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Abstract

Various studies have utilized different artificial neural networks (ANN) for weather forecasting.

This thesis examines how well the official implementation of a novel online ANN called the

Hierarchical Temporal Memory (HTM) can forecast the weather and detect anomalies in the

weather data. Created by Numenta1, the HTM emulates the brain’s neocortical structures and

processes to mimic its capabilities of memory retention. By using sparse distributed representa-

tions instead of binary representations as its foundation for information storage and representa-

tion, it is able to learn complex patterns in noisy data sets that can be used to make predictions

and detect anomalies in streamed data. Numenta has officially implemented the theory of HTM

in an open-source Python platform called NuPIC. Although there are slight differences be-

tween the theory of HTM and its implementation, the most important factor about NuPIC is

the addition of several purely engineered algorithms. Two of the most notable additions, are an

algorithm that enables NuPIC to make the final decisions in cases when more than one possible

prediction is possible, and an algorithm that makes it possible to simultaneously input multiple

metrics to NuPIC.

The weather data that was to be predicted consisted of several weather factors, wind direc-

tion, wind speed, atmospheric pressure, precipitation, temperature, and relative humidity mea-

surements spanning over a period of 12 years. Originally, the goal was to input the data sets

simultaneously. However, because the functionality responsible for enabling this feature was

malfunctioning at the time of the thesis work, every weather data set had to be input separately.

The results showed that NuPIC was able to make decent forecasts, but was for the most part

outperformed by a simple technique that made predictions by calculating the average of the last

few days. The main reasons for this was due to the weather’s lack of similarity between past and

current conditions, and NuPIC’s inability to generalize its knowledge in order to factor weather

trends in its predictions. Although there is also a minor issue with the current engineered pre-

diction algorithm, the results indicate that prediction is not NuPIC’s strongest suit. NuPIC was

completely unable to detect any noteworthy anomalies in the weather data, which again is most

likely due to the weather data’s chaotic nature.

1www.numenta.com
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Despite the negative results, there were also some positive ones. An unrelated experiment that

detected anomalies in the oil price, revealed that NuPIC was able to detect anomalies that were

linked to major real world economic and/or geopolitical events. This indicates that the quality of

NuPIC’s results are highly dependant on the properties of the data set that it is given. Data sets

that conform to NuPIC’s strengths can lead to both decent predictions and anomaly detections,

while those that do not produce poor results.
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Chapter 1

Introduction

1.1 Motivation
The field of machine learning is experiencing a steady rise in popularity amongst students [1]

wishing to learn about the subject and amongst investors [2] and IT companies wanting to reap

the benefits of the technology’s potential. In truth, this should come as no surprise since we wish

to achieve increasingly more complex tasks with more collected data than we know what to do

with. Most people associate machine learning with artificial neural networks, in particular feed-

forward neural networks (FNNs) with backpropagation as the best known training algorithm.

Although FNNs were originally based on our understanding of neurology as being an electrical

network of neurons, most modern-day FNNs such as convolutional neural networks are only

inspired by biological processes and are first and foremost based on mathematical and statisti-

cal models. Hierarchical Temporal Memory (HTM) is a relatively new online machine learning

model that was developed by Jeff Hawkins [3]. Hawkins’ long-term goal is to emulate the struc-

tural and algorithmic properties of the neocortex as understood by modern neuroscience. This

implies that HTM is an artificial neural network with a much more solid biological foundation

than most others. The model is still in development with many challenges still remaining to be

solved before it can emulate the neocortex.

As it stands today, HTM can accomplish impressive tasks such as learn complex temporal

patterns in streamed data, use those learned patterns to predict future patterns, and carry out

anomaly detection on the data, all in real time. For some applications, the ability to predict

values based on previously learned patterns in noisy data environments is invaluable. Of equal

importance, is the ability to raise ‘red flags’ when something anomalous or abnormal is hap-

pening in that noisy data. After a lot of contemplation and much dismay over the weather here

in Bergen, I decided to examine how well HTM could forecast the weather, when put to the

task.
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Chapter 1. Introduction

1.2 Objectives
The main objective of this master’s thesis is to examine how accurately the weather can be

forecast using the the official implementation of HTM, called the Cortical Learning Algorithm

(CLA) located in the software package NuPIC which was developed by Numenta. The second

main objective is to examine how well NuPIC can detect anomalies in the weather data. The

CLA in NuPIC is quite a large and complex program, which requires some expertise both

in the theoretical understanding of HTM and the practical understanding of NuPIC with all

its capabilities and quirks. Finally, thorough testing and reviewing will be needed to achieve

satisfiable and trustworthy results, no matter whether they are positive, negative, or somewhere

in between.

1.3 Thesis overview
This thesis is structured the classical way most dissertations follow. It starts with a thorough

literature review of all the relevant background subjects such as the theory behind HTM and its

core algorithms in Chapter 2. In Chapter 3, a code overview of NuPIC provides insight into the

technology and features that have been implemented to extend the HTM’s capabilities. Once

the basis of this thesis is established, Chapter 4 discusses the methodologies that were used to

accomplish the thesis project. The actual research is conducted in Chapter 5, where NuPIC is

run on a multitude of data sets for various experiments with the results displayed. Chapter 6

analyses the results and Chapter 7 provides the final conclusions about HTM and NuPIC.

2



Chapter 2

Literature review

2.1 Classic artificial neural networks
In the field of machine learning, the term ‘classic’ artificial neural networks (ANNs) is some-

times used to refer to ANNs which are based on the principles of feedforward neural networks

(FNNs) with some form of backpropagation training. ANNs were inspired [4] by our historical

understanding of the communication processes between biological neurons. Neurons in FNNs

[4] are simplistic entities which are interconnected in a structurally uniform network of neuron

layers with weights on the edges between neurons. Input values were propagated forward by

taking the input on each incoming branch to a neuron and multiply it with the branch weight

and then sum all values. The sum was then processed through a threshold function that gen-

erated an output value. The output was used as input to the next neurons and so on until the

final layer of neurons generate their output, which needs to be appropriately interpreted and

evaluated for correctness. Depending on the degree of correctness, the edge weights between

all neurons were adjusted by performing backpropagation training which is a rather tedious

task. The long training time is a particular concern for large networks consisting of multiple

layers and many thousands of edge weights. Training networks is exacerbated furthermore by

the fact that the process of forward and backpropagation needs to be performed many thou-

sands of times, which makes for a time consuming and computationally taxing task. Despite

these disadvantages, great progress is being made in the field of machine learning with these

techniques.

One thing to note however is that there are undeniable differences between the network struc-

tures and processes of classic ANNs, and our biological neurons and neurological processes.

This is in no way a bad thing, but it does mean that classic artificial neural networks are much

more artificial networks than neural networks. The theory of HTM is much more strongly

founded on modern principles of neural biology, which we will soon look at.

3



Chapter 2. Literature review

2.2 Modern science on the mammalian brain
The mammalian brain can be roughly divided into three [5] main parts: the largest part is called

the cerebrum, the smaller back part is called the cerebellum and the small undermost part is

called the brainstem. The cerebrum itself consists of a right and left cerebral hemisphere, each

of which can be divided into the top outermost part called the neocortex and the rest called the

allocortex.

The neocortex is involved in higher cognitive functions [6] such as reasoning, conscious thoughts,

language and motor commands. All these functions mean that it has highly desirable capabil-

ities worth exploring. The neocortex consists of a wide variety [7] of different neurons that

fulfill different tasks. Although the neurons in our brains are highly interconnected with each

other, a very small percentage (≈1%) of neurons are firing at any given moment in time [8].

This property is due to inhibitory neurons, which as their name suggests, inhibit neighboring

neurons from firing at the same time as they do. Of particular interest are pyramidal neurons

which slightly resemble pyramids and can be found in layered structures dubbed cortical layers

or cellular layers. All mammals have six such layers [6] in their neocortex, named with roman

numerals from I to VI, with the layers II and III often combined together and referred as layer

II/III or layer 2/3 as shown in Figure 2.2. Pyramidal neurons are the main cells found in layer III

and V and play a central role in the theory of HTM. If one were to zoom in on a layer, a pattern

would emerge as neurons appear to be arranged in cortical columns spanning the entire layer

[9]. Because of a class of inhibitory cells, all the cells within a column are forced to receive

the same information and thus represent the same value, but in different contexts. It should be

noted that the theory of HTM largely ignores layer I, focusing mostly on layer II/III and often

only references the last three layers.

4



2.2. Modern science on the mammalian brain

Figure 2.1: A figure of a pyramidal neuron with the names of the various parts. The gray circle encom-

passes the cell’s soma and proximal dendrites, while the green circle encompasses the distal dendrites,

excluding the gray circle. Notice that the pyramidal neuron’s axon is depicted by the straight line stretch-

ing from the soma to the green circle.

While most neurons are depicted as a cell body with a few dendrites and an axon, pyramidal

neurons (see Figure 2.1) have thousands of dendrites, and can be divided into four main parts,

the cell body (soma), basal dendrites, apical dendrite, and axon. The basal dendrites emanate di-

rectly from the soma while the apical dendrite is a single long and thicker dendrite that branches

out profusely further away from the soma. Although the axon is rarely displayed in pictures and

diagrams of pyramidal neurons, it is very long and branches out extensively. Basal dendrites

and the apical dendrite can be further divided into two groups, proximal dendrites and distal

dendrites. The dendrite branches closer to the soma are called proximal dendrites, while the

dendrite branches farther away from the soma are called distal dendrites. Pyramidal neurons

can receive inputs from synapses on their proximal and distal dendrites [10]. Inputs received

from proximal dendrites can lead to an action potential (AP), while input from distal dendrites

can generally only lead to the cell being depolarized. A cell in a polarized state will require a

significant amount of input for it to lead to an AP, while a cell in a depolarized state will require

much less input. An AP is a process that can be simply described as a signal being fired down

a cell’s axon and passed on to other connected cells.

5



Chapter 2. Literature review

2.3 The HTM model

2.3.1 Overview

Jeff Hawkins was the founder of Palm Computing and one of the founders of Handspring, which

developed the popular and successful PDAs (Personal Digital Assistant) Palm and Treo in the

1990s [11]. In the early 2000s, he decided to delve into his deepest field of interest, which was

brain research at the Redwood Center for Theoretical Neuroscience in Berkley, California. In

2004, he released the book On Intelligence in which he discusses the brain’s intelligence and the

key principles that enable it. He explains (amongst other things) that the neocortex is a complex

memory system with hierarchical regions that works by constantly trying to predict the future

based on stored past experiences. He calls this theory the ‘memory-prediction framework’. In

2005, Hawkins, Donna Dubinsky, and Dileep George founded the private company Numenta,

which aims to discover the operating principles of the neocortex and build intelligent systems

based on those principles.

During the past 11 years, Numenta has worked through three semi-official generations of learn-

ing algorithms [12]. Their first generation of algorithms called Zeta 1 was mainly focused on

vision tasks and had little basis in neuroscience, relying heavily on mathematical principles

alone. Their second generation of algorithms called the Cortical Learning Algorithms (CLA)

was much more focused on neuroscience. These algorithms were based on the company’s

newly developed HTM theory, which was based on and expanded upon the memory-prediction

framework. One notable expansion, was the introduction of sparse distributed representations

which play a foundational role in HTM and permeate most functions and processes within.

HTM consists of a collection of algorithms working in unison to bring about real-time learning

of temporal and spatial patterns in streamed data sets. These algorithms provide HTM with

advanced anomaly detection and prediction capabilities. The CLA was successfully used in

several different applications that benefited from anomaly and prediction capabilities, such as

server metric anomalies, rogue behavior detection, and natural language processing [13]. Al-

though the HTM theory discussed how the hierarchical aspect was involved in the overall pro-

cesses, it did not provide any detailed explanations on the subject, since there is currently very

little empirical knowledge available. This means that the CLA does not implement hierarchical

processes. In 2013, the company decided to open-source its CLA implementation on a Python

platform called the Numenta Platform for Intelligent Computing (NuPIC)1, which will be used

in this thesis. Finally in 2014, after making advances in their theoretical work and continually

improving NuPIC, they entered the current third generation of algorithms, which has no official

name. We will simply refer to the third generation of algorithms as NuPIC.

1Repository url: https://github.com/numenta/nupic
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2.3. The HTM model

2.3.2 Structure and elements of HTM

The structure of HTM [10] is not identical but quite similar to the neocortex’ biological struc-

ture. Figure 2.2 shows the elements of an HTM model and simultaneously contextualizes it

by showing which elements are connected with each other and what they represent. The four

elements are regions, layers, columns (often called mini-columns) and cells or neurons.

Figure 2.2: A figure showing the relationship between the brain and the elements of HTM. At the

top middle, a human brain is shown with a small cube of cortical tissue cut out in the blue rectangle.

The green rectangle displays the hierarchy of regions which get their input from below and pass their

processed output at the top. The red rectangle shows how every regions is composed of the same set of

cortical layers, each of which are arranged in columns of cells. The orange rectangle depicts such a cell

from a column.

Figure 2.2 shows a (human) mammalian brain, with a 2mm2 patch of neocortical tissue cut

out representing a hierarchy of multiple regions. All regions in a hierarchy are fundamentally

and structurally similar [14]. Input from sensors gets processed by the bottom region which

outputs its results up to the region above it, and so on until the top region outputs its results.

Each region learns sequences, and the output from a region is more abstract then the input it

was given. Although HTM explains that regions are supposed to communicate with each other

in such a hierarchical manner, the actual details and technicalities behind this communication

and their outputs to each other are still being researched. Each region consists of four layers,

layer 2/3, 4, 5, and 6. A layer consists of columns which are made up of neurons. A typical

layer has about 2048 columns, with 32 cells in each column. Cells in HTM are modelled more

7



Chapter 2. Literature review

realistically than cells in most other ANNs, and imitate the properties of pyramidal cells that

were explained earlier, albeit a little simplified.

Figure 2.3: On the left side of the black line, an HTM cell is drawn, with the three possible states being

inactive (I), predictive (P) and active (A). An HTM cell receives input from both its proximal dendrite

in gray and from its distal dendrites in green. The binary OR of all distal dendrite values determines

whether a cell is set to the predictive state, while the proximal dendrite determines if a cell is chosen (C).

If a cell is both chosen and in a predictive state from before, it is set to the active state. A cell can also

be set to the active state without being in a predictive state from before. On the right side is a depiction

of a segment. The segment is drawn in black, with blue synapses connecting it to some input bit array.

A synapse with a yellow bar means that it is over some threshold while a red bar means that is below.

A segment can only read input from synapses above that threshold, in this example resulting in 0 0 1 0

1 0. Since a segment can never perceive the entire input space, some input bits are not connected by a

synapse and never will. Synapses with red bars can eventually turn yellow and vice versa.

As can be seen in Figure 2.3, an HTM cell has one proximal dendrite and multiple distal den-

drites, both of which receive input in the form of a binary vector. A proximal dendrite has a set

of potential synapses, each of which can perceive a fraction of the input space from feedforward

input. Likewise, a cell has multiple distal dendrites, each of which has a set of potential synapses

that can receive information about the state of other cells in the same layer. In both cases, the

synapses on both dendrites have a permanence value which must be above some threshold for a

synapse to be active, i.e. be able to receive information. Feedforward input comes from sensors

while input coming from distal dendrites is called feedback input. No single cell perceives the

entire input space from a sensor, nor perceive the state of all other cells in a layer. Furthermore,

all cells in a common column share the same synapses on their proximal dendrite that receives

feedforward input, meaning that they all receive the exact same information from sensors. Fi-

nally, a cell can be in three states: inactive, predictive, and active. A cell is inactive when it

does not get any input at all, predictive when it gets feedback input, and active when it gets

feedforward input.

8



2.3. The HTM model

2.3.3 Data representation

The theory of HTM uses sparse distributed representations (SDRs) as its foundation for repre-

senting data and learning sequences of patterns [15]. SDRs are long binary vector representa-

tions with extremely few ON or 1 bits, which constitute compressed semantic representations

of input data. SDRs emulate the brain’s property of having a small percent of firing neurons,

through a process that will soon be revealed. HTM theory uses 2048 bit long vectors with 40

ON bits. Although SDRs are represented as binary vectors, it will be explained why no single

bit is critical to a representation, unlike in the binary number system. Unfortunately, the science

of SDRs is too complex and mathematically demanding to include in this thesis. Therefore, a

summary of the remarkable properties is given, assuming that the SDRs consist of 2048 bits (n)

of which only 40 are ON bits (w). The representation space is astronomically high (2.37x1084),

while the likelihood of two random SDRs being identical is astronomically low (4.2x10−85).

Two SDRs can be easily compared for similarity, by performing a bitwise AND operation on

the two, and counting the amount of ON bits in the result to see if it is above some threshold (θ)

to be considered a match. Impressively, even with a θ that is half of w, there is still an extremely

low likelihood (≈2.5x10−26) of false positives when testing for matching SDRs. Similarly, the

chance of a false positive when comparing a subsampled SDR with w = 20 to a random SDR

with w = 40 and θ = 10 is also unlikely (≈1x10−12). Finally and most strikingly is the small

probability (≈4.48x10−12) of false positives when matching one SDR to another SDR that is

the union of 20 SDRs with θ = 18. In other words, let x be an SDR that is the result of calcu-

lating the bitwise OR of 20 random SDRs. If x is matched to some SDR y, then it is practically

guaranteed that y is contained in x. The process for input data to be sparsely distributed is

accomplished in the first two steps of the three core HTM processes explained below.

Encoding
The first core process and step in creating SDRs is encoding, which converts raw input data into

distributed binary representations [15, 16]. The actual output representation from an encoder is

an array of zeros and ones, which can be viewed as a vector. Binary representations must have

a fixed total length and number of subsequent 1-bits to accommodate the range of raw input

values. Since representations are discrete, values are sorted into ‘buckets’, which represent all

values within their range with the same binary representation. The number of buckets must be

chosen appropriately depending on the range of possible input values. The actual number of 1-

bits should be at least 20–25 for robust subsampling and good noise tolerance. The total number

of bits required and the index of the bucket that a value is to be placed into, can be calculated

with the following formulae. Here, n is the total number of bits in a vector, b is the number of

9
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buckets, w is the number of ON bits, i is the bucket index and v is the input value:

n = b+ w − 1 (2.1)

i =

⌊
b · (v −minV alue)

maxV alue−minV alue

⌋
(2.2)

Value → bucket index → binary representation

≤ 0 → b0 → 11111000000000

0.99 → b0 → 11111000000000

1 → b1 → 01111100000000

5 → b5 → 00000111110000

9.99 → b9 → 00000000011111

≥ 10 → b9 → 00000000011111

Table 2.1: Table showing an example of the relation between raw values, bucket indexes and binary

representations. This particular example demonstrates how the raw input numerals 0 to 10 are encoded

into binary vectors, using 10 buckets and five subsequent 1-bits

In the example from Table 2.1, each value falls into some bucket and thus gets represented

accordingly. Performing a bitwise AND operation on two representations tells the semantic

relationship between them. Here, the bitwise AND of the representations of 0 and 1 would result

in 01111000000000 which has an overlap of four 1-bits, meaning that the semantic similarity

between those values is very strong, yet not identical. The semantic similarity between the

values 1 and 5 is only one meaning that it is very weak, and between 1 and 10 it is non-

existent.

Spatial pooling
Once raw inputs are encoded into distributed representations, they are passed on to the next

step called spatial pooling (SP), while the algorithm itself is called the spatial pooler [15]. SP

is the second core HTM process and final step in creating SDRs. This process uses the HTM

structure previously described in Section 2.3.2 about cortical layers and cells. It was explained

that all cells in a column have a proximal dendrite with synapses that get the same feedforward

input from sensors, albeit once encoded as is now known. To simplify and optimize on this

fact, the SP forgoes working with each individual cell, and works only at the column level

assigning each column the same input space that all of its cells share. The spatial pooler has

two objectives, turn distributed representations into sparsely distributed representations, and

learn to better recognize recurring inputs.

SP creates SDRs by mapping the 2048 columns to the input vector, and then choosing 40 of

them to be marked as active. Each column in the spatial pooler is connected to a random subset
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of the input space, i.e. each column’s “synapses” are connected to random elements in the input

vector received from the encoder. The default number of connections is 80% of the total input

array length, and the process is partly illustrated in Figure 2.3. The synapse connections are

static, meaning that a column will never create nor loose connections throughout the entire HTM

algorithm cycle. However, each connection has a permanence value, which must be above some

threshold for that connection to be considered active. A column has an overlap score, which

is calculated by counting the amount of active connections that are mapped to ON bits in the

input vector. The columns are then compared to their neighbouring columns based on their

overlap score, with the ones with the highest relative score becoming the aforementioned active

columns. To ensure that the 40 active columns represent that particular input in the future,

for each of those columns, the connections that were mapped to ON bits in the input vector

have their permanence values slightly increased. Inversely, all the other connections that were

mapped to OFF bits in the input vector have their permanence values slightly decreased. This

process ensures that each column learns to recognize very few inputs, but effectively. The idea is

that two similar input vectors will be largely recognized by the same columns, albeit not exactly

the same, and thus create similar SDR representations. On the contrary, very differing input

vectors will create highly contrasting SDR representations. The output of the spatial pooler is a

2048 long vector/array with 40 ON bits.

Temporal memory
The temporal memory (TM) algorithm, which was formerly called the temporal pooler is the

third and final core HTM process [15]. It has two purposes, the first is to turn the SDR input

received from the spatial pooler into a representation that captures the temporal context of the

current input. The second purpose is to create a prediction of the future input based on the

sequences that followed before.
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Figure 2.4: This Figure shows the three core steps of HTM and how they affect the internal state of

the cells in a layer. The encoder converts raw values into binary distributed representations. The spatial

pooler converts the binary encoding into a sparsely distributed representation by choosing a subset of

columns. The temporal memory turns the SDR into a contextual SDR by choosing cells amongst each

chosen column. Note that this illustration is general and therefore does not include cells in the predictive

state and the important role that they play.

When the TM algorithm receives input from the spatial pooler, it must decide which cells inside

each of the active columns should become active, i.e. changed to the active state. In each active

column, if a cell is found to be in the predictive state, it is switched to the active state. If

no predictive cells are found in an active column, then all cells inside that column are turned

active, in a process called ‘bursting’. The idea is that while an SDR of active columns can

represent a value, the distinct combination of active cells in them represents that same value but

in different contexts. Once done, the algorithm goes through every cell’s distal dendrites, and

counts how many of the synapses are both active and connected to active cells. If at least one

dendrite’s count is higher than some threshold, then that distal dendrite is marked active, and the

corresponding cell is put in the predictive state. If in the next time step, a predictive cell happens

to be in an active column i.e. it was correctly predicted, then the cell’s active distal dendrite

increases the permanence values of all its synapses that were connected to active cells. On the

other hand, a predictive cell that does not become active, will reduce the permanence values

of its synapses on the distal dendrite that was marked active. In the case of a bursting column,

no cell in that column was in a predictive state from before. Therefore, the algorithm tries to

find if there are any cells in that column that have dendrites with enough synapses connected

to previously active cells that are above some minimal threshold (that is obviously below the

threshold that marks a dendrite active). If such cells are found, the one with the dendrite that
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has the most connected synapses is selected, and their permanence values are increased. If no

such cell is found, the cell with the currently least amount of distal dendrites receives a new

distal dendrite that has synapses connected to a subset of the previously active cells with above

minimal threshold permanence values. The TM algorithm outputs the set of cells that have been

marked active in a pretty long vector, since there are 2048 columns with 32 cells per column,

such a vector array contains 65536 bits. An alternative way to store this information is to only

keep the indexes of the active cells which drastically reduces the length of the array down to a

minimum of 40 elements.

Figure 2.5: Here are several examples demonstrating how the TM learns sequences, using a cortical

layer with only 10 columns and 4 cells. To keep it simple, the SDRs are composed of only 2 active

columns and the leftmost column is the zeroth column. Circles with a white center represent inactive

cells, while circles with black centers represent active cells. Circles with a gray center represent cells

that were active in the previous time step. Red circles with a black center represent active cells that

have been chosen to represent the current contextual SDR, while black circles with red centers represent

predictive cells. Each row has been numerated to make it easier to follow the description.

Looking at the example Figure 2.5, the first row shows how the TM reacts when receiving the

unpredicted values X, Y, and Z from the SP which are represented with the respective column
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arrays {2,8}, {3,5} and {0,1}. Since the values had never been seen before, the TM ‘bursts’ the

cells in those columns, marking them all active. In addition to bursting, the Y SDR selects a

cell from each burst column (red circle with black center) and creates a connection between all

the previously active cells (in gray) and those selected active cells. These connections are the

basis for the previous cells’ predictions to the current chosen active cells. The same process is

repeated for the Z SDR. In the second row, when the X SDR appears once again, the TM checks

the active cells’ connections and finds two cells which it marks as predictive (depicted as black

circles with red centers in the X’ SDR). The next input from the SP is {3,5} which represents

the value Y, and since there already are predictive cells in those columns, the TM marks them

active. Before the next input is received the TM once again checks the current active cells’

connections and marks them predictive, as shown in the Y’ SDR. Finally when the last input

{0,1} is received, it only marks the predictive cells in those columns active.

In the fourth row, at some later time into the data set, the new value A is received which leads

to bursting, followed by the value Y which had previously been seen before. Since this Y value

occurred in a new context, the chosen active cells are different from the ones in the first row.

When the TM checks the Y SDR’s active cells’ connections, it still finds the two predictive cells

representing Z that were learned in the first row, shown in the C SDR. However, the prediction

is unsuccessful as it receives the new value C. In the fifth row is a scenario where the value Y

is unexpectedly received in a new context. Because of the active cells’ previous connections,

the TM finds and marks both the cells that represent the values Z and C as possible predictions.

In the previous examples, all the previously active cells (from burst columns) had to create

connections to the chosen active cells. In most cases however, a lot fewer cells will have to

create connections to chosen active cells as depicted in the last row, which correctly predicted

the value Z but then receives the new value K. Only the two cells from Z create connections to

the chosen active cells in K.

While it would be natural to think that the cells that have been marked as predictive by the TM

would be somehow used as the actual predictions of the HTM, they are in fact not. Those cells

are only used by the TM for its own internal predictions. Their ultimate purpose is to be marked

as active if they correctly predict the next input. For in doing so, they create a representation

of the current input that is unique to the current context. The actual output predictions come

from an algorithm called the CLA classifier, which uses the active cells generated by the TM,

and makes the final decision when multiple predictions are likely. The CLA classifier will be

explained in the next chapter.
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2.3.4 Detecting Anomalies in patterns

The process of anomaly detection is enabled by performing mathematical and statistical calcu-

lations based on the results from the TM’s predicted and active columns [17]. There are two

anomaly detection metrics in HTM, raw anomaly scores and anomaly likelihoods, of which the

latter is calculated based on the results of the former. Once the TM algorithm is done creating a

contextual SDR, the anomaly score can be easily computed by doing a calculation based on the

amount of active columns that burst. If the input xt is converted into the SDR vector SDR(xt)

which represents active columns, and SDR(pt−1) is the SDR vector of predicted columns from

the last time step (i.e. columns in which there are cells in the predictive state), then the equation

[18] is:

Anomaly Score =
|SDR(xt)− (SDR(pt−1) ∩ SDR(xt))|

|SDR(xt)|
(2.3)

The resulting raw anomaly score will be between 0 and 1, where 0 indicates that the input was

correctly predicted, 1 indicates that the input was completely unpredicted, and in between if the

input was somewhat predicted depending on the adjacency to either 0 or 1. In the case where

multiple different values are simultaneously predicted, the amount of predicted columns will

outnumber the amount of active columns in the current SDR. According to the equation, this

means that if any one of the predicted values turn out to be correct then the score will be 0.

The advantage of calculating raw anomaly scores is that it gives direct feedback as to how

expected or unexpected a certain input value is at any time. However, in certain environments

there is a constant stream of noise and deviating values, leading to a perpetual barrage of high

anomaly scores which would be quite troublesome. The second anomaly factor called anomaly

likelihood was made to handle this exact problem by focusing on the change in raw anomaly

scores over time as indication of actual anomalies. The statistical calculations behind anomaly

likelihoods are beyond the scope of this chapter, but can be read in Numenta’s paper [17].

One of the major points about anomaly detection algorithms, is that they may detect anomalies

in data streams prior to major events [19]. Numenta has demonstrated that the HTM success-

fully detected a temporal anomaly in the temperature data stream of a windmill, prior to the

windmill catching fire [20]. This aptitude of HTM is one of its most compelling qualities.

2.4 Forecasting the weather
The weather is an extremely vast, complex, and chaotic system that is affected by the interac-

tion of a multitude of factors to create the diverse weather phenomena observed on our planet.

Despite all this complexity and chaos, thanks to the combined scientific advances of numerous

fields, we are today able to predict the weather for the next four days with decent accuracy [21],

albeit less for some places with especially intricate weather such as Bergen, Norway. Since
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HTM is to be used for weather prediction, it is necessary to acquire a basic understanding of

the weather and science behind forecasting.

2.4.1 Overview

Solar radiation warms our ellipsoidal planet unequally, in such a way that the equatorial regions

gain more heat than the polar regions [22]. Grossly simplified, the oceans and the atmosphere

redistribute excess heat from the equator to the poles which fortunately ensures that neither

of the two become completely inhospitable to life. When the planet’s surface is heated up, it

transfers its heat to the air above it. The hot air rises up and is replaced by descending cooler

air in a process called convection. However, because of the earth’s size and rotation, convection

doesn’t directly bring hot air from the equator to the poles and vice versa. There exists three

major convective cells between the equator and the poles, each of which circulates the air in a

loop, but ultimately transfers heat from the equator to the poles.

Convection cells are one of the main factors that create pressure systems, which are relative

highs and lows in the sea level pressure distribution, where air is forced down in high pressure

systems and up in low pressure systems. These systems have a very influential role on the gen-

eration of rain, wind (in particular the wind’s direction and strength), and temperature. High

pressure systems are associated with clear skies, dry, and cooler air, while low pressure systems

are associated with overcast skies, precipitation, moist and warmer air, although these associa-

tions do not always hold true. Air masses of cold and warm air have a similarly influential role

on precipitation, temperature, and wind. When a cold front undercuts a mass of warm air, it usu-

ally results in localized heavy precipitation, abrupt increase in wind, and drop in temperatures.

On the contrary, a warm front rides over the cooler air until it is slowly displaced, which brings

about lighter but more prolonged precipitation and over a wider area with slowly increasing

temperatures. Cloud formation is caused when water vapour reaches its dew-point temperature

by rising into the air where it is cold enough for condensation to occur. Air can be lifted in

several ways, the first is simply through convection, the second is with the help of fronts, and

the last is through orographic lift. The first two have already been covered, while orographic

rainfall is caused when air is forced to rise because of mountains or volcanoes.

2.4.2 How forecasts are made

Throughout time, several forecasting methods have been developed. These range from sim-

ply looking at the weather with the naked eye to highly complex mathematical models of the

atmosphere and oceans that can only be run in a timely manner with supercomputers. The

last method described is called numerical weather prediction (NWP) and is the modern way to

forecast the weather. The first step to forecasting is almost always to determine the weather’s
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current state by measuring different factors and constantly monitoring them. Unsurprisingly,

the monitored factors are air pressure, temperature, humidity, wind strength and direction. Ad-

ditionally, both satellite and radar images are extensively used to track the movements of large

clouds. Most of these factors are measured using different instruments, at multiple altitudes,

and spanning over as wide an area as possible. Once all these measurements are collected, they

are analyzed, processed, and modelled using NWP methods to create detailed hourly forecasts.

Despite our advances in science and technology, there still remains many challenges before fore-

casts can be made both further in time and with greater confidence. One of the greatest amongst

them, is the fact that the atmosphere is a chaotic system. This implies that even extremely small

errors in the initial conditions will amplify and double every five days when fed into numerical

models, effectively capping reliable forecasts to no more than 4 to 5 days [21].

While it is obvious that HTM cannot be used to create numerical models in its current state,

there exists a forecasting method that could be decently suited for HTM’s capabilities called the

analogue method/technique. The analogue technique aims to forecast the weather by remem-

bering previous weather events similar to the present ones and predicting the same weather that

was recorded. Although there is rarely a perfect analogue of the current weather conditions,

HTM could succeed at discerning patterns that no other methods have found.
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Chapter 3

Code overview

3.1 NuPIC - HTM in practice
The intent of this chapter is to give the reader an overview of how the open source project

NuPIC implements HTM and discuss some important aspects about the implementation. One

matter that needs to be expressed, is that while HTM/NuPIC conceptually works with infinite

streams of data, it also works just as well with finite data sets. The data from a file is simply

inputted to NuPIC sequentially as if it was a true data stream.

3.1.1 The encoder

The encoder that was illustrated in the literature review is actually only one amongst many in

NuPIC. Other encoders have been created that are more efficient or that encode other types

of input such a category encoder, date encoder, and spatial coordinate encoder. Although the

encoders may work in slightly different ways and for different inputs, the same principles that

have already been explained apply to them as well. The illustrative example in Section 2.3.3

was a scalar encoder with a vector length n of only 14 and number of ones w of 5 while in

practice those values should be no smaller than 100 and 21, respectively. One such encoder is

called the Random Distributed Scalar Encoder (RDSE) which uses an n of 400 and w of 21

by default, indicating how long a real distributed representation should be. Using large enough

encoder values is critical for the overall HTM process to produce good results. The reason is

that if an encoder uses too small parameter values compared to the input space, it may result

in encoded values that are poorly distinguishable from each other. Such a scenario would lead

to the spatial pooler creating poor SDRs, which ultimately result in the TM struggling to learn

sequences when all its input values are seemingly the same.
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3.1.2 The SP and TM algorithms

The implementation of the spatial pooler follows the theory very close, although the code does

have to deal with some minor technical details that were left out in the theory. The first such

technicality is inhibition, which is the reason for the brain’s small number of simultaneously

firing neurons. Inhibitory neurons suppress the other neurons in close vicinity from firing. In the

review, this process was accomplished by choosing the 40 columns that had the highest relative

overlap score compared to their neighbour columns. This process is called local inhibition since

the columns are chosen from the columns’ local neighbourhoods. Unfortunately, this choosing

procedure is very computationally expensive, creating a serious bottleneck in the system. To

alleviate this problem, a selection process called global inhibition has been made, which simply

chooses the 40 columns that have the highest overlap score amongst all columns in the layer.

While this procedure does not guarantee that all the chosen columns are a certain distance from

each other, it actually produces decent SDRs and boosts performance up to 60 times [23]. In

fact, global inhibition is so good that it is the default selection process in the spatial pooler

implementation.

The second technicality that is implementation specific concerns both the SP and TM algo-

rithms. The theory of SP and TM is based on the manipulation and processing of the properties

of HTM cells by the SP and TM algorithms. This means that both algorithms work with the

same set of global HTM cells, while in reality the algorithms work with their own set of cell-

like objects. It was stated earlier that the SP does not work with cells at the individual level, but

rather with columns of cells that all share the same proximal dendrite. The SP implementation

simply works with arrays that represent columns that only have proximal dendrites. Likewise,

the TM algorithm implementation works with arrays that only have distal dendrites. The au-

thor of this thesis speculates that since HTM cells do not act on their own, there was never any

incentive or benefit from using global cell objects shared by SP and TP algorithms.

Lastly, here is a look at some of the parameter values located in a file called model params

that the SP and TM use as their ‘cell’ attributes. While the principles of HTM are solid, each

unique data set that is fed to an HTM system will require subtle tweaking of some of those

parameters to make sure that the HTM learns as effectively as possible.

spParams :
columnCount : 2048
# 1 = g l o b a l i n h i b i t i o n , 0 = l o c a l i n h i b i t i o n

g l o b a l I n h i b i t i o n : 1
# Number o f columns t o s e l e c t as a c t i v e / /

numAct iveColumnsPerInhArea : 40
# S i z e o f t h e random s u b s e t r e l a t i v e t o t h e i n p u t space
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p o t e n t i a l P c t : 0 . 8
# Use t h e C++ or Python i m p l e m e n t a t i o n o f t h e SP

s p a t i a l I m p : cpp
# P e r c e n t amount by which an a c t i v e s y n a p s e i s i n c r e m e n t e d

s y n P e r m A c t i v e I n c : 0 .003
# Permanence t h r e s h o l d above which a s y n a p s e i s c o n s i d e r e d a c t i v e

synPermConnected : 0 . 2
# P e r c e n t amount by which an i n a c t i v e s y n a p s e i s decremen ted

s y n P e r m I n a c t i v e D e c : 0 .0005
tpParams :

# Number o f s y n a p s e s t h a t must be bo th a c t i v e and c o n n e c t e d t o

# a c t i v e c e l l s f o r d i s t a l d e n d r i t e t o be marked a c t i v e

a c t i v a t i o n T h r e s h o l d : 20
c e l l s P e r C o l u m n : 32
columnCount : 2048
# How much t h e permanence v a l u e o f

# c e l l s i s t o be d e c r e a s e d by

g l o b a l D e c a y : 0 . 0
i n i t i a l P e r m : 0 . 2 4
maxSegmentsPerCe l l : 128
maxSynapsesPerSegment : 32
minThresho ld : 13
newSynapseCount : 31
permanenceDec : 0 .008
pe rmanence Inc : 0 . 0 4
tempora l Imp : cpp

3.2 The CLA classifier
The CLA classifier (CLAc) is the last necessary algorithm for generating actual predictions

[24]. It was not included in the literature review because it is not viewed as part of the core

HTM theory. The reason for this is that the CLAc is a purely engineered algorithm with no

basis in biology. The purpose of the CLAc is to generate predictions, as many steps into the

future as desired. Generally speaking, it accomplishes this by connecting past values that were

represented in a contextual way by the TM to present ones and then make predictions based on

the likelihood distribution of those past values. The CLAc can make predictions k steps into

the future for k = 1,2,3,4,... In addition, it can make multiple predictions simultaneously, for

example three predictions: 1, 3, and 5 steps into the future. The only issue with the CLAc is

that NuPIC can only be used for either anomaly detection or for getting multiple simultaneous

predictions. If anomaly detection is chosen, the CLAc will only be able to generate one pre-

20



3.2. The CLA classifier

diction at each time step instead of multiple predictions. Previously, SDRs have been explained

to represent 40 active columns chosen amongst 2048. Although the output from the TM can

also be viewed as an SDR, it is more of a contextual SDR, which consists of a vector of the

indexes of the active cells. I will therefor refer to these contextual SDRs as CSDRs. Figure 3.1

demonstrates an example CLAc working with a cortical layer consisting of only 10 columns

with 4 cells per column.

Figure 3.1: This figure illustrates the components and processes of the CLAc using an example. In

section A, a cortical layer consists of 40 cells, which are displayed on the left. Since the CLAc does not

actually operate with cell objects, it represents them with an array of length equal to the amount of cells.

Each element in the CLAc’s array has two arrays of its own that are the same length. The first array of

an element represents the value range in each bucket, which is admittedly irrelevant when working with

letters but needed when dealing with real numbers, since the bucket range determines whether a number

should fall into one bucket or another. The second array holds a counter for the amount of values that

have been placed into each bucket in the first array. In section B, the current time step is 42, and the

CLAc must make predictions 3 time steps into the future. The current CSDR received from the TM is

the value B represented by the vector {2,8} (starting at zero from the bottom left and counting up and

then to the right). To bind the past to the present, inside the CLAc’s buffer is the stored CSDR from time

step 39, which is the vector {0,5}. Back at section A, looking at the CLAc’s elements at the indexes

corresponding to the old vector values 0 and 5, the counters for the value B are increased by one. Finally

in section C, in the CLAc’s elements at the indexes corresponding to the current CSDR vector {2,8}, the

total likelihood distribution is calculated based on the average of all the normalized counter values.
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The actual CLAc uses an array that represents all 65536 cells that are in a standard size cortical

layer (2048x32). It has a buffer of the last k CSDRs, and receives input from both the encoder

and TM algorithms. From the encoder it receives the raw value that it was supposed to encode

(at the current time step), the index of the bucket into which it placed the value, and the record

number (i.e. number of inputs received so far). From the TM it receives a vector consisting

of the indexes of the cells that have been marked active, in other words the current contextual

representation of the raw value. Each HTM cell that is represented as an element in the CLAc’s

array, holds an array of buckets that is similar to the encoder’s buckets. Each bucket in that

array covers a similar range to the encoder’s buckets, which determines whether a number falls

within one bucket or another.

Before the CLAc is able to make any predictions, it must first bind the present to the past. It

does this by retrieving the kth CSDR from its buffer, which was given to it t-k time steps ago by

the TM algorithm. The vector values of that old CSDR correspond to the indexes of the CLAc’s

array. Inside each of the CLAc’s elements at the corresponding index, lies an array of buckets

(explained earlier). Depending on the raw value that the CLAc received from the encoder, it

will place that value in the array of buckets, in the accommodating bucket. For each element

in the array of buckets, a counter keeps track of the number of values placed inside each of

them. The process of placing a raw value inside an array of buckets, is repeated for each of the

elements in the CLAc that corresponded to the kth CSDR’s vector values. In simpler terms, the

CSDR from k time steps ago, is taught that the current value appears k time steps after it. Since

this process is repeated for each new input, it should be no surprise that some indexes in the

CLAc array will have to store more raw values than others in their array of buckets.

With the past stored away, the CLAc can finally generate predictions. Looking at the currently

received CSDR from the TM, the focus will once again be on the indexes of the CLAc’s array

that correspond to the CSDR’s values. Each of those elements have their own array of buckets

filled with a certain amount of values, which creates a likelihood distribution when normalized.

Those probabilities are averaged together to create a grand total likelihood distribution for the

current CSDR. In that total, each raw value has a certain likelihood of occurring k time steps

after the current one. The value with the highest likelihood is chosen by the CLAc to be the pre-

diction for k time steps into the future. For each additional simultaneous prediction, the CLAc

will have to hold an additional array of buckets for each index in its array of size 65536 and re-

peat the two processes. This means that although the processing of it all is rather moderate, the

memory usage can become excessive if too many simultaneous predictions are desired.

22



3.3. Code architecture

3.3 Code architecture
The architecture of NuPIC is quite elaborate, as it implements the HTM algorithms to be run in a

variety of ways with speed in mind, and works as a flexible platform for Numenta’s experimental

research. The NuPIC code base consists of 2 main repositories called nupic1 and nupic.core2,

with the former containing a collection of Python classes and scripts, while the latter contains

a collection of C++ classes. These two repositories work in tandem to provide users with three

ways to use NuPIC.

1st way - Low level algorithm routines
All the HTM concepts that have been explained such as encoding, SP, TM, and anomaly calcu-

lation are coded into their own separate classes as low level routines in Python. Running HTM

using these routines directly requires that the user has good understanding of HTM theory and

extensive knowledge about the NuPIC architecture. Users will need to know how to properly

run the different algorithms with proper parameter values, connect them together, and how to

handle inputs and outputs. One thing to note is that many of the low level routines that are in the

nupic repository have identical C++ implementations in the nupic.core repository, which can be

used instead of the Python ones for shorter running times. Although this low level way of usage

is the most demanding, it provides the most flexibility and control.

2nd way - The Network API
Inside the nupic.core repository is the Network API, which is a flexible API that enables users

to run HTM, or specific HTM algorithms and other algorithms in any sequence hierarchy [25].

The Network API consists of a network of regions that can be arranged in almost any topology,

which is a highly convenient feature to (Numenta) researchers for research purposes and testing.

A region is a container that implements a specific HTM algorithm, although it can implement

any algorithm. It provides three things, input(s) to and output(s) from the algorithm, a compute()

method that runs one iteration of the algorithm, and get()/set() methods for the algorithm’s

parameters. A region that implements an encoder algorithm is called a ‘sensor region’. Regions

are added to a network, which connects them according to the user’s chosen topology. Once a

network has been created, it can be run, stopped, saved, or loaded at the user’s convenience. A

‘normal’ bare minimum HTM system is simply run by creating a network consisting of a sensor

region that implements some encoder, a region that implements the spatial pooler algorithm,

and a region that implements a temporal memory algorithm. Such a network would be able to

read input from a CSV file and only output contextual SDRs. Adding regions that implement

an anomaly score algorithm and CLAc algorithm would give the network the ability to output

1Repository url: https://github.com/numenta/nupic
2Repository url: https://github.com/numenta/nupic.core
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anomalies and predictions as well. The API supports multiple language bindings, with Python

being already bound, meaning that although a user runs a network from Python code, the actual

implementation is run in C++. Using the Network API is meant to reduce many of the burdens

and technicalities of the first method, while still preserving some flexibility and control.

3rd way - The Online Prediction Framework
The Online Prediction Framework or OPF for short, is a framework made to work with online

learning algorithms, including HTM, to provide predictions from streamed data sources [26].

The OPF is collection of major algorithms working together. Together, the algorithms can run

a ‘plain’ HTM network in a simple and convenient way. The framework is a client of the

Network API, that uses a network consisting of a sensor region, SP region, and TM region at

the very least. It has several utility classes with interfaces that make it easy to feed raw input

from bulk sources (such as CSV files) into the sensor region and neatly format outputs from

the system. Most importantly, it has a swarming algorithm that attempts to find the best values

for the parameters in the model params file that was displayed in Section 3.1.2. This is an

invaluable tool that makes using HTM simpler, although not carefree, as will be revealed later

on. In addition to running the three core HTM algorithms, the OPF can either detect anomalies

or make multiple simultaneous predictions. In the OPF’s configuration file, the former must be

marked as doing temporal anomaly, while the latter must be marked as ‘temporal multi step’.

The OPF can also provide further services although they are not used in this thesis.

3.4 Multiple simultaneous inputs
So far, the process of HTM has only been about how HTM works by demonstrating how a single

input, or metric, gets processed from start to finish. HTM can in fact be fed multiple metrics

simultaneously [27]. It does this by encoding each metric value from each metric separately,

and then concatenating all the encodings into one final input. This encoding is then treated as

if it were a simple encoding generated from a single metric and passed along to the SP and TM

algorithms as normal. Since the multiple inputs are treated as one input, one of the metrics needs

to be predesignated as the ‘predicted metric’ (PM) for which the HTM will attempt to predict its

values. This means that the input from the other metrics are treated as extra information which

might or might not be helpful in predicting the PM.

One problem to consider is that if there are too many non overlapping encoded values, then the

concatenated result would be a vector with much too many ON bits. The difference between

the resulting encodings would be so small that the SP would rarely be able to distinguish one

input from the next, which would create highly similar SDRs. The TM would view this as a

repeating pattern and fail to learn anything useful. According to Numenta, no more than 5 input

metrics should be used. Unsurprisingly, not all additional metrics may help predicting the PM.
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The additional data should act as a precursor to some change and/or event in the PM that is not

easily found in the PM data itself. While it is hard to determine which metrics to include, the

swarm takes care of this in the OPF, by looking for helpful correlations over all the additional

metrics. If some metric is found to help, then it will be expressed as a percentage of the increase

in correct predictions. On the contrary, some correlations may even confuse the HTM and lead

to a decrease in correct predictions, which would also be noted.
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Methodology

4.1 About the data
To conduct the research for this thesis, a number of weather factors were needed. Based on

the literature review’s climate section, those factors were temperature, air pressure, wind speed,

wind direction, and humidity. While weather services need to acquire all these factors over

a wide area to create trustworthy models and forecasts, HTM can only deal with those five

factors from a single place at a time. Although NuPIC could technically be simultaneously

given multiple factors from multiple places, such a thing would be unwise for already discussed

reasons. Likewise, numerical weather prediction (NWP) forecasting relies on radar imagery to

observe the movement of clouds and cold/warm fronts, something which again cannot be used

in NuPIC.

As any ANN algorithm, HTM requires an abundant amount of data in order to properly learn

patterns. The consensus is that HTM needs at least 3000 inputs to get a good overview of the

data set. The reason for this number is that in such a large data set, diverse patterns would occur

enough times for the HTM to discern them, learn them, and be able to make decent predictions

based on them. This suggests that giving HTM the weather factors from January only once

would not be enough, or even be useful in forecasting the weather for July. So either HTM

would need factors from several equal months to properly learn anything about a particular

month, or it would need factors from several entire years to learn the variances between months

and even seasons. This conclusion is in line with the principles of the analogue method of

forecasting.

The next question is whether to use hourly factors or daily factors. In reality those options are

not exhaustive, although circumstances dictate there is but one. The only way to find many

months and years of weather data is in historical weather archives. Archives do not record
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hourly factors because of the shear amount of data that would be stored each year, so they usu-

ally only record daily metrics which are the average of the max and min values of the day. There

are archives with measurements from several decades ago, although the downside is that they

do not store forecasts. Some weather websites provide APIs enabling users to retrieve current

weather conditions and forecasts. The forecasts usually range from hourly for the current and

next day to daily forecasts up to 25 days. From the previous discussion, several years worth of

data from such websites would need to be collected just to get forecasts, something which is

impossible to achieve in the span of a master’s thesis. Had it been possible though, NuPIC’s

forecast accuracy could have been compared to NWP forecasts.

Having settled for finding a historical weather archive, I searched extensively and found only a

handful of websites/services that provide free weather archives that are downloadable en masse.

Since a minimum of 3000 records were needed, it meant that the data set would have to consist

of at least eight years of daily measurements. One such website that passed this criteria was

eklima.met.no which is the climate database of the Norwegian Meteorological Institute (NMI).

The NMI collects weather data from automatic weather stations (AWS) all over Norway in-

cluding some airports, which provided enough places to choose from. However, data selection

was still quite difficult since many AWS do not record all the weather factors required for this

research. Additionally, not all stations that do record all the required factors today, have done so

in the past eight years. And on top of that, almost all stations have missing measurements, some

of which span the length of entire months. The final requirement was that the altitude of the

weather station be as close to sea level as possible for the reasons that elevation has additional

effects on temperature, wind, and precipitation. Since the weather is already complex enough,

it would be best to keep the amount of factors at play to a minimum. In the end, extremely

few stations qualified all those prerequisites. One such station which proved promising was the

lighthouse at Strømtangen, in the municipality of Fredrikstad, which is located south east in

Norway. This station had reliable measurements dating back to January 2004, which meant that

at least a decade of factors could be used. Because precipitation measurements were readily

available from this weather station, I decided to include precipitation as the sixth weather factor

to work on forecasting.

4.2 Evaluation
This thesis evaluates how well the practical implementation of HTM called NuPIC can forecast

the weather using the analogue method compared to both the actual occurring weather con-

ditions and another less sophisticated analogue method. Additionally, it evaluates the HTM’s

ability to detect anomalies in the weather data used for forecasting. While it would be advanta-

geous to compare NuPIC’s forecast accuracy to actual weather forecasts that use NWP methods
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such as in the news, it should be clear by now why it cannot be the case. The intent is to use the

unmodified version of NuPIC to attempt to predict the various weather factors discussed for the

next four days. Despite NuPIC remaining unmodified, there are numerous parameter values in

the encoder, SP and TM algorithms that can be tweaked to adapt and optimize NuPIC for the

task.

4.3 Related work

4.3.1 ANNs used in weather forecasting

The study of meteorology dates back millennia and ANNs have existed for quite a few decades

now, so it should come as no surprise that a good deal of research has already been done on

the use of ANNs in weather forecasting. A variety of different ANNs have been used, such

as multilayer perceptron networks [28], radial basis function networks [29], recurrent neural

networks, and ensemble-based networks [30], which outperformed all other solitary networks

on prediction accuracy. ANNs have been applied in different ways to forecast various weather

factors, including fog [31] and tornadoes [32]. The experiments used data from one or more

locations to predict one or more factors. Likewise, the span of the data sets ranged from several

days to years, with most factor measurements being collected on an x-hour(s) basis. Summa-

rized, ANNs have been found capable to forecast various weather factors several hours into the

future, and in particular when used as a post processing tool [33] for NWP models. Despite the

ingenuity of ANNs, numerical weather prediction still remains the best forecasting technique to

this day, which indicates that ANNs are no holy grail.

Even though the aforementioned ANNs were very different from HTM, there were some valu-

able practices that could be applied in this thesis. The first one was using an equation for mea-

suring the success of prediction called the root mean square error (RMSE) defined as:

RMSE =

√
(p1 − a1)2 + (p2 − a2)2 + ...+ (pn − an)2

n
(4.1)

where pt and at is the predicted and actual value respectively at time t, and n is the total amount

of predictions. The second one was normalizing the various weather measurements from their

different numerical ranges to values between 0 and 1. This normalization would have the benefit

of removing the need to fine-tune the parameters of the encoder for every weather factor. The

final beneficial practice was removing records that had some missing measurements, instead of

doing linear interpolation between the previous and next complete record to fill out the missing

records. Given the process that HTM uses to learn, removing records altogether could lead to

wrong sequences being learned between values each time such a cut is performed. However,

performing interpolation between two values that might be a month apart to fill in the gaps,
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would lead to a much larger number of wrong sequences being learned. Therefore, the former

option was was adopted.

4.3.2 Applications that utilize HTM

Since the development of HTM, several applications have been created both by Numenta as

example applications and their commercial partners. HTM for Stocks1 analyzes a company’s

stock prices and Twitter feed to detect anomalies in real time and gives alerts when something

unusual is happening. Likewise, Grok2 detects anomalies in servers and applications by mon-

itoring various factors such as CPU, RAM, and Internet connection usage. The last example

application is Retina API and Retina Spark 3, which use HTM by converting words from texts

to SDRs in order to create ‘semantic fingerprints’. These ‘semantic fingerprints’ can then be

used to do things such as compare files for semantic similarity, and search, filter and index texts

based on meaning. Despite the HTM’s compelling ability to perform predictions, the majority

of applications focused on using its anomaly detection capabilities. Since no documented re-

search has been conducted into the utilization of HTM for weather forecasting, this thesis will

be the first to do so.

1http://numenta.com/htm-for-stocks/
2grokstream.com
3cortical.io
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Running NuPIC

5.1 My setup
All research conducted for this thesis was performed on a personal computer with the following

specifications, using the NuPIC version 0.5.5.

Host machine
CPU Intel i5-4670K, 4 cores, 3.40GHz

RAM 16 GB

SSD 256 GB

OS Windows 10 Pro, 64-Bit

Virtual machine
VM VMware Worstation 12 Player, v.12.0.5

CPU 2 cores, 3.40GHz

RAM 6 GB

SSD 20 GB

OS Ubuntu 14.04 LTS, 64-Bit

Although NuPIC was mostly developed in Python, it uses a collection of third-party libraries.

Since the overwhelming majority of Numenta employees use Mac OS X, those dependencies

were mainly managed for that OS. Since OS X has UNIX roots, the management of dependen-

cies was easily adapted to Linux OSes, which led to the Ubuntu OS being supported. Later on,

more OSes were able to run NuPIC, including Windows, although users would mostly have to

resolve dependency issues on their own. At the beginning of my thesis research, I used the Java

implementation of NuPIC called HTM.java, although I stopped because it lacked the swarming

algorithm. This problem led me to use the official NuPIC implementation. First, I tried to run

it on a Windows OS, but was ultimately unable. Later, I managed to run NuPIC in a virtual

machine on a Ubuntu OS.
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5.2 Trial and error
A good deal of trial and error was needed to successfully run NuPIC. Most of my problems were

probably due to incomplete understanding of the NuPIC code and not being able to speak with

the original developers of the software. At the start of my research, I ran a great deal of tests

with various data sets, fully believing that the swarming algorithm would find the best values for

the parameters in the model params file described in Section 3.1.2. While it may have been

naive of me to do so, the NuPIC documentation did not warn me of any issues. Unfortunately,

the parameters obtained from the swarm resulted in bad and inconsistent predictions, while the

anomaly scores were either too high or too low throughout the data. Although I was using the

Online prediction Framework (OPF), I still had to manually input certain properties pertaining

to the swarming algorithm and manage the extraction of results from the OPF. To automate

all these tasks and make testing more effective, I modified a management script created by

a Numenta employee, which takes care of an entire HTM run from start to finish. Such a

run includes providing the necessary properties to the swarm and running it, feeding the input

data to the OPF with the parameters provided by the swarm, extracting output predictions and

anomaly scores from the OPF, and finally running a performance test on the results.

After having carried out a multitude of tests, I came to the conclusion that the swarming al-

gorithm often used the values 21 and 22 for the encoder parameters w and n respectively. So

although the size of w was fine, the size of n meant that according to Equation 2.1, the encoder

used only two buckets. This meant that half of all input values were encoded to one represen-

tation, while the other half were encoded to another representation. Consequently, HTM was

learning and predicting an interpreted pattern that was very different from the intended one.

While increasing the value of n was fairly easy, determining the best value was not. Testing

revealed that having exactly one bucket for every value within the data range gave quite poor

results, while having 4 to 5 times as many buckets compared to values yielded the best results,

which was achieved with an n of approximately 500.

Despite an improvement in predicted results after fixing the issue above, there was still some-

thing awry with the predictions. It seemed as if the predictions became increasingly better in

the first couple of hundred inputs, until they slowly began to degrade, even though the same

simple input pattern was repeated endlessly. After more testing, I located the problem to a pa-

rameter called maxBoost. Briefly explained, maxBoost was an implementation specific process

used by the SP to increase the activity of columns that were unused, in order to maintain the

sparsity of SDRs. Deactivating this process improved prediction results considerably, and was

later confirmed to be a known issue by Numenta employees.

The final issue only appeared halfway through the thesis year when the CLA classifier (CLAc)

was updated to a newer version called the SDR classifier, which creates likelihood distributions
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using a simple feedforward ANN. Although it performed better than the CLAc, it had an issue

that caused all predictions to be identical to the input value at that time step. I found the issue

to be caused by a classifier parameter called alpha, which simply described, determines how

fast the classifier should learn new values at the cost of forgetting older ones. When this alpha

was below a certain threshold, it caused the SDR classifier to malfunction. I avoided this issue

by simply using the CLAc when using alpha values below the threshold and using the SDR

classifier when above it. Discovering and resolving these small issues provided much insight

into NuPIC, though they invalidated many of my prior tests and forced me to redo a lot of work

multiple times.

5.3 Simple data sets
Learning the theory of HTM was the first step to understanding the algorithms. Learning about

NuPIC and its architecture was the second logical step in gaining an understanding of the practi-

cal side of HTM. Running NuPIC was the third and final step in comprehending it all. Although

I cannot show everything that I have tested, I can demonstrate some NuPIC runs using diverse

data sets under controlled conditions. The following demonstrations and experiments have been

executed with all the previously described issues resolved. In addition, to minimize the amount

of potential errors, I reused the same encoder parameters by simply normalizing the data sets

to values between 0 and 1 and used no more than 100 different values. For the demonstrations,

I devised of two ways to assess the prediction accuracy of a pattern. The first is the most strict

and requires calculating the amount of times a pattern needs to be repeated (i.e the number of

pattern iterations) for NuPIC to perfectly predict an entire pattern. The second way is similar

but more forgiving, by calculating the amount of pattern iterations needed to correctly predict

90% of all values in a pattern. To be fair, there was no scientific reason for choosing the 90%

mark, I simply believed it was a high enough success rate to warrant satisfactory results for

most cases. Furthermore, an argument against solely using the former metric was that waiting

for NuPIC to perfectly learn an entire pattern would be both unnecessary for most tasks, and

subject to some issues that will be discussed later.

Linear pattern
The simplest pattern that I could create was a linear pattern: 0, 1, 2,..., 100, 0, 1, 2, etc repeated

40 times. For this example I performed the test predicting only 1 step into the future. The

graph in Figure 5.1 shows that at the very beginning, when the pattern was seen for the first

time, NuPIC had no idea about any future values and predicts seemingly random values that

were previously seen. On the next pattern iteration, the predictions are much better, though

obvious prediction errors can be witnessed later on. The anomaly score was unsurprisingly

high throughout the entire first iteration of the pattern, and fell off very quickly afterwards. The
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anomaly likelihood however begins always at 0.5 and needs a couple of hundred records to

process before it can start producing actual anomaly likelihood scores. Like the former score,

it drops down, though not completely. In total, it took 11 pattern iterations for NuPIC to cor-

rectly predict 90% of the pattern, and 20 iterations to learn it perfectly with an anomaly score

of 0 throughout it all in the end. The erroneous predictions that can be seen between time step

500 and 900 happen randomly but not very often and they always eventually cease to happen

as NuPIC learns a pattern more and more. An explanation of these erroneous predictions is

provided in the next chapter due to the complexity of the problem. While it is inconvenient

to display more than one prediction at a time, NuPIC successfully managed to make multiple

simultaneous predictions for 1, 2, 3, and 4 time steps into the future. Since the CLAc is re-

sponsible for creating all predictions irrespective of the number of time steps, it took just as

many iterations as previously to correctly predict 90% of the pattern with all four predictions

simultaneously.

Figure 5.1: This graph shows how NuPIC handles a linear pattern. The x-axis represents the time steps,

and the y-axis represents the values at the corresponding time step. The blue line represents the linear

pattern, and the red line represents NuPIC’s predictions. The values have been aligned so that at any

given time step, the predictions can be compared to the actual values at that time step. The yellow line

represents the anomaly score and the green line represents the anomaly likelihood score.

Random patterns
The next demonstration was intended to show NuPIC’s ability to learn randomly generated

patterns. It is reasonable to assume that longer patterns with more convoluted values would

take longer to learn. So to show this, random patterns were created using different lengths and

different value ranges to vary the concentration of values. The results have been gathered in

Figure 5.2, and show that there was no apparent connection between the length of a pattern

and the amount of iterations necessary to learn it. Likewise, there was no obvious connection

between the concentration of values and number of iterations needed. The only apparent thing

was that approximately 20 pattern iterations of the same pattern were required to learn it using

the 90% metric.
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Figure 5.2: A graph demonstrating the amount of pattern iterations necessary to learn a pattern based

on the 90% metric, denoted by the y-axis. The x-axis shows the range of the random values, while the

colored bars represent the length of each pattern.

Generalization
Despite the fact that NuPIC is all about learning patterns, it cannot generalize its knowledge

about learned patterns, given how cells in the TM represent specific values and make connec-

tions to other distinct cells. For example, if NuPIC was to learn a pattern consisting of several

numbers and then be given a series of new numbers arranged in a similar pattern to the previ-

ous one, but with either higher, lower, or stretched values (i.e. multiplied by common a factor),

it would be unable to correctly predict any of them. Additionally, it would output very high

anomaly scores for each new value, and more while it would be learning their pattern.

When contemplating about this issue, I came up with the idea of making NuPIC’s anomaly

detection less sensitive to new values, and focus more on anomalous patterns irrespective of the

specific numbers. I would achieve this by abstracting over the distinct numbers in a pattern,

by calculating both the differences and ratios between subsequent values. This would ensure

that any previously learned pattern would still be recognised no matter if it were shifted higher,

lower, or stretched. To accomplish this in practice, I would simply pre-process a data set by

performing the aforementioned calculations and store the results into their own separate files.

Next, I would have to run NuPIC over the original data and the new data files. Finally, I would

gather the anomaly scores of all three data sets, and calculate their average, producing a new
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encompassing anomaly score for each record. My theory was that such a composite anomaly

score would still retain the anomaly detection capabilities of the original one. However, it would

now need the support of at least one of the other two anomaly scores, to become high enough

to warrant interest. This theory will be tested in the next section.

5.4 Oil prices
This section is both a demonstration and an experiment performed using a real world data set,

consisting of daily crude oil dollar prices spanning from January 1986 to December 2015. The

purpose of this experiment was to observe how HTM would work with real data that is both

messy and quite unpredictable. The unpredictability is caused by many factors that influence

the price of oil, ranging from small daily fluctuations to economic and geopolitical events [34].

I presumed that NuPIC would not be able to predict any of the sudden drops or increases in oil

prices due to the previously mentioned reasons, since it would have no way of receiving infor-

mation from other sources. However, I was very interested in exploring the anomaly detection

capabilities, and seeing if it would raise any red flags at the moment of, or better yet, prior to any

such big event. For this experiment, I ran NuPIC through the entire data set only once.

Figure 5.3: An overview of the oil price from 1986 to 2015. The blue line represents the actual oil price,

the red line represents next day predictions, and the yellow spikes represent anomaly scores.

Figure 5.4: A close up of the graph between 1986 and 2003.
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Figure 5.5: A close up of the graph between 2004 and 2015.

Figure 5.6: An overview similar to Figure 5.3, displaying the anomaly likelihood score results.

The results in Figure 5.3, 5.4, and 5.5 revealed that real life was indeed messy, with anomaly

spikes throughout most years, with particularly many spikes from 2004 til the end of 2015.

Figure 5.6 showed that using the anomaly likelihood metric resulted in even more spikes making

it virtually useless in this experiment. The reason that there were so many spikes during the

latter period was as I hypothesised and discussed, the fact that NuPIC could not generalize any

of its previously learned patterns. This meant that every new value that had never been seen

before was regarded automatically as an anomaly, even if it had occurred in a pattern that was

previously learned before, albeit with lesser values. In addition to all that, the oil prices between

the years 2004 and 2015 were very unstable compared to 1987 and 2003, which led to additional

anomaly spikes. For this reason, I decided to divide the data into those two periods. This way,

it would give a more correct picture of NuPIC’s ability to detect anomalies. The year 1986 was

also artificially anomalous due to the data still being very new to NuPIC, so I decided to ignore

everything prior to 1987.

I collected the anomaly data into Table 5.1 by separating it into the two mentioned periods.

Each period was then divided into the amount of anomalies that had an anomaly score ≥ 0.5,

≥ 0.75 and, ≥ 0.9. The first two rows contained the anomaly and anomaly likelihood scores,

while the last two contained the composite anomaly and composite anomaly likelihood scores.

In the first row, there were 403 anomalies between 1987 and 2015 with a score ≥ 0.5, which

was far too many for me to investigate. However the corresponding amount for the anomaly
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likelihood row was far bigger with no less than 4320 anomalies. I therefore turned my focus

on the anomalies with scores ≥ 0.75, and although there were still too many in total, there

was a manageable amount in the first period. I researched the dates of the 24 anomalies by

doing both some general history research and searching in a series of Wikipedia pages [35]

with information about major historical economic and geopolitical events that affected the price

of oil. According to my research, 13 of the 24 anomalies coincided directly to the dates of such

major events. All of them were caused by events resulting from the Gulf war with the exception

of the last one which was caused by fears of an incoming economic recession. Four anomalies

seemed to be caused by the aftermath of major events, because they all happened the day after

one. Of the remaining seven, only one anomaly could potentially be considered an anomaly

foreshadowing event, as it happened the day before the Oil Pollution Act of 1990 was enacted

into law in the US. Of the 14 with scores ≥ 0.9 between 1987 and 2003, only seven coincided

with economical and/or geopolitical events that happened that day. Amongst the remaining

seven, three were aftermath events.

1987-2003 2004-2015 1987-2015

≥0.50 ≥0.75 ≥0.90 ≥0.50 ≥0.75 ≥0.90 ≥0.50 ≥0.75 ≥0.90

A. 61 24 14 342 185 126 403 209 140

A.L. 1740 552 312 2580 1179 737 4320 1731 1049

C.A. 51 16 5 262 62 11 313 78 16

C.A.L. 1332 272 91 2472 975 477 3804 1247 568

Table 5.1: A. = Anomaly scores, A.L. = Anomaly likelihood scores, C.A. = Composite anomaly scores,

C.A.L = Composite anomaly likelihood scores. Each column in the table represents the amount of

anomalies with scores greater than or equal to X using the corresponding anomaly metric. The total

period between 1987 and 2015 has been divided into the two intermediate periods of 1987 to 2003 and

2004 to 2015 for distinctness.

In the period between 2004 to 2015, NuPIC detected 185 anomalies with an anomaly score

≥ 0.75. While I could have painstakingly checked each one of them, I knew that many of

them were caused by NuPIC reacting to both completely new values, and learning their patterns

for the first time. Therefore, I decided it was time to see how well my composite anomaly

score method would fair in this experiment by running it through the steps described earlier on.

Looking at the results for the first period from 1987 to 2003 once more, only 16 anomalies were

recorded to have a composite score ≥ 0.75. Again, eight coincided directly with major events

and one was an anomaly potentially foreshadowing an event. The “red flag” happened the day

prior to an official announcement from the American Petroleum Institute about a decrease in the

nation’s oil inventory. Amongst the five anomalies with a composite score≥ 0.9, four coincided
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with major events. In the second period between 2004 and 2015, even though there were only

62 anomalies compared to 185 with scores ≥ 0.75, there were still far too many anomalies

for me to investigate. I therefore decided to only look at the anomalies with scores ≥ 0.9, of

which there were only 11. I found that five were coinciding with major events, and one was the

aftermath of an event. The majority of the coinciding events were caused by the 2008 global

financial crisis. I added the score results of both the anomaly likelihood and composite anomaly

likelihood for perspective and completeness. It became obvious however, that there were far too

many anomalies for me to research all of them.

This experiment revealed that the plain anomaly metric was rather decent at finding anomalies

in the data that could be linked to actual real world events. However, the constraint was that

the data must remain in its original range for a while to give NuPIC enough time to learn the

patterns within. The composite anomaly method was also quite successful when used on the

first period between 1987 and 2003. Although it was less successful during the second period

between 2004 and 2015, it still managed to give some relevant results when the data landscape

was very new and unstable. The anomaly likelihood and composite anomaly likelihood metrics

however were essentially useless unfortunately, which led me to abandon them.

5.5 The weather
Given that NuPIC could be used for both prediction and anomaly detection purposes, I decided

to divide the running of the weather data into those two main categories. I would first research

NuPIC’s ability to forecast the weather using its different available techniques and with differ-

ently composed data sets. Subsequently, I would research to what extent NuPIC could detect

anomalies in the weather. I already discussed the weather data that I would utilize for this thesis

in Section 4.1, so I will now give some more details about it. The weather data was collected

from a lighthouse located south east of Norway and spans the period from the 1st of January

2003 to the 31st of December 2015. Although the period contains 4747 days in total, I had to

remove 214 records from the data set due to missing measurements or erroneous values, for

a final total of 4533 records. The data consists of six weather factors that were recorded by

calculating the daily mean from the corresponding amount of measurements.
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Factor Unit Measurements/day Max value Min value

Wind direction degrees 3 360 0

Wind speed m/s 4 18.2 0.5

Atmospheric pressure hPa 24 1047.4 966.0

Precipitation mm 24 84.4 0.0

Temperature ºC 24 24.1 -15.0

Humidity % 24 100 32

Table 5.2: This table shows information about the recorded data of each weather factor. The unit of

measurement shows which metric was used to record each factor. The measurements per day column

shows how many times each factor was measured during a day. The columns for the max and min values

show what the maximum and minimum recorded values were for each weather factor.

Table 5.2 shows that there is a disparity between the amount of wind related measurements per

day and all the other measurements, which is unfortunate for the sake of consistency. Despite

each factor’s unit and range of values, I also discussed that I would follow the helpful prac-

tices of previous researchers by normalizing all the measurements to values between 0.00 and

1.00 (both inclusive). Looking at the max and min values of each factor, there was no issue

normalizing them, apart from the wind direction which lost some of its original resolution. It

should not be an issue however since the eight cardinal directions are usually enough for most

forecasts.

5.5.1 Predicting the weather

Originally, my intentions were to first run NuPIC individually for each weather factor, and then

run NuPIC by inputting multiple factors simultaneously, albeit only to predict one factor at a

time. Unfortunately, my latter objective was unachievable because NuPIC could not correctly

process multiple simultaneous inputs. It produced worse predictions with multiple inputs than

single inputs even when its own calculations were telling otherwise. My discovery was later

tested and confirmed by Numenta employees. I would therefore have to keep my research to

only one metric per run.

In Section 4.1, I explained about using the Root Mean Square Error (RMSE) as the performance

metric for assessing predictions. The smaller the RMSE score, the better the predictions, since

it means that the differences between the predictions and the actual values were small. Since

I normalized the measurement values, the RMSE score would appear artificially small, so I

decided that I would multiply the scores by 100 to make them more easily readable and com-

parable to each other. To better evaluate the performance of NuPIC’s predictions, I concluded
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in Section 4.2 that I would use another less sophisticated analogue method as comparison. This

method would be to simply use the average of the last x days of measurements as the basis of

its next four days of forecasts.

Finally, the last detail was to determine how many records would be used as the training set and

test set. The length of the data spanned 12 years, with each year representing the four seasonal

weather cycles. This meant that the minimum test set should contain one year of data. As for

the training set, Numenta’s recommendation was to use at least 3000 values for proper training,

so the training set would have to consist of at least nine years. I decided to use an even number

and increased the training set to ten years which left one spare year that was added to the test set

for a total of two years. Summarized, it meant that each separate data set would be input into

NuPIC from the first year to the last. The predictions from the first ten years would be ignored,

while the predictions for the last two years would be used as the basis for evaluating the RMSE

score. One way to expand the training set using what I learned when testing the random patterns,

was that HTM needed multiple pattern iterations to predict them better. I therefore decided to

run two additional separate series of tests that use 25 and 50 consecutive iterations of training

sets, which I will refer to as ‘training set iterations’ or TSI. In other words, each data set would

consist of the first ten years repeated 25 or 50 times consecutively, followed by the last two test

set years.

Figures 5.7–5.12 show the (normalized) recordings of the last two years of each weather factor

in blue. The red line shows NuPIC’s predictions for the next day and has been shifted to show

how well the predictions overlap or differ with the actual values.

Figure 5.7: Wind direction. All these graphs were based on the results from running only one training

set iteration. All these figures show the results from the last two years of the data sets, i.e the test sets.

The x-axis denotes the time steps into the data set, while the y-axis denotes the values.
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Figure 5.8: Wind speed.

Figure 5.9: Pressure.

Figure 5.10: Precipitation.

Figure 5.11: Temperature.
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Figure 5.12: Humidity.

RMSE scores from using NuPIC

Wind direction Wind speed Pressure Precipitation Temperature Humidity

1
T

SI

1D 27.54 17.16 8.31 7.15 4.50 14.85

2D 29.32 21.44 11.83 7.16 6.46 18.08

3D 32.24 21.78 13.57 7.16 7.40 18.73

4D 32.38 21.63 14.29 7.16 8.03 18.61

25
T

SI

1D 28.50 18.40 8.90 7.23 4.80 15.90

2D 31.03 21.23 12.89 7.22 6.59 19.43

3D 32.09 21.68 14.89 7.17 7.62 18.95

4D 32.65 21.86 15.41 7.16 8.46 19.51

50
T

SI

1D 29.54 19.56 10.67 7.91 5.53 17.95

2D 32.39 20.14 13.08 7.95 6.50 18.43

3D 34.62 21.92 15.21 7.76 7.95 20.70

4D 35.57 22.19 17.71 8.30 8.84 21.13

Table 5.3: TSI = training set iteration, XD = scores for the predictions X days ahead. The columns

represent the RMSE values of each distinct weather factor, while the three sections of rows contain the

results for the various iterations over the training set. Within each TSI, each smaller row shows the

RMSE scores for forecasting one to four days ahead.

I collected the RMSE scores from all the aforementioned tests in Table 5.3. Looking at it,

one of the most surprising things was that the RMSE scores were better for almost all weather

factors when NuPIC iterated only once over the training set rather than 25 or even 50 times.

The only exception seemed to be the wind speed, which had a better one and four day forecast

with one training set iteration but slightly better two and three day forecast using 25 iterations.

The next point was the clear distinction in score performance for each weather factor, with

the temperature scores having the lowest RMSE values and wind direction the highest values.

While the RMSE scores on their own were compelling, they did not reveal much on their own.
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So I created predictions for the next four days using the averaging technique discussed earlier

and noted the RMSE scores in Table 5.4.

RMSE scores from using the average of the last X days

Wind direction Wind speed Pressure Precipitation Temperature Humidity

la
st

1
da

y 1D 27.04 16.34 8.08 8.05 4.33 14.30

2D 31.35 20.76 12.47 8.90 6.16 18.43

3D 32.64 22.18 15.05 9.16 7.23 19.26

4D 34.15 22.77 16.74 9.20 7.98 19.92

la
st

3
da

ys

1D 25.54 17.01 10.86 7.26 5.36 14.89

2D 28.22 19.29 13.79 7.71 6.62 16.90

3D 29.68 20.10 15.63 7.71 7.40 17.84

4D 30.04 20.41 16.84 7.58 7.92 18.30

la
st

7
da

ys

1D 25.48 17.08 13.13 6.76 6.36 15.17

2D 26.70 18.24 14.87 6.92 7.01 16.22

3D 27.40 18.76 16.07 6.97 7.43 16.67

4D 27.40 18.94 16.94 6.95 7.73 16.82

Table 5.4: Last X days = average based on last X days. The columns represent the RMSE values of

each distinct weather factor, while the rows are divided into the amount of last X days. The ‘last X days’

refers to the amount of past day values used to calculate an average value used to predict the next one to

four days. Within each main row, a smaller row shows the RMSE scores for forecasting one to four days

ahead.

The averaging technique generated forecasts by calculating the average of the last one, three or

seven days and using the result as the predicted conditions for the next one to four days. Table

5.4 shows the RMSE scores from using the averaging technique. The score distribution amongst

the weather factors displayed many similar features to the previous table. Here however, there

is a distinction between the factors as to how many past days the average should be calculated

from to produce the most accurate forecasts. While in Table 5.3, it was clear which TSI row

generated the best RMSE results for each weather factor, it was not as easy to see which ‘last

X days’ main row generated the best RMSE results in Table 5.4. Since RMSE scores are better

the lower they are, for each column I added up the scores in each main row and chose the main

row with the lowest total as the one with the four best forecasts. This meant that the averaging

technique produced the best forecasts based on the average of the last seven days for the wind

direction, wind speed, precipitation, and humidity factors. The pressure and temperature factors

on the other hand, were best predicted by using the average of the last day, i.e forecast the next

four days to have equal conditions to the current one.
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NuPIC’s RMSE scores compared to the best average RMSE scores

Wind direction Wind speed Pressure Precipitation Temperature Humidity

1D +8.08% +0.47% +2.85% +5.77% +3.93% -2.11%

2D +9.81% +17.54% -5.13% +3.47% +4.87% +11.47%

3D +17.66% +16.10% -9.83% +2.73% +2.35% +12.36%

4D +18.18% +14.20 -14.64% +3.02% +0.63% +10.64%

Table 5.5: The percentage values denote how much higher or lower NuPIC’s RMSE scores were, com-

pared to the RMSE scores of the averaging technique. Positive values mean that NuPIC’s RMSE score

was higher and thus performed worse than the averaging technique, while negative values mean that

NuPIC’s RMSE score was lower and thus performed better.

Table 5.5 shows how NuPIC’s RMSE scores compare to the scores from the average technique.

They indicate that all weather factors except for the pressure and humidity were better predicted

using the much simpler averaging technique, than the sophisticated HTM algorithms. NuPIC’s

results on the atmospheric pressure increasingly outperformed the averaging technique by a fair

amount when forecasting two, three, and four days ahead. Humidity was the second factor

where NuPIC was able to outperform the averaging technique, albeit by a smaller amount than

previously and only for forecasts one day ahead. As for the rest of the factors, the averaging

technique yielded consistently better results, with NuPIC’s scores being +0.47% higher at the

least to +18.18% at the most.

5.5.2 Detecting anomalies in the weather

To fully test for anomalies, I decided to make use of both the normal anomaly detection ap-

proach and my own composite anomaly detection method. I would run NuPIC on each weather

factor individually with both methods, and then average their results using multiple combina-

tions of factors, to see if any of them yield interesting results. The reasoning for this was that

a weather anomaly could present itself through multiple factors instead of just one. Extreme

weather events and phenomena such as storms, tornadoes, and hurricanes could be prime ex-

amples of anomalies, even though tornadoes and hurricanes are rare in Norway. Researching

extreme weather events, I found that between 2003 and 2015, eight extreme weather events

were recorded in south eastern Norway. Of those eight, only one hit the area of Strømtangen

particularly hard.

After having run NuPIC through several combinations of factor anomalies, and looking only at

anomalies with scores equal to or above 0.75, I found that the number of anomalies changed

from 2 to 91 depending on the exact combination. Figure 5.13 shows such a graph that was

made by taking the average of the anomaly scores from all six weather factors. None of its

44



5.6. Summary

anomalies with scores ≥ 0.75 corresponded to any extreme weather events. Regardless of

the weather factor combinations, none of the anomalies matched any of the dates of the eight

extreme weather events. There were also no signs of any aftermath or foreshadowing anomalies

surrounding those dates. Lastly, my composite scores method did not provide better results.

This can be seen in Figure 5.14 as barely any anomalies with scores ≥ 0.75 are present.

Figure 5.13: Average of anomaly scores from all weather factors.

Figure 5.14: Average of composite anomaly scores from all weather factors.

5.6 Summary
The results in this chapter have shown that NuPIC is capable of learning complex patterns

in varying real world data sets and both provide decent predictions and compelling anomaly

detections. However, the results also show that it has clear limitations which affects the data

sets that it can reliably work with. While it was able to create modest weather forecasts, it was

predominantly outperformed by a much simpler analogue technique, although not completely.

It was not able to detect any noteworthy anomalies in the weather data, though it did detect

very interesting anomalies in the oil data that were connected to real world events. All these

findings indicate that while NuPIC is a competent algorithm, the quality of its results are highly

dependant on whether the properties of a data set conform to its strengths.
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Analysis and discussion

6.1 Peculiar predictions
The linear pattern discussed in Section 5.3 was supposed to demonstrate NuPIC performing the

very simple task of predicting a linear pattern. One of the things that really caught my attention

were the blatantly wrong predictions that appeared at random places throughout the pattern. It

was in part because of those errors that I had to create a distinction between the 90% accuracy

mark and 100% mark. Looking at the linear pattern test, this issue clearly appears multiple

times. What was even more surprising to me was the fact that it looked like NuPIC managed to

learn the pattern several times and generate very accurate predictions, yet repeatedly produce

such wrong predictions. Looking at time step 591 for example, NuPIC received the value 0.92,

and should have predicted the value 0.93. Instead it predicted 0.22, even though the sequence ...,

0.92, 0.22,... had obviously never occurred in the past. Looking at the code, I found that the TM

algorithm was predicting the correct cells located in the columns that would represent the next

SDR value of 0.93. It was in fact the CLA classifier (CLAc) who was to blame for generating

the incorrect prediction. In its likelihood distribution, it had several probable predictions. These

were the values 0.34, 0.22, 0.92 and 0.94, with the respective likelihoods of 0.11%, 99%, 0.6%

and 0.24% (rounded off).

To understand the following explanations, it is crucial that the reader understands how the CLAc

works (explained in Section 3.2). Additionally, because I often use the term contextual SDRs,

I will refer to them as CSDRs. At first I was most surprised to find the value 0.92 in the

CLAc’s likelihood distribution of the CSDR 0.92. I then found that all new CSDRs that have

no likelihood distribution in the CLAc, are automatically provided with a prediction probability

to the value that they represent, so that the CLAc would have at least something to output as

its prediction. However, the first pattern iteration in the linear pattern showed that quite a bit of

new CSDRs did have predictions for values other then their own representations in the CLAc,
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even though it should not have been possible.

The second surprise was the fact that there were so many possible predictions in the likelihood

distribution of the CLAc’s CSDR representation of 0.92, despite none of those values ever

occurring after 0.92 in the pattern. I suspected that the reason for this was because some of

the ‘cells’ in the CLAc that represent the CSDR 0.92 (at time step 591) were shared by other

CSDRs. This meant that some ‘cells’ in the CLAc would be part of multiple different CSDRs,

and thus learn different sequences of values that would be added to their likelihood distribution.

This would ultimately result in the CLAc calculating wrong predictions for certain CSDRs.

However, given that the CLAc binds present values to past CSDRs, it would mean that it was

not the CSDRs 0.34, 0.22, (ignoring 0.92) and 0.94 that shared cells with the CSDR 0.92, but

the CSDR 0.33, 0.21 and 0.93. This is because in the CLAc, the CSDRs representing 0.33, 0.21

and 0.93 would learn to predict the respective values 0.34, 0.22 and 0.94.

To determine what really happened, I first looked at the columns representing the SDRs for the

values 0.92, 0.33, 0.21, and 0.93. The columns representing the SDR 0.92 did indeed share

columns with the other three SDRs. Since it could have been a coincidence or that only the

columns were shared, but no the cells within, I proceeded to dig deeper. I examined the active

cells of the CSDRs that represented the four values, and successfully found a subset of cells

shared amongst 0.92’s CSDR and the other values’ CSDRs. So in simple terms, some of the

‘cells’ in the columns that represented the value 0.92 were also shared in the representations of

the values 0.33, 0.21 and 0.93. So when the CLAc had calculated the total likelihood distribution

of 0.92’s CSDR, the likelihood distribution of the shared ‘cells’ contributed to the total with

probabilities that should not have been there.

Ultimately this meant that since 0.92’s CSDR learned the next sequence to be 0.93 but still

had 0.22 as a possible prediction, so did 0.21’s CSDR have 0.93 as a possible prediction. The

phenomenon of CSDRs sharing predictions with other CSDRs in the CLAc can be most clearly

seen when the CLAc must output predictions from never before seen CSDRs that have no likeli-

hood distributions yet. In the linear pattern for example, this happens in the entire first iteration

of the pattern, where some CSDRs predict themselves while others give predictions of values

that have in fact been learned by previous CSDRs. It should be noted however that the TM

is dynamic and may change the specific cells it chooses from the columns that different SDRs

may share, which explains why this issue is not continual throughout the entire pattern.

Once I had analyzed the issue, I wished to resolve it. However, the fundamental reason that

SDRs shared columns to begin with, was because of the SP algorithm. Its entire purpose was

to create SDRs and represent similar values with similar representations. While the values

0.92 and 0.21 were admittedly very different, SP would still represent values similar to each

other using shared columns. In addition, since SP uses elements of randomness when creating
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representations, there will never be any guarantee that no columns between differing values

would ever be shared. Despite this, I performed many attempts at separating SDRs to have no

shared columns using a variety of different parameter values, but to no avail. While this issue

may not seem very problematic, I believe that it is a fundamental problem that hampers NuPIC’s

potential, especially in the cases when the HTM algorithms predict one thing, while the CLAc

predicts another. For although it was easy to detect this issue for linear patterns it is impossible

to do so for highly non-linear patterns.

6.2 Discussing random patterns and generalization
Earlier in my thesis, I hypothesised that two major pattern properties would play pivotal roles,

the length of a pattern and the concentration of values within. The idea was that longer patterns

and higher concentrations of values would force cortical columns to learn more sequences and

different contexts, ultimately resulting in a need for more iterations for a pattern to be learned.

My analogy would have been to ask a person to try to remember a short or long pattern, with

each value either occurring often or rarely. The graph in Figure 5.2 showed that my hypothesis

was not correct. Longer patterns took about just as many iterations than their shorter coun-

terparts, no matter the concentration of values. As I learned more about the theory of HTM

I understood that the process of learning was not centralized to one unit, but spread amongst

countless SDRs. This meant that instead of just one set of cortical cells learning all sequences,

different subsets of them learned different transitions. For example, while one CSDR repre-

senting 0.31 learned to predict 0.45, an other CSDR representing 0.31 learned to predict 0.89.

The sparsely distributed representations insured that learning was distributed amongst an entire

cortical layer. This explained why NuPIC did not need more pattern iterations to learn patterns

with concentrated values as opposed to patterns with lower concentrations of values. The same

answer could be applied as to why pattern length did not affect learning. One thing that I have

not been able to find an answer to however, was why NuPIC needed to be repeatedly given the

same pattern about 20 times for it to output predictions with a 90% accuracy. My assumption is

that it takes an average of 20 repetitions for a pattern to be confidently learned by the HTM. A

final note about the matter, was why there were some irregularities with some patterns suddenly

taking more or less iterations to learn. Given that the HTM algorithms do have some elements

of randomness at the time of initialization, the CLAc’s imperfections and its statistical nature,

there could never be complete consistency in the process of learning.

I have already talked about the subject of generalization, so I will only add a few more thoughts.

Generalizing is a very complex task, which HTM unfortunately cannot do as of yet. The con-

sequence is that it limits which data sets NuPIC can effectively work with. While NuPIC will

learn everything eventually once it has seen enough values and patterns, it is largely useless
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when seeing new values or when seeing previously seen patterns with different values. This

shortcoming was what drove me to attempt to give NuPIC a very basic ad-hoc generalization

capability to its anomaly detection feature.

6.3 Reviewing the oil runs
In the oil data experiment, a clear example of the consequences of NuPIC’s lack of general-

ization could be seen in Figure 5.3. An overabundance of high anomaly scores seen in Figure

5.5 caused the second period of the data set to be practically impossible to examine. In addi-

tion, I was disappointed by the anomaly likelihood’s (Figure 5.6) clear inferiority to the more

plain anomaly score, given what NuPIC’s documentation suggested. When I first looked at the

anomaly graph, what caught my attention the most was how relatively few anomaly spikes with

scores ≥ 0.75 there were between 1987 and 2003 (Figure 5.4). I knew that oil was a highly

valuable commodity that had deep roots in both the economy and politics of numerous coun-

tries. So I hypothesised that while day-to-day fluctuations in oil prices were normal, abnormally

large fluctuations or irregular sequences of oil prices might indicate that more serious matters

were to blame. My research revealed that a fair number of the higher anomaly scores did in

fact either coincide with major economical/political events or happen the day after. The reason

for including aftermath events was because the impact of an event would be dependant upon its

severity and consequences. In addition, while some nations have daytime others have nighttime

which means that some countries will naturally react to the news of major events a day later

than others, thus bolstering the argument for using aftermath events. In total, 70.8% (13 + 4 /

24) and 71.4% of anomalies with respective scores of≥ 0.75 and≥ 0.9 seemed to be caused by

major events.

Concerning the so called ‘foreshadowing’ anomaly which happened the day before the enact-

ment of the Oil Pollution Act. The reason that I included a foreshadowing anomaly is due to the

HTM’s ability to detect anomalies caused by events that may over time become major events.

Looking over the values leading up to the date of the foreshadowed anomaly with the naked

eye revealed nothing of interest. Dates prior to the foreshadowed anomaly exhibited behaviors

of both higher and lower price changes between subsequent days. Likewise, on the day of the

foreshadowed anomaly, the actual price of 0.14 (normalized) had already occurred in the past,

meaning that it was not new to the HTM. I found no evidence suggesting that the enactment

of the Oil Pollution Act influenced the oil price in any way whatsoever. This indicates that the

occurrence of the anomaly was likely due to pure coincidence instead of some correlation to the

policy enactment.

The composite anomaly method seemed to accomplish its intended job. In the first period,

50.0% of its anomalies with scores ≥ 0.75 were linked to events. Likewise, 80.0% were linked
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to events if only looking at scores ≥ 0.9. The foreshadowing anomaly of the composite method

was quite intriguing. I found multiple past reports of surges in the oil price as a direct result of

public announcements reporting decreases in the oil inventory of countries. Although NuPIC

did not report any anomalies on the actual or following day of the event, it may be that specu-

lation amid the announcement lead to irregular price fluctuations. Although I once again could

not find any evidence supporting my theory, I would have to leave it as plausible correlation. Fi-

nally in the second period, the composite method was indeed able to filter out a lot of anomalies

with high scores, though not enough to warrant examining anomalies with composite anomaly

scores ≥ 0.75. Amongst those with scores ≥ 0.9 however 54.5% were linked to events.

Considering all the results, NuPIC managed to find anomalies in the data that were ostensibly

linked to real world events slightly over 70% of the time if considering only the stable first

period. My method did not seem particularly successful for the first period for scores ≥ 0.75,

but did quite well for scores≥ 0.9. Used in the second period, it only managed to find anomalies

linked to events 54% of the time. However, this examination so far was based on checking if

NuPIC’s anomalies coincided with major events, but not the other way around. When doing

my research, I found many more recorded events that were related to the oil market than there

were anomalies with scores ≥ 0.75 in the first period for example. This implies that NuPIC’s

detected anomalies always had a certain chance of happening on a certain day through statistical

luck. A counter argument could be that do determine this, every single anomaly with a score

≥ 0.5 should be checked. While this would resolve the problem, it would require far too much

work, especially considering the second period. One way to increase the success rate of such

anomalies would have been to add an additional source of information so as to provide NuPIC

with multiple simultaneous inputs as was done with the app HTM for Stocks (described in

Section 4.3.2). While the app monitors the stock and twitter feed of the chosen company as

an additional information source, doing so would be more complex with the oil price since no

single company affects it. In other words, a multitude of companies and organizations would

have to be monitored in order to receive adequate extra information.

6.4 The weather results
NuPIC’s weather forecasts were in general disappointing. The algorithm did not manage to beat

the much more simplistic averaging technique in most cases. However, NuPIC did outperform

the results of the former technique when forecasting the pressure and humidity, but not for

all four days. So the questions that I asked myself were why did it perform generally worse

the more times it was given the training set, and why did it perform worse than the averaging

technique, yet better for some weather factors. I suspected that all these questions were involved

with each other.
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The answer to the first question, revealed itself in Table 5.3 and was tied to the way NuPIC

worked on a conceptual level. NuPIC is a sophisticated pattern remembering algorithm. It

remembers patterns and tries to predict them when seeing segments of them. The more times

it sees a pattern, the more confident it becomes it its predictions. The results showed that

the more times NuPIC iterated over the training set, the worse it performed on the test set.

So if NuPIC remembered the patterns in the training set increasingly better, yet performed

increasingly worse, than it must mean that the patterns in the test set were not similar enough to

the ones that it learned. This fact can be clearly seen given that the forecasts for later days were

consistently worse than for the immediate ones, since the actual values deviated increasingly

more from what NuPIC previously learned.

The next question was why NuPIC performed generally worse than the averaging technique.

The answer is revealed by asking why the averaging technique performed better than NuPIC.

The averaging technique although very simple, is quite good at capturing current trends in the

data. While there is no doubt that the weather is a chaotic system, and can be quite abrupt, it

changes for the most part progressively over days. So although for example the temperature

throughout a day may vary quite a bit, the average between days varies considerably less. In

addition, the weather changes according to trends depending on current and upcoming events

such as high or low pressure systems and incoming warm or cold fronts. This gives the aver-

aging technique an edge by always giving an answer that is somewhere in the middle between

the preceding and current conditions. Although the patterns that NuPIC previously learned in-

cluded their trends, the results indicate that trends are much more specific and reliant on the

actual conditions occurring at the time.

And finally, the last and hardest question was why the pressure factor was so successfully fore-

cast by NuPIC. While I had several theories, I did not manage to prove any one of them. I

believed that the most likely reason would be tied to NuPIC’s strength, meaning that the pat-

terns in the pressure data were the most consistent throughout the years in the training set, and

thus made it possible for NuPIC to correctly predict them in the test set. However, I did not find

an empirical way to measure the similarity between patterns located in different data sets. In

conclusion, despite NuPIC’s unprecedented ability to learn patterns and make predictions based

on them, it unfortunately did not outperform the much simpler averaging technique. While it

was superior in one particular case, there was no way to determine why. Given that the experi-

ment was performed on data gathered from only one location, it would be wise to do multiple

more from several differing locations in order to conclusively determine NuPIC’s capability or

inability to forecast the weather.

Anticlimactically, the detected anomaly results from NuPIC were also very negative. Despite

its quite successful results with the oil data, it was unable to find any worthy anomalies despite
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there being reason to expect eight clear ones. The only explanation that I conceive of is that my

definition for what would constitute an anomaly was different from NuPIC’s. In conclusion,

nothing of interest was found, which may further reinforce the argument that weather data is

unsuited for NuPIC.
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Chapter 7

Conclusion

The goal of this thesis was to evaluate how well the official practical implementation of HTM

called NuPIC could forecast diverse weather data sets. In addition, it would evaluate the HTM’s

ability to detect relevant anomalies in the weather data. The results from chapter 5 have shown

that NuPIC is indeed able to forecast the weather. Unfortunately, despite its sophistication, its

prediction results were for the most part outperformed by a much simpler analogue method

that used the average of the last few days as its forecast basis. The analysis concluded that

due to the weather’s sensitivity to initial conditions, weather patterns rarely repeat themselves

exactly as before. The weather follows trends since it is affected by current and upcoming

events such as pressure systems and fronts. This means that although NuPIC was able to learn

the weather’s past patterns, its predictions could not account for current trends which were

different from the past, despite their similar prior conditions. The reason NuPIC was unable to

factor current trends in its predictions is because of its fundamental inability to generalize. The

averaging technique however, was predicting values that were always in-between the immediate

preceding and current conditions, which meant it was naturally factoring in weather trends into

its predictions. It should be noted that NuPIC’s ability to be input multiple simultaneous metrics

was malfunctioning at the time of the thesis work. Furthermore, due to the CLA classifier’s

current internal issues, it sometimes leads NuPIC to make predictions that are different and

sometimes worse than what the core HTM algorithms predict. This implies that if all these

issues were to be fixed, NuPIC’s forecast performance could have potentially surpassed the

averaging technique. All these points indicate that the current version of NuPIC is unsuited for

weather forecasting, although not conclusively.

NuPIC was sadly completely unable to detect any noteworthy anomalies in the weather data,

which again is most likely connected to the weather data’s chaotic nature. The anomalies with

high scores did not coincide with any recorded extreme weather events, while the amount of

anomalies with lower scores was far too great to be investigated. However, the oil data results
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revealed that NuPIC can detect anomalies related to major economic and/or geopolitical events.

Going solely by oil prices, it managed to detect anomalies linked to major events 70% of the

time when looking at scores equal to or above 0.75. The lack of generalization once again

proved to be a major hindrance when oil prices started to rise above the usual values in 2004,

leading to too many anomalies. My ad hoc composite anomaly score method helped to some-

what alleviate this problem, decreasing the amount of anomalies across the board, although it

was not as successful at finding anomalies linked to major events as the original method. While

the particular case of detecting anomalies linked to major real world events is admittedly not

very useful since anyone following the news would be aware of such events, it is a proof of

concept. Used on the right data, NuPIC could detect major world events with decent accuracy

in real time.

In conclusion, NuPIC is a proficient algorithm that can learn patterns in complex real world data

to both make predictions, and detect anomalies in the data. However, the quality of NuPIC’s

results are highly dependant on whether the properties of the data set conforms to its strengths

or weaknesses. If Numenta is ever able to implement functional hierarchies that enables gen-

eralization, it could potentially become one of the most powerful learning algorithms made by

mankind.
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