, we are trivially faced
with a yes-instance and hence we conclude so. On the other hand, if our graph
contains edges and the parameter k is zero we are presented with a trivial no-
instance and we return this. This simple, recursive algorithm will always correctly
conclude whether the given instance is a yes- or no-instance. It remains to analyze
the running time of the algorithm. Observe that any recursive call makes at most
two new recursive calls and that the depth of the recursion tree is bounded by
k + 1. This immediately yields that we make at most O(2k) recursive calls during
the execution of our algorithm. In each call we identify an edge for which we
remove each of its endpoints, one by one, from the graph. This takes linear time,
and hence the complexity of the branching algorithm is O(2k(n + m)). We can
conclude that Vertex Cover parameterized by k is indeed fixed-parameter
tractable.

1.1.2 Harder than FPT
A natural question to ask is whether all parameterized problems are fixed-parameter
tractable. So far we have seen that Vertex Cover is in FPT when parameterized
by the solution size. As a first example of a problem that seems to not be in
FPT we introduce Graph Coloring. Here, you are given a graph G and a
number of available colors k as input and the question is whether you can color
each vertex in G with one of the k colors such that no two neighbors get the same
color. It was proven by Garey, Johnson and Stockmeyer in 1974 that this problem
is NP-hard even if you fix k to be 3 [GJS74]. And hence, assuming P �= NP, there
is no algorithm solving the problem in time O(f(k) · nO(1)), since replacing k by 3
would yield a polynomial time algorithm for an NP-hard problem.

This property of being NP-hard already for fixed values of the parameter is
often referred to as being para-NP-hard. Not only can we rule out fixed-parameter
tractable algorithms for these problems, but we can also rule out parameterized
algorithms with running times on the form f(k)ng(k). The parameterized problems
that do admit such algorithms belong to the class XP. Despite being polynomial
time solvable for every fixed value of the parameter, the polynomial gets worse as
the parameter grows. This is in contrast to a fixed-parameter tractable algorithm,
where the degree of the polynomial remains the same as the parameter grows.

One can easily observe from the definitions that FPT ⊆ XP. But it does not
stop here, in fact there is an entire hierarchy of classes, called the W-hierarchy, that
we do believe to encapsulate problems that are not in FPT, but in XP. Without
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going into the details of these classes, its structure is as follows:

FPT = W[0] ⊆ W[1] ⊆ W[2] ⊆ · · · ⊆ W[t] ⊆ XP,

where we believe all containments to be strict. For the readers familiar with
nondeterministic Turing machines, we note that the problem of deciding whether a
nondeterministic Turing machine will accept a string in at most k nondeterministic
steps is W[1]-complete when parameterized by k [DF99]. Due to this, many of the
reasons for believing that P �= NP carry over to FPT �= W[1]. Instead of going
into the hierarchy we will present a classic graph problem that is complete for
W[1]. After this we will illustrate how one can use reductions to prove that other
problems also are hard for the same class.

Our default starting point for parameterized hardness will be Clique. Here
you are given a graph G and an integer k and the question is whether there
is a subset of vertices C in G of size k, such that every pair of vertices in C
are neighbors. This problem was proven to be NP-complete by Karp [Kar72].
Furthermore, one can observe that the problem is in XP since for any fixed k one
can iterate over all subsets of vertices of size k and check whether it is a clique in
polynomial time, yielding an O(nk+2) time algorithm. It was proven by Downey
and Fellows [DF95] that Clique parameterized by the solution size is indeed
complete for W[1], and therefore unlikely to be in FPT.

Parameterized reductions

We have established that Clique is W[1]-hard and hence is not believed to admit
a fixed-parameter tractable algorithm. What we need is a tool that allows us
to extend this and show that other problems are not (or unlikely to be) in FPT.
We do this by proving that these problems are at least as hard as Clique and
hence that they are at least as hard as all problems in W[1]. For this purpose
parameter preserving reductions fits our need. A parameter preserving reduction
is an algorithm that takes as input an instance (x, k) of a parameterized problem
Π and outputs an instance (x′, k′) of Π′ such that the following three conditions
are meet:

• the algorithm runs in time f(k)|x|O(1) for a computable function f ,

• (x, k) is a yes-instance if and only if (x′, k′) is a yes-instance and

• k′ ≤ g(k) for some computable function g.

It is well-known that if a problem A is W[1]-hard and there is a parameter preserving
reduction from A to another problem B, then B is also W[1]-hard. To motivate
this, consider the case that there is a parameter preserving reduction from A to B

and that B is contained in FPT. We claim that then A is also in FPT. In particular,
we devise the following algorithm solving A in fixed-parameter tractable time:
Given an instance (x, k) of A, we first apply the parameter preserving reduction
to obtain an instance (x′, k′) of B. Then, we apply an algorithm solving (x′, k′)
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in h(k′)|x′|O(1) time, whose existence is guaranteed by B ∈ FPT. Since (x, k) is
a yes-instance if and only if (x′, k′) is a yes-instance, we have now solved the
instance (x, k). It remains to analyse the running time of this composite algorithm.
First, we spent f(k)|x|O(1) time to obtain (x′, k′). Then, we spent h(k′)|x′|O(1)

time to solve (x′, k′). We observe that since the reduction algorithm terminates in
f(k)|x|O(1) time, and this includes the time it takes to output the instance (x′, k′),
it follows that |x′| ≤ f(k)|x|O(1). Hence, we get the following total running time:

f(k)|x|O(1) + h(k′)|x′|O(1) ≤ f(k)|x|O(1) + h(g(k))|x′|O(1)

≤ f(k)|x|O(1) + h(g(k))[f(k)|x|O(1)]O(1)

= [f(k) + h(g(k))f(k)O(1)]|x|O(1)

= f ′(k)|x|O(1),

for a computable function f ′. Due to this we conclude that A ∈ FPT. Observe that
if A was a W[1]-hard problem to start with, this proves FPT = W[1], something
we consider to be unlikely.

To finish of our discussion about hardness, we give an easy reduction needed
later in the thesis, namely when proving lower bounds for Bandwidth in Chap-
ter 22. We now prove that Even Clique, an instance of Clique where k is
promised to be an even number, is W[1]-hard.

Theorem 1. Even Clique is W[1]-hard.

Proof. We give a simple reduction from Clique, which is known to be W[1]-
hard [DF95]. Given an instance (G, k) of Clique, if k is even the instance is
already a valid instance of Even Clique and the correctness is trivial. Otherwise,
let G′ be G with a universal vertex added (i.e. a vertex adjacent to every vertex
of G) and k′ = k + 1. Clearly, k′ is even, so this is a valid instance. If there is
a clique of size k in G, then the same clique together with the universal vertex
forms a clique of size k′ in G′. And the other way around, if there is a clique of
size k′ in G′. Then there is a subset of this clique of size k not containing the
added universal vertex. This is a clique in G of size k and hence our reduction is
sound. Since the reduction is parameter preserving it follows immediately that
Even Clique is W[1]-hard.

1.1.3 Beyond fixed-parameter (in)tractability
A natural question to ask after deciding whether a problem belongs to FPT or
not is: What is next? In the same manner as after deciding whether a problem
belongs to P or not, the story is far from over after establishing the question of
containment in FPT. In this thesis we will explore the different directions this
story can take. We will highlight and exemplify the various methods that have
developed within computational theory as a result of multivariate complexity.



10 CHAPTER 1. INTRODUCTION AND MOTIVATION

This journey will be via established and classic results in this first part, as well as
trough original research later in the thesis.

The motivation of multivariate complexity is to better capture the complexity
of computational tasks. But to do this, it is crucial to chose the right variables. In
Section 1.2 we will explore different parameterizations of problems. In particular,
we will see how structure of the input can be measured and utilized in the
development of algorithms. In Section 1.3 we will see how preprocessing data has
evolved within the realm of multivariate complexity. This is formalized as kernels
and polynomial kernels. Then, in Section 1.4, we will study how one can obtain
faster algorithms. Among others, we will see how preprocessing can significantly
improve the running time of algorithms. Last, in Section 1.6 we discuss the role of
multivariate complexity within approximation algorithms. This is an application
that is used both for obtaining faster algorithms even though the parameterized
problem is fixed-parameter tractable and to obtain tractable algorithms when the
problem is believed to not be in FPT.

Every method above is complemented with techniques for proving that this
method is not applicable for certain problems, under various complexity theoretic
assumptions. One should note that this is necessary, as some of these statements,
like proving that a problem does not admit a fast fixed-parameter tractable algo-
rithm is a stronger statement than that the problem does not admit a polynomial
time algorithm.

Problem in FPT? Change parameter?

Faster algorithm?Polynomial
kernel?

Parameterized
approximation?

Lossy kernel?

Figure 1.2: Flow chart of relevant research questions in parameterized complexity.
Follow green arrows if the question is answered positively, red if negatively and
brown in both cases.

In Figure 1.2 we display a natural ordering of research questions asked for a
parameterized problem. In particular, we start with deciding whether the pa-
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rameterized problem is contained in FPT. If this is answered positively, we aim
for faster algorithms and efficient preprocessing schemes. One can also hope for
faster algorithms by allowing the algorithm to provide approximate answers. Last,
one can consider to change the parameter to obtain better algorithms. If there is
strong evidence of the problem not being in FPT, we are left with two options.
Either we can allow approximate answers or we can change the parameter, hoping
that the action yields tractability.

1.1.4 A formal introduction to parameterized complexity
Before we continue we give the formal definitions of the concepts in parameterized
complexity discussed so far, as presented in the book by Cygan et al. [CFK+15].

Definition 1.1 ([CFK+15]). A parameterized problem is a language L ⊆ Σ∗ × N,
where Σ is a fixed, finite alphabet. For an instance (x, k) ∈ Σ∗ ×N, k is called the
parameter.

Definition 1.2 ([CFK+15]). A parameterized problem L ⊆ Σ∗ × N is called
fixed-parameter tractable if there exists an algorithm A, a computable function
f : N → N, such that given (x, k) ∈ Σs × N, the algorithm A correctly decides
whether (x, k) ∈ L in time bounded by f(k) · |(x, k)|O(1). The complexity class
containing all fixed-parameter tractable problems is called FPT.

Definition 1.3 ([CFK+15]). A parameterized problem L ⊆ Σ∗ × N is called
slice-wise polynomial if there exists an algorithm A and two computable functions
f, g : N → N such that, given (x, k) ∈ Σ∗ × N, the algorithm A correctly decides
whether (x, k) ∈ L in time bounded by f(k) · |(x, k)|g(k). The complexity class
containing all slice-wise polynomial problems is called XP.

1.2 Various parameterizations
So far we have considered the problems Vertex Cover and Clique parame-
terized by their solution sizes. And although being a natural way to go about
parameterized complexity, it might not be the one that suits your needs. Parame-
terized complexity is about identifying properties of problem instances that make
them computationally tractable or intractable, and then utilize these properties
when solving the instances. And with this in mind, it might be that the current
parameterization does not capture the tractability of the problem in a good way.

Before continuing we briefly address how we will compare parameters in the
context of graph measures. We will consider a graph measure x to be a smaller
parameter than another graph measure y, if there exists a computable function f
such that for every graph G it holds that x(G) ≤ f(y(G)). Similarly, we will say
that x is larger than y if x(G) ≥ f(y(G)) for every graph G. If neither of these
scenarios applies, we say that the two measures at incomparable parameters.

As a first example, we consider Clique parameterized by the vertex cover
number of the input graph. Observe that in a clique all but one of the vertices are
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to be in a vertex cover. Because of this, we can conclude that the vertex cover
number of the graph is lower bounded by the clique number minus one. Hence, we
are now considering Clique by a larger parameter than solution size and there
might be hope for the problem with the new parameterization to be in FPT. And
this does indeed turn out to be the case. We are given a graph G and integers k
and �, such that � is an upper bound on the vertex cover number of G. And the
question is if there is a clique of size k in G. First, we spend O(2�(n + m)) time to
obtain a minimal vertex cover X of G. Then, we recall that all but one vertex of
a clique in G must be inside X, since G − X is an edgeless graph. Hence, we can
brute force the intersection between a maximum clique and the vertex cover Y in
time 2�. And verify in �2 time that the selected set indeed forms a clique. To finish
the computation we need to check if there is a vertex in V (G) \ X for which its
neighborhood contains Y . The straight forward check of this can be executed in
O(n2) time. In total this yields a running time of O(2�(n+m)+2��2n2) = O(2��2n2)
and hence Clique parameterized by the vertex cover number is in FPT. One
can observe that, the opposite scenario, parameterizing Vertex Cover by the
clique number of the input graph will yield a hardness result. It was proven
by Garey and Johnson [GJ79b] that Vertex Cover is NP-hard on graphs of
maximum degree 3, and hence also on graphs of maximum clique size 4. It follows
immediately that the aforementioned parameterization of Vertex Cover is
para-NP-hard.

Numerous results have been given for problems parameterized by something
else than solution size. Jansen and Bodlaender [JB11] proved that Vertex Cover

admits a polynomial kernel when parameterized by the feedback vertex set number
of the input graph. Similarly, Fellows et al. [FLM+08] studied several NP-hard
graph layout problems parameterized by the vertex cover number of the input
graph.

Many combinatorial problems can be formulated naturally as an integer linear
program. And then, one can construct the linear program relaxation of this ILP,
by not requiring the variables to be integral. A recent, interesting line of research
is to parameterize a problem by the difference between the target solution quality
and the optimum of the linear program relaxation. Lokshtanov et al. [LNR+14]
provided an O(2.3146rnO(1)) time algorithm for Vertex Cover, where r is the
difference between the requested solution value k and the optimum of the linear
program relaxation. However, the most studied parameterizations, besides solution
size itself, are still width parameters, which we will now discuss in more detail.

1.2.1 Width parameters
Width parameters exists in various forms and the goal is to capture structure of
the input that can aid significantly in computations. We have previously seen
that if we restrict the input graph to be a forest, then Vertex Cover becomes
solvable in polynomial time. And maybe the insight gained for forests could carry
over to graphs that are almost forests. This quest of quantifying how close you
are to a certain computationally simple structure, has inspired numerous width
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parameters. And among the measures based on forests, and arguably among all
width parameters, the one with the most impact is treewidth. Its goal is to measure
how closely a graph resembles a forest in such a way that it highlights structure
that is beneficial for computations.

And which properties is it that makes forests much more computationally
tractable than graphs in general? It is the fact that they are cycle-free. When
making a local decision, the impact propagates through the instance. But, in
the case of a forest, these propagations never meet again, as there are no cycles.
Hence, after making a decision for a vertex v one can often reduce the original
problem to independent sub-problems, one for each connected component of G − v.
And this is the feature that treewidth highlights. It gives you access to multiple
small sets of vertices in a tree structure, where each set breaks the graph into
connected components. The hope is that after making decisions for a provided set
X, one can solve each of the components of G − X independently.

Definition 1.4 (Tree decomposition). Given a graph G = (V, E) we say that
T = (T, X ), were T is a tree and X is a collection of subsets of V indexed by
V (T ), is a tree decomposition of G if the following conditions holds:

(i) ⋃
X∈X X = V ,

(ii) for every edge uv ∈ E there exists an X ∈ X such that {u, v} ⊆ X and

(iii) for every v ∈ V it holds that T [{i | v ∈ Xi}] is connected.

The elements of X is often referred to as the bags of the tree decomposition. And
in other words a tree decomposition T is to satisfy that the union of the bags
equals the vertex set of G, that for every edge in G there is a bag containing both
of its endpoints and that for every vertex v ∈ V the vertices in T corresponding
to bags containing v form a connected subtree of T . Based on this we can define
treewidth as follows.

Definition 1.5 (Treewidth). Given a graph G and a corresponding tree de-
composition T = (T, X ) we define the treewidth of T , denoted tw(T , G), as
maxX∈X |X| − 1. Based on this we define the treewidth of G as

tw(G) = min tw(T , G) where T is a tree decomposition of G.

We say that a tree decomposition T of G is optimal if tw(T , G) = tw(G).

Now, instead of parameterizing a problem by the solution size, we have the option
of parameterizing by the structure of the input, namely the treewidth of the
input graph. An argument for doing this is that we can, for instance, identify
optimal vertex covers in graphs with large solutions if the graph itself has a treelike
structure. There are various options for obtaining a tree decomposition, one of
them being presented in Section 1.6 and several others in Part VI. But we will
leave that part for now and assume that we are given a tree decomposition together
with our instance.
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The most crucial observation when designing algorithms for tree decompositions
goes as follows: For any bag Xs ∈ X and pair of vertices u, v ∈ V it holds that if
s separates the bags containing u from the bags containing v in the decomposition
tree T , then Xs separates u and v in G. This implies that all communication
between u and v in G must be through Xs. In the case of Vertex Cover this
can be used as follows: When extending a solution A for a connected component of
G−Xs together with Xs, to a solution of the entire graph, the only information we
need is which vertices in Xs are contained in A and the cardinality of A. Everything
else about A, are “internal workings” and non-critical for the extension.

Based on this we can design a dynamic programming procedure for Vertex

Cover on tree decompositions of width t that runs in 2ttO(1)n time. The approach
is to root your decomposition by an arbitrary bag and do dynamic programming
from the leaves up. The dynamic programming table contains an integer entry for
every vertex s of the decomposition tree and every subset As of Xs. This integer
value is precisely the size of the smallest vertex cover of the graph induced by the
union of the bags in the subtree rooted at Xs, such that the vertex cover contains
As.
Leaf bags: Here one simply map every vertex cover of the graph induced by the
bag to their respective sizes and every other subset to some marker of impossibility,
like infinity.
After this, we process the bags in a bottom-up fashion, such that when computing
the tables for a specific bag, each of its children have already had their tables
computed.
Non-leaf bags: We investigate each of the 2t+1 different subsets As of the bag
individually. Since the only interaction between the various connected components
in the graph induced by the bags below are via the vertices of the current bag,
where you have fixed an interaction with the solution, you can select the best
among the appropriate solutions for each of the children and combine them without
conflicts.
We can assume the decomposition to have at most O(n) bags (see Section 2).
For each bag we inspect all the 2t+1 different interactions with an imagined
solution and do look-ups in the tables of all of its children. In total, this yields
a 2ttO(1)n time algorithm. For a formal description of similar algorithms as
the one we just described, as well as correctness proofs, we refer the reader to
Cygan et al. [CFK+15].

1.3 Polynomial kernels
Preprocessing is frequently exploited in computationally heavy tasks. Often certain
parts of the input instance are easily solvable and can be trimmed away fast before
one tackles the core of the instance. One such example would be the preprocessing
rule we applied for Vertex Cover on forests. We observed that it would always
be at least as good to put the neighbour of a leaf into the solution as the leaf
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itself. The same preprocessing rule is applicable to any instance, the difference
being that in a forest one can always identify a leaf and hence the preprocessing
turns into an algorithm. In a graph this is not always the case. Moreover, the
existence of a polynomial time preprocessing algorithm for Vertex Cover that
guarantees to shrink an instance with n vertices to an instance with n − 1 vertices,
would imply P = NP. The reason being that if we apply this algorithm repeatedly,
we solve the problem in polynomial time. Due to this assumed contradiction, it
seems that the classic complexity framework is unfit for studying the theory of
preprocessing. A major success however, has been to study preprocessing in the
context of parameterized problems. Characterizing the success of a preprocessing
procedure in terms of a parameter, yields no contradictions such as above.

Definition 1.6 (Kernel). A parameterized problem Π admits a kernelization
algorithm, or simply a kernel, if there exists computable functions f and g together
with a polynomial time algorithm A that given an instance (x, k) of Π outputs an
equivalent instance (x′, k′) of Π such that the following holds:

(i) |x′| ≤ f(k) and

(ii) k′ ≤ g(k).

If both f and g are polynomial functions we say that Π admits a polynomial
kernelization algorithm, or polynomial kernel.

Before we continue, we would like to highlight a folklore relation between a problem
being fixed-parameter tractable and admitting a kernel. We remind the reader
that a problem is decidable if there exists an algorithm that solves the problem.

Theorem 2. A decidable problem Π is in FPT if and only if it admits a kernel.

Proof. (⇒) Assume that Π belongs to FPT and hence admits an algorithm that
given an instance (x, k) solves it in f(k) · |x|O(1) time. We will examine two cases.
First, if |x| ≥ f(k) it holds that f(k) · |x|O(1) ≤ |x|O(1)+1. In this case we can
run the existing algorithm in polynomial time and based on the answer either
output a yes- or no-instance of constant size. It remains to consider the case when
|x| < f(k). In this case, the size of the instance is already bounded by a function f
depending solely on the parameter, and hence we can output the original instance.
This concludes the forward direction of the proof.

(⇐) Assume that Π admits a kernel. Since the problem is decidable there exists
an algorithm solving the problem. Given input (x, k) we first run the kernelization
algorithm and obtain a new instance (x′, k′). We then run the algorithm on (x′, k′).
Observe that the size of the compressed instance depends solely on the parameter
and so does the running time. Hence we end up with an algorithm solving the
problem in time O(|x|O(1) + f(k)) for some function f .

When a problem is proven to be fixed-parameter tractable we know by Theorem 2
that the problem also admits a kernel. A natural next question is hence whether or
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not the problem admits a polynomial kernel. And if so, how small of a polynomial
kernel that is possible to obtain. The field of kernelization has grown tremendously
the last years. The field has grown from consisting of self-contained, combina-
torial arguments to also heavily utilize and further develop results from all over
mathematics. One example is the application of the Sunflower Lemma [ER60]
by Erdös and Rado to prove that d-Hitting Set admits a polynomial kernel
for every fixed d. Another example is the usage of linear programming and the
Nemhauser-Trotter theorem to prove that Vertex Cover admits a 2k vertex
kernel [CKJ01]. However, up until 2008 there was no method for disproving the
existence of polynomial kernels. This prevented scientists from being able to
prove that it was not their efforts or insight that was lacking, but the polynomial
kernel itself. However, the work of Fortnow and Santhanam [FS08] and Bod-
laender et al. [BDFH09] resulted in a robust framework for proving that, under
reasonable complexity assumptions, polynomial kernels does not exist for certain
problems. With this at hand kernelization is today a rigorous field with the tools
necessary for exploring the preprocessing tractability of computational problems.
We first give an example of a polynomial kernel, before we introduce the above
mentioned framework for proving the non-existence of polynomial kernels.

1.3.1 A first polynomial kernel
As an example we will prove that Vertex Cover admits a polynomial kernel
with O(k2) vertices and edges. The result is by Buss and Goldsmith [BG93] and
variation of the techniques used are now so common that results obtained in a
similar manner are often referred to as a Buss-kernel.

Rule 1.1. Let (G, k) be an instance of Vertex Cover and v an isolated vertex
in G. We then reduce the instance to (G − v, k).

Figure 1.3: Rule 1.1 says that the isolated vertex has no impact on optimal vertex
covers for the graph.

Lemma 1.7. Let (G, k) be an instance of Vertex Cover and v an isolated
vertex in G. It then holds that (G, k) and (G − v, k) are equivalent.

Proof. Since v is an isolated vertex it follows that E(G) = E(G−v). Furthermore,
observe that no minimal solution would contain v. It follows that every minimal
solution of (G, k) is a minimal solution of (G − v, k) and vice versa.

Rule 1.2. Let (G, k) be an instance of Vertex Cover and v a vertex in G of
degree at least k + 1. We then reduce the instance to (G − v, k − 1).
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Lemma 1.8. Let (G, k) be an instance of Vertex Cover and v a vertex in G
of degree at least k + 1. It then holds that (G, k) and (G − v, k − 1) are equivalent.

Proof. Assume that (G, k) is a yes-instance and let X be a solution. Furthermore,
assume for a contradiction that v /∈ X. It follows that NG(v) ⊆ X and since
deg(v) ≥ k + 1 this contradicts X being a solution. Since v ∈ X it follows that
all edges in G − v have an endpoint in X − v and hence (G − v, k − 1) is also a
yes-instance.

For the other direction, assume that (G − v, k − 1) is a yes-instance and that X
is a solution. Observe that all edges of G are either present in G − v or incident to
v by definition. It follows immediately that X ∪ {v} is a solution of the instance
(G, k) and hence that (G, k) is a yes-instance.

Theorem 3. Vertex Cover admits a polynomial kernel with O(k2) vertices
and edges.

Proof. Observe that Rule 1.1 and 1.2 can be applied exhaustively in polynomial
time. Furthermore, by Lemmata 1.7 and 1.8 it follows that the reduced instance
is equivalent to the original one.

Let (G, k) be a reduced instance and let X be an optimal solution. By definition
every edge in G has an endpoint in X. And since no vertex can be incident to
more than k edges due to Rule 1.2, it follows that the number of edges in G are
bounded by k2. Furthermore, from Rule 1.1 no longer being applicable it follows
that every vertex is incident to an edge in G and hence V (G) = X ∪ NG(X). Since
every vertex in G is of degree at most k, it follows that |NG(X)| ≤ k · |X| and
hence that

|V (G)| = |X ∪ NG(X)| ≤ |X| + |NG(X)| ≤ (k + 1)|X| ≤ (k + 1)k.

Hence, it holds that if (G, k) is a yes-instance, then |V (G)| ≤ k(k + 1). It follows
from the contrapositive statements that if |V (G)| > k(k + 1) or |E(G)| > k2 we
can immediately conclude that (G, k) is a no-instance.

This gives the following kernelization algorithm. Apply Rule 1.1 and 1.2
exhaustively. If the number of vertices in the reduced instance is more than
k(k +1) or the number of edges is more than k2, output a constant size no-instance.
Otherwise, output the reduced instance.

Figure 1.4: Rule 1.2 says that if k ≤ 4 we have to include the gray vertex in any
solution.
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1.3.2 Cross Compositions
We will now introduce cross-compositions as presented in the book by Cy-
gan et al. [CFK+15]. For a detailed discussion of the topic, proofs, or multiple
examples, we refer the reader to this text. For the original research article we refer
the reader to the paper by Bodlaender et al. [BJK14]. After displaying the theory
we will give a simple application. First, we will introduce the reduction necessary
to prove that a problem does not admit a polynomial kernel.

Definition 1.9 (As presented in [CFK+15]). An equivalence relation R on the
set Σ∗ is called a polynomial equivalence relation if the following conditions are
satisfied:

(i) There exists an algorithm, that given strings x, y ∈ Σ∗, resolves whether
x ≡R y in time polynomial in |x| + |y|.

(ii) The relation R restricted to the set Σ≤n has at most nO(1) equivalence classes.

Definition 1.10 (Cross-compositions, as presented in [CFK+15]). Let L ⊆ Σ∗

be a language and Q ⊆ Σ∗ × N be a parameterized language. We say that L
cross-composes into Q if there exists a polynomial equivalence relation R and
an algorithm A, called the cross-composition, satisfying the following conditions.
The algorithm A takes as input a sequence of strings x1, x2, . . . xt ∈ Σ∗ that are
equivalent with respect to R, runs in polynomial time in Σt

i=1|xi|, and outputs
one instance (y, k) ∈ Σ∗ × N such that:

(i) k ≤ (maxt
i=1 |xi| + log t)O(1) and

(ii) (y, k) ∈ Q if and only if there exists at least one index i such that xi ∈ L.

Basically, you want a reduction that can be computed in polynomial time that
takes multiple instances of a problem L into a single instance of the parameterized
problem Q such that the instance of Q is a yes-instance if and only if at least one
of the instances of L is a yes-instance. Furthermore, we want the parameter of the
instance of Q to be bounded by a polynomial of the maximum size of the instances
of L and the logarithm of the number of instances. Before we give the main result
we need to introduce polynomial compressions, a generalization of kernelization
algorithms that are allowed to output an instance of a different problem.

Definition 1.11 (Polynomial compression, as presented in [CFK+15]). A poly-
nomial compression of a parameterized language Q ⊆ Σ∗ × N into a language
R ⊆ Σ∗ is an algorithm that takes as input an instance (x, k) ∈ Σ∗ × N, works in
time polynomial in |x| + k, and returns a string y such that:

(i) |y| ≤ p(k) for some polynomial p and

(ii) y ∈ R if and only if (x, k) ∈ Q.
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We are now ready to state our main theorem in the quest for hardness results
within kernelization.

Theorem 4 ([BJK14], as presented in [CFK+15]). Assume that an NP-hard
language L cross-composes into a parameterized language Q. Then Q does not
admit a polynomial compression, unless NP ⊆ coNP/poly.

In the problem k-Path one is given a graph G and an integer k and the question
is whether there exists a simple path of length k. The problem is well-known to be
NP-complete. It was proven to be in FPT by Monien [Mon85] and the fastest known
deterministic algorithm runs in time O(2.6181knO(1)) and is by Zehavi [Zeh15].
We will now argue that although being in FPT, the problem does not admit a
polynomial kernel. The argument will be by displaying that the problem cross-
composes into itself. And hence, since the problem is NP-hard, it does not admit
a polynomial kernel. As input our reduction take multiple non-parameterized
instances (G1, k), (G2, k), . . . , (Gt, k) of k-Path. It then outputs the disjoint union
of G1, G2, . . . , Gt (i.e. the graph with the disjoint union of the vertex sets as its
vertices and the disjoint union of the edge sets as its edges) together with the now
parameter k. That is, unless |V (Gi)| < k for an instance, in which case we output
a trivial no-instance. First, note that the input instances are equivalent under the
relation R classifying all instances asking for the same path length k as equivalent.
Second, we observe that the reduction runs in polynomial time and that the
parameter is bounded as required. The last requirement follows directly from the
observation that a k-path cannot span multiple connected components and hence
must be contained strictly within one of the original instances. It now follows
immediately from Theorem 4 that k-Path parameterized by k does not admit a
polynomial compression, and hence no polynomial kernel, unless NP ⊆ coNP/poly.

In our example we did not use the fact that the parameter of the instance
output by the cross composition can be dependent on log t. The reason that we did
not need this is that we were lucky enough that when simply throwing the instances
together with no additional structure, the answer of the new instance turned out
to be an OR over the original instances. We are seldom this lucky and often one
needs to carefully place gadgets on top of the instances in a manner that after
spending some log t of the budget, exactly one of the instances are activated, and
hence the new instances is equivalent to an OR over the original instances. These
selection techniques were first utilized by Dom et al. [DLS09]. Applications of this
technique will be displayed in Chapter 14 and 15. It should also be noted that it
has been proven by Drucker [Dru15] that if a NP-hard problem cross-composes
into a problem such that the new instance is a yes-instance if and only if all the
original instances are yes-instances, yields the same consequences. Namely that
the problem admits no polynomial compression unless NP ⊆ coNP/poly. From
this it follows by the same type of reduction as above that Treewidth does not
admit a polynomial kernel when parameterized by the width at question.
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1.3.3 Generalizations and relaxations

One might ask the question of why it is necessary to kernelize into a single instance,
or why one should spend strictly polynomial time, as one possibly is to spend
exponential time after the preprocessing anyway. Solving multiple small instances
is often vastly preferable over a single large one, since this implies a smaller
exponent in the running time at the cost of a multiplicative factor in front. Of
course, a single small instance would be even better. But, as we have just seen,
this is not always possible. Jansen [Jan14] proved that among others k-Path

does admit such a kernelization scheme, referred to in the literature as a Turing
kernel, on various graph classes including planar graphs, where the problem does
not admit a traditional kernel. Multiple other results has appeared giving Turing
kernels for various problems that do not admit a traditional kernel.

Lossy kernels

The motivation behind kernelization and preprocessing in general is that it does
not hurt to preprocess the instance before doing the final attack on the instance,
hoping to shrink the instance to a more manageable size. And although this
motivation is true for exact algorithms and in general for many kernelization
results, the definition does not ensure this. To be more precise, the traditional
definition of kernelization does not mix well with approximation algorithms. There
is no mechanism that ensures that if you obtained a c-approximate solution in
the preprocessed instance, that this carries over to an approximate solution of
the original instance. And this is especially frustrating if you have spent large
computational efforts into obtaining such a solution.

This motivations is captured within the framework of lossy kernels introduced
by Lokshtanov et al. [LPRS16]. More specifically, a problem admits a polynomial
sized α-approximate kernel if there exists a polynomial time algorithm that outputs
another instance of the same problem whose size is bounded by a polynomial of the
original parameter. And in addition, a polynomial time algorithm exists that given
a c-approximate solution of the kernelized instance outputs a (α · c)-approximate
solution of the original instance. One should note that holding c = α = 1 gives
more or less the behaviour of a traditional kernel. While, fixing α = 1 and letting
c vary gives a stronger result as approximations in the processed instance can be
lifted to approximations in the original instance of the same approximation ratio.
By allowing α > 1 we possibly bypass the traditional hardness framework for
kernels, making it possible to obtain sensible preprocessing schemes for problems
that do not admit polynomial kernels. This makes the framework fitting for
further studies of problems that both do and do not admit traditional polynomial
kernels. Both positive and negative results exists within this framework, for more
information we refer the reader to Lokshtanov et al. [LPRS16].
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1.4 Faster algorithms
One can argue that the most natural question to ask after discovering an algorithm
is: Can the same task be solved even faster? Enormous efforts are put into this
line of research within classic as well as multivariate complexity. There is however
a major distinction between the two. In classic complexity it is easy to conclude
that one algorithm is faster than the other within the realm of O-notation. This
is not always the case when several variables are introduced. Two algorithms with
complexity O(2kn2) and O(kkn) are interchangeably better, depending on the
relation between the parameter and the instance size. But still, it always makes
sense to try to improve upon the existing algorithms. In some cases one makes
sacrifices on the way, as in the example above, and in other cases one can devise an
algorithm that has a better dependency on both the parameter and the input size.
For instance, an O(2kn) algorithm would be preferable to both of the algorithms
above. In this section we will highlight several basic techniques for improving the
running time of multivariate algorithms.

1.4.1 Improving by polynomial time reductions
One technique that is frequently utilized both in practice and theory is the one of
preprocessing. By applying reduction rules one solves the instance partly before
engaging more costly computational efforts. In Section 1.1 we devised an algorithm
for Vertex Cover running in O(2k(n + m)) time. Furthermore, by Theorem 3
we know that that Vertex Cover admits a polynomial kernel with O(k2) edges
and vertices.

We will now argue that the two rules of this kernel can be applied exhaustively
(i.e. until neither of the rules are applicable anymore) in O(k(n + m)) time. This
is obtained by marking all vertices of the graph that is to be removed, before we
remove them all in one go in the end.

First, we mark all vertices that are to be removed by Rule 1.1 in O(n + m)
time. This is done by iterating over all vertices of the graph and whenever a vertex
has no neighbors, we mark it for removal. Next, we iterate over the vertices of the
graph and if we find a vertex v with at least k + 1 neighbors, we remove all the
edges of the graph incident to v in O(n + m) time, before we mark v for removal.
We then restart the iteration, looking for another vertex of high degree. Observe
that applying Rule 1.2 more than k times always result in trivial no-instance,
as k would be negative. And hence, applying Rule 1.2 as above can be done in
O(k(n + m)) time in total. It remains to remove all vertices of the graph that is
marked. Note that all of these are isolated vertices (i.e. of degree 0). We first
make a table that for each vertex, answers how many vertices is of lower index
than this vertex and is to be removed. We then copy the entire graph, reducing
the value of endpoints of the edges according to the table we just computed. This
copying procedure is done in O(n + m) time.

Observe that none of the reduction rules increase the value of the parameter.
Hence, given an instance (G, k) we apply the kernelization algorithm to obtain
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a graph (G′, k′) in time O(k(n + m)). We then apply the branching algorithm
from Section 1.1 on the new instance (G′, k′). In total this yields a running time
of O(k(n + m) + 2k′(|V (G′)| + |E(G′)|)) = O(k(n + m) + 2kk2). We have now
successfully separated the exponential dependence on the parameter and the linear
dependency on the size of the input graph, which can have a huge impact on the
running time.

Another way to view our branching algorithm for Vertex Cover is that
for any vertex v in the graph, we either put it into the solution or leave it out.
And if we leave it out, we always have to include the entire neighborhood of v
in the solution. By consistently branching only on vertices of degree at least 1,
this yields the same O(2k(n + m)) complexity as before. However, observe that in
the recursive call where v is excluded from the solution, and its neighborhood is
included, the higher degree v has, the more vertices we get to put into the solution.
Which again will make our algorithm run faster. Specifically, if we could always
find a vertex of degree at least two we would obtain a faster algorithm. And now,
we can bring back the preprocessing rule we applied for forests in the beginning
of this chapter; namely that for a leaf we are always safe to add its neighbor to
the solution. By always applying this rule when applicable in the recursion, we
can guarantee that when branching on a vertex v, v will have degree at least two.
This implies that in one branch our parameter still drops by one, but in the other
it drops by at least two.

To analyze the running time we will first bound the number of leaves in a
recursion tree of depth k of the algorithm, denoted L(k). In particular, we prove
that L(k) ≤ 1.619k by induction. For the base case we observe that L(0) = 1. For
the induction step we observe that L(k) ≤ L(k − 1) + L(k − 2) and hence the
proof follows by the following computation:

L(k) ≤ L(k − 1) + L(k − 2) ≤ 1.619k−1 + 1.619k−2 ≤ 1.619k.

Since there are no vertices of degree one in the recursion tree, it follows that there
are O(1.619k) vertices in the tree in total. When removing vertices of degree 1,
we first compute a list of all the leaves of the graph. And by keeping this list
updated while removing vertices and using the same trick as above, where we first
mark all vertices to be removed, we can get rid of all degree 1 vertices in O(n + m)
time. Hence, we spend O(n + m) time inside each recursive call and get a total
running time of O(1.619k(n + m)). When combining this new algorithm with the
above implementation of our kernelization algorithm we obtain the running time
O(1.619kk2 + k(n + m)).

1.4.2 Subexponential time algorithms
A natural question would be if we could significantly improve upon our new
algorithm for Vertex Cover. The best known algorithm is by Chen, Kanj and
Xia [CKX10] and runs in time O(1.2738k + kn). And although we can continue to
bring down the exponent of the algorithm, it is believed that we can not improve
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the algorithm to a 2o(k)nO(1) running time. But this is a discussion for later. There
are other problems for which there are algorithms solving them in 2o(k)nO(1) time.
Such algorithms are referred to as subexponential time algorithms.

The problems proven to admit subexponential time algorithms mainly fall
into two categories, problems restricted to graph classes and graph modifica-
tion problems, i.e. problems where one is to modify the graph to adhere to a
set of problem specific properties. The most studied modifications are remov-
ing vertices and removing, adding or both removing and adding edges. De-
maine et. al [DFHT05] proved that classes of problems admit subexponential
time algorithms on planar graphs, as well as some larger graph classes. Later,
Alon et al. [ALS09] proved that Feedback Arc Set on tournament graphs
admits a subexponential time algorithm. Both of these fall into the category of
problems on restricted graph classes. After this, numerous results have appeared
proving that various graph modification problems also admit subexponential time
algorithms [FV13, GKK+15, DFPV15, BFPP14, BFPP16]. All of these results,
except the one showing Interval Completion to admit a subexponential time
algorithm [BFPP16], rely heavily on the problem also admitting a polynomial
kernel. The reason for this is highlighted by the following observation.

Observation 1.12. Let X be a set of size at most kc for some constant c, it then
holds that (

|X|
d
√

k

)
≤ 2cd

√
k log k = 2o(k).

Proof.
( |X|

d
√

k

)
≤ |X|d

√
k = 2d

√
k log |X| = 2cd

√
k log k.

Consider that you are solving an instance (G, k) of some parameterized graph
problem that admits a polynomial kernel. You can then assume that |V (G)| ≤ kc

and hence you can enumerate all subsets of size at most d
√

k in subexponential
time. Now, if you can characterize some interesting set of this size, you can try all
possibilities for this set and utilize this for solving the remainder of the problem.

In the context of edge modification graph problem one can partition the vertices
into two sets, the cheap and expensive vertices. The cheap vertices are incident to
few edges of a fixed optimal solution, say at most 2

√
k. And the expensive vertices

are incident to more than 2
√

k such edges. Based on this, one can easily prove that
there are at most

√
k expensive vertices in a graph. And hence, by Observation 1.12

one can in subexponential time enumerate all possible sets of expensive vertices.
When this is done all vertices, besides this small set of expensive ones, are cheap.
And the nice thing about cheap vertices are that the solutions interaction with
them is at most 2

√
k. This once again lets us utilize Observation 1.12 for a cheap

vertex v, because we can enumerate the possible subsets of vertices for which the
incidence between v and this vertex is altered by the solution. And hence, we can
enumerate the possible neighborhoods of v in the resulting graph. Notice that we
cannot do this for all cheap vertices at the same time, as this would be too time
consuming. But by carefully selecting cheap vertices to analyze we hope to gain
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further insight regarding our instance and obtain useful structure that in the end
leads to an efficient algorithm.

Edge Modification into split graphs

As a case study we will show how the observations above can be used to obtain
2O(

√
k log k)nO(1) time algorithms for both edge deletion and completion into split

graphs. This is a result that was originally proven, by different methods, by
Ghosh et al. [GKK+15]. A graph G is a split graph if there exists a partition of the
vertex set into two sets C and I such that C is a clique and I is an independent
set. Such a partition is called a split partition. We denote by ⊕ the symmetric
difference of two sets, specifically we let X ⊕Y = (X \Y )∪ (Y \X). The following
result will be crucial, both for this problem and for the subexponential time
algorithm given in Chapter 10.

Lemma 1.13. Given a graph G = (V, E) and an integer k with |V | = kO(1) one
can in 2O(

√
k log k) time generate a collection P of partitions of V such that for

every graph H such that

• H is a split graph and

• |E(H) ⊕ E(G)| ≤ k

it holds that a split partition (C, I) of H is an element of P.

Proof. We first prove that the lemma holds if G is a split graph. First, we fix a
split partition (C, I) of G. Consider a split graph H on the same vertex set with
split partition (CH , IH). Observe that

|E(H) ⊕ E(G)| ≥
(

|C \ CH |
2

)
+

(
|I \ IH |

2

)
,

since the graphs the sets induces in G and H are complementary. Hence, |E(H) ⊕
E(G)| ≤ k implies that both |C \ CH | and |I \ IH | are bounded by 2

√
k. By

applying Lemma 1.12, we can enumerate every possible C \ CH and I \ IH in
time 2O(

√
k log k). Since, the two sets together with (C, I) are sufficient to retrieve

(CH , IH), the lemma holds assuming that G is a split graph.
We will now prove the full lemma by using the fact that split editing is indeed

polynomial time solvable [HS81]. Given G we obtain a split graph G′ with the
smallest editing distance to G. We apply the lemma on G′ with symmetric
difference at most 2k to obtain a collection P . The correctness of P with respect
to G′ follows from G′ being a split graph. By the triangle inequality it holds that
if the symmetric difference between G and a split graph H is at most k, then the
symmetric difference between G′ and H is at most 2k. And hence, P proves the
correctness of the lemma when applied to G with symmetric difference at most k.
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Theorem 5 ([GKK+15]). Both Split Completion and Split Deletion can
be solved in time O(2O(

√
k log k) + nO(1).

Proof. First, we apply the polynomial kernel by Guo [Guo07] to obtain a reduced
instance (G, k). We then apply Lemma 1.13 to obtain the candidate split partitions.
Last, for every such partition (C ′, I ′) we need to add and remove edges so that
C ′ forms a clique and I ′ an independent set. If an operation that is not available
(either removing or adding an edge) is necessary, we immediately continue to the
next partition. Otherwise, we count how many legal operations we need to turn
G into a split graph with split partition (C ′, I ′) by counting either the number
of missing edges in G[C ′] or the number of edges in G[I ′]. If this is at most k
we conclude that it is a yes-instance. It no such (C ′, I ′) with at most k legal
operations needed is found, we conclude that (G, k) is a no-instance.

1.5 Optimality
It is natural to wonder whether a certain algorithm is optimal, meaning that
no faster, or significantly faster algorithm exists. We have discussed algorithms
of single exponential, as well as subexponential running time. There are also
problems for which the fastest algorithms we know of are on the form O(kknO(1))
or O(22k

nO(1)). And many problems are resistant to our efforts of trying to
improve the exponential dependency of the running times. It appears that maybe
there is a finer structure within FPT, partitioning the problems based on how
fast fixed-parameter tractable algorithms we can devise for these problems. Our
current understanding of complexity seems however to not be sufficient to grasp
this finer structure under the assumption FPT �= W[1]. Instead, we will utilize the
Exponential Time Hypothesis, a complexity theoretic assumption that turns out
to be at least as strong as FPT �= W[1].

1.5.1 The Exponential Time Hypothesis
There has been put tremendous efforts, within theory as well as practice, into
studying the computational tractability of satisfiability. In this problem, which we
will refer to as SAT, one is provided a boolean formula and the question is whether
there exists an assignment to the n variables such that the formula evaluates to true.
The problem was among the very first problems to be proven to be NP-complete.
And although large instances are solved in practice by heuristics every day there
is yet to be a significant guaranteed improvement over the algorithm that tries
every possible assignment for each variable, running in O(2nnO(1)) time. One can
however get below this running time by requiring the formula to be in conjunctive
normal form with at most q variables in each clause, also referred to as q-SAT.
In particular, for q = 3, namely 3-SAT, there is an algorithm by Hertli [Her14]
running in time O(1.308nnO(1)). It should be noted that even though 3-SAT is a
restriction of SAT, it was among the 21 problems studied by Karp [Kar72] and
hence well-known to be NP-hard.
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The Exponential Time Hypothesis (ETH) was introduced by Impagliazzo and
Paturi [IP01], building upon earlier work by Impagliazzo Paturi and Zane [IPZ01].
ETH has since found its applications in classic complexity, as well as multivariate
complexity. We will not give the formal definition of the hypothesis in its original
form. And, if interested, we encourage the reader to explore the book on parameter-
ized complexity by Cygan et al. [CFK+15]. We will however say that an immediate
consequence of this hypothesis is that 3-SAT cannot be solved in subexponential
time in the number of variables, meaning that no O(2o(n)nO(1)) time algorithm
exists. And hence, 3-SAT can also not be solved in polynomial time, meaning that
ETH implies P �= NP. However, applying this directly can be rather tedious or
even useless for tight bounds as one needs to be careful about how one handles the
number of clauses m in the reduction. Applying the Sparsification lemma [IPZ01]
resolves this issue and results in the following theorem.

Theorem 6. Unless ETH fails, there exists a constant c > 0 such that no algorithm
for 3-SAT can achieve running time O(2c(n+m)(n + m)d) for any constant d. In
particular, 3-SAT cannot be solved in time 2o(n+m)(n + m)d.

This result allows for a more fine grained classification of problems based on their
complexity and rule out certain running times. Among others it has been proved
that ETH implies that not only 3-SAT, but also Vertex Cover and many other
classic problems, do not admit running times on the form 2o(n+m)nO(1). Another
hypothesis introduced by Impagliazzo and Paturi [IP01] is the Strong Exponen-
tial Time Hypothesis (SETH). It builds upon the observation that no algorithm
faster than O(2nnO(1)) has been discovered for SAT and SETH rules out any
algorithm on the form O((2 − ε)nnO(1)). It can be proven that SETH is at least as
strong an assumption as ETH. Furthermore, it should be noted that while ETH is
believed to be true by a considerable amount of researchers, SETH is by many
considered to be more of a guiding tool saying that improving upon this would
imply a major breakthrough within the complexity of SAT. The added power
allows researchers to prove that the constants in the exponent of the running times
are optimal and for many problems we have tight upper and lower bounds under
SETH.

1.5.2 ETH and parameterized problems
ETH has yielded numerous results within parameterized complexity. Among others,
it has been proven that assuming ETH, our companion through this text, namely
Vertex Cover, does not admit a 2o(k)nO(1) time algorithm. The key to further
extend the set of such problems is to give a reduction from a problem, for which
we already have a running time lower bound based on ETH, to a new problem
while keeping the parameter as small as possible. For instance, if a polynomial
time reduction1 from Vertex Cover to some other problem Π exists, taking an
instance (G, k) to an instance (X, p) such that p ≤ dk for some constant d. Then

1Actually one can spend even more time depending on the bound one is trying to prove.
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Π does not admit a subexponential time algorithm, assuming ETH. The reason
for this is that otherwise, given an instance (G, k) of Vertex Cover one can in
polynomial time obtain an equivalent instance (X, p) of Π. This instance is then
solvable in 2o(p)|X|O(1) time by assumption. And, since p ≤ dk and |X| ≤ |G|O(1)

due to the running time bound, we obtain a 2o(k) · |G|O(1) time algorithm for
Vertex Cover, contradicting ETH.

Similarly, if p ≤ dk2 instead, this would rule out any algorithm with running
time 2o(√p)|X|O(1) under ETH. The reason being that if such an algorithm would
exist, one can do the same procedure as previously, and since 2o(√p)|X|O(1) =
2o(

√
(k2))|G|O(1) = 2o(k)|G|O(1) we would once again contradict ETH. Observe that

the smaller increase in the parameter is, the better lower bounds we can give.
We will later give such a reduction from the problem k × k-Clique. Here,

you are given an instance (G, k, X ) where X = X1, . . . , Xk is a partition of V (G)
into k sets, each of size k. And the question is whether there exists a clique C
in G such that |Xi ∩ C| = 1 for all i. In essence, the proof of the following lower
bound is by the same technique as above. However, the reduction goes from SAT

and ensures that k is of size n/ log n. In this manner, one is able to transfer the
implications of ETH from classic to parameterized complexity.

Theorem 7 ([LMS11]). Unless ETH fails, k × k-Clique cannot be solved in time
O(2o(k log k)kO(1)).

Similarly, ETH has also been used to prove lower bounds for problems that are
W[1]-hard. Because even though a problem is W[1]-hard, there might very well exist
a f(k)ng(k) algorithm solving it, were g is such a slow growing function that for any
reasonable value of k, it would behave like a fixed-parameter tractable algorithm.
There has indeed been developed such algorithms where g(k) = log log k, which
under ETH has been proven to be optimal [Mar08a]. We will base our results on
the work by Chen et al. [CHKX06] proving the following results.

Theorem 8. Assuming ETH, there is no f(k)no(k) time algorithm for Clique

for any computable function f .

By reusing the reduction from the proof of Theorem 1 we can immediately give
the following result.

Theorem 9. Assuming ETH, there is no f(k)no(k) time algorithm for Even

Clique for any computable function f .

Proof. This follows from the fact that the reduction of Theorem 1 increases the
parameter by at most an additive factor of one.

1.6 Parameterized approximation algorithms
Many classic problems appears to not be in FPT. And if you are actually interested
in solving instances of the problem, then a negative answer is a setback. However,
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sometimes a positive answer is as well. It all depends on how it is answered. If
you devise an algorithm with running time 22k

n and you want to solve instances
were k = 8, the algorithm you have will not terminate in a reasonable amount
of time. In fact, it might not terminate within the lifetime of the universe on a
super computer. It can also be that there exists a kkn algorithm as well as a 2kn2

algorithm, but your instance is so that you really need a 2kn time algorithm or
similar. And even worse, if you proved that the problem is W[1]-hard, you do not
even have access to such algorithms.

And just as we did for NP-hard problems, one can try to relax the requirements
on the algorithm. We have already relaxed the running time constraints, allowing
our algorithm to spend exponential time in the parameter. Depending on the
parameter, we have also potentially restricted the structure of the input graph.
With this in mind, it seems natural that the next step is to allow the solutions
to be non-optimal. And by doing so, we hope that we can find an algorithm
satisfying our needs. This allows us to not only apply the tools from parameterized
complexity, but also the ones from approximation algorithms.

Since the celebrated graph minors project [RS95] parameterized approximation
algorithms have been crucial within the context of computing structural decomposi-
tions. Following the approximation algorithm for treewidth by Roberston and Sey-
mour [RS95], for which a variant will be presented in Section 1.6.1, there have
been several algorithms developed for treewidth [Ree92, Lag96, Ami10, BDD+16].
Parameterized approximation algorithms was also utilized by Oum and Sey-
mour [OS06] to approximate clique-width and related parameters, which was later
improved by Oum [Oum08]. It was also used by Demaine et al. [DHK05] to give
a parameterized 2-approximation for Graph Coloring on H-minor free graphs
and by Bockenhauer et al. [BHKK07] to give a 2.5-approximation for Traveling

Sales Person with Deadlines.
Definition 1.14. A parameterized problem L ⊆ Σ∗ × N is said to admit a
fixed-parameter tractable approximation algorithm, or simply a parameterized
approximation algorithm, if there exists an algorithm A, computable functions
f, g : N → N, and a constant c such that, given (x, k) ∈ Σs × N, the algorithm A
either

• outputs a polynomial time verifiable witness of (x, g(k) · k) ∈ L or

• correctly concludes that (x, k) /∈ Σs × N

in time bounded by f(k) · |(x, k)|O(1).
In addition to the positive results, there has been provided several hardness results.
It was proven by Downey et al. [DFMR08] that approximating Dominating

Set within any additive constant factor is W[2]-hard and that there is no fixed-
parameter tractable approximation algorithm for Independent Dominating

Set unless FPT = W[1]. It was recently proven by Chen and Lin [CL] that
Dominating Set has no constant factor parameterized approximation algorithm
unless FPT = W[1]. This was build upon the work of Lin [Lin15] proving that
Biclique is W[1]-hard.
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1.6.1 Approximating treewidth
Treewidth is a structural graph measure that has received tremendous attention.
There have been given numerous algorithms to compute tree decompositions and
even more algorithms for solving various problems assuming that one is provided
with such a decomposition. Of course, the later results all depends on a tree
decomposition actually being computed. Despite being extremely well-studied and
proven to be in FPT when parameterized by the treewidth, there are no algorithms
to compute an optimal width decomposition that are even close to the fast running
times one typically get for the algorithms that solves problems given the tree
decomposition. And even though at times it can make sense to spend more time
preprocessing a graph then actually solving problems on it, since the structure can
be reused for other computations, there are limits! And due to this unsatisfying
situation, one has turned to fixed-parameter tractable approximation algorithms
for help. The idea is to obtain a structure of approximate width, and base the
remaining computations on this structure. And even though the approximate
structure yields a slightly worse running time for the computations afterwards,
all in all this is still highly rewarding. One should note that the typical dynamic
programming algorithms over tree decompositions is of the type displayed in
Section 1.2, in the sense that given an instance (G, k) of Vertex Cover together
with a tree decompositions of G of width t, we conclude either that G has a vertex
cover of size k or that any vertex cover of G is of size larger than k. The algorithm
only depends on the width t in the running time and hence the algorithm will,
even when provided with a decomposition of non-optimal width, conclude correctly
regarding the size of vertex covers in G. Specifically, one should note that an
algorithm running in time O(2ttO(1)n) time, will run in time O(2ct(ct)O(1)n) time
when provided with a tree decomposition of width ct.

We will now give a 4-approximation algorithm for treewidth that runs in time
O(27kkO(1)n2), a result originally given by Robertson and Seymour [RS95]. That
is, the algorithm will on input (G, k) either output a tree decomposition of width
at most 4k or correctly conclude that tw(G) ≥ k in O(27kkO(1)n2) time. The
algorithm relies heavily on the following result, which is a slightly weaker version
of a theorem from Graph Minors II [RS86].

Theorem 10 (Graph Minors II [RS86]). If tw(G) ≤ k and S ⊆ V (G), then there
exists X ⊆ V (G) with |X| ≤ k + 1 such that every component of G \ X has at
most 1

2 |S| vertices which are in S.

Proof sketch. Let T be a tree decomposition of G of width at most k. First, for
every edge of the decomposition we direct it towards the part of the decomposition
for which its union has the largest intersection with S. If there is a tied edge e, then
let X be the intersection of the two bags e connects. Let Sr be the intersection of
one side of e with S and Sl be the intersection of the other side of e with S. That
is, e breaks the decomposition into two connected components L and R. And Sl

is the intersection of S and the union of the bags in L and Sr is the intersection
of S and the union of the bags in R. Since |Sl| = |Sr| and X ⊆ Sl ∩ Sr it follows
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that |Sl \ X| = |Sr \ X|. Hence, from the observation that Sl, Sr and X ∩ S forms
a partition of S we conclude that both Sl and Sr have cardinality at most 1

2 |S|.
Last, we observe that X is the intersection of two bags and each bag is of size at
most k + 1, hence it follows immediately that |X| ≤ k + 1.

For the rest of the proof we assume that there was no tied edge. Furthermore,
for an edge e we let L denote the component of T − e that the e points away
from. Hence, by the same argument as above, but considering |Sl| ≤ |Sr|, we can
conclude that for any edge |Sl| ≤ 1

2 . Observe that our directed tree is a directed
acyclic graph and hence has at least one sink. Assume for a contradiction that
there is more than one sink and let x and y be two such sinks. Consider the
underlying path in the tree from x to y. Observe that the first edge ex on the
path is pointing at x and that the last edge ey is pointing at y. Let Sx

R and Sx
L

denote SR and SL with respect to ex, and similarly Sy
R and Sy

L denote SR and SL

with respect to ey.
Observe that Sy

R ⊆ Sx
L and Sx

R ⊆ Sy
L by definition. And hence, by the direction

of the edges we get |Sy
L| ≥ |Sx

R| > |Sx
L| ≥ |Sy

R|, contradicting the direction of ey.
Now, consider our unique sink x and let X be the vertices in this bag. As the

width of the decomposition is bounded by k it follows immediately that |X| ≤ k+1.
Consider any component C of G − X and look at the component of T − x that
contains C. Let eC be the edge leaving this component pointing at x. By the
argument earlier it holds that Sl, the components intersection with S it at most
1
2 |S| and hence our proof is complete.

Theorem 11 ([RS95]). There is an algorithm that given a graph G = (V, E), a
set S ⊆ V and a k ∈ N that either correctly concludes that tw(G) > k or outputs
a set X ⊆ V of size at most k + 1 such that every component of G − X has at
most 2

3 |S| vertices which are in S and runs in time O(3|S|kO(1)(n + m)).

Proof sketch. By Theorem 10 it holds that if tw(G) ≤ k there is a set X such
each component’s intersection with S is at most 1

2 |S|. First, we will prove that the
components of G − X can be assigned left or right in such a way that at most 2

3 |S|
vertices of S are assigned to the left and at most 2

3 |S| vertices are assigned to the
right. Sort the components in decreasing order by intersection with S and assign
them, one by one, to the side that contains the fewest vertices of S so far. Let
L and R be the number of vertices of S assigned left and right respectively and
assume without loss of generality that L ≥ R. Let A be the number of vertices
of S that are contained in the next component to be assigned a direction. We
will now prove by induction that A + R ≤ 2

3 |S|. If R = 0, then since A ≤ 1
2 |S|

by Theorem 10 it holds that A + R ≤ 2
3 |S|. Otherwise, we observe that due to

the ordering of the assignments it holds that L ≥ R ≥ A and hence the two
inequalities 2L ≥ R + A and L + R + A ≤ |S| holds. By a simple substitute we
can conclude that A + R ≤ 2

3 |S|.
Now, we can enumerate all possibilities of the vertices of S being left, right

or in X in time O(3|S|). What remains is to identify the vertices of X outside of
S or vertices that do the same task. And this task is specifically to separate the
vertices of S that are to the left from the ones that are to the right. Due to the
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existence of X, if the correct partition of S was obtained above, there should exist
at most k + 1 − |S ∩ X| vertices in G \ S such that these vertices together with
S ∩ X forms a separation of the right and left vertices. These vertices outside S
can be identified by a max-flow algorithm. And since we are interested in flows of
value at most k + 1 this can be computed in O(k(n + m)). Hence, if the partition
of S sends at most 2

3 of its vertices in one direction and one can find vertices that
in total forms X, we output this set. Otherwise, we conclude that tw(G) > k.

We are now ready to devise an algorithm that given a graph G and an integer k
either outputs a tree decomposition of width 4k + 3 or correctly concludes that
tw(G) > k in time O(27kkO(1)n2). The internal workings of the algorithm will be
a recursive procedure that is provided with G, k and a set of vertices S containing
at most 3k + 3 vertices. In return, this procedure will give a tree decomposition of
G of width at most 4k + 3 with S contained in its root bag or correctly conclude
that tw(G) > k. Our algorithm calls this procedure on G, k, S = ∅ and outputs
the result.

The recursive procedure works as follows. First, until |S| = 3k + 3 we add
arbitrary vertices of G to S. Then we apply the algorithm of Theorem 11 to
G, k and S to obtain an X separating S in a balanced way. If no such X can be
found, we conclude that tw(G) > k. Let C1, . . . , C� be the connected components
of G − X. We recursively apply our procedure on G[Ci ∪ X], k, Si = (Ci ∩ S) ∪ X
for each i. Since |Ci ∩ S| is bounded by 2

3(3k + 3) = 2k + 2 and |X| ≤ k + 1 it
follows immediately that Si ≤ 3k + 3. If any of the recursive calls conclude that
tw(G) > k, we immediately propagate this conclusion up in the recursion tree.
Otherwise, we let S ∪ X be the root bag of our decomposition and make the roots
of the recursively built decompositions for each Ci ∪ X be the children of our new
root. It can easily be observed that every vertex of the graph appears in a bag and
that for every edge its two endpoints appear in a bag together. Forcing S to be in
the root bag guarantees that the bags containing a specific vertex are connected
in the decomposition and hence we do indeed construct valid tree decompositions.
Since |X| + |S| ≤ k + 1 + 3k + 3 = 4k + 4, the width of the build decomposition is
at most 4k + 3. By standard recursive analysis of the running time combined with
the observation that if tw(G) ≤ k then m ≤ kn [BF05] we can conclude that the
running time of the algorithm is indeed O(27kkO(1)n2) (see Chapter 25 for details
regarding the analysis).

Theorem 12 ([RS95]). There is an algorithm that given input (G, k) either

• outputs a tree decomposition of G of width at most 4k or

• correctly concludes that tw(G) > k

in O(27kkO(1)n2) time.
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1.7 Concluding remarks
We have now explored the various directions research beyond fixed-parameter
(in)tractability can take you. In particular we have considered structural param-
eterizations and their applications. We have looked at polynomial kernels and
displayed the framework of cross-compositions, allowing scientists to prove the non-
existence of polynomial kernels for certain problems assuming NP �⊆ coNP/poly.
Furthermore, we studied how preprocessing, as well as clever branching techniques,
can yield faster and even subexponential time algorithms. We then considered the
Exponential Time Hypothesis and its implications, allowing us to give running
time lower bounds for various problems, assuming ETH. Last, we looked at how
merging the fields of approximation algorithms and parameterized complexity can
aid in obtaining tractable algorithms, both for problems in FPT and problems
that are believed to not be in FPT. We also listed the sparse amount of results on
the non-existence of fixed-parameter tractable approximation algorithms. We end
this survey redisplaying the flow-chart from the beginning of the chapter.

Problem in FPT? Change parameter?

Faster algorithm?Polynomial
kernel?

Parameterized
approximation?

Lossy kernel?

Figure 1.5: Flow chart of relevant research questions in parameterized complexity.
Follow green arrows if the question is answered positively, red if negatively and
brown in both cases.

1.8 Organization and overview
This thesis is divided into seven parts. In this first part, we have explored
the field of parameterized complexity. And we will end it with setting up the
necessary definitions and notation used throughout this text. After this follows
five sections, where each section evaluates a specific problem with respect to the
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parameterized methods displayed in this part. In particular, after establishing
whether the problem is in FPT or not, we apply parts of the research strategy we
have described in this chapter, and visualized in the flow-chart of Figure 1.5, on
each and every one of the problems.

For formal definitions of the problems mentioned below, we refer the reader
to Chapter 2 or the discussed part. In the last part, Part VII, we conclude with
some open problems.

Part II: Here we display some simple results for two graph vulnerability measures.
In particular, the problems ask for small vertex sets for which removal breaks the
graph into connected components of small size. First, we establish that both of
the problems are in FPT parameterized by the sum of the cardinality of the small
set disconnecting the graph and the bound on the component size. With this in
mind, we first prove that both problems admit polynomial kernels by the same
parameterization. Second, we prove that, assuming ETH, one of the algorithms
cannot be significantly improved upon.

Part III: Here we study edge modifications into threshold graphs. It follows
immediately by the results of Cai [Cai96] that these problem are in FPT, when
parameterized by k, the input bound on the number of operations. However,
the classic complexity of the editing variant has been stated as an open problem
repeatedly. We first establish that Threshold Editing is NP-hard and that,
under ETH, this problem does not admit a 2o(

√
k) · nO(1) time algorithm. We then

prove that Threshold Deletion, Threshold Completion and Threshold

Editing admit polynomial kernels with O(k2) vertices. Finally, utilizing the kernel
and complementing the lower bound, we give a subexponential time algorithm for
Threshold Editing running in time 2

√
k log k + nO(1). All the above mentioned

results are also given when the target graph class is the closely related class of
chain graphs.

Part IV: In this part we study edge modification problems for a more general
setup, namely into H-free graphs, where H is a finite collection of obstructions.
Again, it follows by the work of Cai [Cai96] that the problems are in FPT when
parameterized by k, the input bound on the number of operations. We prove that
both H-Free Edge Deletion and H-Free Edge Editing admit polynomial
kernels of size kO(Δ log Δ) on graphs of a fixed maximum degree Δ. We complement
these results by utilizing the framework of cross-compositions to prove that H-

Free Edge Completion does not admit a polynomial kernel on graphs of
bounded degree. In addition, we prove that neither of three problems above admit
polynomial kernels on graphs of bounded degeneracy. All of the lower bounds are
under the assumption that NP �⊆ coNP/poly.
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Part V: The results of this part is on Bandwidth parameterized by b, the
solution quality. First, we prove that Bandwidth, when parameterized by b, is
W[1]-hard. Furthermore, we observe that by the same reduction, the problem
admits no f(b)no(b) time algorithm for any computable function f , assuming ETH.
This implies that there is no significant improvement over the classic dynamic
programming algorithm by Saxe [Sax80]. Both of these hardness results hold even
when restricted to trees of pathwidth at most 2. On the positive side, we give
polynomial time approximation algorithms for bandwidth on caterpillars, trees
and graphs of bounded treelength. These are the first approximation algorithms
for bandwidth on these classes where the approximation factor depends solely on
b. In addition to the algorithms, we give for all three of the above graph classes
a characterization of graphs of low bandwidth. In particular, we prove that the
only way a graph in one of these classes can have high bandwidth is by either
having high local density, high pathwidth or containing a less rigid version of an
obstruction introduced by Chung and Seymour [CS89].

Part VI: Finally, we study Treewidth parameterized by the requested width
k. This extensively studied problem is well-known to be in FPT [Bod89] under
this parameterization. However, none of the existing algorithms can provide an
exact, nor satisfying approximate, tree decomposition in a time that matches the
running time of the typical algorithms exploiting this decomposition. In this part
we provide several approximation algorithms for the treewidth of a graph, with the
goal of resolving this bottleneck. The main result is a 5-approximation algorithm
for treewidth that runs in O(ck · n) time. Specifically, the algorithm either outputs
a tree decomposition of width 5k + 4 or correctly conclude that the treewidth of
the graph is larger than k in time O(ck · n), for some constant c. This result is
obtained via a combination of multiple approaches, among others the algorithm
for treewidth presented in Section 1.2. A crucial component of the algorithm is a
data structure that is based on an already existing tree decomposition of slightly
too large width. After initialization, this data structure can answer various queries
for the input graph in O(ck log n) time.



Chapter 2

Preliminaries

In this chapter we will introduce all the necessary definitions, as well as the
notation used throughout the thesis. It should all be fairly standard and consistent
with the union of Diestel [Die05] and Cygan et al. [CFK+15].

2.1 Graphs

All graphs are finite, undirected and simple. Unless explicitly stated otherwise,
they are also unweighted. A graph G = (V, E) consists of a vertex set V and an
edge set E ⊆ [V ]2. We will use V (G) and E(G) to denote the vertices and edges
of the graph G. If the graph referred to is clear from the context or is defined
as above, we will also simply use V and E. In such a case we will also use n for
|V (G)| and m for |E(G)|. For a vertex in V or an edge in E we will often refer to
these as a vertex or an edge in G respectively.

Neighbors. Two vertices u and v are said to be adjacent, or neighbors, in G if
uv ∈ E. An edge uv is said to be incident to the vertices u and v in G. For a set
of edges F ⊆ E(G) we will by VG(F ) denote the set of vertices incident to F in G.
For a vertex v of G, we use NG(v) to denote the open neighborhood of v, all the
vertices adjacent to v in G. We also let NG[v] = NG(v) ∪ {v} denotes the closed
neighborhood of v. These notions are extended to subsets of vertices as follows:
NG[X] = ⋃

v∈X NG[v] and NG(X) = NG[X]\X. Furthermore, we define the degree
of a vertex v in G, denoted degG(v), as |NG(v)|. For G we denote the minimum
degree and maximum degree of the graph as δ(G) and Δ(G) respectively.

Subgraphs. For two graphs G and H, we say that H is a subgraph of G if
V (H) ⊆ V (G) and E(H) ⊆ E(G). Furthermore, we say that H is an induced
subgraph of G if V (H) ⊆ V (G) and E(H) = E(G) ∩ [H]2. An induced subgraph of
G whose vertices are X is denoted by G[X]. We lift the notion of neighborhoods
to subgraphs by letting NG(H) = NG(V (H)) and NG[H] = NG[V (H)].

35
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Modifications. When discarding a set of vertices X from a graph G, we will
use the notation G − X for the graph G[V (G) \ X]. And furthermore, if we are
removing a single vertex v we will write this as G −v, and this is short for G − {v}.
Similarly, when F ⊆ [V ]2, we write G − F to denote the graph (V, E \ F ). For two
sets A and B we define the symmetric difference of A and B, denoted A ⊕ B, as
the set (A \ B) ∪ (B \ A). For a graph G = (V, E) and F ⊆ [V ]2 we define G ⊕ F
as the graph (V, E ⊕ F ). In addition, if H is a subgraph of G and F ⊆ E(G)
we denote by H ⊕ F the graph H ⊕ (F ∩ [V (H)]2). Last, by G we denote the
complement of a graph G, i.e., V (G) = V (G) and E(G) = [V (G)]2 \ E(G).

Separation. We say that a set X of vertices of a graph G separates u from v if
there is no path from u to v in G − X. We generalize this to sets in the natural
way; Let X, Y and Z be sets of vertices of a graph G. We say that X separates
Y from Z if there is no pair of vertices y ∈ Y, z ∈ Z such that y is in the same
connected component as z in G − X.

Twin classes. For a graph G and a vertex v we define the true twin class of v,
denoted ttc(v) as the set {u ∈ V (G) | N [u] = N [v]}. Similarly, we define the false
twin class of v, denoted ftc(v) as the set {u ∈ V (G) | N(u) = N(v)}. Observe
that either ttc(v) = {v} or ftc(v) = {v}. From this we define the twin class of v,
denoted tc(v) as ttc(v) if |ttc(v)| > |ftc(v)| and ftc(v) otherwise.

Measures. We define the distance between two vertices u and v in G as the
minimum number of edges in any path between the two and denote this by
dist(u, v). Similarly, for a vertex v in G and a set of vertices X ⊆ V (G) we define
the distance from v to X, denoted dist(v, X) as minu∈X dist(v, u). Given a set of
vertices X and a non-negative integer r, we define the ball around X of radius r,
denoted

B(X, r) = {v ∈ V (G) such that dist(v, X) ≤ r}.

We define the diameter of a graph G, denoted diam(G), as maxu,v∈V dist(u, v) if G
is connected and infinity otherwise. And the degeneracy of G, denoted by dgy(G),
as the smallest integer d ∈ N such that for every subgraph G′ of G, δ(G′) ≤ d. This
is equivalent to saying that there is an ordering of the vertices of G, v1, v2, . . . , vn

such that degGi
(vi) ≤ d for every i ≤ n where Gi is the graph induced on the

vertex set Vi = {vi, vi+1, . . . , vn}. By vc(G) we will refer to the size of a minimum
vertex cover of G. A k-coloring of a graph G is a function from V (G) to [1, k]
such that two adjacent vertices are given different values. The chromatic number
of G, denoted χ(G) is the minimum k such that there is a k-coloring of G.

Obstructions. An obstruction set H is a set of graphs. Given an obstruction
set H, a graph G and an induced subgraph H of G we say that H is an obstruction
in G if H is isomorphic to some element of H. If there is no obstruction H in G
we say that G is H-free.
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When the graph referred to is clear from the context, we will often skip the
subscripts from the notations introduced above, for increased readability.

2.2 Graph classes
A complete graph is a graph G such that E(G) = [V (G)]2. Furthermore, a vertex
set X in G forms a clique if G[X] is a complete graph. On the other side of the
spectrum, a graph G is said to be edgeless if E(G) = ∅. And a set X in G forms
an independent set if G[X] is an edgeless graph. We will use the notation Kn for
a complete graph on n vertices. And similarly the notation Pl to define a path
on l vertices and Cl a cycle on l vertices. A vertex v is called simplicial if NG(v)
forms a clique.

Trees, forests and caterpillars. A forest is a graph without cycles and a tree
is a connected forest. A caterpillar is a tree T with a path B as a subgraph, such
that all vertices of degree 3 or more lie on B. We then say that B is a backbone of
T and every connected component of T − B is a stray or a hair. We say that a
caterpillar is of stray length, or hair length, s if there exists a backbone such that
all strays are of size at most s.

Interval and chordal graphs. A graph is chordal if it has no induced cycle of
length more than 3. It is well-known that if a graph is chordal it has a minimum
width tree decomposition such that every bag forms a clique. An interval graph
is a graph such that there exists a function from V (G) into intervals of N such
that the images of two vertices have a non-empty intersection if and only if the
two vertices are adjacent. For every interval graph there is minimal width path
decomposition such that every bag forms a clique.

Planar graphs. Informally, a graph is planar if there exists a continuous drawing
such that no edges are crossing. Kuratowski’s theorem states that a graph is
planar if and only if it does not contain a subdivision of a K5 nor a K3,3 as a
subgraph. For the purposes of this thesis we will only use that planar graphs does
not contain these two graphs as subgraphs together with the following theorem.

Proposition 2.1 ([RSST97]). Given a planar graph G one can in O(n2) time
obtain a 4-coloring of G.

Bipartite and split graphs. A bipartite graph is a graph whose vertex set can
be partitioned into two independent sets. A split graph is a graph whose vertex
set can be partitioned into a clique C and an independent set I; such a partition
(C, I) is called a split partition. A split graph G with split partition (C, I) and
edge set E is denoted by G = (C, I, E). Note that, in general, a split graph can
have more than one split partition.
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Threshold and chain graphs. A threshold graph is a split graph G = (C, I, E)
such that the neighborhoods of the vertices in I are nested. In particular, for
every u, v ∈ I it holds that either N(u) ⊆ N(v) or N(v) ⊆ N(u). A chain graph
is obtained by turning C into an independent set in a threshold graph. For more
on these two graph classes we refer the reader to Section 7.1.

2.3 Tree decompositions and related measures
Recall from Section 1.2 that a tree decomposition T = (T, X ) of a graph G consists
of a tree T = (I, M) and a collection X of subsets of V (G) that is indexed by I.
Furthermore, it satisfies the following three conditions:

(i) ⋃
X∈X X = V ,

(ii) for every edge uv ∈ E there exists an X ∈ X such that {u, v} ⊆ X and

(iii) for every v ∈ V it holds that T [{i | v ∈ Xi}] is connected.

The elements of X are often referred to as the bags of the decomposition. And
when referring to the neighbors of a bag Xi, e.g. Xi is a leaf or Xi and Xj are
adjacent bags, we are formally referring to properties of i and j in T . The width
of a tree decomposition is the cardinality of the largest bag minus one. And
the treewidth of a graph, denoted tw(G), is the minimum width over all tree
decompositions. A path decomposition P of a graph is a tree decomposition such
that T is a path. And the pathwidth of a graph G, denoted pw(G), is the minimum
width over all path decompositions. For a graph G and a tree decomposition
T = (T, X ) we define the treelength of a tree decomposition, denoted tl(G, T ),
as max{distG(u, v) | {u, v} ⊆ X ∈ X }. In other words, the treelength of a tree
decomposition is the maximum distance in G between two vertices that occur in
the same bag in T . We then define the treelength of a graph G, denoted tl(G), as
the minimum treelength over all tree decompositions of G. The connected graphs
of treewidth one are exactly the trees, the connected graphs of pathwidth one are
the caterpillars of hair length one and the graphs of treelength one are the chordal
graphs.

Rooted decompositions. When convenient, mostly for algorithmic purposes,
we will consider the decomposition tree to be rooted. For each vertex v in G,
we denote by Tv the subtree of T such that the corresponding bags all contain
v. Furthermore, we will denote the root of this tree by rv, i.e. the vertex in Tv

closest to the root of T .

Non-redundant decompositions. Let T = (T, X ) be a tree decomposition
of a graph G. We say that T is non-redundant if for every two unique elements
X, Y ∈ X it holds that neither is X ⊆ Y nor is Y ⊆ X.
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Proposition 2.2. Given a graph G and a tree decomposition T = (T, X ) we can
in O(t2n) construct a non-redundant tree decomposition T ′ = (T ′, X ′) such that

(i) X ′ ⊆ X and

(ii) |V (T ′)| ≤ |V (G)|.

It follows from the definition of tree decompositions that one can obtain a non-
redundant tree decomposition by contracting an edge in the tree decomposition
whenever one of its endpoint bags is a subset of the other. Observe that the
constructed tree decomposition satisfies the first condition by default. It is folklore
that a non-redundant tree decomposition contains at most |V (G)| bags (See
Kleinberg & Tardos [KT06] for a proof). We observe that by property (i) both
the width and the length of the new decomposition T ′ is bounded by the width
and length of T respectively.

A bound on the number of edges. The following result will be used to bound
the number of edges in a graph that is (supposedly) of bounded treewidth.

Lemma 2.3 ([BF05]). For every graph G it holds that |E(G)| ≤ tw(G) · |V (G)|.

2.4 Parameterized complexity
We will here briefly recall the necessary concepts within parameterized complexity.
We refer to Chapter 1 or the book Parameterized Algorithms [CFK+15] for the
exact definitions and more information regarding the mentioned subjects.

Parameterized problems and their tractability A parameterized problem
is a collection of pairs (x, k) where we refer to the number k as the parameter. A
parameterized problem admits a fixed-parameter tractable algorithm if there is an
algorithm solving the problem in f(k)|x|O(1) time for some computable function
f . Problems admitting a fixed-parameter tractable algorithm are said to belong
to the class FPT. Every parameterized problem solvable in f(k)|x|g(k) for two
computable functions f and g, is contained in XP. The W-hierarchy consists of
the complexity classes FPT = W[0] ⊆ W[1] ⊆ W[2] ⊆ . . . where all containments
are believed to be strict. By proving that a problem is W[1]-hard we rule out any
fixed-parameter tractable algorithm for this problem, assuming FPT �= W[1]. Such
a proof is given by a reduction algorithm from a W[1]-hard problem to the problem
at hand, such that the reduction algorithm runs in fixed-parameter tractable time,
the input and output instance are equivalent with respect to their languages and
there is a computable function bounding the parameter of the output instance by
the parameter of the input instance. We refer to Sections 1.1.2 and 1.1.4 for the
formal definitions.
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Kernels. A parameterized problem Π admits a kernel if there exists an algorithm
that given an instance (x, k) of Π in polynomial time produces an instance (x′, k′)
such that (x, k) is yes-instance of Π if and only if (x′, k′) is a yes-instance of
Π and there is a computable function f such that both |x′| and k′ is bounded
by f(k). If f is a polynomial function, we say that the kernel is a polynomial
kernel (see Section 1.3 and in particular Definition 1.6 for more information). It is
known (Theorem 2) that all problems in FPT admits a kernel. However, assuming
NP �⊆ coNP/poly, we can prove that certain problems do not admit polynomial
kernels utilizing the concept of a cross-composition (Definition 1.10).

Faster algorithms and lower bounds. We say that a parameterized problem
admits a subexponential time algorithm if given an instance (x, k) the algorithm
solves the problem in 2o(k)nO(1) time. Assuming the Exponential Time Hypothesis,
we can prove that some problems does not admit subexponential time algorithms,
as well as algorithms of other complexities. We refer to Section 1.4 for more
information on subexponential time algorithms and Section 1.5 for more on the
Exponential Time Hypothesis and its applications.

Approximation algorithms within parameterized complexity. A param-
eterized problem is said to admit a fixed-parameter tractable approximation al-
gorithm if there is an algorithm that runs in fixed-parameter tractable time and
either outputs a solution of quality that depends on the parameter or correctly
concludes that the given instance is a no-instance. We refer to Section 1.6 for
more information on the subject.

2.5 Miscellaneous
For α ∈ N, the function log(α) n is defined as follows:

log(α) n =
⎧⎨
⎩log n if α = 1

log(log(α−1) n) otherwise.

If a function f is defined on a set X and Y ⊆ X we will use the notation f(Y ) for
∪y∈Y f(y). For intervals of natural numbers we will use the notation [n] for the
interval [1, . . . , n].
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2.6 Problems

We now enumerate the most relevant problems for this thesis.

Vertex subset problems

Input: A graph G = (V, E) and an integer k.
Question: Is there an X ⊆ V with |X| ≤ k such that G − X is an

edgeless graph?

Vertex Cover

Input: A graph G = (V, E) and an integer k.
Question: Is there an X ⊆ V with |X| = k such that X forms a clique?

Clique

Input: A graph G = (V, E) and an integer k.
Question: Is there an X ⊆ V with |X| ≤ k such that N [X] = V ?

Dominating Set

Input: A graph G = (V, E) and an integer p.
Question: Is there an X ⊆ V such that every connected component of

G − X has at most p − |X| vertices?

Vertex Integrity

Input: A graph G = (V, E) and two integers k and �.
Question: Is there a set X ⊆ V with |X| ≤ k such that every connected

component of G − X has at most � vertices?

Component Order Connectivity

Input: A graph G = (V, E) and an integer k.
Question: Is there an X ⊆ V with |X| ≤ k such that G − X is H-free?

H-free Vertex Deletion
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Edge modification problems

For all problems below we assume H to be a finite set of graphs.

Input: A graph G = (V, E) and an integer k.
Question: Is there a set F ⊆ [V ]2 with |F | ≤ k such that G ⊕ F is a

threshold graph?

Threshold Editing

Input: A graph G = (V, E) and an integer k.
Question: Is there a set F ⊆ [V ]2 with |F | ≤ k such that G ⊕ F is a

chain graph?

Chain Editing

Input: A graph G = (V, E) and an integer k.
Question: Is there a set F ⊆ [V ]2 with |F | ≤ k such that G ⊕ F is

H-free?

H-free Edge Editing

For all three problems above we similarly define their completion and deletion
variants by requiring the set F to be in [V ]2 \ E and E respectively.

Structural problems

Input: A graph G = (V, E) and an integer b.
Question: Is there a linear ordering α of V such that for every uv ∈ E

it holds that |α(u) − α(v)| ≤ b?

Bandwidth

Input: A graph G = (V, E) and an integer t.
Question: Is tw(G) ≤ t?

Treewidth
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Chapter 3

Introduction

Motivated by a multitude of practical applications, many different vulnerability
measures of graphs have been introduced in the literature over the past few decades.
The vertex and edge connectivity of a graph, although undoubtedly being the most
well-studied of these measures, often fail to capture the more subtle vulnerability
properties of networks that one might wish to consider, such as the number of
resulting components, the size of the largest or smallest component that remains,
and the largest difference in size between any two remaining components. The two
vulnerability measures we study in this chapter, vertex integrity and component
order connectivity, take into account not only the number of vertices that need to
be deleted in order to break a graph into pieces, but also the number of vertices
in the largest component that remains.

The vertex integrity of an unweighted graph G is defined as ι(G) = min{|X| +
n(G − X) | X ⊆ V (G)}, where n(G − X) is the number of vertices in the largest
connected component of G − X. This vulnerability measure was introduced by
Barefoot, Entringer, and Swart [BES87] in 1987. For an overview of structural
results on vertex integrity, including combinatorial bounds and relationships
between vertex integrity and other vulnerability measures, we refer the reader to
a survey on the subject by Bagga et al. [BBG+92]. We mention here only known
results on the computational complexity of determining the vertex integrity of a
graph.

The Vertex Integrity (VI) problem takes as input an n-vertex graph G
and an integer p, and asks whether ι(G) ≤ p. This problem was shown to be
NP-complete, even when restricted to planar graphs, by Clark, Entringer, and
Fellows [CEF87]. On the positive side, Fellows and Stueckle [FS89] showed that
the problem can be solved in O(p3pn) time, and is thus fixed-parameter tractable
when parameterized by p. In the aforementioned survey, Bagga et al. [BBG+92]
mention that Vertex Integrity can be solved in O(n3) time when the input
graph is a tree or a cactus graph. Kratsch, Kloks, and Müller [KKM97] provided
polynomial time algorithms for several other graph classes.

Ray and Deogun [RD94] were the first to study the more general Weighted

Vertex Integrity (wVI) problem. This problem takes as input an n-vertex
graph G, a weight function w : V (G) → N, and an integer p. The task is to decide
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if there exists a set X ⊆ V (G) such that the weight of X plus the weight of a
heaviest component of G−X is at most p. Using a reduction from 0-1 Knapsack,
Ray and Deogun [RD94] identified several graph classes on which the Weighted

Vertex Integrity problem is weakly NP-complete. In particular, their result
implies that the problem is weakly NP-complete on trees, bipartite graphs, series-
parallel graphs, and regular graphs, and therefore also on superclasses such as
chordal graphs and comparability graphs.

We now turn our attention to the second vulnerability measure studied in
this chapter. For any positive integer �, the �-component order connectivity of
a graph G is defined to be the cardinality of a smallest set X ⊆ V (G) such
that n(G − X) < �. We refer to the survey by Gross et al. [GHI+13] for more
background on this graph parameter. Motivated by the definitions of �-component
order connectivity and the Weighted Vertex Integrity problem, we introduce
the Weighted Component Order Connectivity (wCOC) problem. This
problem takes as input a graph G, a weight function w : V (G) → N, and two
integers k and �. The task is to decide if there exists a set X ⊆ V (G) such that
the weight of X is at most k and the weight of a heaviest component of G − X is
at most �. Observe that the Weighted Component Order Connectivity

problem can be interpreted as a more refined version of Weighted Vertex

Integrity. We therefore find it surprising that, to the best of our knowledge,
the Weighted Component Order Connectivity problem has not yet been
studied in the literature. We do however point out that the techniques described
by Kratsch et al. [KKM97] yield polynomial-time algorithms for the unweighted
version of the problem on interval graphs, circular-arc graphs, permutation graphs,
and trapezoid graphs, and that very similar problems have received some attention
recently [BAMSN13, GHI+13].

A parameterized perspective
Observe that an instance (G, k, �) of the unweighted problem Component Order

Connectivity with � = 1 is equivalent to the instance (G, k) of Vertex Cover.
This, together with the NP-hardness of Vertex Integrity [CEF87] gives that
all of the above problems are NP-complete on planar graphs. Motivated by this,
we study them by applying the flow chart in Figure 1.2. Recall that Fellows and
Stueckle [FS89] proved that VI can be solved in O(p3pn) time on general graphs.
In Chapter 4 we prove that even Weighted Vertex Integrity is in FPT and
admits a polynomial kernel when parameterized by p.

We then consider the parameterized complexity of COC and wCOC. We first
prove that when parameterizing COC by either k or �, the problem is W[1]-hard,
even when restricted to split graphs. By changing the parameter to k + �, we
manage to prove that for this dual parameterization, wCOC is indeed in FPT by
a simple branching argument. Somewhat surprisingly, we then prove that it is not
possible to improve significantly over this algorithm assuming ETH. Finally, we
show that wCOC admits a polynomial kernel with at most k�(k + �) + k vertices,
where each vertex has weight at most k + �.
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The arguments for these results are clean and simplistic and we hence believe
that they are a nice introduction to several of the concepts that are to appear in
this thesis and that was surveyed in Chapter 1.

3.1 Preliminaries
Let G be a graph, V (G) and E(G) denote the vertex set and edge set of G,
respectively, and w : V (G) → N+ = {1, 2, . . .} a weight function on the vertices
of G. The weight of a subset X ⊆ V (G) is defined as w(X) = ∑

v∈X w(v). We
define wcc(G) to be the weight of a heaviest component of G, i.e., wcc(G) =
max{w(V (Gi)) | 1 ≤ i ≤ r}, where G1, . . . , Gr are the components of G. The
weighted vertex integrity of G is defined as

ι(G) = min{w(X) + wcc(G − X) | X ⊆ V (G)} ,

where G − X denotes the graph obtained from G by deleting all the vertices in X.
Any set X ⊆ V (G) for which w(X) + wcc(G − X) = ι(G) is called an ι-set of G.
We consider the following two decision problems:

Input: A graph G, a weight function w : V (G) → N+, and an
integer p.

Question: Is ι(G) ≤ p?

Weighted Vertex Integrity

Input: A graph G, a weight function w : V (G) → N+, and two
integers k and �.

Question: Is there a set X ⊆ V (G) with w(X) ≤ k such that wcc(G −
X) ≤ �?

Weighted Component Order Connectivity

The unweighted versions of these two problems, where w(v) = 1 for every ver-
tex v ∈ V (G), are called Vertex Integrity (VI) and Component Order

Connectivity (COC), respectively.
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Chapter 4

Vertex Integrity

In this chapter we prove that Weighted Vertex Integrity as well as Vertex

Integrity both are in FPT when parameterized by p. Furthermore, we provide
a cubic vertex kernel.

4.1 A fixed-parameter tractable algorithm
We will now present a fixed-parameter tractable algorithm for Weighted Vertex

Integrity. First the algorithm searches for a connected set of vertices U of
weight at least p + 1. Observe that at least one of the vertices in U will have to
be in a solution X. Based on this, for every every vertex v in U we try to include
this vertex in X and recurse on G − v together with p − w(v). But before we give
the algorithm, we will prove that we can assume the instance to have at most pn
edges.

Lemma 4.1. Given an instance (G, w, p) of Weighted Vertex Integrity

there is an algorithm that in O(pn) time outputs an equivalent instance (G′, w, p)
such that |E(G′)| ≤ (p − 1)|V (G′)|.

Proof. Suppose that (G, w, p) is a yes-instance. Then there exists a set X ⊆ V (G)
such that w(X) + wcc(G − X) ≤ p. Let G1, . . . , Gr be the components of G − X.
Since every vertex has weight at least 1, it holds that |X∪V (Gi)| ≤ w(X∪V (Gi)) ≤
p for each i ∈ {1, . . . , r}. Observe that G has a path decomposition of width at
most p − 1 whose bags are exactly the sets X ∪ V (Gi). This implies that the
pathwidth, and hence the treewidth, of G is at most p − 1. It is well-known that
every n-vertex graph of treewidth at most t has at most tn edges [BF05]. We thus
conclude that if (G, w, p) is a yes-instance, then m ≤ (p − 1)n. Our algorithm can
therefore start counting edges and either output the given instance if m ≤ (p − 1)n
and otherwise a constant no-instance (G′, w′, p′) with |E(G′)| ≤ (p − 1)|V (G′)|.

Theorem 13. Weighted Vertex Integrity can be solved in O((p + 1)pn)
time.
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Proof. Let (G, w, p) be an instance of Weighted Vertex Integrity. First,
we apply Lemma 4.1 to ensure that m ≤ (p − 1)n. We now describe a simple
branching algorithm that solves the problem. At each step of the algorithm, we
use a depth-first search to find a set U of at most p + 1 vertices such that G[U ] is
connected and w(U) ≥ p + 1. If such a set does not exist, then every component
of the graph under consideration has weight at most p, so the empty set is an ι-set
of the graph and we are done. Otherwise, we know that any ι-set of the graph
contains a vertex of U . We therefore branch into |U | ≤ p + 1 subproblems: for
every v ∈ U , we create the instance (G − v, w, p − w(v)), where we discard the
instance in case p − w(v) < 0. The parameter p decreases by at least 1 at each
branching step and the algorithm terminates at depth p − 1. Due to this, the
search tree of the algorithm has depth at most p − 1. Since T is a (p + 1)-ary tree,
it contains ((p + 1)p − 1)/p = O((p + 1)p−1) nodes in total. Due to the assumption
that m ≤ (p − 1)n, the depth-first search at each step can be performed in time
O(pn). This yields an overall running time of O((p + 1)p−1pn) = O((p + 1)pn).

4.2 A polynomial kernel
In this section we prove that Weighted Vertex Integrity admits a polynomial
kernel with at most p3 many vertices. By Lemma 4.1 this immediately yields a
p4 bound on the number of edges. The kernel consists of two reduction rules,
followed by a combinatorial argument showing that after these two rules have been
exhaustively applied, there are at most p3 vertices left in any yes-instance.

Rule 4.1. Let (G, w, p) be an instance of Weighted Vertex Integrity and
C1, . . . , Cr the connected components of G in decreasing order with respect to total
weight. If r > p + 1 we output the instance (G′, w, p) where G′ = G[∪p+1

i=1 Ci].

In other words, we remove all but the p + 1 heaviest components of the instance.
The intuition is that our solution can interact with at most p of the components
and that this interaction better be among the heavier components. We observe
that the rule can be applied in O(n + m) time.

Lemma 4.2. Let (G, w, p) be an instance of Weighted Vertex Integrity

and apply Rule 4.1 to obtain the instance (G′, w, p). Then (G, w, p) is a yes-
instance if and only if (G′, w, p) is a yes-instance.

Proof. To prove that this rule is safe, it suffices to prove that (G, w, p) is a yes-
instance if the new instance (G′, w, p) is a yes-instance, as the reverse direction
trivially holds. Suppose (G′, w, p) is a yes-instance. Then there exists a set
X ⊆ V (G′) such that w(X) + wcc(G′ − X) ≤ p. Since |X| ≤ w(X) ≤ p and
G′ has exactly p + 1 components, there exists an index i ∈ {1, . . . , p + 1} such
that X does not contain any vertex from Gi. Since wcc(Gi) ≥ wcc(Gj) for
every j ∈ {p + 2, . . . , r}, it holds that wcc(G − X) = wcc(G′ − X). Hence
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w(X) + wcc(G − X) = w(X) + wcc(G′ − X) ≤ p, implying that ι(G) ≤ p and that
(G, w, p) is a yes-instance.

The second reduction rule is along the lines of the classic high degree reduction
rule for Vertex Cover. If the closed neighborhood of a vertex induces some
connected graph that cannot be fixed without separating the vertices, it is safe to
include this vertex into your solution.

Rule 4.2. Let (G, w, p) be an instance of Weighted Vertex Integrity and
v ∈ V a vertex such that w(N [v]) > p. If p − w(v) ≥ 0 we output the instance
(G − v, w, p − w(v)) and otherwise a trivial no-instance.

Lemma 4.3. Let (G, w, p) be an instance of Weighted Vertex Integrity

and apply Rule 4.2 to obtain the instance (G′, w′, p′). Then (G, w, p) is a yes-
instance if and only if (G′, w′, p′) is a yes-instance.

Proof. It suffices to show that if (G, w, p) is a yes-instance, then v belongs to any
ι-set of G. Suppose (G, w, p) indeed is a yes-instance, and let X be an ι-set of G.
Then w(X) + wcc(G − X) = ι(G) ≤ p. For contradiction, suppose that v /∈ X.
Consider the component H of G − X that contains v. Since every vertex of NG[v]
belongs either to X or to the component H, and w(NG[v]) > p by assumption,
we find that w(X) + wcc(H) > p. But this implies that w(X) + wcc(G − X) ≥
w(X) + wcc(H) > p, yielding the desired contradiction.

We will now prove that the two rules given are sufficient to obtain a polynomial
kernel with the promised bounds.

Theorem 14. Weighted Vertex Integrity admits a kernel with at most p3

vertices and p4 edges, where each vertex has weight at most p.

Proof. Let (G, w, p) be our input instance and (G′, w, p′) the instance obtained
after exhaustively applying Rules 4.1 and 4.2. Observe that p′ ≤ p. We assume that
p ≥ 2, as otherwise we can trivially solve the instance (G, w, p). We claim that if
(G′, w, p′) is a yes-instance, then |V (G′)| ≤ p3. Suppose (G′, w, p′) is a yes-instance,
and let X ⊆ V (G′) be an ι-set of G′. Then w(X) + wcc(H) ≤ p′ ≤ p for every
component H of G′ − X. This, together with the fact that every vertex in G′ has
weight at least 1, implies that |X| ≤ p and |V (H)| ≤ wcc(H) ≤ p−w(X) ≤ p−|X|
for every component H of G′ − X. Since the first reduction rule cannot be
applied on the instance (G′, w, p′), we know that G′ has at most p′ + 1 ≤ p + 1
components. If X = ∅, then each of these components contains at most p vertices,
so |V (G′)| ≤ (p + 1)p ≤ p3, where the last inequality follows from the assumption
that p ≥ p′ ≥ 2.

Now suppose |X| ≥ 1. Observe that every vertex in X has degree at most p′ ≤ p
due to the assumption that the second reduction rule cannot be applied. Hence,
every vertex of X is adjacent to at most p components of G′ − X, implying that
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there are at most p2 components of G′ − X that are adjacent to X. Since G′

itself has at most p + 1 components, at least one of which contains a vertex of
X, we find that G′ − X has at most p2 + p components in total. Recall that
each of these components contains at most p − |X| vertices. We conclude that
|V (G′)| ≤ (p2 + p)(p − |X|) + |X| ≤ p3, where we use the assumption that |X| ≥ 1.
Due to the second reduction rule, each vertex in G′ has weight at most p.

Finally, we apply the algorithm of Lemma 4.1 to bound the number of edges by
p ·p3 = p4. It remains to argue that our kernelization algorithm runs in polynomial
time. Observe that the execution of any reduction rule strictly decreases the
number of vertices in the graph, so each rule is applied only a polynomial number
of times. The observation that each rule can be executed in polynomial time
completes the proof.



Chapter 5

Component Order Connectivity

We will now investigate the parameterized complexity and kernelization complexity
of Component Order Connectivity and Weighted Component Order

Connectivity. As mentioned in the introduction, both problems are para-
NP-hard when parameterized by � due to the fact that Component Order

Connectivity is equivalent to Vertex Cover when � = 1. First, we will
prove that when restricted to split graphs, both problems are W[1]-hard when
parameterized by k or by �. After this, we will prove that both problems are
fixed-parameter tractable when parameterized by both k and �. We will then
prove that this algorithm is optimal, before we end with a polynomial kernel.

5.1 Hardness on split graphs
We will now prove that parameterized by either k or �, there is little hope for
tractability. More specifically, we will prove that by both the aforementioned
parameterizations the problem is W[1]-hard, even when restricted to split graphs.

Given a graph G, the incidence split graph of G is the split graph G∗ =
(C∗, I∗, E∗) whose vertex set consists of a clique C∗ = {vx | x ∈ V (G)} and an
independent set I∗ = {ve | e ∈ E(G)}, and where two vertices vx ∈ C∗ and ve ∈ I∗

are adjacent if and only if the vertex x is incident with the edge e in G. The
following lemma will be used in the proofs of hardness results.

Lemma 5.1. Let G = (V, E) be a graph, G∗ = (C∗, I∗, E∗) its incidence split
graph, and k < |V | a non-negative integer. Then the following statements are
equivalent:

(i) G has a clique of size k;

(ii) there exists a set X ⊆ C∗ such that |X| ≤ k and |X| + n(G∗ − X) ≤
|V | + |E| −

(
k
2

)
;

(iii) there exists a set X ⊆ C∗ such that |X| ≤ k and n(G∗ − X) ≤ |V | + |E| −(
k
2

)
− k.
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Proof. Let n = |V | and m = |E|. We first prove that (i) implies (iii). Suppose G
has a clique S of size k. Let X = {vx ∈ C∗ | x ∈ S} denote the set of vertices in G∗

corresponding to the vertices of S. Similarly, let Y = {ve ∈ I∗ | e ∈ E(G[S])}
denote the set of vertices in G∗ corresponding to the edges in G both endpoints of
which belong to S. Observe that |Y | =

(
k
2

)
due to the fact that S is a clique of

size k in G. Now consider the graph G∗ − X. In this graph, every vertex of Y is
an isolated vertex, while every vertex of I∗ \ Y has at least one neighbor in the
clique C∗ \ X. This implies that n(G∗ − X) = n + m −

(
k
2

)
− k.

Since (iii) trivially implies (ii), it remains to show that (ii) implies (i). Suppose
there exists a set X ⊆ C∗ such that |X| ≤ k and |X|+n(G∗ −X) ≤ |V |+ |E|−

(
k
2

)
.

Let Z ⊆ I∗ be the set of vertices in I∗ both neighbors of which belong to X.
Observe that |Z| ≤

(
|X|
2

)
and n(G∗ − X) = n + m − |X| − |Z|. Hence

n + m −
(

k

2

)
≥ |X| + n(G∗ − X) = n + m − |Z| ≥ n + m −

(
|X|
2

)
,

which implies that
(

k
2

)
≤

(
|X|
2

)
. Since |X| ≤ k by assumption, we find that |X| = k

and all the above inequalities must be equalities. In particular, we find that
|Z| =

(
|X|
2

)
. We conclude that the vertices in G that correspond to X form a

clique of size k in G.

Theorem 15. Component Order Connectivity is W[1]-hard on split graphs
when parameterized by k.

Proof. We give a reduction from the W[1]-hard problem Clique. Let (G, k) be
an instance of Clique with n = |V (G)| and m = |E(G)|. Let G∗ = (C∗, I∗, E∗)
be the split incidence graph of G, and let � = n + m −

(
k
2

)
. By Lemma 5.1,

there is a clique of size k in G if and only if there exists a set X ⊆ C∗ such that
|X| ≤ k and n(G∗ − X) ≤ n + m −

(
k
2

)
. This immediately implies that (G, k) is a

yes-instance of Clique if and only if (G∗, k, �) is a yes-instance of Component

Order Connectivity.

Theorem 16. Component Order Connectivity is W[1]-hard on split graphs
when parameterized by �.

Proof. We give a reduction from Clique. Let (G, q) be an instance of Clique,
and construct G† = (V †, E†), where V † = {vx | x ∈ V (G)} ∪ {we | e ∈ E(G)}
and E† = {we1we2 | e1, e2 ∈ E(G)} ∪ {vxwe | vertex x incident to edge e in G}.
Define C† = {ve | e ∈ E(G)} and I† = V † \ C†. We also define k = |E(G)| −

(
q
2

)
and � =

(
q
2

)
+ q. We will show that (G, q) is a yes-instance of Clique if and only

if (G†, k, �) is a yes-instance of COC.
First assume (G, q) is a yes-instance of Clique, and let Q ⊆ V (G) be a clique of

size q. Define Q† = {we | e = uv for u, v ∈ Q}. Let X† = C†\Q† and consider |X†|
and G† −X†. Observe that |X†| = |C† \Q†| = |C†|−|Q†| = |E(G)|−

(
q
2

)
= k. Also

note that the neighborhood of Q† in I† has size exactly q. Hence the component
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of G† − X† containing the vertices of Q† has |Q†| + q =
(

q
2

)
+ q = � vertices, while

every other component of G† − X† contains exactly one vertex. This implies that
(G†, k, �) is a yes-instance of COC.

For the reverse direction, suppose that (G†, k, �) is a yes-instance of COC. Then
there exists a set X† ⊆ V † such that |X†| ≤ k and n(G† − X†) ≤ �; let us call
such a set X† a deletion set. Without loss of generality, assume that among all
deletion sets, X† contains the smallest number of vertices from I†. We claim that
X† ∩ I† = ∅, i.e., X† ⊆ C†.

For contradiction, suppose there is a vertex v ∈ X† ∩ I†. If all the neighbors
of v belong to X†, then X† \ {v} is a deletion set, contradicting the choice of
X†. Hence we may assume that there exists a vertex w ∈ NG†(v) \ X†. Let D
be the component of G† − X† containing w. Observe that every component of
G† − X† other than D has exactly one vertex, so |V (D)| = n(G† − X†). Let
X ′ = X† \ {v}, and let D′ be the component of G† − X ′ containing v and w. It
is clear that |V (D′)| = |V (D)| + 1 and all components of G† − X ′ other than
D′ contain exactly one vertex. Finally, let X ′′ = (X† \ {v}) ∪ {w}. Then every
component of G† − X ′′ has at most |V (D′)| − 1 ≤ |V (D)| vertices, implying that
n(G† − X ′′) ≤ n(G† − X†). Hence X ′′ is a deletion set, contradicting the choice of
X†. This contradiction proves that X† ⊆ C†.

Observe that |C† \X†| = |C†|− |X†| ≥ |E(G)|−k =
(

q
2

)
. Let Q† be any subset

of C† \ X† of size
(

q
2

)
. Let D be the component of G† − X† containing Q†. Since

X† is a deletion set, |V (D)| ≤ � =
(

q
2

)
+ q. This implies that Q† has at most q

neighbors in I†. By construction of G†, it holds that Q† has exactly q neighbors
in I†. These q neighbors correspond to a clique of size q in G.

5.2 An optimal algorithm
Since we have just proved that the problems at hand are W[1]-hard when con-
sidering either k or � as the parameter, we will now focus our attention to the
problem parameterized by both k and �. At first, this might appear to not be in
line with our definition of a parameterized problem (Definition 1.1). However, for
classifications with respect to containment in FPT or whether the problem admits
a polynomial kernel, we can consider the parameter as k + �. In this section we will
first give a simple branching algorithm and then prove that no major improvement
is possible unless ETH fails.

Lemma 5.2. Given an instance (G, w, k, �) of Weighted Component Order

Connectivity there is an algorithm that in O(pn) time outputs an equivalent
instance (G′, w, k, �) such that |E(G′)| ≤ (k + �)|V (G′)|.

Proof. Observe that if an instance (G, w, k, �) of Weighted Component Order

Connectivity is a yes-instance, then the (G, w, k + �) is a yes-instance of
Weighted Vertex Integrity. Hence, the same argument as in the proof of
Lemma 4.1 applies.
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Theorem 17. There is an algorithm solving Weighted Component Order

Connectivity in time O((� + 1)k(k + �)n) = 2O(k log �)n.
Proof. We describe a simple branching algorithm that solves the problem. At each
step of the algorithm, we use a depth-first search to find a set U ⊆ V (G) of at
most � + 1 vertices such that wcc(G[U ]) ≥ � + 1 and G[U ] induces a connected
subgraph. If such a set does not exist, then every component of the graph has
weight at most �, so we are done. Otherwise, we know that any solution contains
a vertex of U . We therefore branch into |U | ≤ � + 1 subproblems: for every v ∈ U ,
we create the instance (G−v, w, k −w(v), �), where we discard the instance in case
k −w(v) < 0. Since the parameter k decreases by at least 1 at each branching step,
the corresponding search tree T has depth at most k. Since T is an (� + 1)-ary
tree of depth at most k, it has at most ((� + 1)k+1 − 1)/((� + 1) − 1) = O((� + 1)k)
nodes. Due to the assumption that m ≤ (k + � − 1)n, the depth-first search at
each step can be performed in time O(n+m) = O((k + �)n). This yields an overall
running time of O((� + 1)k(k + �)n) = 2O(k log �)n.

The next result shows that even if the input graph is a split graph, we cannot
significantly improve the algorithm above assuming ETH. In particular we prove
that, under ETH, no 2o(k log �)nO(1)-time algorithm can exist.
Theorem 18. There is no 2o(k log �)nO(1) time algorithm for Component Order

Connectivity, even when restricted to split graphs, unless the ETH fails.
Proof. For a contradiction, suppose there exists an algorithm A solving Compo-

nent Order Connectivity in time 2o(k log �)nO(1). Let (G, X ) be an instance
of k × k-Clique, where X = {X1, . . . , Xk}. We assume that G contains no edge
whose endpoints belong to the same set Xi, as an equivalent instance can be
obtained by deleting all such edges from G. Due to this assumption, it holds that
(G, X ) is a yes-instance of k × k-Clique if and only if G contains a clique of size k.

Now let G∗ = (C∗, I∗, E∗) be the incidence split graph of G, and let � =
|V (G)| + |E(G)| −

(
k
2

)
. By the definition of k × k-Clique, we have that |V (G)| =

k2 and |E(G)| ≤ k2(k2 − 1)/2. This implies that the graph G∗ has at most
k2 + k2(k2 − 1)/2 ≤ k4 vertices, and that � ≤ k4. By Lemma 5.1, it holds that
(G∗, k, �) is a yes-instance of Component Order Connectivity if and only
if G has a clique of size k. Hence, using algorithm A, we can decide in time
2o(k log k4)kO(1) = 2o(k log k) whether or not (G, X ) is a yes-instance of k × k-Clique,
which by Theorem 7 is only possible if the ETH fails.

5.3 A polynomial kernel
We conclude this chapter by showing that the Weighted Component Order

Connectivity problem admits a polynomial kernel. The arguments in the proof
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of Theorem 19 are similar to, but slightly different from, those in the proof of
Theorem 14. The rules of this kernel lie even closer to the kernel for Vertex

Cover displayed in Section 1.3.1. In particular, if a connected component is
small, we remove it from the graph. And if the closed neighborhood of a vertex is
too costly to fix without removing the vertex itself, we immediately remove it and
adjust k accordingly.

Rule 5.1. Let (G, w, k, �) be an instance of wCOC and C a connected component
of G such that w(C) ≤ �. We then reduce the instance to (G − C, w, k, �).

The correctness of the above rule follows immediately from the observation that no
minimal solution deletes any of the vertices of C and hence the entire component
is irrelevant.

Rule 5.2. Let (G, w, k, �) be an instance of wCOC and v ∈ V a vertex such that
w(N [v]) > k + �. If k − w(v) ≥ 0 we output the instance (G − v, w, k − w(v), �)
and otherwise a trivial no-instance.

Lemma 5.3. Let (G, w, k, �) be an instance of wCOC and v ∈ V a vertex such
that w(N [v]) > k + �. Then v is contained in every solution X.

Proof. Let us first show that v belongs to any solution for the instance (G, w, k, �)
if such a solution exists. This follows from the observation that deleting any set
X ⊆ V (G)\{v} with w(X) ≤ k from G yields a graph G′ such that w(NG′ [v]) > �.
For the same reason, there exists no solution if w(v) > k.

Theorem 19. Weighted Component Order Connectivity admits a kernel
with at most k�(k + �) + k vertices, where each vertex has weight at most k + �.

Proof. Given an instance (G, w, k, �) let (G′, w, k′, �) be the instance that we obtain
after exhaustively applying Rules 5.1 and 5.2. Observe that k′ ≤ k, while the
parameter � did not change in the kernelization process.

Suppose X is a solution for this instance. Then w(X) ≤ k′ ≤ k, which implies
that X contains at most k vertices. For every component H of G′ − X, it holds
that |H| ≤ wcc(H) ≤ �, furthermore H is adjacent to at least one vertex of X, as
otherwise our second reduction rule could have been applied. Moreover, the fact
that the first reduction rule cannot be applied guarantees that w(NG[v]) ≤ k + �
for every v ∈ V (G′). In particular, this implies that every vertex in X has degree
at most k + �. We find that G − X has at most k(k + �) components, each
containing at most � vertices. We conclude that if (G′, w, k′, �′) is a yes-instance,
then |V (G′)| ≤ k�(k + �) + k. The observation that each vertex in G′ has weight
at most k + � due to the second reduction rule completes the proof.
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Chapter 6

Concluding remarks

In this part we have proved Vertex Integrity and Component Order

Connectivity (as well as their weighted variants) to be in FPT and to admit
polynomial kernels. Kumar & Lokshtanov [KL16] recently observed that one can
improve the running time of the algorithm to (� + 0.0755)knO(1) by reducing the
instance to an instance of (l + 1)-Hitting Set. We show that both of these
algorithms are in some sense optimal, assuming ETH. The reduction does however
not rule out an algorithm solving the problem in time ck+�nO(1) for some constant
c. Hence, as a first step, it would be interesting to see an algorithm with running
time f(�) · 2O(k) · nO(1) for some computable function f . And finally, can we prove
that there is no ck+� · nO(1) time algorithm for COC?

The kernel size was recently improved independently by Xiao [Xia16] and
Kumar & Lokshtanov [KL16] to O(�k) vertices. And while the first runs in
polynomial time, the later obtains a 2�k kernel, matching the best known kernels
for Vertex Cover when � = 1. We note that this later kernelization algorithm
runs in nO(�) time and hence in polynomial time for every fixed �.

It is also interesting to study the problem parameterized by various structural
parameters. Motivated by restricting epidemics, Enright and Meeks [EM15] gave
an algorithm for solving COC running in time O((t�))2tn), where t is the treewidth
of the input graph. Can we prove that COC is W[1]-hard when parameterized by
k and t instead?

Finally, although Component Order Connectivity is not in FPT pa-
rameterized by either k or �, there might still exist tractable parameterized
approximation algorithms for the problem. We note that an (� + 1)-approximation
for COC is obtained by applying the same type of argument as we did for the
2-approximation for Vertex Cover in Chapter 1. This can also be obtained via
the above mentioned reduction to (� + 1)-Hitting Set [KL16]. We also note that
an O(log �)-fixed-parameter tractable approximation algorithm for COC when
parameterized by � was presented recently by Lee [Lee16].
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Part III

Editing to nested neighborhoods
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Chapter 7

Introduction

In this part we mainly study the computational complexity of two edge modification
problems, namely editing to threshold graphs and editing to chain graphs. Graph
modification problems ask whether a given graph G can be transformed to have a
certain property using a small number of edits (such as deleting/adding vertices
or edges), and have been the subject of significant previous work [SST04, CJL03,
Dam06, DLL+06, NG13].

In the Threshold Editing problem, we are given as input an n-vertex graph
G = (V, E) and a non-negative integer k. The objective is to find a set F of at
most k pairs of vertices such that G minus any edges in F plus all non-edges in F
is a threshold graph. A graph is a threshold graph if it can be constructed from
the empty graph by repeatedly adding either an isolated vertex or a universal
vertex [BLS99].

Input: A graph G = (V, E) and a non-negative integer k
Question: Is there a set F ⊆ [V ]2 of size at most k such that G ⊕ F is

a threshold graph.

Threshold Editing

The computational complexity of Threshold Editing has repeatedly been stated
as open, starting from Natanzon et al. [NSS01], and then more recently by Burzyn
et al. [BBD06], and again very recently by Liu, Wang, Guo and Chen [LWGC12].
Natanzon et al. [NSS01] showed that Threshold Editing can be solved in
polynomial time on bounded degree input graphs. We resolve the general problem
by showing that the problem is indeed NP-hard.

Graph editing problems are well-motivated by problems arising in the applied
sciences, where we often have a predicted model from domain knowledge, but
observed data fails to fit this model exactly. In this setting, edge modification
corresponds to correcting false positives (and/or false negatives) to obtain data
that is consistent with the model. Threshold Editing has specifically been of
recent interest in the social sciences, where Brandes et al. are using distance to
threshold graphs in work on axiomatization of centrality measures [Bra14, SB15].
More generally, editing to threshold graphs and their close relatives chain graphs
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arises in the study of sparse matrix multiplications [Yan81a]. Chain graphs are
the bipartite analogue of threshold graphs (see Definition 7.7), and here we also
establish hardness of Chain Editing.

A parameterized perspective

Having settled the NP-hardness of these problems, we turn to studying ways of
dealing with their intractability. Cai’s theorem [Cai96] shows that Threshold

Editing and Chain Editing are fixed-parameter tractable, i.e., solvable in f(k) ·
nO(1) time where k is the edit distance from the desired model (graph class);
However, by the reductions used to prove NP-hardness we also obtain lower
bounds in the order of 2o(

√
k) · nO(1) under ETH, and thus leave a gap. We continue

to show that it is in fact the lower bound which is tight (up to logarithmic factors
in the exponent) by giving a subexponential time algorithm for both problems.

A crucial first step in our algorithms is to preprocess the instance, reducing
to a kernel of size polynomial in the parameter. We give quadratic kernels for all
three edge variants of modifying your graph into either a threshold or chain graph.
This answers (affirmatively) a recent question of Liu, Wang and Guo [LWG14]—
whether the previously known kernel, which has O(k3) vertices, for Threshold

Completion (equivalently Threshold Deletion) can be improved.

7.1 Graph classes with nested neighborhoods
A split graph is a graph G = (V, E) whose vertex set can be partitioned into two
sets C and I such that G[C] is a complete graph and G[I] is edgeless, i.e., C
is a clique and I an independent set [BLS99]. For a split graph G we say that
a partition (C, I) of V (G) forms a split partition of G if G[C] induces a clique
and G[I] an independent set. A split partition (C, I) is called a complete split
partition if for every vertex v ∈ I, N(v) = C. If G admits a complete split
partition, we say that G is a complete split graph.

The original definition of a threshold graph is the following: A graph is a
threshold graph if it is possible to assign real weights to the vertices w : V → [0, 1]
such that two vertices u and v are adjacent if and only if w(u) + w(v) ≥ 1. We
now give two characterizations of threshold graphs that will be more useful for us:

Proposition 7.1 ([MP95]). A graph G is a threshold graph if and only if G has
a split partition (C, I) such that the neighborhoods of the vertices in I are nested,
i.e., for every pair of vertices v and u in I, either N(v) ⊆ N [u] or N(u) ⊆ N [v].

Proposition 7.2 ([BLS99]). A graph G is a threshold graph if and only if G does
not have a C4, P4 nor a 2K2 as an induced subgraph. Thus, the threshold graphs
are exactly the {C4, P4, 2K2}-free graphs (see Figure 7.1).

Motivated by the characterization of threshold graphs in Propositions 7.2 and 7.8,
we define threshold obstructions (also see Figure 7.1).
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(a) C4 (b) P4 (c) 2K2

Figure 7.1: Threshold graphs are {C4, P4, 2K2}-free.

Definition 7.3 (H, Threshold obstruction). A graph H is a threshold obstruction
if it is isomorphic to a member of the set {C4, P4, 2K2} and a chain obstruction if it
is isomorphic to a member of the set {C3, 2K2, C5}. If it is clear from the context,
we will often use the term obstruction for both threshold and chain obstructions
and denote the set of obstructions by H.

The following partitioning of threshold graphs will be instrumental in the develop-
ment of the polynomial kernels.

twin classtwin class

lev(1)

lev(2)

lev(3)

lev(4)

lev(5)

lev(6)

lev(0)

lev(1)

lev(2)

lev(3)

lev(4)

lev(5)

Figure 7.2: A threshold partition—the left hand side is the clique and the right
hand side is an independent set, each bag contains a twin class. All bags are
non-empty, otherwise two twin classes on the opposite side would collapse into
one, except possibly the two extremal bags.

Definition 7.4. We say that (C, I) = (〈C1, . . . , Ct〉, 〈I1, . . . , It〉) forms a threshold
partition of G if the following holds (see Figure 7.2 for an illustration):

• (C, I) is a split partition of G, where C = ⋃
i≤t Ci and I = ⋃

i≤t Ii,

• Ci and Ii are twin classes in G for every i

• N [Cj] ⊂ N [Ci] and N(Ii) ⊂ N(Ij) for every i < j.

• Finally, we demand that for every i ≤ t, (Ci, I≥i) form a complete split
partition of the graph induced by Ci ∪ I≥i.
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We furthermore define, for every vertex v in G, lev(v) as the number i such that
v ∈ Ci ∪ Ii and we denote each level Li = Ci ∪ Ii.

In a threshold decomposition we will refer to Ci for every i as a clique fragment
and Ii as a independent fragment. Furthermore, we will refer to a vertex in ∪C as
a clique vertex and a vertex in ∪I as an independent vertex.

Proposition 7.5 (Threshold decomposition). A graph G is a threshold graph if
and only if G admits a threshold partition.

Proof. Suppose that G is a threshold graph and therefore admits a nested ordering
of the neighborhoods of vertices of each side [HIS81]. We show that partitioning
the graph into partitions depending only on their degree yields the levels of a
threshold partition. The clique side is naturally defined as the maximal set of
highest degree vertices that form a clique. Suppose now for contradiction that
this did not constitute a threshold partition. By definitions, every level consists of
twin classes, and also, for two twin classes Ii and Ij, since their neighborhoods
are nested in the threshold graph, their neighborhoods are nested in the threshold
partition as well. So what is left to verify is that (Ci, I≥i) is a complete split
partition of G[Ci ∪ I≥i]. But that follows directly from the assumption that G
admitted a nested ordering and Ci is a true twin class.

For the reverse direction, suppose G admits a threshold partition (C, I). Con-
sider any four connected vertices a, b, c, d. We will show that they can not form any
of the induced obstructions (see Figure 7.1). For the 2K2 and C4, it is easy to see
that at most two of the vertices can be in the clique part of the decomposition—and
they must be adjacent since it is a clique—and hence there must be an edge in the
independent set part of the decomposition, which contradicts the assumption that
C, I was a threshold partition. So suppose now that a, b, c, d forms a P4. Again
with the same reasoning as above, the middle edge b, c must be contained in the
clique part, hence a and d must be in the independent set part. But since the
neighborhoods of a and d should be nested, they cannot have a private neighbor
each, hence either ac or bd must be an edge, which contradicts the assumption
that a, b, c, d induced a P4. This concludes the proof.

Lemma 7.6. For every instance (G, k) of Threshold Editing or Threshold

Completion it holds that there exists an optimal solution F such that for every
pair of vertices u, v ∈ V (G), if NG(u) ⊆ NG[v] then NG⊕F (u) ⊆ NG⊕F [v].

Proof. Let us define, for any editing set F and two vertices u and v, the set

Fv↔u = {e | e′ ∈ F and e is e′ with u and v switched}.

Suppose F is an optimal solution for which the above statement does not hold.
Then NG(u) ⊆ NG[v] and NG⊕F (v) ⊆ NG⊕F [u] (see Proposition 7.1). But then
it is easy to see that we can flip edges in an ordering such that at some point,
say after flipping F 0, u and v are twins in this intermediate graph G ⊕ F 0. Let
F 1 = F \ F 0. It is clear that for G′ = G ⊕ (F 0 ∪ F 1

v↔u), NG′(u) ⊆ NG′ [v]. Since
|F | ≥ |F 0 ∪ F 1

v↔u|, the claim holds.
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Chain graphs

Chain graphs are the bipartite graphs whose neighborhoods of the vertices on
one of the sides form an inclusion chain. It follows that the neighborhoods
on the opposite side form an inclusion chain as well. If this is the case, we
say that the neighborhoods are nested. The relation to threshold graphs is
obvious, see Figure 7.3 for a comparison. The problem of completing edges to
obtain a chain graph was introduced by Golumbic [Gol04] and later studied by
Yannakakis [Yan81a], Feder, Mannila and Terzi [FMT09] and finally by Fomin and
Villanger [FV13] who showed that Chain Completion when given a bipartite
graph whose bipartition must be respected is solvable in subexponential time.

(a) A chain graph (b) A threshold graph

Figure 7.3: Illustration of the similarities between chain and threshold graphs.
Note that the nodes drawn can be replaced by twin classes of any size, even empty.
However, if on one side of a level there is an empty class, the other two levels on
the opposite side will collapse to a twin class. See Proposition 7.5.

Definition 7.7 (Chain graph). A bipartite graph G = (A, B, E) is a chain graph
if there is an ordering of the vertices of A, a1, a2, . . . , a|A| such that N(a1) ⊆
N(a2) ⊆ · · · ⊆ N(a|A|).

From the following proposition, it follows that chain graphs are characterized
by a finite set of forbidden induced subgraphs and hence are subject to Cai’s
theorem [Cai96].

Proposition 7.8 ([BLS99]). Let G be a graph. The following are equivalent:

• G is a chain graph.

• G is bipartite and 2K2-free.

• G is {2K2, C3, C5}-free.

• G can be constructed from a threshold graph by removing all the edges in the
clique partition.
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Since they have the same structure as threshold graphs, it is natural to talk about
a chain decomposition (A, B) of a bipartite graph G with bipartition (A, B). We
say that (A, B) is a chain decomposition for a chain graph G if and only if (A, B)
is a threshold decomposition for the corresponding threshold graph G′ where A is
made into a clique.

Some additional tools

As part of our kernelization algorithms we obtain a set X and analyse the neigh-
borhoods of vertices in G − X inside X. To do this in a natural manner we need
the following notion.

Definition 7.9 (Realizing). For a graph G and a set of vertices X ⊆ V (G) we
say that a vertex v ∈ V (G) \ X is realizing Y ⊆ X if NX(v) = Y . Furthermore,
we say that a set Y ⊆ X is being realized if there is a vertex v ∈ V (G) \ X such
that v is realizing Y .

In our kernel for Chain Editing, when analyzing the neighborhoods realized
inside the aforementioned set X we obtain the following set system.

Definition 7.10 (Laminar set system). A set system F over a finite ground set
U is laminar if for every two sets X1 ∈ F and X2 ∈ F , either X1 ⊆ X2, X2 ⊆ X1,
or X1 ∩ X2 = ∅.

One property that is crucial and we will use of laminar set systems is that their
sizes are bounded linearly by the ground set, as the following lemma attests.

Lemma 7.11 (Folklore). Let F be a laminar set system over a finite ground set U .
Then the cardinality of F is at most 2|U |.

Proof sketch. By associating the elements of U with the leaves of a rooted tree
where each internal non-root node has degree at least three, a non-empty element
of F corresponds exactly to a rooted induced subtree. Since this tree can have at
most 2|U | − 1 nodes, by adding the possibility of the empty set, we obtain the
result.



Chapter 8

NP-hardness and lower bounds

In this chapter we will prove that a number of editing problems are NP-hard. In
addition, assuming ETH, we will prove that the same problems do not admit
2o(

√
k)nO(1) time algorithms. The later is obtained as the number of allowed edits

(k) is bounded by the product of the number of variables and the number of clauses
in the 3-SAT-instance given to the reduction algorithm. And hence Theorem 6,
stating that there is no 2o(n+m)(n + m)O(1) algorithm for 3-SAT assuming ETH,
is applicable. In particular, we obtain the conclusions above for the following
problems: Threshold Editing, Chain Editing and Chordal Editing.

8.1 Lower bounds for Threshold Editing
Recall that a boolean formula φ is in 3-CNF-SAT if it is in conjunctive normal form
and each clause has at most three variables. Our hardness reduction is from the
problem 3Sat, where we are given a 3-CNF-SAT formula φ and asked to decide
whether φ admits a satisfying assignment. We will denote by Cφ the set of clauses,
and by Vφ the set of variables in a given 3-CNF-SAT formula φ. An assignment
for a formula φ is a function α : Vφ → {true, false}. Furthermore, we assume
we have some natural lexicographical ordering <lex of the clauses c1, . . . , c|Cφ| and
the same for the variables v1, . . . , v|Vφ|, hence we may write, for some variables x
and y, that x <lex y. To immediately get an impression of the reduction we aim
for, the construction is depicted in Figure 8.1.

Construction

Recall that we want to form a graph Gφ and pick an integer kφ so that (Gφ, kφ)
is a yes-instance of Threshold Editing if and only if φ is satisfiable. We will
design Gφ to be a split graph, so that the split partition is forced to be maintained
in any threshold graph within distance kφ of Gφ, where kφ = |Cφ| · (3|Vφ| − 1).
Given φ, we first create a clique of size 6|Vφ|; To each variable x ∈ Vφ, we associate
six vertices of this clique, and order them in the following manner

vx
a , vx

b , vx
⊥, vx

�, vx
c , vx

d .
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vx
a vx

b vx
⊥ vx

� vx
c vx

d vy
a vy

b vy
⊥ vy

� vy
c vy

d vz
a vz

b vz
⊥ vz

� vz
c vz

d

vc1

c1 = x ∨ y

vc2

c2 = x ∨ z

Figure 8.1: The connections of a clause and a variable. All the vertices on the
top (the variable vertices) belong to the clique, while the vertices on the bottom
(the clause vertices) belong to the independent set. The vertices in the left part
of the clique have higher degree than the vertices of the right part of the clique,
whereas all the clause vertices (in the independent set) will all have the same
degree, namely 3 · |Vφ|.

We will throughout the reduction refer to this ordering as πφ: πφ is a partial order
which has

vx
a <πφ

vx
b <πφ

vx
�, vx

⊥ <πφ
vx

c <πφ
vx

d ,

and for every two vertex vx
� and vy

� with x <lex y, we have vx
� <πφ

vy
� . Observe

that we do not specify which comes first of vx
� and vx

⊥—this is the choice that will
result in the assignment α for φ.

We enforce this ordering by adding O(k2
φ) vertices in the independent set;

Enforcing that v1 comes before v2 in the ordering is done by adding kφ + 1 vertices
in the independent set incident to all the vertices coming before v1, including v1.
Since swapping the position of v1 and v2 would demand at least kφ + 1 edge
modifications and kφ is the intended budget, in any yes-instance, v1 ends up
before v2 in the ordering of the clique.

We proceed adding the clause gadgets; For every clause c ∈ Cφ, we add
one vertex vc to the independent set. Hence, the size of the independent set is
O(|Cφ| + k2

φ). For a variable x occurring in c, we add an edge between vc and vx
⊥ if

it occurs negatively, and between vc and vx
� otherwise. In addition, we make vc

incident to vx
b and vx

d .
For a variable z which does not occur in a clause c, we make vc adjacent to vz

b ,
vz

c , and vz
d. To complete the reduction, we add 4(kφ + 1) isolated vertices; kφ + 1

vertices to the left in the independent set, kφ + 1 vertices to the right in the
independent set, and kφ + 1 to the left and kφ + 1 to the right in the clique. This
ensures that no vertex will move from the clique to the independent set partition,
and vice versa.
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Properties of the Constructed Instance

Before proving the Theorem 20, and specifically Lemma 8.4, we may observe the
following, which may serve as an intuition for the idea of the reduction. When we
consider a fixed permutation of the variable gadget vertices (the clique side), the
only thing we need to determine for a clause vertex vc, is the cut-off point: the
point in πφ at which the vertex vc will no longer have any neighbors. Observing
that no vertex vx

i swaps places with any other vx
j for i, j ∈ {a, b, c, d}, and that

no vx
� changes with vy

� for x, y ∈ Vφ, consider a fixed permutation of the variable
vertices. We charge the clause vertices with the edits incident to the clause vertex.
Since the budget is kφ = |C| · (3|Vφ| − 1), and every clause needs at least 3|Vφ| − 1,
to obtain a solution (upcoming Lemma 8.2) we need to charge every clause vertex
with exactly 3|Vφ| − 1 edits. Figure 8.2 illustrates the charged cost of a clause
vertex.

3|V| − 1

3|V|

3|V| + 1

Satisfying literals

Figure 8.2: The cost with which we charge a clause vertex depends on the cut-off
point; The x-axis denotes the point in the lexicographic ordering which separates
the vertices adjacent to the clause vertex from the vertices not adjacent to the
clause vertex.

Observation 8.1. The graph Gφ resulting from the above procedure is a split
graph and when kφ = |C| · (3|Vφ| − 1), if H is a threshold graph within distance kφ

of Gφ, H must have the same clique-maximizing split partition as Gφ.

Lemma 8.2. Let (Gφ, kφ) be a yes-instance to Threshold Editing constructed
from a 3-CNF-SAT formula φ with |F | ≤ kφ a solution. For any clause vertex vc,
at least 3|Vφ| − 1 edges in F are incident to vc.

Proof. By the properties of πφ, we know that the only vertices we may change the
order of are those corresponding to v�

� and v�
⊥. Pick any index in πφ for which we

know that vc is adjacent to all vertices on the left hand side and non-adjacent to
all vertices on the right hand side. Let Lc be the set of variables whose vertices are
completely adjacent to vc and Rc the corresponding set completely non-adjacent
to vc. By construction, vc has exactly three neighbors in each variable and thus
these variable gadgets contribute 3(|Lc| + |Rc|) to the budget. If Lc ∪ Rc = Vφ, we
are done, as vc needs at least 3|Vφ| edits here.
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vx
a vx

b vx
⊥ vx

� vx
c vx

d vy
a vy

b vy
⊥vy

� vy
c vy

d vz
a vz

b vz
⊥ vz

� vz
c vz

d

vc1

c1 = x ∨ y

Figure 8.3: The edited version when y satisfies c1. We have added three edges to
the gadget x and deleted three edges to the gadget z, and added the edge to vy

a and
deleted the edge to vy

d , that is, we have edited exactly 3 · 2 + 2 = 3(|V| − 1) + 2 =
3|V| − 1 edges incident to c1. Notice that if vy

⊥ was coming before vy
�, we would

have to choose a different variable to satisfy c1.

Suppose therefore that there is a variable x whose vertex vx
a is adjacent to vc

and vx
d is non-adjacent to vc. But then we have already deleted the existing edge

vcv
x
d and added the non-existing edge vcv

x
a . This immediately gives a lower bound

on 3(|Vφ| − 1) + 2 = 3|Vφ| − 1 edits.

Proof of Correctness

Lemma 8.3. If there is an editing set F of size at most kφ for an instance (Gφ, kφ)
constructed from a 3-CNF-SAT formula φ, and |F (vc)| = 3|Vφ| − 1, then the <lex-
highest vertex connected to vc corresponds to a variable satisfying the clause c.

Proof. From the proof of Lemma 8.2, we observed that for a clause c to be within
budget, we must choose a cut-off point within a variable gadget, meaning that
there is a variable x for which vc is adjacent to vx

a and non-adjacent to vx
d .

We now distinguish two cases, (i) x is a variable occurring (w.l.o.g. positively)
in c and (ii) x does not occur in c. For (i), vc was adjacent to vx

b , vx
�, and vx

d . By
assumption, we add the edge to vx

a and delete the edge to vx
d . But then we have

already spent the entire budget, hence the only way this is a legal editing, vx
� must

come before vx
⊥, and hence satisfies vc. See Figure 8.3.

For (ii) we have that vc was adjacent to vx
b , vx

c , and vx
d . Here we, again by

assumption, add the edge to vx
a and delete the edge to vx

d . This alone costs two
edits, so we are done. But observe that these two edits alone are not enough, hence
if we want to achieve the goal of 3|Vφ| − 1 edited edges, the cut-off index must be
inside a variable gadget corresponding to a variable occurring in c, i.e. (i) must be
the case.

Lemma 8.4. A 3-CNF-SAT formula φ is satisfiable if and only if (Gφ, kφ) is a
yes-instance to Threshold Editing.
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Proof of Lemma 8.4. For the forwards direction, let φ be a satisfiable 3-CNF-SAT
formula where α : Vφ → {true, false} is any satisfying assignment, and (Gφ, kφ)
the Threshold Editing instance as described above.

Now, let α : Vφ → {true, false} be a satisfying assignment, and (Gφ, kφ) the
Threshold Editing instance as described above, and let π be any permutation
of the vertices of the clique side with the following properties

• for every x <lex y ∈ Vφ, we have vx
� <π vy

� ,

• for every x ∈ Vφ, we have vx
a <π vx

b <π vx
� < vx

c <π vx
d and vx

a <π vx
b <π

vx
⊥ < vx

c <π vx
d , and finally

• for every x ∈ Vφ, we have vx
⊥ <π vx

� if and only if α(x) = false.

We now show how to construct the threshold graph Hπ
φ from the constructed

graph Gφ by editing exactly kφ = |C| · (3|Vφ| − 1) edges. For a clause c, let x
be any variable satisfying c. If x appears positively, add every non-existing edge
from vc to every vertex v ≤π vx

� and delete all the rest. If x appears negated,
use vx

⊥ instead. We break the remainder of the proof in the forward direction into
two claims:

Claim 8.5. Hπ
φ is a threshold graph.

Proof of Claim 8.5. Let Gφ and π be given, both adhering to the above con-
struction. Since Gφ was a split graph, π a total ordering of the elements in the
independent set part and every vertex of the clique part of Hπ

φ sees a prefix of the
vertices of the independent set, their neighborhoods are naturally nested. Hence
Hπ

φ is a threshold graph by Proposition 7.1.

Claim 8.6.
∣∣∣E(Gφ) ⊕ E(Hπ

φ )
∣∣∣ = kφ.

Proof of Claim 8.6. Since we did not edit any of the edges within the clique part
nor the independent set part, we only need to count the number of edits going
between a clause vertex and the variable vertices. Let c be any clause and x the
lexicographically smallest variable satisfying c. Suppose furthermore, without
loss of generality, that x appears positively in c and has thus α(x) = true. We
now show that |F (vc)| = 3|Vφ| − 1, and since c was arbitrary, this concludes the
proof of the claim. Since vc is adjacent to exactly three vertices per variable,
and non-adjacent to exactly three vertices per variable, we added all the edges
to the vertices appearing before x and removed all the edges to the vertices
appearing after x. This cost exactly 3(|Vφ| − 1) = 3|Vφ| − 3, hence we have
two edges left in our budget for c. Moreover, the edge vcv

x
a was added and the

edge vcv
x
d was deleted. Now, c is adjacent to every vertex to the before, and

including, x, and non-adjacent to all the vertices after x. The budget used was
3(|Vφ| − 1) + 2 = 3|Vφ| − 1. Hence, the total number of edges edited to obtain Hπ

φ

is ∑
c∈C 3|Vφ| − 1 = |C| · (3|Vφ| − 1) = kφ.
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This shows that if φ is satisfiable, then (Gφ, kφ) is a yes-instance of Threshold

Editing.

In the reverse direction, let (Gφ, kφ) be a constructed instance from a given 3-
CNF-SAT formula φ and let F be a minimal editing set such that Gφ ⊕ F is
a threshold graph and |F | ≤ kφ. We aim to construct a satisfying assignment
α : Vφ → {true, false} from Gφ ⊕ F . By Observation 8.1, H = Gφ ⊕ F has the
same split partition as Gφ. By construction, we have enforced the ordering, πφ, of
each of the vertices corresponding to the variables. Thus, we know exactly how H
looks, with the exception of the internal ordering of each literal and its negation.
Construct the assignment α as described above, i.e., α(x) = false if and only
if vx

⊥ <π vx
�.

By Lemmata 8.2 and 8.3, it follows directly that α is a satisfying assignment
for φ which concludes the proof of the main lemma.

The above lemma shows that there is a polynomial time many-one (Karp) reduction
from 3Sat to Threshold Editing so we may wrap up the main theorem of
this section. Lemma 8.4 implies Theorem 20, that Threshold Editing is
NP-complete, even on split graphs.

Theorem 20. Threshold Editing is NP-complete, even on split graphs.

Proof. Split Threshold Editing is clearly in NP and that the problem is NP-
complete follows immediately from combining Lemma 8.4 with Observation 8.1.

For the sake of the next section, devoted to the proof of Theorem 22, we define
the following annotated version of editing to threshold graphs. In this problem,
we are given a split graph and we are asked to edit the graph to a threshold graph
while respecting the split partition.

Input: A split graph G = (V, E) with split partition (C, I), and an
integer k.

Question: Is there an editing set F ⊆ C × I of size at most k such that
G ⊕ F is a threshold graph?

Split Threshold Editing

Corollary 8.7. Split Threshold Editing is NP-complete.

Theorem 21. Assuming ETH, neither Threshold Editing nor Split Thresh-

old Editing are solvable in 2o(
√

k) · nO(1) time.

Proof. Observe that the size of the editing set of the instance output by the
reduction is the product of the number of variables and the number of clauses (up
to constant factors) in the input 3-SAT-instance. Hence, we apply Theorem 6 to
obtain the result.
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8.2 Lower bounds for Chain Editing
A bipartite graph G = (A, B, E) is a chain graph if the neighborhoods of A are
nested (which necessarily implies the neighborhoods of B are nested as well).
Recalling Proposition 7.8, chain graphs are closely related to threshold graphs;
Given a bipartite graph G = (A, B, E), if one replaces A (or B) by a clique, the
resulting graph is a threshold graph if and only if G was a chain graph.

It immediately follows from the above exposition that the following problem is
NP-complete. This problem has also been referred to as Chain Editing in the
literature (for instance in the work by Guo [Guo07]).

Input: A bipartite graph G = (A, B, E) and an integer k
Question: Is there F ⊆ A×B with |F | ≤ k s.t. G ⊕F is a chain graph?

Bipartite Chain Editing

Observe that we in this problem are given a bipartite graph together with a
bipartition, and we are asked to respect the bipartition in the editing set.
Corollary 8.8. The problem Bipartite Chain Editing is NP-complete.
Proof. We reduce from Split Threshold Editing. Recall that to this problem,
we are given a split graph G = (V, E) with split partition (C, I), and an integer k,
and asked whether there is an editing set F ⊆ C × I of size at most k such that
G ⊕ F is a threshold graph. Since a chain graph is a threshold graph with the
edges in the clique partition removed (Proposition 7.8), it follows that G ⊕ F with
all the edges in the clique partition removed is a chain graph.

Let (G, k) be the input to Split Threshold Editing and let (C, I) be
the split partition. Remove all the edges in C to obtain a bipartite graph G′ =
(A, B, E ′). Now it follows directly from Proposition 7.8 that (G, k) is a yes-instance
to Split Threshold Editing if and only if (G′, k) is a yes-instance to Bipartite

Chain Editing.

Input: A graph G = (V, E) and a non-negative integer k
Question: Is there a set F of size at most k s.t. G ⊕ F is a chain graph?

Chain Editing

Theorem 22. Chain Editing is NP-complete, even on bipartite graphs.
Proof. Reduction from Bipartite Chain Editing. Let G = (A, B, E) be a
bipartite graph and consider the input instance (G, k) to Bipartite Chain

Editing. We now show that adding 2(k + 1) new edges to G to obtain a
graph G′ = (V, E ′), gives us that (G′, k) is a yes-instance for Chain Editing if
and only if (G, k) is a yes-instance for Bipartite Chain Editing.

Let G = (A, B, E) be a bipartite graph and k a positive integer. Add k + 1
new vertices a1, · · · ak+1 to A and make them universal to B, and add k + 1
new vertices b1, · · · bk+1 to B and make them universal to A. Call the resulting
graph G′ = (V, E ′). The following claim follows immediately from the construction.
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Claim 8.9. If G′ ⊕ F is a chain graph with |F | ≤ k, then G′ ⊕ F has bipartition
(A ∪ {a1, . . . , ak+1}, B ∪ {b1, . . . , bk+1}).
It follows that for any input instance (G, k) to Bipartite Chain Editing, the
instance (G′, k) as constructed above is a yes-instance for Chain Editing if and
only if (G, k) is a yes-instance for Bipartite Chain Editing.

Theorem 23. Assuming ETH, there is no algorithm solving neither Chain

Editing nor Bipartite Chain Editing in time 2o(
√

k) · nO(1).

Proof. In both these cases we reduced from Split Threshold Editing with-
out changing the parameter k. Hence this follows immediately from the above
exposition and from Theorem 21.

8.3 Lower bounds for Chordal Editing
We will now combine our previous result on Chain Editing with the follow-
ing observation of Yannakakis to provide lower bounds for Chordal Editing.
Yannakakis showed [Yan81a], while proving the NP-completeness of Chordal

Completion (more often known as Minimum Fill-In [FV13]), that a bipartite
graph can be transformed into a chain graph by adding at most k edges if and only
if the cobipartite graph formed by completing the two sides can be transformed
into a chordal graph by adding at most k edges.

We will first give an intermediate problem that makes the proof simpler. Let
G = (A, B, E) be a cobipartite graph. Define the problem Cobipartite Chordal

Editing to be the problem which on input (G, k) asks if we can edit at most k
edges between A and B, i.e., does there exist an editing set F ⊆ A × B of size at
most k, such that G ⊕ F is a chordal graph. That is, Cobipartite Chordal

Editing asks for the bipartition A, B to be respected.

Input: A cobipartite graph G = (A, B, E) and an integer k
Question: Does there exist a set F ⊆ A × B of size at most k such that

G ⊕ F is a chordal graph?

Cobipartite Chordal Editing

We will use the following observation to prove the above theorem:

Lemma 8.10. If G = (A, B, E) is a bipartite graph, and G′ = (A, B, E ′) is the
cobipartite graph constructed from G by completing A and B, then F is an optimal
edge editing set for Bipartite Chain Editing on input (G, k) if and only if F
is an optimal edge editing set for Cobipartite Chordal Editing on input
(G′, k).

Proof. Let F be an optimal editing set for Bipartite Chain Editing on input
(G, k) and suppose that G′⊕F has an induced cycle of length at least four. Since G′

is cobipartite, it has a cycle of length exactly four. Let a1b1b2a2a1 be this cycle.
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But then it is clear that a1b1, a2b2 forms an induced 2K2 in G ⊕ F , contradicting
the assumption that F was an editing set.

For the reverse direction, suppose F is an optimal edge editing set for Cobi-

partite Chordal Editing on input (G′, k) only editing edges between A and B.
Suppose for the sake of a contradiction that G ⊕ F was not a chain graph. Since F
only goes between A and B, G ⊕ F is bipartite and hence by the assumption must
have an induced 2K2. This obstruction must be on the form a1b1, a2b2, but then
a1b1b2a2a1 is an induced C4 in G′ ⊕ F which is a contradiction to the assumption
that G′ ⊕ F was chordal. Hence G ⊕ F is a chain graph.

Corollary 8.11. Cobipartite Chordal Editing is NP-complete.

Theorem 24. Chordal Editing is NP-hard.

Proof. Let (G = (A, B, E), k) be a cobipartite graph as input to Cobipartite

Chordal Editing. Our reduction is as follows. Create G′ = (A′ ∪ B′, E ′) as
follows:

• A′ = A ∪ {a1, a2, . . . , ak+1},

• B′ = B ∪ {b1, b2, . . . , bk+1},

• E ′ = E ∪ ⋃
i≤k+1,b∈B′{aib} ∪ ⋃

i,j≤k+1{aiaj, bibj}

Finally, we create G′′ as follows. For every edge aiaj create k + 1 new vertices
adjacent to only ai and aj. Do the same thing for every edge bibj. This forces
none of the edges in A′ to be removed and none of the edges in B′ to be removed.
Claim 8.12. The instance of Chordal Editing (G′′, k) is equivalent to the
instance (G, k) to Cobipartite Chordal Editing.

Proof of claim. The proof of the above claim is straight-forward. If we delete an
edge within A (resp. B), we create at least k + 1 cycles of length 4, each of which
uses at least one edge to delete, hence in any yes-instance, we do not edit edges
within A (resp. B). Furthermore, any chordal graph remains chordal when adding
a simplicial vertex, which is exactly what the k + 1 new vertices are.

From the claim it follows that (G′′, k) is a yes-instance to Chordal Editing if
and only if (G, k) is a yes-instance to Cobipartite Chordal Editing. The
theorem follows immediately from Corollary 8.11.

Theorem 25. Assuming ETH, there is no algorithm solving Chordal Editing

in time 2o(
√

k) · nO(1).
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Chapter 9

Polynomial kernels

First we give kernels with quadratically many vertices for the following three
problems: Threshold Completion, Threshold Deletion, and Threshold

Editing, answering a recent question of Liu, Wang and Guo [LWG14]. Then
we continue by providing kernels with quadratically many vertices for Chain

Completion, Chain Deletion, and Chain Editing. Our kernelization algo-
rithms use techniques similar to the previous result that Trivially Perfect

Editing admits a polynomial kernel [DP15]. Observe that the class of threshold
graphs is closed under taking complements. It follows that for every instance (G, k)
of Threshold Completion, (Ḡ, k) is an equivalent instance of Threshold

Deletion (and vice versa). Almost the same trick applies to Chain Deletion.
Due to this, we restrict our attention to the completion and editing variants for
the remainder of the section.

Before proceeding, we observe that our kernelization algorithms do not modify
any edges, and only change the budget in the case that we discover that we have
a no-instance (in which case we return (H, 0), where H is an obstruction in G).
The only modification of the instance is to delete vertices, hence the kernelized
instance is an induced subgraph of the original graph. Since the parameter is
never increased, we obtain proper kernels.

9.1 Modifications into Threshold Graphs
Outline of the Kernelization Algorithm

The kernelization algorithm consists of a twin reduction rule and an irrelevant
vertex rule. The twin reduction rule is based on the observation that any obstruc-
tion containing vertices from a large enough twin class will have to be handled
by edges not incident to the twin class. From this observation, we may conclude
that for any twin class, we may keep only a certain amount without affecting the
solutions.

A key concept of the irrelevant vertex rule is what will be referred to as a
threshold-modulator. A threshold-modulator is a set of vertices X in G of linear size
in k, such that for every obstruction H in G one can add and remove edges in [X]2

79
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to turn H into a non-obstruction. First, we prove that we can in polynomial time
either obtain such a set X or conclude correctly that the instance is a no-instance.
The observation that G − X is a threshold graph will be exploited heavily and we
now fix a threshold decomposition (C, I) of G − X. We then prove that the idea
of Proposition 7.1 can be extended to vertices in G − X when considering their
neighborhoods in G. In other words, the neighborhoods of the vertices in G − X
are nested also when considering G. This immediately yields that the number of
subsets of X that are being realized is bounded linearly in the size of X and hence
also in k.

We now either conclude that the graph is small or we identify a sequence
of levels in the threshold decomposition containing many vertices, such that all
the clique vertices and all the independent set vertices in the sequence have
identical neighborhoods in X, respectively. The crux is that in the middle of such
a sequence there will be a vertex that is replaceable by other vertices in every
obstruction and hence is irrelevant. Such a sequence is obtained by discarding all
levels in the decomposition that are extremal with respect to a subset Y of X,
meaning that there either are no levels above or underneath that contain vertices
realizing Y . One can prove that in this process, only a quadratic number of vertices
are discarded and from this we obtain a kernel.

The Twin Reduction Rule

First, we introduce the twin reduction rule as described above. For the remainder
of the section we will assume this rule to be applied exhaustively and hence we
can assume all twin classes to be small.

Rule 9.1 (Twin reduction rule). Let (G, k) be an instance of Threshold Com-

pletion or Threshold Editing and v a vertex in G such that | tc(v)| > 2k + 2.
We then reduce the instance to (G − v, k).

Lemma 9.1. Let G be a graph and v a vertex in G such that | tc(v)| > 2k+2. Then
for every k we have that (G, k) is a yes-instance of Threshold Completion (or
Threshold Editing) if and only if (G − v, k) is a yes-instance of Threshold

Completion (resp. Threshold Editing).

Proof. For readability we only consider Threshold Completion, however the
exact same proof works for Threshold Editing. Let G′ = G − v. It trivially
holds that if (G, k) is a yes-instance, then also (G′, k) is a yes-instance. This is
due to the fact that removing a vertex never will create new obstructions.

Now, let (G′, k) be a yes-instance and assume for a contradiction that (G, k)
is a no-instance. Let F be an optimal solution of (G′, k) and W an obstruction
in (G ⊕ F, k). Since W is not an obstruction in G′ it follows immediately that v
is in W . Furthermore, since |F | ≤ k it follows that there are two vertices
a, b ∈ tc(v)\{v} that F is not incident to. Also, one can observe that no obstruction
contains more than two vertices from a twin class and hence we can assume
without loss of generality that b is not in W . It follows that NG⊕F (v) ∩ (W − v) =
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NG(v) ∩ (W − v) = NG(b) ∩ (W − v) = NG′(b) ∩ (W − v) and hence the graph
induced on V (W ) ⊕ {b, v} is an obstruction in G′ ⊕ F , contradicting that F is a
solution.

The Modulator

To obtain an O(k2) kernel we aim at an irrelevant vertex rule. However, this
requires some tools. The first one is the concept of a threshold-modulator, as
defined below.

Definition 9.2 (Threshold modulator). Let G be a graph and X ⊆ V (G) a set of
vertices. We say that X is a threshold-modulator of G if for every obstruction W
in G it holds that there is a set of edges F in [X]2 such that W ⊕ F is not an
obstruction.

Less formally, a set X is a threshold-modulator of a graph G if for every ob-
struction W in G you can edit edges between vertices in X to turn W into a
non-obstruction. Our kernelization algorithm will heavily depend on finding a
small threshold-modulator X and the fact that G − X is a threshold graph.

Lemma 9.3. There is a polynomial time algorithm that given a graph G and an
integer k either

• outputs a threshold-modulator X of G such that |X| ≤ 4k or

• correctly concludes that (G, k) is a no-instance of both Threshold Com-

pletion and Threshold Editing.

Proof. Let X1 be the empty set and W = {W1, . . . , Wt} the set of all obstructions
in G. We execute the following procedure for every Wi in W: If Wi ⊕ F is an
obstruction for every F ⊆ [Xi ∩ V (Wi)]2 we let Xi+1 = Xi ∪ V (Wi), otherwise we
let Xi+1 = Xi. After we have considered all obstructions we let X = Xt+1. If
|X| > 4k we conclude that (G, k) is a no-instance, otherwise we output X.

Since all obstructions are finite the algorithm described clearly runs in poly-
nomial time. We now argue that X is a threshold-modulator of G. If Wi was
added to Xi+1, we let F be all the non-edges of W . Since W ⊕ F is isomorphic
to K4 it follows immediately that W ⊕ F is not an obstruction. If Wi was not
added to Xi+1, let F the set found in [Xi ∩ V (Wi)]2 such that Wi ⊕ F is not an
obstruction. Observe that F ⊆ [X]2 and hence X is a threshold-modulator.

It remains to prove that if |X| > 4k then (G, k) is a no-instance of Threshold

Editing. Observe that it will follow immediately that (G, k) is a no-instance
of Threshold Completion. Since every obstruction consists of four vertices
there was at least k + 1 obstructions added during the procedure. Assume without
loss of generality that W1, . . . , Wk+1 was added. Observe that by construction,
a solution must contain an edge in [Xi+1 − Xi]2 for every i ∈ [k + 1] and hence
contains at least k + 1 edges.
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H1 H2 H3 H4 H5 H6 H7

X

Figure 9.1: Some of the intersections of an obstruction with a threshold-modulator
X that will not occur by definition. More specifically the ones necessary for the
proof of the kernel.

Obtaining Structure

We now exploit the threshold-modulator and its interaction with the remaining
graph to obtain structure. First, we prove that the neighborhoods of the vertices
outside of X are nested and that the number of realized sets in X are bounded
linearly in k.

Lemma 9.4. Let G be a graph and X a threshold-modulator. For every pair of
vertices u and v in G − X it holds that either N(u) ⊂ N [v] or N(v) ⊂ N [u].

Proof. Assume otherwise for a contradiction and let u′ be a vertex in N(u) \ N [v]
and v′ a vertex in N(v) \ N [u]. Let W = G[{u, v, u′, v′}] and observe that uu′ and
vv′ are edges in W and uv′ and vu′ are non-edges in W by definition. Hence, no
matter if some of the edges uv and u′v′ are present or not, W is an obstruction
in G (see Figure 9.1 for an illustration). Since u′v′ is the only pair in W possibly
with both elements in X this contradicts X being a threshold-modulator.

Lemma 9.5. Let G be a graph and X a corresponding threshold-modulator, then

|{NX(v) for v ∈ V (G) \ X}| ≤ |X| + 1.

Or in other words, there are at most |X| + 1 sets of X that are being realized.

Proof. Let u and v be two vertices in G−X. It follows directly from Lemma 9.4 that
either NX(v) ⊆ NX(u) or NX(v) ⊇ NX(u). The result follows immediately.

With the definition of the modulator and the basic properties above, we are now
ready to extract more vertices from the instance, aiming at many consecutive
levels that have the same neighborhood in X for the clique, and independent set
vertices, respectively. This will lead up to our irrelevant vertex rule.

Let G be a graph, X a threshold-modulator and (C, I) a threshold partition
of G − X. Letting P denote either C or I, we say that a subset Y ⊆ X has its
upper extreme in Pi if Pi realizes Y and for every j > i it holds that Pj does not
realize Y . Similarly, a subset Y ⊆ X has its lower extreme in Pi if Pi realizes Y
and for every j < i it holds that Pj does not realize Y . We say that Y ⊆ X is
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extremal in Pi if Y has its upper or lower extreme in Y . Observe that every Y ⊆ X
is extremal in at most two clique fragments and two independent set fragments.
We continue having P denote either C or I.

Lemma 9.6. Let G be a graph, X a threshold-modulator and (C, I) a threshold
partition of G − X. For every Y ⊆ X it holds that if Y has its lower extreme in
P� and upper extreme in Pu, then for every vertex v ∈ Pi with i ∈ [� + 1, u − 1] it
holds that NX(v) = Y .

Proof. Let Y be a subset of X with C� and Cu being its lower and upper extremes
in the clique respectively. By definition there is a vertex u ∈ C� and a vertex
w ∈ Cu such that NX(u) = NX(w) = Y . Let i be an integer in [� + 1, u − 1]
and a vertex v ∈ Ci. By the definition of a threshold partition it holds that
NG−X(w) ⊂ NG−X(v) ⊂ NG−X(u). It follows from Lemma 9.4 that N(w) ⊂ N [v]
and that N(v) ⊂ N [u]. Hence,

Y = NX(w) ⊆ NX(v) ⊆ NX(u) = Y

and we conclude that NX(v) = Y . Since i and v was arbitrary, the proof is
complete.

Definition 9.7 (Important, Outlying, and Regular). We say that Pi in the
partition is important if there is a Y ⊆ X such that Y has its extreme in Pi.
Furthermore, a level Li is important if Ci or Ii is important. Let f be the
smallest number such that | ∪i≤f Ci| ≥ 2k + 2 and r the largest number such
that | ∪i≥r Ii| ≥ 2k + 2. A level Li is outlying if i ≤ f or i ≥ r. All other levels
of the decomposition are regular and a vertex is regular, outlying or important
depending on the type of the level it is contained in.

Lemma 9.8. Let G be a graph and X a threshold-modulator of G of size at
most 4k. Then every threshold partition of G − X has at most 16k + 4 important
levels.

Proof. The result follows immediately from the definition of important levels and
Lemma 9.5.

Lemma 9.9. Let G be a graph, X a threshold-modulator of G and (C, I) a
threshold partition of G − X, then for every set Y ⊆ X there are at most two
important clique fragments (independent fragments) realizing Y .

Proof. We first prove the statement for clique fragments. Let Y be a subset of X
and i < j < k three integers. Assume for a contradiction that Ci, Cj and Ck are
important clique fragments all realizing Y . By definition there are vertices u ∈ Ci,
v ∈ Cj and w ∈ Ck such that NX(u) = NX(v) = NX(w) = Y . Furthermore,
there is a vertex v′ ∈ Cj such that NX(v′) �= Y since Cj is important and Y
does not have an extreme in Cj. By the definition of threshold partitions, we
have that NG−X(w) ⊂ NG−X(v′) ⊂ NG−X(u). Lemma 9.4 immediately implies
that N(w) ⊂ N [v′] and N(v′) ⊂ N [u] and since {u, v′, w} ⊆ ∪C it holds that
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N [u] ⊆ N [v′] ⊆ N [w]. Since NX(v′) �= Y , we have NX(w) ⊂ NX(v′) ⊂ NX(u),
which contradicts the definition of w and u since NX(u) = NX(w). By a symmetric
argument, the statement also holds for independent fragments.

Lemma 9.10. Let G be a graph, X a threshold-modulator of G of size at most 4k
and (C, I) a threshold partition of G − X. Then there are at most 64k2 + 80k + 16
important vertices in G − X.

Proof. Let Y be the set of all vertices contained in a important clique or indepen-
dent fragment and let Z be the set of all important vertices. Observe that Y ⊆ Z
and that every Ci or Ii contained in Z \ Y is a twin class in G by definition. By
Lemma 9.8 there are at most 16k + 4 important levels and since the twin-rule has
been applied exhaustively it holds that |Z \Y | ≤ (16k+4)(2k+2) = 32k2 +40k+8.

Let A be a subset of X and B the vertices in Y such that their neighborhood
in X is exactly A. Let D be a Ci or Ii contained in Y and observe that D ∩ B is a
twin class in G and hence |D ∩ B| ≤ 2k + 2. And hence it follows from Lemma 9.9
that |B| ≤ 8k + 8. Furthermore, we know from Lemma 9.5 that there are at most
4k + 1 realized in X and hence |Y | ≤ (8k + 8)(4k + 1) = 32k2 + 40k + 8. It follows
immediately that |Z| ≤ 64k2 + 80k + 16, completing the proof.

Lemma 9.11. Let G be a graph, X a threshold-modulator of G of size at most 4k
and (C, I) a threshold partition of G −X. Then there are at most 80k2 + 112k + 32
important and outlying vertices in total in G − X.

Proof. By Lemma 9.10 it follows that there are at most 64k2 + 80k + 16 vertices
that are important and possibly outlying. It follows from Lemma 9.6 that if a
level is not important its vertices are covered by at most two twin classes in G and
hence the level contains at most 4k + 4 vertices. By definition there are at most
4k +4 outlying levels and hence at most (4k +4)(4k +4) = 16k2 +32k +16 vertices
which are outlying, but not important. The result follows immediately.

Lemma 9.12. Let G be a graph, X a threshold-modulator of G, v a regular vertex
in some threshold partition (C, I) of G − X, C = ∪C and I = ∪I. Then for
every F ⊆ [V (G)]2 such that G ⊕ F is a threshold graph, |F | ≤ k and every split
partition (CF , IF ) of G ⊕ F we have:

• v ∈ C if and only if v ∈ CF and

• v ∈ I if and only if v ∈ IF .

Proof. Observe that the two statements are equivalent and that it is sufficient to
prove the forward direction of both statements. First, we prove that v ∈ C implies
that v ∈ CF . Let Y be the set of outlying vertices in I ∩ NG(v) and recall that
|Y | > 2k +1 by definition. Observe that at most 2k vertices in Y are incident to F
and hence there are two vertices u, u′ in Y that are untouched by F . Clearly, u and
u′ are not adjacent in G ⊕ F and hence we can assume without loss of generality
that u is in IF . Since u is untouched by F , v is adjacent to u by the definition
of outlying vertices and hence v is not in IF . A symmetric argument gives that
v ∈ I implies that v ∈ IF and hence our argument is complete.
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The Irrelevant Vertex Rule

We have now obtained the structure necessary to give our irrelevant vertex rule.
But before stating the rule, we need to define these consecutive levels with similar
neighborhood and what it means for a vertex to be in the middle of such a
collection of levels.

Definition 9.13 (Large strips, central vertices). Let G be a graph, X a threshold-
modulator and (C, I) a threshold partition of G − X. A strip is a maximal set of
consecutive levels which are all regular and we say that a strip is large if it contains
at least 16k + 13 vertices. For a strip S = ([Ca, Ia], . . . , [Cb, Ib]) a vertex v ∈ Ci is
central if a ≤ i ≤ b and |∪j∈[a,i−1]Cj| ≥ 2k+2 and |∪j∈[i+1,b]Cj| ≥ 2k+2. Similarly
we say that a vertex v ∈ Ii is central if a ≤ i ≤ b and | ∪j∈[a,i−1] Ij| ≥ 2k + 2 and
| ∪j∈[i+1,b] Ij| ≥ 2k + 2. Furthermore, we say that a vertex v is central in G if there
exists a threshold-modulator X of size at most 4k and a threshold decomposition
of G − X such that v is central in a large strip.

Lemma 9.14. If a strip is large it has a central vertex.

Proof. Let S = ([Ca, Ia], . . . , [Cb, Ib]) be a large strip. First, we consider the case
when | ∪i∈[a,b] Ci| ≥ | ∪i∈[a,b] Ii|. Observe that | ∪i∈[a,b] Ci| ≥ 8k + 7. Let i be the
smallest number such that | ∪j∈[a,i−1] Cj| ≥ 2k + 2. It follows immediately from
|Ci−1| ≤ 2k + 2 that | ∪j∈[a,i−1] Cj| ≤ 4k + 3. Furthermore, since |Ci| ≤ 2k + 2 it
follows that | ∪j∈[i+1,b] Cj| ≥ 8k + 7 − (2k + 2 + 4k + 3) = 2k + 2. And hence any
vertex in Ci is central. A symmetric argument for the case |∪i∈[a,b] Ci| < |∪i∈[a,b] Ii|
completes the proof.

Rule 9.2 (Irrelevant vertex rule). If (G, k) be an instance of Threshold Com-

pletion or Threshold Editing and v is a central vertex in G, reduce to
(G − v, k).

Lemma 9.15. Let (G, k) be an instance, X a threshold-modulator and v a central
vertex in G. Then (G, k) is a yes-instance of Threshold Editing ( Threshold

Completion) if and only if (G − v, k) is a yes-instance.

Proof. For readability we only consider Threshold Editing, however the exact
same proof works for Threshold Completion. For the forwards direction, for
any vertex v, if (G, k) is a yes-instance, then (G − v, k) is also a yes-instance. This
holds since threshold graphs are hereditary.

For the reverse direction, let (G − v, k) be a yes-instance and assume for
a contradiction that (G, k) is a no-instance. Let F be a solution of (G − v, k)
satisfying Lemma 7.6, and let G′ = G ⊕ F . By assumption, (G, k) is a no-instance,
so specifically, G′ is not a threshold graph. Let W be an obstruction in G′.
Clearly v ∈ W since otherwise there is an obstruction in (G − v) ⊕ F , so consider
Z = V (W ) − v. For convenience we will use N ′ to denote neighborhoods in G′

and specifically for any set Y ⊆ V (G′), N ′
Y (v) = NG′(v) ∩ Y . Furthermore, let

(C, I) be a threshold decomposition of G − X such that there is a large strip S
for which v is central. We will now consider the case when v is in the clique of
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G ⊕ F

strip v

w

u

b

a

y

Figure 9.2: The vertex v was a center vertex in a strip and W = {v, a, b, y} was
assumed to be an obstruction.

G − X. Since |F | ≤ k and S is a large strip it follows immediately that there are
two clique vertices w and w′ in S in higher levels than v that is not incident to F .
Observe that {w, w′, v} forms a triangle and that W contains no such subgraph.
Hence, we can assume without loss of generality that w /∈ V (W ). Similarly, we
obtain a clique vertex u in a lower level than v in S such that u /∈ W .

Observe that G′[Z ∪ {u}] is not an obstruction and hence NZ(u) = N ′
Z(u) �=

N ′
Z(v) = NZ(v). Since u and v are clique vertices from the same strip it is true

that NX(v) = NX(u) and hence there is an independent vertex a in Z such that
lev(u) ≤ lev(a) < lev(v) (see Definition 7.4). In other words u is adjacent to a
while v and w are not. By a symmetric argument we obtain a vertex b such that
lev(v) ≤ lev(b) < lev(w), meaning that both u and v are adjacent to b while w is
not. Let y be last vertex of Z, meaning that {v, y, a, b} = V (W ). Observe that a
and b are regular vertices and hence it follows from Lemma 9.12 that for every
threshold partition of G′ it holds that {a, b} are independent vertices.

Recall that u, v, w, a, b are all regular and hence they are in the same partitions
in G′ as in G−X by Lemma 9.12. Furthermore, since W is an obstruction and a is
neither adjacent to v nor b in G′ it holds that y and a are adjacent in G′. It follows
that y is a clique vertex in G′ and hence it is adjacent to both u and w in G′.
Since u and w are not incident to F by definition, they are adjacent to y also in G.
Since u, v, w are regular and from the same strip it follows that v is adjacent to y
in both G and G′. Observe that the only possible adjacency not yet decided in W
is the one between b and y. However, for W to be an obstruction it should not be
present. Hence y is adjacent to a but not to b in G′. By definition NG(a) ⊆ NG(b),
however by the last observation this is not true in G′. This contradicts that F
satisfies Lemma 7.6. A symmetric argument gives a contradiction for the case
when v is an independent vertex and hence the proof is complete.
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The above lemma shows the soundness of the irrelevant vertex rule, Rule 9.2, and
we may therefor apply it exhaustively. The following theorem wraps up the goal
of this section.

Theorem 26. The following three problems admit kernels with at most 336k2 +
388k + 92 vertices: Threshold Deletion, Threshold Completion and
Threshold Editing.

Proof. Assume that Rules 9.1 and 9.2 have been applied exhaustively. If this
process does not produce a threshold-modulator, we can safely output a trivial
no-instance by Lemma 9.3. Hence, we can assume that we have a threshold-
modulator X of size at most 4k and that the reduction rules cannot be applied. By
Lemma 9.11 we know that there are at most 80k2 +112k+32 vertices in G−X that
are not regular. Furthermore, every regular vertex is contained in a strip and by
Lemma 9.8 there are at most 16k + 5 such strips. Since the reduction rules cannot
be applied, no strip is large, and hence they contain at most 16k + 12 vertices each.
Since every vertex in G is either in X, or considered regular, outlying or important
this gives us 4k + 80k2 + 112k + 32 + (16k + 5)(16k + 12) = 336k2 + 388k + 92
vertices in total.

9.2 Modifications into Chain Graphs
In this section we provide kernels with quadratically many vertices for Chain

Deletion, Chain Completion and Chain Editing. Due to the fundamental
similarities between modification to chain and threshold graphs we omit the full
proof and instead highlight the differences between the two proofs. Observe that
the only proofs for the threshold kernels that explicitly applies the obstructions
are those of Lemmata 9.3, 9.4 and 9.15 and hence these will receive most of our
attention.

The twin reduction rule goes through immediately and hence our first obstacle
is the modulator. Luckily, this is a minor one. Recall from Definition 7.3 that
the obstructions now are H = {2K2, C3, C5}; We thus get a chain-modulator X of
size 5k, as the largest obstruction contains five vertices. Besides this detail, the
proof goes through exactly as it is.

H1 H2 H3 H4 H5

X

Figure 9.3: Some of the intersections of an obstruction with a chain-modulator X
that by definition will not occur. Dashed edges represent edges that could or could
not be there. These are the intersections necessary for the proof of the kernel.
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An Additional Step

Before we continue with the remainder of the proof we need an additional step.
Namely to discard all vertices that are isolated in G − X. We will prove that by
doing this we discard at most O(k2) vertices. Now, if the irrelevant vertex rule
concludes that the graph is small, then the graph is small also when we reintroduce
the discarded vertices. And if we find an irrelevant vertex, we remove it and
reintroduce the discarded vertices before we once again apply our reduction rules.
Due to the locality of our arguments, this is a valid approach.

Lemma 9.16. For a graph G and a corresponding chain-modulator X there are
at most 10k2 + 12k + 2 isolated vertices in G − X.

Proof. Let I be the set of isolated vertices in G − X. We will prove that F =
{NX(v) | v ∈ I} is laminar (see Definition 7.10) and hence by Lemma 7.11 it holds
that |F| ≤ |X| + 1 ≤ 5k + 1. It follows immediately, due to the twin reduction
rule, that there are at most (5k + 1)(2k + 2) = 10k2 + 12k + 2 independent vertices
in G − X.

Assume for a contradiction that there are vertices u, v and w in I such that
there exists u′ ∈ NX(u) \ NX(v) and v′ ∈ NX(v) \ NX(u) with {u′, v′} ⊆ NX(w).
These vertices intersect with the modulator as a variant of the forbidden H5 in
Figure 9.3 and hence we get a contradiction.

Nested Neighborhoods

From now on we will assume in all of our arguments that there are no isolated
vertices in G − X. The next difference is with respect to Lemma 9.4, which is
just not true anymore. The lemma provided us with the nested structure of the
neighborhoods in the modulator and was crucial for most of the proofs. As harmful
as this appears to be at first, it turns out that we can prove a weaker version that
is sufficient for our needs.

Lemma 9.17 (New, weaker version of Lemma 9.4). Let G be a graph and X a
chain-modulator. For every pair of vertices u and v in the same bipartition of
G − X it holds that either N(u) ⊆ N(v) or N(v) ⊆ N(u).

Proof. Let u and v be two vertices from the same bipartition of G − X. By the
definition of chain graphs we can assume that NG−X(u) ⊆ NG−X(v). Assume for a
contradiction that the lemma is not true. Then there is a vertex u′ ∈ NX(u)\NX(v)
and a vertex v′ in NX(v) \ NX(u). By definition, u and v are not adjacent. Since
there are no isolated vertices in G − X there is a vertex a ∈ NG−X(u) ⊆ NG−X(v).
Observe that if a is adjacent to either u′ or v′ we get a C3 that only has one
vertex in X, which is a contradiction (see H1 in Figure 9.3). However, if a is not
adjacent to both u′ and v′ then {u, v, u′, v′, a} forms the same interaction with the
modulator as H4 in Figure 9.3 and hence our proof is complete.

One can observe that Lemma 9.17 is a sufficiently strong replacement for Lemma 9.4
since all proofs are applying the lemma to vertices from only one partition of
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G−X. The only exception is the proof of Lemma 9.5, but by applying Lemma 9.17
on one partition at the time we obtain the following bound instead:

|{NX(v) for v ∈ V (G) \ X}| ≤ 2|X| + 2.

An Irrelevant Vertex Rule

It only remains to prove that the irrelevant vertex rule can still be applied with
this new set of obstructions. Although the strategy is the same, the details are
different and hence we provide the proof in full detail.

Lemma 9.18. Let (G, k) be an instance, X a threshold-modulator and v a cen-
tral vertex in G. Then (G, k) is a yes-instance of Chain Editing (Chain

Completion) if and only if (G − v, k) is a yes-instance.

Proof. For readability we only consider Chain Editing, however the exact same
proof works for Chain Completion. For the forwards direction, for any vertex v,
if (G, k) is a yes-instance, then (G − v, k) is also a yes-instance. This holds since
chain graphs are hereditary.

For the reverse direction, let (G − v, k) be a yes-instance and assume for
a contradiction that (G, k) is a no-instance. Let F be a solution of (G − v, k)
satisfying Lemma 7.6, and let G′ = G ⊕ F . By assumption, (G, k) is a no-instance,
so specifically, G′ is not a chain graph. Let W be an obstruction in G′. Clearly
v ∈ W , since otherwise there is an obstruction in (G − v) ⊕ F . Let Z = V (W ) − v.
For convenience we will use N ′ to denote neighborhoods in G′ and specifically
for any set Y ⊆ V (G′), N ′

Y (v) = NG′(v) ∩ Y . Furthermore, let (A, B) be a chain
decomposition of G−X such that there is a large strip S for which v is central. Let
A = ∪A and B = ∪B. We will now consider the case when v is in A. Since |F | ≤ k
and S is a large strip it follows immediately that there are two vertices w and w′

in A ∩ S in higher levels than v that is not incident to F . Observe that {w, w′, v}
forms an independent set of size three and that W contains no such subgraph.
Hence, we can assume without loss of generality that w /∈ V (W ). Similarly, we
obtain a vertex u in A at a lower level than v in S such that u /∈ W .

Observe that G′[Z ∪ {u}] is not an obstruction and hence NZ(u) = N ′
Z(u) �=

N ′
Z(v) = NZ(v). Since u and v are vertices in A from the same strip it is

true that NX(v) = NX(u) and hence there is a vertex a in Z ∩ B such that
lev(u) ≤ lev(a) < lev(v). In other words u is adjacent to a, while v and w are not.
By a symmetric argument we obtain a vertex b such that lev(v) ≤ lev(b) < lev(w),
meaning that both u and v are adjacent to b while w is not. We now fix a chain
decomposition (A′, B′) and let A′ = ∪A′ and B′ = ∪B′. Observe that a and b are
regular vertices and hence it follows from the chain version of Lemma 9.12 that
{a, b} is in B′. This yields immediately that W is not a C3 (since a and b are not
adjacent) and hence we are left the cases of W being a 2K2 or a C5.

We now consider the case when W is isomorphic to a 2K2. Let y be the
last vertex of Z, meaning that {v, y, a, b} = V (W ). Observe that since W is a
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2K2 it holds that y is adjacent to a, but not to b. However, in G it holds that
N(a) ⊆ N(b) and hence F is not satisfying Lemma 7.6, which is a contradiction.

Hence we are left with the case that W is isomorphic to a C5. Let y, x be the
last vertices of Z. Observe that all vertices in W should be of degree two and
hence a is adjacent to both x and y. Recall that a is in B′ and observe that u is
in A′ by the same reasoning. Due to their adjacency to a, also x and y is in A′.
It follows immediately that u, x and y form an independent set in (G − v) ⊕ F .
Since u and v are not touched by F and in the same strip it follows that v, x and y
form an independent set in G′. We observe that by this W can not be isomorphic
to a C5. The argument for the case when v ∈ B is symmetrical and hence the
proof is complete.

We immediately obtain our kernelization results for modifications into chain graphs
by the same wrap up as for threshold graphs.

Theorem 27. The following three problems admit kernels with at most O(k2)
vertices: Chain Deletion, Chain Completion and Chain Editing.



Chapter 10

Subexponential time algorithms

In this chapter we give a subexponential time algorithm for Threshold Editing.
We also show that we can modify the algorithm to work with Chain Edit-

ing. Combined with the results of Fomin and Villanger [FV13] and Drange et
al. [DFPV15], we now have complete information on the subexponentiality of edge
modification to threshold and chain graphs.

10.1 Editing to Threshold Graphs
We will throughout refer to a solution F . In this case, we are assuming a given
input instance (G, k), and then F is a set of at most k edges such that G ⊕ F is a
threshold graph.

A brief explanation of the algorithm The algorithm consists of four parts,
the first of which is the kernelization algorithm described in Chapter 9. This
gives in polynomial time an equivalent instance (G, k) with the guarantee that
|V (G)| = O(k2). We may observe that this is a proper kernel, i.e., the reduced
instance’s parameter is bounded by the original parameter. This allows us to use
time subexponential in the kernelized parameter.

The second step in the algorithm selects a potential split partitioning of G. We
show that the number of such partitionings is bounded subexponentially in k, and
that we can enumerate them all in subexponential time. This step actually also
immediately implies that editing1, completing and deleting to split graphs can be
solved in subexponential time, however all of this was known [HS81, GKK+15].
The main part of this step is Lemma 1.13. For the remainder of the algorithm,
we may thus assume that the input instance is a split graph, and that the split
partition needs to be preserved, that is, we focus on solving Split Threshold

Editing.
The third and fourth steps of the algorithm consists of repeatedly finding special

kind of separators and solving structured parts individually; Step three consists
of locating so-called cheap vertices (see Definition 10.2 for a formal explanation).

1Indeed, editing to split graphs is solvable in linear time [HS81].
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These are vertices, v, whose neighborhood is almost correct, in the sense that there
is an optimal solution in which v is incident to only O(

√
k) edges. The dichotomy

of cheap and expensive vertices gives us some tools for decomposing the graph.
Specific configurations of cheap vertices allow us to extract three parts, one part
is a highly structured part, the second part is a provably small part which me
may brute force, and the last part we solve recursively. All of which is done in
subexponential time 2O(

√
k log k).

Henceforth we will have in mind a “target graph” H = G ⊕ F with threshold
partitioning (C, I). We refer to the set of edges F as the solution, and assume
|F | ≤ k. A crucial part of the algorithm is to enumerate all vertex sets of size at
most O(

√
k). Observation 1.12 shows that this is indeed doable and we will use

this result throughout this section without necessarily referring to it.

Enumerating the potential partitions

After kernelizing the instance the next step of the subexponential time algorithm
is to compute the potential split partitionings of the input instance. Since we
are given a general graph, we do not know which vertices will go to the clique
and which will go to the independent set. However, we now show that there is
at most subexponentially many potential split partitionings. That is, there are
subexponentially many partitionings of the vertex set into (C, I) such that it is
possible to edit the input graph to a threshold graph with the given partitioning
while not exceeding the prescribed budget.

Definition 10.1 (Potential split partition). Given a graph G and an integer k
(called the budget), for C and I a partitioning of V (G) we call (C, I) a potential
split partition of G provided that

(
|C|
2

)
− E(C) + E(I) ≤ k.

That is, the cost of making G into a split graph with the prescribed partitioning
does not exceed the budget.

Lemma 1.13, saying that we can enumerate all potential split partitions in subex-
ponential time, will be crucial in our algorithm, as our algorithm presupposes a
fixed split partition. Using this result, we may in subexponential time compute
every possible split partition within range, and run our algorithm for completion
to threshold graphs on each of these split graphs.

Cheap or Expensive?

We will from now on assume that all our input graphs G = (V, E) are split graphs
provided with a split partition (C, I), and that we are to solve Split Threshold

Editing, that is, we have to respect the split partitioning. We are allowed to do
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this with subexponential time overhead, as per the previous section and specifically
Lemma 1.13. In addition, we assume that |V (G)| = O(k2).

Given an instance (G, k) and a solution F , we define the editing number of a
vertex v, denoted enF

G(v), to be the number of edges in F incident to a vertex v.
When G and F are clear from the context, we will simply write en(v). A vertex v
will be referred to as cheap if en(v) ≤ 2

√
k and expensive otherwise. We will call

a set of vertices U ⊆ V small provided that |U | ≤ 2
√

k and large otherwise.

Definition 10.2. Given an instance (G, k) with solution F , we call a vertex v
cheap if en(v) ≤ 2

√
k.

The following observation will be used extensively.

Observation 10.3. If U ⊆ V (G) is a large set, then there exists a cheap vertex
in U , or contrapositively: if a set U ⊆ V (G) has only expensive vertices, then U is
small. Specifically it follows that in any yes-instance (G, k) where F is a solution,
there are at most 2

√
k expensive vertices.

This gives the following win-win situation: If a set X is small, then we can “guess”
it, which means that we can in subexponential time enumerate all candidates, and
otherwise, we can guess a cheap vertex inside the set and its “correct” neighborhood.
In particular, since the set of expensive vertices is small, we can guess it in the
beginning. For the remainder of the proof we will assume that the graph G is a
labeled graph, where some vertices are labeled as cheap and others as expensive.
There will never be more than 2

√
k vertices labeled expensive. The idea is that

we guess the expensive vertices at the start of the algorithm and then bring this
information along when we recurse on subgraphs.

From now on, we assume that we are solving Split Threshold Editing on
a graph with at most O(k2) vertices and a set of at most 2

√
k vertices are labeled

expensive.

Splitting Pairs and Unbreakable Segments

Definition 10.4 (Splitting pair). Let G be a graph, k an integer, F a solution
of (G, k) and (C, I) a threshold decomposition of G ⊕ F . We then say that the
vertices u ∈ Ia and v ∈ Cb is a splitting pair if

• a < b,

• u and v are cheap,

• ∪a<i<bLi consists of only expensive vertices. Recall from Definition 7.4
that Li = Ci ∪ Ii.

Definition 10.5 (Unbreakable). Let G be a graph, k an integer, F a solution of
(G, k) and (C, I) a threshold decomposition of G⊕F . We then say that a sequence
of levels (Ca, Ia), (Ca+1, Ia+1), . . . , (Cb, Ib) is an unbreakable segment if there is no
splitting pair in the vertex set ∪i∈[a,b](Ci ∪ Ii).
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Furthermore, we say that an instance (G, k) is unbreakable if there exists an
optimal solution F and a threshold decomposition (C, I) of G ⊕ F such that
the entire decomposition is an unbreakable segment. We also say that such a
decomposition is a witness of G being unbreakable.

Definition 10.6. Let G be a graph and (C, I) a threshold decomposition of G⊕F
for some solution F . Then we say that i is a transfer level if

• for every j > i it holds that Cj contains no cheap vertices and

• for every j < i it holds that Ij contains no cheap vertices.

Lemma 10.7. Let (G, k) be a yes-instance of Split Threshold Editing with
solution F such that G is unbreakable and (C, I) a witness. Then there is a transfer
level in (C, I).

Proof. Suppose for a contradiction that the lemma is false. Let a be maximal
such that Ca contains a cheap vertex and b minimum such that Ib contains a
cheap vertex. Since i = a clearly satisfies the first condition, it must be the case
that b < a. Increment b as long as b+1 < a and there is a cheap vertex in ∪i∈(b,a)Ii.
Then decrement a as long as b + 1 < a and there is a cheap vertex in ∪i∈(b,a)Ci.
Let u be a cheap vertex in Ca and v a cheap vertex in Cb. It follows from the
procedure that they both exist. Observe that u, v is indeed a splitting pair, which
is a contradiction to G being unbreakable and (C, I) being a witness.

Lemma 10.8. Let (G, k) be an instance of Split Threshold Editing such
that G is unbreakable and (C, I) a witness of this. Then the number of levels in
(C, I) is at most 2

√
k + 1.

Proof. Let i be the transfer level in (C, I). It is guaranteed to exist by Lemma 10.7.
Observe that for every j > i it holds that Ci consists of expensive vertices and for
every j < i it holds that Ii consists of expensive vertices. It follows immediately
that every level besides i contains at least one expensive vertex. As there are at
most 2

√
k such vertices the result follows immediately.

Lemma 10.9. Let (G, k) be an instance of Split Threshold Editing such
that G is unbreakable, (C, I) is a witness of this and F a corresponding solution.
If X is the set of cheap vertices in G then (G ⊕ F )[X] forms a complete split
graph.

Proof. Let t be the transfer level of the decomposition, u a cheap vertex in Ci

and v a cheap vertex in Ij for some i and j. By the definition of t it holds that
i ≤ t ≤ j. It follows immediately that u and v are adjacent in G ⊕ F and the
proof is complete.

We will now describe the algorithm unbreakAlg. It takes as input an instance
(G, (C, I), k) of Split Threshold Editing, with the assumption that G is
unbreakable and has split partition (C, I), and returns either an optimal solution F
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for (G, k) where |F | ≤ k or correctly concludes that (G, k) is a no-instance. Assume
that (G, k) is a yes-instance. Then there exists an optimal solution F and a
threshold decomposition (C, I) of G ⊕ F that is a witness of G being unbreakable.
First, we guess the number of levels � in the decomposition, and by Lemma 10.8,
we have that � ∈ [0, 2

√
k + 1] and the transfer level t ∈ [0, �]. Then we guess

where the at most 2
√

k vertices that are expensive in G are positioned in (C, I).
Observe that from this information we can obtain all edges between expensive
vertices in F . Finally, we put every cheap vertex in the level that minimizes the
cost of fixing its adjacencies into the expensive vertices while respecting that t is
the transfer level. From this information we can obtain all adjacencies between
cheap and expensive vertices in F . Since the cheap vertices induces a complete
split graph, we reconstructed F and hence we return it.

Lemma 10.10. Given an instance (G, k) of Split Threshold Editing with G
being unbreakable, unbreakAlg either gives an optimal solution or correctly con-
cludes that (G, k) is a no-instance in time 2O(

√
k log k).

Proof. Since the algorithm goes through every possible value for � and t (according
to Lemmata 10.7 and 10.8), and every possible placement of the expensive vertices,
the only thing remaining to ensure is that the cheap vertices are placed correctly.
However, since the cheap vertices form a complete split graph (according to
Lemma 10.9), the only cost associated with a cheap vertex is the number of
expensive vertices in the opposite side it is adjacent to. However, their placement
is fixed, so we simply greedily minimize the cost of the vertex by putting it in a
level that minimizes the number of necessary edits.

If we get a solution from the above procedure, this solution is optimal. On
the other hand, if in every branch of the algorithm we are forced to edit more
than k edges, then either (G, k) is a no-instance, or G is not unbreakable. Since
the assumption of the algorithm is that G is unbreakable, we conclude that the
algorithm is correct.

Divide and Conquer

We now explain the main algorithm. The algorithm takes as input a graph G,
together with a split partition (C, I) and a budget k. In addition, it takes a
vertex set S which the algorithm is supposed to find an optimal solution for. The
algorithm is recursive and either finds a splitting pair, in which it recurses on a
subset of S, and if there is no splitting pair, then G[S] is unbreakable, and thus
it simply runs unbreakAlg on S. To avoid unnecessary recomputations, it uses
memoization to solve already computed inputs.

The algorithm solveAlg(G, (C, I), k, S) returns an optimal solution for the
instance (G[S], k), respecting the given split partition (C, I) in the following
manner:

(i) Run unbreakAlg(G[S], (C ∩ S, I ∩ S), k).
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(ii) For every pair of cheap vertices u ∈ I and v ∈ C, together with their correct
neighborhoods Nu and Nv, and every pair of subsets CX ⊆ C and IX ⊆ I
of expensive vertices we do the following: Let X = IX ∪ CX , RC = Nu,
UI = Nv ∩ I, RI = I \ (X ∪ UI) and UC = S \ (X ∪ RC ∪ UI ∪ RI). Now,
U = UI ∪ UC is the unbreakable segment, X is the set of expensive vertices
between the splitting pair, and R = RI ∪ RC is the remaining vertices. We
now

(i) Run unbreakAlg(G[U ], (C ∩ U, I ∩ U), k) yielding a solution FU ,
(ii) solve G[X] optimally by brute force since it has size at most 2

√
k, giving

a solution FX , and
(iii) recursively call solveAlg(G, (C, I), k, R) to solve the instance corre-

sponding to the remaining vertices yielding FR.

Finally we return F , the union of FU , FX , and FR together with all edges
from C ∩ R and I ∩ (X ∪ U), and all edges from C ∩ X to I ∩ U .

C I

U

X

R

Figure 10.1: The partitioning of the vertex sets according to solveAlg. The square
bags are the bags containing the splitting pair, U is an unbreakable segment and
the bags of X contains exclusively expensive vertices. The edges drawn indicates
the neighborhoods of the splitting pair across the partitions.

In (i) we consider the option that there are no splitting pairs in G. In (ii)
(see Figure 10.1) we guess the uppermost splitting pair in the partition and the
neighborhood of these two vertices. Then we guess all of the expensive vertices that
live in between the two levels of the splitting pair. Observe that these expensive
vertices together with the splitting pair partition the levels into three consecutive
sequences. The upper one, U is an unbreakable segment, the middle, X are the
expensive vertices and the lower one, R is simply the remaining graph. When we
apply unbreakAlg on the upper part, brute force the middle one and recurse with
solveAlg on the lower part, we get individual optimal solutions for each three,
finally we may merge the solutions and add all the remaining edges (see end of
(2)).
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Lemma 10.11. Given a split graph G = (V, E) with split partition (C, I),
solveAlg either returns an optimal solution for Split Threshold Editing on
input (G, (C, I), k, V ), or correctly concludes that (G, k) is a no-instance.

Proof. If (G, k) with split partition (C, I) is a yes-instance of Split Threshold

Editing there is a solution F with threshold decomposition (C, I) and a sequence
of pairs (u1, v1), (u2, v2), . . . , (ut, vt) such that u1, v1 is the splitting pair highest in
(C, I), and u2, v2 in the highest splitting pair in the graph induced by the vertices
in and below the level of v1, etc. Since we in a state (G, (C, I), k, S) try every
possible pair of such cheap vertices and every possible neighborhood and set of
expensive vertices, we exhaust all possibilities for any threshold editing of S of at
most k edges. Hence, if there is a solution, an optimal solution is returned.

Thus, if ever an F is constructed of size |F | > k, we can safely conclude that
there is no editing set F � ⊆ C × I of size at most k such that G⊕F � is a threshold
graph.

Lemma 10.12. Given a split graph G = (V, E) with split partition (C, I) and
an integer k with |V (G)| = O(k2), the algorithm solveAlg terminates in time
2O(

√
k log k) on input (G, (C, I), k, V ).

Proof. By charging a set S for which solveAlg is called with input (G, (C, I), k, S)
every operation except the recursive call, we need to (I) show that there are at
most 2O(

√
k log k) many sets S ⊆ V for which solveAlg is called, and (II) that the

work done inside one such call is at most 2O(
√

k log k).
For Case (I), we simply note that when solveAlg is called with a set S, the

sets R on which we recurse are uniquely defined by u, v, Nu, Nv, X, and there are
at most O(k4) · 2O(

√
k log k)3 = 2O(

√
k log k) such configurations, so at most 2O(

√
k log k)

sets are charged. Case (II) follows from the fact that we guess two vertices, u
and v and three sets, Nu, Nv and X. For each choice we run unbreakAlg, which
runs in time 2O(

√
k log k) by Lemma 10.10, and the brute force solution takes time

2O(
√

k log(
√

k)). The recursive call is charged to a smaller set, and merging the
solutions into the final solution we return, F , takes polynomial time.

The two cases show that we charge at most 2O(
√

k log k) sets with 2O(
√

k log k)

work, and hence solveAlg completes after 2O(
√

k log k) steps.

To conclude we observe that Theorem 28 follows directly from the above exposition.
Given an input (G, k) to Threshold Editing, from the previous section we
can in polynomial time obtain an equivalent instance with at most O(k2) vertices.
Furthermore, by Lemma 1.13 we may in time 2O(

√
k log k) time assume we are solving

the problem Split Threshold Editing. Finally, by Lemmata 10.11 and 10.12,
the theorem follows.

Theorem 28. Threshold Editing admits a 2o(
√

k log k) + no(1) subexponential
time algorithm.

By restricting the algorithm to either only add or remove edges, we reprove a
result by Drange et al. [DFPV15].
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Theorem 29 ([DFPV15]). Threshold Completion and Threshold Dele-

tion admits 2o(
√

k log k) + no(1) subexponential time algorithms.

10.2 Editing to Chain Graphs
We finally describe which steps are needed to change the algorithm above into an
algorithm correctly solving Chain Editing in subexponential time.

The main difference between Chain Editing and Threshold Editing is
that it is far from clear that the number of bipartitions is subexponential, that
is, is there a bipartite equivalent of the bound of the potential split partitions
as in Lemma 1.13? If we were able to enumerate all such “potential bipartitions”
in subexponential time, we could simply run a very similar algorithm to the one
above on the problem Bipartite Chain Editing, where we are asked to respect
the bipartition (see Section 8.2 for the definition of this problem).

It turns out that we indeed are able to enumerate all such potential bipartitions
within the allowed time:

Lemma 10.13. There is an algorithm which, given an instance (G, k) for Chain

Editing, enumerates
( |V |

O(
√

k)

)
= 2O(

√
k log |V |) bipartite graphs H = (A, B, E ′) with

|E ⊕ E ′| ≤ k such that if (G, k) is a yes-instance, then one output (H, k) will be a
yes-instance for Bipartite Chain Editing, and furthermore is any yes-instance
(H, k) is output, then (G, k) is a yes-instance. This also holds for the deletion and
completion versions.

Proof. We first mention that it is trivial to change the below proof into the proofs
for the deletion and completion versions; One simply disallow one of the operations.
So we will prove only the editing version. Furthermore, it is clear to see that if
any output instance (H, k) is a yes-instance for Bipartite Chain Editing, then
(G, k) was a yes-instance for Chain Editing.

Consider any solution H = (A, B, E ′) for an input instance (G, k). If either
min{|A|, |B|} ≤ 5

√
k, then we can simply guess every such in subexponential

time. Hence, we assume that both sides of H are large. But this means, by
Observation 10.3, that both A and B have cheap vertices. Let vA be a cheap
vertex as low as possible in A and vB be a cheap vertex as high as possible in B.
It immediately follows from the same observation that the set of vertices below
vA, AX is a set of expensive vertices, and the same for the vertices above vB, BX .
Since vA and vB, we know that we can in subexponential time correctly guess
their neighborhoods in H and we can similarly guess AX and BX .

Now, since we know vA, vB, NH(vA) and NH(vB), as well as AX and BX , the
only vertices we do now know where to place, are the vertices in A which are in
the levels above lev(vB), call them AY , and the vertices in b which are in the levels
below lev(vA). However, we know which set this is, that is, we know Z = AY ∪ BY .
Define now AM = A\ (AY ∪AX ∪{vA}) and similarly BM = B \ (BY ∪BX ∪{vB}).
These are the vertices living in the middle of A and B, respectively.
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We now know that the vertices of Z should form an independent set. This
follows from the fact that AM and BM are both non-empty. Hence, the vertices of
AY are in higher levels than all of BY , and since there are no edges going from a
vertex in A to a vertex lower in B, and each of A and B are independent sets, Z
must be an independent set.

The following is the crucial last step. We can in subexponential time guess
the partitioning of levels of both AX and of BX , since they are both of sizes at
most 2

√
k. When knowing these levels, we can greedily insert each vertex in Z

into either A and B by pointwise minimizing the cost; A vertex z ∈ Z can safely
be places in the level of A or B which minimizes the cost of making it adjacent
to only the vertices of BX above its level, or by making it adjacent to only the
vertices below its level in AX .

Given the above lemma, we may work on the more restricted problem, Bipartite

Chain Editing. The rest of the algorithm actually goes through without any
noticeable changes:

Theorem 30. Chain Editing is solvable in time 2O(
√

k log k) + nO(1).

Proof. On input (G, k) we first run the kernelization algorithm from Section 9.2,
and then we enumerate every potential bipartition according to Lemma 10.13.
Now, for each bipartition (A, B) we make A into a clique, and run the Split

Threshold Editing algorithm from Section 10.1 (see also Proposition 7.8).
Now, (G, k) is a yes-instance if and only if there is a bipartition (A, B) such

that when making A into a clique, the resulting instance is a yes- instance for
Split Threshold Editing.

Theorem 31. Chain Deletion and Chain Completion are solvable in
time 2O(

√
k log k) + nO(1).

Proof. By allowing edges only to be deleted or added in the algorithm and defini-
tions, we obtain the result.
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Chapter 11

Concluding remarks

In this part we showed that the problems of editing edges to obtain a threshold
graph and editing edges to obtain a chain graph are NP-complete. The latter solves
a conjecture in the positive from Natanzon et al. [NSS01] and both results answer
open questions from Sharan [Sha02], Burzyn et al. [BBD06], and Mancini [Man08].

On the positive side, we show that both Threshold Editing and Chain

Editing admit quadratic kernels, i.e., given a graph (G, k), we can in polynomial
time find an equivalent instance (G′, k) where |V (G′)| = O(k2), and furthermore, G′

is an induced subgraph of G. We also show that these results hold for the deletion
and completion variants as well, and these results answer open questions by Liu et
al. [LWG14] in a recent survey on kernelization complexity of graph modification
problems.

Finally we show that both problems admit subexponential time algorithms
of complexity 2O(

√
k log k) + nO(1). This answers a recent open question by Liu

et al. [LWY+15]. These are the only two graph classes known towards which
completion, deletion, and editing all are NP-complete, admit polynomial kernels
and are subexponential parameterized time solvable.

There are now algorithms solving Threshold Editing (Theorem 28), Chain

Editing (Theorem 30) and Chordal Editing
1 (Cao & Marx [CM14]) in time

2O(
√

k log k)nO(1). Furthermore, assuming ETH, we have now established that there
is no 2o(

√
k)nO(1) time algorithm for any of these problems. This leaves a complexity

gap and it would be interesting to see if we can achieve tight bounds, by improving
the algorithms, the lower bounds or both.

1Here, the authors take Chain Editing to allow vertex deletions.
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bounded degree
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Chapter 12

Introduction

Graph modification problems have been a fundamental part of computational
graph theory throughout its history [GJ79a, A1. Graph Theory]. In these classic
problems you are to apply at most k modifications to an input graph G to make it
adhere to a specific set of properties, where both the modifying operations and the
target properties are problem specific. Unfortunately, even when considering vertex
deletion to hereditary graph classes, the modification problems often regarded
as the most tractable, almost all of them are NP-complete [LY80]. A similar
dichotomy is yet to appear for edge modification problems and hence the classic
complexity landscape seems far more involved. However, various results display
the NP-hardness of the edge variants as well [Yan81b, EMC88, BBD06].

We will restrict our attention to hereditary graph classes characterized by finite
sets of forbidden induced subgraphs. Hence, for every graph class studied there is
a finite set of graphs H such that a graph G is in the graph class if and only if no
graph in H is an induced subgraph of G. In this situation Cai’s theorem [Cai96]
shows that all H-free modification problems are fixed-parameter tractable, that is,
they are all solvable in time f(k) · nO(1). And furthermore, every vertex deletion
problem admits a classic O(kd) polynomial kernel, where d is the maximum number
of vertices in a graph in H, based on the sunflower lemma [FG06, AK10]. However,
for edge modification problems we are far away from such a classification of the
complexity landscape. In particular, P4-free edge deletion admits a polynomial
kernel [GHPP13], C4-free edge deletion does not [CC15] and K1,3-deletion (also
referred to as claw-deletion) remains open.

The edge modification problems characterized by a finite set of forbidden
induced subgraphs H are often referred to as H-Free Edge Completion,
H-Free Edge Deletion and H-Free Edge Editing, where one is to add,
remove or both add and remove k edges to make the graph H-free.

Gramm, Guo, Hüffner and Niedermeier [GGHN09], and Guo [Guo07] gave
kernels for several graph modification problems to graph classes characterized by a
finite set of forbidden induced subgraphs. Several positive results followed, which
led Fellows, Langston, Rosamond, and Shaw to ask whether all H-free modification
problems admit polynomial kernels [FLRS07].

This was refuted by Kratsch and Wahlström [KW13] who showed that for
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H = {H} where H is a certain graph on seven vertices, H-Free Edge Deletion,
as well as H-Free Edge Editing, does not admit a polynomial kernel unless
NP ⊆ coNP/poly.1 Without stating it explicitly, but revealed by a more careful
analysis of the inner workings of their proofs, Kratsch and Wahlström actually
showed something even stronger; namely that the result holds when restricted to
6-degenerate graphs, both for the deletion and for the editing version.

This line of research was followed up by Guillemot et al. [GHPP13] showing large
classes of simple graphs for which H-Free Edge Deletion is incompressible,
which was further developed by Cai and Cai [CC15]; Combining these results, we
now know that when H is a path or a cycle, H-Free Edge Deletion, Editing

and Completion is compressible if and only if H has at most three edges, that
is, only for the simplest graphs. Although being classified for a single path or
cycle, there is still a vast number of obstructions for which we do not know the
kernelization complexity.

Bounded degree

In dealing with the inherent intractability of graph modification problems, Natan-
zon, Shamir, and Sharan [NSS01] suggested to study H-Free Edge Deletion

on bounded degree input graphs. Recently, following this direction of research,
Aravind, Sandeep and Sivadasan [ASS14] were able to show that as long as every
graph H ∈ H is connected, the problem H-Free Edge Deletion admits a
polynomial kernel of size

Δf(H) · kg(H,Δ),

for two functions g and f . In particular, since H is fixed for a specific problem,
this yields a polynomial kernel for every fixed maximum degree Δ.

One should note that many modification problems remain NP-complete for
bounded degree graphs. Komusiewicz and Uhlmann [KU12] showed that even
for simple cases like H = {P3}, the path on three vertices, H-Free Edge

Deletion—also known as Cluster Deletion—is NP-complete, even on graphs
of maximum degree 6. Later, it was also shown that P4-free Edge Deletion

and Editing (Cograph Editing) and {C4, P4}-free Edge Deletion and
Editing (Trivially Perfect Editing) [DP15] had similar properties; NP-
complete, even on graphs of maximum degree 4.

A parameterized perspective

Since the problems already are FPT for general graphs, and hence also for graphs
of bounded degree, we focus on providing polynomial kernels. The first result
presented is several, simultaneously applicable improvements upon the above
mentioned result by Aravind, Sandeep and Sivadasan [ASS14]. First, we are
able to remove the condition requiring all graphs of H to be connected. As

1NP ⊆ coNP/poly implies that PH is contained in Σp
3. It is widely believed that PH does not

collapse, and hence it is also believed that NP �⊆ coNP/poly. We will throughout this section
assume that NP �⊆ coNP/poly.
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many interesting graph classes (threshold graphs, split graphs e.g.) are described
by disconnected forbidden subgraphs, this is a major extension. Second, we
complement it by proving that the same kernels can be obtained when considering
H-Free Edge Editing. And third, we improve the kernel dependency on Δ(G).
The novelty of our approach lies within a better understanding of how forbidden
subgraphs are introduced when edges are modified in the input graph. Due to
this, we can localize the crucial part of the instance even when both forbidden
subgraphs and modifications are spread throughout the graph.

We continue by providing several hardness results. First, we prove that
somewhat surprisingly the positive result does not extend to the completion variant.
More specifically, there exists a finite set H such that H-Free Edge Completion

does not admit a polynomial kernel, even on input graphs of maximum degree 5,
unless NP ⊆ coNP/poly. The intuition behind this distinction is that for both the
deletion and editing variants, one has the possibility of preventing propagation by
locally removing all involved edges. This is realized by Lemmata 13.9 and 13.10.
However, this is not the case for completion problems. In particular, one can
be forced to complete a single obstruction in such a way that this creates new
obstructions, that again when fixed creates new obstructions and so forth. This is
utilized among others in the selector tree of Section 14.1.

Furthermore, we prove that for both H-Free Edge Editing and H-Free

Edge Deletion there is no hope for polynomial kernels, even when restricted
to 2-degenerate graphs. It can easily be observed that the same proofs can be
applied to generalize the results to K9-minor free graphs.

We now have complete information on the kernelization complexity of edge
and vertex modification problems when the target graph class is characterized by
a finite set of forbidden induced subgraphs, on bounded degree and 2-degenerate
input graphs. Recall that the yes answer for the vertex deletion version on general
graphs is obtained by a simple reduction from the H-Free Vertex Deletion

problem to the d-Hitting Set problem, which, using the sunflower lemma [ER60],
can be shown to admit a polynomial kernel [AK10].

bounded degree 2-degenerate
Deletion Yes ([ASS14], Theorem 32) No (Theorem 34)
Completion No (Theorem 33) No (Theorem 33)
Editing Yes (Theorem 32) No (Theorem 35)
Vertex deletion Yes Yes

Table 12.1: Overview of polynomial kernelization complexity for graph modification
on bounded degree and degenerate input graphs. The table shows that there is
no distinction between disconnected graphs, and that the completion variant is
notoriously incompressible—bounded degree does not help compressing completion
problems.
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12.1 Preliminaries

For a finite obstruction set H, we define diamH to be the maximum diameter over
all components over all graphs in H. Note that this differs from the diameter of a
disconnected graph, which we defined as infinity. The size of the largest graph in
H we denote by nH = max{|V (H)| for H ∈ H}.

Definition 12.1 (H-packing). Given a graph G and an obstruction H we say
that X ⊆ 2V (G) forms an H-packing in G if

(i) G[X] and H are isomorphic for every X ∈ X , and

(ii) X and Y are disjoint for every X, Y ∈ X .

Observation 12.2. Given a graph G and an obstruction H we can obtain a
maximal H-packing X in O(|V (H)|2 · n|V (H)|) time.

Planar Cubic Vertex Cover

We have two main polynomial kernel hardness results, both of which will be
reduced from the problem Cubic Planar Vertex Cover, which is the famous
Vertex Cover problem restricted to regular planar input graphs of degree three.
The following result shows the validity of reducing from this restricted instance:

Proposition 12.3 ([Moh01]). Vertex Cover is NP-complete on cubic planar
graphs.

It is well known that planar graphs can be recognized in polynomial time, so an
algorithm can simply reject the input if the graph is not regular or non-planar.
When we later will make a cross-composition argument, we will reduce from
Cubic Planar Vertex Cover. We may allow us, on t = 2r instances of Cubic

Planar Vertex Cover on n vertices, m edges and a budget of k′ ≤ n, to have
a budget of size bounded by (log(t))O(1) + |Gi|O(1) = log(t)O(1) + (n + m + k′)O(1).

An upper bound

The following lemma will be used when analyzing the size of the polynomial kernel.

Lemma 12.4. For x > 1 it holds that 1
logx

x+1
x

≤ (x + 1) ln x.

Proof. First, we observe that

1
logx

x+1
x

= 1
ln x+1

x

ln x

= ln x

ln x+1
x

.
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Hence, it remains to prove that 1
ln x+1

x

≤ x + 1, or equivalently that 1
x+1 ≤ ln x+1

x
.

This follows from the following calculation:

ln x + 1
x

= ln(x + 1) − ln(x)

=
∫ x+1

x

1
y

dy

≥ (x + 1 − x) · min
{

1
y

| y ∈ [x, x + 1]
}

= 1
x + 1 .
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Chapter 13

A polynomial kernel

In this section we prove that for any finite set of obstructions H, deleting or
editing at most k edges to make an input graph of bounded degree H-free admits
polynomial kernels. More precisely, both H-Free Edge Editing and H-Free

Edge Deletion admits polynomial kernels on bounded degree graphs.
The argument consists of two parts. First, we identify a set of critical vertices

in the input graph G, called the obstruction core Z. Based on this set we can
decompose any set of modifications F in G. The decomposition leads to the
construction of a set of vertices in the graph, called the extended obstruction
core Z+. The first crucial property of Z+ is that if F modifies G[Z+] into an H-free
graph, then F also modifies G into an H-free graph. In other words, whichever
obstructions we want to remove in the input graph should be done within the
extended obstruction core. The second crucial property is that the extended
obstruction core can be proved to live within a ball around the obstruction core,
were the radius depends on how well the solution decomposes. This ball will in
the end constitute the kernel. In the second part of the argument we prove that
every minimal solution decomposes well. Hence we can bound the size of the ball
containing the extended obstruction core and obtain a polynomial kernel.

We point out that we have considered the editing variant of the problem where
we are allowed to surpass the original maximum degree in the graph by adding
edges. However, it is true that there is always a solution that at most doubles
the maximum degree of the graph since if more edges are added one might as
well remove all edges incident to the vertex. The validity of this is proved in
Lemma 13.10. Furthermore, it can be argued that the studied version of the
problem is the most general one. This is due to the fact that adding every super
graph of the star with Δ(G) + 1 leaves to the obstruction set ensures that any
solution respects the current maximum degree.

Before we continue, we observe that both the case when the maximum degree
of the graph is 0 and when k = 0 are instances that can be solved in polynomial
time. Hence, for the remainder of the section we will assume that Δ(G) and k are
positive.
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13.1 Cores and layers
In this section we introduce the concepts of obstruction cores and extended obstruc-
tion cores. They are heavily based on the notion of shattered obstructions, which
are the set of obstructions we get from H if we take every connected component
as an obstruction. It follows immediately that every shattered obstruction is
connected. Recall from the preliminaries that the size of the largest graph in H is
denoted by nH.

Definition 13.1 (Shattered obstructions). Given a set of obstructions H we define
the shattered obstructions, denoted H�, as follows:

{C | C is a connected component of H and H is a graph in H}.

Based on shattered obstructions we now define an obstruction core and explain
how such a set of not too large size can be obtained.

Definition 13.2 (Obstruction core). Let (G, k) be an instance of H-Free Edge

Editing (H-Free Edge Deletion). We then say that a set Z ⊆ V (G) is an
obstruction core in G if for every shattered obstruction H in G it holds that either:

(i) V (H) ⊆ Z or

(ii) there is an H-packing in G[Z] of size at least (Δ(G) + 1) · nH + 2k + 1.

Observation 13.3. Given an instance (G, k) of H-Free Edge Editing (H-

Free Edge Deletion) we can in O(|H�|nnH) time obtain an obstruction core
Z in G of size at most

nH|H�|((Δ(G) + 1) · nH + 2k + 1).

Proof. Let Z be the empty set initially. Then for every shattered obstruction H
we find a maximal H-packing X = X1, . . . , Xt and add the following set ⋃p

i=1 Xi

to Z, where p = min(t, (Δ(G) + 1) · nH + 2k + 1). The time complexity follows
from Observation 12.2.

The next definitions are the ones of layer decompositions and core extensions,
arguably the most central definitions of the kernelization algorithm. They are
both with respect to a fixed obstruction core Z and a solution F . The goal is to
describe how solutions behave in G. We decompose a solution into several layers
such that the first layer consists of the edges of F that are contained in Z. The
second layer consists of the edges of F that are contained in scattered obstructions
created when the modifications in Z was done, and so forth. The extended core is
a set of vertices encapsulating all scattered obstructions either in G[Z] or created
in G when doing the modifications of the layers. Observe that when computing
the kernel, no such solution F is available and the analysis with respect to this set
is done solely to ensure that the kernelized instance is equivalent to the original
one.
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Layer decompositions and core extensions

Let (G, k) be an instance of H-Free Edge Editing (H-Free Edge Deletion),
F ⊆ [V (G)]2 and Z an obstruction core. We construct the layer decomposition
F1, . . . , F� of F as follows: Let G1 = G, R1 = F and Z1 = Z. Then, inductively
we construct the set X = Ri ∩ [Zi]2. If X is empty we stop the process, otherwise
we let Fi = X, Gi+1 = Gi ⊕ Fi and Ri+1 = Ri \ Fi. Furthermore, we let

Wi+1 = {v ∈ H | H is a shattered obstruction in Gi+1 with [V (H)]2 ∩ Fi �= ∅}.

Based on this we let Zi+1 = Zi ∪ Wi+1. With the construction above in mind we
introduce some notation and terminology:

Definition 13.4 (Intermediate graphs and the extended core). We will refer to Gi

as the i’th intermediate graph, Ri as the i’th remainder, Zi as the i’th core extension
and � as the solution depth (all with respect to G, Z and F ). Furthermore, we will
refer to G+ = G�+1 as the resulting graph and Z+ = Z�+1 as the extended core.

The next lemma shows that if there is an obstruction in some intermediate graph
such that for every connected component of the obstruction, the component is
either inside the corresponding core extension or not modified at all so far by
the layers, then there is an isomorphic obstruction contained entirely within the
core extension. The intuition is that any untouched connected component has
a large packing in Z and hence it can be replaced by an isomorphic subgraph
inside Z that both avoids the modifications and the neighborhood of the rest of
the obstruction.

Lemma 13.5. Let (G, k) be an instance of H-Free Edge Editing(H-Free

Edge Deletion), Z an obstruction core of G, and F ⊆ [V (G)]2 with |F | ≤ k
and F1, . . . , F� a layer decomposition of F . For an integer j ∈ [1, � + 1] let Gj

be the intermediate graph and Zj the core extension with respect to G, Z and F .
Let H be an obstruction in Gj with connected components H1, . . . , Ht such that
every Hi satisfies either:

(i) V (Hi) ⊆ Zj or

(ii) Hi = G[V (Hi)].

Then there is an obstruction H ′ in Gj isomorphic to H with V (H ′) ⊆ Zj and
V (H ′) \ V (H) ⊆ Z.

Proof. For convenience we denote neighborhoods in Gj by Nj. Let H ′ be the
disjoint union of every Hi such that V (Hi) ⊆ Zj and L the list containing
every Hi not added to H ′. Let Hi be an element of L. We will now prove
that there is an H ′

i in Gj[Zj \ Nj[H ′]] such that Hi and H ′
i are isomorphic.

Let Xi be the maximal Hi-packing obtained when constructing Z. Since V (Hi)
is not contained in Zj (and hence Z) and Hi’s edges are as in G it holds that
|Xi| ≥ (Δ(G)+1)·nH+2k+1 by the definition of obstruction cores. This yields that



114 CHAPTER 13. A POLYNOMIAL KERNEL

(Δ(G)+1)·nH +2k+1 of the elements of the packing was added to Z. Furthermore,
we observe that |V (H ′)| ≤ nH and hence that |NG(H ′)| ≤ Δ · nH. It follows
immediately that |Nj(H ′)| ≤ Δ ·nH + k and hence that |Nj[H ′]| ≤ (Δ + 1) ·nH + k.
By the previous arguments it follows that there is an Hi-packing in Gj[Z \ Nj[H ′]]
of size at least k + 1. And hence, by the pigeon hole principle there is an H ′

i

isomorphic to Hi in Gj[Zj \ Nj[H ′]] such that [V (H ′
i)]2 and F are disjoint.

To complete the proof we do the following for every Hi in L. We find an H ′
i

as described above, add H ′
i to H ′ and remove Hi from L. Since H1, . . . , Ht

are the connected components of H it follows that H and H ′ are isomorphic.
Furthermore, V (H ′) is clearly contained in Zj and V (H ′) \ V (H) in Z.

This possibility of moving obstructions to the inside of core extensions immediately
yields several very useful lemmata. The first one gives the true power of an
extended core, namely that if a set of edges is a solution for the graph induced on
its extended core it also is a solution for the entire graph.
Lemma 13.6. Let (G, k) be an instance of H-Free Edge Editing(H-Free

Edge Deletion), Z an obstruction core of G, and F ⊆ [V (G)]2. Construct the
layer decomposition F1, . . . , F� of F with respect to Z, let F ′ = ∪�

i=1Fi and let Z+

be the extended core with respect to Z and F . It then holds that:
(G ⊕ F ′)[Z+] is H-free if and only if G ⊕ F ′ is H-free.

Proof. Recall that G+ = G ⊕ F ′. It is trivial that if there is an obstruction H in
G+[Z+] then H is also an obstruction in G+. For the other direction, let H be
an obstruction in G+ and H1, . . . , Ht the connected components of H. Observe
that by the definition of Z+ it holds that every Hi satisfies either (i) or (ii) of
Lemma 13.5 with j = � + 1. It follows that there is an obstruction H ′ in G+

with V (H ′) ⊆ Z+. Hence H ′ is an obstruction in G+[Z+], which completes the
argument.

Next, we prove that a layer decomposition is a partition of the solution, given that
the solution is minimal.
Lemma 13.7. Let (G, k) be an instance of H-Free Edge Editing(H-Free

Edge Deletion), Z an obstruction core of G, F a minimal solution and
F1, . . . , F� the layer decomposition of F with respect to Z. It then holds that
F1, . . . , F� forms a partition of F .
Proof. Let Fi and Fj be two layers with i < j. It follows immediately from the
definition of layer decompositions that Fj ⊆ Rj ⊆ Ri \ Fi and hence Fi and Fj are
disjoint. For convenience we let F ′ = ∪i∈[1,�]Fi. We now prove that F ′ = F . It
follows from the definition of layer decompositions that F ′ ⊆ F . Assume for a
contradiction that F ′ � F . Consider the final graph G+ = G ⊕ F ′. If G+ is H-free
it follows that F is not a minimal solution, yielding a contradiction.

Hence, we can assume that G+ is not H-free. It follows immediately from
Lemma 13.6 that G+[Z+] is also not H-free. Furthermore, we know by the
definition of layer decompositions that G+[Z+] = (G ⊕ F )[Z+]. And hence G ⊕ F
is not H-free, contradicting that F is a solution.



13.2. SOLUTIONS ARE SHALLOW 115

The following lemma gives us a partial tool for encapsulating an extended core
without knowing the solution beforehand. The next section is dedicated to turning
this partial tool into something useful. Recall that diamH is the maximum diameter
of a connected component of a graph in H.

Lemma 13.8. Let (G, k) be an instance of H-Free Edge Editing(H-Free

Edge Deletion), Z an obstruction core of G, F ⊆ [V (G)]2 and Z+ the extended
core with respect to Z and F . It then holds that

Z+ ⊆ B(Z, � · diamH).

Proof. Let Z1, . . . , Z�+1 be the extended cores. Instead of proving the lemma
directly we prove the following, stronger claim:

(�) For every Zi it holds that Zi ⊆ B(Z, (i − 1) · diamH).

Since Z+ = Z�+1, it is clear that (�) implies the lemma. The proof of (�) is by
induction. First, we observe that (�) holds for i = 1 by the definition of balls,
since Z = Z1. Assume for the induction step that (�) holds for i. Let v be a
vertex in Zi+1. If v is also in Zi we are done by assumption. Hence, we assume v
to be a vertex in Zi+1 \ Zi. Or in other words, v is in Wi+1. By definition there
is a scattered obstruction H in Gi+1 and an edge uw in Fi such that both u, v
and w are in H. Observe that the distance between u and v is at most diamH and
recall that u is in Zi ⊆ B(Z, (i − 1) · diamH). It follows immediately that v is in
B(Z, i · diamH) and hence the proof is complete.

13.2 Solutions are shallow
In this section we prove that the depth of any solution is bounded logarithmically
by the size of the solution. This, combined with Lemma 13.8 gives that linearly
in k many balls of logarithmic radius is sufficient to encapsulate an extended core.
To motivate that we obtain a polynomial kernel, observe that a ball of logarithmic
radius in a bounded degree ball is of polynomial size.

First, we prove that when considering any layer we can always find a set of
vertices of the same size, for which removal would result in an H-free graph. Next
we prove that as long as the graph is not very small, removing a set of vertices from
the graph has the same effect as modifying the graph such that the set becomes a
set of isolates.

Lemma 13.9. Let (G, k) be an instance of H-Free Edge Editing(H-Free

Edge Deletion), Z an obstruction core of G, F a minimal solution of the
instance and F1, . . . , F� the layer partition of F with respect to Z. For every i ∈
[1, �] there exist a set Y with Y ≤ |Fi| such that Gi − Y is H-free.

Proof. We construct Y as follows: For every edge uv in Fi we add to Z the
endpoint furthest away from Z. If it is a tie, we choose an arbitrary endpoint.
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Assume for a contradiction that Gi − Y is not H-free. Let H be an obstruction
in Gi − Y and H1, . . . , Ht the connected components of H.

First, we consider the case when i = 1. We then apply a modification of
the proof of Lemma 13.5. The idea is as follows: Let H ′ be the disjoint union
of the components of H contained in Z and Hx a component not in Z. Then
there is an Hx-packing of size k + 1 in Z avoiding the closed neighborhood of H ′.
We observe that Y intersects with at most k of the elements of the packing and
hence we can find a subgraph H ′

x in G[Z] not intersecting with Y such that Hx

and H ′
x are isomorphic. Add H ′

x to H ′ and continue with the next component not
contained in Z. It follows immediately that H ′ is also an obstruction in G2. By
definition G2[Z] = G+[Z] and hence H ′ is an obstruction in G+. This contradicts F
being a solution.

If i ≥ 2 it holds that Y and Z are disjoint. This is true since if both endpoints
of an edge are included in Z, the edge would be in F1 and not Fi. It holds by the
definition of Y and H that [V (H)]2 ∩Fi is empty. Furthermore, by the definition of
layer decompositions it holds that if some connected component Hx of H intersects
with some Fj with j < i then V (Hx) ⊆ Zj+1 ⊆ Zi. Hence we can apply Lemma 13.5
to obtain an obstruction H ′ in Gi with V (H ′) ⊆ Zi. Since V (H) ⊆ V (G) \ Y
and V (H ′) \ V (H) ⊆ Z it follows that H ′ is an obstruction in Gi \ Y . It follows
immediately that H ′ is also an obstruction in Gi+1. By definition Gi+1[Zi] = G+[Zi]
and hence H ′ is an obstruction in G+. This contradicts F being a solution and
completes the proof.

We now show that if we the graph is big compared to the budget, the bounded
degree and H, then deleting vertices and deleting edges are in some sense equivalent.

Lemma 13.10. Let (G, k) be an instance of H-Free Edge Editing (H-Free

Edge Deletion), X a set of vertices in G and EX the set of edges incident to
vertices in X. It then holds that either

(i) |V (G)| < |X| + k + 2(Δ(G) + 1)nH or

(ii) the instances (G − X, k′) and (G − EX , k′) are equivalent for every k′.

Proof. We assume that (i) does not apply and prove that this implies (ii). It
is trivial that if (G − EX , k′) is a yes-instance then (G − X, k′) is also a yes-
instance. For the other direction, assume for a contradiction that (G − X, k′)
is a yes-instance and that (G − EX , k′) is a no-instance. Let F be a solution
of (G − X, k′). For convenience we define GV = (G − X) ⊕ F and GE = (G −
EX) ⊕ F . Let H be an obstruction in GE and B the set of vertices V (H) \ X. By
construction GE[V (H) ∩ X] is an independent set. Observe that GV [B] = GE[B]
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and that |NGE
(V (H))| ≤ Δ(G) · nH + k. It follows immediately that

|V (GE) \ (X ∪ NGE
[V (H)])|

≥ |V (GE)| − |X| − |NGE
[V (H)]|

≥ |X| + k + 2(Δ(G) + 1)nH − |X| − nH − Δ(G) · nH − k

= 2(Δ(G) + 1)nH − nH − Δ(G) · nH

= (Δ(G) + 1)nH.

And hence we can obtain an independent set I of size |X ∩ V (H)| that is entirely
outside of both X and NGE

[V (H)]. Let H ′ = GV [I ∪ B] and observe that H ′ is
isomorphic to H, contradicting GV being H-free.

With the two previous lemmata in mind we present the main idea of the shallowness
of a solution. Intuitively, if for any level of a decomposed solution we do a
factor Δ(G) more modifications in the future than we do in this particular level,
we could instead remove a set of edges related to this layer and stop any further
propagation. This ensures that in any optimal solution the size of the union of the
remaining layers are bounded by the size of the current layer and the maximum
degree of the graph.

Lemma 13.11. Given an instance (G, k) of H-Free Edge Editing (H-Free

Edge Deletion), an obstruction core Z, an optimal solution F and its layer
decomposition F1, . . . , F� it holds that either

(i) |V (G)| < k + 2(Δ(G) + 1) · nH or

(ii) Δ(G) · |Fi| ≥ |Ri+1| for every i ∈ [1, �].

Proof. We assume that (i) does not apply and hence that |V (G)| ≥ k + (Δ(G) +
2) ·nH. Assume for a contradiction that there is an i ∈ [1, �] such that (ii) does not
hold. Specifically, i is so that Δ(G) · |Fi| < |Ri+1|. By Lemma 13.9 there is a set of
vertices Y with |Y | ≤ |Fi| such that Gi − Y is H-free. It follows by Lemma 13.10
with k′ = 0 that Gi − EY is also H-free. Let F ′ = (∪j∈[1,i−1]Fj) ∪ EY and observe
that G ⊕ F ′ is H-free. By the following calculations:

|F ′| ≤ | ∪j∈[1,i−1] Fj| + |EY | < | ∪j∈[1,i−1] Fj| + |Ri+1| = |F |

we conclude that |F ′| < |F |. This contradicts the optimality of |F | and hence our
proof is complete.

Lemma 13.12. Given a instance (G, k) of H-Free Edge Editing (H-Free

Edge Deletion), an optimal solution F and its layer decomposition F1, . . . , F�

it holds that either

(i) |V (G)| < k + 2(Δ(G) + 1) · nH or

(ii) � ≤ 1 + log Δ(G)+1
Δ(G)

|F |.
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Proof. Assume that (i) does not hold and hence that |V (G)| ≥ k+2(Δ(G)+1) ·nH.
It follows immediately that (ii) in Lemma 13.11 applies.

|F | = |R1| = |F1| + |R2|

≥ |R2|
Δ(G) + |R2| = Δ(G) + 1

Δ(G) · |R2| = Δ(G) + 1
Δ(G) · (|F2| + |R3|)

≥ · · · ≥
(

Δ(G) + 1
Δ(G)

)�−1

· |R�|

=
(

Δ(G) + 1
Δ(G)

)�−1

· |F�|

≥
(

Δ(G) + 1
Δ(G)

)�−1

This gives that � ≤ 1 + log Δ(G)+1
Δ(G)

|F | and hence the argument is complete.

13.3 Obtaining the kernel
We now have all the necessary tools for providing the kernels. We reduce the
graph to a ball of small radius around any obstruction core Z and by this obtain
a kernelized instance. Both the size bounds and the correctness of the reduction
rule follows by combining the tools developed during the section. For readability,
we denote diamH by D and Δ(G) by Δ for the remainder of this section.

Rule 13.1. Let (G, k) be an instance of H-Free Edge Editing (H-Free Edge

Deletion). If |V (G)| < k + 2(Δ + 1) · nH we output (G, k). Otherwise, we find
an obstruction core Z of G and return (G[B(Z, r)], k) where r = D · (1 + log Δ+1

Δ
k).

The rule can clearly be applied in polynomial time; From Observation 13.3, we
find Z in polynomial time and then it only remains to compute a breadth-first
search from Z to depth r. This is the only rule and it is applied once. Thus
the returned kernelized instance is either (G, k) or (G[B(Z, r)], k), which yields a
proper kernel. We proceed now to prove that the rule is sound (Lemma 13.13)
and that the kernel indeed is a polynomial kernel (Lemma 13.14) before we wrap
up this section with Theorem 32.

Lemma 13.13. Let (G, k) be an instance of H-Free Edge Editing (H-Free

Edge Deletion) and (G′, k) the instance obtained when applying Rule 13.1 to
(G, k). Then (G, k) is a yes-instance if and only if (G′, k) is a yes-instance.

Proof. It follows immediately from G′ being an induced subgraph of G that if (G, k)
is a yes-instance, then so is (G′, k). For the other direction, let (G′, k) be a yes-
instance and let Z be the obstruction core of G obtained when applying Rule 13.1.
Let F be an optimal solution of (G′, k) and construct the layer decomposition
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F1, . . . , F� and the core extensions Zi with respect to Z and F in G. It follows
from Lemmata 13.8 and 13.12 that Z+ is contained in G′. We observe that
by construction Z is a valid obstruction core in G′ and F1, . . . , F� a valid layer
decomposition of F in G′. It follows from Lemma 13.7 that F1, . . . , F� forms a
partition of F . By assumption it holds that G′[Z+] ⊕ F is H-free. And since
G′[Z+] = G[Z+] it follows by Lemma 13.6 that G ⊕ F is H-free.

The following lemma shows that the kernel given by the rule, is actually a
polynomial kernel.

Lemma 13.14. Let (G, k) be an instance of H-Free Edge Editing (H-Free

Edge Deletion) and (G′, k) the instance obtained when applying Rule 13.1 to
(G, k). Then the number of vertices in G′ is at most

6n2
H|H�|ΔD+2k1+D(Δ+1) ln(Δ).

Proof. If |V (G)| < k + 2(Δ + 1) · nH ≤ 6nHΔk, the result follows immediately.
Otherwise, by Observation 13.3 we can assume that |Z| ≤ n2

H|H�|((Δ+1)+2k+1).
If Δ = 1 it holds that |B(Z, r)| ≤ 2|Z| ≤ 2n2

H|H�|(2k + 3) ≤ 6n2
H|H�|k. From now

on, we assume Δ ≥ 2 and we will use the bound |Z| ≤ 6n2
H|H�|Δk. Observe that

|B(Z, r)| ≤ |Z|Δr+1 and hence it remains to bound Δr+1. First, we obtain the
following

Δr+1 = Δ
1+D(1+log Δ+1

Δ
k)

= ΔD+1Δ
D·log Δ+1

Δ
k

= ΔD+1ΔD·logΔ k/ logΔ( Δ+1
Δ )

= ΔD+1kD/ logΔ( Δ+1
Δ ).

Since Δ ≥ 2 we can apply Lemma 12.4 to obtain |Z| ≤ ΔD+1kD(Δ+1) ln(Δ). It
follows immediately that

|B(Z, r)| ≤ |Z|Δr+1

≤ 6n2
H|H�|ΔkΔD+1kD(Δ+1) ln(Δ)

= 6n2
H|H�|ΔD+2k1+D(Δ+1) ln(Δ).

Theorem 32. For every H both H-Free Edge Deletion and H-Free Edge

Editing admit kernels with at most kO(Δ log(Δ)) vertices on graphs of maximum
degree Δ.

Proof. The result follows immediately from Lemmata 13.13 and 13.14.
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Chapter 14

Hardness for completion

This chapter is devoted to proving that for the completion operation, there is no
hope for a general polynomial kernelization result on bounded degree graphs, even
when the target graph class is characterized by a finite sets of forbidden connected
graphs. To this aim, we give a finite set H of connected graphs for which H-Free

Edge Completion does not admit a polynomial kernel unless NP ⊆ coNP/poly.
The result here is purely a classification result, as it will be clear that the size of
H—albeit finite—is quite large. We will throughout this chapter refer to H-Free

Edge Completion with the intended meaning that H is a finite set of connected
forbidden induced subgraphs determined later.

We use or-cross-composition and reduce from Cubic Planar Vertex

Cover. In this problem we are given a planar cubic graph G (i.e., δ(G) =
Δ(G) = 3), and an integer k′ and asked to find a vertex cover of size k′, that is,
decide whether vc(G) ≤ k′.

(a) Selector tree
forbidden

(b) Selector tree
ok

(c) Duplicator for-
bidden

(d) Selector tree
forbidden

Figure 14.1: The selector tree gadget (on the left) and the duplicator gadget (on
the right). The former has two possible completions, either to the left, or to the
right. The latter (the duplicator) has only one legal completion, adding both
edges.
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Outline

We will define four base graphs. These graphs will be our main building blocks, and
they are all non-planar, in the way that they contain, as a minor, a K5 or a K3,3.
This means that we do not have to worry that they will appear in our problem
instance to Cubic Planar Vertex Cover, whose graphs are all planar. The
base graphs will all be added to H together with all their supergraphs, except for
a few supergraphs. These supergraphs will act as selectors, or as propagators or
duplicators when only one completion is allowed. The size of H will be bounded by
the sum of all possible completions for each of the base graphs. The base graphs
are the following:

(i) Selector tree (Figure 14.1a, one of the allowed completions is depicted in
Figure 14.1b)

(ii) Duplicator gadget (Figure 14.1c, the unique allowed completion is depicted
in Figure 14.1d)

(iii) Propagator gadget (Figure 14.2a, the unique allowed completion is depicted
in Figure 14.2b)

(iv) Vertex selector gadget (Figure 14.2c, two of the allowed completions are
depicted in Figures 14.2d and 14.2e)

(a) Propa-
gator for-
bidden

(b) Propa-
gator ok

(c) Vertex
selector forbid-
den

(d) Vertex se-
lector ok

(e) Vertex se-
lector ok

Figure 14.2: The propagator gadget (on the left) and the vertex selector gadget
(on the right). The propagator has as purpose to simply separate two gadgets.
The vertex selector gadget is the final gadget used in the vertex cover reduction.
Three completion of the latter gadget is allowed, shortcutting either the left or the
right edge, or shortcutting both, corresponding to adding one or two endpoints of
an edge to the vertex cover.

Let USEL be the selector tree gadget as depicted in Figure 14.1a. We define USEL↑
to be the set of all supergraphs of USEL except the two graphs isomorphic to the
completed selector tree, depicted in Figure 14.1b. For the three other base graphs,
we do the same thing; Let UDUP be the duplicator gadget and UDUP↑ all supergraphs
except the one depicted in Figure 14.1d. Finally we construct UPRO↑ and UVER↑ for
the propagator and vertex selector gadgets. These sets together comprise H: Let

H = USEL↑ ∪UDUP↑ ∪UPRO↑ ∪UVER↑ .
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The or-cross-composition will take as input t = 2r instances of the NP-complete
problem Cubic Planar Vertex Cover (recall Proposition 12.3) where we may
assume they are on the form

(G1, k′), (G2, k′), . . . , (Gt, k′),

that is the parameter is the same across all instances, in addition to that |V (Gi)| =
|V (Gj)| for all i, j ≤ t, hence also |E(Gi)| = |E(Gj)|. The restriction that t is a
power of two is not necessary—we could attach any cul-de-sac gadget, e.g., the
propagator with an extra edge in the K5, on the end of the selector tree for every
index i > t—but makes the proofs simpler to conceptualize.
We reduce to a single instance of H-Free Edge Completion (G, k) with budget
k = log t + k′ + 3m̂ − 1, where m̂ is the smallest power of two that is at least
m = |E(Gi)|. The graph G will have a single induced obstruction. The budget will
be tight with log t edges forced in the selector gadget, selecting instance (Gi, k′),
then 3m̂ − 1 edges will be used to construct the graph copy Ĝi. The remaining
part of the budget is the k′ edges corresponding to a vertex cover of Gi. Hence
k = (|Gi| + log t)O(1).

14.1 Selector Tree
In this section we describe how to construct a selector tree that will be used in
the or-cross-composition. For now, let us fix t to be the number of instances
provided as input to the reduction, and let G1, . . . , Gt be the cubic planar graphs.
Furthermore, denote by k′ the budget for the input instance. We may assume that
t is a power of two. Let USEL be the graph depicted in Figure 14.1a. Denote by
v1 and v2 the two top vertices of USEL. Denote the vertices on the bottom on the
path (including endpoints) between the bicliques with a1, b2, a2, b1, in order.

Let T be a complete binary tree on t/2 = 2r−1 leaves. Replace each leaf node
�i with Ui, a copy of USEL. Note that this is one Ui for each two instances, i.e.,
we have twice as many instances as we have leaves. For each two siblings U1 and
U2 in the tree, replace its parent v by Uv and identify v1, v2 of U1 with a1 and a2,
and equivalently, identify v1, v2 of U2 with b1 and b2. The tree construction T is
depicted in Figure 14.3. Finally, for every Ui, except the one corresponding to the
root, we remove the edge v1v2.

We define h(T ) to be the height of T , i.e., h(T ) = log(t) (see Figure 14.3).

Lemma 14.1. The constructed selector tree has degree bounded by 5.

Proof. It is easy to verify that the vertices with maximum degree in T are the
vertices corresponding to a1 and b1, i.e., the vertices of K3,3 identified with top
vertices in a child. These have degree 5.

Definition 14.2. A solution F of (T, k) is said to select i if the �i/2�th leaf has
its corresponding a1a2 (or b1b2 if i is even) in F .



124 CHAPTER 14. HARDNESS FOR COMPLETION

Figure 14.3: The selector tree T is a complete binary tree with nodes replaced by
copies of USEL. For an input t (e.g. t = 16 in this case), we construct the complete
binary tree with t/2 leaves. The tree has height h(T ) = log(t) = 4 and needs a
budget of 4.

Lemma 14.3. Given an instance (T, h(T )) of H-Free Edge Completion, the
following holds: (T, h(T )) is a yes-instance, and (T, h(T ) − 1) is a no-instance.

Proof. By strong induction on h(T ). Let h(T ) = 1, i.e., we have one copy of USEL.
We know that USEL is forbidden, and that U can be eliminated by adding one edge.
This concludes the base case.

Suppose the statement is true for all h(T ′) ≤ n−1. Construct T with h(T ) = n
by taking two copies of T ′ of height h(T ) − 1 and attaching them to a new root
Ur. Clearly, again, we can take any solution of one of the subtrees and add a
corresponding edge for Ur selecting the subtree with the solution. Suppose now
that T had a solution of size h(T ) − 1 = h(T ′). We know that the root Ur must
have one edge. But then h(T ′) has a solution of size h(T ′) − 1, contradicting the
induction hypothesis. See Figure 14.3.

With the tightness proven, we are ready to state the main lemma of the selector
tree:

Lemma 14.4 (Selector lemma). Given an instance (T, h(T )) of H-Free Edge

Completion, any solution F of size at most h(T ) selects exactly one i.

Proof. As witnessed in the proof above, every solution is on the form of a path
from root to a leaf. For a budget of h(T ) edges, we can select exactly one leaf,
which is the i in the statement.

From Lemmata 14.3 and 14.4 we get the interface we wanted from this section;
a tree T constructed as above, together with the corresponding budget, must be
handled in one specific way, by adding one edge in all constructed USELs in a path
from a leaf to the root.
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Corollary 14.5. A budget of log(t) = h(T ) is sufficient and necessary to eliminate
all obstructions from T .

14.2 Instance Activator

In this section, we create for a given m, an instance activator M which consists of
one propagator on the top, m̂ − 1 duplicators, and then m̂ new propagators. The
first propagator will be the interface to the instance selector tree in the previous
section, attached to an appropriate place in the selector tree. In particular, the
two top vertices will be identified with a1 and a2 (or b1 and b2) in a leaf of the
selector tree. The m̂ bottom propagators will add edges in a single instance that
is to be activated by the choice of i.

We construct the graph Mi for every i ≤ t by creating a binary tree of
duplicators, copying the choice of i from the selector tree without increasing the
degree of the constructed graph above 5. A propagator is positioned on top of the
tree and attached to the selector tree. Finally, to every leaf of the binary tree we
also attach a propagator. The construction Mi is displayed in Figure 14.4.

Figure 14.4: Instance activator Mi for m̂ = 4, with budget b = 11 = 3m̂ − 1.

Lemma 14.6. When the ith propagator gadget is activated, all m̂ edges out of Mi

are activated and this uses budget 2(m̂ − 1) + 1 + m̂ = 3m̂ − 1, not counting the
activation edge on the top.

Proof. The propagator gadget (Figure 14.2a) has only one possible completion
(Figure 14.2b), and the same holds for the duplicator gadget (Figure 14.1c, the
completion is depicted in Figure 14.1d). This implies that once the top propagator
is activated, all edges in every duplicator will be added, and finally, again, all the
m̂ propagators will be activated. This sums up to the claimed budget.
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14.3 Cubic Planar Vertex Cover reduction
With the instance activator Mi and hence m̂ edges that can be forced inside the
instance at hand, we are ready to construct the actual vertex cover reduction.
Let (Gi, k′) be an instance of Cubic Planar Vertex Cover. We are to
construct an instance Pi such that, when activated, any successful completion
corresponds to a vertex cover in Gi. This is done as follows: First, we add Gi to
Pi. Then, for every vertex v ∈ V (Gi) we add a vertex v̂ and a K5 to Pi. Finally,
we connect v to the K5 via a path of length 2 and v̂ directly to a different vertex
of the constructed clique. See Figure 14.5a.

For every edge uv ∈ E(Gi) we select a unique bottom propagator of the
instance activator Mi and identify the two vertices û and v̂ with the two bottom
vertices of the propagator. We say that the instance Gi is activated if the selector
tree selected i and hence the instance activator Mi was completed. Furthermore,
we say that Pi is activated, or completed into P̂i, if for for every edge uv in E(Gi)
it holds that the edge ûv̂ was added by the solution.

Lemma 14.7. When Gi is activated, Pi must be completed into P̂i in any minimal
completion.

Proof. By Lemma 14.4 we know that the selector tree selects exactly one i. When
the i’th instance activator is activated, it follows by Lemma 14.6 that all output
edges of the corresponding Mi was completed by the solution. By construction, Pi

is then activated.

Ĝi

Gi

(a) The planar graph gad-
get Pi before the edges of
Gi has been added to Ĝi.

Ĝi

Gi

(b) The completed graph,
with edges added to Ĝi.
This depicts P̂i.

Ĝi

Gi

(c) The completed graph,
with edges added to Ĝi

and the vertex cover. This
depicts P̂i with vc.

Figure 14.5: The vertex cover gadget. On the left, Pi, the graph before the edges
of Ĝi have been added. In the middle, the graph P̂i, when the edges of Ĝi have
been added. On the right, the completed P̂i with the vertex cover solution.

Lemma 14.8. For (Gi, k) of Cubic Planar Vertex Cover the constructed
graph Pi has Δ(Pi) ≤ 5.
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Proof. Every vertex of Gi is of degree three and the corresponding vertices in
Pi is of degree 4. The vertices between V (Gi) and the K5’s are of degree 2 and
the vertices in the K5 of degree 5. Last, we consider the copies of the vertices of
V (Gi). We observe that every v̂ has one neighbor in Pi and one neighbor in Mi.
The result follows immediately.
Lemma 14.9. Pi is H-free.
Proof. Since every forbidden structure contains as a subgraph either a K5 or
a K3,3, we know that neither Gi nor Ĝi contains an obstruction since these graphs
are both planar. Hence the obstructions must use the newly introduced vertices.
Observe, that the only obstructions that contain K5’s with only two neighbors is
the vertex selector and some of its super graphs. However, in these obstructions
all vertices are contained in at least one cycle, which is not true for the vertices
on the paths between V (Gi) and the K5’s in Pi.
Lemma 14.10. P̂i has exactly one obstruction per edge in Gi.
Proof. By the same argument as above, namely that each K5 have degree at
most two to the outside, we know that the obstructions appearing in P̂i must be
instances of the vertex selector. Furthermore, it must utilize exactly two of the
K5’s inserted above two vertices u and v in V (Gi). Last, for the paths between
the K5’s to be of the correct length, both uv and ûv̂ must be connected in P̂i.
Lemma 14.11. (P̂i, k′) is yes for H-Free Edge Completion if and only of
Gi has a vertex cover of size k′.
Proof. The first thing we want to observe is that for any obstruction using vu
and v̂û, adding an edge vv̂ or uû is sufficient to eliminate the obstruction, and
furthermore does not create any new obstructions. The latter holds since any
obstruction must be on the form vu and v̂û and K5s between v and v̂, and u and
û. For the former statement, the following, even stronger statement holds: For
any vertex v ∈ Gi, adding the edge vv̂ will eliminate every obstruction in which v
and v̂ is.

With those two observations, we are ready to prove the lemma statement. In
the forwards direction, let (P̂i, k′) be a yes-instance with F a solution. Since there
is one obstruction per edge, and any solution will be of the form ⋃

v∈V (F )∩V (Gi){vv̂},
we will show that ⋃

v∈V (F )∩V (Gi){v} is a vertex cover of Gi. Suppose there is an
edge uv which has not been covered by a vertex. Then uv and ûv̂ together with
the K5’s form an obstruction. This contradicts the assumption that F was a
solution and concludes the forwards direction.

In the reverse direction, let C be a vertex cover of Gi of size at most k′. For
each vertex v ∈ C, add the edge between v and v̂, its corresponding vertex in
Ĝi. We claim that this graph is H-free. Suppose there is still an obstruction.
This obstruction has form uv and ûv̂ with K5’s between. There are three allowed
completions of the obstruction, namely of {uû}, {vv̂}, and {uû, vv̂}. However,
none of them has been added by the construction, hence u /∈ C and v /∈ C. It
follows that C is not a vertex cover since uv is an edge.
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G1 G2 G3 G4

Ĝ1

Figure 14.6: A complete reduction G for four graphs G1, G2, G3, G4. However, in
these examples, the graphs are subcubic, and does not have the same number of
edges. The intuition for the gadget is that if k′ = 1 and G1 has a vertex cover of
size 1, then we can chose to complete the edges such that we solve G1.

14.3.1 Wrapping up the cross-composition
We now combine the gadgets from the previous sections, the selector tree from
Section 14.1, the instance activator from Section 14.2 and the vertex cover reduction
from the previous section, Section 14.3. The goal is to have the tree T activate
one instance activator Mi, which in turn adds all the edges of Ĝi in a vertex cover
reduction Pi, thus constructing P̂i. This finally creates one induced copy of the
forbidden vertex selector gadget (Figure 14.2c) for each edge of Gi.

Lemma 14.12. Let G be the constructed instance above for input (G1, . . . , Gt, k).
Then Δ(G) = 5.

Proof. First, observe that any vertex inside an instance activator is of degree at
most 5. The remaining vertices are covered by Lemmata 14.1 and 14.8.

Lemma 14.13. If (Gi, k′) is a yes-instance, then FT (the solution selecting i)
together with the edges FM of the instance activator Mi and a solution Fi for Gi

is a solution of G.

Proof. Invoke Lemmata 14.4, 14.6 and 14.11.

Lemma 14.14. Let (G, k) be a yes-instance constructed from the reduction with
k = log t + k′ + 3m̂ − 1 and F a minimal solution of size at most k. Then there is
an i such that:
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G1 G2 G3 G4

Ĝ1

Figure 14.7: A completed reduction G where we have selected G1 to be the instance
we want to solve, and chosen the universal vertex of G1 as our vertex cover. The
budget is exactly k′ = log t + 2m + k.

• F = Fi ∪ FT ∪ FM and

• Gi, k′ is a yes-instance of Vertex Cover

Proof. Corollary 14.5 showed that it is necessary and sufficient with a budget of
log t to eliminate all obstructions from T . Furthermore, Lemma 14.4 showed that
there is exactly one i such that Gi is activated. When Gi has been activated, we
need, by Lemma 14.6 to add 3m̂ − 1 edges to Mi. Finally, by Lemma 14.7 we are
left with a completed P̂i, which by Lemma 14.11 is completable using at most k′

edges if and only if Gi is a yes-instance for Cubic Planar Vertex Cover.

From the discussions in this section, it is clear that given a set of t = 2r many
graphs G1, . . . , Gt and a natural number k′, we can construct in polynomial
time an instance (G, k) which is a yes-instance for H-Free Edge Completion

if and only if there is an i ≤ t such that (Gi, k′) is a yes-instance of Cubic

Planar Vertex Cover. This is the or-equivalence part of the definition
of or-cross-composition (Definition 1.10). The second part of the definition is
that the parameter value must be polynomially bounded, and this is clear since
k ≤ (m̂ + k′)O(1) + log t ≤ |Gi|O(1) + log t. That is, (G, k) is subject to or-cross-
composition. As we observed in Lemma 14.12, Δ(G) = 5, and hence applying
Theorem 4 yields the following theorem.
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Theorem 33. There exists a finite set H such that H-Free Edge Completion

does not admit a polynomial kernel, even on input graphs of maximum degree 5,
unless NP ⊆ coNP/poly.



Chapter 15

Hardness for degenerate graphs

In this chapter, we prove that, unless NP ⊆ coNP/poly, there is no polynomial
kernel for C11-Free Edge Deletion even on 2-degenerate graphs. We use
or-cross-composition and reduce from Cubic Planar Vertex Cover. We
first give an equivalent annotated version of the problem and after this we only
consider instances of this problem. The annotated version has an extra input,
which is a subset R of the edge set of the input graph, such that the edges in R
are forbidden to be a part of any valid solution.

15.1 Annotated version
We now give an annotated version of the problem at hand, allowing us to make
certain edges undeletable. The input to this problem will be a triple, (G, k, R),
where G and k are as before, and R is the set of edges we are not allowed to delete.
We also note that this is not a parameterized problem of the form G × N, but this
is only a technicality.

Input: k
Question: Is there an F ⊆ E(G) of size at most k with F ∩ R = ∅ such

that G − F is C11-free?

Annotated C11-Free Edge Deletion parameterized by G, k, R ⊆ E(G)

When we say that F is a solution of an instance (G, k, R) of Annotated C11-Free

Edge Deletion, it is implicit that |F | ≤ k and hence may not be explicitly
mentioned. The following construction gives a parameterized reduction from
Annotated C11-Free Edge Deletion to C11-Free Edge Deletion. The
construction is depicted in Figure 15.1.

Construction

Given an instance (G, k, R) of Annotated C11-Free Edge Deletion, we
output an instance (GR, k) of C11-Free Edge Deletion as follows: For every

131
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edge {u, v} ∈ R, add k vertices adjacent to only u and v, and k paths of eight
vertices with the endpoints adjacent to u and v, respectively.

v

u

Figure 15.1: The edge {u, v} is in R. The edge is made a chord to k number of
edge disjoint C11s. Only two such C11s are displayed in the figure.

The input graph of the construction is an induced subgraph of the output graph of
the construction. Hence, we identify every vertex and edge of the input graph with
the corresponding vertex and edge of the output graph. The following observation
shows that the newly introduced vertices cannot be a part of any induced C11 in
any subgraph of GR if all edges in R are part of the subgraph.

Observation 15.1. Let (G, k, R) be an instance of Annotated C11-Free Edge

Deletion. Let (GR, k) be obtained by applying the construction described above on
(G, k, R). Let E ′ ⊆ E(GR) be such that E ′ ∩ R = ∅. Let x be any vertex introduced
in the construction. Then, x is not a part of any induced C11 in GR − E ′.

Proof. For a contradiction, assume that there is an induced C11 with a vertex
set C in GR − E ′ such that x ∈ C. Let {u, v} be the edge in G such that x is a
part of a C11, with the chord {u, v}, introduced in the construction. Since x ∈ C
and C induces a C11 in GR − E ′, C has a subset C ′ which contains all the vertices
in the path containing u, v and x (with the end points u and v). Since {u, v} ∈ R,
by assumption, {u, v} /∈ E ′. Hence, C ′ induces either a C3 or a C10 in GR − E ′.
Hence, C does not induce a C11 in GR − S.

Lemma 15.2. Annotated C11-Free Edge Deletion is parameter equivalent
to C11-Free Edge Deletion.

Proof. We need to give a strong parameterized reductions from C11-Free Edge

Deletion to Annotated C11-Free Edge Deletion and Annotated C11-

Free Edge Deletion to C11-Free Edge Deletion. In the reverse direction,
let (G, k) be an instance of C11-Free Edge Deletion. It is straight forward to
verify that (G, k) is a yes-instance of C11-Free Edge Deletion if and only if
(G, k, ∅) is a yes-instance of Annotated C11-Free Edge Deletion.

In the forward direction, let (G, k, R) be an instance of Annotated C11-Free

Edge Deletion. Apply the construction described above on (G, k, R) to obtain
(GR, k). Clearly, the construction can be applied in polynomial time. We need to
prove that (G, k, R) is a yes-instance of Annotated C11-Free Edge Deletion

if and only if (GR, k) is a yes-instance of C11-Free Edge Deletion. Let (G, k, R)
be a yes-instance with a minimum solution F . We claim that GR − F is C11-free.
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For a contradiction, assume that there exists an induced C11 with a vertex set C in
GR −F . Since G−F is an induced subgraph of GR −F , an induced C11 in GR −S
must have a vertex x introduced in the construction, which is a contradiction
by Observation 15.1. Conversely, assume that (GR, k) is a yes-instance with a
minimum solution FR. Since G is an induced subgraph of GR and GR − FR is
C11-free, G − FR is C11-free.

The following lemma shows that the construction described above does not alter
the degeneracy of the graph.

Lemma 15.3. Let (G, k, R) be an instance of Annotated C11-Free Edge

Deletion such that dgy(G) ≥ 2. Let (GR, k) be obtained by applying the con-
struction described above on (G, k, R). Then, dgy(GR) = dgy(G).

Proof. Let dgy(G) = d ≥ 2. All the vertices in GR which are newly introduced by
the construction have degree two. Deleting all of them from GR gives G. Therefore,
since dgy(G) ≥ 2, dgy(GR) = dgy(G).

Lemma 15.2 and Lemma 15.3 make sure that it is enough to prove the kernelization
lower bound of Annotated C11-Free Edge Deletion on degenerate graphs
to prove the same for C11-Free Edge Deletion. Corollary 15.4 directly follows
from both these lemmas.

Corollary 15.4. For every d ≥ 2, C11-Free Edge Deletion admits polynomial
kernelization on d-degenerate graphs if and only if Annotated C11-Free Edge

Deletion admits polynomial kernelization on d-degenerate graphs.

Proof. By Lemma 15.2, the two problems are parameter equivalent, and by
Lemma 15.3, this holds even when restricting the input to degenerate graphs.
Hence, it follows immediately that C11-Free Edge Deletion admits a polyno-
mial kernelization on d-degenerate graphs if and only if Annotated C11-Free

Edge Deletion admits a polynomial kernelization on d-degenerate graphs.

We note that we work solely with Annotated C11-Free Edge Deletion from
this point on.

15.2 Selector tree
In this section, we describe how to construct a selector tree that will be used in
the cross composition later.

Consider a complete binary tree Tr with t = 2r−1 leaves, where r is the height
of T . For every non-leaf vertex v in Tr arbitrarily identify a child of v as the first
child of v and the other child as the second child of v. The basic building block
of the selector tree is a C11. Consider a labeling of vertices in a C11 from v1 to
v11 such that vi is adjacent to v(i mod 11)+1, for 1 ≤ i ≤ 11. Replace each vertex
in Tr with a labeled C11. The C11 replacing the root vertex is the root-C11 and
those C11s replacing the leaf vertices are leaf-C11s. Let u be any vertex in Tr. Let
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the C11 introduced by replacing u has the vertex set U . We use the notations Cu

and CU analogously to denote this C11. Let u be a non-leaf vertex in Tr. Let U be
the labeled vertex set of C11 replaced for u. Let u1 and u2 be the first and second
child of u respectively in Tr. Let U1 and U2 be the vertex sets of C11s replaced
for u1 and u2 respectively. Then CU is called the parent-C11 of both CU1 and CU2 .
Similarly, CU1 and CU2 are called first child-C11 and second child-C11 respectively
of CU . How CU1 and CU2 are glued to CU is described below:

• Identify v1 and v4 of the U1 with v7 and v6 of U respectively.

• Identify v1 and v4 of the U2 with v10 and v9 of U respectively.

v8

v3 v2

v1v4

v5
v6 v10

v9v7

v11

Figure 15.2: C11 - the basic building block of the selector tree and a valid labeling
of its vertices. The edges {v6, v7} and {v9, v10} are the first deletable edge and the
second deletable edge of the C11 respectively.

Let the graph obtained from Tr by the process described above be T . We call T
a selector tree. For every C11 C, we call the edges {v6, v7} and {v9, v10} as the
first deletable edge and the second deletable edge respectively of C. Let RT be the
set of all edges in T other than the first and second deletable edges of every C11.
We call every edge in RT non-deletable and every edge in E(T ) \ RT deletable.
Root-C11 is at level 1 and the leaf-C11s are at level r in T . Let A be a parent-C11
of a C11 B. Then, if B is at level �, then A is at level � − 1. Figure 15.3 depicts
the structure of T when r = 3.

Lemma 15.5. Let T be a selector tree. Then, T is 2-degenerate.

Proof. Deleting all vertices with degree two from T gives a matching, constituted
by the deletable edges.

Consider a path P = (u1, u2, . . . , ur) from a leaf u1 to the root ur of a complete
binary tree Tr such that ui+1 is the parent of ui for 1 ≤ i ≤ r − 1. We call such a
path as a leaf-root path of Tr. Based on P , we define two sets of edges E1 and E2
of the selector tree T . Let Ui denotes the set of vertices of the C11 introduced
by replacing the vertex ui, for 1 ≤ i ≤ r. For every Ui, for 2 ≤ i ≤ r, if ui−1
is the first child of ui, then both E1 and E2 contain the first deletable edge of
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Figure 15.3: The selector tree T when r = 3. Every edge other than the bold
edges is in RT .

CUi
and if ui−1 is the second child of ui, then both E1 and E2 contain the second

deletable edge of CUi
. Additionally, E1 contains the first deletable edge of CU1

and E2 contains the second deletable edge of CU1 . We call E1 and E2 as the first
solution and second solution of (T, r, RT ) based on P . Next, we prove that E1
and E2 are in fact solutions of (T, r, RT ).

Lemma 15.6. Let T be a selector tree constructed from a complete binary tree Tr

for some r ≥ 1. Let P = (u1, u2, . . . , ur) be a leaf-root path in Tr and let E1
and E2 are the first solution and second solution respectively of (T, r, RT ) based
on P . Then, |E1| = |E2| = r and T − E1 and T − E2 are C11-free.

Proof. Since both E1 and E2 have exactly one edge from the set of C11s at every
level of T , |E1| = |E2| = r. We prove that E1 is a solution of (T, r, RT ) by
induction on r. The same arguments apply for E2. If r = 1, then T is a C11
and E1 contains its first deletable edge. Hence, T − E1 is C11-free. Assume that
the argument is true when a selector tree T is obtained from Tr−1. Now, let T be
obtained from Tr. Without loss of generality, assume that u1 is the first child of u2.
Delete all vertices with degree two in T of the leaf-C11s to obtain T ′. Clearly, T ′

is isomorphic to a selector tree obtained from Tr−1 and P ′ = (u2, . . . , ur) is a
leaf-root path in Tr−1. Let E ′

1 be the first solution of (T ′, r − 1, RT ′) based on P ′.
Clearly, E ′

1 ⊆ E1. By the induction hypothesis, T ′ − E ′
1 is C11-free. It is straight

forward to verify that T − E ′
1 has a single induced C11 formed by the vertex set U1

of Cu1 . This single induced C11 is killed by the first deletable edge e (which is part
of E1) of CU1 . Since deleting e does not create any induced C11 in T , T − E1 is
C11-free.

We label the deletable edges in the leaf C11s in T from e1 to e2r in an arbitrary
order. We call them as the deletable leaf edges of T .
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Definition 15.7. Let T be a selector tree obtained from a complete binary tree Tr

as described above for some r ≥ 1. A subset of edges E ′ of T selects an integer i
if deletable leaf edge ei is in E ′.

Lemma 15.8. Let T be a selector tree constructed from Tr as described above for
some r ≥ 1, and let (T, r, RT ) be an instance of Annotated C11-Free Edge

Deletion. Then:

(i) Let E ′ be a subset of edges of T such that T − E ′ is C11-free. Then E ′ selects
an integer i, for some i ∈ [1, 2r].

(ii) For any integer i ∈ [1, 2r], there exists a solution E ′ of (T, r, Rt) selecting
the integer i.

(iii) Let E ′ be a subset of edges of T such that T − E ′ is C11-free. Then |E ′| ≥ r.

Proof. (i) Since the root-C11 is an induced C11 in T , |E ′| > 0. For a contradiction,
assume that E ′ does not contain any deletable leaf edge. Let � be the maximum
level such that E ′ has an edge e from a C11 at level �. Without loss of generality
assume that e is the first deletable edge of a C11 formed by a vertex set U . Let U ′

be the vertex set of the first child-C11 of CU . Since CU ′ is in the level � + 1, E ′

does not contain any edge from it. Hence U ′ induces a C11 in T − E ′, which is a
contradiction.

(ii) Assume that the deletable leaf edge ei is an edge in a leaf-C11 CU with
the vertex set U . Let u be the vertex in Tr such that u in Tr is replaced by CU

in T . Let P be a path from u to the root vertex in Tr. Let E1 and E2 be the first
and second solution respectively of (T, r, RT ) based on P . Clearly, either E1 or E2
contains ei. By Lemma 15.6, both E1 and E2 are solutions of (T, r, RT ). Hence
either E1 or E2 selects i.

(iii) We apply induction on r. When r = 1, T is a C11 and hence |E ′| = 1.
Assume that the statement is true when the selector tree T ′ is obtained from Tr−1.
Since T ′ is an induced subgraph of T , there must be a subset of edges E ′′ of T ′ such
that E ′′ ⊆ E ′ and T ′ − E ′′ is C11-free. By the induction hypothesis, |E ′′| ≥ r − 1.
By (i), E ′′ selects an integer g ∈ [1, 2r−1] in T ′. Let the deletable leaf edge eg of T ′

be the edge in a leaf-C11 CUg with a vertex set Ug. Without loss of generality,
assume that eg is the first deletable edge of CUg . Then there is an induced C11 in
T − E ′′ formed by the first child-C11 of CUg . Hence |E ′| ≥ r − 1 + 1.

15.3 Cubic Planar Vertex Cover reduction
We introduce a star gadget for each instance of Cubic Planar Vertex Cover.
A star gadget is a union of four edge disjoint P3s where the P3s share a single
endpoint. The shared endpoint will be called the root vertex of the star gadget.
The four vertices in the star gadget with degree one will be called the leaf vertices.
The gadget is shown in Figure 15.4. Using this gadget, we give a polynomial
time reduction from Cubic Planar Vertex Cover to Annotated C11-Free
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Edge Deletion. This will be used in the or-cross-composition to be described
in the next section.

Figure 15.4: The star gadget. The vertex with degree four is called the root vertex
and the vertices with degree one are called leaf vertices of the star gadget.

Reduction. Let (G, k) be an instance of Cubic Planar Vertex Cover.
Obtain a four-coloring χ of G by using Proposition 2.1. We can safely assume
that G has at least four vertices and χ uses exactly four colors. Let the four colors
be {c1, c2, c3, c4}. The four leaf vertices of the star gadget are colored using the
colors c1, c2, c3 and c4 respectively. We make a vertex in G and a leaf vertex in
star gadget adjacent if both are of same color. We subdivide every edge in G by
replacing it with a path of length five. Let the resultant graph be G†. Let R† be
the set of all edges in G† except the edges whose one endpoint is in the star gadget
and the other endpoint is in G. This completes the reduction.

The set of original G vertices in G† is denoted by VG. Vtwo denotes the set of
vertices in G† originated by subdividing the edges in G. All the vertices in G†

obtained by subdividing an edge {u, v} (including u and v) is denoted by S{u,v}.
Vstar denotes the vertices in the star gadget. For a vertex v ∈ VG, we denote the
vertex in Vstar adjacent to v by s(v). The vertices in the path of length four in
G†[Vstar] with the colored end points x and y is denoted by P{x,y}.

Lemma 15.9. Let (G, k) be an instance of Cubic Planar Vertex Cover. Let
(G†, k, R†) be obtained by the reduction described above. A vertex set C ⊆ V (G†)
induces a C11 in G† if and only if C is S{u,v} ∪ P{s(u),s(v)}, where {u, v} is an edge
in G.

Proof. Clearly, for any edge {u, v} in G, S{u,v} ∪ P{s(u),s(v)} induces a C11 in G†.
Since the girth of G is at least three and every edge in G is subdivided into a
path of length five, G†[VG] has girth at least 15. Hence G†[VG] does not have an
induced C11. Since the star gadget has only nine vertices, G†[Vstar] does not have
an induced C11. Hence, every induced C11 in G† must contain vertices from Vstar

and vertices from VG ∪ Vtwo. Let C be a set of vertices which induces a C11 in G†.
It is straight forward to verify that C contains exactly six vertices S{u,v} from VG,
where {u, v} is an edge in G and C must be of the form S{u,v} ∪ P{s(u),s(v)}.

Lemma 15.10. Let (G, k) be an instance of Cubic Planar Vertex Cover.
Let (G†, k, R†) be obtained by using the reduction from (G, k) as described above.
Then, (G†, k, R†) is a yes-instance of Annotated C11-Free Edge Deletion

if and only if (G, k) is a yes-instance of Cubic Planar Vertex Cover.
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Proof. Let (G†, k, R†) be a yes-instance of Annotated C11-Free Edge Dele-

tion. Let E ′ be a solution of size at most k of (G†, k, R†). Let V ′ be the set of
all vertices in VG such that for every vertex v′ ∈ V ′, there is an edge {u, v′} in E ′.
We claim that V ′ is a vertex cover of size at most k of (G). Since every edge in E ′

has one endpoint in VG and the other endpoint in Vstar, |V ′| ≤ k. By Lemma 15.9,
for every edge {u, v} in G, there is a C11 induced by C = S{u,v} ∪ P{s(u),s(v)}. Since
{u, s(u)} and {v, s(v)} are the only deletable edges, either of them must be in E ′.
Hence, for every edge {u, v} in G, either u or v is in V ′.

Conversely, let (G, k) be a yes-instance of Cubic Planar Vertex Cover.
Let V ′ be a vertex cover of size at most k of G. Let E ′ = {{u, s(u)} : u ∈ V ′},
i.e., E ′ is the set of edges between vertices in V ′ and the vertices in Vstar. By
Lemma 15.9, every induced C11 with a vertex set C in G† corresponds to an edge
{u, v} in G and is of the form S{u,v} ∪ P{s(u),s(v)}. For every edge {u, v} in G, E ′

contains either {u, s(u)} or {v, s(v)}. Hence, E ′ kills all the original induced C11s
in G†. It is straight forward to verify that deleting E ′ from G† does not introduce
new induced C11s.

Lemma 15.11. Let (G, k) be an instance of Cubic Planar Vertex Cover.
Let (G†, k, R†) be obtained by the reduction described above. Then, G† is 2-
degenerate.

Proof. Deleting all vertices with degree two in G† results in a graph which is
a disjoint union of star graphs (K1,s for s ≥ 0). Hence, for any set of vertices
V ′ ⊆ V (G†), G†[V ′] induces a graph having a vertex with degree at most two.

Let (G, k) be an instance of Cubic Planar Vertex Cover. Let (G†, k, R†) be
obtained by the reduction applied on (G, k) as described above. Introduce four
edges in G† where the one endpoint of the edges is the root vertex of the star
gadget in G† and the other endpoints of the four edges are the four leaf vertices
of the star gadget respectively. Let the graph obtained be G‡. The four newly
introduced edges are deletable. Hence, the set of non-deletable edges of G‡ is
R‡ = R†. We call this process short-circuiting of G†.

Lemma 15.12. Let (G, k) be an instance of Cubic Planar Vertex Cover.
Let (G†, k, R†) be obtained by applying the reduction described above. Short-circuit
G† to obtain G‡. Then:

(i) There is no induced C11 in G‡.

(ii) G‡ is 2-degenerate.

Proof. (i) By Lemma 15.9, every induced C11 in G† has a vertex set S{u,v} ∪
P{s(u),s(v)} where {u, v} is any edge in G. By short-circuiting, the distance between
s(u) and s(v) becomes two and hence every original induced C11s are destroyed.
It is straight forward to verify that short-circuiting does not introduce new C11s.
(ii) Deleting all vertices of degree two from G‡ results a forest, which is 2-degenerate.
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(a) The reduction from an instance
of Cubic Planar Vertex Cover

to an instance of Annotated C11-

Free Edge Deletion. Here, the
input graph is a K4. This graph is
denoted by G†.

(b) Short-circuiting an instance
of Annotated C11-Free Edge

Deletion obtained by the reduc-
tion. This graph is denoted by G‡.

15.4 Wrapping up the cross-composition
Here, we give an or-cross-composition of Cubic Planar Vertex Cover

instances into an instance of Annotated C11-Free Edge Deletion.

Construction. Let {(Gi, k)}, for 1 ≤ i ≤ 2r (for some r > 1) be a set of
2r instances of Cubic Planar Vertex Cover. Let T be a selector tree as
constructed in Section 15.2 (from a complete binary tree Tr) with 2r deletable
leaf edges and let RT be the set of non-deletable edges in T obtained by the
construction. For each (Gi, k), apply the reduction described in Section 15.3 to
obtain an instance (G†

i , k) of Annotated C11-Free Edge Deletion. Short-
circuit (as described in Section 15.3) each G†

i to obtain G‡
i . For 1 ≤ i ≤ 2r, connect

G‡
i with the ith deletable leaf edge {ui, vi} of T by the following steps:

• Introduce a path of length two between every leaf vertex of the star gadget
in G‡

i and ui.
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• Introduce a path of length five between the root vertex of the star gadget in
G‡

i and vi.

• Introduce a path of length three between ui and vi.

Let G be the constructed graph. Let R be ⋃
R‡

i ∪ RT ∪ RN , where RN is the set
of all edges introduced in the above steps. This completes the construction.

Figure 15.5: or-cross-composition. For convenience, all the Cubic Planar

Vertex Cover instances are shown as K4. Here, r = 3 and all except the bold
edges are in R.

Lemma 15.13. Let (G, k + r + 4, R) be obtained by applying the construction
described above on 2r instances (Gi, k) of Cubic Planar Vertex Cover, for
some r > 1. Then G is 2-degenerate.

Proof. Deleting all vertices with degree two introduced in the construction of G
described above, gives a graph which is a disjoint union of G‡

i and T . By
Lemma 15.5, T is 2-degenerate and by Lemma 15.12 (ii), G‡

i is 2-degenerate
for 1 ≤ i ≤ 2r.

The next two lemmata prove the “or” part of the or-cross-composition.

Lemma 15.14. Let {(Gi, k)} be the set of 2r (for some r > 1) instances of Cubic

Planar Vertex Cover. Let (G, k + r + 4, R) be obtained from {(Gi, k)}s and
a selector tree T (obtained from a complete binary tree Tr in Section 15.2) by the
construction described above. For some j, such that 1 ≤ j ≤ 2r, let (Gj, k) be a
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yes-instance of Cubic Planar Vertex Cover. Then (G, k + r + 4, R) is a
yes-instance of Annotated C11-Free Edge Deletion.

Proof. Let (G†
j, R†

j, k) be the Annotated C11-Free Edge Deletion instance
obtained by the reduction from (Gj, k) described in Section 15.3. Let Vj be a
vertex cover of size at most k of Gj and let Fj be the corresponding solution of
(G†

j, R†
j, k) as given by the proof of Lemma 15.10. By Lemma 15.8 (ii), there exists

a solution for (T, r, RT ) selecting the integer j. Let FT be such a solution. Let
Ej = {e1, e2, e3, e4} be the set of edges used to short-circuit G†

j (in Section 15.3) to
obtain G‡

j. Then, we claim that F = FT ∪ Fj ∪ Ej is a solution of (G, k + r + 4, R).
Since |FT | ≤ r and |Fj| ≤ k, we obtain |F | ≤ k + r + 4. We need to prove

that G − F is C11-free. Since FT selects j, FT contains the jth deletable leaf edge
ej = {uj, vj} of T . Deleting ej from G creates four induced C11s corresponds
to the four leaf vertices of the star gadget of G‡

j. Each of the induced C11 is
constituted by {xleaf , xroot}, P{xroot,vj}, P{vj ,uj} and P{uj ,xleaf }, where xleaf is a leaf
vertex and xroot is the root vertex of the star gadget in G‡

j and P{y,z} denotes the
path introduced between y and z in the construction described above. Each of
these induced C11s has a single unique deletable edge {xleaf , xroot}, which is the
edge used to short circuit G†

j to obtain G‡
j in Section 15.3. Hence every edge in Ej

must be in every solution of G − FT . Deleting Ej from G leaves an induced G†
j.

Now, G†
j − Fj is C11-free. It is straight forward to verify that G − F does not have

any induced C11 having at least one vertex from T and at least one vertex from
G‡

j and there is no induced C11 in G − F containing at least one vertex from G‡
i

for i �= j. Hence G − F is C11-free.

Lemma 15.15. Let {(Gi, k)} be the set of 2r (for some r > 1) instances of Cubic

Planar Vertex Cover. Let (G, k + r + 4, R) be obtained from {(Gi, k)}s and T
(obtained in Section 15.2 from a complete binary tree Tr) by the construction
described above. Let (G, k + r + 4, R) be a yes-instance. Then there exists some
integer j, such that 1 ≤ j ≤ 2r, and (Gj, k) is a yes-instance of Cubic Planar

Vertex Cover.

Proof. Let F be a solution of size at most k+r+4. Since T is an induced subgraph
of G, there exists a set of edges E ′ of T such that E ′ ⊆ F and T − E ′ is C11-free.
By Lemma 15.8 (iii), |E ′| ≥ r. By Lemma 15.8 (i), E ′ selects an integer j ∈ [1, 2r]
in T . Hence, T − E ′ has four induced C11s corresponding to four edges used to
short-circuit G† to form G‡. It implies that those four edges must be in F . Hence
there must be an Fj ⊆ F such that |Fj| ≤ k and G†

j − Fj is C11-free. Now by
Lemma 15.10, (Gj, k) is a yes-instance of Cubic Planar Vertex Cover.

Theorem 34. The problem C11-free Edge Deletion does not admit a polyno-
mial kernel on degenerate graphs unless NP ⊆ coNP/poly.

Proof. By Corollary 15.4, it is enough to prove the incompressibility of Anno-

tated C11-Free Edge Deletion. Lemmata 15.14 and 15.15 prove the “or”



142 CHAPTER 15. HARDNESS FOR DEGENERATE GRAPHS

part of the cross-composition of Cubic Planar Vertex Cover into Anno-

tated C11-Free Edge Deletion described in this section. Since the parameter
of the cross-composed instance is k + r + 4 where r is log t where t is the number
of instances of Cubic Planar Vertex Cover used for the cross-composition,
the “pb” condition is satisfied. By Proposition 12.3, Cubic Planar Vertex

Cover is NP-complete. Now, the theorem follows from Theorem 4.



Chapter 16

Hardness for editing on
degenerate input

In this section we sketch how to modify the reductions from Chapters 14 and 15
to push the edge editing kernelization hardness to 2-degenerate graphs. We define
sd(G) for a graph G to be a graph G′ which is G with every edge subdivided once.
Observe that for any graph G, sd(G) is 2-degenerate.

Theorem 35. There is a finite set of connected graphs H such that H-Free

Edge Editing does not admit a polynomial kernel, even on 2-degenerate graphs,
unless NP ⊆ coNP/poly.

This theorem gives us lower bounds for 2-degenerate graphs in Table 12.1 in
Chapter 12.

Proof sketch. We use insights obtained in Chapters 14 and 15; Combining
the annotated problem definition used to show kernelization lower bounds for
edge deletion on 2-degenerate graphs together with the forbidding of all possible
supergraphs from the kernelization lower bounds for the completion problem allow
us to force an editing problem to become a deletion problem.

The combination of insights referred to above is as follows. We may use the
reduction from Chapter 15 to combine t = 2r instances of Cubic Planar Vertex

Cover into one instance of H-Free Edge Editing of size polynomial in n + t
with budget polynomially bounded in k+log t. We use the supergraph construction
from Chapter 14 to enforce that no edges are added: Instead of using C11 we
take a C11 but with one vertex replaced by a sd(K3,3); Instead of the subdivided
four-leafed star, we take the subdivided four-leafed star where the center vertex
is replaced by sd(K5). Finally, we need a gadget to force no edge being deleted.
Consider the graph sd(K6 − e), where K6 − e is the clique on six vertices with one
edge deleted. These constructions ensure that our forbidden graphs never appear
in a planar graph, and we may therefore treat the selector gadget and vertex cover
gadgets separately from the planar graphs, and furthermore, all these graphs are
2-degenerate.
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Having the obstruction set H to be all supergraphs of the base graphs, except
that we allow sd(K6 + e) + v1v2, where v1 and v2 are the two degree four-vertices.
We have managed to turn H-Free Edge Editing into a problem of the form
H-Free Edge Deletion, and we have also made it possible to consider an
annotated version, where we disallow the deletion of certain edges.
What remains is to show how to model the vertex cover, but this is easily achievable
in the same manner as was done in Chapter 14. This concludes the proof sketch
of Theorem 35.



Chapter 17

Concluding remarks

We have proved that for any finite set H of forbidden induced subgraphs, both
H-Free Edge Editing and H-Free Edge Deletion admit polynomial kernel-
izations on bounded degree input graphs. This extends and generalizes the result
of Aravind et al. [ASS14], who showed that H-Free Edge Deletion admits a
polynomial kernel when H is connected on bounded degree input.
We also provided two lower bounds:

(i) For a finite set H of connected graphs, H-Free Edge Completion does
not admit a polynomial kernel on bounded degree input graphs, unless
NP ⊆ coNP/poly.

(ii) Under the same assumption, C11-Free Edge Deletion does not admit a
polynomial kernel on 2-degenerate graphs, nor does H-Free Edge Editing.

Since there is a finite set H of connected graphs such H-Free Edge Completion

does not admit a polynomial kernel, we encourage a further study of these problems.
We leave it as an open problem whether there is a dichotomy for when H-Free

Edge Completion admits a polynomial kernel, restricted to bounded degree
graphs and connected, forbidden induced subgraphs.

There are several problems that do not admit subexponential time algo-
rithms on bounded degree graphs, assuming ETH. In particular, Komusiewicz and
Uhlmann [KU12] proved that neither Cluster Editing nor Cluster Dele-

tion admits 2o(k)nO(1) time algorithms on graphs of bounded degree, assuming
ETH. Furthermore, Drange and Pilipczuk [DP15] obtained similar results for
Trivially Perfect Editing and Drange et al. [DRVS15] for Star Forest

Editing, both on bounded degree input graphs. We note that all the target
graph classes mentioned above can be characterized by a finite set of forbidden
induced subgraphs. A more fine-grained study of the various sets of obstructions
in relation to admitting subexponential time algorithms on graphs of bounded
degree would be interesting.
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Part V

Bandwidth
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Chapter 18

Introduction

A layout, or linear ordering, of a graph G is a bijection α : V (G) → {1, . . . , |V (G)|},
and the bandwidth of the layout α is the maximum over all edges uv ∈ E(G) of
|α(u) − α(v)| ≤ b. The bandwidth of G is the smallest integer b such that G has
a layout of bandwidth b. In the Bandwidth problem we are given as input a
graph G and an integer b and the goal is to determine whether the bandwidth of
G is at most b. In the optimization variant we are given G and the task is to find
a layout with smallest possible bandwidth.

The problem arises in sparse matrix computations, where given an n × n
matrix A and an integer k, the goal is to decide whether there is a permutation
matrix P such that PAP T is a matrix whose all non-zero entries lie within the k
diagonals on either side of the main diagonal. Standard matrix operations such
as inversion and multiplication as well as Gaussian elimination can be sped up
considerably if the input matrix A can be transformed into a matrix PAP T of
small bandwidth [GL81].

Bandwidth is one of the most well-studied NP-complete [GJ79a, Pap76]
problems. The problem remains NP-complete even on very restricted subclasses
of trees, such as caterpillars of hair length at most 3 [Mon86]. Furthermore, it
is NP-hard to approximate the bandwidth within any constant factor, even on
trees [DFU11]. The best approximation algorithm for Bandwidth on general
graphs is by Dungan and Vempala [DV01], this algorithm has approximation ratio
(log n)3. For trees Gupta [Gup00] gave a slightly better approximation algorithm
with ratio (log n)9/4, while for caterpillars a O( log n

log log n
)-approximation [FT09] can

be achieved.
Polynomial-time algorithms for the exact computation of bandwidth are

known for a few graph classes including caterpillars of hair length at most
2 [APSZ81], cographs [Yan97], interval graphs [KV90] and bipartite permuta-
tion graphs [HKM09].

One could argue that the Bandwidth problem is most interesting when the
bandwidth of the graph is very small compared to the size of the graph. Indeed,
when the bandwidth of G is constant the matrix operations discussed above can
be implemented in linear time. For each b ≥ 1 it is possible to recognize the
graphs with bandwidth at most b in time 2O(b)nb+1 using the classic algorithm of
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Saxe [Sax80]. At this point it is very natural to ask how much Saxe’s algorithm
can be improved. We will prove that assuming the Exponential Time Hypothesis
of Impagliazzo, Paturi and Zane [IPZ01, IP01], no significant improvement is
possible, even on very restricted subclasses of trees. In particular we show that
assuming ETH, there is no f(b)no(b) time algorithm for Bandwidth on trees of
pathwidth at most 2. The proof also implies that Bandwidth is W [1]-hard on
trees of pathwidth at most 2.

As a counterweight to the bad news we give the first approximation algorithm
for Bandwidth of graphs of bounded treelength whose approximation ratio
depends only on the bandwidth b, and not on the size of the graph. Specifically,
we give a polynomial time algorithm that given as input a graph G of treelength
at most � and an integer b, either correctly concludes that the bandwidth of G is
greater than b or outputs a layout of quality at most (b�)O(b2�).

A graph G has treelength � if there exist a tree decomposition of G such that
for every pair of vertices in a bag, the distance between them in G is at most �.
This measure was introduced by Dourisboure and Gavoille [DG07]. The graphs of
bounded treelength are a rich graph class containing among others trees, chordal
graphs and graphs of bounded hyperbolicity [CDE+08]. In order to obtain our
result, we define a new graph measure based on tree decompositions called induced
treelength, where the graph induced by each bag of the decomposition is to be
of diameter at most �. We then prove that induced treelength and treelength
differ by at most a factor 3 and that we can approximate induced treelength in
polynomial time.

As a critical subroutine for our main algorithm we develop an approximation
algorithm for trees. More specifically, we give a polynomial time algorithm that
given as input a tree T and integer b either correctly concludes that the bandwidth
of T is greater than b or outputs a layout of width at most bO(b). This algorithm
again, utilizes an approximation algorithm for the bandwidth of caterpillars with
ratio O(b3). Our algorithm for trees outperforms the (log n)9/4-approximation
algorithm of Gupta [Gup00] whenever b = o( log log n

log log log n
). Our algorithm is the first

parameterized approximation algorithm for the Bandwidth problem on trees,
that is an algorithm with approximation ratio g(b) and running time f(b)nO(1).
A parameterized approximation algorithm for the closely related Topological

Bandwidth problem has been known for awhile [Mar08b], while the existence
of a parameterized approximation algorithm for Bandwidth, even on trees was
unknown prior to this work.

An interesting aspect of our approximation algorithm is the way we lower
bound the bandwidth of the input graph G. It is well known that the bandwidth
of a graph G is lower bounded by its pathwidth, and by its local density. One might
wonder how far these lower bounds could be from the true bandwidth of G. It was
conjectured that the answer to this question is “not too far”, in particular that
any graph with pathwidth c1 and local density c2 would have bandwidth at most
c3 where c3 is a constant depending only on c1 and c2. Chung and Seymour [CS89]
gave a counterexample to this conjecture by constructing a special kind of trees,
called cantor combs, with pathwidth 2, local density at most 10, and bandwidth
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approximately log n
log log n

. Our approximation algorithms output one of these three
obstructions in the case that the bandwidth is large and hence shows that the only
structures driving up the bandwidth of graphs of bounded treelength, trees and
caterpillars, are indeed pathwidth, local density and cantor comb-like subgraphs.
Hence, we give a characterization of the graphs of bounded treelength that also
has bounded bandwidth.

Related Work

There is a vast literature on the Bandwidth problem. For an example the
problem has been extensively studied from the perspective of approximation algo-
rithms [DFU11, DV01, Fei00, FT09, Gup00], parameterized complexity [BFH94,
GHK+11, Sax80], polynomial time algorithms on graph classes [APSZ81, HKM09,
KV90, Yan97], and graph theory [CCDG82, CS89]. We focus here on the study
of algorithms for Bandwidth for small values of b.

Dragan, Köhler and Leitert [DKL14] gave a constant factor approximation of
Bandwidth for graphs of bounded pathlength, the linear version of treelength.
We note that none of the results we obtain are covered by this. In particular trees,
and hence graphs of bounded treelength, are highly non-linear. However, graphs
of bounded pathlength are also of bounded treelength.

Following the 2O(b)nb+1 time algorithm of Saxe [Sax80], published in 1980, there
was no progress on algorithms for the recognition of graphs of constant bandwidth.
With the advent of parameterized complexity in the late 80’s and early 90’s [DF99]
it became an intriguing open problem whether one could improve the algorithm of
Saxe to remove the dependency on b in the exponent of n, and obtain a f(b)nO(1)

time algorithm.
In a seminal paper from 1994, Bodlaender, Fellows, and Hallet [BFH94] proved

that a number of layout problems do not admit fixed-parameter tractable algo-
rithms unless FPT = W[t] for every t ≥ 1, a collapse considered by many to be
almost as unlikely as P = NP. In the same paper Bodlaender, Fellows, and Hal-
let [BFH94] claim that their techniques can be used to show that a f(b)nO(1) time
algorithm for Bandwidth would also imply FPT = W[t] for every t ≥ 1. Downey
and Fellows ([DF99], page 468) further claim that the techniques of [BFH94] imply
that even a fixed-parameter tractable algorithm for Bandwidth on trees would
yield the same collapse. Unfortunately a full version of [BFH94] substantiating
these claims is yet to appear.

18.1 Preliminaries
Linear orderings and bandwidth

A linear ordering α of a set S is a bijection between S and [|S|]. Given a
graph G = (V, E) and a linear ordering α over V , the bandwidth of α denoted
bw(G, α) = maxuv∈E |α(u) − α(v)|. And furthermore, the bandwidth of G denoted
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bw(G) = min{bw(G, α) | α is a linear ordering over V }. We say that α is a k-
bandwidth ordering of a graph G if bw(G, α) ≤ k. And we say that a bandwidth
ordering α of G is optimal if bw(G, α) = bw(G).

Sparse orderings

Let u and v be a pair of vertices of a graph G and α an ordering of V (G). We then
say that u is left of v in α if α(u) < α(v) and that u is right of v if α(v) < α(u). A
sparse ordering β of a graph G is an injective function from V (G) to Z. And the
bandwidth of a sparse ordering β of G, denoted bw(G, β) = maxuv∈E |β(u) − β(v)|.
We say that a linear ordering α of G is a compression of a sparse ordering β of
G if for every pair of vertices u, v in G it holds that β(u) < β(v) if and only if
α(u) < α(v).

Inclusion intervals

For a graph T , an integer b and a b-bandwidth ordering α we provide the following
definitions. Given a set of vertices Y ⊆ V (T ) we define the inclusion interval of
Y , denoted I(Y ) as [min α(Y ), max α(Y )] and for two vertices u and v we define
I(u, v) as I({u, v}) or equivalently [min{α(u), α(v)}, max{α(u), α(v)}]. Given a
subgraph H of T we define I(H) as I(V (H)). Whenever necessary, we will use
subscripts to avoid confusion about which ordering is considered.

Stretched path and passing through

For a subpath P̂l = {v1, . . . , vl} of a graph T we say that P̂l is stretched with
respect to a b-bandwidth ordering α if |α(vi+1) − α(vi)| = b for every i ∈ [1, l).
Observe that as α is injective, stretched implies either α(v1) < α(v2) < · · · < α(vl)
or α(vl) < · · · < α(v2) < α(v1). Furthermore, we say that a path P passes through
some subgraph H in α if I(H) ⊆ I(P ).

Lower bounds

Definition 18.1 (Local density). For a graph G we define the density of G as

ds(G) = |V (G)| − 1
diam(G) .

Based on this we define local density as ρ(G) = maxG′⊆G ds(G′).

The following proposition will be used repeatedly in our arguments.

Proposition 18.2 (Folklore). For every graph G it holds that ρ(G) ≤ bw(G) and
pw(G) ≤ bw(G).
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18.2 Overview of the algorithms
We will provide parameterized approximation algorithms for Bandwidth on
increasingly general graph classes. We start out with an algorithm for caterpillars.
Then, utilizing the algorithm for caterpillars, we give a parameterized approxi-
mation algorithm for trees. Finally, using the algorithm for trees, we devise an
algorithm for graphs of bounded treelength.

Given a caterpillar T and a positive integer b, CatAlg either returns a 48(b+1)b2-
bandwidth ordering of T or an obstruction forcing the bandwidth of T above b.
To obtain this we define an obstruction for bandwidth on caterpillars inspired by
Chung & Seymour [CS89] and search for these objects. Based on the appearance of
these objects in T we construct an interval graph such that either the interval graph
has low chromatic number or the bandwidth of T is large. If the interval graph
has low chromatic number we use a coloring of this graph to give a low bandwidth
layout of T . Together with the algorithm we also obtain a characterization of
caterpillars of low bandwidth.

Given a tree T and positive integers b and p such that pw(T ) ≤ p, TreeAlg
either returns a (7680b6)b-bandwidth ordering of T or an obstruction to the
bandwidth of T being low. The high level outline of the algorithm is as follows.
The algorithm first decomposes the tree into several connected components of
smaller pathwidth and recurses on these. Then it builds a host graph for T that
is a caterpillar and applies CatAlg on the host graph. Finally, it combines the
result of CatAlg with the results from the recursive calls, to give a (7680b6)b-
bandwidth ordering of T . Also for trees, we obtain a characterization for having
low bandwidth. We note that the bandwidth of the obtained ordering can be
lowered to (1152b3)b if we do not require the algorithm to output an obstruction.

Last, we give an algorithm TreeLengthAlg that given a graph G of treelength
at most � and a positive integer b either returns a (b�)O(b2�)-bandwidth ordering of
G or an obstruction to G having bandwidth at most b. The algorithm applies the
algorithm for trees on the decomposition tree and plugs the content of the bags into
the returned ordering. Furthermore, we prove that obstructions obtained when
computing the bandwidth of the tree decomposition carry over to obstructions in
the input graph. More specifically, we prove that if a graph of bounded treelength
has bounded pathwidth, bounded local density and does not contain a large skewed
Cantor comb as a subgraph, it does have bounded bandwidth.
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Chapter 19

Caterpillars

The bandwidth of caterpillars is, somewhat surprisingly, a well-studied problem.
Assmann et al. [APSZ81] proved that the bandwidth of caterpillars of stray length
1 and 2 is polynomial time computable. Monien [Mon86] completed the story of
polynomial time computability by proving that Bandwidth on caterpillars of
stray length 3 is NP-hard. Furthermore, Haralambides et al. [HMM91] gave an
O(log n) approximation algorithm, which later was improved to O(log n/ log log n)
by Feige & Talwar [FT09]. We now give the first parameterized approximation
algorithm of Bandwidth on caterpillars, namely a O(b2)-approximation. In
addition, we give the first characterization of caterpillars of low bandwidth.

19.1 Skewed Cantor combs
Chung & Seymour [CS89] defined Cantor combs. These are very special caterpillars
defined in such a way that they have small local density, but high bandwidth.
The definition of Cantor combs is very strict - it precisely defines the length of all
the paths in the caterpillars. For our purposes we need a more flexible definition
which captures all caterpillars that are “similar enough” to Cantor combs. We
call such caterpillars skewed Cantor combs, and we will prove that they also
have high bandwidth. Our algorithm will scan for skewed Cantor combs as an
obstruction for bandwidth and if none of big enough size are found it will construct
a O(b3)-bandwidth ordering based on the appearance of smaller versions of these
objects.

For positive integers b and k we now define a skewed b-Cantor comb of depth k,
denoted Sb,k inductively as follows: Sb,1 is a path of length one. For the induction
step to be well-defined we mark two vertices of every skewed b-Cantor comb as
end vertices. For an Sb,1 the two vertices are the end vertices. For k > 1 we start
with two skewed b-Cantor combs of depth k − 1, lets call them S and S ′ and
furthermore let x, y and x′, y′ be their end vertices respectively. Connect y to x′

by a path P of length at least two. Furthermore, let Q be a stray connected to an
internal vertex v of P . Mark x and y′ as the end vertices of the construction and
let B be the path from x to y′. The path B will be referred to as the backbone of

155
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the skewed Cantor comb. Let d be the maximum distance from v to any vertex
in B. If Q has at least 2bd vertices we say that the graph described is a skewed
b-Cantor comb of depth k. And furthermore, that the skewed Cantor comb is
centered around the stray Q and that Q is a level k stray in the skewed Cantor
comb. For skewed Cantor combs such that k = b, we will also use the simplistic
notation Sb for Sb,b.

x y x′ y′

. . . . . .

...

...

...

S P S ′

Q

Figure 19.1: A skewed b-Cantor comb of depth 2 for some b.

The goal of the remainder of this section is to prove that the bandwidth of an Sb

is at least b and hence that skewed Cantor combs can be utilized as obstructions
for having low bandwidth. But before we do this, we will prove that for any
optimal bandwidth ordering of any skewed Cantor comb it holds that one of the
edges stretched the farthest is embedded intersecting with the embedding of the
backbone. It seems natural that the bottleneck of the bandwidth is indeed close
to the backbone, as this is where all the vertices of degree more than two are. And
as the lemma below shows, this is indeed the case.

Lemma 19.1. Let S be a skewed b-Cantor comb of depth k with backbone B and
α an optimal bandwidth ordering of S. Then there exists an edge uv of S such
that I(u, v) intersects I(B) and |α(u) − α(v)| = bw(S).

Proof. Let CB be the connected component of S[α−1(I(B))] that contains B.
Observe that S − CB is a collection of paths, with each path being a subpath
of a stray and having exactly one neighbor in CB. We will now construct a new
ordering β based on α. First, for every vertex x ∈ CB we let β(x) = α(x).

Let L contain every vertex u ∈ N(CB) such that α(u) < I(B) and R contain
every vertex v ∈ N(CB) such that I(B) < α(v). Then exhaustively apply the
following rule; if there are vertices u, v ∈ L ∪ R that are connected in S − CB, we
discard the vertex furthest away from CB from its respective set (L or R). Note
that by construction, if two such vertices exists, their distance from CB will be
different. Now, every vertex in V (S) \ (CB ∪ R ∪ L) is connected to exactly one
vertex in R ∪ L. Let L occupy the positions in β immediately to the left of CB in
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the same order as they appear in α. Then similarly embed R in β immediately
to the right of CB. Observe that for every two vertices u and v embedded so far
it holds that |β(u) − β(v)| ≤ |α(u) − α(v)|. Furthermore, let u and v be an edge
stretched the farthest by β so far. Observe that Iβ(u, v) intersects with Iβ(B) and
that |β(u) − β(v)| ≥ max(|L|, |R|).

We will now embed the remaining vertices. Let u be the rightmost vertex of
L with respect to β and observe that since u is of degree at most two and have
exactly one neighbor already embedded, it holds that u has at most one neighbor
not embedded by β. If this neighbor v exists, we embed v at the rightmost position
to the left of L in β and add v to L. Finally, independently of the existence of v,
we remove u from L. Observe that |β(u) − β(v)| ≤ |L| and that v has exactly one
embedded neighbor. We continue this process as long as L is not empty, before
we apply a symmetrical process to R. The process just described will be referred
to as rolling out L and R.

Note that we might have assigned non-positive positions to some vertices while
rolling out L. We fix this by incrementing all assignments of β simultaneously
until all values are positive. After this, we compress β to obtain a proper ordering.

Observe that β is a valid bandwidth ordering. Since no new vertices are
embedded within Iβ(B) while rolling out L and R it still holds that for every edge
uv such that Iβ(u, v) intersects Iβ(B) it follows that |β(u) − β(v)| ≤ |α(v) − α(u)|.
If follows from the argument from the rolling out process that for every edge
uv such that I(u, v) and I(B) are not intersecting, it holds that |β(u) − β(v)| ≤
max(|L|, |R|). This has several implications. First, it follows that bw(S, β) ≤
bw(S, α) and since α is optimal, so is β. Second, it also follows that there exists an
edge uv with Iβ(u, v) intersecting Iβ(B) so that |β(u) − β(v)| = bw(S). And third,
for the very same edge uv, it holds that |β(u)−β(v)| ≤ |α(u)−α(v)|. And due to the
construction it holds that Iα(u, v) intersects Iα(B). And hence there exists an edge
uv such that Iα(u, v) intersects Iα(B) and |α(u) − α(v)| ≥ |β(u) − β(v)| = bw(S).
Due to α being optimal we obtain equality and hence the proof is complete.

We are now ready to prove the main result of this section, namely that skewed
Cantor combs are of large bandwidth. The proof of this lemma is inspired by the
one for Cantor combs given by Chung and Seymour ([CS89], Lemma 2.1).

Lemma 19.2. For b ≥ k ≥ 1, the bandwidth of any Sb,k is at least k.

Proof. Assume for a contradiction that there is a Ŝb,k such that bw(Ŝb,k) < k.
Furthermore, assume without loss of generality that k is the smallest such value
with respect to b. Observe that k > 1. Let α be an ordering of Ŝb,k of bandwidth
at most k − 1. Let S, S ′, P and Q be as in the definition of skewed Cantor combs.
By assumption the bandwidth of both S and S ′ are k − 1. Let B, BS and BS′ be
the backbones of Ŝb,k, S and S ′ respectively.

Let β be the compressed version of α when restricted to S. Since α is of
bandwidth k − 1, it follows that β is of bandwidth at most k − 1 and by our
assumption β is an optimal bandwidth ordering of S. By Lemma 19.1 we know
that there exists an edge uv in S such that Iβ(u, v) ∩ Iβ(BS) is non-empty and
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|β(u) − β(v)| = k − 1. It follows that Iα(u, v) ∩ Iα(BS) is non-empty and |α(u) −
α(v)| = k − 1. In the same manner we obtain an edge u′v′ from S ′. Assume
without loss of generality that α(u) < α(v) and that α(u′) < α(v′).

Observe that α−1(Iα(u, v)) ⊆ S and that α−1(Iα(u′, v′)) ⊆ S ′. It follows
directly that the inclusion intervals has an empty intersection with P . Let q be the
vertex in N(Q). We can assume without loss of generality that α(v) < α(q), as
otherwise we can reverse α and relabel u, v, u′ and v′ to adhere to the assumptions
above. There are two cases to consider, either α(q) < α(u′) or α(v′) < α(q).

First, we consider the case when α(q) < α(u′). Recall that b ≥ k > 1. It follows
that |E(B)| ≥ 4 and hence that |I(B)| ≤ (k − 1)|E(B)| + 1 < b|E(B)| ≤ |V (Q)|.
It follows that there is a vertex q′ ∈ Q such that α(q′) /∈ I(B). First, we consider
the case when α(q′) < I(B). It follows that α(q′) < α(u) < α(v) < α(q). Since
there is a path from q′ to q disjoint from S, it follows that I(u, v) must contain a
vertex of Q, which is a contradiction to α−1(I(u, v)) ⊆ S. The second case follows
by a symmetrical argument for S ′.

It remains to consider the case when α(v′) < α(q). Recall that that I(u, v) and
I(u′, v′) are disjoint. Again we consider two cases. First, let α(v) < α(u′). We are
then in the situation that α(v) < α(u′) < α(v′) < α(q) and since there is a path
from v to q avoiding S ′ it follows that this path has a non-empty intersection with
I(u′, v′), which is a contradiction. The case α(v′) < α(u) follows by a symmetric
argument and hence the proof is complete.

From now on, whenever talking about an obstruction we are either referring to a
skewed Cantor comb of appropriate size, a graph of high density or a tree of high
pathwidth.

19.2 Directions
Given a caterpillar T and a backbone B = {b1, . . . , b�} we say that B is maximized
if there is no longer backbone of T . We also define pos(P ) for every stray P in
T with respect to B, as the integer i such that P is attached to the vertex bi.
Furthermore, we let |P | denote |V (P )|. We will now, given a stray Q define XQ

and YQ. XQ will contain strays P to the left of Q that can be used to recursively
build a skewed b-Cantor comb around Q. The first bound in the definition below
assures that for a skewed b-Cantor comb SP around P it holds that all of SP is
strictly to the left of Q. The second bound assures that Q is long enough when
considering its distance away from vertices in SP . Similarly, YQ consists of strays
to the right of Q that can be utilized for building a skewed b-Cantor comb around
Q.

Definition 19.3. Let T be a caterpillar, B = {b1, . . . , bk} a backbone of T and b
a positive integer. For every stray Q we let

• XQ =
{
P | pos(P ) + |P |

2(b+1) < pos(Q) and pos(Q) − |Q|
2(b+1) ≤ pos(P ) − |P |

2(b+1)

}
and

• YQ =
{
P | pos(Q) < pos(P ) − |P |

2(b+1) and pos(P ) + |P |
2(b+1) ≤ pos(Q) + |Q|

2(b+1)

}
.
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Let dep be a function from the strays of T with respect to the backbone B into
N such that there is a skewed (b + 1)-Cantor comb centered around Q of depth
dep(Q). The exception is if dep(Q) is 0, then the stray is so short that we ignore it
and we hence make no promises with respect to skewed (b + 1)-Cantor combs. We
will now describe an algorithm FindSCC, that given a caterpillar T , a maximized
backbone B of T and an integer b computes such a function dep. First, for every
stray Q it sets dep(Q) as 2 if |Q| ≥ 4(b + 1) and 0 otherwise. After this, it
searches for a stray Q that is such that both xQ and yQ are at least dep(Q), were
xQ = max dep(XQ) and yQ = max dep(YQ). If such a Q is found, it increases
dep(Q) by one. This process continues until no such stray Q can be found or dep
evaluates to b + 1 for a stray.

Lemma 19.4. Given a caterpillar T , a maximized backbone B and an integer b,
the algorithm FindSCC outputs in O(bn3) time a function dep such that for every
stray Q in T there is a skewed (b + 1)-Cantor comb of depth dep(Q) centered
around Q in T .

Proof. We first prove that the algorithm terminates in O(bn3) time. The initial
set up of evaluating all strays to either 0 or 2 can be carried out in O(n) time.
After this, it iterates over all strays Q in O(n) and for every such stray spends
O(n) time computing xQ and yQ. Hence, we increment the function for one stray
in at most O(n2) time. Since there are at most n strays and the function value
of each of these strays are incremented at most b + 1 times, it follows that the
algorithm terminates in O(bn3) time.

It remains to prove that for every stray Q there is a skewed (b + 1)-Cantor
comb of depth dep(Q) centered around Q in T . We prove this by induction. If
dep(Q) evaluates to 0, no promises are made regarding skewed Cantor combs. If
dep(Q) evaluates to 2 however, there should be a skewed (b + 1)-Cantor comb of
depth 2 centered around Q. Recall that in this case it holds that |Q| ≥ 4(b + 1).
And since the backbone is maximized the distance from N(Q) to a leaf of the
backbone is at least 4(b + 1) ≥ 4. It follows that there is a skewed (b + 1)-Cantor
comb of depth 1 immediately at each side of Q. Observe that this completes the
argument for the initial set up.

We now consider a stray Q such that both xQ and yQ evaluates to k = dep(Q).
There is a stray P in XQ with a skewed (b + 1)-Cantor comb of depth k, from
now on referred to as SP , centered around P . Let dP be the maximum distance
from N(P ) to a vertex on the backbone of SP and recall from the definition of
skewed Cantor combs that dP ≤ |P |/[2(b + 1)]. It follows immediately from the
first bound in the definition of XQ that SP lies entirely to the left of N(Q) on the
backbone B. Let dl

Q be the maximum distance from N(Q) to a vertex in SP . We
need to argue that |Q| ≥ 2(b + 1)dl

Q. From the second condition of XQ we know
that pos(Q) − |Q|

2(b+1) ≤ pos(P ) − |P |
2(b+1) and hence the argument regarding Q can

be finished by the following calculation
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pos(Q) − |Q|
2(b + 1) ≤ pos(P ) − |P |

2(b + 1)
=⇒

|Q|
2(b + 1) ≥ pos(Q) − pos(P ) + |P |

2(b + 1)
=⇒

|Q|
2(b + 1) ≥ pos(Q) − pos(P ) + dP ≥ dl

Q

=⇒
|Q| ≥ 2(b + 1)dl

Q.

By applying a symmetric argument to YQ we get that Q satisfies the requirements
for there being a skewed (b + 1)-Cantor comb of depth k + 1 centered around Q.
Hence it is indeed correct to increment the value of dep(Q).

The reader should note that FindSCC does not detect all skewed Cantor combs.
But, as it turns out, these stricter versions are sufficient for our purposes. Given a
function dep we say that Q is pushed east if xQ ≥ yQ and pushed west otherwise
(xQ < yQ). From now on, we will assume that the function applied when evaluation
whether a stray is pushed west or east, is the depth function calculated by running
FindSCC. We will now build an interval graph that represents the various strays in
the caterpillar. We will use a coloring of this graph to shift the embeddings of the
various strays in such a way that they will not collide. To ease the reading of the
proofs we will use bigb for the expression 48(b + 1)b2 and smallb for the expression
12b2. For the most part, we will only use that bigb is a factor 4(b + 1) larger than
smallb.

Definition 19.5. For a caterpillar T , a maximized backbone B = {b1, . . . , bl} of
T and a positive integer b we define the directional stray graph as the following
interval graph: for every stray P add the interval

• [pos(P )bigb − smallb|P |, pos(P )bigb] if P is pushed west and

• [pos(P )bigb, pos(P )bigb + smallb|P |] otherwise.

We say that an interval originating from a stray pushed west is west oriented and
vice versa. The interval originating from P is said to start at pos(P )bigb.

Lemma 19.6. Let T be a caterpillar, b a positive integer, GI a directional stray
graph of T and x and y two natural numbers such that x < y. Then there is an
algorithm that in time O(n) either concludes that there are
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• at most 2b intervals of length at least y − x in GI starting within [x, y] or

• outputs a graph H ⊆ G such that ds(H) > b.

Proof. First, we check if there are at most 2b intervals starting within [x, y] of
length at least y − x. If this is the case, we output this conclusion. Otherwise,
let K be a set of 2b + 1 intervals of length at least y − x starting within [x, y].
Let x′ be the smallest number such that x ≤ x′ and x′ is divisible by bigb and
y′ the largest number such that y′ ≤ y and y′ is divisible by bigb. Observe that
all intervals in K has their starting point within [x′, y′] by construction. Observe
that if x′ = y′ then deg(T ) ≥ b + 1 and hence we can easily obtain an H ⊆ T with
ds(H) > b. For the rest of the proof we assume x′ < y′.

Consider the minimum connected, induced subgraph H of T containing the
vertices of the strays corresponding to the intervals in K. We will consider H
with respect to the backbone such that the strays of H are exactly the ones
corresponding to intervals in K. Let z = y′ − x′ and observe that every stray in
H contains at least q = z/smallb vertices and that the backbone of H is of length
r = z/bigb. Finally, we remove leaves in H until all strays are of length exactly q
and output H. It remains to argue that ds(H) > b.

ds(H) = |V (H)| − 1
diam(H)

= (2b + 1)q + r + 1 − 1
2q + r

= 2(b + 1)q + r

2q + r

= 2(b + 1) · 4(b + 1)r + r

2 · 4(b + 1)r + r

= 8b2 + 16b + 9
8b + 9

>
8b2 + 9b

8b + 9

= b(8b + 9)
8b + 9 = b

We will now prove that for a caterpillar T , integer b and a corresponding directional
stray graph GI we can either obtain a coloring of GI with few colors or an
obstruction forcing the bandwidth of T above b. We will utilize the coloring later
to obtain an approximation. The argument is based on that if no such coloring
exists, we know that there is a large clique in GI . We process the east oriented
intervals in this clique by decreasing starting value and maintain a skewed b-Cantor
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comb of depth d at the very right of the clique. By applying Lemma 19.6 we either
find a stray at an appropriate distance from the maintained cantor comb that we
use to build a deeper cantor comb or a dense subgraph H ⊆ G. If we find an
appropriate stray, we know since it is pushed east, that there is a corresponding
skewed b-Cantor comb of depth d on the other side of the stray. In this manner
we iteratively build a large skewed (b + 1)-Cantor comb.

Lemma 19.7. Let T be a caterpillar, b a positive integer and GI some directional
stray graph of T . Then there is an algorithm that in O(bn) time outputs either

• a coloring γ of GI using less than smallb colors,

• a graph H ⊆ G such that ds(H) > b or

• a skewed b-Cantor comb Ŝb+1 ⊆ G.

Proof. An optimal coloring γ of GI can be found in O(n) time by Golumbic [Gol04].
If γ uses less then smallb = 12b2 colors, we output it. Otherwise, we know that
there is a number w such that at least 12b2 of the intervals of GI contains w. This
follows from the well-known result that χ(GI) equals the size of the maximum
clique of GI , since GI is an interval graph. Let I be the set of all east oriented
intervals containing w and assume without loss of generality that I is of size at
least 6b2.

Discard the elements of I with the highest starting value and let [x1, y1] be a
discarded element. If we discarded more than 2b elements, we output H = G[N [b�]]
for � = x1/bigb. Observe that H has at least 2b + 2 vertices, a diameter of 2 and
hence density strictly larger than b. Either H was output or we have at least
6b2 − 2b elements left in I. We will start by giving a lower bound on the length of
the intervals in I. Consider an element [x, y] of shortest length in I. By definition
x < x1 ≤ y and by construction x1 − x ≥ bigb. It follows that y − x ≥ bigb and
hence that all elements of I are of length at least bigb.

Let [x2, y2] be a shortest interval in I and recall that the stray P 2 corresponding
to the interval is attached to the backbone vertex bc2 for c2 = x2/bigb. Furthermore,
|P 2| = (y2 − x2)/smallb ≥ bigb/smallb = 4(b + 1). Since the backbone used when
constructing GI is maximized it follows that the distance from bc2 to any endpoint
of the backbone is at least 8 and hence there is an Sb+1,2 centered around bc2 .

Discard all intervals with starting points within [x2 − 2(y2 − x2), y2] in I. By
dividing the interval into five subintervals of equal length and applying Lemma 19.6
to each of the subintervals, we either discarded at most 6b intervals or obtained
a subgraph H ⊆ G with ds(H) > b. If such an H was obtained we output it,
otherwise we continue. Let [x3, y3] be a shortest interval in I and recall that
the stray P 3 corresponding to the interval is attached to the backbone vertex
bc3 for c3 = x3/bigb. We will now argue that P 2 is contained in YP 3 . Since
x3 < x2 − 2(y2 − x2) we know that y2 − x2 < 1

2(x2 − x3). It follows that
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y2 − x2 <
1
2(x2 − x3)

=⇒
2(y2 − x2)

bigb

<
x2 − x3

bigb

=⇒
y2 − x2

2(b + 1)smallb
<

x2

bigb

− x3

bigb

=⇒
|P 2|

2(b + 1) < pos(P 2) − pos(P 3)

=⇒

pos(P 3) < pos(P 2) − |P 2|
2(b + 1) .

And hence the first constraint of being in YP 3 is satisfied. Since x3 < x2 ≤ y3 it
holds that y3 − x3 ≥ x2 − x3. Based on this, we get

y3 − x3 ≥ x3 − x2 >
1
2(x2 − x3) + (y2 − x2)

=⇒
y3 − x3

2(b + 1)smallb
>

x2 − x3

2 · 2(b + 1)smallb
+ y2 − x2

2(b + 1)smallb
=⇒

y3 − x3

2(b + 1)smallb
>

x2 − x3

bigb

+ y2 − x2

smallb
=⇒

|P 3|
2(b + 1) > c2 − c3 + |P 2|

2(b + 1)
=⇒

|P 3|
2(b + 1) + pos(P 3) > pos(P 2) + |P 2|

2(b + 1) .

And hence the second constraint of being in YP 3 is satisfied. Since [x3, y3] is east
oriented it holds that xP 3 ≥ 2 and hence dep(P 3) ≥ 3. It follows by Lemma 19.4
that there is a skewed (b+1)-Cantor comb of depth 3 centered around P 3. Discard
all intervals with starting points within [x3−2(y3−x3), x3] and repeat the argument
to obtain a Sb+1,4. We keep repeating the argument until we obtain a Sb+1 or in
the process discover a subgraph H with density strictly larger then b.
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Notice that we are discarding at most 6b vertices each time, repeating the
procedure b − 1 times and I contains at least 6b2 − 2b > 6b(b − 1) intervals. Each
step of the computation after obtaining the coloring can easily be executed in O(n)
time. The only exception from this is when building the skewed (b + 1)-Cantor
comb, were we identify the skewed Cantor comb to the left of P i. However, this
can be taken care of by storing for each stray the two strays that forced the
increment of its depth. And then, only after completing the iterations we identify
the entire subgraph to be returned. Since at most b − 1 iterations are necessary to
build the required skewed (b + 1)-Cantor comb of depth (b + 1) we end up with a
total running time of O(bn).

19.3 Algorithm, correctness and obstructions
We are now ready to give the approximation algorithm for Bandwidth on
caterpillars. In addition, due to the nature of the algorithm, we will obtain a
sufficient set of obstructions for guaranteeing caterpillars to have low bandwidth.

Algorithm 1: CatAlg
Input: A caterpillar T and a positive integer b.
Output: A 48(b + 1)b2-bandwidth ordering of T or an obstruction H ⊆ T .
Let B = {b1, . . . , bk} be a maximized backbone of T .
Construct the directional stray graph GI of T with respect to B.
Find a minimum coloring of GI .
if χ(GI) ≥ 12b2 then

return an obstruction H ⊆ G.
end
Let α(bi) = bigb(n + i).
Let P be the collection of strays in T with respect to B.
For every stray P in P let C(P ) be the color of the corresponding interval.
for every P ∈ P do

Let p1, . . . , pk be the vertices of P such that dist(B, pi) < dist(B, pi+1)
for every i.
if P is pushed west then

Let α(pi) = bigb[n + pos(P )] + C(P ) − i · smallb for every i.
end
else

Let α(pi) = bigb[n + pos(P )] + C(P ) + (i − 1) · smallb for every i.
end

end
return Compressed version of α.

Lemma 19.8. There exists an algorithm that given a caterpillar T and a positive
integer b in time O(bn3) either returns
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• a 48(b + 1)b2-bandwidth ordering of T ,

• a graph H ⊆ T such that ds(H) > b or

• a skewed b-Cantor comb Ŝb+1 ⊆ T .

Proof. Recall that FindSCC runs in O(bn3) time. Furthermore, by Lemma 19.7
we can obtain a coloring using less then 12b2 colors or an obstruction H in time
O(bn). Observe that every other step of the algorithm trivially runs in O(n) time.
And hence the algorithm runs in O(bn3) time. If when applying the algorithm
from Lemma 19.7 we obtain an obstruction H, we return this H. Otherwise, we
have a coloring of GI using few colors.

We will now prove that α is a sparse ordering of V (T ) of bandwidth at
most bigb = 48(b + 1)b2. It is clear that for any edge uv ∈ E(T ) it holds that
|α(u) − α(v)| ≤ bigb. It remains to prove that α is an injective function. Assume
for a contradiction that there are two vertices u, v such that α(u) = α(v). Observe
that α(u) ≡ 0 mod (bigb) if and only if u is a backbone vertex of T . This comes
from the fact that χ(GI) < 12b2 = smallb and that smallb divides bigb. And since
it is clear from the algorithm that no two vertices of the backbone are given the
same position we can assume that neither u nor v is a backbone vertex. It holds
that α(u) ≡ c(P ) mod (smallb) where P is the stray containing u. Observe that
the algorithm gives unique positions to all vertices from the same stray and hence
u and v must belong to two different strays given the same color. Let Pu be the
stray containing u and Pv the strain containing v. Furthermore, let [xu, yu] and
[xv, yv] be the corresponding intervals in GI . Observe that I(Pu) ⊆ [xu, yu] and
I(Pv) ⊆ [xv, yv] and hence [xu, yu] ∩ [xy, yv] �= ∅, which is a contradiction to the
obtained coloring being a proper coloring.

Theorem 36. There exists an algorithm that given a caterpillar T and a positive
integer b either returns a 48(b+1)b2-bandwidth ordering of T or correctly concludes
that bw(T ) > b in time O(bn3).

Proof. This follows from Lemmata 19.2 and 19.8 together with Proposition 18.2.

Theorem 37. Given a caterpillar T and a positive integer b it either holds that

• bw(T ) ≤ 48(b + 1)b2,

• ρ(T ) > b or

• T contains a Sb+1,b+1 as a subgraph.

Proof. This follows directly from Lemma 19.8.
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Chapter 20

Trees

The aim of this chapter is to give an approximation algorithm for Bandwidth

on trees, namely an (1152b3)b-approximation. This algorithm crucially depends
on the O(b2)-approximation for caterpillars presented in the previous section. In
addition, we provide the first characterization of trees of low bandwidth.

20.1 Recursive path decompositions
In this section we will present some decomposition results crucial for our algorithm.
First we define recursive path decompositions, which will allow us to partition
our graph into several components of slightly lower complexity. The recursive
decomposition is used to call the algorithm recursively on easier instances, and
then combine the layouts of these instances to a low bandwidth layout of the input
tree.

Definition 20.1. Let T be a tree and P, T 1, . . . , T t induced subgraphs of T such
that V (T ) = ⋃

V (T i) ∪ V (P ). We then say that (P, T 1, . . . , T t) is a p-recursive
path decomposition of T if P is a path in T and for every i it holds that

• T i is a connected component of T − V (P ) and

• pw(T i) < p.

Lemma 20.2. Given a tree T of pathwidth at most p, a p-recursive path decom-
position (P, T 1, . . . , T t) of T can be found in O(pn) time.

Proof. It was proven by Skodinis [Sko03] that given a tree T and an integer p
one can find a path decomposition P of T of width p or correctly conclude that
pw(T ) > p in time O(pn). Let X and Y be the leaf bags of P. By standard
techniques we can assume X and Y to be non-empty. Let u, v be two, not
necessarily distinct vertices such that u ∈ X and v ∈ Y . Let P be the path
in T from u to v. Observe that for every bag Z of P it is true that Z ∩ P is
non-empty. Hence, if we remove all the vertices of P from T and P we obtain a
path decomposition of T −V (P ) of width p−1. It follows that for every connected
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component T i of T − V (P ) it holds that pw(T i) ≤ p − 1. To complete the proof,
observe that both P and the connected components of T − V (P ) can be found in
O(n) time by graph traversals.

We will now introduce a caterpillar that can be built given a tree and a p-recursive
path decomposition. This caterpillar is the easier instance mentioned before that
we will utilize as a host graph to insert the embeddings of the smaller instances
into. This caterpillar will have P as its backbone.

Definition 20.3. Let T be a tree and (P, T 1, . . . , T t) a p-recursive path decom-
position of T . We construct the simplified instance TS of T with respect to
(P, T 1, . . . , T t) as follows. First we add P to TS. Then, for every T i we first add a
path P i such that |V (P i)| = |V (T i)| and then we add an edge from one endpoint
of P i to N(T i).

Lemma 20.4. Let T be a tree, (P, T 1, . . . , T t) be a p-recursive path decomposition
of T and TS the corresponding simplified instance, then bw(TS) ≤ 2 bw(T )

Proof. Let α be an optimal bandwidth ordering of T . We will now give an ordering
β of TS such that bw(TS, β) ≤ 2 bw(T, α). For every v ∈ P , let β(v) = 2α(v).

Let W = α(T i) and observe that for every x ∈ W such that y is the smallest
element in W larger than X it follows by the connectivity of T i that y−x ≤ bw(T ).
First, consider the case when at least half of W is less than α(N(T i)). For every
w ∈ W such that w < α(N(T i)), add 2w and 2w + 1 to the initially empty set Z.
Let P i = {p1, . . . , pm} such that dist(P, pj) < dist(P, pj+1) for every j. For j from
1 to m, let β(pj) be the largest value in Z and discard β(pj) from Z. Observe
that for every j it holds that |β(pj) − β(pj+1)| ≤ 2 bw(T ). And furthermore,
|β(p1) − β(N(P i))| ≤ 2 bw(T ). If at least half of W is larger than α(N(T i)) apply
a symmetric construction.

To conclude the argument we need to prove that β never maps two distinct
vertices of TS on the same position. It is easy to verify that this never happens
for two vertices on P or two vertices in the same tree T i. Consider now a vertex
u ∈ V (T i) and a vertex v ∈ V (T j) for i �= j. It follows that β(u)/2 ∈ α(T i) and
β(v)/2 ∈ α(T j), contradicting i �= j. The argument for one vertex in T i and one in
P is identical. We obtain that bw(TS) ≤ bw(TS, β) ≤ 2 bw(T, α) = 2 bw(T ).

The algorithm will utilize the following operation when combining the recursively
built solutions in the host caterpillar. Let T be a graph, v a vertex of T and α a
b-bandwidth ordering of T . Let β′ be a sparse ordering such that for every u ∈ T

β′(u) =
⎧⎨
⎩2[α(v) − α(u)] if α(u) ≤ α(v) and

2[α(u) − α(v)] − 1 otherwise.

and let β be the bandwidth ordering obtained by compressing β′. We then say
that β is α folded around v. Observe that bw(T, β) ≤ 2 bw(T, α).
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20.2 Lifting obstructions
We have already proven that the bandwidth of the simplified instance is closely
connected to the bandwidth of the original instance. During this section, we will
prove that obstructions that occur in the simplified instance can be translated
into obstructions in the original instance. By this, we connect the bandwidth of
the simplified and original instance even more.

Lemma 20.5. Let T be a tree, (P, T 1, . . . , T T ) be a p-recursive path decomposition
of T , TS the corresponding simplified instance and HS a subgraph of TS. There is
an algorithm that in O(n) time outputs H ⊆ T such that ds(H) ≥ ds(HS).

Proof. First, we add the vertices V (HS) ∩ P to H. Then, for every stray P i in
TS and corresponding subtree T i of T , we add |V (HS) ∩ V (P i)| of the vertices
closest to P in T i, to H. Finally, we let H = T [V (H)], or in other words add all
the edges of T between vertices in H to H. This completes the construction of H
and can be carried out in O(n) time.

Observe that |V (HS)| = |V (H)| and hence it remains prove that diam(H) ≤
diam(HS). Let u and v be two vertices of H. If u, v ∈ T i for some i, it follows
immediately that distH(u, v) ≤ |V (H) ∩ V (T i)| − 1 = |V (HS) ∩ V (P i)| − 1 ≤
diam(HS). Otherwise, we let u′ be the vertex farthest away from P in P i ∩ V (H)
if u ∈ T i for some i and u otherwise. Similarly, we obtain a vertex v′. Observe
that the shortest path between u and v has the same intersection with P as
the shortest path between u′ and v′. Furthermore, it holds that distH(u, P ) ≤
distHS

(u′, P ) and similarly that distH(v, P ) ≤ distHS
(v′, P ). It follows immediately

that distH(u, v) ≤ distHS
(u′, v′) and hence that diam(H) ≤ diam(HS).

Lemma 20.6. Let T be a tree, b a positive integer, (P, T 1, . . . , T T ) a p-recursive
path decomposition of T , TS the corresponding simplified instance and Ŝ� ⊆ TS a
skewed �-Cantor comb of depth � were � = 4b2 + 1. There is an algorithm that in
O(n) time either outputs

• a subgraph H ⊆ T such that ds(H) > b or

• a skewed Cantor comb Ŝb+1 ⊆ T .

Proof. First, we consider the case when b = 1 separately. In this case � = 5 and
hence there is a vertex v in TS of degree at least 3. Note that this vertex is in P
and hence also has degree at least 3 in T . Let H = T [NT [v]] and observe that
ds(H) > 1. In this case we output H. For the remainder of the proof we assume
b ≥ 2.

Let P i be a stray of TS that intersects with Ŝ� and let Q = P i[V (P i) ∩ V (Ŝ�)].
First, we argue that if T i has radius r at most |V (Q)|/(2.5b), it follows that
ds(T i) > b. In this case we immediately output H = T i. Since � > b ≥ 2, we know
by the definition of skewed Cantor combs that |V (Q)| ≥ 4� ≥ 68 and hence that
|V (Q)| − 1 ≥ 67|V (Q)|/68. The claim follows directly from the calculation below.
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ds(T i) = |V (T i)| − 1
diam(T i) ≥ |V (Q)| − 1

2r
≥ 67|V (Q)|

136r
≥ 67|V (Q)|

136 |V (Q)|
2.5b

= 67 · 2.5b

136 > b.

We can now assume that the radius of T i is larger than |V (Q)|/(2.5b). It follows
that we can replace the path Q in Ŝ� by a path in T i of at least

|V (Q)|
2.5b

≥ 2�d

2.5b
= 2

(
�

2.5b

)
d

vertices (were d is from the definition of skewed Cantor combs). After doing this
transformation for each stray P i we are left with a skewed ��/2.5b�-Cantor comb
of depth �. And since

l

2.5b
= 4b2 + 1

2.5b
≥ b + 1.

it follows that we did indeed obtain a Sb+1,�. By definition it contains a (b + 1)-
Cantor comb of depth (b + 1) as a subgraph and hence we output this Sb+1. We
note that all of the steps above can be executed in O(n) time.

20.3 Algorithm and Correctness
We are now ready to describe algorithm TreeAlg and prove its correctness. Note
that TreeAlg provides obstructions of low bandwidth and due to this has a worse
approximation ratio than what we get in Theorem 38, when we only require the
algorithm to correctly conclude that bw(T ) > b. The details of this can be found
in the proof of Theorem 38.

Lemma 20.7. Given a tree T and two integers p an b such that pw(T ) ≤ p,
TreeAlg terminates in O(pbn3) time.

Proof. We start by analyzing the time complexity of the computations done in a
specific execution of TreeAlg given T ′, p′, b as input, disregarding the recursive
calls. The calls to CatAlg require O(b|V (T ′)|3) time. Finding a p-recursive path de-
composition can be done in O(p|V (T ′)|) = O(b|V (T ′)|) time by Lemma 20.2. Con-
structing T ′

S can trivially be done in O(|V (T ′)|) time. By Lemmata 20.5 and 20.6
we know that we can build the obstruction H in O(|V (T ′)|) time. And furthermore,
constructing all the β’s require ∑t

i=1 O(|T i|) = O(|V (T ′)|) time. Last, we observe
that constructing α requires O(|V (T ′)|) time. It follows that the time complexity
of the computations done in a specific call to TreeAlg is O(b|V (T ′)|3).

Let n = |V (T )| and T1, . . . , Tl the trees given as input at a specific recursion
level. Observe that T1, . . . , Tl are pairwise disjoint and hence it follows that the
time complexity of a recursion level is ∑l

i=1 O(b|V (T1)|3) = O(bn3). Furthermore,
as p is decreased by one at each recursion level it follows that TreeAlg runs in
time O(pbn3).
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Algorithm 2: TreeAlg
Input: A tree T and positive integers integers p and b such that pw(T ) ≤ p.
Output: A (7680b6)p-bandwidth ordering of T or an obstruction H ⊆ T .
if p = 1 then

return CatAlg(T, b)
end
Find a p-recursive path decomposition (P, T 1, . . . , T t) of T .
Let α1 = TreeAlg(T 1, p − 1, b), . . . , αt = TreeAlg(T t, p − 1, b).
if an obstruction H is returned in one of the recursive calls then

return H
end
Let Ts be the simplified instance of T with respect to (P, T 1, . . . , T t).
Let αs = CatAlg(Ts, 4b2).
if an obstruction HS ⊆ TS is returned then

Build obstruction H ⊆ T from HS.
return H

end
For every i, let βi be αi folded around N(P ) ∩ T i.
For every v ∈ P , let α(v) = αs(v).
For every Pi of Ts and every v ∈ Pi of distance d from P in Ts, let
α(β−1

i (d)) = αs(v).
return α

Lemma 20.8. Given a tree T and positive integers b and p such that pw(T ) ≤ p,
it holds that TreeAlg in time O(pbn3) either returns

• a (7680b6)p-bandwidth ordering of T ,

• a subgraph H ⊆ T such that ds(H) > b or

• a skewed Cantor comb Ŝb+1 ⊆ T .

Proof. The running time follows directly from Lemma 20.7 and hence it remains
to prove the correctness of the algorithm. This we will do by induction on p. For
p = 1 the correctness follows directly from the correctness of CatAlg and hence it
remains to prove the induction step.

First, we consider the case when the algorithm returned an obstruction H.
If this was done after computing α1, . . . , αt, then the obstruction returned from
the recursive computation is also a subgraph of T and can hence be returned as
is. Otherwise, an obstruction HS was returned after applying CatAlg on TS. If
ds(HS) > 4b2 it follows from Lemma 20.5 that we can obtain a subgraph H ⊆ T
with ds(HS) > 4b2. If HS is a skewed 4b2 +1-Cantor comb of depth 4b2 +1, we can
by Lemma 20.6 either obtain an H ⊆ T with ds(H) > b or a skewed (b+1)-Cantor
comb of depth (b + 1) in T .

It remains to consider the case when the algorithm returns a bandwidth
ordering α. Then, by the induction hypothesis αi is a (7680b6)p−1-bandwidth
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ordering of T i for every i. Furthermore, αs is a 3840b6-bandwidth ordering for Ts,
since 48(4b2 + 1)(4b2)2 ≥ 48 · 5b2 · 16b4 = 3840b6. Let u and v be two neighbouring
vertices of T . If u and v are vertices in P it follows from bw(Ts, αs) ≤ 3840b6

that |α(u) − α(v)| ≤ 3840b6. Next, we consider the case when either u or v is a
vertex in P . Assume without loss of generality that u ∈ P and let T j be such
that v ∈ T j. By the definition of βj it follows that βj(v) = 1. It follows that
|α(u) − α(v)| = |αs(u) − αs(w)| where dist(u, w) = 1, and hence u and w are
neighbours in Ts and it follows directly that |α(u) − α(v)| ≤ 3840b6. We will now
consider the case when u and v are vertices of T j for some j. Let u′ be the vertex
in P j of distance β(u) from P and v′ the vertex in P j of distance β(v) from P . It
follows that

|α(u) − α(v)| = |αs(u′) − αs(v′)|
≤ dist(u′, v′)3840b6

= |βj(u) − βj(v)|3840b6

≤ |αj(u) − αj(v)|7680b6

≤ (7680b6)p

completing the proof.

Note that one in the case of p = 1 also could solve the instance exactly by
Assmann [APSZ81], which would slightly reduce the approximation factor.

Theorem 38. There exists an algorithm that given a tree T and a positive integer
b either returns a (1152b3)b-bandwidth ordering of T or correctly concludes that
bw(T ) > b in time O(b2n3).

Proof. Since we are not required to obtain obstructions we apply CatAlg to TS

with 2b instead of 4b2 in TreeAlg. If CatAlg returns 48(2b + 1)(2b)2-bandwidth
ordering we obtain a (1152b3)p-bandwidth ordering by repeating the calculations
from the proof of Lemma 20.8. If it returns an obstruction it follows from
Lemmata 18.2 and 19.2 that bw(TS) > 2b. And hence, by Lemma 20.4 it follows
that bw(T ) > b. Recall that p < b (pw(T ) ≤ bw(T )) and hence the proof is
complete.

Theorem 39. Given a tree T and a positive integer b it holds that either

• bw(T ) ≤ (7680b6)b,

• pw(T ) > b,

• ρ(T ) > b or

• T contains a Sb+1,b+1 as a subgraph.

Proof. If pw(T ) > b we are done. Otherwise, we apply Lemma 20.8.



Chapter 21

Graphs of bounded treelength

In this chapter we give an approximate algorithm for Bandwidth on graphs of
bounded treelength. Namely a (54b�)49b2�-approximation, where � it the treelength
of the input graph and b is the requested bandwidth. In addition we characterize
graphs that have both low treelength and low bandwidth. For the larger part of
this chapter we assume the input graph to be connected and only at the end do
we resolve this. The algorithm is very simple and will apply the algorithm for
trees on a decomposition tree and then utilize this ordering to create an ordering
for the input graph. The main part of this chapter is dedicated to proving that
the various obstructions for trees having low bandwidth can be transformed from
obstruction for the decomposition tree into obstructions of the input graph. But
first, we introduce a new graph measure that will be necessary for our success.

21.1 Induced treelength
In this section we define a new graph measure called induced treelength. In addition
to require that every two vertices in a bag are close in G, we require a witness
of this to be in the bag. In other words, we require the diameter of the graph
induced by every bag to have bounded diameter. This stronger requirement makes
it easier to route obstructions in the decomposed graph, based on obstructions in
the decomposition tree. And as we will prove below, the two measures are closely
related.

Definition 21.1 (Induced treelength). Given a graph G and a tree decomposition
T = (T, X ) of G, we say that T is of length � if for for every X ∈ X it holds that
diam(G[X]) ≤ �. Furthermore, we define the induced treelength of G, denoted
ltl(G), as the minimum length over all tree decompositions of G.

Observation 21.2. For every graph G it holds that tl(G) ≤ ltl(G).

Proof. This follows immediately from the observation that a tree decomposition
of length � is also a tree decomposition of treelength at most �.
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Lemma 21.3. There is an algorithm that given a graph G and a tree decomposition
T of G of treelength �, outputs a tree decomposition T ′ of G such that the length
of T ′ is at most 3� in time (|V (T )| + n)O(1).

Proof. Let G be a graph and T = (T, X ) a tree decomposition of G of treelength
at most �. For a bag X i ∈ X and two vertices u, v ∈ X i we will now construct the
tree decomposition T(i,u,v) = (T, X(i,u,v)) as follows: Fix a shortest path P from u
to v in G. Since the treelength of T is at most �, it follows that the length of P
is at most �. Then, we construct X(i,u,v) as follows: If Xj ∈ X and P are vertex
disjoint, we let Xj

(i,u,v) = Xj. And otherwise, we let Xj
(i,u,v) = Xj ∪ V (P ). In both

cases, we add Xj
(i,u,v) to X(i,u,v). This completes the construction of T(i,u,v). We

would like to point out that both tree decompositions use the same tree T and
that there hence is a natural bijection between the bags in the two decompositions
based on the index j in the construction above.

First, we argue that T(i,u,v) is a valid tree decomposition. The vertex and
edge requirement follow directly from every bag in T(i,u,v) being a superset of the
corresponding bag in T . It remains to argue that the connectivity requirement is
satisfied. Consider a vertex v ∈ V (G). If v is not a vertex in P , then the bags
containing v induce the same subtree in T in both T and T ′. Now, we consider
the case when v is a vertex in P . Let P = (u = x1, x2, xc = v) and observe that
since the edge requirement is satisfied, there is for every j a bag containing both
xj and xj+1. Hence, the subgraph of T induced by the bags having a non-empty
intersection with P is a connected subtree. It follows that T(i,u,v) is a valid tree
decomposition of G.

For every j we define Hj = G[Xj
(i,u,v)]. By construction, it holds that

distHi
(u, v) ≤ �. Finally, we observe that for every j and every vertex v ∈

(Xj
(i,u,v) \ Xj), it holds that distHj

(v, Xj) ≤ �. This is true since every time we
added V (P ) to a bag, we did so because the bag already contained some of the
vertices of P . And since P is a path of length �, the claim follows immediately.

We are now ready to construct T ′ = (T, X ′). Note that once again, the tree
decomposition will be over the same tree T . For every j ∈ V (T ) we define X ′j as

X ′j =
⋃

i∈V (T )

⋃
u,v∈Xi

Xj
(i,u,v).

That is, the bag X ′j is constructed by first constructing Xj
(i,u,v) for every choice of

(i, u, v), and then taking the union of Xj
(i,u,v) for all choices of (i, u, v).

By repeatedly applying the argument above, T ′ is a valid tree decomposition
of G. We define H ′

j = G[X ′j]. By construction, and the argument above, it
follows that for every Xj ∈ X and every pair of vertices u, v ∈ Xj, it holds that
distH′

j
(u, v) ≤ �. Furthermore, by the argument above, it follows that for every

j ∈ V (T ) and every vertex v ∈ X ′j \ Xj it holds that distH′
j
(v, Xj) ≤ �. Hence,

for every bag X ′j it holds that diam(G[X ′j]) ≤ 3�.
It remains to analyze the running time. Observe that there are polynomial

in n and |V (T )| many combinations for (i, u, v). Furthermore, we can identify P
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and construct X(i,u,v) in polynomial time. And finally, we can build a single X ′i in
polynomial time, as it is the union of polynomially many sets of polynomial size.
Hence, the running time is polynomial in n + |V (T )|.

Corollary 21.4. For every graph G it holds that ltl(G) ≤ 3 tl(G).

Lemma 21.5. Given a graph G and an integer � there is an algorithm that in
time nO(1) either

• outputs a tree decomposition T of G of length at most 9� or

• correctly concludes that both ltl(G) ≥ � and tl(G) ≥ �

in time nO(1).

Proof. By Dourisboure et al. [DG07] we can obtain a 3-approximation of tree-
length in O(nm) time. If this algorithm reports that tl(G) ≥ � it follows by
Observation 21.2 that ltl(G) ≥ tl(G) ≥ �. Otherwise, we can transform the
tree decomposition of treelength at most 3� into a tree decomposition of induced
treelength at most 9� by Lemma 21.5 in nO(1) time.

Observe that the procedure to obtain non-redundant tree decompositions described
in Chapter 2 also preserves the induced treelength of a decomposition.

21.2 Induced treelength and local density
We will now give some basic properties regarding tree decompositions of bounded
length when the graph that is being decomposed is of bounded local density.
Similar properties were recently provided by Belmonte et al. [BFGR16] for general
graphs. However, the bounds we obtain are much better due to the underlying
graphs being of bounded local density.

Lemma 21.6. Let G be a graph, b a positive integer and T = (T, X ) a tree
decomposition of G of length �. It then holds for every Xi ∈ X that if |Xi| > b�+1,
then ds(G[Xi]) > b.

Proof. Assume that there is an Xi ∈ X with |Xi| ≥ b� + 2. Then the result follows
immediately from the following calculation:

ds(G[Xi]) = |Xi| − 1
diam(G[Xi])

≥ b� + 2 − 1
�

> b.

Lemma 21.7. Let G be a graph and T = (T, X ) a non-redundant tree decomposi-
tion of G. For every Y ⊆ X , it holds that∣∣∣⋃ Y

∣∣∣ ≥ |Y| .
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Proof. We prove this by induction on the cardinality of Y. Due to T being
non-redundant, no bag is empty and hence the claim holds for |Y| = 1. For the
induction step, consider the minimal subtree TY of T that contains all the vertices
corresponding to the bags in Y . Let Y ∈ Y be a bag that corresponds to a leaf in
TY and let Z ∈ Y be its only neighbor bag in TY . Let Y ′ = Y − Y and observe
that Y ∩ Z = Y ∩ (∪Y ′). Since T is compressed, it follows that Y \ Z and hence
Y \ (∪Y ′) is non-empty. By the induction hypothesis we get

∣∣∣⋃ Y
∣∣∣ ≥

∣∣∣⋃ Y ′
∣∣∣ + |Y ∩ Z| ≥ |Y ′| + |Y ∩ Z| ≥ |Y ′| + 1 = |Y| .

Definition 21.8. Let G be a graph and T = (T, X ) a tree decomposition of G.
For a vertex v ∈ V (G) we define the frequency of v in T , denoted freq(v, T ), as

|{Xi ∈ X | v ∈ Xi}| .

Furthermore, we define the frequency of T as freq(T ) = maxv∈V (G) freq(v, T ).

Lemma 21.9. Let G be a graph, b a positive integer and T = (T, X ) a non-
redundant tree decomposition of G of length � and width t. Then there is an
algorithm that in O(tn + m) time either

• correctly concludes that freq(T ) ≤ 2b� or

• outputs a H ⊆ G with ds(H) > b.

Proof. We can in O(tn) time go through all bags of the decomposition and compute
the frequencies for all vertices. If the frequencies are bounded by 2b� we are done.
Otherwise, let v be a vertex of frequency at least 2b� + 1 and let Y the union of all
the bags containing v. We then output H = G[Y ]. Hence, H can be constructed
in O(tn + m) time.

It remains to prove that ds(H) > b. Let T ′ be the tree decomposition of
H composed by all the bags in T containing v and the corresponding subtree.
Observe that T ′ is indeed a non-redundant tree decomposition of H. We then
remove v from all the bags of T ′. Since v was in all bags of T ′ it holds that T ′

is a non-redundant tree decomposition of H − v. By applying Lemma 21.7 we
get that |V (H − v)| ≥ 2b� + 1 and hence |V (H)| > 2b� + 1. We observe that the
distance from v to any vertex in H is at most �. Hence, we finish the proof by the
following calculation:

ds(H) = |V (H)| − 1
diam(H) >

2b� + 1 − 1
2�

= b.
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21.3 Lifting obstructions of high density
The goal of the following section is to prove that if there is a subtree of high
density in the tree of a tree decomposition of bounded length, then we can identify
a subgraph in the graph itself of high density. But first, we prove that the distance
between two vertices in the graph cannot be much larger than the distance between
two bags containing them.

Lemma 21.10. Let G be a graph and T = (T, X ) a tree decomposition of G of
length �. For two vertices u, v ∈ G such that u ∈ Xi ∈ X and v ∈ Xj ∈ X it holds
that

distH(u, v) ≤ �(distT (i, j) + 1)
were H is G induced on the union of all the bags on the path from Xi to Xj.

Proof. Consider the shortest path (i = p1, p2, . . . , pt = j) from i to j in T . We will
now construct a walk P from u to v in H. First, we set z as u initially and add z
to P . Now, we move from bag Xpi

to Xpi+1 by adding a shortest path from z to a
vertex in w ∈ (Xpi

∩ Xpi+1) to P and set z = w. Observe that since the length of
the decomposition is bounded by �, so is the length of the path we added to P .
Finally, we end up in Xj and add a shortest from z to u. In total, we combined
distT (i, j) + 1 paths of length � with overlapping endpoints. Hence, the length of
P is bounded by �(distT (i, j) + 1).

Lemma 21.11. Let G be a graph, b a positive integer, T = (T, X ) a non-
redundant tree decomposition of length � and width t and HT ⊆ T a subtree with
ds(HT ) > 2b�. Then there is an algorithm that in O(tn) time outputs a graph
H ⊆ G with ds(H) > b.

Proof. Let VH be the union of all the bags corresponding to vertices in HT and
let H = G[VH ]. We output H and observe that H can indeed be computed in
O(tn) time. It remains to prove that ds(H) > b. By Lemma 21.7 we know that
|V (H)| ≥ |V (HT )|. Furthermore, by Lemma 21.10 we know that diam(H) ≤
�(diam(HT ) + 1). And hence

ds(H) = |V (H)| − 1
diam(H) ≥ |V (HT )| − 1

�(diam(HT ) + 1) ≥ |V (HT )| − 1
2� diam(HT ) >

1
2�

2b� = b,

which completes the proof.

21.4 Lifting skewed Cantor combs
We will now prove that given a sufficiently large skewed Cantor comb in the tree
of a tree decomposition of bounded length, we can either identify a smaller, but
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still sufficiently large, skewed Cantor comb or a dense subgraph in the decomposed
graph. First, we will prove that any skewed Cantor comb can be transformed into
a skewed Cantor comb of smaller depth such that the vertices for which the strays
are attached and the end vertices are all far apart from each other. This is used
to ensure that when selecting vertices from bags were strays are attached in the
tree decomposition, we are selecting vertices that are of some constant distance
from each other in the original graph.

Note that in a Cantor comb all vertices have degree 1, 2 or 3. Hence, all
vertices of even degree have degree exactly 2. Most vertices have degree 2, the
ones of degree 1 and 3 are “special” — they are leaves or branch points.

Lemma 21.12. Let Ŝk be a skewed k-Cantor comb of depth k and d a non-negative
integer with d < k − 1. Then one can in O(dn) time find a skewed Cantor comb
Ŝk,k−d ⊆ Ŝk such that

• the backbone of Ŝk,k−d is a subset of the backbone of Ŝk and

• the distance between two vertices of odd degree on the backbone is at least
3 · 2d − 1.

Proof. Recall that by the definition of skewed Cantor combs the degree of a vertex
is either one, two or three. Furthermore, for any skewed Cantor comb of depth at
least two it holds that every path between two vertices of degree one goes through
a vertex of degree three. And hence, since 0 ≤ d < k − 1 ⇒ k − d ≥ 2, it is
sufficient to bound the distance from vertices of degree three to vertices of odd
degree on the backbone.

We prove a slightly stronger statement by induction on d. Specifically, we
prove that the distance between two vertices of degree three is at least 3 · 2d and
that the distance between a vertex of degree three and a vertex of degree one is
at least 3 · 2d − 1. For d = 0, the statement follows by the definition of skewed
Cantor combs. Specifically, the distance between any two vertices of degree three
is at least 3 and the distance between a vertex of degree three and a vertex of
degree one is at least 2. For the induction step we assume that we have found
an appropriate skewed Cantor comb Ŝk,k−(d−1). We then remove every stray of
level 2 (the “smallest” strays) from the skewed Cantor comb. We observe that this
new skewed Cantor comb is of depth d − k and its backbone is unchanged. The
path between two vertices of degree three goes through a vertex that used to be
of degree three (before we removed the strays) and hence the distance is at least
3 ·2d−1 +3 ·2d−1 = 3 ·2d. Similarly, the path between a vertex of degree three and a
vertex of degree one goes through a vertex that used to be of degree three. It follows
that the distance between the two is bounded by 3 · 2d−1 + 3 · 2d−1 − 1 = 3 · 2d − 1.

Observe that removing the strays can be done in O(n) time and that this
process is repeated at most d times. Hence we can find the skewed Cantor comb
in O(dn) time.
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Next we will prove that if two vertices are picked from two different bags that
are far apart in the decomposition, then this distance has some carry over to the
decomposed graph and the distance between the sampled vertices. We will use
this to ensure that when building strays of the skewed Cantor comb in the graph,
using strays from the skewed Cantor comb in the decomposition, these newly built
strays are indeed long enough to be used.

Observation 21.13. Let G be a graph and T = (T, X ) a tree decomposition of
G. For every two bags Xi and Xj such that distT (i, j) ≥ freq(T ) it holds that Xi

and Xj are disjoint.

Lemma 21.14. Let G be a graph and T = (T, X ) a tree decomposition of
G. For every two vertices u ∈ Xi and v ∈ Xj it holds that distG(u, v) ≥
�distT (i, j)/freq(T )�.

Proof. Let PT be the shortest path from i to j in T and P a shortest path from u
to v in G. It is well-known that for every k ∈ V (PT ) it holds that Xk separates
u from v in G. It follows that P intersects Xk for every k ∈ V (PT ). We prove
the statement by induction on d = �distT (i, j)/freq(T )�. The statement trivially
holds for d = 0. For the induction step, we assume that the statement holds for
d − 1. Now, let k be the vertex on PT that has distance exactly (d − 1) · freq(T )
and let x be a vertex in Xk ∩ V (P ). By assumption if holds that distG(u, x) ≥
distT (i, k)/freq(T ) = (d − 1). Now, since distT (k, j) ≥ freq(T ) it follows by
Observation 21.13 that Xk and Xj are disjoint. And hence, distG(x, v) ≥ 1,
implying that distG(u, v) = distG(u, x) + distG(x, v) ≥ (d − 1) + 1 = d.

We are now ready to prove that given a skewed Cantor comb in the decomposition,
we can build a smaller skewed Cantor comb in the graph.

Lemma 21.15. Let G be a graph, b a positive integer, T = (T, X ) a non-redundant
tree decomposition of length � and width t and S ⊆ T a skewed k-Cantor comb of
depth k for k = 8b2�2. There is an algorithm that in O(tn2) time either outputs

• a subgraph H ⊆ G such that ds(H) > b or

• a skewed Cantor comb Ŝb+1 ⊆ G.

Proof. First, we apply Lemma 21.9 and either conclude that freq(T ) ≤ 2b� or we
output a subgraph of G of density more than b. From now on we assume that
the first case applied. We then apply Lemma 21.12 to obtain a skewed Cantor
comb S ′ = Ŝk,k−d ⊆ S with d = freq(T ). It follows that the distance between two
vertices of odd degree in S ′ is at least 3 · 2freq(T ) − 1 ≥ 3freq(T ).

Let B′ = (b′
1, . . . , b′

q) be the backbone of S ′ and x a vertex in Xb′
1

\ Xb′
2
. Let b′

i

be the degree three vertex closest to b′
1 and s′

i the leaf vertex of the stray attached
to b′

i. Let zi ∈ V (G) be a vertex that is contained only in the bag Xs′
i
. Observe

that such a vertex must exist since s′
i is a leaf and T is non-redundant. Then, let
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H be a path from x to zi consisting of only vertices from bags on the path from
Xb′

1
to Xs′

i
.

Let yi be a vertex in V (H)∩Xb′
i
. Then, let b′

j be the degree three vertex closest
to b′

i in T with i < j and s′
j the leaf of the stray attached to b′

j . Let zj be a vertex
that is contained only in Xs′

j
and let P ′ be a shortest path from yi to zj consisting

of only vertices from bags on the path from Xb′
i

to Xs′
j
. Observe that the union

of H and P ′ might very well contain cycles. Let y′
i be the last vertex on P ′ that

is also contained in H and observe that y′
i ∈ Xb′

i
. We delete all vertices prior to

y′
i from P ′ and add P ′ to H. Observe that H is a caterpillar. We continue this

procedure as long as we can find a new vertex of degree three with a higher index.
Finally, we let y be a vertex in Xb′

q
\ Xb′

q−1
and find a path from H to y that we

also add to H, removing cycles in the same manner as above.
We claim that H is a Sk1,k2 with k1 ≥ b + 1 and k2 ≥ 8b2�2 − 2b� and hence

contains a Sb+1 as a subgraph. We identify and output this very subgraph. Observe
that H can be built and the subgraph identified in O(tn2) time.

Observe that H is indeed a caterpillar and let B be the backbone of H. The
bound for k2 follows immediately from our application of Lemma 21.12. First, we
will prove that the vertices of odd degree on B, or in other words the leaves and
the vertices with a stray attached, are sufficiently spread out. Then, we will finish
the proof by arguing that the strays are sufficiently long. Recall that the distance
between two vertices of odd degree in B′ is at least 3freq(T ). Observe that by
construction the leaves in B originates from bags that are leaves in B′. And
similarly, that the vertices of B that are of degree three originates from bags of
degree three in B′. It follows, by Lemma 21.14 that the distance between vertices
of odd degree in H is at least 3. Which is sufficient for our purposes.

Let Q′ be a stray in S ′ and Q the corresponding stray in H. By construction
the leaf of Q is contained in the leaf bag of Q′ and the neighbor of Q is contained
in the neighbor bag of Q′. By applying Lemma 21.14 it follows that Q consists
of at least �(|Q′|/freq(T )� ≥ �|Q′|/2b�� vertices. Let dQ be the distance d from
the definition of skewed Cantor combs for the one centered around Q in H and
similarly dQ′ for the one centered around Q′ in S ′. Consider a vertex v of the
backbone of the skewed Cantor comb centered around Q that is of maximum
distance away from Q. Or in other words, distH(NH(Q), v) = dQ. By construction,
the bag closest to NT (Q′) containing v is at most distance dQ′ + 1 away from
NT (Q′). It follows by Lemma 21.10 that dQ ≤ �(dQ′ + 2). And hence, we finish
the proof with the following calculation

|V (Q)| ≥
⌊

|V (Q′)|
2b�

⌋
≥

⌊
2 · 8b2�2dQ′

2b�

⌋
= 8b�dQ′ ≥ 4b�(dQ′+2) ≥ 4bdQ ≥ 2(b+1)dQ

using that k ≥ 2 and hence that dQ′ ≥ 2.
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21.5 Lifting obstructions of high pathwidth
We will now prove that the final case that demonstrates that a tree has high
bandwidth, namely having high pathwidth can be lifted from a decomposition
to the decomposed graph. More specifically, we will prove that given that the
decomposition tree is of high pathwidth, we can obtain a subtree of the graph
that is also of high pathwidth. The proof of this builds upon the classification of
trees of high pathwidth by Ellis et al. [EST94] that is restated as Lemma 21.17.

Definition 21.16. For a tree T and integer p we say that a vertex v ∈ V (T ) is
p-forcing if there are at least three components in T − v of pathwidth at least
p − 1.

Lemma 21.17 (Ellis et al. [EST94]). Let T be a tree and p an integer. It then
holds that pw(T ) ≥ p if and only if there is a p-forcing vertex in T .

Theorem 40 (Ellis et al. [EST94]). Given a tree T and an integer p there is an
algorithm that in O(n) time decides if pw(T ) ≤ p.

Observation 21.18. Given a tree T and an integer p such that pw(T ) ≥ p, there
is an algorithm that in O(n2) time outputs a p-forcing vertex in T .

Proof. This is achieved by doing a linear search over all candidates for v and then
for each component of T − v apply the algorithm from Theorem 40.

Note that it might very well be possible to identify forcing vertices faster than
above. However, this observation is sufficient for our purposes and is a very easy
application of existing knowledge.

Lemma 21.19. There is an algorithm that given a graph G, a positive integer
b and a tree decomposition T = (T, X ) of G of length �, width t and frequency
f such that pw(T ) ≥ bf in time O(bfn2) outputs a subtree TG ⊆ G such that
pw(TG) ≥ b.

Proof. We will now describe a recursive algorithm that adheres to the specifications
in the statement. If b = 0, we return an arbitrary vertex in G. Otherwise, let p = bf
and find a p-forcing vertex v in T using the algorithm from Observation 21.18.
Let T 1, T 2 and T 3 be three subtrees of T − v of pathwidth at least p − 1. For
every T i we do the following: Let T i

1 = T i and find a (p − 1)-forcing vertex v1
in T i

1. Then, let T i
2 be a subtree of T i

1 − v1 of pathwidth at least p − 2 that
maximizes its distance to v. Let v2 be a (p − 2)-forcing vertex of T i

2 and observe
that 1 ≤ distT (v, v1) < distT (v, v2). We continue this iterative process until
we obtain vp−f−1 and T i

p−f . Observe that distT (v, vp−f−1) ≥ f − 1 and hence
dist(v, T i

p−f) ≥ f . Furthermore, observe that pw(T i
p−f) ≥ p − f . We let Gi be

G induced on the union of all the bags corresponding to vertices in T i
p−f and

T i = (T i
p−f , X ′), the tree decomposition of Gi when restricting T to T i

p−f . Due to
Observation 21.13 it follows that V (Gi) and Xv are disjoint. We now apply the
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algorithm recursively on (Gi, bi = b − 1, T i) to obtain a subtree T i
G ⊆ G such that

pw(T i
G) ≥ b − 1.

In the end we have computed the subtrees T 1
G, T 2

G and T 3
G of G, all of pathwidth

at least p − f . Since for every i it holds that V (Gi) and Xv are disjoint and v
separates T i

p−f from T j
p−f for i �= j, it holds that T 1

G, T 2
G and T 3

G are vertex disjoint
subgraphs of G. Let TG be the disjoint union of G[Xv], T 1

G, T 2
G and T 3

G together
with shortest paths from T 1

G, T 2
G and T 3

G to Xv in G. Observe that TG might not
be tree, but that TG − Xv is a forest. We exhaustively remove edges and vertices
in G[Xv] from TG as long as TG remains connected and return the resulting TG.

We prove the correctness of the algorithm by induction. First, we observe that
the pathwidth of G drops by f for every recursive call and hence the pathwidth
of G stays at least bf as b drops by one for each recursive call. If b = 0, the
correctness trivially holds. For the induction step we assume the algorithm to
be correct for b − 1 and hence that the pathwidth of T i

G is at least b − 1 for
all i. It remains to prove that pw(TG) is indeed at least b. Consider the tree
T ′ = TG[N [Xv] ∩ TG]. By construction, T ′ is a tree with exactly three leaves. And
hence, it is well-known that T ′ contains exactly one vertex v′ of degree three and
that all other vertices are of degree at most two. Furthermore, v′ separates all
the leaves. We immediately observe that TG − v′ has exactly three components of
pathwidth at least b − 1 and hence, by Lemma 21.17 the pathwidth of TG is at
least b.

Finally, we will argue about the running time of the algorithm. First, we observe
that inside a recursive call on the graph Gi with ni = |V (Gi)| and mi = |E(Gi)|
the algorithm spends O(fn2

i ) time identifying vp−f and T i
p−f . After this it spends

O(ni +mi) time building the initial TG and O(w2) time trimming it down to a tree.
This yields a running time of O(fn2

i ) inside a specific function call. In total, for
all the recursive calls with b = x we spend ∑

O(fn2
i ) = O(fn2) due to ∑

ni = n.
The recursion depth is bounded by b + 1 and hence we end up with a total running
time of O(bfn2).

21.6 Algorithm and correctness
We now have the necessary theory to describe the algorithm for Bandwidth on
graphs of bounded treelength. The algorithm is surprisingly simplistic. First, we
obtain a tree decomposition of approximate induced treelength. Then we verify
that the width, frequency and pathwidth of the decomposition tree is indeed low
and if not build an obstruction. If all checks are good, we apply our algorithm for
trees directly on the decomposition tree. And then we either plug the content of
the bags into the ordering of the decomposition tree or we output an obstruction.



21.6. ALGORITHM AND CORRECTNESS 183

Lemma 21.20. Given a connected graph G and positive integers b and � such
that tl(G) ≤ �, it holds that TreeLengthAlg in time nO(1) either returns

• a (54b�)49b2�-bandwidth ordering of G,

• a subgraph H ⊆ G such that ds(H) > b,

• a skewed Cantor comb Ŝb+1 ⊆ G or

• a subtree TH ⊆ G such that pw(TH) > b.

Proof. We obtain the tree decomposition T of induced treelength at most 9� by
the algorithm of lemma 21.5 in nO(1) time. Furthermore, by Proposition 2.2 we can
assume the decomposition to be non-redundant. Then, by Lemmata 21.6 and 21.9
we can obtain H ⊆ G of high density if either the width or the frequency of T
is large in O(b�n) time. Using the algorithm from Theorem 40 we can check if
pw(T ) ≤ 18(b+1)b� in O(n) time. If pw(T ) > 18b(b+1)� it follows by Lemma 21.19
that we can obtain a subtree TG ⊆ G such that pw(TG) ≥ b + 1 in O(�b2n2) time.
If TreeAlg returns an obstruction it follows from Lemma 20.8 that either we get a
H ⊆ T with ds(H) > 648b2�2 or a skewed Cantor comb Ŝ648b2�2+1 ⊆ T . If the first
case applies it follows from Lemma 21.11 that we can obtain a subgraph H ⊆ G
such that ds(H) > 648b2�2/9� = 72b2� > b in time O(b�n). If the later applies if
follows from Lemma 21.15 that we in time O(b�n2) can obtain either a subgraph
H ⊆ G with ds(H) > b or a skewed Cantor comb Ŝb+1 ⊆ G.

Note that no matter the result of applying TreeAlg it terminates in time
O((b2�2)2n3) = O(b4�4n3) by Lemma 20.8. It remains to consider the case when
TreeAlg returns an ordering αT of T of bandwidth at most

(7680(648b2�2)6)2b(b+1)� ≤ (6 · 1020 · b12�12)4b2� ≤ (54b�)48b2�.

It is clear that all vertices are embedded by α exactly once and hence it is a valid
ordering of V (G). Now, consider an edge uv in G and let i be the integer for which
u gets embedded by α and j the integer for which v gets embedded. Observe that
u ∈ Xi and v ∈ Xj. Furthermore, since T is a tree decomposition there is an Xk

such that u, v ∈ Xk. It follows by Observation 21.13 that distT (i, k) < freq(T ) ≤
18b� and similarly that distT (j, k) < freq(T ) ≤ 18b�. It follows by the triangle
inequality that distT (i, j) ≤ 36b�. And hence, |αT (i) − αT (j)| ≤ 36b� · bw(T, αT ).
By construction of α it holds that |α(u) − α(v)| ≤ w(T )(|αT (i) − αT (j)| + 1) and
hence

|α(u) − α(v)| ≤ w(T )(|αT (i) − αT (j)| + 1)
≤ (9b� + 1)(36b� · bw(T, αT ) + 1)
≤ 370b2�2 · bw(T, αT )
≤ 370b2�2 · (54b�)48b2�

≤ (54b�)49b2�.
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Since uv was an arbitrary edge from G it follows that bw(G, α) ≤ (54b�)49b2� and
our proof is complete.

Algorithm 3: TreeLengthAlg
Input: A connected graph G and positive integers integers � and b such

that tl(T ) ≤ �.
Output: A (54b�)49b2�-bandwidth ordering of G or an obstruction H ⊆ G.
Compute a tree decomposition T = (T, X ) of G of length at most 9�.
if w(T ) > 9b� + 1 or freq(T ) > 18b� then

Find H ⊆ G such that ds(H) > b.
return H

end
if pw(T ) > 18b(b + 1)� then

Find subtree TG ⊆ G such that pw(TG) > b.
return TG

end
Let αT = TreeAlg(T, 648b2�2).
if an obstruction HT ⊆ T is returned then

Build obstruction H ⊆ G from HT .
return H

end
Let α be an empty ordering.
for i ∈ [1, |V (T )|] do

Let Y be the vertices in Xα−1
T (i) that are not embedded by α.

Let Y populate the left-most available positions of α.
end
return α

Theorem 41. Given a graph G and positive integers b and � such that tl(G) ≤ �,
there exists an algorithm that either outputs a (b�)O(b2�)-bandwidth ordering of G
or correctly concludes that bw(G) > b in polynomial time.
Proof. First, we apply Lemma 21.20 for every connected component of G. If the
algorithm returns bandwidth orderings, we concatenate them and output this new
ordering. In the case we obtain a subgraph H ⊆ G such that ds(H) ≥ b, it follows
from Proposition 18.2 that bw(G) > b. In the case we obtain a subtree TG ⊆ G
such that pw(TG) > b it follows immediately that pw(G) > b and hence again by
Proposition 18.2 we conclude that bw(G) > b. In the case we obtain a skewed
Cantor comb Ŝb+1 ⊆ G it follows from Lemma 19.2 that bw(G) > b.

Corollary 21.21. Given a chordal graph G and a positive integer b, there is an
algorithm that in polynomial time either outputs a bO(b2)-bandwidth ordering or
correctly concludes that bw(G) > b.
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Theorem 42. Given a graph G and positive integers b and � such that tl(G) ≤ �
it holds that either

• bw(G) ≤ (54b�)49b2�,

• ρ(G) > b,

• G contains a skewed Cantor comb Ŝb+1 as a subgraph or

• G contains a tree TG as a subgraph such that pw(TG) > b.

Proof. The result follows from applying Lemma 21.20 on every connected compo-
nent of G.
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Chapter 22

Lower bounds

In this chapter we will give a reduction from Even Clique to Bandwidth with
a linear blowup of the “solution size”. For the rest of this section we will refer
to the solution size of the instance of Even Clique as k and the bandwidth
of the resulting Bandwidth instance as b. From this reduction, we conclude
that Bandwidth is W[1]-hard when parameterized by b. And that Bandwidth

cannot be solved in f(b)no(b) time for any computable function f , assuming ETH.
Both of the results above hold even when restricted to trees of pathwidth at most
2. A consequence of the later result is that there is no significant improvement over
the dynamic programming algorithm by Saxe [Sax80], even for trees of pathwidth
at most 2.

22.1 A gentle introduction to the reduction
We will now give an informal description of the reduction. We hope it will provide
the reader with some intuition of why p-Bandwidth is as hard as it is. As already
mentioned, the reduction will be from instances (G, k) of p-Even Clique to
instances (T, b) of p-Bandwidth. To obtain the results of Theorem 44 we must
first of all ensure that (G, k) is a yes-instance if and only if (T, b) is a yes-instance.
And furthermore, we require T to be a tree of size polynomial in |V (G)| and k,
and that the path-width of T is at most 2. Last, for obtaining the lower bounds
based on ETH we require b to be of size O(k).

We start, by providing some boundaries for b-bandwidth orderings of T . Mean-
ing that we force specific parts of T to be the leftmost and rightmost elements
of every such ordering. This is done by introducing two stars with 2b leaves and
adding a path from one of the leaves of the first star to one of the leaves of the
second. The two stars will be referred to as walls and the path between them as
the main path. Observe that for both of the walls, the leaves must occupy the 2b
positions closest to the center in any b-bandwidth ordering. It follows that the
main path must be within the inclusion interval of the two walls, since otherwise
the main path would pass through a wall and one of its edges must be stretched
too far.

187



188 CHAPTER 22. LOWER BOUNDS

. . .

Figure 22.1: An illustration of the walls for b = 4.

We are now controlling the first and last vertices in any b-bandwidth ordering of
the graph and hence it is time to start encoding our instance of Even Clique. To
keep control, the rest of T will be attached to the main path. Before we continue,
we select one of the walls and base an ordering of the reduction graph on this
selection. This wall will from now on be referred to as the first wall and the other
wall will be referred to as the last wall. We then attach k paths, from now on
referred to as threads, to the vertex of the main path that is also a leaf of the first
wall. Each thread will encode a selection of a vertex in G, and then we will check
whether this set of vertices in fact forms a clique or not.

... ...... ... ...

. . . . . . . . .

k paths

Figure 22.2: An illustration of the paths of the reduction graph.

To control how information propagates through a bandwidth ordering, we introduce
gates. A k-gate is a vertex on the main path with 2(b −k − 1) leaves attached to it,
that is in addition to the two neighbours it has on the main path. The goal is to
force every thread to pass through every k-gate. Then every thread will position
two vertices within the positions of distance at most b away from the center of the
gate. And hence there will be 2(b − k − 1) + 2k + 2 = 2b vertices that have to be
positioned close to the center, leaving no available room.

A hole is basically two vertices on the main path with some extra space in
between. This extra space is obtained by attaching not so many leaves to the two
vertices. A knot is a large star centered at one of the threads. The idea is that
a knot requires so much space that it cannot be positioned close to a gate. And
hence, if a subpath of the main path consists of only gates and holes, a knot that
is to be positioned within the inclusion interval of this subpath must be positioned
in a hole.
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Before we start the process of embedding gadgets on the main path and the
threads, we need a guarantee ensuring that any resulting bandwidth ordering
will behave nicely. Consider the following situation, we have a graph T and a
b-bandwidth ordering α of T . T contains k + 1 disjoint paths, one of the paths
P being of length l such that all the other paths are passing through P in α. In
addition there is a set of (l − 1)(b − k − 1) vertices X disjoint from all the paths,
such that the image of X is contained in the inclusions interval of P . Lemma 22.3
then tells us that that P must be stretched with respect to α, meaning that the
vertices of P appear in the same order in T as in α up to reversion and that the
distance between two consecutive vertices is b. Furthermore, each of the paths
passing through will position exactly one vertex in between any two consecutive
vertices of P . As the reader probably can image, we will apply this result with the
main path as P and the threads as the paths passing through. This will ensure
that how and in which order the vertices appear in α is highly similar to how they
are ordered in T . See Figure 22.3 for an illustration of the phenomenon.

We will now start to embed gadgets. First, we introduce three long sequences
of gates on the main path. These sequences naturally partitions our graph into
nine sectors. We will refer to them as the first wall, the first wasteland, the first
gateland, the selector, the middle gateland, the validator, the last gateland, the
last wasteland and the last wall. See Figure 22.4 for an illustration. By making the
threads very long, one can force them to pass through every gate. This together
with the lemma described above implies that the sectors will appear in the same
order in any b-bandwidth ordering as they do in the graph up to reversion.

We aim at forcing a large set over vertices to be embedded in between the
first and the last wasteland. It follows that this part of the main path will be
stretched and every thread will position exactly one vertex in between every two
consecutive vertices of the main path. Recall that the threads are to encode which
vertices we take as our clique. This will be done by how much of the thread is
positioned within the inclusion interval of the first wasteland before it starts its
journey towards the last wasteland. And the job of the wastelands are exactly

X

Figure 22.3: An illustration of Lemma 22.3. The black path is P and the grey are
the ones passing through P .
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... ...... ... ...

. . . . . . . . . . . . . . . . . . . . .... ...

k threads

First wall
First wasteland

First gateland
Selector

Middle gateland
Validator

Last gateland
Last wasteland

Last wall

Figure 22.4: The sectors of our reduction graph.

this, to handle the slack or waste produced by different choices of vertices to form
the clique.

We now describe how we enforce the selection of vertices in a manner that
allows us to extract this information in a useful way in the validator. First, we
order the vertices of G by labeling them with numbers from 1 to n. Basically, we
want there to be a linear function describing the number of vertices positioned in
the first wasteland by a single thread, given the label of the vertex this thread
choose. This is obtained by embedding n holes within the selector, with a certain
number of gates in between every pair of consecutive holes. Then we embed a knot
on each thread. The idea is that each thread must position its knot within a hole
and every hole can contain at most one knot. Which hole the knot is positioned
in gives the vertex the thread selects for the clique.

We should now ensure that the selected vertices forms a clique in G. This is
done by the validator. The validator is partitioned into 2n − 1 zones. The first
n−1 and last n−1 zones are referred to as neutral zones and nothing is embedded
on this part of the main path. The middle zone is referred to as the validation
zone. Like the selector, also the validator zone consists of n holes separated by
a series of gates. Now the idea is to embed the adjacency matrix of G on the
threads, row by row, in such a way that if vertex i is selected by the thread, then
the part representing row number i of the matrix is positioned within the validator
zone. The matrix will be represented as follows: Partition the subpath of the
thread representing row i into n parts. At part number i we embed a knot. And
then, for every non-neighbour j we will attach a leaf to part j. What will happen
is that when the vertices are selected the corresponding holes in the validator will
be filled up by knots. And then, if two vertices are not adjacent there will also be
a leaf that should be positioned within the same hole as a knot. And this there
will not be room for. Furthermore, if a vertex is not selected there will not be a
knot in the corresponding hole, so that it can contain as many leaves as necessary.
The last crucial observation is that in the neutral zone, there is room for both
leaves and knot to co-exist close in the bandwidth ordering.

The observant reader might recall that we promised some large set of vertices
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that should be embedded within the first and the last wasteland. This will be
handled by attaching paths of appropriate size right after both the first and the
second gateland. By making every hole and gate within the selector and validator
into (k +1)-holes and (k +1)-gates these paths can travel around in the two sectors
filling up the remaining space.

v1

v2

v3

v4

v1 v2 v3 v4

Figure 22.5: A graph (a 2K2) and a visualization of the output of the reduction
when given this graph as input.

In Figure 22.5 we visualize the output of the reduction given a graph G that
forms a 2K2. The bottom line illustrates the amount of space that is occupied by
default at the various positions of any bandwidth ordering. And the dotted line
illustrates the threshold of how much space there is available (the value of b). We
see the peaks at the beginning and end that represents the walls that nothing can
pass. And also the two wastelands next to the walls, with room for the threads to
pile up. To the right of the first wasteland we find the selector. There are four
holes, one for each of the vertices in the input graph. And at the corresponding
positions of the threads there is a knot, represented by a block. Which of these
holes the thread puts its knot into, decides which of the vertices in G it select to
be in the clique. The reader should imagine that each thread will be embedded in
an even and nice manner from the first to the last wasteland, without changing
direction or similar. This ensures that the choices made in the selector propagates
into the validation part of the reduction.

Next is the validator and we see the validation zone in the middle as four
consecutive holes. On the threads, the adjacency matrix is embedded, row by
row. We put a knot if we are at row i, position i. And otherwise, either a leaf
or nothing, represented by the smaller blocks. Specifically, it uv is not an edge
in G we do attach a leaf on the position representing v at the row of u and vice
versa. Otherwise, we attach nothing. Observe that when a thread selects a specific
vertex, the row corresponding to this vertex is positioned within the validation
zone. We see that a single knot (big block) can fit within a hole, but then there is
no room for an additional leaf (small block). However, two leaves (smaller blocks)
easily fit within a hole. The holes of the validation zone that are filled by knots are
exactly the vertices selected by the threads. And if two vertices are selected that
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are not adjacent, one would have to position an addition leaf within an already
filled hole, which is not possible. For the vertices not selected there is sufficient
room, independent of their adjacencies with the selected vertices.

Observe that there is available room both in the selector. Specifically, in
the holes of the vertices that were not selected to be in the clique. And also,
possibly some room available within the validation zone depending on the number
of non-adjacencies that are pulled into this zone. Last, there is a lot of empty
space in all of the neutral zones, ensuring that for the rows of the vertices that
are not selected to be in clique, it is possible to position a leaf on top of a knot.
All of this available room is filled up by the two fillers of the reduction, ensuring
that the threads are not piling up at various locations. We are now done with the
informal introduction and for the details we refer to the rest of this section.

22.2 Tools
In this section we give some definitions and results for bandwidth which are crucial
for our reduction.

Lemma 22.1. Let (T, b) be an instance of p-Bandwidth and P̂2, P 1, . . . , P k be
k + 1 disjoint subpaths of T . Given a b-bandwidth ordering α such that P 1, . . . , P k

pass through P̂2 and there is a set of vertices X disjoint from P̂2, P 1, . . . , P k such
that |X| ≥ b − k − 1 and α(X) ⊆ I(P̂2), then |α(P i) ∩ I(P̂2)| = 1 for every i.

Proof. Let P̂2 = (u, v) and assume without loss of generality that α(u) < α(v).
From |I(P̂2)| ≤ b + 1 and

|I(P̂2)| = |I(P̂2) ∩ α(V (T ))|
≥ |I(P̂2) ∩ α(

⋃
P i ∪ X ∪ P̂2)|

= |I(P̂2) ∩ α(
⋃

P i)| + |I(P̂2) ∩ α(X)| + |I(P̂2) ∩ α(P̂2)|
≥ |I(P̂2) ∩ α(

⋃
P i)| + b − k + 1

it follows that |I(P̂2) ∩ α(⋃
P i)| ≤ k.

Assume for a contradiction that there is a j1 such that |α(P j1) ∩ I(P̂2)| �=
1. Then, since |I(P̂2) ∩ α(⋃

P i)| ≤ k it follows that there is a j2 such that
|α(P j2) ∩ I(P̂2)| = 0. For a path P i let (vi

l , vi
r) maximize α(vi

l) among the edges
in P i with α(vi

l) < α(u) and α(v) < α(vi
r). Let P j be the path minimizing α(vj

l )
among all paths P i such that |α(P i) ∩ I(P̂2)| = 0. It follows that for every path
P i either |α(P i) ∩ I(P̂2)| ≥ 1 or |α(P i) ∩ I(vj

l , u)| ≥ 1. Hence for each i it holds
that |I(vj

l , vj
r) ∩ α(P i)| ≥ 1. Furthermore, observe that |I(vj

l , vj
r) ∩ α(P j)| ≥ 2. It

follows that

|I(vj
l , vj

r)| ≥ |I(vj
l , vj

r) ∩ α(X)| + |I(vj
l , vj

r) ∩ α(P̂2)| + |I(vj
l , vj

r) ∩ α(
⋃

P i)|
≥ (b − k − 1) + 2 + (k + 1)
≥ b + 2
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Observe that X, P̂2 and ⋃
P i are disjoint and hence the first line above is valid.

Since (vj
l , vj

r) is an edge in T and |I(vj
l , vj

r)| ≥ b + 2 we have a contradiction to α
being a b-bandwidth ordering and hence our proof is complete.

Corollary 22.2. Let (T, b) be an instance of p-Bandwidth and P̂2, P 1, . . . , P k be
k + 1 disjoint subpaths of T . Given a b-bandwidth ordering α such that P 1, . . . , P k

pass through P̂2 and there is a set of vertices X disjoint from P̂2, P 1, . . . , P k such
that |X| ≥ b − k − 1 and α(X) ⊆ I(P̂2), then |X| = b − k − 1.

Proof. Assume for a contradiction that |X| ≥ b − k. Apply Lemma 22.1 to obtain
|α(P i) ∩ I(P̂2)| = 1 for every i. It follows that

|I(P̂2)| ≥ |I(P̂2) ∩ α(X ∪ P̂2 ∪
⋃

P i)|
≥ |I(P̂2) ∩ α(X)| + |I(P̂2) ∩ α(P̂2)| + |I(P̂2) ∩ α(

⋃
P i)|

≥ (b − k) + 2 + k

≥ b + 2.

which is a contradiction to α being a b-bandwidth ordering.

We are now ready to prove the result illustrated in Figure 22.3.

Lemma 22.3. Let (T, b) be an instance of p-Bandwidth and P̂l, P 1, . . . , P k be
k + 1 disjoint subpaths of T . Given a b-bandwidth ordering α such that P 1, . . . , P k

pass through P̂l and there is a set of vertices X disjoint from P̂l, P 1, . . . , P k such
that |X| ≥ (l − 1)(b − k − 1) and α(X) ⊆ I(P̂l), then P̂l is stretched with respect
to α and |P i ∩ I(P̂2)| = 1 for every i and every P̂2 ⊆ P̂l.

Proof. We start by proving α(v1) < α(v2) < · · · < α(vl) or α(vl) < · · · <
α(v2) < α(v1). Assume otherwise for a contradiction. Then there exists three
vertices vj−1, vj and vj+1 such that either max{α(vj−1), α(vj+1)} < α(vj) or
α(vj) < min{α(vj−1), α(vj+1)}. Since all properties of the lemma is preserved
with respect to reversing α, we can assume without loss of generality that
max{α(vj−1), α(vj+1)} < α(vj). We define a function f from proper subsets
of V (P̂�) into V (P̂�) as follows, f(B) = vd such that d = min{i | vi ∈ P̂l \
B and {vi−1, vi+1} ∩ B �= ∅}. In other words, f gives you the smallest indexed
vertex in the open neighbourhood of B. Notice that since P̂l is connected f is
a well-defined function. We will now define a1, . . . , at and B1, . . . , Bt. First
let a1 = α−1(min{α(P̂l)}) and B1 = {a1}. Then we let ai = f(Bi−1) and
Bi = I(a1, ai) ∩ P̂l as long as Bi−1 �= P̂l. Observe that Bi−1 ⊂ Bi.

First we will prove that t < l. Assume otherwise for a contradiction, clearly then
t = l. It follows by the construction and our assumption that {a1, . . . , ai} = Bi for
every i. And by a simple induction we get that T [{a1, . . . , ai}] is connected, since
this clearly holds for i = 1 and for i > 1 observe that ai has a neighbour in Bi−1 by
construction. Recall that j is so that max{α(vj−1), α(vj+1)} < α(vj) and let c be
so that ac = vj. Since vj is separating vj−1 and vj+1 in P̂l and vj /∈ Bc−1 it follows
that {vj−1, vj+1} �⊆ Bc−1. Furthermore, since max{α(vj−1), α(vj+1)} < α(vj) it
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holds that {vj−1, vj, vj+1} ⊆ Bc. But this contradicts {a1, . . . , ai} = Bi and hence
we know that t < l. It follows, due to the pidgin hole principle, that there is a d
such that

|I(ad−1, ad) ∩ α(X)| ≥ (� − 1)(b − k − 1)
� − 2 > b − k − 1.

By construction there is a neighbour a′ of ad among a1, . . . , ad−1. Observe that
|I(a′, ad) ∩ α(X)| > b − k − 1 and apply Corollary 22.2 with P̂2 = (a′, ad) to obtain
a contradiction. Hence we can conclude that α(v1) < α(v2) < · · · < α(vl) or
α(vl) < · · · < α(v2) < α(v1).

We will now prove that |P i ∩ I(P̂2)| = 1 for every i and every P̂2 ⊆ P̂l. Observe
that if there is a P̂2 such that |I(P̂2) ∩ α(X)| �= b − k − 1, then there is a P̂ ′

2 such
that I(P̂ ′

2) ∩ α(X)| > b − k − 1. But this contradicts Corollary 22.2 and hence we
get that |I(P̂2) ∩ α(X)| = b − k − 1 for every P̂2 ⊆ P̂l and then it follows directly
from Lemma 22.1 that |P i ∩ I(P̂2)| = 1 for every P̂2 ⊆ P̂l. Hence

|I(P̂2)| ≥ |I(P̂2) ∩ α(X ∪ P̂2 ∪
⋃

P i)|
≥ |I(P̂2) ∩ α(X)| + |I(P̂2) ∩ α(P̂2)| + |I(P̂2) ∩ α(

⋃
P i)|

≥ b − k − 1 + 2 + k

≥ b + 1

and it follows that P̂l is stretched with respect to α.

Corollary 22.4. Let (T, b) be an instance of Bandwidth and P̂l, P 1, . . . , P k be
k + 1 disjoint subpaths of T . Given a k-bandwidth ordering α such that P 1, . . . , P k

passes through P̂l and there is a set of vertices X disjoint from P̂l, P 1, . . . , P k such
that |X| ≥ (l − 1)(b − k − 1) and α(X) ⊆ I(P̂l), then |X| = (l − 1)(b − k − 1).

Proof. Assume for a contradiction that |X| > (l − 1)(b − k − 1). Then there is a
P̂2 ⊆ P̂l such that |X∩I(P̂2)| ≥ b−k which is a contradiction by Corollary 22.2.

22.3 Gadgets
We will now introduce the gadgets used for the reduction. They will all be defined
on paths of various lengths. And later on when we say that a gadget is embedded
on some path, this means that the path referred to together with some of its
neighbours is an instantiation of the gadget.

Definition 22.5. Let (T, b) be an instance of p-Bandwidth and H be a subgraph
of T with a vertex labeled in and another vertex labeled out. We say that H is
functioning in T if T contains two walls Win and Wout such that

• Win, Wout and H are disjoint,

• there is a path Pin from in to Win avoiding (H − in) and Wout and



22.3. GADGETS 195

• there is a path Pout from out to Wout avoiding (H − out), Win and Pin.

If H is functioning in T let Win(H, T ), Wout(H, T ), Pin(H, T ) and Pout(H, T ) denote
a witness of this.

Walls

A wall is a star with 2b leaves. The high degree vertex of a wall W will be referred
to as the center of the wall. We will turn the endpoints of the main path into
walls to control the endpoints of all valid b-bandwidth orderings. The next lemma
gives us this behaviour.

Lemma 22.6. Let (T, b) be an instance of Bandwidth such that T contains
two disjoint walls W1 and W2 with centers c1 and c2 as subgraphs. Let H be a
connected component of T − (W1 ∪ W2) connected by edges to both walls in T .
Then, for every b-bandwidth ordering α of T and every vertex v ∈ H it follows
that α(v) ∈ Iα(c1, c2).

Proof. Assume without loss of generality that α(c1) < α(c2). First, we assume
for a contradiction that α(v) < α(c1). Let ul be the leaf in W1 minimizing
α and ur the leaf maximizing α. Furthermore, let P 1 be a path from v to c2
in T [V (H) ∪ W2] and P̂3 the path (ul, c1, ur). Observe that P 1 passes through
P̂3, since α(W1) = [α(c1) − b, α(c1) + b]. Let X = V (W1) − P̂3 and note that
|X| = 2b − 2. Apply Corollary 22.4 on P̂3, P 1 and X to obtain a contradiction,
since (3 − 1)(b − 1 − 1) = 2b − 4 < 2b − 2 = |X|. For α(v) > α(c2) we apply a
symmetric argument and hence our proof is complete.

Gates

For an integer k ≥ 0 a k-gate, denoted Πk, is a star with 2(b − k) leaves. The
function of the k-gate will be to reduce the number of paths passing this point to
at most k. The high degree vertex of the star will be referred to as the center of
the gate. In addition one leaf will be labeled in and another labeled out.

centerin out

. . .

Figure 22.6: A k-gate with the special vertices marked with tags below.

Lemma 22.7. Let (T, b) be an instance of Bandwidth such that T contains a
gate Πk and paths P 1, . . . , P k as disjoint subgraphs with Πk being functioning in
T −(⋃

P i). Given a b-bandwidth ordering α such that max{α(Win(Πk, T −⋃
pi))} <

min{α(Wout(Πk, T − ⋃
pi))} and every path P i passes through the gate it follows

that:
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(i) α(N [center]) ⊆ B ⊆ α(⋃
P i ∪ N [center]),

(ii) α(in) < α(center) < α(out) and

(iii) |α(P i) ∩ Bl| = |α(P i) ∩ Br| = 1 for every i ∈ [1, k]

where c = α(center), B = [c − b, c + b], Bl = {i ∈ B | i < c} and Br = {i ∈ B |
c < i}.

Proof. We start by proving (iii). For every path P i we know that there are
u, v ∈ P i such that α(u) < min α(Πk) and max α(Πk) < α(v). Assume that
u /∈ Bl and follow the path from u to v until you reach the first vertex u′ such that
α(u′) ≥ c − b. Let u′′ be the vertex we reached right before u′. From the definition
of α it follows that α(u′) −α(u′′) ≤ b and hence u′ ∈ Bl and |P i ∩Bl| = 1. Reverse
α and apply the argument on the path from v to u to obtain |P i ∩ Br| = 1.

We continue by proving (i). It follows directly from the fact that bw(T, α) ≤
b that N [center] ⊆ B. Since |B ∩ (⋃

P i ∪ N [center]) | = |B ∩ ⋃
P i| + |B ∩

N [center] | = 2k + 2(b − k) + 1 = 2b + 1 and |B| = 2b + 1, it follows that
B ⊆ ⋃

P i ∪ N [center]. It remains to prove (ii). Observe that max α(Win) <
min{α(in), α(center)} by Lemma 22.6. Assume for a contradiction that α(in) >
α(center). Since Pin(Πk, T − (⋃

P i)) is a path from in to Win(Πk, T − (⋃
P i)) and

the bandwidth of α is b it follows that |B ∩ Win(Πk, T − (⋃
P i)| ≥ 2, but this

contradicts (i) and hence α(in) < α(center). A symmetric argument gives us
α(center) < α(out) and our proof is complete.

Knots and Holes

Assuming b ≥ 2k + 14 and b to be dividable by 4 we give the following two
definitions. A k-knot is a path P = (first, center, last) with 3

2b − k − 1 leaves
attached to center. A k-hole consists of a path P = (in, in center, out center, out)
with 3

4b − k − 1 leaves attached to both in center and out center.

in in center out center out

3
4b − k − 1 3

4b − k − 1

Figure 22.7: A hole. The ellipse shaped vertices represent some number of leaves.

Lemma 22.8. Let (T, b) be an instance of p-Bandwidth such that T con-
tains the following disjoint subgraphs; a k-hole H and paths P 1, . . . , P k with a
k-knot K embedded on one of the paths. Furthermore, let H be functioning in
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T − (⋃
P i). Given a b-bandwidth ordering α such that P 1, . . . , P k passes though

H, max{α(Win(Πk, T − ⋃
pi))} < min{α(Wout(Πk, T − ⋃

pi))} and I(K ∪ H) ⊆
I(in, out) it holds that

(i) α(in) < α(in center) < α(out center) < α(out),

(ii) |I(P̂2) ∩ α(P i)| = 1 for every i and every P̂2 ⊂ (in, in center, out center, out)
and

(iii) α(in center) < α(center) < α(out center).

Proof. First we prove the correctness of statements (i) and (ii). Let P̂4 =
(in, in center, out center, out) and let Xc, Xi and Xo be the set of leaves attached
to center, in center and out center respectively. Apply Lemma 22.3 with X = Xi ∪
Xc ∪ Xo to obtain (ii) and either α(in) < α(in center) < α(out center) < α(out)
or α(out) < α(out center) < α(in center) < α(in) since |X| = 2

(
3
4b − k − 1

)
+

3
2b − k − 1 = (4 − 1)(b − k − 1). Assume for a contradiction that α(out) <
α(out center) < α(in center) < α(in). Then there is a vertex v ∈ Pin(H, T −
(⋃

P i)) ∩ α−1(I(H)) \ {in}. Apply Corollary 22.4 with X = Xi ∪ Xc ∪ Xo ∪ {v}
to get a contradiction and hence (i) holds.

It remains to prove (iii). Assume for a contradiction that α(center) is not
in I(in center, out center). First, we consider the case when α(center) is in
I(in, in center). It follows from Lemma 22.3 that P̂4 is stretched and hence
Xi ∪ Xc ⊆ I(P̂3) for P̂3 = (in, in center, out center). Apply Corollary 22.4 with
X = Xi ∪ Xc to obtain a contradiction since |X| = 3

4b − k − 1 + 3
2b − k − 1 =

9
4b − 2k − 2 > (3 − 1)(b − k − 1). The case when α(center) ∈ I(out center, out)
follows by the same kind of argument.

22.4 The Reduction
We now give a reduction from an instance (G, k) of Even Clique to an instance
(T, b) of Bandwidth. The correctness and implications will be given in the two
following sections. Recall that the resulting instance T can be divided into eleven
parts. Nine of them lie on the main path and will in the future be referred to as the
sectors of the main path. The nine sectors are the first wall, the first wasteland, the
first gateland, the selector, the middle gateland, the validator, the last gateland,
the last wasteland and the last wall. The two other components will be referred to
as threads and fillers. Each of the components have a specific purpose with respect
to how a b-bandwidth ordering can look like. The walls will force everything
else to be positioned within them. The threads are k paths attached to the first
wasteland and each of them represents a vertex in the supposed clique in G. To
encode how G looks like we attach leaves to the threads, which will be referred to
as the dangelments of the threads. How much of a thread that is in the inclusion
interval of the first wasteland decides which vertex in G this thread represents.
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To propagate this information the threads are made so long that they will have
to enter the inclusion interval of the last wasteland. The selectors job is to make
sure that the decisions made by the threads are unique and valid. The validator
will verify that the selected vertices in fact is a clique. And the fillers and the
gatelands will control how information propagates between the other components.

... ...... ... ...

. . . . . . . . . . . . . . . . . . . . .... ...

k threads

First wall
First wasteland

First gateland
Selector

Middle gateland
Validator

Last gateland
Last wasteland

Last wall

First filler Second filler

Figure 22.8: A subgraph of T with the components marked.

When discussing vertices and subgraphs of T we will apply an ordering based on
the distance from the center of the first wall, the leftmost wall in Figure 22.8.
We will say that a vertex u comes before a vertex v if u is closer to the center
of the first wall than v. Furthermore, we will label the vertices of the main path
u1, u2, . . . with ui being before ui+1. For subgraphs, we will compare the minimized
distance over all vertices in each subgraph. To complete our construction we need
an ordering of the vertices of G, we therefore let V (G) =

{
v1, . . . , v|V (G)|

}
. Given

an instance of Even Clique we set b = 4k + 16 and construct T according to
the description that follows, to produce an instance (T, b) of Bandwidth.

The First Wall, Wasteland and Gateland

To ensure enough space for the gadgets in the validator we introduce the pull-factor
p, which will correspond to the distance from the in vertex of a hole in the selector
to the in vertex of the next hole. The pull-factor is 4n + 3 in our reduction, but
will for convenience mostly be referred to as p.

The first sector we will embed is the first wall. This is done by turning u1 into
the center of a wall by attaching leaves to it. Second comes the first wasteland.
This is done by attaching nothing to the vertices u2 until um1 for m1 = pnk + 2.
Note that u2 is the vertex for which the threads are connected. After this we
embed bm1 consecutive k-gates from um1 to u(2b+1)m1 to create the first gateland.
This is done in such a way that the in vertex of the i’th gate is the out vertex of
the i − 1’th gate.
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The Selector

The selector will control the choices done by the threads. The idea is to let the
selector have |V (G)| sparse intervals, namely holes, and let each of the threads
have a big knot, which can only be placed within such an interval. The vertex
selected by a thread is then decided by which hole its knot is placed within.

The embedding of the selector starts where the first gateland ended, at ver-
tex u(2b+1)m1 . Note that this is the vertex where the first filler is attached in
Figure 22.8. We now embed |V (G)| many (k + 1) holes with (p − 3)/2 con-
secutive (k + 1)-gates in between every consecutive pair of holes on the path
(u(2b+1)m1 , . . . , u(2b+1)m1+p(n−1)+3). After this we embed b(p(n − 1) + 3) consecutive
(k + 1)-gates. In total, the selector is embedded on the vertices (u(2b+1)m1 , . . . , um2)
for m2 = (2b + 1)m1 + (2b + 1)(p(n − 1) + 3).

γ γ γ η η Γ Γ η η γΓ Γ

κ

k

k

... . . . . . . . . . . . . . . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

First wastelandFirst gateland Selector

Figure 22.9: Illustration of the selector where γ = 2(b − k − 1), Γ = 2(b − k − 2),
η = 3

4b − k − 1 and κ = 3
2b − k − 1.

The Middle Gateland

The middle gateland consist of bm2 consecutive k-gates, embedded on the main
path from vertex um2 to vertex u(2b+1)m2 .

The Validator

We will now give the validator. Its job is to verify that the selected vertices of the
threads in fact is a clique. The validator starts with n − 1 neutral zones, followed
by a validation zone and another n − 1 neutral zones. After this there will be
b(2n − 1)(4n + 3) consecutive (k + 1)-gates. A neutral zone is a P4n+4. The zones
will be joined by sharing endpoints in the same style as the gadgets in the selector.
The validation zone consists of a P̂4n+4 where there is n many (k + 1)-holes sharing
endpoints embedded on the last 3n + 1 vertices. The validator is hence embedded
on the vertices (u(2b+1)m2 , . . . , um3) for m3 = (2b + 1)m2 + (2b + 1)(2n − 1)(4n + 3).
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The Last Gateland, Wasteland and Wall

The last gateland consists of bm3 consecutive k-gates embedded on the vertices
(um3 , . . . , u(2b+1)m3). After this we embed the last wasteland, which means that
we leave the vertices (u(2b+1)m3 , ub2(2b+1)m3) untouched. Finally we turn the vertex
ub2(2b+1)m3+1 into the center of the last wall by attaching leaves to it.

The Threads and Their Danglements

We will now describe the threads and their danglements. As they are all isomorphic,
it is sufficient to describe one of them. Let us name the vertices on the path that
constitutes a thread by t2, . . . with t2 = u2. The leaves neighbouring to the thread
will be referred to as its danglements. First we turn t(2b+1)m1+1 into the center of
a (k + 1)-knot by attaching leaves to it. Starting at vertex t(2b+1)m2+(n−1)(4n+3) we
consider n consecutive, disjoint P4n+3. For P̂4n+3 number i we do the following.
We divide the P̂4n+3 into disjoint subpaths, first a P̂n+3 followed by n many P3’s.
Consider the j’th P3. If i = j we turn the middle vertex of the P3 into the
center of a (k + 1)-knot. Otherwise we attach a single leaf to the middle vertex if
(vi, vj) /∈ E(G). This leaf will be referred to as a non-neighbouring leaf. After this
we extend the thread with additional b(2b + 1)m3 vertices.

The Fillers

A fillers job is to fill up all available room within a sector of T to force this part
of the main path to be stretched. To accomplish this we let the filler connected to
u(2b+1)m1 be of length (n − k)(3

2b − k − 2) + (2b + 1)(p(n − 1) + 3). And the filler
attached to u(2b+1)m2 to be of length (b − 1)(4n + 3)(2n − 1) + 2b(4n + 3)(2n −
1) − (k(2n − 1)(4n + 3) + k(n(3

2b − k − 2) + n2 − n − 2m) + 2n(3
4b − k − 2)).

22.4.1 Correctness
With the next lemmas we will prove the correctness of the reduction. After this
we will continue by giving the implications of this reduction, which are the main
results of this section. Recall that b = 4k + 16 and p = 4n + 3.

Lemma 22.9. Given a yes-instance (G, k) of Even Clique the reduction in-
stance (T, b) is a yes-instance of Bandwidth.

Proof. We will now give a sparse ordering α of bandwidth b = 4k + 16, meaning
that the image of α might not be an interval. To obtain a proper bandwidth
ordering one can just compress α. During the description of α a position is a
number in N that will be in the image of α and a vertex v is said to be positioned
if the value α(v) has been given. Furthermore, we will say that v is positioned at
c if α(v) = c. By reserving a position for a subgraph H of T we guarantee that if
a vertex will be positioned at that specific position, it will be a vertex of H. And
by a position being available we will mean that no vertex has been positioned at
that specific position so far. Let Ck = {c1, . . . , ck} be a k-clique in G.
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For a vertex ui on the main path let α(ui) = bi+1. We continue by positioning
the remainders of the two walls. Let cf be the center of the first wall and Lf be the
neighbouring leaves of cf . Let α(Lf ) = [α(cf ) − b, α(cf ) + b − 1]\{α(cf )} in some
arbitrary way. Similarly for the last wall, let α(Ll) = [α(cl) − b − 1, α(cl) + b] \
{α(cl)}. Observe that for every two vertices u and v of T such that both α(u) and
α(v) has been described, it holds that α(u) �= α(v). Furthermore, if uv is an edge
in T it is true that |α(u) − α(v)| ≤ b.

Order the threads of T and name them τ1, . . . , τk. Let u and v be two neighbours
on the main path such that neither u nor v is the center of a wall and so that
α(u) < α(v). Observe that there is b−1 available positions within I(u, v). Reserve
the k positions in the middle of I(u, v), one for each of the k threads. If there are
two positions equally close to the middle, take the leftmost one. The leftmost is
reserved for the first thread, the second to leftmost for the second thread and so
forth.

For every vertex ci of the clique we let ji be such that ci = vji
. Consider hole

number ji on the main path starting at the first wall, with h1, h2, h3 and h4 being
the vertices on the main path for which the hole is embedded on such that α(h1) <
α(h2) < α(h3) < α(h4). Thus h1, h2, h3 and h4 are the in, in center, out center
and out vertices of the hole respectively. Let c be the center of the first knot on τi

and r the reserved position for τi in α within I(h2, h3). We then set α(c) = r and
complete the following procedure in the left (and right) direction on the thread
τi. Let P be the path from c to N(u2) ∩ V (τi) (or to the end of the thread). If
every vertex of P is positioned we stop. Otherwise, let u be the vertex closest to
c on P not yet positioned. Furthermore, let P̂2 be the rightmost (leftmost) P2
on the main path to the left (right) of the hole such that the position reserved
for τi is available in I(P̂2). If P̂2 is not part of any wasteland we set α(u) to this
reserved position and continue. Otherwise we consider two cases. If we are right
of r we position u at the leftmost position within I(P̂2) that is either not reserved
yet, or reserved for τi. If we are left of r we again consider two cases. Either there
are exactly as many positions to the left of r reserved for τi as there are vertices
before c not yet positioned. In that case we position u at the reserved position for
τi within I(P̂2). Otherwise, we position u at the rightmost position in I(P̂2) that
is either not reserved yet, or reserved for τi. Observe that if uv is an edge of τi

there are positions x and y that are reserved for τi such that y > x and y − x = b
and α(u) and α(v) are contained in [x, y]. It follows that |α(u) − α(v)| ≤ b.

Note that the number of vertices on a thread that will be positioned to the
left of r is (2b + 1)m1 and that, by construction, 2bm1 of these will be within the
inclusion interval of the first gateland. Hence it can be observed that there are
at most km1 vertices from the threads within the inclusion interval of the first
wasteland. Recall that the distance from u2 to the first vertex of the first gateland
is m1 − 2. Hence there are (b − 1)(m1 − 2) > km1 available positions within the
inclusion interval of the first wasteland, before we position the threads. By the
same kind of argument there are (b − 1)(b2 − 1)(2b + 1)m3 available positions in
the inclusion interval of the last wasteland before positioning the thread. Recall
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that the length of a thread is bounded above by

(2b + 1)m2 + (n − 1)(4n + 3) + (4n + 3)n + b(2b + 1)m3

<(2b + 3)m2 + b(2b + 1)m3

<2b(2b + 3)m3.

It follows that for every pair of vertices u and v such that both α(u) and α(v) has
been described if holds that α(u) �= α(v).

Recall that every k-gate of T is embedded on the main path. And hence for
every k-gate in T there are k paths passing through it with respect to α. Hence
there are 2(b − k − 1) positions available between the left and the right leaf and
the rest of the leaves can be positioned in any way within this interval. Clearly,
for every pair of vertices u and v of T , such that both α(u) and α(v) are described
it holds that α(u) �= α(v). And furthermore, if uv is an edge of a k-gate it holds
that |α(u) − α(v)| ≤ b. For every P̂2 on the main path such that P̂2 is not in a
subgraph of a wasteland and there are available positions in I(P̂2) we reserve the
position to the right of the k positions reserved for the threads, for the fillers.
Observe that any P̂2 such that this position is not available either is a subgraph
of a wasteland or a k-gate (which has no available positions).

We will now position the leaves of the knots. Let K be a knot in T . The
center c of K is a vertex of a thread and hence α(c) has already been described.
Let P̂2 be the P2 of the main path such that α(c) ∈ I(P̂2). Position the leaves
attached to c as close to the middle of I(P̂2) as possible by only using available
positions, that are not reserved. If there are two such positions equally close to
the middle, we take the leftmost one. Let P̂4 be the P4 of the main path such that
P̂2 contains the internal vertices of P̂4. It can be observed, by where the knots
are embedded on the thread and where the threads are positioned in α, that P̂4 is
either a subgraph of a hole or a neutral zone. Furthermore, if c′ is the center of
some other knot and P̂ ′

2 is the P2 of the main main such that α(c′) is contained in
its inclusion interval, then it can be observed that P̂ ′

2 and P̂4 are disjoint. Hence,
we can observe that there are 2(b − k − 2) positions available and non-reserved
within [α(c) − b, α(c) + b]. Recall that a knot consists of 3

2b − k − 2 leaves and
that b = 4k + 16, and hence 2(b − k − 2) ≥ 3

2b − k − 2. It follows that for every
two vertices u and v of T such that both α(u) and α(v) have been described,
α(u) �= α(v). Furthermore, it uv is an edge of T it holds that |α(u) − α(v)| ≤ b.

Let P̂4 = (uh, uh+1, uh+2, uh+3) be some subpath of the main path such that a
hole is embedded on it. Position the leaves attached to uh+1 to the leftmost non-
reserved, available positions and the leaves attached to uh+2 to the rightmost non-
reserved, available positions, within I(P̂4). Furthermore, for the leaves representing
non-neighbours, position it at the position available and not reserved closest to
its neighbour. If there are two such positions, any of the two will do. It can be
observed, by where the knots are embedded on the threads and where the knots
and positioned that no two knots are positioned within the inclusion interval of a
hole. And furthermore, that at most k non-adjacency leaves are positioned within
the inclusion interval of a hole. At last, since Ck is a clique it holds that no knot
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and non-neighbour leaf is positioned with the inclusion interval of a hole. Recall
that k is even and hence 3

2b − k − 2 = 5k + 22 is even. It follows that the leaves of
a knot is evenly distributed among the two sides of the center. Recall that the
number of leaves in a hole is 3

2b − 2k − 4. There are 3k vertices from the threads
positioned within the inclusion interval of P̂4 and there are 3b − 3k − 6 leaves
attached to one hole and one knot. Since there are more than k leaves attached
to a knot, it can be observed that for any two vertices u and v such that at least
u or v is positioned within the inclusion interval of P̂4 it holds that α(u) �= α(v).
And furthermore, if uv is an edge in T it holds that |α(u) − α(v)| ≤ b.

Consider danglements positioned within the inclusion interval of a P̂4 that
is a subgraph of a neutral zone. One can observe that there is at most k non-
neighbouring leaves and at most one clique positioned within the inclusion interval
of P̂4. And hence the same argument as above can be applied to show that for
every two vertices u and v of T such that both α(u) and α(v) has been described,
it holds that α(u) �= α(v). Furthermore, if uv is an edge of T it is true that
|α(u) − α(v)| ≤ b.

It remains to describe the positioning of each of the fillers. Let u be the vertex
on the filler closest to the main path not yet positioned and r lowest value bigger
than the α-value of the intersection vertex between the filler and the main path
that is not taken. Set α(u) = r and continue. Recall that the length of the path
where the selector is embedded is (n − 1)p + 3 + 2b(p(n − 1) + 3), and hence there
were (b − 1)((n − 1)p + 3 + 2b(p(n − 1) + 3)) available positions within the inclusion
interval of the selector after only the main path had been positioned. Observe
that the threads now occupies k((n − 1)p + 3 + 2b(p(n − 1) + 3)) of these positions,
the k + 1-gates ((p − 3)(n − 1)/2 + b(p(n − 1) + 3))2(b − k − 2) of the positions,
the knots k(3

2b − k − 2) positions, the holes 2n(3
4b − k − 2) positions and the filler

(n − k)(3
2b − k − 2) + (2b + 1)(p(n − 1) + 3). By substituting p by 4n + 3 and b by

4k + 16 one can verify that the vertices positioned equals the amount of positions
available within the inclusion interval of the selector. The expression for the once
available positions within the inclusion interval of the selector S and the number
of vertices now positioned within it, disregarding the main path, namely X, is
given below.

S = k((n − 1)p + 3 + 2b(p(n − 1) + 3))
+ ((p − 3)(n − 1)/2 + b(p(n − 1) + 3))2(b − k − 2)

+ k(3
2b − k − 2) + 2n(3

4b − k − 2)

+ (n − k)(3
2b − k − 2) + (2b + 1)(p(n − 1) + 3)

= (b − 1)((n − 1)p + 3 + 2b(p(n − 1) + 3)) = X.

It follows that for every two vertices u and v such that both α(u) and α(v) have
been described, it holds that α(u) �= α(v). Recall that for every P̂2 that is a
subgraph of the selector there was a position reserved for the filler. And hence
for every edge uv of the first filler, there are positions reserved for the filler, x
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and y such that y − x = b and α(u) and α(v) is contained within [x, y]. It follows
directly that |α(u) − α(v)| ≤ b. For the second filler, we observe that there were
(b − 1)(4n + 2)(2n − 1) available positions within the inclusion interval of the
validator when only the main path had been positioned. And furthermore, now the
n holes occupies 2n(3

4b−k−2) of these positions, the threads k(2n−1)(4n+2) of the
positions, the knots kn(3

2b−k −2) and the non-neighbouring leaves k(n2 −n−2m).
By a similar argument as for the first filler, one can prove that for every u and v
of T it holds that α(u) �= α(v) and if uv is an edge of T then |α(u) − α(v)| ≤ b.
This completes the description of α and the argument is complete.

Given a reduced instance (T, b) and a b-bandwidth ordering α we say that a k-gate
in T is blocked with respect to α if every thread in T pass through the gate.

Lemma 22.10. Let (T, b) be the result of the reduction for an instance of Even

Clique and α a b-bandwidth ordering of T . Then every every thread passes
through every k-gate. And in particular, ever k-gate in T is blocked with respect
to α.

Proof. By Lemma 22.6 we know that the first wall is either the leftmost or the
rightmost elements of α. Observe that every k-gate in T is blocked with respect to
α if and only if every k-gate in T is blocked with respect to α reversed. Hence it is
sufficient to prove that every k-gate is blocked when the first wall is the leftmost
elements of α.

Assume for a contradiction that there is a k-gate Π and a thread τ such
that τ is not passing through Π. Let P be the path from u2 to the out vertex
of Π and let X = V (τ) − u2. By Lemma 22.6 we know that α(u2) = min α(τ)
and that α(u2) < min α(Π). It follows by the definition of passing through that
max α(τ) ≤ max α(Π) and hence α(X) ⊆ I(P ). Recall that |E(P )| ≤ (2b+1)m3−2
and |X| > b(2b + 1)m3. It follows directly that |I(P )| ≤ b((2b + 1)m3 − 2) + 1 <
b(2b + 1)m3 < |X| which is a contradiction.

Recall that the main path of the reduction instance consist of 9 sectors, namely
the first wall, the first wasteland, the first gateland, the selector, the middle
gateland, the validator, the last gateland, the last wasteland and the last wall.
See Figure 22.8 for an illustration. The lemma below shows that the sectors will
appear in the same order in α as they do in the instance, up to reversion.

Lemma 22.11. Let (T, b) be the result of the reduction for an instance of Even

Clique and α a b-bandwidth ordering of T such that the first wall is mapped to
the leftmost elements of α. If u and v are vertices from two different sectors such
that u comes before v in T , then it holds that α(u) ≤ α(v).

Proof. If at least one of the vertices are in one of the walls, the lemma follows
directly from Lemma 22.6. We will now consider two cases. First, we consider the
case when there is a k-gate Π with center c embedded on the inner vertices of the
path from u to v. We make c adjacent to α−1([α(c) − b, α(c) + b) and observe that
c is now the center of a wall and α is still a b-bandwidth ordering of the graph.
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Apply Lemma 22.6 on the first wall and the new wall to obtain α(u) ≤ α(c) and
on the new wall and the last wall to obtain α(c) ≤ α(v). It follows immediately
that α(u) ≤ α(v).

It remains to consider the case when there is no k-gate embedded on the inner
vertices of the path from u to v. It follows, by construction, that either u or v is a
vertex of a k-gate. First, let us consider the case when u is a vertex of a k-gate.
Recall that the vertices the gate is embedded on is named in, c = center and out
and let P be the path from out to v. It follows by Lemmata 22.7 and 22.10 that
α(P ) and [α(c) − b, α(c) + b] intersects in only one element, namely α(out), and
that α(in) < α(c) < α(out). Since α is a b-bandwidth ordering it follows that
α(out) = min α(P ) and hence α(u) ≤ α(out) ≤ α(v). The case when v is a vertex
of a k-gate follows by a symmetrical argument.

Let PF , PM and PL be the paths from the center of the first gate to the center
of the last gate in the first gateland, the middle gateland and the last gateland
respectively.

Lemma 22.12. Let (T, b) be the result of the reduction for some instance of Even

Clique and α a b-bandwidth ordering of T , then

• PF , PM and PL are stretched with respect to α and

• for the centers of two k-gates c1 and c2 such that c1 comes before c2 in T it
holds that α(c1) < α(c2).

Proof. This follows directly from Lemmata 22.7, 22.10 and 22.11.

Let ΠF and ΠL be the first and last k-gate in T , and cF and cL their centers
respectively. Furthermore, let PR be the path from cF to cL.

Lemma 22.13. Let (T, b) be the result of the reduction for some instance of Even

Clique and α a b-bandwidth ordering of T . If u �= u2 is a vertex of a thread, such
that the degree of u is at least three, then α(u) ∈ I(PR).

Proof. By Lemma 22.6 we know that the first wall is either the leftmost or the
rightmost elements of α. Observe that u is mapped within the inclusion interval
of PR by α if and only if u is mapped within the inclusion interval of PR by α
reversed. Hence it is sufficient to prove that α(u) ∈ I(PR) when the first wall is
the leftmost elements of α.

Assume for a contradiction that there is a vertex u �= u2 of some thread,
such that u has degree at least three and α(u) /∈ I(PR). It follows from Lem-
mata 22.11 and 22.12 that either α(u) < α(cF ) or α(cL) < α(u). First, we consider
the case when α(u) < α(cF ). Let P τ

L be the path from u2 to u, except u2 and
P τ

R the path from u to the last vertex of the thread. Furthermore, let P be the
path from u2 to cF . By Lemmata 22.7, 22.10 and 22.11 we get that α(P τ

L) ⊆ I(P ).
Recall that |V (P τ

L)| ≥ (2b + 1)m1 − 1 and that |E(P )| = m1. It follows immedi-
ately that |I(P )| ≤ bm1 + 1 < (2b + 1)m1 − 1 ≤ |V (P τ

L)| and hence we obtain a
contradiction.
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It remains to consider the case when α(cL) < α(u). Let P τ be the path from
u2 to u and P the path from u2 to cL except u2. By assumption α(u2) < min α(P )
and hence α(P ) ⊆ I(P τ ). Recall that |E(P τ )| < m3 and that |V (P )| = (2b +
1)m3 − 3. It follows that |I(P τ )| < bm3 + 1 < (2b + 1)m3 − 3 = |V (P )|, which is
a contradiction.

Lemma 22.14. Let (T, b) be the result of the reduction for an instance of Even

Clique and α a b-bandwidth ordering of T . Then

• |α(τi) ∩ I(P̂2)| = 1 for every thread τi and every subpath P̂2 of PR and

• PR is stretched with respect to α.

Proof. By Lemma 22.6 we know that the first wall is either the leftmost or the
rightmost elements of α. Observe that PR is stretched with respect to α if and
only if PR is stretched with respect to α reversed. It follows that it is sufficient to
prove that the lemma holds when the first wall is the leftmost elements of α.

Let Z = α−1(I(PR)) and observe that there are at most 2b vertices in N(Z).
Furthermore, observe that every leaf of a gate or a hole is either within I(PR) or a
neighbor of Z. It follows from Lemma 22.10 that Lemma 22.7 applies to all k-gates
of T . Furthermore, by Lemma 22.11 it follows that the neighbors of the fillers
are positioned after the first gateland and before the last gateland. And hence by
Lemmata 22.10 and 22.11 and the fact that α is a b-bandwidth ordering, it follows
that both fillers are positioned within I(PR). By Lemma 22.13 it holds that every
vertex v that is a danglement, its neighbor is positioned within I(PR). And hence
v is either in I(PR) or a neighbor of Z. Below you find a table giving an overview
of how many vertices not on the main path, each type of gadget contributes with
to N [Z].

Type of vertices Amount
Knots k(n + 1)(3

2b − k − 2)
Holes 4n(3

4b − k − 2)
First filler (n − k)(3

2b − k − 2) + (2b + 1)(p(n − 1) + 3)
Second filler (b−1)(4n+3)(2n−1)+2b(4n+3)(2n−1)− (k(2n−

1)(4n+3)+k(n(3
2b−k −2)+n2 −n−2m)+2n(3

4b−
k − 2))

k-gates 2(b − k − 1)b(m1 + m2 + m3)
(k + 1)-gates 2(b−k −2)((n−1)(p−3)/2+b(p(n−1)+3)+b(2n−

1)(4n + 3))
non-neighbouring leaves k(n2 − n − 2m)

It follows from Lemma 22.6 that there are two vertices of the main path within
N(Z) and from Lemma 22.10 that there are 2k vertices from the threads in Z. Let
X be all leaves in gates, holes and knots and non-neighbouring leaves and all the
vertices in the fillers that are positioned within I(PR). We know that |X| is at least
the sum of the numbers in the table above, minus 2b − 2k − 2. And hence it can



22.4. THE REDUCTION 207

be verified that |X| = (b − k − 1)((2b + 1)m3 − m1 − 2). By construction it follows
that |E(PR)| = (2b + 1)m3 − m1 − 2. It follows that we can apply Lemma 22.3 to
complete the proof.

Name the holes of the selector such that the first hole is called H1 and the
last hole is Hn. Let (T, b) be a resulting instance of the reduction and α a b-
bandwidth ordering of T . Furthermore, let Hi be a hole of T embedded on the
path (v1, v2, v3, v4) such that v1 comes before v4 in T . We say that a thread τ
is selecting i, if the center c of the first knot of the thread is positioned so that
α(c) ∈ I(v2, v3).

Lemma 22.15. Let (T, b) be the result of the reduction for the instance (G, k)
of p-Even Clique and α a b-bandwidth ordering of T . Then every thread in T
selects a unique integer in [n].

Proof. By Lemma 22.6 we know that the first wall is either the leftmost or the
rightmost elements of α. Observe that every thread in T selects an unique integer
with respect to α if and only if every thread in T selects an unique integer with
respect to α reversed. It follows that it is sufficient to prove that the lemma holds
when the first wall is the leftmost elements of α.

Let us consider a thread τ with vertices (u2 = t2, t3, . . . ), where c is the
center of the first knot K of τ . Furthermore, let cF be the center of the first
gate in the first gateland, cM the center of the last gate in the middle gateland
and cL the center of the last gate in the last gateland. We first prove that
α(c) ∈ I(cF , cM). We know that α(c) ∈ I(PR) by Lemma 22.13 and hence in
I(cF , cL) by Lemma 22.14. Assume for a contradiction that α(c) /∈ I(cF , cM),
it follows that α(c) ∈ I(cM , cL). Let P τ be the path from u2 to c and P the
path from u3 to cM . By Lemma 22.11 it follows that α(P ) ⊆ I(P τ ). Recall that
|E(P τ )| = (2b+1)m1 −1 and that V (P ) = (2b+1)m2 −3. A contradiction follows
immediately, since I(P τ ) ≤ b((2b + 1)m1 − 1) + 1 < (2b + 1)m2 − 3 ≤ V (P ). And
hence we can assume α(c) ∈ I(cF , cM).

We will now prove that there is a hole Hi such that α(c) ∈ I(Hi). Assume for
a contradiction that α(c) /∈ I(Hi) for every i. Let P̂2 = (p1, p2) be the P2 of the
main path such that α(c) ∈ I(P̂2). It follows by construction, that either p1 or
p2 is the center of a gate. Observe that the leaves attached to c, p1 and p2 must
be positioned within a P̂4. And due to Lemma 22.14 there are 4 + 3k vertices
from the main path and the threads within I(P̂4). Recall that there are 3

2b − k − 2
leaves attached to c and at least 2(b − k − 2) leaves attached to P̂2. This adds
up to 4 + 3k + 3

2b − k − 2 + 2b − 2k − 4 = 7
2b − 2 > 3b + 1 and hence we get a

contradiction.
Let Hi be embedded on the path (v1, v2, v3, v4) such that v1 comes before v4

in T . Observe that due to Lemma 22.14 there is a position within the inclusion
interval of the last (k + 1)-gate of the selector that only the first filler can take.
Due to our tight budget when it comes to positions within I(PR) (see the proof
of Lemma 22.14) it follows that the first filler must take this position. And
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hence for every hole in the selector, the (k + 1)-gate immediately before and
after will be passed by the first filler. It follows that Lemma 22.7 is applicable
on the (k + 1)-gates in the selector and hence α(K) ⊆ I(v1, v4). Furthermore,
due to Lemma 22.14 we know that I(Hi) ⊆ I(v1, v4). And hence we can apply
Lemma 22.8 to obtain that α(c) ∈ I(v2, v3).

It remains to prove that the threads selects unique integers. Assume otherwise
for a contradiction and let τ and τ ′ be two threads selecting the same integer i.
Hence there are two knots K and K ′ such that α(K) ∪ α(K ′) ⊆ I(Hi) ⊆ I(v1, v4).
And since |I(v1, v4)| = 3b + 1 < 6b − 4k − 8 = 2(3

2b − k − 2) + 2(3
4b − k − 2) =

|V (K) ∪ V (K ′) ∪ Hi| and hence we get our contradiction and the proof is complete.

Lemma 22.16. Let (T, b) be the result of the reduction for the instance (G, k) of
Even Clique and α a b-bandwidth ordering of T . Then the set

{vi | there is a thread selecting i}

is a clique in G.

Proof. By Lemma 22.6 we know that the first wall is either the leftmost or the
rightmost elements of α. Observe that the set of integers selected by the threads
with respect to α is the same as the one selected with respect to α reversed. It
follows that it is sufficient to prove that the lemma holds when the first wall is the
leftmost elements of α.

Let A be the set of selected integers and C = {vi | i ∈ A}. From Lemma 22.15
we know that the size of both A and C is k. Assume for a contradiction that there
are two vertices va and vb in C such that va and vb are not neighbours in G. Let
τa be the thread selecting a and τb the thread selecting b. One can observe that
by construction and Lemma 22.14 there is a hole H in the validation zone and a
knot Ka with center ca embedded on τa such that α(ca) ∈ I(H).

Let (v1, v2, v3, v4) be the path that H is embedded on, such that v1 comes
before v4 in T . From Lemma 22.14 one can observe that there is a position within
the inclusion interval of the last (k + 1)-gate in the validator that only the second
filler can take. Due to our tight budget when it comes to positions within I(PR)
(see the proof of Lemma 22.14) it follows that the second filler must take this
position. It follows that Lemma 22.7 is applicable on the (k +1)-gates immediately
before and after H. Hence it follows by Lemma 22.8 that α(K) ∪ α(H) ⊆ I(v1, v4).

From the construction of T and Lemma 22.14 one can observe that the vertex
of τb positioned within I(v2, v3) has a non-neighbouring leaf attached. It follows
that there are 3(k + 1) + 4 vertices from the threads, the filler and the main path
positioned within I(v1, v4). Furthermore, the knot contributes with 3

2b−k−2 leaves
to I(v1, v4) and the hole with 2(3

4b − k − 2). And in addition the non-neighbouring
leaf must be positioned within I(v1, v4). It follows that 3b + 1 = |I(v1, v4)| ≤
3(k + 1) + 4 + 3

2b − k − 2 + 2(3
4b − k − 2) + 1 = 3b + 7 − 2 − 4 + 1 = 3b + 2 which

is a contradiction and the proof is complete.
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Lemma 22.17. Given an instance (G, k) of p-Clique the reduction instance
(T, b) of p-Bandwidth has a b-bandwidth ordering if and only if there is a clique
of size k in G.

Proof. This follows immediately by Lemmata 22.9, 22.15 and 22.16.

22.5 Consequences
Recall from Chapter 1 that Even Clique is W[1]-hard when parameterized
by k (Theorem 1) and does not admit an f(k)no(k) time algorithm unless ETH fails
(Theorem 9). We now combine this with our reduction to obtain the promised
results.

Theorem 43. Bandwidth parameterized by b is W[1]-hard, even when the input
graph is restricted to trees of pathwidth at most 2.

Proof. The result follows directly from Lemma 22.17 and Theorem 1, together
with the observations that the graph constructed by the reduction is a tree of
pathwidth at most 2 and that b = f(k).

Theorem 44. Bandwidth does not admit an f(b)no(b) time algorithm, even
when the input graph is restricted to trees of pathwidth at most 2, unless ETH
fails.

Proof. The result follows directly from Lemma 22.17 and Theorem 9, together
with the observations that the graph constructed by the reduction is a tree of
pathwidth at most 2 and that b = O(k).
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Chapter 23

Concluding remarks

Lower bounds

In this part we have shown that the classic 2O(b)nb+1 time dynamic programming
algorithm of Saxe [Sax80] for the Bandwidth problem is essentially optimal, even
on trees of pathwidth at most 2. On trees of pathwidth 1, namely caterpillars
with hair length 1, the problem is known to be polynomial time solvable.

The gadgets introduced for the reduction provide a framework for selecting k
vertices of the graph and testing properties regarding the neighborhoods of these
vertices. Within the same framework, one can replace the danglements that are
positioned within the validation zone in the validator by a somewhat small object
for each vertex that this vertex does not have in its closed neighborhood. By
somewhat small, we mean a set of leaves that are so that k − 1 of these can fit
within a hole while k cannot. We can in addition redefine the length of the second
filler so that the validator is forced to be stretched. By doing so we ensure that
no vertex in the graph is not within the closed neighborhood of the selected set.
Or in other words, that the selected set is a dominating set in the graph.

This edited reduction proves that Bandwidth is indeed W[2]-hard. Recently,
Chen and Lin [CL] proved that Dominating Set does not admit any constant
factor approximation in f(b)nO(1) time, unless FPT = W[1]. Can one make the
reduction presented here robust enough to imply a similar result for Bandwidth?

Algorithms and obstructions

On the positive side, we gave the first approximation algorithm for Bandwidth on
graphs of bounded treelength with approximation ratio being a function of b and
independent of n. Based on this one can ask if Bandwidth admit a parameterized
approximation algorithm on general graphs?

One can observe that the exponential approximation factor for graphs of
bounded treelength stems from the algorithm for trees. Hence, this is the most
interesting algorithm to improve upon with respect to approximation factor. Does
Bandwidth admit an approximation algorithm on trees with approximation ratio
polynomial in b? What if one allows the algorithm to have running time f(b)nO(1)?
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Our approximation algorithm is based on pathwidth, local density and a new
obstruction to bounded bandwidth called skewed Cantor combs. And given that
your graph is of bounded treelength, we prove that these are the only obstructions
that can prevent bandwidth from being small. It is natural to ask whether this
extends to general graphs? Does there exist a function f such that any graph G
with pathwidth at most c1, local density at most c2, and containing no Sc3 as a
subgraph has bandwidth at most f(c1, c2, c3)?



Part VI

Treewidth
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Chapter 24

Introduction

Since its invention in the 1980s, the notion of treewidth has come to play a central
role in an enormous number of fields, ranging from very deep structural theories
to highly applied areas. An important (but not the only) reason for the impact of
the notion is that many graph problems that are intractable on general graphs
become efficiently solvable when the input is a graph of bounded treewidth. In
most cases, the first step of an algorithm is to find a tree decomposition of small
width and the second step is to perform a dynamic programming procedure on
the tree decomposition.

In particular, if a graph on n vertices is given together with a tree decomposition
of width k, many problems can be solved by dynamic programming in time 2O(k)n,
i.e., single-exponential in the treewidth and linear in n. Many of the problems
admitting such algorithms have been known for over thirty years [Bod88] but
new algorithmic techniques on graphs of bounded treewidth [BCKN13] as well as
new problems motivated by various applications (just a few of many examples
are [ABDR12, Gil11, KvHK02, RPBD12]) continue to be discovered. While a
reasonably good tree decomposition can be derived from the properties of the
problem sometimes, in most of the applications, the computation of a good tree
decomposition is a challenge.

Hence the natural question here is what can be done when no tree decomposition
is given. In other words, is there an algorithm that for a given graph G and integer k,
in time 2O(k)n either correctly reports that the treewidth of G is more than k, or
finds an optimal solution to our favorite problem (finds a maximum independent
set, computes the chromatic number, decides if G is Hamiltonian, etc.)? To answer
this question it would be sufficient to have an algorithm that in time 2O(k)n either
reports correctly that the treewidth of G is more that k, or constructs a tree
decomposition of width at most ck for some constant c.

However, the lack of such algorithms has been a bottleneck, both in theory and
in practical applications of the treewidth concept. The existing approximation
algorithms give us the choice of running times of the form 2O(k)n2, 2O(k log k)n log n,
or kO(k3)n, see Table 24.1. Remarkably, the newest of these current record holders
is now almost 20 years old. This “newest record holder” is the linear time algorithm
of Bodlaender [Bod96] that given a graph G, decides if the treewidth of G is at
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most k, and if so, gives a tree decomposition of width at most k in O(kO(k3)n) time.
The improvement by Perković and Reed [PR00] is only a factor polynomial in k
faster, however, if the treewidth is larger than k, it gives a subgraph of treewidth
more than k with a tree decomposition of width at most 2k, leading to an O(n2)
algorithm for the fundamental disjoint paths problem. Recently, a version running
in logarithmic space was found by Elberfeld et al. [EJT10], but its running time is
not linear.

Reference Approximation f(k) g(n)
Arnborg et al. [ACP87] exact O(1) O(nk+2)

Robertson & Seymour [RS95] 4k + 3 O(33k) n2

Lagergren [Lag96] 8k + 7 2O(k log k) n log2 n
Reed [Ree92] 8k + O(1)1 2O(k log k) n log n

Bodlaender [Bod96] exact O(kO(k3)) n
Amir [Ami10] 4.5k O(23kk3/2) n2

Amir [Ami10] (3 + 2/3)k O(23.6982kk3) n2

Amir [Ami10] O(k log k) O(k log k) n4

Feige et al. [FHL08] O(k ·
√

log k) O(1) nO(1)

This part 3k + 4 2O(k) n log n
This part 5k + 4 2O(k) n

Table 24.1: Overview of treewidth algorithms. Here k is the treewidth and n is
the number of vertices of an input graph G. Each of the algorithms outputs in
time f(k) · g(n) a decomposition of width given in the Approximation column.

We now present the first constant factor approximation algorithm for the treewidth
graph such that its running time is single exponential in treewidth and linear in
the size of the input graph.

Of independent interest are a number of techniques that we use to obtain
the result and the intermediate result of an algorithm that either tells that the
treewidth is larger than k or outputs a tree decomposition of width at most 3k + 4
in time 2O(k)n log n.

Related results and techniques

The basic shape of our algorithm is along the same lines as about all of the treewidth
approximation algorithms [Ami10, BGHK95, FHL08, Lag96, Ree92, RS95], i.e.,
a specific scheme of repeatedly finding separators. If we ask for polynomial
time approximation algorithms for treewidth, the currently best result is that
of [FHL08] that gives in polynomial (but not linear) time a tree decomposition of
width O(k ·

√
log k) where k is the treewidth of the graph. Their work also gives a

polynomial time approximation algorithm with ratio O(|VH |2) for H-minor free
graphs. By Austrin et al. [APW12], assuming the Small Set Expansion Conjecture,
there is no polynomial time approximation algorithm for treewidth with a constant
performance ratio.
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An important element in the algorithms is the use of a data structure that
allows to perform various queries in time O(ck log n) each, for some constant c.
This data structure is obtained by adding various new techniques to old ideas from
the area of dynamic algorithms for graphs of bounded treewidth [Bod93, CSTV93,
CZ98, CZ00, Hag00].

A central element in the data structure is a tree decomposition of the input
graph of bounded (but too large) width such that the tree used in the tree decom-
position is binary and of logarithmic depth. To obtain this tree decomposition, we
combine the following techniques: following the scheme of the exact linear time
algorithms [Bod96, PR00], but replacing the call to the dynamic programming
algorithm of Bodlaender and Kloks [BK96] by a recursive call to our algorithm,
we obtain a tree decomposition of G of width at most 10k + 9 (or 6k + 9, in the
case of the O(ckn log n) algorithm of Chapter 26.)

We use a result by Bodlaender and Hagerup [BH98] that this tree decomposition
can be turned into a tree decomposition with a logarithmic depth binary tree in
linear time. We then turn this shallow tree decomposition into a data structure
that we can make queries to regarding the input graph.

Implementing the approximation algorithm for treewidth by Robertson and
Seymour [RS95] using our data structure immediately gives a 3-approximation
algorithm for treewidth running in time O(ckn log n); This algorithm is explained
in detail in Chapter 26. Additional techniques are needed to speed this algo-
rithm up. We build a series of algorithms, with running times of the forms
O(ckn log log n), O(ckn log log log n), . . ., etc. Each algorithm “implements” Reed’s
algorithm [Ree92], but with a different procedure to find balanced separators of
the subgraph at hand, and stops when the subgraph at hand has size O(log n). In
the latter case, we call the previous algorithm of the series on this subgraph.

Finally, to obtain a linear time algorithm, we consider two cases, one case for
when n is “small” (with respect to k), and one case when n is “large”, where we
consider n to be small if

n ≤ 22c0k3
, for some constant c0.

For small values of n, we apply the O(ckn log log n) algorithm from Chapter 27.
This will yield a linear running time in n since log log n ≤ k. For larger values
of n, we show that the linear time algorithms of Bodlaender [Bod96] or Perković
and Reed [PR00] can be implemented in truly linear time, without any overhead
depending on k. This seemingly surprising result can be obtained roughly as
follows.

We explicitly construct a finite state tree automaton of the dynamic program-
ming algorithm in time double exponential in k. In this case, double exponential
in k is in fact linear in n. This automaton is then applied on an expression
tree constructed from our tree decomposition and this results in an algorithm
running in time 2O(k)n. Viewing a dynamic programming algorithm on a tree
decomposition as a finite state automaton traces back to early work by Fellows
and Langston [FL], see e.g., also [AF93]. Our algorithm assumes the RAM model
of computation [Sav98], and the only aspect of the RAM model which is exploited
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by our algorithm is the ability to look up an entry in a table in constant time,
independently of the size of the table. This capability is crucially used in almost
every linear time graph algorithm including breadth first search and depth first
search.



Chapter 25

Proof outline

This part combines several different techniques. Instead of directly giving the
full proofs with all details, we first give in this section a more intuitive (but
still quite technical) outline of the results and techniques. The roadmap of this
outline is as follows: first, we briefly explain some constant factor approximation
algorithms for treewidth upon which our algorithm builds. First we give a variant
of the algorithm by Robertson and Seymour [RS95] (which was already presented
in Section 1.6), which within a constant factor, approximates treewidth with
a running time O(ckn2). Then, in Section 25.2 we discuss the O(kO(k)n log n)
algorithm by Reed [Ree92]. After this, we sketch in Section 25.3 the proof of
our new O(ckn log n) 3-approximation for treewidth, building upon the earlier
discussed algorithms by Robertson and Seymour and by Reed. This algorithm
needs a technical lemma, of which the main graph theoretic ideas are sketched in
Sections 25.4 and 25.5. The algorithm needs a specific data structure: we exploit
having a tree decomposition of bounded (but still too large) width to perform
several queries in O(ck log n) time; this is sketched in Section 25.6. The algorithm
with running time O(ckn log n) is used as the first in a series of algorithm, with
running times O(ckn log log n), O(ckn log log log n), etc, each calling the previous
one as a subroutine; this is sketched in Section 25.7. How we obtain from this
series of algorithms our final O(ckn) algorithm then is sketched in Section 25.8.

25.1 The algorithm from Graph Minors XIII
The engine behind the algorithm is a lemma that states that graphs of treewidth k
have balanced separators of size k + 1. In particular, for any way to assign non-
negative weights to the vertices there exists a set X of size at most k + 1 such
that the total weight of any connected component of G \ X is at most half of the
total weight of G. We will use the variant of the lemma where some vertices have
weight 1 and some have weight 0.

Lemma 25.1 (Graph Minors II [RS86]). If tw(G) ≤ k and S ⊆ V (G), then there
exists X ⊆ V (G) with |X| ≤ k + 1 such that every component of G \ X has at
most 1

2 |S| vertices which are in S.

219



220 CHAPTER 25. PROOF OUTLINE

We note that the original version of [RS86] is seemingly stronger: it gives
bound 1

2 |S \ X| instead of 1
2 |S|. However, we do not need this stronger ver-

sion and we find it more convenient to work with the weaker. The set X with
properties ensured by Lemma 25.1 will be called a balanced S-separator, or a
1
2-balanced S-separator. More generally, for an β-balanced S-separator X every
connected component of G \ X contains at most β|S| vertices of S. If we omit the
set S, i.e., talk about separators instead of S-separators, we mean S = V (G) and
balanced separators of the whole vertex set.

The proof of Lemma 25.1 is not too hard; start with a tree decomposition of G
with width at most k and orient every edge of the decomposition tree towards the
side which contains the larger part of the set S. Two edges of the decomposition
can not point “in different directions”, since then there would be disjoint parts
of the tree, both containing more than half of S. Thus there has to be a node
in the decomposition tree such that all edges of the decomposition are oriented
towards it. The bag of the decomposition corresponding to this node is exactly
the set X of at most k + 1 vertices whose deletion leaves connected components
with at most 1

2 |S| vertices of S each.
The proof of Lemma 25.1 is constructive if one has access to a tree decomposition

of G of width less than k. The algorithm does not have such a decomposition
at hand, after all we are trying to compute a decomposition of G of small width.
Thus we have to settle for the following algorithmic variant of the lemma [RS86].

Lemma 25.2 ([RS95]). There is an algorithm that given a graph G, a set S and
a k ∈ N either concludes that tw(G) > k or outputs a set X of size at most k + 1
such that every component of G \ X has at most 2

3 |S| vertices which are in S and
runs in time O(3|S|kO(1)(n + m)).

Proof sketch. By Lemma 25.1 there exists a set X ′ of size at most k + 1 such that
every component of G \ X ′ has at most 1

2 |S| vertices which are in S. A simple
packing argument shows that the components can be assigned to left or right such
that at most 2

3 |S| vertices of S go left and at most 2
3 |S| go right. Let SX be S ∩ X ′

and let SL and SR be the vertices of S that were put left and right respectively.
By trying all partitions of S in three parts the algorithm correctly guesses SX , SL

and SR. Now X ′ separates SL from SR and so the minimum vertex cut between SL

and SR in G \ SX is at most |X ′ \ SX | ≤ (k + 1) − |SX |. The algorithm finds
using max-flow a set Z of size at most (k + 1) − |SX | that separates SL from SR

in G \ SX . Since we are only interested in a set Z of size at most k − |SX | one
can run max-flow in time O((n + m)kO(1)). Having found SL, SR, SX and Z the
algorithm sets X = SX ∪ Z, L to contain all components of G \ X that contain
vertices of SL and R to contain all other vertices. Since every component C
of G \ X is fully contained in L or R, the bound on |C ∩ S| follows.

If no partition of S into SL, SR, SX yielded a cutset Z of size at most (k +
1) − |SX |, this means that tw(G) > k, which the algorithm reports.

The algorithm takes as input G, k and a set S on at most 3k+3 vertices, and either
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concludes that the treewidth of G is larger than k or finds a tree decomposition of
width at most 4k + 3 such that the top bag of the decomposition contains S.

On input G, S, k the algorithm starts by ensuring that |S| = 3k + 3. If
|S| < 3k + 3 the algorithm just adds arbitrary vertices to S until equality is
obtained. Then the algorithm applies Lemma 25.2 and finds a set X of size at
most k + 1 such that each component Ci of G \ X satisfies |Ci ∩ S| ≤ 2|S|

3 ≤ 2k + 2.
Thus for each Ci we have |(S ∩ Ci) ∪ X| ≤ 3k + 3. For each component Ci of G \ X
the algorithm runs itself recursively on (G[Ci ∪ X], (S ∩ Ci) ∪ X, k).

If either of the recursive calls returns that the treewidth is more than k then the
treewidth of G is more than k as well. Otherwise we have for every component Ci

a tree decomposition of G[Ci ∪ X] of width at most 4k + 3 such that the top bag
contains (S ∩ Ci) ∪ X. To make a tree decomposition of G we make a new root
node with bag X ∪ S, and connect this bag to the roots of the tree decompositions
of G[Ci ∪ X] for each component Ci. It is easy to verify that this is indeed a tree
decomposition of G. The top bag contains S, and the size of the top bag is at
most |S| + |X| ≤ 4k + 4, and so the width if the decomposition is at most 4k + 3
as claimed.

The running time of the algorithm is governed by the recurrence

T (n, k) = O(3|S|kO(1)(n + m)) +
∑
Ci

T (|Ci ∪ X|, k) (25.1)

which solves to T (n, k) ≤ (33kkO(1)n(n + m)) since |S| = 3k + 3 and there always
are at least two non-empty components of G \ X. Finally, if |E(G)| > nk the
algorithm can safely output that tw(G) > k by Lemma 2.3. After this, running
the algorithm above takes time O(33kkO(1)n(n + m)) = O(33kkO(1)n2).

25.2 The approximation algorithm of Reed
Reed [Ree92] observed that the running time of the algorithm of Robertson
and Seymour [RS95] can be sped up from O(n2) for fixed k to O(n log n) for
fixed k, at the cost of a worse (but still constant) approximation ratio, and a
kO(k) dependence on k in the running time, rather than the 33k factor in the
algorithm of Robertson and Seymour. We remark here that Reed [Ree92] never
states explicitly the dependence on k of his algorithm, but a careful analysis shows
that this dependence is in fact of order kO(k). The main idea of this algorithm is
that the recurrence in Equation 25.1 only solves to O(n2) for fixed k if one of the
components of G \ X contains almost all of the vertices of G. If one could ensure
that each component Ci of G \ X had at most c · n vertices for some fixed c < 1,
the recurrence in Equation 25.1 solves to O(n log n) for fixed k. To see that this is
true we simply consider the recursion tree. The total amount of work done at any
level of the recursion tree is O(n) for a fixed k. Since the size of the components
considered at one level is always a constant factor smaller than the size of the
components considered in the previous level, the number of levels is only O(log n)
and we have O(n log n) work in total.
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By using Lemma 25.1 with S = V (G) we see that if G has treewidth at
most k, then there is a set X of size at most k + 1 such that each component
of G \ X has size at most n

2 . Unfortunately if we try to apply Lemma 25.2 to
find an X which splits G in a balanced way using S = V (G), the algorithm of
Lemma 25.2 takes time O(3|S|kO(1)(n + m)) = O(3nnO(1)), which is exponential
in n. Reed [Ree92] gave an algorithmic variant of Lemma 25.1 especially tailored
for the case where S = V (G).

Lemma 25.3 ([Ree92]). There is an algorithm that given G and k, runs in time
O(kO(k)n) and either concludes that tw(G) > k or outputs a set X of size at
most k + 1 such that that every component of G \ X has at most 3

4n vertices.

Let us remark that Lemma 25.3 as stated here is never explicitly proved in [Ree92],
but it follows easily from the arguments given there.

Having Lemmata 25.2 and 25.3 at hand, we show how to obtain an 8-
approximation of treewidth in time O(kO(k)n log n). The algorithm takes as
input G, k and a set S on at most 6k + 6 vertices, and either concludes that the
treewidth of G is at least k, or finds a tree decomposition of width at most 8k + 7
such that the top bag of the decomposition contains S.

On input G, S, k the algorithm starts by ensuring that |S| = 6k + 6. If
|S| < 6k + 6 the algorithm just adds vertices to S until equality is obtained. Then
the algorithm applies Lemma 25.2 and finds a set X1 of size at most k +1 such that
each component Ci of G \ X1 satisfies |Ci ∩ S| ≤ 2

3 |S| ≤ 4k + 4. Now the algorithm
applies Lemma 25.3 and finds a set X2 of size at most k + 1 such that each
component Ci of G\X2 satisfies |Ci| ≤ 3

4 |V (G)| ≤ 3
4n. Set X = X1 ∪X2. For each

component Ci of G\X we have that |(S∩Ci)∪X| ≤ 6k+6. For each component Ci

of G \ X the algorithm runs itself recursively on (G[Ci ∪ X], (S ∩ Ci) ∪ X, k).
If either of the recursive calls returns that the treewidth is more than k then the

treewidth of G is more than k as well. Otherwise we have for every component Ci

a tree decomposition of G[Ci ∪ X] of width at most 8k + 7 such that the top bag
contains (S ∩ Ci) ∪ X. Similarly as before, to make a tree decomposition of G we
make a new root node with bag X ∪ S, and connect this bag to the roots of the
tree decompositions of G[Ci ∪ X] for each component Ci. It is easy to verify that
this is indeed a tree decomposition of G. The top bag contains S, and the size of
the top bag is at most |S| + |X| ≤ |S| + |X1| + |X2| ≤ 6k + 6 + 2k + 2 = 8k + 8,
and the width of the decomposition is at most 8k + 7 as claimed.

The running time of the algorithm is governed by the recurrence

T (n, k) ≤ O
(
kO(k)(n + m)

)
+

∑
Ci

T (|Ci ∪ X|, k) (25.2)

which solves to T (n, k) = O(kO(k)(n + m) log n) since each Ci has size at most 3
4n.

By Lemma 2.3 we have m ≤ kn and so the running time of the algorithm is upper
bounded by O(kO(k)n log n).
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25.3 Faster than Reed
The goal of this section is to sketch a proof of the existence of an approximation
algorithm either producing a tree decomposition of width at most 3k + 4 or
correctly concluding that tw(G) > k in time O(ckn log n). A full proof can be
found in Chapter 26.

The algorithm employs the same recursive compression scheme which is used
in Bodlaender’s linear time algorithm [Bod96] and the algorithm of Perković and
Reed [PR00]. The idea is to solve the problem recursively on a smaller instance,
expand the obtained tree decomposition of the smaller graph to a “good, but not
quite good enough” tree decomposition of the instance in question, and then use
this tree decomposition to either conclude that tw(G) > k or find a decomposition
of G which is good enough. A central concept in this recursive approach of
Bodlaender’s algorithm [Bod96] is the definition of an improved graph:

Definition 25.4. Given a graph G and an integer k, the improved graph of G,
denoted GI , is obtained by adding an edge between each pair of vertices with at
least k + 1 common neighbors of degree at most k in G.

Intuitively, adding the edges during construction of the improved graph cannot
spoil any tree decomposition of G of width at most k, as the pairs of vertices
connected by the new edges will need to be contained together in some bag anyway.
This is captured in the following lemma.

Lemma 25.5. Given a graph G and an integer k ∈ N, it holds that tw(G) ≤ k if
and only if tw(GI) ≤ k.

If |E(G)| = O(kn), which is the case in graphs of treewidth at most k, the improved
graph can be computed in O(kO(1) · n) time using radix sort [Bod96].

A vertex v ∈ G is called simplicial if its neighborhood is a clique, and I-simplicial, if
it is simplicial in the improved graph GI . The intuition behind I-simplicial vertices
is as follows: all the neighbors of an I-simplicial vertex must be simultaneously
contained in some bag of any tree decomposition of GI of width at most k, so
we can safely remove such vertices from the improved graph, compute the tree
decomposition, and reintroduce the removed I-simplicial vertices. The crucial
observation is that if no large set of I-simplicial vertices can be found, then one can
identify a large matching, which can be also used for a robust recursion step. The
following lemma, which follows from the work of Bodlaender [Bod96], encapsulates
all the main ingredients that we will use.

Lemma 25.6. There is an algorithm working in O(kO(1)n) time that, given a
graph G and an integer k, either

(i) returns a maximal matching in G of cardinality at least |V (G)|
O(k6) ,

(ii) returns a set of at least |V (G)|
O(k6) I-simplicial vertices, or,



224 CHAPTER 25. PROOF OUTLINE

(iii) correctly concludes that the treewidth of G is larger than k.

Moreover, if a set X of at least |V (G)|
O(k6) I-simplicial vertices is returned, and the

algorithm is in addition provided with some tree decomposition TI of GI \ X of
width at most k, then in O(kO(1) ·n) time one can turn TI into a tree decomposition
T of G of width at most k, or conclude that the treewidth of G is larger than k.

Lemma 25.6 allows us to reduce the problem to a compression variant where we
are given a graph G, an integer k and a tree decomposition of G of width O(k),
and the goal is to either conclude that the treewidth of G is at least k or output a
tree decomposition of G of width at most 3k + 4. Our approximation algorithm
has two parts: an algorithm for the compression step and an algorithm for the
general problem that uses the algorithm for the compression step together with
Lemma 25.6 as black boxes. We now state the properties of our algorithm for the
compression step in the following lemma.

Lemma 25.7. There exists an algorithm which on input G, k, S0, Tapx, where

(i) S0 ⊆ V (G), |S0| ≤ 2k + 3,

(ii) G \ S0 is connected, and

(iii) Tapx is a tree decomposition of G of width at most O(k),

in O(ck · n log n) time for some c ∈ N either computes a tree decomposition T of G
with w(T ) ≤ 3k + 4 and S0 as the root bag, or correctly concludes that tw(G) > k.

We now give a proof of an algorithm as promised in the beginning of this section
and later formalized in Theorem 45, assuming the correctness of Lemma 25.7.
In particular we will give an algorithm that runs in O(ckn log n) time and either
outputs a tree decomposition of width at most 3k + 4 or correctly concludes that
the treewidth of the input graph is strictly more than k. The correctness of the
lemma will be argued in Sections 25.4 and 25.5.

Proof of Theorem 45. Our algorithm will in fact solve a slightly more general
problem. Here we are given a graph G, an integer k and a set S0 on at most
2k + 3 vertices, with the property that G \ S0 is connected. The purpose of S0
in the final algorithm lies in the recursive step: when we recursively apply our
algorithm to different connected components, we need to ensure that we are able
to connect the tree decomposition of the different connected components onto the
already connected tree decomposition without blowing up the width too much.
The algorithm will either conclude that tw(G) > k or output a tree decomposition
of width at most 3k + 4 such that S0 is the root bag. To get a tree decomposition
of any (possibly disconnected) graph it is sufficient to run this algorithm on each
connected component with S0 = ∅. The algorithm proceeds as follows. It first
applies Lemma 25.6 on (G, 3k + 4). If the algorithm of Lemma 25.6 concludes
that tw(G) > 3k + 4 the algorithm reports that tw(G) > 3k + 4 > k.



25.4. A COMPRESSION ALGORITHM 225

If the algorithm finds a matching M in G with at least |V (G)|
O(k6) edges, it contracts

every edge in M and obtains a graph G′. Since G′ is a minor of G we know that
tw(G′) ≤ tw(G). The algorithm runs itself recursively on (G′, k, ∅), and either
concludes that tw(G′) > k (implying tw(G) > k) or outputs a tree decomposition
of G′ of width at most 3k+4. Uncontracting the matching in this tree decomposition
yields a tree decomposition Tapx of G of width at most 6k + 9 [Bod96]. Now we
can run the algorithm of Lemma 25.7 on (G, k, S0, Tapx) and either obtain a tree
decomposition of G of width at most 3k + 4 and S0 as the root bag, or correctly
conclude that tw(G) > k.

If the algorithm finds a set X of at least |V (G)|
O(k6) I-simplicial vertices, it con-

structs the improved graph GI and runs itself recursively on (GI \ X, k, ∅). If the
algorithm concludes that tw(GI \ X) > k then tw(GI) > k implying tw(G) > k
by Lemma 25.5. Otherwise we obtain a tree decomposition of GI \ X of width at
most 3k +4. We may now apply Lemma 25.6 and obtain a tree decomposition Tapx
of G with the same width. Note that we can not just output Tapx directly, since we
can not be sure that S0 is the top bag of Tapx. However we can run the algorithm
of Lemma 25.7 on (G, k, S0, Tapx) and either obtain a tree decomposition of G of
width at most 3k + 4 and S0 as the root bag, or correctly conclude that tw(G) > k.

It remains to analyze the running time of the algorithm. Suppose the algorithm
takes time at most T (n, k) on input (G, k, S0) where n = |V (G)|. Running the
algorithm of Lemma 25.6 takes O(kO(1)n) time. Then the algorithm either halts,
or calls itself recursively on a graph with at most n − n

O(k6) = n(1 − 1
O(k6)) vertices

taking time T (n(1 − 1
O(k6)), k). Then the algorithm takes time O(kO(1)n) to either

conclude that tw(G) > k or to construct a tree decomposition Tapx of G of
width O(k). In the latter case we finally run the algorithm of Lemma 25.7, taking
time O(ck · n log n). This gives the following recurrence:

T (n, k) ≤ O
(
ck · n log n

)
+ T

(
n

(
1 − 1

O(k6)

)
, k

)

The recurrence leads to a geometric series and solves to T (n, k) ≤ O(ckkO(1) ·
n log n), completing the proof. For a thorough analysis of the recurrence, see
Equations 26.1 and 26.2 in Chapter 26. Pseudocode for the algorithm described
here is given in Algorithm 4 in Chapter 26.

25.4 A compression algorithm
We now proceed to give a sketch of a proof for a slightly weakened form of
Lemma 25.7. The goal is to give an algorithm that given as input a graph G, an
integer k, a set S0 of size at most 6k + 6 such that G \ S0 is connected, and a
tree decomposition Tapx of G of width O(k), runs in time O(ckn log n) and either
correctly concludes that tw(G) > k or outputs a tree decomposition of G of width
at most 8k + 7. This chapter does not contain a full proof of this variant of
Lemma 25.7—we will discuss the proof of Lemma 25.7 in Section 25.5. The aim of
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this section is to demonstrate that the recursive scheme of Section 25.3 together
with a nice trick for finding balanced separators is already sufficient to obtain a
factor 8 approximation for treewidth running in time O(ckn log n). A variant of
the trick used in this section for computing balanced separators turns out to be
useful in our final O(ckn) time 5-approximation algorithm.

The route we follow here is to apply the algorithm of Reed described in
Section 25.2, but instead of using Lemma 25.3 to find a set X of size k + 1
such that every connected component of G \ X is small, finding X by dynamic
programming over the tree decomposition Tapx in time O(ckn). There are a few
technical difficulties with this approach.

The most serious issue is that, to the best of our knowledge, the only known
dynamic programming algorithms for balanced separators in graphs of bounded
treewidth take time O(ckn2) rather than O(ckn): in the state, apart from a
partition of the bag, we also need to store the cardinalities of the sides which gives
us another dimension of size n. We now explain how it is possible to overcome
this issue. We start by applying the argument in the proof of Lemma 25.1 on the
tree decomposition Tapx and get in time O(kO(1)n) a partition of V (G) into L0,
X0 and R0 such that there are no edges between L0 and R0, max(|L0|, |R0|) ≤ 3

4n
and |X0| ≤ w(Tapx) + 1. For every way of writing k + 1 = kL + kX + kR and every
partition of X0 into XL ∪ XX ∪ XR with |XX | = kX we do the following.

First we find in time O(ckn) using dynamic programming over the tree decompo-
sition Tapx a partition of L0 ∪ X0 into L̂L ∪ X̂L ∪ R̂L such that there are no edges
from L̂L to R̂L, |X̂L| ≤ kL + kX , XX ⊆ X̂L, XR ⊆ R̂L and XL ⊆ L̂L and the size
|L̂L| is maximized.

Then we find in time O(ckn) using dynamic programming over the tree decom-
position Tapx a partition of R0 ∪ X0 into L̂R ∪ X̂R ∪ R̂R such that there are no
edges from L̂R to R̂R, |X̂R| ≤ kR + kX , XX ⊆ X̂R, XR ⊆ R̂R and XL ⊆ L̂R and
the size |R̂R| is maximized. Let L = L̂L ∪ L̂R, R = R̂L ∪ R̂R and X = XL ∪ XR.
The sets L, X, R form a partition of V (G) with no edges from L to R and
|X| ≤ kL + kX + kR + kX − kX ≤ k + 1.

It is possible to show using a combinatorial argument (see Lemma 29.5 in
Chapter 29) that if tw(G) ≤ k then there exists a choice of kL, kX , kR such that
k + 1 = kL + kX + kR and partition of X0 into XL ∪ XX ∪ XR with |XX | = kX

such that the above algorithm will output a partition of V (G) into X, L and R
such that max(|L|, |R|) ≤ 8n

9 . Thus we have an algorithm that in time O(ckn)
either finds a set X of size at most k + 1 such that each connected component of
G \ X has size at most 8n

9 or correctly concludes that tw(G) > k.

The second problem with the approach is that the algorithm of Reed is an 8-
approximation algorithm rather than a 3-approximation. Thus, even the sped
up version does not quite prove Lemma 25.7. It does however yield a version of
Lemma 25.7 where the compression algorithm is an 8-approximation. In the proof
of Theorem 45 there is nothing special about the number 3 and so one can use this
weaker variant of Lemma 25.7 to give a 8-approximation algorithm for treewidth
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in time O(ckn log n). We will not give complete details of this algorithm, as we
will shortly describe a proof of Lemma 25.7 using a quite different route.

It looks difficult to improve the algorithm above to an algorithm with running
time O(ckn). The main hurdle is the following: both the algorithm of Robertson
and Seymour [RS95] and the algorithm of Reed [Ree92] find a separator X and
proceed recursively on the components of G \ X. If we use O(ck · n) time to find
the separator X, then the total running time must be at least O(ck · n · d) where d
is the depth of the recursion tree of the algorithm. It is easy to see that the depth
of the tree decomposition output by the algorithms equals (up to constant factors)
the depth of the recursion tree. However there exist graphs of treewidth k such
that no tree decomposition of depth o(log n) has width O(k) (take for example
powers of paths). Thus the depth of the constructed tree decompositions, and
hence the recursion depth of the algorithm must be at least Ω(log n).

Even if we somehow managed to reuse computations and find the separator X
in time O(ck · n

log n
) on average, we would still be in trouble since we need to pass

on the list of vertices of the connected components of G \ X that we will call the
algorithm on recursively. At a first glance this has to take O(n) time and then we
are stuck with an algorithm with running time O((ck · n

log n
+ n) · d), where d is

the recursion depth of the algorithm. For d = log n this is still O(ckn + n log n)
which is slower than what we are aiming at. In Section 25.5 we give a proof of
Lemma 25.7 that almost overcomes these issues.

25.5 A better compression algorithm
We give a sketch of the proof of Lemma 25.7. The goal is to give an algorithm that
given as input a connected graph G, an integer k, a set S0 of size at most 2k + 3
such that G \ S0 is connected, and a tree decomposition Tapx of G, runs in time
O(ckn log n) and either correctly concludes that tw(G) > k or outputs a tree
decomposition of G of width at most 3k + 4 with top bag S0.

Our strategy is to implement the O(ckn2) time 4-approximation algorithm
described in Section 25.1, but make some crucial changes in order to (a) make
the implementation run in O(ckn log n) time, and (b) make it a 3-approximation
rather than a 4-approximation. We first turn to the easier of the two changes,
namely making the algorithm a 3-approximation.

To get an algorithm that satisfies all of the requirements of Lemma 25.7, but
runs in time O(ckn2) rather than O(ckn log n) we run the algorithm described in
Section 25.1 setting S = S0 in the beginning. Instead of using Lemma 25.2 to
find a set X such that every component of G \ X has at most 2

3 |S| vertices which
are in S, we apply Lemma 25.1 to show the existence of an X such that every
component of G \ X has at most 1

2 |S| vertices which are in S, and do dynamic
programming over the tree decomposition Tapx in time O(ckn) in order to find
such an X. Going through the analysis of Section 25.1 but with X satisfying that
every component of G \ X has at most 1

2 |S| vertices which are in S shows that
the algorithm does in fact output a tree decomposition with width 3k + 4 and top
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bag S0 whenever tw(G) ≤ k.
It is somewhat non-trivial to do dynamic programming over the tree decom-

position Tapx in time O(ckn) in order to find an X such that every component of
G \ X has at most 2

3 |S| vertices which are in S. The problem is that G \ X could
potentially have many components and we do not have time to store information
about each of these components individually. The following lemma, whose proof
can be found in Section 29.4.2, shows how to deal with this problem.

Lemma 25.8. Let G be a graph and S ⊆ V (G). Then a set X is a balanced
S-separator if and only if there exists a partition (M1, M2, M3) of V (G) \ X, such
that there is no edge between Mi and Mj for i �= j, and |Mi ∩ S| ≤ |S|/2 for
i = 1, 2, 3.

Lemma 25.8 shows that when looking for a balanced S-separator we can just
look for a partition of G into four sets X, M1, M2, M3 such that there is no edge
between Mi and Mj for i �= j, and |Mi ∩ S| ≤ |S|/2 for i = 1, 2, 3. This can easily
be done in time O(ckn) by dynamic programming over the tree decomposition
Tapx. This yields the promised algorithm that satisfies all of the requirements of
Lemma 25.7, but runs in time O(ckn2) rather than O(ckn log n).

We now turn to the most difficult part of the proof of Lemma 25.7, namely how
to improve the running time of the algorithm above from O(ckn2) to O(ckn log n)
in a way that gives hope of a further improvement to running time O(ckn). The
O(ckn log n) time algorithm we describe now is based on the following observations:

(i) In any recursive call of the algorithm above, the considered graph is an
induced subgraph of G. Specifically the considered graph is always G[C ∪ S]
where S is a set with at most 2k +3 vertices and C is a connected component
of G \ S.

(ii) The only computationally hard step, finding the balanced S-separator X, is
done by dynamic programming over the tree decomposition Tapx of G.

These observations give some hope that one can reuse the computations done in
the dynamic programming when finding a balanced S-separator for G during the
computation of balanced S-separators in induced subgraphs of G. This plan can
be carried out in a surprisingly clean manner and we now give a rough sketch of
how it can be done.

We start by preprocessing the tree decomposition using an algorithm of Bod-
laender and Hagerup [BH98]. This algorithm is a parallel algorithm and here we
state its sequential form. Essentially, Proposition 25.9 lets us assume without loss
of generality that the tree decomposition Tapx has depth O(log n):

Proposition 25.9 (Bodlaender and Hagerup [BH98]). There is an algorithm that,
given a tree decomposition of width k with O(n) nodes of a graph G, finds a rooted
binary tree decomposition of G of width at most 3k + 2 with depth O(log n) in
O(kn) time.
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In Chapter 29 we will describe a data structure with the following properties. The
data structure takes as input a graph G, an integer k and a tree decomposition
Tapx of width O(k) and depth O(log n). After an initialization step which takes
O(ckn) time the data structure allows us to do certain operations and queries. At
any point of time the data structure is in a certain state. The operations allow us
to change the state of the data structure. Formally, the state of the data structure
is a 3-tuple (S, X, F ) of subsets of V (G) and a vertex π called the “pin”, with
the restriction that π /∈ S. The initial state of the data structure is that S = S0,
X = F = ∅, and π is an arbitrary vertex of G \ S0. The data structure allows
operations that change S, X or F by inserting/deleting a specified vertex, and
move the pin to a specified vertex in time O(ck log n).

For a fixed state of the data structure, the active component U is the component
of G \ S which contains π. The data structure allows the query findSSeparator
which outputs in time O(ck log n) either an S-balanced separator X̂ of G[U ∪ S]
of size at most k + 1, or ⊥, which means that tw(G[S ∪ U ]) > k.

The algorithm of Lemma 25.7 runs the O(ckn2) time algorithm described above,
but uses the data structure to find the balanced S-separator in time O(ck log n)
instead of doing dynamic programming over Tapx. All we need to make sure is
that the S in the state of the data structure is always equal to the set S for which
we want to find the balanced separator, and that the active component U is set
such that G[U ∪ S] is equal to the induced subgraph we are working on. Since we
always maintain that |S| ≤ 2k + 3 we can change the set S to anywhere in the
graph (and specifically into the correct position) by doing kO(1) operations taking
O(ck log n) time each.

At a glance, it looks like viewing the data structure as a black box is sufficient
to obtain the desired O(ckn log n) time algorithm. However, we haven’t even
used the sets X and F in the state of the data structure, or described what
they mean! The reason for this is of course that there is a complication. In
particular, after the balanced S-separator X̂ is found—how can we recurse into
the connected components of G[S ∪ U ] \ (S ∪ X̂)? We need to move the pin into
each of these components one at a time, but if we want to use O(ck log n) time in
each recursion step, we cannot afford to spend O(|S ∪ U |) time to compute the
connected components of G[S ∪ U ] \ (S ∪ X̂). We resolve this issue by pushing
the problem into the data structure, and showing that the appropriate queries can
be implemented there. This is where the sets X and F in the state of the data
structure come in.

Recall that the data structure is a 3-tuple (S, X, F ) of subsets of V (G) together
with a pin π. The role of the second argument X in these triples in the data
structure is that when queries to the data structure depending on X are called, X
equals the set X̂, i.e., the balanced S-separator found by the query findSSeparator.
The set F is a set of “finished pins” whose intention is the following: when
the algorithm calls itself recursively, we use findNextPin to find a connected
component U ′ of G[S ∪ U ] \ (S ∪ X̂), with the restriction that U ′ does not
contain any vertices of F . After it has finished computing a tree decomposition of
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G[U ′ ∪ N(U ′)] with N(U ′) as its top bag, it selects an arbitrary vertex of U ′ and
inserts it into F .

The query findNextPin finds a new pin π′ in some component U ′ of G[S ∪
U ] \ (S ∪ X̂) that does not contain any vertices of F . And finally, the query
findNeighborhood allows us to find the neighborhood N(U ′), which in turn allows
us to call the algorithm recursively in order to find a tree decomposition of
G[U ′ ∪ N(U ′)] with N(U ′) as its top bag.

At this point it should be clear that the O(ckn2) time algorithm described
in the beginning of this section can be implemented using O(kO(1)) calls to the
data structure in each recursive step, thus spending only O(ck log n) time in each
recursive step. Pseudocode for this algorithm can be found in Algorithm 6. The
recurrence bounding the running time of the algorithm then becomes

T (n, k) ≤ O(ck log n) +
∑
Ui

T (|Ui ∪ X̂|, k).

Here U1, . . . , Uq are the connected components of G[S∪U ]\(S∪X̂). This recurrence
solves to O(ckn log n), proving Lemma 25.7. A full proof of Lemma 25.7 assuming
the data structure as a black box may be found in Section 26.2.

25.6 The data structure
We sketch the main ideas in the implementation of the data structure. The goal
is to set up a data structure that takes as input a graph G, an integer k and a
tree decomposition Tapx of width O(k) and depth O(log n), and initializes in time
O(ckn). The state of the data structure is a 4-tuple (S, X, F, π) where S, X and F
are vertex sets in G and π ∈ V (G) \ S. The initial state of the data structure is
(S0, ∅, ∅, v) where v is an arbitrary vertex in G \ S0. The data structure should
support operations that insert (delete) a single vertex to (from) S, X and F , and
an operation to change the pin π to a specified vertex. These operations should
run in time O(ck log n). For a given state of the data structure, set U to be the
component of G \ S that contains π. The data structure should also support the
following queries in time O(ck log n).

• findSSeparator: Assuming that |S| ≤ 2k + 3, return a set X̂ of size at most
k + 1 such that every component of G[S ∪ U ] \ X̂ contains at most 1

2 |S|
vertices of S, or conclude that tw(G) > k.

• findNextPin: Return a vertex π′ in a component U ′ of G[S ∪ U ] \ (S ∪ X̂)
that does not contain any vertices of F .

• findNeighborhood: Return N(U) if |N(U)| < 2k + 3 and ⊥ otherwise.

Suppose for now that we want to set up a much simpler data structure. Here the
state is just the set S and the only query we want to support is findSSeparator
which returns a set X̂ such that every component of G \ (S ∪ X̂) contains at
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most 1
2 |S| vertices of S, or conclude that tw(G) > k. At our disposal we have

the tree decomposition Tapx of width O(k) and depth O(log n). To set up the
data structure we run a standard dynamic programming algorithm for finding
X̂ given S. Here we use Lemma 25.8 and search for a partition of V (G) into
(M1, M2, M3, X) such that |X| ≤ k + 1, there is no edge between Mi and Mj for
i �= j, and |Mi ∩ S| ≤ |S|/2 for i = 1, 2, 3. This can be done in time O(ckkO(1)n)
and the tables stored at each node of the tree decomposition have size O(ckkO(1)).
This finishes the initialization step of the data structure. The initialization step
took time O(ckkO(1)n).

We will assume without loss of generality that the top bag of the decomposition
is empty. The data structure will maintain the following invariant: after every
change has been performed the tables stored at each node of the tree decomposition
correspond to a valid execution of the dynamic programming algorithm on input
(G, S). If we are able to maintain this invariant, then answering findSSeparator
queries is easy: assuming that each cell of the dynamic programming table also
stores solution sets (whose size is at most k+1) we can just output in time O(kO(1))
the content of the top bag of the decomposition!

But how to maintain the invariant and support changes in time O(ck log n)? It
turns out that this is not too difficult: the content of the dynamic programming
table of a node t in the tree decomposition depends only on S and the dynamic
programming tables of t’s children. Thus, when the dynamic programming table
of the node t is changed, this will only affect the dynamic programming tables
of the O(log n) ancestors of t. If the dynamic program is done carefully, one can
ensure that adding or removing a vertex to/from S will only affect the dynamic
programming tables for a single node t in the decomposition, together with all
of its O(log n) ancestors. Performing the changes amounts to recomputing the
dynamic programming tables for these nodes, and this takes time O(ckkO(1) log n).

It should now be plausible that the idea above can be extended to work also for
the more complicated data structure with the more advanced queries. Of course
there are several technical difficulties, the main one is how to ensure that the
computation is done in the connected component U of G \ S without having to
store “all possible ways the vertices in a bag could be connected below the bag”.
We omit the details of how this can be done in this outline. The full exposition of
the data structure can be found in Chapter 29.

25.7 An almost linear time algorithm
We now sketch how the algorithm of the previous section can be sped up, at the
cost of increasing the approximation ratio from 3 to 5. In particular we argue that
for every α ∈ N, there exists an algorithm which in O(ck

α · n log(α) n) time either
computes a tree decomposition of width at most 5k + 3 or correctly concludes that
tw(G) > k. This is formalized in Theorem 46.

Observe that the algorithm from Section 25.3 satisfies the conditions for α = 1.
We will show how one can use the algorithm for α = 1 in order to obtain an
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algorithm for α = 2. In particular we aim at an algorithm which given a graph G
and an integer k, in O(ck

2 · n log log n) time for some c2 ∈ N either computes a tree
decomposition of G of width at most 5k + 3 or correctly concludes that tw(G) > k.

We inspect the O(ckn log n) algorithm for the compression step described in
Section 25.5. It uses the data structure of Section 25.6 in order to find balanced
separators in time O(ck log n). The algorithm uses O(ck log n) time on each
recursive call regardless of the size of the induced subgraph of G it is currently
working on. When the subgraph we work on is big this is very fast. However, when
we get down to induced subgraphs of size O(log log n) the algorithm of Robertson
and Seymour described in Section 25.1 would spend O(ck(log log n)2) time in each
recursive call, while our presumably fast algorithm still spends O(ck log n) time.
This suggests that there is room for improvement in the recursive calls where the
considered subgraph is very small compared to n.

The overall structure of our O(ck
2 log log n) time algorithm is identical to the

structure of the O(ck log n) time algorithm of Theorem 45. The only modifications
happen in the compression step. The compression step is also similar to the
O(ck log n) algorithm described in Section 25.5, but with the following caveat. The
data structure query findNextPin finds the largest component where a new pin
can be placed, returns a vertex from this component, and also returns the size
of this component. If a call of findNextPin returns that the size of the largest
yet unprocessed component is less than log n the algorithm does not process this
component, nor any of the other remaining components in this recursive call. This
ensures that the algorithm is never run on instances where it is slow. Of course, if
we do not process the small components we do not find a tree decomposition of
them either. A bit of inspection reveals that what the algorithm will do is either
conclude that tw(G) > k or find a tree decomposition of an induced subgraph of G′

of width at most 3k + 4 such that for each connected component Ci of G \ V (G′),
(a) |Ci| ≤ log n, (b) |N(Ci)| ≤ 2k + 3, and (c) N(Ci) is fully contained in some
bag of the tree decomposition of G′.

How much time does it take the algorithm to produce this output? Each
recursive call takes O(ck log n) time and adds a bag to the tree decomposition of
G′ that contains some vertex which was not yet in V (G′). Thus the total time of
the algorithm is upper bounded by O(|V (G′)| · ck log n). What happens if we run
this algorithm, then run the O(ckn log n) time algorithm of Theorem 45 on each of
the connected components of G \ V (G′)? If either of the recursive calls return that
the treewidth of the component is more than k then tw(G) > k. Otherwise we
have a tree decomposition of each of the connected components with width 3k + 4.
With a little bit of extra care we find tree decompositions of the same width
of Ci ∪ N(Ci) for each component Ci, such that the top bag of the decomposition
contains N(Ci). Then all of these decompositions can be glued together with
the decomposition of G′ to yield a decomposition of width 3k + 4 for the entire
graph G.

The running time of the above algorithm can be bounded as follows. It takes
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O(|V (G′)| · ck log n) time to find the partial tree decomposition of G′, and

O(
∑

i

ck
2|Ci| log |Ci|) = O(ck

2 log log n ·
∑

i

|Ci|) = O(ck
2n log log n)

time to find the tree decompositions of all the small components. Thus, if
|V (G′)| = O( n

log n
) the running time of the first part would be O(ckn) and the

total running time would be O(ck
2n log log n).

How big can |V (G′)| be? In other words, if we inspect the algorithm described in
Section 25.1, how big part of the graph does the algorithm see before all remaining
parts have size less than log n? The bad news is that the algorithm could see
almost the entire graph. Specifically if we run the algorithm on a path it could
well be building a tree decomposition of the path by moving along the path and
only terminating when reaching the vertex which is log n steps away from from the
endpoint. The good news is that the algorithm of Reed described in Section 25.2
will get down to components of size log n after decomposing only O( n

log n
) vertices

of G. The reason is that the algorithm of Reed also finds balanced separators of
the considered subgraph, ensuring that the size of the considered components drop
by a constant factor for each step down in the recursion tree.

Thus, if we augment the algorithm that finds the tree decomposition of the
subgraph G′ such that that it also finds balanced separators of the active component
and adds them to the top bag of the decomposition before going into recursive
calls, this will ensure that |V (G′)| = O( n

log n
) and that the total running time of

the algorithm described in the paragraphs above will be O(ck
2n log log n). The

algorithm of Reed described in Section 25.2 has a worse approximation ratio
than the algorithm of Robertson and Seymour described in Section 25.1. The
reason is that we also need to add the balanced separator to the top bag of the
decomposition. When we augment the algorithm that finds the tree decomposition
of the subgraph G′ in a similar manner, the approximation ratio also gets worse.
If we are careful about how the change is implemented we can still achieve an
algorithm with running time O(ck

2n log log n) that meets the specifications of
Theorem 46 for α = 2.

The approach to improve the running time from O(ckn log n) to O(ck
2n log log n)

also works for improving the running time from O(ck
α · n log(α) n) to O(ck

α+1 ·
n log(α+1) n). Running the algorithm that finds in O(ckn) time the tree decomposi-
tion of the subgraph G′ such that all components of G \ V (G′) have size log n and
running the O(ck

α · n log(α) n) time algorithm on each of these components yields
an algorithm with running time O(ck

α+1 · n log(α+1) n).
In the above discussion we skipped over the following issue. How can we

compute a small balanced separator for the active component in time O(ck log n)?
It turns out that also this can be handled by the data structure. The main idea
here is to consider the dynamic programming algorithm used in Section 25.4 to
find balanced separators in graphs of bounded treewidth, and show that this
algorithm can be turned into a O(ck log n) time data structure query. We would
like to remark here that the implementation of the trick from Section 25.4 is
significantly more involved than the other queries: we need to use the approximate
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tree decomposition not only for fast dynamic programming computations, but also
to locate the separation (L0, X0, R0) on which the trick is employed. A detailed
explanation of how this is done can be found at the end of Section 29.4.4. This
completes the proof sketch of Theorem 46. A full proof can be found in Chapter 27.

25.8 Obtaining linear time
The algorithm(s) of the previous section are in fact already O(ckn) algorithms
unless n is astronomically large compared to k. If, for example, n ≤ 222k

then
log(3) n ≤ k and so O(ckn log(3) n) ≤ O(ckkn). Thus, to get an algorithm which
runs in O(ckn) it is sufficient to consider the cases when n is really, really big
compared to k. The recursive scheme of Section 25.3 allows us to only consider
the case where (a) n is really big compared to k and (b) we have at our disposal a
tree decomposition Tapx of G of width O(k).

For this case, consider the dynamic programming algorithm of Bodlaender
and Kloks [BK96] that given G and a tree decomposition Tapx of G of width O(k)
either computes a tree decomposition of G of width k or concludes that tw(G) > k
in time O(2O(k3)n). The dynamic programming algorithm can be turned into a
tree automaton based algorithm [FL, AF93] with running time O(22O(k3) + n) if
one can inspect an arbitrary entry of a table of size O(22O(k3)) in constant time.
If n ≥ Ω(22O(k3)) then inspecting an arbitrary entry of a table of size O(22O(k3)),
means inspecting an arbitrary entry of a table of size O(n), which one can do
in constant time in the RAM model. Thus, when n ≥ Ω(22O(k3)) we can find an
optimal tree decomposition in time O(n). When n = O(22O(k3)) the O(ckn log(3) n)
time algorithm of the previous section runs in time O(ckkn).

This concludes the outline of the proof of the linear time algorithm. A full
explanation of how to handle the case where n is much bigger than k can be found
in Chapter 28.



Chapter 26

A faster approximation algorithm

In this section, we provide formal details of the proof of the following statement:
Theorem 45. There exists an algorithm which given a graph G and an integer k,
either computes a tree decomposition of G of width at most 3k + 4 or correctly
concludes that tw(G) > k, in time O(ck · n log n) for some c ∈ N.
In fact, the algorithm that we present, is slightly more general. The main pro-
cedure, Alg1, takes as input a connected graph G, an integer k, and a subset of
vertices S0 such that |S0| ≤ 2k +3. Moreover, we have a guarantee that not only G
is connected, but G \ S0 as well. Alg1 runs in O(ck · n log n) time for some c ∈ N
and either concludes that tw(G) > k, or returns a tree decomposition of G of
width at most 3k + 4, such that S0 is the root bag. Clearly, to prove Theorem 45,
we can run Alg1 on every connected component of G separately using S0 = ∅. Note
that computation of the connected components takes O(|V (G)| + |E(G)|) = O(kn)
time, since if |E(G)| > kn, then we can safely output that tw(G) > k.

The presented algorithm Alg1 uses two subroutines. As described in Chapter 25,
Alg1 uses a reduction approach; in short words, we either apply a reduction step,
or find an approximate tree decomposition of width O(k) on which a compression
subroutine Compress1 can be employed. In this compression step we are either
able to find a refined, compressed tree decomposition of width at most 3k + 4, or
again conclude that tw(G) > k.

The algorithm Compress1 starts by initializing the data structure (see Chap-
ter 25 for an intuitive description of the role of the data structure), and then calls
a subroutine FindTD. This subroutine resembles the algorithm of Robertson and
Seymour (see Chapter 25): it divides the graph using balanced separators, recurses
on the different connected components, and combines the subtrees obtained for
the components into the final tree decomposition.

26.1 The main procedure
Algorithm Alg1, whose layout is proposed as Algorithm 4, runs very similarly to
the algorithm of Bodlaender [Bod96]; we provide here all the necessary details for
the sake of completeness, but we refer to [Bod96] for a wider discussion.

235
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First, we apply Lemma 25.6 on graph G for parameter 3k + 4. We either
immediately conclude that tw(G) > 3k + 4, find a set of I-simplicial vertices of size
at least n

O(k6) , or a matching of size at least n
O(k6) . Note that in the application of

Lemma 25.6 we ignore the fact that some of the vertices are distinguished as S0.
If a matching M of size at least n

O(k6) is found, we employ a similar strategy as
in [Bod96]. We first contract the matching M to obtain G′; note that if G had
treewidth at most k then so does G′. Then we apply Alg1 recursively to obtain a
tree decomposition T ′ of G′ of width at most 3k + 4, and having achieved this
we decontract the matching M to obtain a tree decomposition T of G of width
at most 6k + 9: every vertex in the contracted graph is replaced by at most two
vertices before the contraction. Finally, we call the sub-procedure Compress1,
which given G, S0, k and the decomposition T (of width O(k)), either concludes
that tw(G) > k, or provides a tree decomposition of G of width at most 3k + 4,
with S0 as the root bag. Compress1 is given in details in the next section.

In case of obtaining a large set X of I-simplicial vertices, we proceed similar
to Bodlaender [Bod96]. We compute the improved graph, remove X from it,
apply Alg1 on GI \ X recursively to obtain its tree decomposition T ′ of width
at most 3k + 4, and finally reintroduce the missing vertices of X to obtain a
tree decomposition T of G of width at most 3k + 4 (recall that reintroduction
can fail, and in this case we may conclude that tw(G) > k). Observe that the
decomposition T satisfies all the needed properties, with the exception that we
have not guaranteed that S0 is the root bag. However, to find a decomposition
that has S0 as the root bag, we may again make use of the subroutine Compress1,
running it on input G, S0, k and the tree decomposition T . Lemma 25.6 ensures
that all the described steps, apart from the recursive calls to Alg1 and Compress1,
can be performed in O(kO(1) · n) time. Note that the I-simplicial vertices can
safely be reintroduced since we used Lemma 25.6 for parameter 3k + 4 instead
of k.

Let us now analyze the running time of the presented algorithm, provided
that the running time of the subroutine Compress1 is O(ck · n log n) for some
c ∈ N. Since all the steps of the algorithm (except for calls to subroutines) can
be performed in O(kO(1) · n) time, the time complexity satisfies the following
recurrence relation:

T (n) ≤ O(kO(1) · n) + O(ck · n log n) + T
((

1 − 1
C · k6

)
n

)
; (26.1)

Here C is the constant hidden in the O-notation in Lemma 25.6. By unraveling
the recurrence into a geometric series, we obtain that

T (n) ≤
∞∑

i=0

(
1 − 1

Ck6

)i

O(kO(1) · n + ck · n log n) (26.2)

= Ck6 · O(kO(1) · n + ck · n log n) = O(ck
1 · n log n),

for some c1 > c.
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Algorithm 4: Alg1

Input: A connected graph G, an integer k, and S0 ⊆ V (G) s.t.
|S0| ≤ 2k + 3 and G \ S0 is connected.

Output: A tree decomposition T of G with w(T ) ≤ 3k + 4 and S0 as the
root bag, or conclusion that tw(G) > k.

Run algorithm of Lemma 25.6 for parameter 3k + 4
if Conclusion that tw(G) > 3k + 4 then

return ⊥
end
if G has a matching M of cardinality at least n

O(k6) then
Contract M to obtain G′.
T ′ ← Alg1(G′, k) /* w(T ′) ≤ 3k + 4 */
if T ′ = ⊥ then

return ⊥
else

Decontract the edges of M in T ′ to obtain T .
return Compress1(G, k, T )

end
end
if G has a set X of at least n

O(k6) I-simplicial vertices then
Compute the improved graph GI and remove X from it.
T ′ ← Alg1(GI \ X, k) /* w(T ′) ≤ 3k + 4 */
if T ′ = ⊥ then

return ⊥
end
Reintroduce vertices of X to T ′ to obtain T .
if Reintroduction failed then

return ⊥
else

return Compress1(G, k, T )
end

end

26.2 Compression
In this section we provide the details of the implementation of the subroutine
Compress1. The main goal is encapsulated in the following lemma.

Lemma 26.1 (Lemma 25.7, restated). There exists an algorithm which on input
G, k, S0, Tapx, where

(i) S0 ⊆ V (G), |S0| ≤ 2k + 3,

(ii) G \ S0 is connected, and
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(iii) Tapx is a tree decomposition of G of width at most O(k),

in O(ck · n log n) time for some c ∈ N either computes a tree decomposition T of G
with w(T ) ≤ 3k + 4 and S0 as the root bag, or correctly concludes that tw(G) > k.

The subroutine’s layout is given as Algorithm 5. Roughly speaking, we first
initialize the data structure DS, with G, k, S0, T as input, and then run a recursive
algorithm FindTD that constructs the decomposition itself given access to the
data structure. See Figure 26.1 for an overview of the operations of our data
structure DS. The decomposition is returned by a pointer to the root bag. The
data structure interface will be explained in the following paragraphs, and its
implementation is given in Chapter 29. We refer to Chapter 25 for a brief, intuitive
outline.

Algorithm 5: Compress1(G, k, T ).
Input: Connected graph G, k ∈ N, a set S0 s.t. |S0| ≤ 2k + 3 and G \ S0 is

connected, and a tree decomposition Tapx with w(Tapx) = O(k)
Output: Tree decomposition of G of width at most 3k + 4 with S0 as the

root bag, or conclusion that tw(G) > k.
Initialize data structure DS with G, k, S0, Tapx
return FindTD()

The initialization of the data structure takes O(ckn) time (see Lemma 29.1). The
time complexity of FindTD, given in Section 26.3, is O(ck · n log n).

26.3 The recursive algorithm
The subroutine FindTD works on the graph G with two disjoint vertex sets S
and U distinguished. Intuitively, S is small (of size at most 2k + 3) and represents
the root bag of the tree decomposition under construction. U in turn, stands for
the part of the graph to be decomposed below the bag containing S, and is always
one of the connected components of G \ S. As explained in Chapter 25, we cannot
afford storing U explicitly. Instead, we represent U in the data structure by an
arbitrary vertex π (called the pin) belonging to it, and implicitly define U to be
the connected component of G \ S that contains π. Formally, the behavior of the
subroutine FindTD is encapsulated in the following lemma; Herein, the state of
the data structure DS is the content of its tables, see Section 29.1 (specifically
Figure 29.2). A short description of the state is given in the next paragraphs.

Lemma 26.2. There exists an algorithm that, given access to the data struc-
ture DS in a state such that |S| ≤ 2k + 3, computes a tree decomposition T of
G[U ∪ S] of width at most 3k + 4 with S as a root bag, or correctly reports that
that tw(G[U ∪ S]) > k. If the algorithm is run on S = ∅ and U = V (G), then its
running time is O(ck · n log n) for some c ∈ N.
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Operation / Query Description
setπ(v) sets v as current pin, π
getπ() gives π
getS() gives the set S
insertS(v) inserts v to S
insertX(v) inserts v to X
insertF (v) inserts v to F
clearS() clears S (sets it to ∅)
clearX() clears X
clearF () clears F
findNeighborhood() Gives neighborhood of U in S
findSSeparator() gives a balanced S-separator
findNextPin() gives a pair (π′, l) such that in the connected com-

ponent of G − (S ∪ X) containing π′, there is no
vertex in F , l is the size of the component, and
the component is a largest such or ⊥ if no such π′

exists.

Figure 26.1: Data structure operations. Every operation takes time O(ck log n).
In our algorithm we will give the insert methods sets of vertices of size kO(1). Note
that this can be implemented with a loop over the elements and that due to the
size of the sets the delay can be hidden in the ck-factor.

The data structure is initialized with S = S0 and π set to an arbitrary vertex of
G \ S0; as we have assumed that G \ S0 is connected, this gives U = V (G) \ S0
after initialization. Therefore, Lemma 26.2 immediately yields Lemma 25.7.

A gentle introduction to the data structure

Before we proceed to the implementation of the subroutine FindTD, we give a
quick description of the interface of the data structure DS: what kind of queries
and updates it supports, and what is the running time of their execution. The
details of the data structure implementation will be given in Chapter 29.

The state of the data structure is, in addition to G, k, T , three subsets of
vertices, S, X and F , and the pin π with the restriction that π /∈ S. S and π
uniquely imply the set U , defined as the connected component of G \ S that
contains π. The intuition behind these sets and the pin is the following:

• S is the set that will serve as a root bag for some subtree,

• π is a vertex which indicates the current active component,

• U is the current active component, the connected component of G \ S
containing π,

• X is a balanced S-separator (of G[S ∪ U ]) and
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• F is a set of vertices marking the connected components of G[S ∪U ]\(S ∪X)
as “finished”.

The construction of the data structure DS is heavily based on the fact that
we are provided with some tree decomposition of width O(k). Given this tree
decomposition, the data structure can be initialized in O(ck ·n) time for some c ∈ N.
At the moment of initialization we set S = X = F = ∅ and π to be an arbitrary
vertex of G. During the run of the algorithm, the following updates can be
performed on the data structure:

• insert/remove a vertex to/from S, X, or F ;

• mark/unmark a vertex as a pin π.

All of these updates will be performed in O(ck · log n) time for some c ∈ N.

Finding a better tree decomposition

The pseudocode of the algorithm FindTD is given as Algorithm 6. Its correctness
is proven in Claim 26.3, and its time complexity is proven as Claim 26.4. The
subroutine is provided with the data structure DS, and the following invariants
hold at each time the subroutine is called and exited:

• S ⊆ V (G), |S| ≤ 2k + 3,

• π exists, is unique and π /∈ S,

• X = F = ∅ and

• the state of the data structure is the same on exit as it was when the function
was called.

The latter means that when we return, be it a tree decomposition or ⊥, the
algorithm that called FindTD will have S, X, F and π as they were before the call.

We now describe the consecutive steps of the algorithm FindTD; the reader is
encouraged to follow these steps in the pseudocode, in order to be convinced that
all the crucial, potentially expensive computations are performed by calls to the
data structure.

First we apply query findSSeparator, which either finds a 1
2 -balanced S-

separator in G[S ∪ U ] of size at most k + 1, or concludes that tw(G) > k.
The running time of this query is kO(1). If no such separator can be found, by
Lemma 25.1 we infer that tw(G[S ∪ U ]) > k and we can terminate the procedure.
Otherwise we are provided with such a separator sep, which we add to X in the
data structure. Moreover, for a technical reason, we also add the pin π to sep
(and thus also to X), so we end up with having |sep| ≤ k + 2.

The next step is a loop through the connected components of G[S∪U ]\(S∪sep).
This part is performed using the query findNextPin. Query findNextPin, which
runs in constant time, either finds an arbitrary vertex u of a connected component
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of G[S ∪ U ] \ (S ∪ X) that does not contain any vertex from F , or concludes that
each of these components contains some vertex of F . After finding u, we mark
u by putting it to F and proceed further, until all the components are marked.
Having achieved this, we have obtained a list pins, containing exactly one vertex
from each connected component of G[S ∪U ]\ (S ∪sep). We remove all the vertices
on this list from F , thus making F again empty.

It is worth mentioning that the query findNextPin not only returns some
vertex u of a connected component of G[S ∪ U ] \ (S ∪ sep) that does not contain
any vertex from F , but also provides the size of this component as the second
coordinate of the return value. Moreover, the components are being found in
decreasing order with respect to sizes. In this algorithm we do not exploit this
property, but it will be crucial for the linear-time algorithm.

The set X will no longer be used, so we remove all the vertices of sep from X,
thus making it again empty. On the other hand, we add all the vertices from sep
to S. The new set S obtained in this manner will constitute the new bag, of size
at most |S| + |sep| ≤ 3k + 5. We are left with computing the tree decompositions
for the connected components below this bag, which are pinpointed by vertices
stored in the list pins.

We iterate through the list pins and process the components one by one.
For each vertex u ∈ pins, we set u as the new pin by unmarking the old one
and marking u. Note that the set U gets redefined and now is the connected
component containing considered u. First, we find the neighborhood of U in S.
This is done using query findNeighborhood, which in O(k) time returns either this
neighborhood, or concludes that its cardinality is larger than 2k + 3. However, as
X was a 1

2 -balanced S-separator, it follows that this neighborhood will always be
of size at most 2k + 3 (a formal argument is contained in the proof of correctness).
We continue with S ∩ N(U) as our new S and recursively call FindTD in order to
decompose the connected component under consideration, with its neighborhood
in S as the root bag of the constructed tree decomposition. FindTD either provides
a decomposition by returning a pointer to its root bag, or concludes that no
decomposition can be found. If the latter is the case, we may terminate the
algorithm providing a negative answer.

After all the connected components are processed, we merge the obtained tree
decompositions. For this, we use the function build(S, X, C) which, given sets
of vertices S and X and a set of pointers C, constructs two bags B = S and
B′ = S ∪ X, makes C the children of B′, B′ the child of B and returns a pointer
to B. This pointer may be returned from the whole subroutine, after doing a
clean-up of the data structure.

Invariants

Now we show that the stated invariants indeed hold. Initially S = X = F = ∅ and
π ∈ V (G), so clearly the invariants are satisfied. If no S-separator is found, the
algorithm returns without changing the data structure and hence the invariants
trivially hold in this case. Since both X and F are empty or cleared before return
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Algorithm 6: FindTD
Data: Data structure DS
Output: Tree decomposition of width at most 3k + 4 of G[S ∪ U ] with S as

root bag or conclusion that tw(G) > k.
oldS ← DS.getS()
oldπ ← DS.getπ()
sep ← DS.findSSeparator()
if sep = ⊥ then

return ⊥ /* safe to return: the state not changed */
end
DS.insertX(sep)
DS.insertX(π)
pins ← ∅
while (u, l) ← DS.findNextPin() �= ⊥ do

pins.append(u)
DS.insertF (u)

end
DS.clearX()
DS.clearF ()
DS.insertS(sep)
bags ← ∅
for u ∈ pins do

DS.setπ(u)
bags.append(DS.findNeighborhood())

end
children ← ∅
for u, b ∈ pins, bags do

DS.setπ(u)
DS.clearS()
DS.insertS(b)
children.append(FindTD())

end
DS.clearS()
DS.insertS(oldS)
DS.setπ(oldπ)
if ⊥ ∈ children then

return ⊥ /* postponed because of rollback of S and π */
end
return build(oldS, sep, children)

or recursing, X = F = ∅ holds. Furthermore, as S is reset to oldS (consult
Algorithm 6 for the variable names used) and the pin to oldπ before returning, it
follows that the state of the data structure is reverted upon returning.

The size of S = ∅ is trivially less than 2k + 3 when initialized. Assume that
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for some call to FindTD we have that |oldS| ≤ 2k + 3. When recursing, S is
the neighborhood of some component C of G[oldS ∪ U ] \ (oldS ∪ sep) (note that
we refer to U before resetting the pin). This component is contained in some
component C ′ of G[oldS ∪ U ] \ sep, and all the vertices of oldS adjacent to C must
be contained in C ′. Since sep is a 1

2 -balanced oldS-separator, we know that C ′

contains at most 1
2 |oldS| vertices of oldS. Hence, when recursing we have that

|S| ≤ 1
2 |oldS| + |sep| = 1

2(2k + 3) + k + 2 = 2k + 7
2 and, since |S| is an integer, it

follows that |S| ≤ 2k + 3.
Finally, we argue that the pin π is never contained in S. When we obtain the

elements of pins (returned by query findNextPin) we know that X = sep and the
data structure guarantees that the pins will be from G[oldS ∪ U ] \ (oldS ∪ sep).
When recursing, S = b ⊆ (oldS ∪ sep) and π ∈ pins, so it follows that π /∈ S.
Assuming π /∈ oldS, it follows that π is not in S when returning, and our argument
is complete. From here on we will safely assume that the invariants indeed hold.

Correctness

We now show that the algorithm FindTD actually does what we need, that is,
provided that the treewidth of the input graph G is at most k, it outputs a tree
decomposition of width at most 3k + 4 with S as a root bag.

Claim 26.3. The algorithm FindTD is correct, that is

(i) if tw(G) ≤ k, FindTD returns a valid tree decomposition of G[S ∪U ] of width
at most 3k + 4 with S as a root bag and

(ii) if FindTD returns ⊥ then tw(G) > k.

Proof. We start by proving (ii). Suppose the algorithm returns ⊥. This happens
only if at some point we are unable to find a balanced S-separator for an induced
subgraph G′ = G[S ∪ U ]. By Lemma 25.1 the treewidth of G′ is more than k.
Hence tw(G) > k as well.

To show (i) we proceed by induction on the height of the recursion tree. In
the induction we prove that the algorithm creates a tree decomposition, and we
therefore argue that the necessary conditions are satisfied, namely

• the bags have size at most 3k + 5,

• every vertex and every edge is contained in some bag,

• for each v ∈ V (G) the subtree of bags containing v is connected, and finally

• S is the root bag.

The base case is at the leaf of the obtained tree decomposition, namely when
U ⊆ S ∪ sep. Then we return a tree decomposition containing two bags, B and B′

where B = {S} and B′ = {S ∪ sep}. Clearly, every edge and every vertex of
G[S ∪ U ] = G[S ∪ sep] is contained in the tree decomposition. Furthermore,
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since the tree has size two, the connectivity requirement holds and finally, since
|S| ≤ 2k + 3 (invariant) and sep ≤ k + 2 it follows that |S ∪ sep| ≤ 3k + 5. Note
that due to the definition of the base case, the algorithm will find no pins and
hence it will not recurse further. Clearly, letting B = {S} be the root bag fulfills
the requirements.

The induction step is as follows. Assuming, by the induction hypothesis,
that all recursive calls to FindTD() correctly returned what was promised, we
now consider the case when we have successfully completed all the calls for each
of the connected components (the line containing children.append(FindTD()) in
Algorithm 6), and return build(oldS, sep, children).

Since U � S ∪ sep, the algorithm have found some pins π1, π2, . . . , πd and
the corresponding components C1, C2, . . . , Cd in G[S ∪ U ] \ (S ∪ sep). Let Ni =
N(Ci) ∩ (S ∪ sep). By the induction hypothesis the algorithm gives us valid tree
decompositions Ti of G[Ni ∪ Ci]. Note that the root bag of Ti consists of the
vertices in Ni. By the same argument as for the base case, the two bags B = S
and B′ = S ∪ sep that we construct have appropriate sizes.

Let v be an arbitrary vertex of S ∪ U . If v ∈ S ∪ sep, then it is contained
in B′. Otherwise there exists a unique i such that v ∈ Ci. It then follows from
the induction hypothesis that v is contained in some bag of Ti.

It remains to show that the edge property and the connectivity property hold.
Let uv be an arbitrary edge of G[S ∪ U ]. If u and v both are in S ∪ sep, then the
edge is contained in B′. Otherwise, assume without loss of generality that u is in
some component Ci. Then u and v are in Ni ∪ Ci and hence they are in some bag
of Ti by the induction hypothesis.

Finally, for the connectivity property, let v be some vertex in S ∪ U . If
v /∈ S ∪ sep, then there is a unique i such that v ∈ Ci, hence we can apply the
induction hypothesis. So assume that v ∈ S ∪ sep = B′. Let A be some bag of
T containing v. We will complete the proof by proving that there is a path of
bags containing v from A to B′. If A is B or B′, then this follows directly from
the construction. Otherwise there exists a unique i such that A is a bag in Ti.
Observe that v is in Ni as it is in S ∪ sep. By the induction hypothesis the bags
containing v in Ti are connected and hence there is a path of bags containing v
from A to the root bag Ri of Ti. By construction B′ contains v and the bags B′

and Ri are adjacent. Hence there is a path of bags containing v from A to B′ and
as A was arbitrary chosen, this proves that the bags containing v form a connected
subtree of the decomposition.

Now all we need to show is that S is the root bag of the tree decomposition
we return, but that is precisely what is returned in the algorithm. We return (see
the last line of Algorithm 6) the output of the function build(oldS, sep, children),
but as described above, this function builds the tree decomposition consisting of
the two bags oldS and oldS ∪ sep, together with children, and outputs a pointer
to oldS, which is exactly S.

This concludes the proof of Claim 26.3.
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Complexity

The final part needed to prove the correctness of Lemma 26.2, and thus conclude
the algorithm of this section, is that the running time of FindTD does not exceed
what was stated, namely O(ck · n log n). That is the last part of this section and
is formalized in the following claim:

Claim 26.4. The invocation of FindTD in the algorithm Compress1 runs in O(ck ·
n log n) time for some c ∈ N.

Proof. First we simply observe that at each recursion step, we add the previous
pin to S and create two bags. Since a vertex can only be added to S one time
during the entire process, at most 2n bags are created. Hence the number of
bags is bounded, and if we partition the used running time between the bags,
charging each bag with at most O(ck · log n) time, it follows that FindTD runs in
O(ck · n log n) time.

We now charge the bags. For a call C to FindTD, let B and B′ be as previously
with R1, . . . , Rd the children of B′. Let Ti be the tree decomposition of the recursive
call which has Ri as the root bag. We will charge B′ and R1, . . . , Rd for the time
spent on C. Notice that as Ri will correspond to B in the next recursion step, each
bag will only be charged by one call to FindTD. We charge B′ with everything
in C not executed in the two loops iterating through the components, plus with
the last call to findNextPin that returned ⊥.

Now, since every update and query in the data structure is executed in O(ck ·
log n) time, and there is a constant number of queries charged to B′, it follows
that B′ is charged with O(ck · log n) time. For each iteration in one of the loops
we consider the corresponding πi and charge the bag Ri with the time spent on
this iteration. As all the operations in the loops can be performed in O(ck · log n)
time, each Ri is charged with at most O(ck · log n) time.

Since our tree decomposition has at most 2n bags and each bag is charged
with at most O(ck · log n) time, it follows that FindTD runs in O(ck · n log n) time
and the proof is complete.
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Chapter 27

Obtaining almost linear time

In this section we provide formal details of the proof of the following statement:

Theorem 46. For every α ∈ N, there exists an algorithm which, given a graph G
and an integer k, in O(ck

α · n log(α) n) time for some cα ∈ N either computes a tree
decomposition of G of width at most 5k + 4 or correctly concludes that tw(G) > k.

In the proof we give a sequence of algorithms Algα for α = 2, 3, . . .; Alg1 has
been already presented in the previous section. Each Algα in fact solves a slightly
more general problem than stated in Theorem 46, in the same manner as Alg1
solved a more general problem than the one stated in Theorem 45. Namely, every
algorithm Algα gets as input a connected graph G, an integer k and a subset of
vertices S0 such that |S0| ≤ 4k + 3 and G \ S0 is connected, and either concludes
that tw(G) > k or constructs a tree decomposition of width at most 5k + 4 with
S0 as the root bag. The running time of Algα is O(ck

α · n log(α) n) for some cα ∈ N;
hence, in order to prove Theorem 46 we can again apply Algα to every connected
component of G separately, using S0 = ∅.

The algorithms Algα are constructed inductively; by that we mean that Algα

will call Algα−1, which again will call Algα−2, and all the way until Alg1, which
was given in the previous section. Let us remark that a closer examination of our
algorithms in fact shows that the constants cα in the bases of the exponents of
consecutive algorithms can be bounded by some universal constant. However, of
course the constant factor hidden in the O-notation depends on α.

In the following we present a quick outline of what will be given in this section.
For α = 1, we refer to the previous section, and for α > 1, Algα and Compressα

are described in this section, in addition to the subroutine FindPartialTD.

• Algα takes as input a graph G, an integer k and a vertex set S0 with similar
assumptions as in the previous section, and returns a tree decomposition
T of G of width at most 5k + 4 with S0 as the root bag. The algorithm is
almost exactly as Alg1 given as Algorithm 4, except that it uses Compressα

for the compression step.

• Compressα is an advanced version of Compress1 (see Algorithm 5), it allows
S0 to be of size up to 4k + 3 and gives a tree decomposition of width at most

247
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5k + 4 in time O(c′
α

k · n log(α) n) for some c′
α ∈ N. It starts by initializing

the data structure, and then it calls FindPartialTD, which returns a tree
decomposition T ′ of an induced subgraph G′ ⊆ G. The properties of G′

and T ′ are as follows. All the connected components C1, . . . Cp of G \ V (G′)
are of size less than log n. Furthermore, for every connected component
Cj, the neighborhood N(Cj) in G is contained in a bag of T ′. Intuitively,
this ensures that we are able to construct a tree decomposition of Cj and
attach it to T ′ without blowing up the width of T ′. More precisely, for every
connected component Cj, the algorithm constructs the induced subgraph
Gj = G[Cj ∪ N(Cj)] and calls Algα−1 on Gj, k, and N(Cj). The size of
N(Cj) will be bounded by 4k + 3, making the recursion valid with respect to
the invariants of Algα. If this call returned a tree decomposition Tj with a
root bag N(Cj), we can conveniently attach Tj to T ′; otherwise we conclude
that tw(G[Cj ∪ N(Cj)]) > k so tw(G) > k as well.

• FindPartialTD differs from FindTD in two ways. First, we use the fact
that when enumerating the components separated by the separator using
query findNextPin, these components are identified in the descending order
of cardinalities. We continue the construction of partial tree decomposition
in the identified components only as long as they are of size at least log n,
and we terminate the enumeration when we encounter the first smaller
component. It follows that all the remaining components are smaller then
log n; these remainders are exactly the components C1, . . . Cp that are left
not decomposed by Algα, and on which Algα−1 is run.

The other difference is that the data structure has a new flag, whatsep,
which is set to either u or s and is alternated between calls. If whatsep = s,
we use the same type of separator as FindTD did, namely findSSeparator,
but if whatsep = u, then we use the (new) query findUSeparator. Query
findUSeparator, instead of giving a balanced S-separator, provides a 8

9 -
balanced U -separator, that is, a separator that splits the whole set U of
vertices to be decomposed in a balanced way. Using the fact that on every
second level of the decomposition procedure the whole set of available vertices
shrinks by a constant fraction, we may for example observe that the resulting
partial tree decomposition will be of logarithmic depth. More importantly,
it may be shown that the total number of constructed bags is at most
O(n/ log n) and hence we can spend O(ck

α · log n) time constructing each bag
and still obtain running time linear in n.

In all the algorithms that follow we assume that the cardinality of the edge set
is at most k times the cardinality of the vertex set, because otherwise we may
immediately conclude that treewidth of the graph under consideration is larger
than k and terminate the algorithm.
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27.1 The main procedure
The procedure Algα works exactly as Alg1, with the exception that it applies
Lemma 25.6 for parameter 5k + 4 instead of 3k + 4, and calls recursively Algα and
Compressα instead of Alg1 and Compress1. The running time analysis is exactly
the same, hence we omit it here.

27.2 Compression algorithm
The following lemma defines the behavior of the compression algorithm Compressα.

Lemma 27.1. For every integer α ≥ 1 there exists an algorithm, which on input
G, k, S0, Tapx, where

(i) S0 ⊆ V (G), |S0| ≤ 4k + 3,

(ii) G and G \ S0 are connected and

(iii) Tapx is a tree decomposition of G of width at most O(k)

in O(c′
α

k · n log(α) n) time for some c′
α ∈ N either computes a tree decomposition

T of G with w(T ) ≤ 5k + 4 and S0 as the root bag, or correctly concludes that
tw(G) > k.

The outline of the algorithm Compressα for α > 1 is given as Algorithm 7. Having
initialized the data structure using Tapx, the algorithm asks FindPartialTD for a
partial tree decomposition T ′, and then the goal is to decompose the remaining
small components and attach the resulting tree decompositions in appropriate
places of T ′.

First we traverse T ′ in linear time and store information on where each
vertex appearing in T ′ is forgotten in T ′. More precisely, we compute a map
forgotten : V (G) → V (T ′) ∪ {⊥}, where for every vertex v of G we either store
⊥ if it is not contained in T ′, or we remember the top-most bag Bi of T ′ such
that v ∈ Bi (the connectivity requirement of the tree decomposition ensures that
such Bi exists and is unique). The map forgotten may be very easily computed
via a DFS traversal of the tree decomposition: when accessing a child node i
from a parent i′, we put forgotten(v) = i for each v ∈ Bi \ Bi′. Moreover, for
every v ∈ Br, where r is the root node, we put forgotten(v) = r. Clearly, all
the vertices not assigned a value in forgotten in this manner, are not contained
in any bag of T ′, and we put value ⊥ for them. Let W be the set of vertices
contained in T ′, i.e., W = ⋃

i∈V (T ′) Bi.
Before we continue, let us show how the map forgotten will be used. Suppose

that we have some set Y ⊆ W , and we have a guarantee that there exists a node i
of T ′ such that Bi contains the whole Y . We claim the following: then one of the
bags associated with forgotten(v) for v ∈ Y contains the whole Y . Indeed, take
the path from i to the root of the tree decomposition T ′, and consider the last node
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i′ of this path whose bag contains the whole Y . It follows that i′ = forgotten(v)
for some v ∈ Y and Y ⊆ Bi′, so the claim follows. Hence, we can locate the
bag containing Y in O(kO(1) · |Y |) time by testing each of |Y | candidate nodes
forgotten(v) for v ∈ Y .

The next step of the algorithm is locating the vertices which has not been
accounted for, i.e., those assigned ⊥ by forgotten. The reason each of these
vertices has not been put into the tree decomposition, is precisely because the size
of its connected component C of G \ W , is smaller than log n. The neighborhood
of this component in G is N(C), and this neighborhood is guaranteed to be of size
at most 4k + 3 and contained in some bag of T ′ (a formal proof of this fact will
be given when presenting the algorithm FindPartialTD, i.e., in Lemma 27.2).

Let C1, C2, . . . , Cp be all the connected components of G\W , i.e., the connected
components outside the obtained partial tree decomposition T ′. To complete
the partial tree decomposition into a tree decomposition, for every connected
component Cj, we construct a graph Gj = G[Cj ∪ N(Cj)] that we then aim to
decompose. These graphs may be easily identified and constructed in O(kO(1) · n)
time using depth-first search as follows.

We iterate through V (G), and for each vertex v such that forgotten(v) = ⊥
and v was not visited yet, we apply a depth-first search on v to identify its
component C. During this depth-first search procedure, we terminate searching
and return from a recursive call whenever we encounter a vertex from W . In
this manner we identify the whole component C, and all the visited vertices of
W constitute exactly N(C). Moreover, the edges traversed while searching are
exactly those inside C or between C and N(C). To finish the construction of
Gj, it remains to identify edges between vertices of N(C). Recall that we have a
guarantee that N(C) ⊆ W and N(C) is contained in some bag of T ′. Using the
map forgotten we can locate some such bag in O(kO(1)) time, and in O(kO(1))
time check which vertices of N(C) are adjacent in it, thus finishing the construction
of Gj. Observe that during the presented procedure we traverse each edge of the
graph at most once, and for each of at most n components C we spend O(kO(1))
time on examination of N(C). It follows that the total running time is O(kO(1) · n).

Having constructed Gj, we run the algorithm Algα−1 on Gj using S0 = N(Cj).
Note that in this manner we have that both Gj and Gj \ S0 are connected, which
are requirements of the algorithm Algα−1. If Algα−1 concluded that tw(Gj) > k,
then we can consequently answer that tw(G) > k since Gj is an induced subgraph
of G. On the other hand, if Algα−1 provided us with a tree decomposition Tj of
Gj having N(Cj) as the root bag, then we may simply attach this root bag as a
child of the bag of T ′ that contains the whole N(Cj). Any such bag can be again
located in O(kO(1)) time using the map forgotten.
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Algorithm 7: Compressα

Input: Connected graph G, k ∈ N, a set S0 s.t. |S0| ≤ 4k + 3 and G \ S0 is
connected, and a tree decomposition Tapx with w(Tapx) = O(k)

Output: Tree decomposition of G of width at most 5k + 4 with S0 as the
root bag, or conclusion that tw(G) > k.

Initialize data structure DS with G, k, S0, Tapx
T ′ ← FindPartialTD()
if T ′ = ⊥ then

return ⊥
end
Create the map forgotten : V (G) → V (T ′) using a DFS traversal of T ′

Construct components C1, C2, . . . , Cp of G \ W , and graphs
Gj = G[Cj ∪ N(Cj)] for j = 1, 2, . . . , p

for j = 1, 2, . . . , p do
Tj ← Algα−1 on Gj, k, N(Cj)
if Tj = ⊥ then

return ⊥
end
Locate a node i of T ′ s.t. N(Cj) ⊆ Bi, by checking forgotten(v) for
each v ∈ N(Cj)
Attach the root of Tj as a child of i

end
return T ′

Correctness and complexity

In this section we prove Lemma 27.1 and Theorem 46, and we proceed by induction
on α. To this end we will assume the correctness of Lemma 27.2, which will be
proved later, and which describes behavior of the subroutine FindPartialTD().

For the base case, α = 1, we use Compress1 given as Algorithm 5. When its
correctness was proved we assumed |S0| ≤ 2k + 3 and this is no longer the case.
However, if Alg1 is applied with |S0| ≤ 4k + 3 it will conclude that tw(G) > k
or give a tree decomposition of width at most 5k + 4. The reason is as follows;
Assume that FindTD is applied with the invariant |S| ≤ 4k + 3 instead of 2k + 3.
By the same argument as in the original proof this invariant will hold, since
1
2(4k + 3) + k + 2 ≤ 4k + 3. The only part of the correctness (and running
time analysis) affected by this change is the width of the returned decomposition,
and when the algorithm adds the separator to S it creates a bag of size at most
(4k+3)+(k+2) = 5k+5 and hence our argument for the base case is complete. For
the induction step, suppose that the theorem and lemma hold for α − 1. We show
that Compressα is correct and runs in O(c′

α
k · n log(α) n) time. This immediately

implies correctness and complexity of Algα, in the same manner as in Chapter 26.
To prove correctness of Compressα, suppose that T ′ is a valid tree decomposition

for some G′ ⊆ G that we have obtained from FindPartialTD. Observe that if



252 CHAPTER 27. OBTAINING ALMOST LINEAR TIME

T ′ = ⊥, then tw(G) > k by Lemma 27.2. Otherwise, let C1, . . . , Cp be the
connected components of G \ W , and let Gj = G[Cj ∪ N(Cj)] for j = 1, 2, . . . , p.
Let Tj be the tree decompositions obtained from application of the algorithm
Algα−1 on graphs Gj. If Tj = ⊥ for any j, we infer that tw(Gj) > k and,
consequently, tw(G) > k. Assume then that for all the components we have indeed
obtained valid tree decompositions, with N(Cj) as root bags. It can be easily seen
that since N(Cj) separates Cj from the rest of G, then attaching the root of Tj as
a child of any bag containing the whole N(Cj) gives a valid tree decomposition;
the width of this tree decomposition is the maximum of widths of T ′ and Tj, which
is at most 5k + 3. Moreover, if we perform this operation for all the components
Cj, then all the vertices and edges of the graph will be contained in some bag of
the obtained tree decomposition.

We now proceed to the time complexity of Compressα. The first thing done by
the algorithm is the initialization of the data structure and running FindPartialTD
to obtain T ′. Application of FindPartialTD takes O(ckn) time by Lemma 27.2,
and so does initialization of the data structure (see Chapter 29). As discussed,
creation of the forgotten map and construction of the graphs Gj takes O(kO(1) ·n)
time.

Now, the algorithm applies Algα−1 to each graph Gj. Let nj be the number of
vertices of Gj. Note that

p∑
j=1

nj =
p∑

j=1
|Cj| +

p∑
j=1

|N(Cj)| ≤ n + p · (4k + 3) ≤ (5k + 3)n.

Moreover, as nj ≤ log n + (4k + 3), it follows from concavity of t → log(α−1) t that

log(α−1) nj ≤ log(α−1)(log n + (4k + 3)) ≤ log(α) n + log(α−1)(4k + 3).

By the induction hypothesis, the time complexity of Algα−1 on Gj is O(c′
α−1

k ·
nj log(α−1) nj) for some c′

α−1 ∈ N , hence we spend O(c′
α−1

k · nj log(α−1) nj) time
for Gj. Attaching each decomposition Tj to T ′ can be done in O(kO(1)) time.

Let Cα denote the complexity of Compressα and Aα the complexity of Algα.
By applying the induction hypothesis and by taking c′

α > max{c, cα−1} in order to
hide polynomial factors depending on k, we analyze the complexity of Compressα:

Cα(n, k) = O(ck · n) +
n∑

j=1
Aα−1(nj, k)

= O(ck · n) +
p∑

j=1
O(ck

α−1 · nj log(α−1) nj)

≤ O(ck · n) +
p∑

j=1
O(ck

α−1 · nj(log(α) n + log(α−1)(4k + 3)))

= O(c′
α

k · n) +
p∑

j=1
O(ck

α−1 · nj log(α) n)

≤ O(c′
α

k · n) + (5k + 3)n · O(ck
α−1 · log(α) n) = O(c′

α
k · n log(α) n).
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We conclude that Compressα is both correct and that it runs in O(c′
α

k · n log(α) n)
time for some c′

α ∈ N.
Recall that the only difference between Algα and Alg1 is which compression

subroutine is called. Hence, the correctness of Algα follows in the same manner as
the correctness of Alg1; see the previous section. The time analysis of Algα is also
very similar to the time analysis of Alg1 as given in Section 26.1; taking cα > c′

α,
we obtain a time complexity of O(ck

αn log(α) n) using Equations 26.1 and 26.2 with
cα and c′

α instead of c1 and c. And hence our induction step is complete and the
correctness of Lemma 25.7 and Theorem 46 follows. The only assumption we
made was that of the correctness of Lemma 27.2, which will be given immediately.

27.3 Obtaining a partial tree decomposition
The following lemma describes behavior of the subroutine FindPartialTD.

Lemma 27.2. There exists an algorithm that, given data structure DS in a state
such that |S| ≤ 4k + 3 if whatsep = s or |S| ≤ 3k + 2 if whatsep = u, in time
O(ckn) either concludes that tw(G[U ∪ S]) > k, or give a tree decomposition T ′ of
G′ ⊆ G[U ∪ S] such that

• the width of the decomposition is at most 5k + 4 and S is its root bag;

• for every connected component C of G[U ∪ S] \ V (G′), the size of the compo-
nent is less than log n, its neighborhood is of size at most 4k + 3, and there
is a bag in the decomposition T ′ containing this whole neighborhood.

The pseudocode of FindPartialTD is presented as Algorithm 8. Recall Figure 26.1
for the operations on the data structure. The algorithm proceeds very similarly
to the subroutine FindTD, given in Chapter 29. The main differences are the
following.

• We alternate usage of findSSeparator and findUSeparator between the levels
of the recursion to achieve that the resulting tree decomposition is also
balanced. A special flag in the data structure, whatsep, that can be set to
s or u, denotes whether we are currently about to use findSSeparator or
findUSeparator, respectively. When initializing the data structure we set
whatsep = s, so we start with finding a balanced S-separator.

• When identifying the next components using query findNextPin, we stop
when a component of size less than log n is discovered. The remaining
components are left without being decomposed.

The new query findUSeparator, provided that we have the data structure with S
and π distinguished, gives a 8

9 -balanced separator of U in G[U ] of size at most
k + 1. That is, it returns a subset Y of vertices of U , with cardinality at most
k + 1, such that every connected component of G[U ] \ Y has at most 8

9 |U | vertices.
If such a separator cannot be found (which is signalized by ⊥), we may safely
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conclude that tw(G[U ]) > k and, consequently tw(G) > k. The running time of
query findUSeparator is O(ck · log n).

We would like to remark that the usage of balanced U -separators make it not
necessary to add the pin to the obtained separator. Recall that this was a technical
trick that was used in Chapter 26 to ensure that the total number of bags of the
decomposition was linear.

Correctness

The invariants of Algorithm 8 are as for Algorithm 6, except for the size of S, in
which case we distinguish whether whatsep is s or u. In the case of s the size of
S is at most 4k + 3 and for u the size of S is at most 3k + 2.

If whatsep = u then, since |S| ≤ 3k + 2 and we add an U -separator of size
at most k + 1 and make this our new S, the size of the new S will be at most
4k + 3 and we set whatsep = s. For every component C on which we recurse,
the cardinality of its neighborhood (S at the moment of recursing) is therefore
bounded by 4k + 3. So the invariant holds when whatsep = u.

We now show that the invariant holds when whatsep = s. Now |oldS| ≤ 4k + 3.
We find 1

2 -balanced S-separator sep of size at most k + 1. When recursing, the
new S is the neighborhood of some component C of G[oldS ∪ U ] \ (oldS ∪ sep)
(note that we refer to U before resetting the pin). This component is contained in
some component C ′ of G[oldS ∪ U ] \ sep, and all the vertices of oldS adjacent to C
must be contained in C ′. Since sep is a 1

2 -balanced oldS-separator, we know that
C ′ contains at most 1

2 |oldS| vertices of oldS. Hence, when recursing we have that
|S| ≤ 1

2 |oldS| + |sep| = 1
2(4k + 3) + k + 1 = 3k + 5

2 and, since |S| is an integer, it
follows that |S| ≤ 3k + 2. Hence, the invariant also hold when whatsep = s.

Note that in both the checks we did not assume anything about the size of the
component under consideration. Therefore, it also holds for components on which
we do not recurse, i.e., those of size at most log n, that the cardinalities of their
neighborhoods will be bounded by 4k + 3.

The fact that the constructed partial tree decomposition is a valid tree decom-
position of the subgraph induced by vertices contained in it, follows immediately
from the construction, similarly as in Chapter 26. A simple inductive argument
also shows that the width of this tree decomposition is at most 5k +4: at each step
of the construction, we add two bags of sizes at most (4k + 3) + (k + 1) ≤ 5k + 5
to the obtained decompositions of the components, which by inductive hypothesis
are of width at most 5k + 4.

Finally, we show that every connected component of G[S ∪ U ] \ V (G′) has size
at most log n and that the neighborhood of each of these connected component
is contained in some bag on the partial tree decomposition T ′. First, by simply
breaking out of the loop shown in Algorithm 8 at the point we get a pair (π, l) such
that l < log n, we are guaranteed that the connected component of G[S ∪ U ] \ sep
containing π has size less than log n, and so does every other connected component
of G[S ∪ U ] not containing a vertex from F and which has not been visited by
DS.findNextPin(). Furthermore, since immediately before we break out of the loop
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due to small size we add S ∪ sep to a bag, we have ensured that the neighborhood
of any such small component is contained in this bag. The bound on the size of
this neighborhood has been already argued.

Complexity

Finally, we show that the running time of the algorithm is O(ck · n). The data
structure operations all take time O(ck log n) and we get the data structure DS
as input.

The following combinatorial lemma will be helpful to bound the number of
bags in the tree decomposition produced by FindPartialTD. We aim to show that
the tree decomposition T ′ contains at most O(n/ log n) bags, so we will use the
lemma with μ(i) = wi/ log n, where i is a node in a tree decomposition T ′ and wi

is the number of vertices in G[U ] when i is added to T ′. Having proven the lemma,
we can show that the number of bags is bounded by O(μ(r)) = O(n/ log n), where
r is the root node of T ′.

Lemma 27.3. Let T be a rooted tree with root r. Assume that we are given a
measure μ : V (T ) → R with the following properties:

(i) μ(v) ≥ 1 for every v ∈ V (T ),

(ii) for every vertex v, let v1, v2, . . . , vp be its children, we have that ∑p
i=1 μ(vi) ≤

μ(v), and

(iii) there exists a constant 0 < C < 1 such that for for every two vertices v, v′

such that v is a parent of v′, it holds that μ(v′) ≤ C · μ(v).

Then |V (T )| ≤
(
1 + 1

1−C

)
μ(r) − 1.

Proof. We prove the claim by induction with respect to the size of V (T ). If
|V (T )| = 1, the claim trivially follows from property (i). We proceed to the
induction step.

Let v1, v2, . . . , vp be the children of r and let T1, T2, . . . , Tp be subtrees rooted in
v1, v2, . . . , vp, respectively. If we apply the induction hypothesis to trees T1, . . . , Tp,
we infer that for each i = 1, 2, . . . , p we have that |V (Ti)| ≤

(
1 + 1

1−C

)
μ(vi) − 1.

By summing the inequalities we infer that:

|V (T )| ≤ 1 − p +
(

1 + 1
1 − C

) p∑
i=1

μ(vi).

We now consider two cases. Assume first that p ≥ 2; then:

|V (T )| ≤ 1 − 2 +
(

1 + 1
1 − C

) p∑
i=1

μ(vi) ≤
(

1 + 1
1 − C

)
μ(r) − 1,
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and we are done. Assume now that p = 1; then

|V (T )| ≤
(

1 + 1
1 − C

)
μ(v1) ≤ C

(
1 + 1

1 − C

)
μ(r)

=
(

1 + 1
1 − C

)
μ(r) − (2 − C)μ(r) ≤

(
1 + 1

1 − C

)
μ(r) − 1,

and we are done as well.

We now prove the following claim.

Claim 27.4. The partial tree decomposition T ′ contains at most 42n/ log n nodes.

Proof. Let us partition the set of nodes V (T ′) into two subsets. At each recursive
call of FindPartialTD, we create two nodes: one associated with the bag oldS,
and one associated with the bag oldS ∪ sep. Let Ismall be the set of nodes
associated with bags oldS, and let Ilarge the the set of remaining nodes, associated
with bags oldS ∪ sep. As bags are always constructed in pairs, it follows that
|Ismall| = |Ilarge| = 1

2 |V (T ′)|. Therefore, it remains to establish a bound on |Ismall|.
We now further partition Ismall into three parts: Is

small, Iu,int
small, and Iu,leaf

small :

• Is
small consists of all the nodes created in recursive calls where whatsep = s.

• Iu,leaf
small consists of all the nodes created in recursive calls where whatsep = u,

and moreover the algorithm did not make any more recursive calls to FindTD
(in other words, all the components turned out to be of size smaller than
log n).

• Iu,int
small consists of all the remaining nodes created in recursive calls where

whatsep = u, that is, such that the algorithm made at least one more call
to FindTD.

We aim at bounding the size of each of the sets Is
small, Iu,int

small, and Iu,leaf
small separately.

We first claim that |Iu,leaf
small | ≤ n/ log n. For each node in Iu,leaf

small , consider the set
of vertices strictly below the bag. By construction, such a set consists of a number
of components, each with less than log n vertices. However, as a recursive call to
create the bag was made at the parent, the total size of these components must
be at least log n. Now observe that these associated sets are pairwise disjoint for
the bags in I i,leaf

small; so it follows that |Iu,leaf
small | ≤ n/ log n.

We now claim that |Iu,int
small| ≤ |Is

small|. Indeed, if with every node i ∈ Iu,int
small we

associate any of its grandchildren belonging to Is
small, whose existence is guaranteed

by the definition of Iu,int
small, we obtain an injective map from Iu,int

small into Is
small.

We are left with bounding |Is
small|. We use the following notation. For a

node i ∈ V (T ′), let wi be the number of vertices strictly below i in the tree
decomposition T ′, also counting the vertices outside the tree decomposition. Note
that by the construction it immediately follows that wi ≥ log n for each i ∈ Ismall.

We now make use of Lemma 27.3. Recall that vertices of Is
small are exactly

those that are in levels whose indices are congruent to 1 modulo 4, where the root
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has level 1; in particular, r ∈ Is
small. We define a rooted tree T as follows. The

vertex set of T is Is
small, and for every two nodes i, i′ ∈ Is

small such that i′ is an
ancestor of i exactly 4 levels above (grand-grand-grand-parent), we create an edge
between i and i′. It is easy to observe that T created in this manner is a rooted
tree, with r as the root.

We can now construct a measure μ : V (T ) → R by taking μ(i) = wi/ log n. Let
us check that μ satisfies the assumptions of Lemma 27.3 for C = 8

9 . Property (i)
follows from the fact that wi ≥ log n for every i ∈ Ismall. Property (ii) follows from
the fact that the parts of the components on which the algorithm recurses below the
bags are always pairwise disjoint. Property (iii) follows from the fact that between
every pair of parent, child in the tree T we have used a 8

9 -balanced U -separator.
Application of Lemma 27.3 immediately gives that |Is

small| ≤ 10n/ log n.
As |Is

small| ≤ 10n/ log n, we have that |Iu,int
small| ≤ |Is

small| ≤ 10n/ log n, thus
|Ismall| ≤ |Is

small| + |Iu,inte
small | + |Iu,leaf

small | ≤ 21n/ log n. Hence |V (T ′)| ≤ 2 · |Ism| ≤
42n/ log n.

To conclude the running time analysis of FindPartialTD, we provide a similar
charging scheme as in Chapter 26. More precisely, we charge every node of T ′

with O(ck · log n) running time; Claim 27.4 ensures us that then the total running
time of the algorithm is then O(ck · n).

Let B = oldS and B′ = oldS ∪ sep be the two bags constructed at some call of
FindPartialTD. All the operations in this call, apart from the two loops over the
components, take O(ck · log n) time and are charged to B′. Moreover, the last call
of findNextPin, when a component of size smaller than log n is discovered, is also
charged to B′. As this call takes O(1) time, B′ is charged with O(ck · log n) time
in total.

We now move to examining the time spent while iterating through the loops.
Let Bj be the root bag of the decomposition created for graph Gj. We charge Bj

with all the operations that were done when processing Gj within the loops. Note
that thus every such Bj is charged at most once, and with running time O(ck ·log n).
Summarizing, every bag of T ′ is charged with O(ck · log n) running time, and
we have at most 42n/ log n bags, so the total running time of FindPartialTD is
O(ck · n).
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Algorithm 8: FindPartialTD
Data: Data structure DS
Output: Partial tree decomposition of width at most k of G[S ∪ U ] with S

as root bag or conclusion that tw(G) > k.
oldS ← DS.getS()
oldπ ← DS.getπ()
oldw ← DS.whatsep
if DS.whatsep = s then

sep ← DS.findSSeparator()
DS.whatsep ← u

else
sep ← DS.findUSeparator()
DS.whatsep ← s

end
if sep = ⊥ then

DS.whatsep ← oldw
return ⊥ /* safe to return: the state not changed */

end
DS.insertX(sep)
pins ← ∅
while (u, l) ← DS.findNextPin() �= ⊥ and l ≥ log n do

pins.append(u)
DS.insertF (u)

end
DS.clearX()
DS.clearF ()
DS.insertS(sep)
bags ← ∅
for u ∈ pins do

DS.setπ(u)
bags.append(DS.findNeighborhood())

end
children ← ∅
for u, b ∈ pins, bags do

DS.setπ(u)
DS.clearS()
DS.insertS(b)
children.append(FindPartialTD())

end
DS.whatsep ← oldw
DS.clearS()
DS.insertS(oldS)
DS.setπ(oldπ)
if ⊥ ∈ children then

return ⊥ /* postponed because of rollback of S and π */
end
return build(oldS, sep, children)



Chapter 28

A linear time algorithm

In this section we give the main result of this part, i.e., we prove Theorem 47
(stated below) and discuss how it follows from a combination of the previous
sections and a number of existing results with some modifications.

Theorem 47. There exists an algorithm that, given an n-vertex graph G and an
integer k, in time 2O(k)n either outputs that the treewidth of G is larger than k, or
constructs a tree decomposition of G of width at most 5k + 4.

The algorithm distinguishes between two cases depending on whether or not
n ≤ 22c0k for some constant c0. If this is the case, we may simply run Alg2 which
will work in linear time since n log log n = O(nkO(1)) and hence O(ck

2n log log n) =
O(ckn) for some constant c. Otherwise we will construct a tree automaton being a
version of the dynamic programming algorithm by Bodlaender and Kloks [BK96].
The crucial insight is to perform the automaton construction once, before the
whole algorithm, and then use the table lookups to implement automaton’s run
in time O(kO(1)n). These techniques combined will give us a 5-approximation
algorithm for treewidth in time single exponential in k and linear in n.

The section is organized as follows. In Section 28.1, we describe how to construct
the automaton. In Section 28.1.1 we show how to solve the instance when n
astronomically big compared to k, and finally in Section 28.1.2 we wrap up and
give the proof of Theorem 47.

28.1 Automata
This section is devoted to the proof of Lemma 28.2. We (1) define nice expression
trees, (2) explain the relationship between dynamic programming on tree decom-
positions and nice expression trees, (3) describe a table lookup procedure and
finally (4) show how to construct an actual tree decomposition, provided that the
automaton decides whether the treewidth of the input graph is at most k.

Lemma 28.1 (Bodlaender and Kloks [BK96]). There is an algorithm that, given
a graph G, an integer k, and a nice tree decomposition of G of width at most �

259
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with O(n) bags, either decides that the treewidth of G is more than k, or finds a
tree decomposition of G of width at most k in time O(2O(k�2)n).

In our algorithm, we need to separate the automaton’s construction from running
it on the tree decomposition. We will use the standard notion of a deterministic
tree automaton working on ranked trees with at most two children per node,
labeled with symbols from some finite alphabet Σ. The automaton has a finite set
of states, whereas transitions compute the state corresponding to a node based on
the states of the children and the symbol of Σ placed on the node.

Our version of the above result can be hence expressed as follows.

Lemma 28.2. There are algorithms Algpre and Algrun and constants cp and cr,
such that

• Algorithm Algpre gets as input integers k, � ∈ N, where k is the treewidth we
want to decide whereas � is the width of the input tree decomposition, and
constructs in time O(22cpk�2

) an automaton Ak,�.

• Algorithm Algrun gets as input a graph G, with a nice tree decomposition
of G of width at most � with O(n) bags, an integer k, and the automaton Ak,�,
and either decides that the treewidth of G is more than k, or finds a tree
decomposition of G of width at most k in time O(kcrn).

By the exact same recursive techniques as in Sections 26.1 and 27.1, which
originates from Bodlaender’s algorithm [Bod96], we can focus our attention on
the case when we are given a tree decomposition of the input graph of slightly too
large width.

Nice expression trees

The dynamic programming algorithm in Bodlaender and Kloks [BK96] is described
with help of so called nice tree decompositions1. As we need to represent a nice tree
decomposition as a labeled tree with the label alphabet of size being a function of k,
we use a slightly different notion of labeled nice tree decomposition. The formalism
is quite similar to existing formalisms, e.g., the operations on k-terminal graphs
by Borie [Bor88], or construction terms used by Lokshtanov et al. [LPPS14].

A labeled terminal graph is a 4-tuple G = (V, E, X, f), with (V, E) a graph,
X ⊆ V (G) a set of terminals, and f : X → N an injective mapping of the terminals
to non-negative integers, which we call labels. A k-labeled terminal graph is a
labeled terminal graph with the maximum label at most k, i.e., maxx∈X f(x) ≤ k.
Let Ok be the set of the following operations on k-terminal graphs.

Leaf�(): gives a k-terminal graph with one vertex v, no edges, with v a terminal
with label �.

1See the beginning of Chapter 29 for a definition of nice tree decompositions.
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Introduce�,S(G): G = (V (G), E(G), X, f) is a k-terminal graph, � a non-negative
integer, and S ⊆ {1, . . . , k} a set of labels. If there is a terminal vertex in G with
label �, then the operation returns G, otherwise it returns the graph obtained by
adding a new vertex v, making v a terminal with label �, and adding edges {v, w}
for each terminal w ∈ X with f(w) ∈ S. I.e., we make the new vertex adjacent to
each existing terminal whose label is in S.
Forget�(G): Again G = (V (G), E(G), X, f) is a k-terminal graph. If there is no
vertex v ∈ X with f(v) = �, then the operation returns G, otherwise, we turn v
into a non-terminal, i.e., we return the k-terminal graph (V (G), E(G), X \ {v}, f ′)
for the vertex v with f(v) = �, and f ′ is the restriction of f to X \ {v}.
Join(G,H): G = (V (G), E(G), X, f) and H = (V (H), E(H), Y, g) are k-terminal
graphs. If the range of f and g are not equal, then the operation returns G.
Otherwise, the result is obtained by taking the disjoint union of the two graphs,
and then identifying pairs of terminals with the same label.

Note that for given k, Ok is a collection of k + k · 2k + k + 1 operations. When the
treewidth is k, we work with k + 1-terminal graphs. The set of operations mimics
closely the well known notion of nice tree decompositions (see e.g., Kloks [Klo94]
or Bodlaender [Bod98]).

Proposition 28.3. Suppose a tree decomposition of G is given of width at most
k with m bags. Then, in time linear in n and polynomial in k, we can construct
an expression giving a graph isomorphic to G in terms of operations from Ok+1
with the length of the expression O(mk).

Proof. First build with standard methods a nice tree decomposition of G of
width k; this has O(mk) bags, and O(m) join nodes. Now, construct the graph
H = (V (H), E(H)), with V (H) = V (G) and for all v, w ∈ V (H), {v, w} ∈ E(H),
if and only if there is a bag i with v, w ∈ Xi. It is well known that H is a chordal
super graph of G with maximum clique size k + 1 (see e.g., Bodlaender [Bod98]).
Use a greedy linear time algorithm to find an optimal vertex coloring c of H (see
Golumbic [Gol80, Section 4.7].)

Now, we can transform the nice tree decomposition to the expression as follows:
each leaf bag that contains a vertex v is replaced by the operation Leafc(v), i.e.,
we label the vertex by its color in H. We can now replace bottom up each bag in
the nice tree decomposition by the corresponding operation; as we labeled vertices
with the color in H, we have that all vertices in a bag have different colors, which
ensures that a Join indeed performs identifications of vertices correctly. Bag sizes
are bounded by k + 1, so all operations belong to Ok+1.

View the expression as a rooted tree with every node labeled by an operation
from Ok+1: leaves are labeled with the Leaf operation, and binary nodes have the
Join-label. Thus, every node has at most two children. To each node i of the
tree, we can associate a graph Gi; the graph Gr associated to the root node r is
isomorphic to G. Call such a labeled rooted tree a nice expression tree of width k.
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Dynamic programming and finite state tree automata

The discussion in this paragraph holds for all problems invariant under isomorphism.
Note that the treewidth of a graph is also invariant under isomorphisms. We use
ideas from the early days of treewidth, see e.g., Fellows and Langston [FL] or
Abrahamson and Fellows [AF93].

A dynamic programming algorithm on nice tree decompositions can be viewed
also as a dynamic programming algorithm on a nice expression tree of width
k. Suppose that we have a dynamic programming algorithm that computes in
bottom-up order for each node of the expression tree a table with at most r = O(1)
bits per table, and to compute a table, only the label of the node (type of operation)
and the tables of the children of the node are used. As we will argue in the next
sections, the DP algorithm for treewidth from Bodlaender and Kloks [BK96] is
indeed of this form, if we see k as a fixed constant. Such an algorithm can be seen
as a finite state tree automaton: the states of the automaton correspond to the at
most 2r = O(1) different tables; the alphabet are the O(1) different labels of tree
nodes.

To decide if the treewidth of G is at most k, we first explicitly build this finite
state tree automaton, and then execute it on the expression tree. For actually
building the corresponding tree decomposition of G of width at most k, if existing,
some more work has to be done, which is described later.

Table lookup implementation of dynamic programming

The algorithm of Bodlaender and Kloks [BK96] (see especially Definition 5.9
therein) builds for each node in the nice tree decomposition a table of charac-
teristics. Each characteristic represents the “essential information” of a partial
tree decomposition of width at most k of the graph associated with the bag.
More precisely, if i is a node of the input tree decomposition, then we need to
succintly encode partial tree decompositions of graph Gi. With each such partial
decomposition we associate its characteristic. Bodlaender and Kloks argue that
for the rest of the computation, we only need to remember a bounded-size family
of characteristics. More precisely, we will say that a set of characteristics F for
the node i is full if the following holds: if there is a tree decomposition of the
whole graph, then there is also a tree decomposition whose restriction to Gi has
a characteristic belonging to F . The crucial technical result of Bodlaender and
Kloks [BK96] is that there is a full set of characteristics F where each characteristic
has size bounded polynomially in k and �, assuming that we are given an expression
tree of width � and want to test if the treewidth is at most k. Moreover, this set
can be effectively constructed for each node of the input tree decomposition using
a bottom-up dynamic programming. Inspection of the presentation of [BK96]
easily shows that the number of possible characteristics, for which we need to store
whether they are included in the full set or not, is bounded by 2O(k·�2). Thus, the
algorithm of Bodlander and Kloks needs to remember 2O(k·�2) bits of information
in every dynamic programming table, one per every possible characteristic.
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We now use that we represent the vertices in a bag, i.e., the terminals, by labels
from {1, . . . , � + 1}, where � is the width of the nice expression tree. Thus, we
have a set Ck,� (only depending of k and �) with |Ck,�| = 2O(k·�2) that contains all
possible characteristics that can possibly belong to a computed full set. Then, each
table is just a subset of Ck,�, i.e., an element of P(Ck,�), where P(·) denotes the
powerset. This in turn means that we can view the decision variant of the dynamic
programming algorithm of Bodlaender and Kloks as a tree automaton working
over rooted trees over the alphabet O�+1 (with at most two children per node).
Namely, the state set of the automaton is P(Ck,�), and transitions correspond to
the formulas for combining full sets of characteristics that are given by Bodlaender
and Kloks [BK96].

The first step of the proof of Lemma 28.2 is to explicitly construct the described
tree automaton. We can do this as follows. Enumerate all characteristics in Ck,�,
and number them c1, . . . , cs, where s = 2O(k·�2). Enumerate all elements of P(Ck,�),
and number them t1, . . . , ts′ , s′ = 22O(k·�2) ; store with ti the elements of its set.

Then, we compute the transition function δ : O�+1 × {1, . . . , s′} × {1, . . . , s′} →
{1, . . . , s′}. In terms of tree automaton view, δ computes the state of a node given
its symbol and the states of its children. (If a node has less than two children,
the third, and possibly the second argument are ignored.) In terms of the DP
algorithm, if we have a tree node i with operation o ∈ O�+1, and the children of
i have tables corresponding to tα and tβ, then δ(o, α, β) gives the number of the
table obtained for i by the algorithm. To compute one value of δ, we just execute
one part of the algorithm of Bodlaender and Kloks. Suppose we want to compute
δ(o, α, β). We build the tables Tα and Tβ corresponding to tα and tβ, and execute
the step of the algorithms of Bodlaender and Kloks for a node with operation o
whose children have tables Tα and Tβ. (If the node is not binary, we ignore the
second and possibly both tables.) Then, look up what is the index of the resulting
table; this is the value of δ(o, α, β).

We now estimate the time to compute δ. We need to compute O(2� · � · s′2) =
O(22O(k·�2)) values; each executes one step of the DP algorithm and does a lookup
in the table, which is easily seen to be bounded again by O(22O(k·�2)), so the total
time to compute δ is still bounded by O(22O(k·�2)). To decide if the treewidth of G
is at most k, given a nice tree decomposition of width at most �, we thus carry
out the following steps:

• Compute δ.

• Transform the nice tree decomposition to a nice expression tree of width �.

• Compute bottom-up (e.g., in post-order) for each node i in the expression
tree a value qi, equal to the state of the automaton at i in the run, as
follows. If node i is labeled by operation o ∈ O�+1 and its children have
pre-computed values qj1 , qj2 , we have qi = δ(o, qj1 , qj2). If i has less than two
children, we take some arbitrary argument for the values of missing children.
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In this way, qi corresponds to the table computed by the DP algorithm of
Bodlaender and Kloks [BK96].

• If the value qr for the root of the expression tree corresponds to the empty
set, then the treewidth of G is more than k, otherwise the treewidth of G is
at most k [BK96].

If our decision algorithm decides that the treewidth of G is more than k, we reject,
and we are done. Otherwise, we need to do additional work to construct a tree
decomposition of G of width at most k, which is described next.

Constructing tree decompositions

After the decision algorithm has determined that the treewidth of G is at most k,
we need to find a tree decomposition of G of width at most k. Again, the discussion
is necessarily not self contained and we refer to details given in Bodlaender and
Kloks [BK96, Section 6].

Basically, each table entry (characteristic) in the table of a join node is the
result of a combination of a characteristic from the table of the left child and
a characteristic from the table of the right child. More precisely, a pair of
characteristics for the children can be combined into a characteristic of a node.
Bodlaender and Kloks give a constructive procedure that verifies whether the
combination of two characteristic is possible to perform, and if so then it computes
the result; this algorithm was already used implicitly in the previous section
when we described how δ is computed. The characteristics that are included in
the table of a node are exactly those that can be obtained as combinations of
characteristics included in the tables of children. Similarly, for nodes with one
child, each characteristic is the result of an operation to a characteristic in the
table of the child node, and characteristics stored for a node are exactly those
obtainable in this manner. Leaf nodes represent a graph with one vertex, and we
have just one tree decomposition of this graph, and thus one table entry in the
table of a leaf node.

We now describe how, given a run of the automaton (equivalently, filling of
the DP tables), to reconstruct one exemplary tree decomposition of the graph.
This construction can be thought of a variant of the well-known technique of
back-links used for recovering solutions from dynamic programming tables. First,
let us define an auxiliary function γ, as follows. This function has four arguments:
an operation from O�+1, the index of a characteristic (a number between 1 and
s), and the indices of two states (numbers between 1 and s′ = 2s). As value, γ
yields ⊥ or a pair of two indices of characteristics. The intuition is as follows:
suppose we have a node i in the nice expression tree labeled with o, an index ci

of a characteristic of a (not yet known) tree decomposition of Gi, and indices of
the tables of the children of i, say tj1 and tj2 . Then γ(o, ci, tj1 , tj2) should be an
(arbitrarily chosen) pair (cj1 , cj2) such that ci is the result of the combination of
cj1 and cj2 (in case o is the join operation) or of the operation as described in the
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previous paragraph to cj1 (in case o is an operation with one argument; cj2 can
have any value and is ignored). If no such pair exists, the output of γ is ⊥.

To compute γ, we can perform the following steps for each 4-tuple o, ci, tj1 , tj2 .
Let S1 ∈ P(Ck,�) be the set corresponding to tj1 , and S2 ∈ P(Ck,�) be the set
corresponding to tj2 . For each c ∈ S1 and c′ ∈ S2, see if a characteristic c and a
characteristic c′ can be combined (or, in case of a unary operation, if the relevant
operation can be applied to c) to obtain c1. If we found at least one such pair, we
return an arbitrarily selected one (say, lexicographically first); if no combination
gives c1, we return ⊥. Again, in case of unary operations o, we ignore c′. We do
not need γ in case o is a leaf operation, and can give any return values in such
cases. One can easily see that the computation of γ uses again 22O(k·�2) time.

The first step of our construction phase is to build γ, as described above. After
this, we select a characteristic from Ck,� for each node in the nice expression tree,
as follows. As we arrived in this phase, the state of the root bag corresponds to a
nonempty set of characteristics, and we take an arbitrary characteristic from this
set (e.g., the first one from the list). Now, we select top-down in the expression
tree (e.g., in pre-order) a characteristic for each node. Leaf nodes always receive
the characteristic of the trivial tree decomposition of a graph with one vertex. In
all other cases, if node i has operation o and has selected characteristic c, the left
child of i has state tj1 and the right child of i has state tj2 (or, take any number,
e.g., 1, if i has only one child, i.e., o is a unary operation), look up the precomputed
value of γ(o, c, tj1 , tj2). As c is a characteristic in the table that is the result of
δ(o, tj1 , tj2), we have that γ(o, c, tj1 , tj2) �= ⊥, so suppose γ(o, c, tj1 , tj2) is the pair
(c′, c′′). We associate c′ as characteristic with the left child of i, and (if i has two
children) c′′ as characteristic with the right child of i.

At this point, we have associated a characteristic with each node in the nice
expression tree. These characteristics are precisely the same as the characteristics
that are computed in the constructive phase of the algorithm from Bodlaender and
Kloks [BK96, Section 6], with the sole difference that we work with labeled termi-
nals instead of the “names” of the vertices (i.e., in Bodlaender and Kloks [BK96],
terminals / bag elements are identified as elements from V (G)).

From this point on, we can follow without significant changes the algorithm
from Bodlaender and Kloks [BK96, Section 6]: bottom-up in the expression
tree, we build for each node i, a tree decomposition of Gi whose characteristic
is the characteristic we just selected for i, together with a number of pointers
from the characteristic to the tree decomposition. The decomposition for Gi

can be constructed from the (pre-computed) decompositions for the children of
i using amortized time (k + �)O(1) for additional work needed for combining the
partial decompositions, so that the whole reconstruction algorithm works in time
O((k + �)O(1) · n). Again, the technical details can be found in Bodlaender and
Kloks [BK96], our only change is that we work with terminals labeled with integers
in {1, . . . , � + 1} instead of bag vertices.

At the end of this process, we obtain a tree decomposition of the graph
associated with the root bag Gr = G whose characteristic belongs to the set
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corresponding to the state of r. As we only work with characteristics of tree
decompositions of width at most k, we obtained a tree decomposition of G of
width at most k.

All work we do, except for the pre-computation of the tables of δ and γ, is
linear in n and polynomial in k; the time for the pre-computation does not depend
on n, and is bounded by 22O(k�2) . Note that once δ and γ are computed, retrieving
their values is done by a table lookup that takes constant time in the RAM model.
This ends the description of the proof of Lemma 28.2.

28.1.1 Astronomic n: Proof of Lemma 28.4
We now state and prove Lemma 28.4, which is a variant of a result from Bodlaen-
der [Bod96].

Lemma 28.4. There exists constants cp and cr and an algorithm, that given an
n-vertex graph G and an integer k, in time O(22cpk3

+ kcrn), either outputs that
the treewidth of G is larger than k, or constructs a tree decomposition of G of
width at most k.

The O(f(k)n) algorithm for treewidth by Bodlaender [Bod96] makes a number of
calls to an algorithm by Bodlaender and Kloks [BK96]. More precisely, Lemma 28.4
is obtained by combining Lemmata 28.1 and 28.2, but modifying it by replacing
the explicit construction of tables to lookup of states in an explicitly constructed
automaton.

We modify the algorithm as follows. Before the whole procedure, in the
preprocessing phase we once construct the automaton Ak,� using algorithm Algpre
from Lemma 28.2 with � = 2k + 1. Then, instead of calling the algorithm of
Lemma 28.1 in Step 5, we call algorithm Algrun from Lemma 28.2. Thus we
obtain an algorithm for treewidth for fixed k that uses O(22cpk3

) time once for
constructing the automaton, and then has a recursive procedure whose running
time is given by

T (n) = T
(

(1 − Ω( 1
k6 )n

)
+ O(kO(1)n),

which solves to T (n) = O(kO(1)n). We can conclude that using the algorithm of
Lemma 28.2 as subroutine inside Bodlaender’s algorithm gives an algorithm for
treewidth that uses O(22O(k3) + kO(1)n) time, and thus Lemma 28.2 together with
the insights of earlier sections in this paper and the results from Bodlaender [Bod96]
implies Lemma 28.4.

28.1.2 Wrapping up
Proof of Theorem 47. Now, Theorem 47 follows easily from the results in previous
sections and Lemma 28.4, in the following way: The algorithm distinguishes
between two cases. The first case is when n is “sufficiently small” compared to k.
By this, we mean that n ≤ 22cpk3

for the value of cp ∈ N in Lemma 28.4. The
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other case is when this is not the case. For the first case, we can apply Alg2
from Theorem 46. Since n is sufficiently small compared to k we can observe that
log log n = kO(1), resulting in a 2O(k)n time algorithm. In the second case, we use
the algorithm of Lemma 28.4; as n > 22cpk3

, the algorithm uses O(kcrn) time.
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Chapter 29

The data structure

In this chapter we give a complete explanation of the data structure that has been
instrumental for developing the algorithms given in the previous chapters.

29.1 Overview of the data structure
Assume we are given a tree decomposition ({Bi | i ∈ I}, T = (I, F )) of G of
width O(k). First we turn our tree decomposition into a tree decomposition of
depth O(log n), keeping the width to t = O(k), by the work of Bodlaender and
Hagerup [BH98]. Furthermore, by standard arguments we turn this decomposition
into a nice tree decomposition in O(tO(1) · n) time, that is, a decomposition of the
same width and satisfying following properties:

• All the leaf bags, as well as the root bag, are empty.

• Every node of the tree decomposition is of one of four different types:

– Leaf node: a node i with Bi = ∅ and no children.
– Introduce node: a node i with exactly one child j such that Bi =

Bj ∪ {v} for some vertex v /∈ Bj; we say that v is introduced in i.
– Forget node: a node i with exactly one child j such that Bi = Bj \{v}

for some vertex v ∈ Bi; we say that v is forgotten in i.
– Join node: a node i with two children j1, j2 such that Bi = Bj1 = Bj2 .

The standard technique of turning a tree decomposition into a nice one includes (i)
adding paths to the leaves of the decomposition on which we consecutively introduce
the vertices of corresponding bags; (ii) adding a path to the root on which we
consecutively forget the vertices up to the new root, which is empty; (iii) introducing
paths between every non-root node and its parent, on which we first forget all the
vertices that need to be forgotten, and then introduce all the vertices that need to
be introduced; (iv) substituting every node with d > 2 children with a balanced
binary tree of O(log d) depth. It is easy to check that after performing these
operations, the tree decomposition has depth at most O(t log n) and contains at

269
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most O(t · n) bags. Moreover, using folklore preprocessing routines, in O(tO(1) · n)
time we may prepare the decomposition for algorithmic uses, e.g., for each bag
compute and store the list of edges contained in this bag. We omit here the details
of this transformation and refer to Kloks [Klo94].

In the data structure, we store a number of tables: three special tables that
encode general information on the current state of the graph, and one table per
query. The information stored in the tables reflect some choice of subsets of V (G),
which we will call the current state of the graph. More precisely, at each moment
the following subsets will be distinguished: S, X, F and a single vertex π, called the
pin. The meaning of these sets is described in Chapter 26. On the data structure
we can perform the following updates: adding and removing vertices to S, X, F
and marking and unmarking a vertex as a pin. In the following table we gather
the tables used by the algorithm, together with an overview of the running times
of updates. The meaning of the table entries uses terminology that is described in
the following sections.

The following lemma follows from each of the entries in the table below, and
will be proved in this section:

Lemma 29.1. The data structure can be initialized in O(ckn) time.

Table Meaning
P [i] Boolean value π ∈ Wi

C[i][(Si, Ui)] Connectivity information on U ext
i

CardU [i][(Si, Ui)] Integer value |U ext
i ∩ Wi|

T1[i][(Si, Ui)] Table for query findNeighborhood
T2[i][(Si, Ui)][ψ] Table for query findSSeparator
T3[i][(Si, Ui, Xi, Fi)] Table for query findNextPin
T4[i][(Si, Ui)][ψ] Table for query findUSeparator

Figure 29.1: Description of tables.

Table Update Initialization
P [i] O(t · log n) O(t · n)
C[i][(Si, Ui)] O(3t · tO(1) · log n) O(3t · tO(1) · n)
CardU [i][(Si, Ui)] O(3t · tO(1) · log n) O(3t · tO(1) · n)
T1[i][(Si, Ui)] O(3t · kO(1) · log n) O(3t · kO(1) · n)
T2[i][(Si, Ui)][ψ] O(9t · kO(1) · log n) O(9t · kO(1) · n)
T3[i][(Si, Ui, Xi, Fi)] O(6t · tO(1) · log n) O(6t · tO(1) · n)
T4[i][(Si, Ui)][ψ] O(5t · kO(1) · log n) O(5t · kO(1) · n)

Figure 29.2: Complexities of the tables.

We now proceed to the description of the table P , and then to the two tables C
and CardU that handle the important component U . The tables T1, T2, T3 are
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described together with the description of realization of the corresponding queries.
Whenever describing the table, we argue how the table is updated during updates
of the data structure, and initialized in the beginning.

29.2 The pin table
In the table P , for every node i of the tree decomposition we store a boolean value
P [i] equal to (π ∈ Wi). We now show how to maintain the table P when the data
structure is updated. The table P needs to be updated whenever the pin π is
marked or unmarked. Observe, that the only nodes i for which the information
whether π ∈ Wi changed, are the ones on the path from rπ to the root of the
tree decomposition. Hence, we can simply follow this path and update the values.
As the tree decomposition has depth O(t log n), this update can be performed in
O(t · log n) time. As when the data structure is initialized, no pin is assigned, P
is initially filled with ⊥.

29.3 Maintaining the important component
Before we proceed to the description of the queries, let us describe what is
the reason of introducing the pin π. During the computation, the algorithm
recursively considers smaller parts of the graph, separated from the rest via a
small separator: at each step we have distinguished set S and we consider only one
connected component U of G \ S. Unfortunately, we cannot afford recomputing
the tree decomposition of U at each recurrence call, or even listing the vertices
of U . Therefore we employ a different strategy for identification of U . We will
distinguish one vertex of U as a representative pin π, and U can then be defined
as the set of vertices reachable from π in G \ S. Instead of recomputing U at each
recursive call we will simply change the pin.

In order to make the operation to change the pin more efficient, we store
additional information in the tables. For each node i of the tree decomposition,
we not only have an entry in its table for the current value of the pin π, but in
order to quickly update information when the pin is changed, instead store entries
for each possible intersection of U with Bi. Thus, when the pin is changed and
thus the important set is changed, we are prepared and the information is already
available in the table: information needs to be recomputed on two paths to the
root in the tree decomposition, corresponding the previous and the next pin, while
for subtrees unaffected by the change we do not need to recompute anything as
the tables stored there already contain information about the new U as well—as
they contain information for every possible new U . As the tree decomposition is
of logarithmic depth, the update time is logarithmic instead of linear.

We proceed to the formal description. We store the information about U in two
special tables: C and CardU . As we intuitively explained, tables C and CardU
store information on the connectivity behavior in the subtree, for every possible
interaction of U with the bag. Formally, for every node of the tree decomposition i
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we store an entry for every member of the family of signatures of the bag Bi. A
signature of the bag Bi is a pair (Si, Ui), such that Si, Ui are disjoint subsets of Bi.
Clearly, the number of signatures is at most 3|Bi|.

Let i be a node of the tree decomposition. For a signature φ = (Si, Ui) of Bi, let
Sext

i = Si ∪ (S ∩ Wi) and U ext
i consists of all the vertices reachable in Gi \ Sext

i from
Ui or π, providing that it belongs to Wi. Sets Sext

i and U ext
i are called extensions

of the signature φ; note that given Si and Ui, the extensions are defined uniquely.
We remark here that the definition of extensions depend not only on φ but also
on the node i; hence, we will talk about extensions of signatures only when the
associated node is clear from the context.

We say that signature φ of Bi with extensions Sext
i and U ext

i is valid if it holds
that

(i) U ext
i ∩ Bi = Ui,

(ii) if Ui �= ∅ and π ∈ Wi (equivalently, P [i] is true), then the component of
G[U ext

i ] that contains π contains also at least one vertex of Ui.

Intuitively, invalidity means that φ cannot contain consistent information about
intersection of U and Gi. The second condition says that we cannot fully forget
the component of π, unless the whole U ext

i is already forgotten.
Formally, the following invariant explains what is stored in tables C and CardU :

• if φ is invalid then C[i][φ] = CardU [i][φ] = ⊥;

• otherwise, C[i][φ] contains an equivalence relation R consisting of all pairs of
vertices (a, b) ∈ Ui that are connected in Gi[U ext

i ], while CardU [i][φ] contains
|U ext

i ∩ Wi|.

Note that in this definition we actually ignore the information about the mem-
bership of vertices of Bi in sets S, F, X in the current state of the graph: the
stored information depends only on the membership of forgotten vertices to these
sets, whereas the signature of the bag overrides the actual information about the
membership of vertices of the bag. In this manner we are prepared for possible
changes in the data structure, as after an update some other signature will reflect
the current state of the graph. Moreover, it is clear from this definition that during
the computation, the membership of any vertex v in sets S, F, X in the current
state of the graph is being checked only in the single node rv when this vertex is
being forgotten; we use this property heavily to implement the updates efficiently.

We now explain how for every node i, entries of C[i] and CardU [i] can be
computed using the entries of these tables for the children of i. We consider
different cases, depending on the type of node i.

Case 1: Leaf node. If i is a leaf node then C[i][(∅, ∅)] = ∅ and CardU [i][(∅, ∅)] =
0.

Case 2: Introduce node. Let i be a node that introduces vertex v, and j
be its only child. Consider some signature φ = (Si, Ui) of Bi; we would like
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to compute Ri = C[i][φ]. Let φ′ be a natural projection of φ onto Bj, that is,
φ′ = (Si ∩ Bj, Ui ∩ Bj). Let Rj = C[j][φ′]. We consider some sub-cases, depending
on the alignment of v in φ.

Case 2.1: v ∈ Si. If we introduce a vertex from Si, then it follows that
extensions of Ui = Uj are equal. Therefore, we can put C[i][φ] = C[j][φ′] and
CardU [i][φ] = CardU [j][φ′].

Case 2.2: v ∈ Ui. In the beginning we check whether conditions of validity
are not violated. First, if v is the only vertex of Ui and P [i] = �, then we simply
put C[i][φ] = ⊥: condition (ii) of validity is violated. Second, we check whether v
is adjacent only to vertices of Sj and Uj; if this is not the case, we put C[i][φ] = ⊥
as condition (i) of validity is violated.

If the validity checks are satisfied, we can infer that the extension U ext
i of Ui is

extension U ext
j of Uj with v added; this follows from the fact that Bj separates v

from Wj, so the only vertices of U ext
i adjacent to v are already belonging to Uj.

Now we would like to compute the equivalence relation Ri out of Rj. Observe
that Ri should be basically Rj augmented by connections introduced by the new
vertex v between its neighbors in Bj. Formally, Ri may be obtained from Rj by
merging equivalence classes of all the neighbors of v from Uj, and adding v to the
obtained equivalence class; if v does not have any neighbors in Uj, we put it as a
new singleton equivalence class. Clearly, CardU [i][φ] = CardU [j][φ′].

Case 2.3: v ∈ Bi \ (Si ∪ Ui). We first check whether the validity constraints
are not violated. As v is separated from Wj by Bj, the only possible violation
introduced by v is that v is adjacent to a vertex from Uj. In this situation we
put C[i][φ] = CardU [i][φ] = ⊥, and otherwise we can put C[i][φ] = C[j][φ′] and
CardU [i][φ] = CardU [j][φ′], because extensions of φ and φ′ are equal.

Case 3: Forget node. Let i be a node that forgets vertex w, and j be its only
child. Consider some signature φ = (Si, Ui) of Bi and define extensions Sext

i , U ext
i

for this signature. Observe that there is at most one valid signature φ′ = (Sj, Uj)
of Bj for which Sext

j = Sext
i and U ext

j = U ext
i , and this signature is simply φ with w

added possibly to Si or Ui, depending whether it belongs to Sext
i or U ext

i : the
three candidates are φS = (Si ∪ {w}, Ui), φU = (Si, Ui ∪ {w}) and φ0 = (Si, Ui).
Moreover, if φ is valid then so is φ′. Formally, in the following manner we can
define signature φ′, or conclude that φ is invalid:

• if w ∈ S, then φ′ = φS;

• otherwise, if w = π then φ′ = φU ;

• otherwise, we look into entries C[j][φU ] and C[j][φ0]. If

(i) C[j][φU ] = C[j][φ0] = ⊥ then φ is invalid, and we put C[i][φ] =
CardU [i][φ] = ⊥;

(ii) if C[j][φU ] = ⊥ or C[j][φ0] = ⊥, we take φ′ = φ0 or φ′ = φU , respec-
tively;
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(iii) if C[j][φU ] �= ⊥ and C[j][φ0] �= ⊥, it follows that w must be a member
of a component of Gi \ Sext

i that is fully contained in Wi and does not
contain π. Hence we take φ′ = φ0.

The last point is in fact a check whether w ∈ U ext
i : whether w is connected to a

vertex from Ui in Gi, can be looked up in table C[j] by adding or not adding w to
Ui, and checking the stored connectivity information. If w ∈ Sext

i or w ∈ U ext
i , we

should be using the information for the signature with Si or Ui updated with w,
and otherwise we do not need to add w anywhere.

As we argued before, if φ is valid then so does φ′, hence if C[j][φ′] = ⊥ then
we can take C[i][φ] = CardU [i][φ] = ⊥. On the other hand, if φ′ is valid, then the
only possibility for φ to be invalid is when condition (ii) cease to be satisfied. This
could happen only if φ′ = φU and w is in a singleton equivalence class of C[j][φ′]
(note that then the connected component corresponding to this class needs to
necessarily contain π, as otherwise we would have φ′ = φ0). Therefore, if this is
the case, we put C[i][φ] = CardU [i][φ] = ⊥, and otherwise we conclude that φ is
valid and move to defining C[i][φ] and CardU [i][φ].

Let now Rj = C[j][φ′]. As extensions of φ′ and φ are equal, it follows directly
from the maintained invariant that Ri is equal to Rj with w removed from
its equivalence class. Moreover, CardU [i][φ] is equal to CardU [j][φ′], possibly
incremented by 1 if we concluded that φ′ = φU .

Case 4: Join node. Let i be a join node and j1, j2 be its two children. Consider
some signature φ = (Si, Ui) of Bi. Let φ1 = (Si, Ui) be a signature of Bj1 and
φ2 = (Si, Ui) be a signature of Bj2 . From the maintained invariant it follows that
C[i][φ] is a minimum transitive closure of C[j1][φ1] ∪ C[j2][φ2], or ⊥ if any of these
entries contains ⊥. Similarly, CardU [i][φ] = CardU [j1][φ1] + CardU [j2][φ2].

We now explain how to update tables C and CardU in O(3t · tO(1) · log n) time.
We perform a similar strategy as with table P : whenever some vertex v is included
or removed from S, or marked or unmarked as a pin, we follow the path from rv

to the root and fully recompute the whole tables C, CardU in the traversed nodes
using the formulas presented above. At each step we recompute the table for some
node using the tables of its children; these tables are up to date since they did not
need an update at all, or were updated in the previous step. Observe that since the
alignment of v in the current state of the graph is accessed only in computation
for rv, the path from rv to the root of the decomposition consists of all the nodes
for which the tables should be recomputed. Note also that when marking or
unmarking the pin π, we must first update P and then C and CardU . The update
takes O(3t · tO(1) · log n) time: re-computation of each table takes O(3t · tO(1)) time,
and we perform O(t log n) re-computations as the tree decomposition has depth
O(t log n).

Similarly, tables C and CardU can be initialized in O(3t · tO(1) · n) time by
processing the tree in a bottom-up manner: for each node of the tree decomposition,
in O(3t · tO(1)) time we compute its table based on the tables of the children, which
were computed before.
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29.4 Queries
In our data structure we store one table per query. In this section, we describe
each of the queries. We do this by first introducing an invariant for the entries we
query, then how this information can be computed once we have computed the
entries for all the children.

We then discuss how to perform updates and initialization of the tables, as
they are based on the same principle as with tables C and CardU . The queries
themselves can be performed by reading a single entry of the data structure, with
the exception of findUSeparator, whose implementation is more complex.

29.4.1 Query for neighbors
We begin the description of the queries with the simplest one, namely findNeigh-
borhood. This query lists all the vertices of S that are adjacent to U . In the
algorithm we have an implicit bound on the size of this neighborhood, which we
can use to cut the computation when the accumulated list grows too long. We use
� to denote this bound; in our case we have that � = O(k).

Output: A list of vertices of N(U) ∩ S, or marker ’�’ if their number
is larger than �.

Time: O(�)

findNeighborhood

Let i be a node of the tree decomposition, let φ = (Si, Ui) be a signature of Bi,
and let U ext

i , Sext
i be extensions of this signature. In entry T1[i][φ] we store the

following:

• if φ is invalid then T1[i][φ] = ⊥;

• otherwise T1[i][φ] stores the list of elements of N(U ext
i ) ∩ Sext

i if there is at
most � of them, and � if there is more of them.

Note that the information whether φ is invalid can be looked up in table C. The
return value of the query is stored in T [r][(∅, ∅)].

We now present how to compute entries of table T1 for every node i depending
on the entries of children of i. We consider different cases, depending of the type
of node i. For every case, we consider only signatures that are valid, as for the
invalid ones we just put value ⊥.

Case 1: Leaf node. If i is a leaf node then T1[i][(∅, ∅)] = ∅.

Case 2: Introduce node. Let i be a node that introduces vertex v, and j
be its only child. Consider some signature φ = (Si, Ui) of Bi; we would like to
compute T1[i][φ] = Li. Let φ′ be a natural intersection of φ with Bj, that is,
φ′ = (Si ∩ Bj, Ui ∩ Bj). Let T1[j][φ′] = Lj. We consider some sub-cases, depending
on the alignment of v in φ.
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Case 2.1: v ∈ Si. If we introduce a vertex from Si, we have that U -extensions
of φ and φ′ are equal. It follows that Li should be simply list Lj with v appended
if it is adjacent to any vertex of Uj = Ui. Note here that v cannot be adjacent
to any vertex of U ext

i \ Ui, as Bj separates v from Wj. Hence, we copy the list Lj

and append v if it is adjacent to any vertex of Uj and Lj �= �. However, if the
length of the new list exceeds the � bound, we replace it by �. Note that copying
the list takes O(�) time, as its length is bounded by �.

Case 2.2: v ∈ Ui. If we introduce a vertex from Ui, then possibly some
vertices of Si gain a neighbor in U ext

i . Note here that vertices of Sext
i \ Si are not

adjacent to the introduced vertex v, as Bj separates v from Wj. Hence, we copy
list Lj and append to it all the vertices of Si that are adjacent to v, but were not
yet on Lj. If we exceed the � bound on the length of the list, we put � instead.
Note that both copying the list and checking whether a vertex of Si is on it can
be done in O(�) time, as its length is bounded by �.

Case 2.3: v ∈ Bi \ (Si ∪ Ui). In this case extensions of φ and φ′ are equal, so
it follows from the invariant that we may simply put T [i][φ] = T [j][φ′].

Case 3: Forget node. Let i be a node that forgets vertex w, and j be its only
child. Consider some signature φ = (Si, Ui) of Bi. Define φ′ in the same manner
as in the Forget step in the computation of C. As extensions of φ and φ′ are equal,
it follows that T1[i][φ] = T1[j][φ′].

Case 4: Join node. Let i be a join node and j1, j2 be its two children. Consider
some signature φ = (Si, Ui) of Bi. Let φ1 = (Si, Ui) be a signature of Bj1 and
φ2 = (Si, Ui) be a signature of Bj2 . It follows that T1[i][φ] should be the merge of
lists T1[j1][φ1] and T1[j2][φ2], where we remove the duplicates. Of course, if any
of these entries contains �, we simply put �. Otherwise, the merge can be done
in O(�) time due to the bound on lengths of T1[j1][φ1] and T1[j2][φ2], and if the
length of the result exceeds the bound �, we replace it by �.

Similarly as before, for every addition and removal of vertex v to/from S, or
marking and unmarking v as a pin, we can update table T1 in O(3t · kO(1) · log n)
time by following the path from rv to the root and recomputing the tables in the
traversed nodes. Also, T1 can be initialized in O(3t · kO(1) · n) time by processing
the tree decomposition in a bottom-up manner and applying the formula for
every node. Note that updating/initializing table T1 must be performed after
updating/initializing tables P and C.

29.4.2 Query for finding bag separators

We now move to the next query, namely finding a balanced S-separator. By
Lemma 25.1, as G[U ∪ S] has treewidth at most k, such a 1

2 -balanced S-separator
of size at most k + 1 always exists. We therefore implement the following query.
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Output: A list of elements of a 1
2 -balanced S-separator of G[U ∪ S] of

size at most k + 1, or ⊥ if no such exists.
Time: O(tO(1))

findSSeparator

Before we proceed to the implementation of the query, we show how to translate
the problem of finding a S-balanced separator into a partitioning problem.

Lemma 29.2 (Lemma 25.8, restated). Let G be a graph and S ⊆ V (G). Then a
set X is a balanced S-separator if and only if there exists a partition (M1, M2, M3)
of V (G) \ X, such that there is no edge between Mi and Mj for i �= j, and
|Mi ∩ S| ≤ |S|/2 for i = 1, 2, 3.

The following combinatorial observation is crucial in the proof of Lemma 25.8.

Lemma 29.3. Let a1, a2, . . . , ap be non-negative integers such that ∑p
i=1 ai = q

and ai ≤ q/2 for i = 1, 2, . . . , p. Then there exists a partition of these integers
into three sets, such that sum of integers in each set is at most q/2.

Proof. Without loss of generality assume that p > 3, as otherwise the claim is
trivial. We perform a greedy procedure as follows. At each time step of the
procedure we have a number of sets, maintaining an invariant that each set is of
size at most q/2. During the procedure we gradually merge the sets, i.e., we take
two sets and replace them with their union. We begin with each integer in its
own set. If we arrive at three sets, we end the procedure, thus achieving a feasible
partition of the given integers. We therefore need to present how the merging step
is performed.

At each step we choose the two sets with smallest sums of elements and merge
them (i.e., replace them by their union). As the number of sets is at least 4, the
sum of elements of the two chosen ones constitute at most half of the total sum,
so after merging them we obtain a set with sum at most q/2. Hence, unless the
number of sets is at most 3, we can always apply this merging step.

Proof of Lemma 25.8. One of the implications is trivial: if there is a partition
(M1, M2, M3) of G \ X with the given properties, then every connected component
of G \ X must be fully contained either in M1, M2, or M3, hence it contains at
most |S|/2 vertices of S. We proceed to the second implication.

Assume that X is a balanced S-separator of G and let C1, C2, . . . , Cp be
connected components of G \ X. For i = 1, 2, . . . , p, let ap = |S ∩ Ci|. By
Lemma 29.3, there exists a partition of integers ai into three sets, such that
the sum of elements of each set is at most |S|/2. If we partition vertex sets of
components C1, C2, . . . , Cp in the same manner, we obtain a partition (M1, M2, M3)
of V (G) \ X with postulated properties.

Lemma 25.8 shows that, when looking for a balanced S-separator, instead of trying
to bound the number of elements of S in each connected component of G[U ∪S]\X
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separately, which could be problematic because of connectivity condition, we can
just look for a partition of G[U ∪ S] into four sets with prescribed properties that
can be checked locally. This suggest the following definition of table T2.

In table T2 we store entries for every node i of the tree decomposition, for every
signature φ = (Si, Ui) of Bi, and every 8-tuple ψ = (M1, M2, M3, X, m1, m2, m3, x)
where

• (M1, M2, M3, X) is a partition of Si ∪ Ui,

• m1, m2, m3 are integers between 0 and |S|/2,

• and x is an integer between 0 and k + 1.

This 8-tuple ψ will be called the interface, and intuitively it encodes the interaction
of a potential solution with the bag. Observe that the set U is not given in our
graph directly but rather via connectivity information stored in table C, so we
need to be prepared also for all the possible signatures of the bag; this is the
reason why we introduce the interface on top of the signature. Note however, that
the number of possible pairs (φ, ψ) is at most 9|Bi| · kO(1), so for every bag Bi we
store 9|Bi| · kO(1) entries.

We proceed to the formal definition of what is stored in table T2. For a
fixed signature φ = (Si, Ui) of Bi, let (Sext

i , U ext
i ) be its extension, we say that

partitioning (M ext
1 , M ext

2 , M ext
3 , Xext) of Sext

i ∪ U ext
i is an extension consistent with

interface ψ = (M1, M2, M3, X, m1, m2, m3, x), if:

• Xext ∩ Bi = X and M ext
j ∩ Bi = Mj for j = 1, 2, 3;

• there is no edge between vertices of M ext
j and M ext

j′ for j �= j′;

• |Xext ∩ Wi| = x and |M ext
j ∩ Wi| = mj for j = 1, 2, 3.

In entry T2[i][φ][ψ] we store:

• ⊥ if φ is invalid or no consistent extension of ψ exists;

• otherwise, a list of length x of vertices of Xext ∩ Wi in some consistent
extension of ψ.

The query findSSeparatorcan be realized in O(tO(1)) time by checking entries in
the table T , namely T [r][(∅, ∅)][(∅, ∅, ∅, ∅, m1, m2, m3, x)] for all possible values
0 ≤ mj ≤ |S|/2 and 0 ≤ x ≤ k + 1, and outputting the list contained in any of
them that is not equal to ⊥, or ⊥ if all of them are equal to ⊥.

We now present how to compute entries of table T2 for every node i depending
on the entries of children of i. We consider different cases, depending of the type
of node i. For every case, we consider only signatures that are valid, as for the
invalid ones we just put value ⊥.

Case 1: Leaf node. If i is a leaf node then T2[i][(∅, ∅)][(∅, ∅, ∅, ∅, 0, 0, 0, 0)] = ∅,
and all the other interfaces are assigned ⊥.
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Case 2: Introduce node. Let i be a node that introduces vertex v, and j
be its only child. Consider some signature φ = (Si, Ui) of Bi and an interface
ψ = (M1, M2, M3, X, m1, m2, m3, x); we would like to compute T2[i][φ][ψ] = Li.
Let φ′, ψ′ be natural intersections of φ, ψ with Bj, respectively, that is, φ′ =
(Si ∩ Bj, Ui ∩ Bj) and ψ′ = (M1 ∩ Bj, M2 ∩ Bj, M3 ∩ Bj, X ∩ Bj, m1, m2, m3, x).
Let T2[j][φ′][ψ′] = Lj. We consider some sub-cases, depending on the alignment
of v in φ and ψ. The cases with v belonging to M1, M2 and M3 are symmetric, so
we consider only the case for M1.

Case 2.1: v ∈ X. Note that every extension consistent with interface ψ is
an extension consistent with ψ′ after trimming to Gj. On the other hand, every
extension consistent with ψ′ can be extended to an extension consistent with ψ by
adding v to the extension of X. Hence, it follows that we can simply take Li = Lj.

Case 2.2: v ∈ M1. Similarly as in the previous case, every extension consistent
with interface ψ is an extension consistent with ψ′ after trimming to Gj. On the
other hand, if we are given an extension consistent with ψ′, we can add v to M1
and make an extension consistent with ψ if and only if v is not adjacent to any
vertex of M2 or M3; this follows from the fact that Bj separates v from Wj, so
the only vertices from M ext

2 , M ext
3 that v could be possibly adjacent to, lie in Bj.

However, if v is adjacent to a vertex of M2 or M3, we can obviously put Li = ⊥,
as there is no extension consistent with ψ: property that there is no edge between
M ext

1 and M ext
3 ∪ M ext

3 is broken already in the bag. Otherwise, by the reasoning
above we can put Li = Lj.

Case 2.3: v ∈ Bi \ (Si ∪ Ui). Again, in this case we have one-to-one corre-
spondence of extensions consistent with ψ with ψ′ after trimming to Bj, so we
may simply put Li = Lj.

Case 3: Forget node. Let i be a node that forgets vertex w, and j be its
only child. Consider some signature φ = (Si, Ui) of Bi, and some interface
ψ = (M1, M2, M3, X, m1, m2, m3, x); we would like to compute T2[i][φ][ψ] = Li.
Let φ′ = (Sj, Uj) be the only extension of signature φ to Bj that has the same
extension as φ; φ′ can be deduced by looking up which signatures are found valid
in table C in the same manner as in the forget step for computation of table C.
We consider three cases depending on alignment of w in φ′:

Case 3.1: w /∈ Sj ∪ Uj. If w is not in Sj ∪ Uj, then it follows that we may
put Li = T2[j][φ′][ψ′]: extensions of ψ consistent with ψ correspond one-to-one to
extensions consistent with ψ′.

Case 3.2: w ∈ Sj. Assume that there exist some extension consistent with
ψ denoted (M ext

1 , M ext
2 , M ext

3 , Xext) . In this extension, vertex w is either in M ext
1 ,

M ext
2 , M ext

3 , or in Xext. Let us define the corresponding interfaces:

• ψ1 = (M1 ∪ {w}, M2, M3, X, m1 − 1, m2, m3, x);

• ψ2 = (M1, M2 ∪ {w}, M3, X, m1, m2 − 1, m3, x);

• ψ3 = (M1, M2, M3 ∪ {w}, X, m1, m2, m3 − 1, x);
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• ψX = (M1, M2, M3, X ∪ {w}, m1, m2, m3, x − 1).
If any of integers m1−1, m2−1, m3−1, x−1 turns out to be negative, we do not con-
sider this interface. It follows that for at least one ψ′ ∈ {ψ1, ψ2, ψ3, ψX} there must
be an extension consistent with ψ′: it is just the extension (M ext

1 , M ext
2 , M ext

3 , Xext).
On the other hand, any extension consistent with any of interfaces ψ1, ψ2, ψ3, ψX is
also consistent with ψ. Hence, we may simply put Li = T2[i][φ′][ψ′], and append w
on the list in case ψ′ = ψX .

Case 3.3: w ∈ Uj. We proceed in the same manner as in Case 3.2, with the
exception that we do not decrement mj by 1 in interfaces ψj for j = 1, 2, 3.

Case 4: Join node. Let i be a join node and j1, j2 be its two children. Consider a
signature φ = (Si, Ui) of Bi, and an interface ψ = (M1, M2, M3, X, m1, m2, m3, x);
we would like to compute T2[i][φ][ψ] = Li. Let φ1 = (Si, Ui) be a signature of
Bj1 and φ2 = (Si, Ui) be a signature of Bj2 . Assume that there is some exten-
sion (M ext

1 , M ext
2 , M ext

3 , Xext) consistent with ψ. Define mp
q = |Wjp ∩ Mq| and

xp = |Wjp ∩ X| for p = 1, 2 and q = 1, 2, 3; note that m1
q + m2

q = mq for q = 1, 2, 3
and x1 + x2 = x. It follows that in Gj1 , Gj2 there are some extensions con-
sistent with (M1, M2, M3, X, m1

1, m1
2, m1

3, x1) and (M1, M2, M3, X, m2
1, m2

2, m2
3, x2),

respectively—these are simply extension (M ext
1 , M ext

2 , M ext
3 , Xext) intersected with

Vi, Vj, respectively. On the other hand, if we have some extensions in Gj1 , Gj2 con-
sistent with (M1, M2, M3, X, m1

1, m1
2, m1

3, x1) and (M1, M2, M3, X, m2
1, m2

2, m2
3, x2)

for numbers mq
p, xp such that m1

q + m2
q = mq for q = 1, 2, 3 and x1 + x2 = x,

then the point-wise union of these extensions is an extension consistent with
(M1, M2, M3, X, m1, m2, m3, x). It follows that in order to compute Li, we need to
check if for any such choice of mq

p, xp we have non-⊥ entries in
• T2[j1][φ1][(M1, M2, M3, X, m1

1, m1
2, m1

3, x1)] and

• T2[j2][φ2][(M1, M2, M3, X, m2
1, m2

2, m2
3, x2)].

This is the case, we put the union of the lists contained in these entries as Li, and
otherwise we put ⊥. Note that computing the union of these lists takes O(k) time
as their lengths are bounded by k, and there is O(k4) possible choices of mq

p, xp to
check.

Similarly as before, for every addition and removal of vertex v to and from S or
marking and unmarking v as a pin, we can update table T2 in O(9t · kO(1) · log n)
time by following the path from rv to the root and recomputing the tables in the
traversed nodes. Also, T2 can be initialized in O(9t · kO(1) · n) time by processing
the tree decomposition in a bottom-up manner and applying the formula for
every node. Note that updating/initializing table T2 must be performed after
updating/initializing tables P and C.

29.4.3 Query for next pin
We now proceed to the next query. Recall that at each point, the algorithm
maintains the set F of vertices marking components of G[U ∪ S] \ (X ∪ S) that
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have been already processed. A component is marked as processed when one of
its vertices is added to F . Hence, we need a query that finds the next component
to process by returning any of its vertices. As in the linear-time approximation
algorithm we need to process the components in decreasing order of sizes, the
query in fact provides a vertex of the largest component.

Output: A pair (u, �), where (i) u is a vertex of a component of
G[U ∪ S] \ (X ∪ S) that does not contain a vertex from F and
is of maximum size among such components, and (ii) � is the
size of this component; or, ⊥ if no such component exists.

Time: O(1)

findNextPin

To implement the query we create a table similar to table C, but with entry
indexing enriched by subsets of the bag corresponding to possible intersections
with X and F . Formally, we store entries for every node i, and for every signature
φ = (Si, Ui, Xi, Fi), which is a quadruple of subsets of Bi such that (i) Si ∩ Ui = ∅,
(ii) Xi ⊆ Si ∪ Ui, (iii) Fi ⊆ Ui \ Xi. The number of such signatures is equal to 6|Bi|.

For a signature φ = (Si, Ui, Xi, Fi), we say that (Sext
i , U ext

i , Xext
i , F ext

i ) is the
extension of φ if (i) (Sext

i , U ext
i ) is the extension of (Si, Ui) as in the table C, (ii)

Xext
i = Xi ∪ (Wi ∩ X) and F ext

i = Fi ∪ (Wi ∩ F ). We may now state what is stored
in entry T3[i][(Si, Ui, Xi, Fi)]:

• if (Si, Ui) is invalid then we store ⊥;

• otherwise we store:

– an equivalence relation R between vertices of Ui\Xi, such that (v1, v2) ∈
R if and only if v1, v2 are connected in G[U ext

i \ Xext
i ];

– for every equivalence class K of R, an integer mK equal to the number
of vertices of the connected component of G[U ext

i \ Xext
i ] containing K,

which are contained in Wi, or to ⊥ if this connected component contains
a vertex of F ext

i ;
– a pair (u, m), where m is equal to the size of the largest component

of G[U ext
i \ Xext

i ] not containing any vertex of F ext
i or Ui, while u

is any vertex of this component; if no such component exists, then
(u, m) = (⊥, ⊥).

Clearly, query findNextPinmay be implemented by outputting the pair (u, m)
stored in the entry T3[r][(∅, ∅, ∅, ∅)], or ⊥ if this pair is equal to (⊥, ⊥).

We now present how to compute entries of table T3 for every node i depending
on the entries of children of i. We consider different cases, depending of the type
of node i. For every case, we consider only signatures (Si, Ui, Xi, Fi) for which
(Si, Ui) is valid, as for the invalid ones we just put value ⊥.

Case 1: Leaf node. If i is a leaf node then T3[i][(∅, ∅, ∅, ∅)] = (∅, ∅, (⊥, ⊥)).
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Case 2: Introduce node. Let i be a node that introduces vertex v, and j be
its only child. Consider some signature φ = (Si, Ui, Xi, Fi) of Bi; we would like
to compute T3[i][φ] = (Ri, (mi

K)K∈Ri
, (ui, mi)). Let φ′ be a natural projection

of φ onto Bj, that is, φ′ = (Si ∩ Bj, Ui ∩ Bj, Xi ∩ Bj, Fi ∩ Bj). Let T3[j][φ′] =
(Rj, (mj

K)K∈Rj
, (uj, mj)); note that this entry we know, but entry T3[i][φ] we would

like to compute. We consider some sub-cases, depending on the alignment of v in
φ.

Case 2.1: v ∈ Ui \ (Xi ∪ Fi). If we introduce a vertex from Ui \ (Xi ∪ Fi),
then the extension of φ is just the extension of φ′ plus vertex v added to U ext

i . If
we consider the equivalence classes of Ri, then these are equivalence classes of Rj

but possibly some of them have been merged because of connections introduced
by vertex v. As Bj separates v from Wj, v could only create connections between
two vertices from Bj ∩ (Uj \ Xj). Hence, we can obtain Ri from Rj by merging all
the equivalence classes of vertices of Uj \ Xj adjacent to v; the corresponding entry
in sequence (mK)K∈Ri

is equal to the sum of entries from the sequence (mj
K)K∈Rj

corresponding to the merged classes. If any of these entries is equal to ⊥, we
put simply ⊥. If v was not adjacent to any vertex of Uj \ Xj, we put v in a new
equivalence class K with mK = 0. Clearly, we can also put (ui, mi) = (uj, mj).

Case 2.2: v ∈ (Ui \ Xi) ∩ Fi. We perform in the same manner as in Case 2.2,
with the exception that the new entry in sequence (mK)K∈Ri

will be always equal
to ⊥, as the corresponding component contains a vertex from F ext

i .
Case 2.3: v ∈ Si ∪ Xi. In this case we can simply put T3[i][φ] = T3[j][φ′] as

the extensions of φ and φ′ are the same with the exception of v being included
into Xext

i and/or into Sext
i , which does not influence information to be stored in

the entry.
Case 2.4: v ∈ Bi \ (Si ∪Ui). In this case we can simply put T3[i][φ] = T3[j][φ′]

as the extensions of φ and φ′ are equal.

Case 3: Forget node. Let i be a node that forgets vertex w, and j be its only
child. Consider some signature φ = (Si, Ui, Xi, Fi) of Bi; we would like to compute

T3[i][φ] = (Ri, (mi
K)K∈Ri

, (ui, mi)).

Let (Sext
i , U ext

i , Xext
i , F ext

i ) be extension of φ. Observe that there is exactly one
signature φ′ = (Sj, Uj, Xj, Fj) of Bj with the same extension as φ, and this
signature is simply φ with w added possibly to Si, Ui, Xi or Fi, depending whether
it belongs to Sext

i , U ext
i , Xext

i , or F ext
i . Coloring φ′ may be defined similarly as in

case of forget node for table C; we just need in addition to include w in Xext
i or

F ext
i if it belongs to X or F , respectively.

Let T3[j][φ] = (Rj, (mj
K)K∈Rj

, (uj, mj)). As the extensions of φ and φ′ are
equal, it follows that we may take Ri equal to Rj with w possibly excluded from
its equivalence class. Similarly, for every equivalence class K ∈ Ri we put mi

K

equal to mj
K′ , where K ′ is the corresponding equivalence class of Rj, except the

class that contained w which should get the previous number incremented by 1,
providing it was not equal to ⊥. We also put (ui, mi) = (uj, mj) except the
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situation, when we forget the last vertex of a component of G[U ext
j \ Xext

j ]: this is
the case when w is in Uj \ Xj and constitutes a singleton equivalence class of Rj.
Let then mj

{w} be the corresponding entry in sequence (mj
K)K∈Rj

. If mj
{w} = ⊥,

we simply put (ui, mi) = (uj, mj). Else, if (uj, mj) = (⊥, ⊥) or mj
{w} > mj, we

put (ui, mi) = (w, mj
{w}), and otherwise we put (ui, mi) = (uj, mj).

Case 4: Join node. Let i be a join node and j1, j2 be its two children. Consider
some signature φ = (Si, Ui, Xi, Fi) of Bi; we would like to compute T3[i][φ] =
(Ri, (mi

K)K∈Ri
, (ui, mi)). Let φ1 = (Si, Ui, Xi, Fi) be a signature of Bj1 and φ2 =

(Si, Ui, Xi, Fi) be a signature of Bj2 . Let T3[j1][φ1] = (Rj1 , (mj1
K)K∈Rj1

, (uj1 , mj1))
and T3[j2][φ2] = (Rj2 , (mj2

K)K∈Rj2
, (uj2 , mj2)). Note that equivalence relations Rj1

and Rj2 are defined on the same set Ui \ Xi. It follows from the definition of T3
that we can put:

• Ri to be the minimum transitive closure of Rj1 ∪ Rj2 ;

• for every equivalence class K of Ri, mi
K equal to the sum of (i) numbers mj1

K1

for K1 ⊆ K, K1 being an equivalence class of Rj1 , and (ii) numbers mj2
K2 for

K2 ⊆ K, K2 being an equivalence class of Rj2 ; if any of these numbers is
equal to ⊥, we put mi

K = ⊥;

• (ui, mi) to be equal to (uj1 , mj1) or (uj2 , mj2), depending whether mj1 or mj2

is larger; if any of these numbers is equal to ⊥, we take the second one, and
if both are equal to ⊥, we put (ui, mi) = (⊥, ⊥).

Similarly as before, for every addition and removal of vertex v to and from S,
to and from X, to and from F , or marking and unmarking v as a pin, we can
update table T3 in O(6t · tO(1) · log n) time by following the path from rv to the root
and recomputing the tables in the traversed nodes. Also, T3 can be initialized in
O(6t · tO(1) · n) time by processing the tree decomposition in a bottom-up manner
and applying the formula for every node. Note that updating/initializing table T3
must be performed after updating/initializing tables P and C.

29.4.4 Query for finding a graph separator
In this section we implement the last query, needed for the linear-time algo-
rithm; the query is significantly more involved than the previous one. The query
specification is as follows:

Output: A list of elements of a 8
9 -balanced separator of G[U ] of size

at most k + 1, or ⊥ if no such exists.
Time: O(ct · kO(1) · log n)

findUSeparator
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Note that Lemma 25.1 guarantees that in fact G[U ] contains a 1
2 -balanced separator

of size at most k + 1. Unfortunately, we are not able to find a separator with
such a good guarantee on the sizes of the sides; the difficulties are explained in
Chapter 25. Instead, we again make use of the precomputed approximate tree
decomposition to find a balanced separator with slightly worse guarantees on the
sizes of the sides.

In the following we will also use the notion of a balanced separation. For a
graph G, we say that a partition (L, X, R) of V (G) is an α -balanced separation
of G, if there is no edge between L and R, and |L|, |R| ≤ α|V (G)|. The order of a
separation is the size of X. Clearly, if (L, X, R) is an α-balanced separation of G,
then X is an α-balanced separator of G. By folklore (see the proof of Lemma 25.2)
we know that every graph of treewidth at most k has a 2

3 -balanced separation of
order at most k + 1.

Express searching for a balanced separator as a maximization problem

Before we start explaining the query implementation, we begin with a few defini-
tions that enable us to express finding a balanced separator as a simple maximiza-
tion problem.
Definition 29.4. Let G be a graph, and TL, TR be disjoint sets of terminals in G.
We say that a partition (L, X, R) of V (G) is a terminal separation of G of order
�, if the following conditions are satisfied:

(i) TL ⊆ L and TR ⊆ R;

(ii) there is no edge between L and R;

(iii) |X| ≤ �.
We moreover say that (L, X, R) is left-pushed (right-pushed) if |L| (|R|) is maximum
among possible terminal separations of order �.
Pushed terminal separations are similar to important separators of Marx [Mar06],
and their number for fixed TL, TR can be exponential in �. Pushed terminal
separations are useful for us because of the following lemma, that enables us to
express finding a small balanced separator as a maximization problem, providing
that some separator of a reasonable size is given.
Lemma 29.5. Let G be a graph of treewidth at most k and let (A1, B, A2) be some
separation of G, such that |A1|, |A2| ≤ 3

4 |V (G)|. Then there exists a partition
(TL, XB, TR) of B and integers k1, k2 with k1 + k2 + |XB| ≤ k + 1, such that if
G1, G2 are G[A1 ∪ (B \ XB)] and G[A2 ∪ (B \ XB)] with terminals TL, TR, then

(i) there exist a terminal separations of G1, G2 of orders k1, k2, respectively;

(ii) for any left-pushed terminal separation (L1, X1, R1) of order k1 in G1 and
any right-pushed separation (L2, X2, R2) of order k2 in G2, the triple (L1 ∪
TL ∪ L2, X1 ∪ XB ∪ X2, R1 ∪ TR ∪ R2) is a terminal separation of G of order
at most k + 1 with |L1 ∪ TL ∪ L2|, |R1 ∪ TR ∪ R2| ≤ 7

8 |V (G)| + |X|+(k+1)
2 .
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Proof. As the treewidth of G is at most k, there is a separation (L, X, R) of G such
that |L|, |R| ≤ 2

3 |V (G)| and |X| ≤ k + 1 by folklore [see the proof of lemma 25.2].
Let us set (TL, XB, TR) = (L ∩ B, X ∩ B, R ∩ B), k1 = |X ∩ A1| and k2 = |X ∩ A2|.
Observe that X ∩ A1 and X ∩ A2 are terminal separations in G1 and G2 of orders
k1 and k2, respectively, hence we are done with (i). We proceed to the proof of
(ii).

Let us consider sets L ∩ A1, L ∩ A2, R ∩ A1 and R ∩ A2. Since (A1, B, A2) and
(L, X, R) are 1

4 - and 1
3 - balanced separations, respectively, we know that:

• |L ∩ A1| + |L ∩ A2| + |B| ≥ 1
3 |V (G)| − (k + 1);

• |R ∩ A1| + |R ∩ A2| + |B| ≥ 1
3 |V (G)| − (k + 1);

• |L ∩ A1| + |R ∩ A1| + (k + 1) ≥ 1
4 |V (G)| − |B|;

• |L ∩ A2| + |R ∩ A2| + (k + 1) ≥ 1
4 |V (G)| − |B|.

We claim that either |L∩A1|, |R∩A2| ≥ 1
8 |V (G)|− |B|+(k+1)

2 , or |L∩A2|, |R∩A1| ≥
1
8 |V (G)| − |B|+(k+1)

2 . Assume first that |L ∩ A1| < 1
8 |V (G)| − |B|+(k+1)

2 . Observe
that then |L ∩ A2| ≥ 1

3 |V (G)| − |B| − (k + 1) − (1
8 |V (G)| − |B|+(k+1)

2 ) ≥ 1
8 |V (G)| −

|B|+(k+1)
2 . Similarly, |R ∩ A1| ≥ 1

4 |V (G)| − |B| − (k + 1) − (1
8 |V (G)| − |B|+(k+1)

2 ) ≥
1
8 |V (G)| − |B|+(k+1)

2 . The case when |R ∩ A2| < 1
8 |V (G)| − |B|+(k+1)

2 is symmetric.
Without loss of generality, by possibly flipping separation (L, X, R), assume that
|L ∩ A1|, |R ∩ A2| ≥ 1

8 |V (G)| − |B|+(k+1)
2 .

Let (L1, X1, R1) be any left-pushed terminal separation of order k1 in G1 and
(L2, X2, R2) be any right-pushed terminal separation of order k2 in G2. By the
definition of being left- and right-pushed, we have that |L1 ∩ A1| ≥ |L ∩ A1| ≥
1
8 |V (G)| − |B|+(k+1)

2 and |R2 ∩ A2| ≥ |R ∩ A2| ≥ 1
8 |V (G)| − |B|+(k+1)

2 . Therefore,
we have that |L1 ∪ TL ∪ L2| ≤ 7

8 |V (G)| + |B|+(k+1)
2 and |L1 ∪ TL ∪ L2| ≤ 7

8 |V (G)| +
|B|+(k+1)

2 .

The idea of the rest of the implementation is as follows. First, given an approximate
tree decomposition of with O(k) in the data structure, in logarithmic time we will
find a bag Bi0 that splits the component U in a balanced way. This bag will be
used as the separator B in the invocation of Lemma 29.5; the right part of the
separation will consist of vertices contained in the subtree below Bi0 , while the
whole rest of the tree will constitute the left part. Lemma 29.5 ensures us that we
may find some balanced separator of U by running two maximization dynamic
programs: one in the subtree below Bi0 to identify a right-pushed separation, and
one on the whole rest of the tree to find a left-pushed separation. As in all the
other queries, we will store tables of these dynamic programs in the data structure,
maintaining them with O(ct log n) update times.

Case of a small U

At the very beginning of the implementation of the query we read |U |, which is
stored in the entry CardU [r][(∅, ∅)]. If it turns out that |U | < 36(k + t+2) = O(k),
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we perform the following explicit construction. We apply a depth-first search
from π to identify the whole U ; note that this search takes O(k2) time, as U
and S are bounded linearly in k. Then we build subgraph G[U ], which again
takes O(k2) time. As this subgraph has O(k) vertices and treewidth at most k,
we may find its 1

2 -balanced separator of order at most k + 1 in ck time using a
brute-force search through all the possible subsets of size at most k + 1. This
separator may be returned as the result of the query. Hence, from now on we
assume that |U | ≥ 36(k + t + 2).

Tracing U

We first aim to identify bag Bi0 in logarithmic time. The following lemma
encapsulates the goal of this subsection. Note that we are not only interested in
the bag itself, but also in the intersection of the bag with of S and U (defined as
the connected component of G \ S containing π). While intersection with S can
be trivially computed given the bag, we will need to trace the intersection with U
inside the computation.

Lemma 29.6. There exists an algorithm that, given access to the data structure,
in O(tO(1) · log n) time finds a node i0 of the tree decomposition such that |U |/4 ≤
|Wi0 ∩ U | ≤ |U |/2 together with two subsets Ui, Si of Bi0 such that U0 = U ∩ Bi0

and S0 = S ∩ Bi0.

Proof. The algorithm keeps track of a node i of the tree decomposition together
with a pair of subsets (Ui, Si) = (Bi ∩ U, Bi ∩ S) being the intersections of the
bag associated to the current node with U and S, respectively. The algorithm
starts with the root node r and two empty subsets, and iteratively traverses
down the tree keeping an invariant that CardU [i][(Ui, Si)] ≥ |U |/2. Whenever
we consider a join node i with two sons j1, j2, we choose to go down to the node
where CardU [it][(Ujt , Ujt)] is larger among t = 1, 2. In this manner, at each step
CardU [i][(Ui, Si)] can be decreased by at most 1 in case of a forget node, or can
be at most halved in case of a join node. As |U | ≥ 36(k + t + 2), it follows that the
first node i0 when the invariant CardU [i][(Ui, Si)] ≥ |U |/2 ceases to hold, satisfies
|U |/4 ≤ CardU [i0][(Ui0 , Si0)] ≤ |U |/2, and therefore can be safely returned by the
algorithm.

It remains to argue how sets (Ui, Si) can be updated at each step of the traverse
down the tree. Updating Si is trivial as we store an explicit table remembering
for each vertex whether it belongs to S. Therefore, now we focus on updating U .

The cases of introduce and join nodes are trivial. If i is an introduce node with
son j, then clearly Uj = Ui ∩ Bj. Similarly, if i is a join node with sons j1, j2, then
Uj1 = Uj2 = Ui. We are left with the forget node.

Let i be a forget node with son j, and let Bj = Bi ∪ {w}. We have that
Uj = Ui ∪ {w} or Uj = Ui, depending whether w ∈ U or not. This information
can be read from the table C[j] as follows:

• if C[j][(Ui ∪ {w}, Sj)] = ⊥, then w /∈ U and Uj = Ui;



29.4. QUERIES 287

• if C[j][(Ui, Sj)] = ⊥, then w ∈ U and Uj = Ui ∪ {w};

• otherwise, both C[j][(Ui, Sj)] and C[j][(Ui ∪ {w}, Sj)] are not equal to ⊥;
this follows from the fact that at least one of them, corresponding to the
correct choice whether w ∈ U or w /∈ U , must be not equal to ⊥. Observe
that in this case w is in a singleton equivalence class of C[j][(Ui ∪ {w}, Sj)],
and the connected component of w in the extension of Ui ∪ {w} cannot
contain the pin π. It follows that w /∈ U and we take Uj = Ui.

Computation at each step of the tree traversal takes O(tO(1)) time. As the tree
has logarithmic depth, the whole algorithm runs in O(tO(1) · log n) time.

Dynamic programming for pushed separators

In this subsection we show how to construct dynamic programming tables for
finding pushed separators. The implementation resembles that of table T2, used
for balanced S-separators.

In table T4 we store entries for every node i of the tree decomposition, for
every signature φ = (Si, Ui) of Bi, and for every 4-tuple ψ = (L, X, R, x), called
again the interface, where

• (L, X, R) is a partition of Ui,

• x is an integer between 0 and k + 1.

Again, the intuition is that the interface encodes the interaction of a potential
solution with the bag. Note that for every bag Bi we store at most 5|Bi| · (k + 2)
entries.

We proceed to the formal definition of what is stored in table T4. Let us fix a
signature φ = (Si, Ui) of Bi, and let (Sext

i , U ext
i ) be its extension. For an interface

ψ = (L, X, R, x), we say that a terminal separation (Lext, Xext, Rext) in G[U ext
i ]

with terminals L, R is an extension consistent with interface ψ = (L, X, R, x) if

• Lext ∩ Bi = L, Xext ∩ Bi = X and Rext ∩ Bi = R;

• |Xext ∩ Wi| = x.

Then entry T4[i][φ][ψ] contains the pair (r, X0) where r is the maximum possible
|Rext ∩ Wi| among extensions consistent with ψ, and X0 is the corresponding set
Xext ∩ Wi for which this maximum was attained, or ⊥ if the signature φ is invalid
or no consistent extension exists.

We now present how to compute entries of table T4 for every node i depending
on the entries of children of i. We consider different cases, depending of the type
of node i. For every case, we consider only signatures that are valid, as for the
invalid ones we just put value ⊥.

Case 1: Leaf node. If i is a leaf node then T4[i][(∅, ∅)][(∅, ∅, ∅, 0)] = (0, ∅), and
all the other entries are assigned ⊥.
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Case 2: Introduce node. Let i be a node that introduces vertex v, and j
be its only child. Consider some signature φ = (Si, Ui) of Bi and an interface
ψ = (L, X, R, x); we would like to compute T4[i][φ][ψ] = (ri, X i

0). Let φ′, ψ′ be
natural intersections of φ, ψ with Bj, respectively, that is, φ′ = (Si ∩ Bj, Ui ∩ Bj)
and ψ′ = (L ∩ Bj, X ∩ Bj, R ∩ Bj, x). Let T4[j][φ′][ψ′] = (rj, Xj

0). We consider
some sub-cases, depending on the alignment of v in φ and ψ. The cases with v
belonging to L and R are symmetric, so we consider only the case for L.

Case 2.1: v ∈ X. Note that every extension consistent with interface ψ is
an extension consistent with ψ′ after trimming to Gj. On the other hand, every
extension consistent with ψ′ can be extended to an extension consistent with ψ
by adding v to the extension of X. Hence, it follows that we can simply take
(ri, X i

0) = (rj, Xj
0).

Case 2.2: v ∈ L. Similarly as in the previous case, every extension consistent
with interface ψ is an extension consistent with ψ′ after trimming to Gj. On the
other hand, if we are given an extension consistent with ψ′, then we can add v
to L and make an extension consistent with ψ if and only if v is not adjacent to
any vertex of R; this follows from the fact that Bj separates v from Wj, so the
only vertices from Rext that v could be possibly adjacent to, lie in Bj. However,
if v is adjacent to a vertex of R, then we can obviously put (ri, X i

0) = ⊥ as there
is no extension consistent with ψ: property that there is no edge between L and R
is broken already in the bag. Otherwise, by the reasoning above we can put
(ri, X i

0) = (rj, Xj
0).

Case 2.3: v ∈ Bi \ Ui. Again, in this case we have one-to-one correspondence
of extensions consistent with ψ and extensions consistent with ψ′, so we may
simply put (ri, X i

0) = (rj, Xj
0).

Case 3: Forget node. Let i be a node that forgets vertex w, and j be its
only child. Consider some signature φ = (Si, Ui) of Bi, and some interface
ψ = (L, X, R, x); we would like to compute T4[i][φ][ψ] = (ri, X i

0). Let φ′ = (Sj, Uj)
be the only the extension of signature φ to Bj that has the same extension as φ;
φ′ can be deduced by looking up which signatures are found valid in table C in
the same manner as in the forget step for computation of table C. We consider
two cases depending on alignment of w in φ′:

Case 3.1: w /∈ Uj. If w is not in Uj, then it follows that we may put
(ri, X i

0) = T4[j][φ′][ψ′]: extensions consistent with ψ correspond one-to-one to
extensions consistent with ψ′.

Case 3.2: w ∈ Uj. Assume that there exists some extension (Lext, Xext, Rext)
consistent with ψ, and assume further that this extension is the one that maximizes
|Rext ∩ Wi|. In this extension, vertex w is either in Lext, Xext, or in Rext. Let us
define the corresponding interfaces:

• ψL = (L ∪ {w}, X, R, x);

• ψX = (L, X ∪ {w}, R, x − 1);

• ψR = (L, X, R ∪ {w}, x).
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If x − 1 turns out to be negative, we do not consider ψX . For t ∈ {L, X, R}, let
(rj, Xj,t

0 ) = T4[j][φ′][ψt]. It follows that for at least one ψ′ ∈ {ψL, ψX , ψR} there
must be an extension consistent with ψ′: it is just the extension (Lext, Xext, Rext).
On the other hand, any extension consistent with any of interfaces ψL, ψX , ψR is
also consistent with ψ. Hence, we may simply put ri = max(rL, rX , rR + 1), and
define X i

0 as the corresponding Xj,t
0 , with possibly w appended if t = X. Of course,

in this maximum we do not consider the interfaces ψt for which T4[j][φ′][ψt] = ⊥,
and if T4[j][φ′][ψt] = ⊥ for all t ∈ {L, X, R}, we put (ri, X i

0) = ⊥.

Case 4: Join node. Let i be a join node and j1, j2 be its two children. Consider
some signature φ = (Si, Ui) of Bi, and an interface ψ = (L, X, R, x); we would
like to compute T4[i][φ][ψ] = (ri, X i

0). Let φ1 = (Si, Ui) be a signature of Bj1

and φ2 = (Si, Ui) be a signature of Bj2 . Assume that there is some extension
(Lext, Xext, Rext) consistent with ψ, and assume further that this extension is the
one that maximizes |Rext ∩ Wi|. Define rp = |Wjp ∩ R| and xp = |Wjp ∩ X|
for p = 1, 2; note that r1 + r2 = ri and x1 + x2 = x. It follows that in Gj1 ,
Gj2 there are some extensions consistent with (L, X, R, x1) and (L, X, R, x2),
respectively—these are simply extension (Lext, Xext, Rext) intersected with Vi, Vj,
respectively. On the other hand, if we have some extensions in Gj1 , Gj2 consistent
with (L, X, R, x1) and (L, X, R, x2) for numbers xp such that x1 +x2 = x, then the
point-wise union of these extensions is an extension consistent with (L, X, R, x).
It follows that in order to compute (ri, X i

0), we need to iterate through choices
of xp such that we have non-⊥ entries in T2[j1][φ1][(L, X, R, x1)] = (rx1

j1 , Xj1,x1

0 )
and T2[j2][φ2][(L, X, R, x2)] = (rx1

j1 , Xj1,x1

0 ), choose x1, x2 for which rx1
j1 + rx2

j2 is
maximum, and define (ri, X i

0) = (rx1
j1 + rx2

j2 , Xj1,x1

0 ∪ Xj2,x2

0 ). Of course, if for no
choice of x1, x2 it is possible, we put (ri, X i

0) = ⊥. Note that computing the union
of the sets X

jp,xp

0 for p = 1, 2 takes O(k) time as their sizes are bounded by k, and
there is O(t) possible choices of xp to check.
Similarly as before, for every addition and removal of vertex v to and from S or
marking and unmarking v as a pin, we can update table T4 in O(5t · kO(1) · log n)
time by following the path from rv to the root and recomputing the tables in the
traversed nodes. Also, T4 can be initialized in O(5t · kO(1) · n) time by processing
the tree decomposition in a bottom-up manner and applying the formula for
every node. Note that updating/initializing table T4 must be performed after
updating/initializing tables P and C.

Implementing the query findUSeparator

We now show how to combine Lemmata 29.5 and 29.6 with the construction of
table T4 to implement the query findUSeparator.

The algorithm performs as follows. First, using Lemma 29.6 we identify a
node i0 of the tree decomposition, together with disjoint subsets (Ui0 , Si0) =
(U ∩ Bi0 , S ∩ Bi0) of Bi0 , such that |U |/4 ≤ |Wi0 ∩ U | ≤ |U |/2. Let A2 = Wi0

and A1 = V (G) \ Vi0 . Consider separation (A1 ∩ U, Bi0 ∩ U, A2 ∩ U) of G[U ] and
apply Lemma 29.5 to it. Let (T 0

L, X0
B, T 0

R) be the partition of Bi0 and k0
1, k0

2 be the
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integers with k0
1 +k0

2 + |X0
B| ≤ k +1, whose existence is guaranteed by Lemma 29.5.

The algorithm now iterates through all possible partitions (TL, XB, TR) of
Bi0 and integers k1, k2 with k1 + k2 + |XB| ≤ k + 1. We can clearly discard the
partitions where there is an edge between TL and TR. For a partition (TL, XB, TR),
let G1, G2 be defined as in Lemma 29.5 for the graph G[U ]. For a considered tuple
(TL, XB, TR, k1, k2), we try to find:

(i) a separator of a right-pushed separation of order k2 in G2, and the corre-
sponding cardinality of the right side;

(ii) a separator of a left-pushed separation of order k1 in G1, and the correspond-
ing cardinality of the left side.

Goal (i) can be achieved simply by reading entries T4[i0][(Ui0 , Si0)][(TL, XB, TR, k′)]
for k′ ≤ k2, and taking the right-pushed separation with the largest right side. We
are going to present how goal (ii) is achieved in the following paragraphs, but
firstly let us show that achieving both of the goals is sufficient to answer the query.

Observe that if for some (TL, XB, TR) and (k1, k2) we obtained both of the
separators, denote them X1, X2, together with cardinalities of the corresponding
sides, then using these cardinalities and precomputed |U | we may check whether
X1 ∪ X2 ∪ XB gives us a 8

9 -separation of G[U ]. On the other hand, Lemma 29.5
asserts that when (T 0

L, X0
B, T 0

R) and (k0
1, k0

2) are considered, we will find some pushed
separations, and moreover any such two separations will yield a 8

9 -separation of
G[U ]. Note that this is indeed the case as the sides of the obtained separation
have cardinalities at most

7
8 |U | + (k + 1) + (t + 1)

2 = 8
9 |U | + k + t + 2

2 − |U |
72 ≤ 8

9 |U |,

since |U | ≥ 36(k + t + 2).
We are left with implementing goal (ii). Let G′

1 be G1 with terminal sets
swapped; clearly, left-pushed separations in G1 correspond to right-pushed separa-
tions in G′

1. We implement finding a right-pushed separations in G′
1 as follows.

Let P = (i0, i1, . . . , ih = r) be the path from i0 to the root r of the tree
decomposition. The algorithm traverses the path P , computing tables D[it] for
consecutive indexes t = 1, 2, . . . , t. The table D[it] is indexed by signatures φ and
interfaces ψ in the same manner as T4. Formally, for a fixed signature φ = (Sit , Uit)
of Bit with extension (Sext

it
, U ext

it
), we say that this signature is valid with respect

to (Si0 , Ui0) if it is valid and moreover (Si0 , Ui0) = (Sext
it

∩ Bi0 , U ext
it

∩ Bi0). For an
interface ψ we say that separation (Lext, Xext, Rext) in G[U ext

i \Wi0 ] with terminals
L, R is consistent with ψ with respect to (TL, XB, TR), if it is consistent in the same
sense as in table T4, and moreover (TL, XB, TR) = (Lext ∩Bi0 , Xext ∩Bi0 , Rext ∩Bi0).
Then entry T [it][φ][ψ] contains the pair (r, X0) where r is the maximum possible
|Rext ∩ Wi| among extensions consistent with ψ with respect to (TL, XB, TR), and
X0 is the corresponding set Xext ∩ Wi for which this maximum was attained, or
⊥ if the signature φ is invalid with respect to (Si0 , Ui0) or no such consistent
extension exists.
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The tables D[it] can be computed by traversing the path P using the same
recurrential formulas as for table T4. When computing the next D[it], we use
table D[it−1] computed in the previous step and possible table T4 from the second
child of it. Moreover, as D[i0] we insert the dummy table Dummy[φ][ψ] defined
as follows:

• Dummy[(Ui0 , Si0)][(TR, XB, TL, 0)] = 0;

• all the other entries are evaluated to ⊥.

It is easy to observe that table Dummy exactly satisfies the definition of D[i0]. It
is also straightforward to check that the recurrential formulas used for computing
T4 can be used in the same manner to compute tables D[it] for t = 1, 2, . . . , h.
The definition of D and the method of constructing it show, that the values
D[r][(∅, ∅)][(∅, ∅, ∅, x)] for x = 0, 1, . . . , k, correspond to exactly right-pushed
separations with separators of size exactly x in the graph G′

1: insertion of the
dummy table removes A2 from the graph and forces the separation to respect the
terminals in Bi0 .

Let us conclude with a summary of the running time of the query. Algorithm of
Lemma 29.6 uses O(tO(1) · log n) time. Then we iterate through at most O(3t · k2)
tuples (TL, XB, TR) and (k1, k2), and for each of them we spend O(k) time on
achieving goal (i) and O(5t · kO(1) · log n) time on achieving goal (ii). Hence, in
total the running time is O(15t · kO(1) · log n).
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Chapter 30

Concluding remarks

In this part we have presented an algorithm that gives a constant factor approxima-
tion (with a factor 5) of the treewidth of a graph, which runs in single exponential
time in the treewidth and linear in the number of vertices of the input graph.

Consequences

A large number of computational results use the following overall scheme: first find
a tree decomposition of bounded width, and then run a dynamic programming
algorithm on it. Many of these results use the linear-time exact algorithm of
Bodlaender [Bod96] for the first step. If we aim for algorithms whose running
time dependency on treewidth is single exponential, however, then our algorithm
is preferable over the exact algorithm of Bodlaender [Bod96]. Indeed, many classi-
cal problems like Dominating Set and Independent Set are easily solvable
in time O(ck · n) when a tree decomposition of width k is provided, see Telle
and Proskurowski [TP97]. Furthermore, there have been developed algorithms
for problems seemingly not admitting so robust solutions; the fundamental ex-
amples are Steiner Tree, Traveling Salesman and Feedback Vertex

Set [BCKN13]. With the given approximation algorithm at hand we can prove
that all these problems also claim O(ck · n) running time even if the decomposition
is not given to us explicitly, as we may find its constant factor approximation
within the same complexity bound.

Improvements and open problems

The presented results are mainly of theoretical importance due to the large
constant c at the base of the exponent. One immediate open problem is to obtain a
constant factor approximation algorithm for treewidth with running time O(ckn),
where c is a small constant.

Another open problem is to find more efficient exact fixed-parameter tractable
algorithms for treewidth. Bodlaender’s algorithm [Bod96] and the version of Reed
and Perković both use kO(k3) · n time; the dominant term being a call to the
dynamic programming algorithm of Bodlaender and Kloks [BK96]. In fact, no
exact fixed-parameter tractable algorithm for treewidth is known whose running
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time as a function of the parameter k is asymptotically smaller than this; testing
the treewidth by verifying the forbidden minors can be expected to be significantly
slower. Thus, it would be very interesting to have an exact algorithm for testing if
the treewidth of a given graph is at most k in 2o(k3) · nO(1) time.

Currently, the best approximation ratio for treewidth for algorithms whose
running time is polynomial in n and single exponential in the treewidth is the
3-approximation algorithm from Chapter 26. What is the best approximation
ratio for treewidth that can be obtained in this running time? Is it possible to
give lower bounds?

It seems that the idea of treating the tree decomposition as a data structure
on which logarithmic-time queries can be implemented, can be similarly applied
to all the problems expressible in MSOL. Extending the results in this direction
seems like a thrilling perspective for future work.
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Concluding remarks
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30.1 Future work
In this thesis we have studied 5 different problems, or classes of problems, and
their behaviour from a parameterized perspective. We have seen that problems
interact with the parameterized complexity landscape in numerous ways, sometimes
yielding surprising results. To demonstrate this, we have given original results
within most of the research directions highlighted in Part I. We end with a selected
set of open problems.

Faster algorithms

In Part II we presented a 2O(k log �)nO(1) algorithm for Component Order Con-

nectivity and a tight lower bound stating that no 2o(k log �)nO(1) algorithm exists,
assuming ETH.

Open problem 1. Can Component Order Connectivity be solved in time
f(�)2O(k)nO(1)?

Open problem 2. Can we prove that there is no algorithm solving Component

Order Connectivity in time 2O(k+�)nO(1), under ETH?

In Part III we presented an algorithm for Threshold Editing with running
time 2O(

√
k log k) + nO(1) and a lower bound under ETH stating that there is no

2o(
√

k)nO(1) time algorithm for this problem. The gap between the two yields an
interesting question of where the true complexity of the problem lies.

Open problem 3. Can Threshold Editing be solved in 2O(
√

k)nO(1) time?

Polynomial kernels

Another result presented in Part III is a O(k2) vertex kernel. There might very
well be unexplored structure to exploit for this problem.

Open problem 4. Does Threshold Editing admit an O(k2−ε) vertex kernel
for some ε > 0?

In Part IV we obtained polynomial kernels for both H-Free Edge Deletion

and H-Free Edge Editing on graphs of bounded maximum degree. We also
sketch how one can prove that neither of the problems admit polynomial kernels on
graphs of bounded degeneracy. This makes it natural to ask about the kernelization
complexity of graph classes in between the two.

Open problem 5. Does H-Free Edge Deletion or H-Free Edge Editing

admit a polynomial kernel on planar graphs?
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Bandwidth

In Part V we gave polynomial time approximation algorithms for Bandwidth

on caterpillars, trees and graphs of bounded treelength, where the approximation
factors depends solely on b. For trees and graphs of bounded treelength this
dependency on b is exponential. However, the exponential approximation factor
for graphs of bounded treelength stems purely from the exponential approximation
factor of the algorithm for trees. Hence, when improving the approximation factors
it is natural to focus our attention towards trees.

Open problem 6. Can we prove that Bandwidth does not admit a constant
factor approximation in f(b)nO(1) time on trees?

Open problem 7. Does Bandwidth admit a bO(1)-approximation in polynomial
time on trees? What if one allows f(b)nO(1) time?

Furthermore, it would be very interesting to see if the approximation results
mentioned above can be generalized to general graphs.

Open problem 8. Does Bandwidth admit a fixed-parameter tractable approx-
imation algorithm on general graphs?

In addition to the approximation algorithms, we provided a characterization for
having low bandwidth for trees, as well as graphs of bounded treelength, via
obstructions. Are these obstructions a characterization for general graphs?

Open problem 9. Does there exist a function f such that any graph with
pathwidth at most c1, local density at most c2, and containing no Sc3 as a
subgraph has bandwidth at most f(c1, c2, c3)?

Treewidth

In Part VI we presented a 5-approximation algorithm for treewidth running in
time O(ckn) time for some constant c. It is thus natural to ask if one can improve
upon this. And for practical purposes, it is necessary to improve significantly.

Open problem 10. Can treewidth be constant factor approximated in O(ckn)
time, where c is a small constant?

Both of the fastest known exact algorithms for treewidth [Bod96, PR00] runs in
kO(k3)n time. And there is no algorithm known with a better dependency on k.

Open problem 11. Is there an exact algorithm for testing if the treewidth of a
given graph is at most k in 2o(k3)nO(1) time?
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Shallow decompositions
When trying to transfer techniques from computing tree decompositions to decom-
positions that are more shallow, or thinner, we encounter difficulties. In particular,
inserting a separator as part of the decomposition have much stronger implications
further into the computations. Because of this, it would be very interesting so see
if similar results could be obtained for such decompositions.

Open problem 12. Is there a constant factor approximation algorithm for
pathwidth with running time O(ckn), for some constant c?

Definition 30.1 (Treedepth). For a connected graph G we say that a rooted
tree (T, r) is a treedepth decomposition of G if V (T ) = V (G) and for every edge
uv ∈ E(G) it holds that u and v have an ancestor-descendant relationship in T ,
i.e. u lies on the path from v to r or vice versa. The depth of the decomposition is
the maximum depth of all leaves in T . The treedepth of a connected graph G is
the minimum depth over all treedepth decompositions of G. For a disconnected
graph we define the treedepth to be the maximum treedepth over all its connected
components.

Open problem 13. Is there a constant factor approximation algorithm for
treedepth with running time O(ckn), for some constant c?
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