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Recurrent hormone-binding 
domain truncated ESR1 
amplifications in primary 
endometrial cancers suggest 
their implication in hormone 
independent growth
Frederik Holst1,2,3,4, Erling A. Hoivik1,2, William J. Gibson3,4,5,6, Amaro Taylor-Weiner3,4,5,6, 
Steven E. Schumacher3,4, Yan W. Asmann8, Patrick Grossmann9,10, Jone Trovik1,2, 
Brian M. Necela11, E. Aubrey Thompson9, Matthew Meyerson4,5,7, Rameen Beroukhim3,4,5,6, 
Helga B. Salvesen1,2,† & Andrew D. Cherniack4,5

The estrogen receptor alpha (ERα) is highly expressed in both endometrial and breast cancers, and 
represents the most prevalent therapeutic target in breast cancer. However, anti-estrogen therapy has 
not been shown to be effective in endometrial cancer. Recently it has been shown that hormone-binding 
domain alterations of ERα in breast cancer contribute to acquired resistance to anti-estrogen therapy. 
In analyses of genomic data from The Cancer Genome Atlas (TCGA), we observe that endometrial 
carcinomas manifest recurrent ESR1 gene amplifications that truncate the hormone-binding domain 
encoding region of ESR1 and are associated with reduced mRNA expression of exons encoding the 
hormone-binding domain. These findings support a role for hormone-binding alterations of ERα in 
primary endometrial cancer, with potentially important therapeutic implications.

Endometrial cancer (EC) is the fourth most common malignancy of women and the most common pelvic gyne-
cological malignancy in countries with advanced industrialization1,2. But approved targeted therapies are still not 
in use today3,4. ERα , encoded by the gene ESR1, is known to be an important driver of cell proliferation5 and has 
been identified as a risk locus in breast cancer6,7. Both breast as well as endometrial cancer are estrogen dependent 
and express the estrogen receptor alpha (ERα ) to a similar extent8–11.

While ERα  constitutes the most frequently inhibited therapeutic target in breast cancer9, anti-estrogen ther-
apy has shown inconsistent results and mostly a very limited effect in endometrial cancers12–18. The estrogen 
antagonist Tamoxifen can even increase the risk of carcinogenesis19–21. Consequently anti-estrogen therapy 
does not constitute a component of standard therapy of EC3,4. Since mutations and alternative splicing of ESR1 
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that alter the hormone-binding domain have been shown to generate hormone independence or resistance to 
anti-estrogen therapy in breast and endometrial cancers22–31, related genetic alterations could play a role for ther-
apy outcome in primary endometrial carcinoma.

Recent studies identified mutations of ESR1 in breast cancer that alter their hormone binding domain coding 
sequence, to be linked to endocrine therapy resistance in a metastatic setting26–28. One study by Li et al. even 
demonstrates an ESR1 fusion in endocrine treatment resistant breast cancer, truncating the hormone-binding 
domain coding exons28, while a later study by Veeraraghavan et al. identified evidence for another type of recur-
rent ERα -altering gene fusions in this tumor type32. However, structural genetic alterations of ESR1 have not been 
suggested to play a role in endometrial cancer carcinogenesis. Due to the potential importance of such ESR1 alter-
ations in endometrial cancer, we analyzed an tumor test subset of 29 primary endometrial cancers for somatic 
gene copy-number alterations (SCNA) and explored The Cancer Genome Atlas (TCGA)33 for concerning SCNA 
and mRNA expression data of endometrial carcinoma.

Results
Across a cancer study subset of 29 primary endometrial carcinomas that had gone on to metastasize, we char-
acterized the copy-number changes by GeneChips and validated amplifications of ESR1 in these cancers by flu-
orescence in-situ hybridization (FISH). The Pearson correlation of ESR1 GeneChip copy numbers with FISH 
determined absolute average ESR1 copy numbers per nucleus and average ESR1 to centromere 6 (CEN6) ratios 
were r =  0.743 (p <  0.001) and r =  0.774 (p <  0.001) respectively (Appendix A, Fig. 1, Supplementary Figures S1 
and S2, Supplementary Optical Dataset S1).

Four of these tumors exhibited focal ESR1 amplification determined by GeneChips, of which two amplifi-
cations showed 3′  truncations of ESR1 (Δ  exon 6–8 or 7–8) that would remove the hormone-binding domain 

Figure 1.  Truncated ESR1 amplifications in two metastatic endometrial carcinomas. Dot plots of ESR1  
copy-numbers (y-axis) determined by GeneChip measurements (grey dots) of two metastatic endometrial 
carcinomas (above: #4, below #2) are shown on the left. Horizontal red lines indicate the segmented copy-
number level of chromosomal positions (mega base pairs) on chromosome 6 (x-axis). Position of full length 
ESR1 (vertical green lines) as well as ESR1 exons 1-4 and 5-8 are indicated as green rectangles (see also Figure 
2). Regarding FISH signals of ESR1 (green) and centromere 6 (orange) within a tumor nucleus (blue) are shown 
on the right. FISH and regarding GeneChip copy-number data of 28 metastatic endometrial carcinoma are 
summarized in Appendix A. FISH analyses of these tumors are documented in Supplementary Optical Dataset S1.
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(Appendix A, Fig. 1). We therefore explored the prevalence of ESR1-truncating amplifications across uterine 
corpus endometrial carcinoma within The Cancer Genome Atlas (TCGA)33.

Hormone-binding domain truncated ESR1 amplifications in primary endometrial cancers.  In 
the TCGA data subset of 539 endometrial carcinomas analyzed, we identified 88 (16.3%) cases with amplifica-
tions encompassing or overlapping ESR1. 46.6% of these were histologically defined serous and 75.0% of the tum-
ors with ESR1 amplification were clustered within the serous like copy-number high molecular subtype according 
to TCGA34. The ESR1 amplifications were focal (less than half a chromosome arm in length) in 36 cases (6.7%) 
of tumors, and had a significantly higher rate of amplification than the genome-wide average (q =  5.75 ×  10−4). 
Mapping of the overlap between amplifications across tumors identified ESR1 only as the most likely gene target 
(see methods).

These amplifications appeared to truncate the hormone-binding domain encoding region in seven cases 
(1.3% of the entire dataset; and 19.4% of cases with focal ESR1 amplification) and to retain exons 1–4 or 1–3, 
encoding the n-terminal ESR1 transactivation domain (AF1) and DNA-binding domains. Another case without 
ESR1 amplification exhibited a heterozygous deletion of exons encoding the hormone-binding domain (Fig. 2), 
for a total apparent ESR1 truncation rate of 1.5% over all tumors. In one additional TCGA case, we detected 
a hormone-binding domain (exons 4–8) truncating ESR1-SYNE1 mRNA fusion (Appendix B). Eight of these 

Figure 2.  Truncated ESR1 amplifications in TCGA endometrial carcinomas. Log2 ESR1 copy number  
ratios of eight uterine corpus endometrial carcinomas with ESR1 full-length amplification and eight carcinomas 
with ESR1 truncating copy-number alterations are shown in horizontal bars (increased: red, normal/neutral: 
white, decreased: blue) (A). The corresponding heatmap of exon expression is estimated from RNA-Seq data 
(normalized relative higher: red, neutral: white, lower: blue) (B). Corresponding ER protein domains according 
to PROSITE (PS) and Pfam (PF) databases (http://www.ebi.ac.uk/interpro/) are shown in panel C (see  
http://www.ensembl.orgfor ESR1 transcript variants). 

http://www.ebi.ac.uk/interpro/
http://www.ensembl.org
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nine tumors were molecularly classified as being in the serous like copy-number high subgroup (4.3% of this 
subgroup)35.

Association of ESR1 exon copy numbers with mRNA expression.  The ESR1 truncation events are 
associated with decreased mRNA expression of the truncated exons encoding the hormone-binding domain 
(exons 5–8) compared to the transactivation and DNA-binding domains (exons 1–4) (p <  0.001) (Fig. 2 and 
Appendix C). We compared the normalized ESR1 expression values estimated from RNA-Seq data for the eight 
tumors exhibiting amplified, truncated ESR1 to those from eight tumors selected on the basis of exhibiting sim-
ilarly focal ESR1 amplifications that lack intragenic breakpoints. The average ratio between expression levels 
of exons 1–4 and 5–8 is 2.1-fold higher among truncated tumors relative to these controls (p =  0.003). We also 
confirmed this relation after replacing the eight ESR1-amplified controls with all 545 tumors profiled by TCGA. 
In this comparison, the ratio of expression levels between exons 1–4 and 5–8 is 2.2-fold higher in ESR1-truncated 
tumors (p <  0.001).

In contrast, TCGA breast cancers exhibit ESR1 truncations on DNA-level less than half as often (7 of 
1080; 0.65%) as observed in endometrial cancer and had increased expression of exons 1–2, but not of the full 
DNA-binding domain (Appendix D). These data suggest that the amplified truncations and associated mRNA 
profiles we describe in endometrial cancer are not frequent in breast cancer.

Discussion
The gene truncations we report in endometrial carcinoma disrupt the hormone-binding domain encod-
ing sequence of ESR1. Similarly, mRNA splice variants lacking one or more of exons 5–8, encoding the 
hormone-binding domain, have been described in normal35–38 and malignant22,23,35–37,39 breast as well as in 
normal22,40–45 and malignant42–46 endometrial tissue. Point mutations of the ligand binding domain encoding 
sequence of ESR1 have also been described to occur in both breast and endometrial cancers25–27,30,47,48.

Both splice variants and point mutations involving the ESR1 hormone-binding domain have been associated 
with hormone-independent ERα  activity. The point mutations found in both breast and endometrial cancers 
have been shown to enable ligand-binding independent transcriptional activity26,30,48–50 and have been related to 
acquired resistance to anti-estrogen therapy in breast cancer26–28. Excisions of exons 5 and 7 by alternative splicing 
have also been shown to constitutively activate ERα 22,23,30 and have been associated with hormone independent 
growth in both breast and endometrial cancer22–24,31. These findings raise the hypothesis that the ESR1 trunca-
tions we report may also generate hormone-independent ERα  activity.

In breast cancer, point mutations in the ligand-binding domain occur in 20–50% of tumors that have acquired 
resistance to anti-estrogen therapy26,27 but only in 0.2% of primary cancers51. In endometrial cancer, however, 
point mutations and in-frame deletions altering the ligand binding domain occur in 2.8% of primary endometrial 
cancers26,51. Similarly the recurrent ESR1 truncations we report appear to be much more frequent in primary 
endometrial carcinoma than in primary breast cancers.

Anti-estrogen therapy with estrogen antagonists or aromatase inhibitors is standard first-line treatment for 
ERα-positive breast cancers, but has been associated with only a low rate (~10%) of overall response among endo-
metrial cancers13,16–18 and is not a standard treatment for endometrial cancer3,4. In some cases, anti-estrogens such 
as Tamoxifen can even induce proliferation effect on endometrial cancer cells52,53 and normal endometrial tissue54 
and increase the risk of endometrial carcinogenesis19–21. Splice variants of ESR1 that alter the hormone-binding 
domain have been associated with ERα  activation by Tamoxifen in endometrial cancer cells24. The effect of estro-
gen antagonists on ERα  encoded by the truncated forms of ESR1 that we have detected should also be tested, and 
all alterations of the ESR1 ligand-binding domain should be evaluated as potential biomarkers of anti-estrogen 
therapy resistance. Conversely, the absence of such alterations should be evaluated as a biomarker of anti-estrogen 
sensitivity, potentially opening up a new therapeutic option for a subset of patients with endometrial cancer.

Methods
GeneChip analysis.  For our study subset of 29 primary endometrial tumors, gene copy-number data were 
determined by Affymetrix SNP 6.0 microarray analysis as described earlier55. GeneChip probe intensities are 
normalized across samples and circular binary segmentation is performed. Areas harboring germline CNVs 
are removed from the final segmented copy-number output. The range of birdseed call rates in this cohort was 
92.6–99.3% with an average call rate of 97.1%. For TCGA copy-number data, level 3 segmented log2 copy-num-
ber data were used in analysis. For both datasets, log2 copy-number values are calculated as ratios relative to the 
genome wide average according to standard procedures56–59. These gene copy-number data were visualized using 
the IGV viewer software60. Linear gene level copy-number data were derived by GISTIC55,59. All TCGA DNA 
copy-number data (2015-06-01 stddata 2015-04-02 regular peel-off) can be accessed through the TCGA Copy 
Number Portal57.

RNA-Seq analysis.  Reads per kilobase per million (RPKM)61 RNA exon expression quantification values 
were normalized and RPKM 0 was assigned 0.1 (Appendices C+D). Exons were compared using inverted log2 
of normalized values. A two tailed Mann-Whitney-U-Test was applied to test for statistical significance of differ-
ences. P-values <  0.05 were considered statistically significant. Paired-end RNA-seq fusion transcript analysis of 
TCGA RNA-sequencing data from 295 tumors to detect mRNA fusions was performed using SnowShoes-FTD 
as described earlier62–64. Parameters used to define a fusion transcript of high confidence were at least two unique 
fusion junction spanning split reads within the dataset and at least five encompassing reads65. RNA-Seq data were 
taken from the TCGA database http://cancergenome.nih.gov

http://cancergenome.nih.gov
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FISH analysis.  FISH was performed without RNase treatment as described earlier66. Pearson correlation 
coefficients and regarding p-values (two sided t-test) were generated using SPSS (Statistical Package of Social 
Science) version 20.0.0 applying standard bootstrapping. P-values <  0.05 were considered statistically significant.

Tumor samples and DNA extraction.  This study has been approved by the Norwegian Data Inspectorate 
(961478-2), the Norwegian Social Science Data Services (15501) and the local Institutional Review Board (REKIII 
nr. 052.01) and the BROAD institute, MA, USA and methods were carried out in accordance with these approved 
guidelines. The 29 metastatic high grade primary tumor samples were obtained with documented informed 
consent in a patient based setting (Sept 2002-Sept 2012) from the Department of Obstetrics and Gynaecology, 
Section of Gynaecological Cancer, Haukeland University Hospital, Bergen, Norway. Biopsies were snap frozen in 
nitrogen and stored at minus 80 °C until DNA extraction. Tumor purity was assessed based on histology sections 
obtained by microtome prior to DNA extraction. DNA extraction was performed using samples with estimated 
tumor purity ≥ 50% as previously described7.
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Corrigendum: Recurrent hormone-
binding domain truncated ESR1  
amplifications in primary 
endometrial cancers suggest 
their implication in hormone 
independent growth
Frederik Holst, Erling A. Hoivik, William J. Gibson, Amaro Taylor-Weiner, 
Steven E. Schumacher, Yan W. Asmann, Patrick Grossmann, Jone Trovik, Brian M. Necela, 
E. Aubrey Thompson, Matthew Meyerson, Rameen Beroukhim, Helga B. Salvesen & 
Andrew D. Cherniack

Scientific Reports 6:25521; doi: 10.1038/srep25521; published online 10 May 2016; updated on 24 June 2016

In the original version of this Article, there were errors in Affiliation 2 which was incorrectly given as ‘KG Jebsen 
Center for Precision Medicine in Gynecologic Cancer, Department of Gynecology and Obstetrics, Haukeland 
University Hospital Bergen, Norway’. The correct affiliation is listed below:

‘Department of Gynecology and Obstetrics, Haukeland University Hospital Bergen, Norway’.

This error has now been corrected in the PDF and HTML versions of the Article.
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