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Summary 

The Palaeogene Grumantbyen Formation is one of the least understood formations in the geology of 

Svalbard. The objective of this thesis was to get a better understanding of the sedimentological 

development and depositional environment of the formation through detailed ichnological, lithological 

and petrographical studies. Finally, a detailed description of the reservoir quality of the formation will 

be presented.   

 

The Grumantbyen Formation is highly bioturbated throughout the whole succession with only few 

signs of physical sedimentary structures. The ichnological study has led to an interpretation of seven 

different ichnofabrics occurring in the formation. There is a gradual transition between these 

ichnofabrics, and they are implying a change from a distal to a more proximal environment from the 

bottom to the top of the succession. 5 different lithofacies have been interpreted, and they show that 

the succession is gradually coarsening and shallowing upward from an offshore deposited sandy 

siltstone towards an upper shoreface deposited light silty sandstone. A gravel layer appearing erosional 

on top of the upper shoreface deposited lithofacies has been interpreted to represent a transgressive lag 

associated with the major flooding of the Grumantbyen Formation, and deposition of the 

superimposed Frysjaodden Formation. 

 

The petrographical study shows a gradual increase in grain-size, better sorting, roundness, shape of the 

grains and decrease in matrix from the most distal towards the most proximal-lithofacies. This 

suggests that the energy conditions are getting stronger as a result of a gradual shallowing upward 

trend in the succession. The formation’s appearance of glauconite in combination with high 

bioturbation intensity, lack of physical sedimentary structures and sandy input, has in this study been 

interpreted to represent a system with very little sediment input. A possible low, but continuous 

sediment input, which was greater than the available accommodation space is suggested, in order to 

have suitable conditions for glauconization and intense bioturbation. The buildup and progradation of 

the Grumantbyen Formation is therefore suggested to have been a slow process. A suggested 

shoreline-attached shallow-marine depositional environment is proposed. Possibly being a slightly 

prograding shoreface succession, that was provided with sediments from a source in the north-eastern 

parts of the system and prograded in a south-western direction.  

 

The amount of matrix, cement and degree of compaction is suggested to have been the most important 

factors having a negative impact on the reservoir quality, leading to substantial loss of pore-space, due 

to significant burial. The reservoir quality of the Grumantbyen Formation was potentially good before 

significant burial, due to the grain-sorting behavior of organisms bioturbating the substrate, leading to 

well communication in the pore-network.  
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1 Introduction 
1.1 Background 

This thesis is based on well-data from well BH-10-2008 (Sysselmannbreen), BH-9-2006 and outcrop 

data from Bolterdalen, on Nordenskiöld Land, Svalbard. The Sysselmannbreen core was drilled on 

Nathorst Land, Svalbard for scientific purposes as collaboration between Statoil, Store Norske 

Kullkompani and NGU, to investigate the development of a prograding shelf. The core covers the 

Palaeogene Central Basin succession including the Grumantbyen Formation. Store Norske Spitsbergen 

Kullkompani has, in relation to coal prospects in the Todalen member of the Firkanten Formation, 

drilled multiple cores on Nordenskiöld Land which includes core material from the Grumantbyen 

Formation. Well BH-9-2006 is one of those wells drilled which have been investigated in this thesis.  

 

Objective 

Much work has been done on the deposits in the Palaeogene Central Basin. The Grumantbyen 

Formation however, being well exposed in the area around Longyearbyen, Adventdalen, lacks detailed 

studies and therefore it still remains as one of the least understood formations in the geology of 

Svalbard. Therefore the main objective of this thesis is to get a better understanding of the 

sedimentological development and depositional environment of the formation based on detailed 

lithological and ichnological studies of core and log material and through petrographical analysis 

assess the reservoir quality of the formation. 

 

Previous work 

In previous studies, this formation has been interpreted to be mainly deposited in a shelf setting, 

although detailed sedimentary processes and the sequence-stratigraphic development remains poorly 

understood. The “Green sandstone series” was the first name given to the formation by Nathorst 

(1910), and later it was renamed by Major and Nagy (1964) to the Sarkofagen Formation. A few years 

later it received its final and current name by Livsic (1967), which is based on the abandoned Russian 

mining society, Grumantbyen along the coast of Isfjorden, where the formation not surprisingly is well 

exposed. Previous work on the formation is in relation to general studies on the Palaeogene Central 

Basin which includes Kellogg (1975), Steel (1977), Steel et al. (1981), Steel et al. (1985) and Bruhn 

and Steel (2003). Nysæther (1966) performed a petrographical study on the Palaeogene succession on 

Nathorst Land, where the Grumantbyen Formation is referred to as the Sarkofagen Formation. Recent 

work by Simonstad (2011) and Vilberg (2011) have been particularly important for this study. The 

palaeogeographical work done in Espen Simonstads master thesis (2011) on the Grumantbyen 

Formation, acts as a fundament for the work done in this study.   
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1.2 Methods 
Fieldwork and Core Analysis 

Lithological study of wells and outcrop has been a fundamental part of the work done in this thesis. In 

order to examine core material and outcrop, lithostatigraphic logging was necessary (Figure 1.1). 

Lithostratigraphic logging includes measuring thickness of layers/successions, identifying 

discontinuity surfaces, observation of lithology, grain-size, sedimentary structures, trace fossils, 

bioturbation intensity and color. Equipment used during logging of wells and outcrop in the field 

includes; grain-size card, pencils, millimeter paper, binocular, benchmark, ruler, geological hammer, 

hand magnifier and digital camera. A satellite phone with GPS and altimeter was used to measure the 

thickness/height of the entire outcrop and parts of the succession. Wells and outcrop sections were 

logged in the scale of 1:50. The raw logs were later digitized by the use of two different computer 

softwares. Sedlog 3.1 was used to capture lithological changes based on variations in the silt- and sand 

content, which marks the outline of the logs. Adobe Illustrator CC was subsequently used to complete 

the logs with different sedimentary structures, trace fossils, bioturbation intensity, ichnofabrics, 

ichnofacies and color codes.  

 

Figure 1.1: Cores from well BH-9-2006, depth: 135.00 – 140.00. Top depth right side and bottom depth left side. Store 
Norske Spitsbergen Kullkompani.  

Trace fossil analysis 

Most parts of the Grumantbyen Formation is totally bioturbated; therefore a detailed trace fossil-

analysis became necessary for its characterization. The investigation includes the distinction of trace 

fossils, ichnofabrics and ichnofacies in order to obtain a better understanding of the development of 

the different lithofacies. Trace fossils are described as fossilized remains of the biogenic activity of 

organisms in sediments of different environmental settings. These mainly appear as burrows (dwelling 

or feeding traces). Different kinds of burrows reflect energy levels were the organisms lived and 

thrived, which act as indicators of different depositional environments. Trace fossils act as both 
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sedimentary and biogenic structures, and have an important impact on the sediments by destroying 

primary physical sedimentary structures. 

 

Biogenic activity resulting in reorganization of sediments and soils by the activity of organisms and 

plants, are referred to as bioturbation (Richter, 1936). The bioturbation index (BI) proposed by Hans-

Erich Reineck (1963) was based on boxcore material of modern sediments taken from the North Sea 

(Table 1.1). There is a question on whether or not this index can actually be used on lithified 

sedimentary rocks containing trace fossils, affected by compaction and burial over time. Still we 

decided to use the percentage bioturbation values of Reineck (1963), as a guide to distinguish the 

amount of bioturbation in the formation studied. The bioturbation index is divided into separate 

divisions of bioturbation ranging from 0 (none) to 6 (completely bioturbated) defining terms of burrow 

density, amount of burrow overlap and the clarity of the original sedimentary fabric (Taylor and 

Goldring, 1993).  

Grade 
Percent 

bioturabated 
Classification 

0 0 No bioturbation 

1 1-4 Sparse bioturbation 

2 5-30 Low bioturbation 

3 31-60 Moderate bioturbation 

4 61-90 High bioturbation 

5 91-99 Intense bioturbation 

6 100 Complete bioturbation 

Table 1.1: The bioturbation index (BI) (modified from Reineck, 1963). 

The different trace fossils observed in the formation have been described under Chapter 3.1 based on 

appearance, composition, shape, size, architecture and orientation. The abundance and reappearance of 

the same trace fossils have further been described in Chapter 3.2 by use of the ichnofabric concept by 

Taylor and Goldring (1993). An ichnofabric is described as the sediment’s texture and internal 

structure as a result of bioerosion and bioturbation at every scale (Taylor and Goldring, 1993). An 

ichnofabric analysis studies both the biogenic and physical effects within the sediment (Taylor and 

Goldring, 1993). In this thesis ichnofabric constituent diagrams have been used in order to give a 

graphical representation of the different ichnofabrics present. The ichnofabric constituent diagrams 

record parameters such as a detailed analysis of the ichnotaxa present, ichnodiversity, size and order of 

emplacement (Taylor and Goldring, 1993). According to Taylor and Goldring (1993, p. 145) ‘the 

order of emplacement of the ichnotaxa is determined by assessing the cross – cutting relationships, the 

sharpness of outlines, and the nature of infills’. The ichnofabric analysis is proven to be a useful 

method in the understanding and interpretation of depositional sequences and the associated 
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depositional environment, when physical sedimentary structures are nearly absent (Ekdale, 1992). In 

Chapter 6 a discussion regarding the depositional environment of the Grumantbyen Formation is 

undertaken where the concept of ichnofacies becomes relevant. The concept of ichnofacies describes 

the reoccurrence of biogenic traces which reflects certain combinations of organism behavior 

(ethology) in response to environmental conditions (Maceachern et al., 2007). Information regarding 

sedimentation rates, oxygenation and salinity are some of the properties described by the use of the 

ichnofacies concept (Maceachern et al., 2007).       

 

Samples – Field and Well 

In total 21 samples were taken from outcrop during fieldwork and during logging of well BH-9-2006, 

10 from the outcrop and 11 from the well with the aim of examining the different lithological and 

ichnological variations at pore scale. The samples from well BH-9-2006 had a diameter of approx. 

5.08 cm and a length of 8.5-21 cm. The samples were sealed in plastic folio and aluminum, and then 

marked with number and top/bottom – depth. For the field sampling, altitude and coordinates were 

noted.  

 

Thin – section analysis 

Optical Microscopy 

In total 10 thin-sections from the outcrop locality and 11 thin-sections from well BH-9-2006 were 

made. The thin-sections from well BH-9-2006 were colored blue to highlight pore-space distribution. 

A Nikon E200 optical microscope was used to study and describe the thin-sections. Petrographic 

properties were analyzed both in plane-polarized-light (PPL) and cross-polarized-light (XPL). 

Properties include grain-size, sorting, roundness, fabric, alteration and composition. Grain-size 

calculation was based on counting points with a 10X10 magnification, meaning that the image being 

viewed is 100 times bigger than its actual size. A total of 20-30 grains counted per thin-section is 

sufficient in order to get an approximation of mean value. A more accurate grain-size calculation was 

also done at Statoil ASA, Bergen – Sandsli. By the use of a Nicon Digital Sight to take pictures of 

each thin-section, I was able to perform a length measurement of grains through the NIS – Elements 

BR software. The pictures were also taken with 10X10 magnification, and the software automatically 

gives you a calculated mean value based on all the grains measured in the sample.  

 

Modal Analysis - Point Count  

In order to get a more detailed description on mineral content and pore-space distribution in the thin-

sections, a modal analysis was useful (Dickinson, 1970). In total 5 thin-sections from the outcrop 

locality and 7 thin-sections from well BH-9-2006 representing the different lithofacies and 
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ichnofabrics were studied. A Nikon Eclipse LV100POL optical microscope with a Nicon Digital Sight 

to use with the software NIS – Elements BR and a Swift Model F point counter were used at Statoil’s 

research Centre at Sandsli, Bergen. The modal analysis is based on 300 points counted with a step 

length of 0.3 mm and 20X10 magnification. Each point counted is based on recognition of different 

framework and authigenic minerals and was divided into 11 groups based on a maximum of 12 

different counting steps found on the point counting apparatus. When finished counting, the result was 

transferred into an Excel chart manually. Pre-set equations are able to classify the thin-section based 

on the observations and the results are plotted into a quartz, feldspar and lithic fragments (QFL) 

diagram (Dickinson, 1970).    

   

SEM & XRD 

In order to distinguish the composition of the matrix content in the different samples and supplement 

the thin-section analysis, both a Scanning Electron Microscope (SEM) and X-ray Diffraction (XRD)-

analysis was necessary. From the thin-sections described in the optical microscope, a total of 5 

samples from well BH-9-2006 were chosen to represent the main lithofacies and ichnofabrics 

reoccurring in the Grumantbyen Formation.  

 

Both the SEM and XRD – analysis was done at Statoil’s research Centre at Sandsli, Bergen. The main 

objective was to get a better understanding of the clay and matrix content in the samples, which had 

proven sometimes to be difficult to identify just by using the optical microscope. The SEM analysis 

acts as an effective method in identifying different minerals on a small scale, while the XRD analysis 

is more susceptible to identify different chemical compositions in the sample. The XRD analysis is 

therefore a good supplement to the mineral identification of the SEM analysis.  

 

Computed Tomography (CT) - 3D visualization of Core Material 

The 11 samples taken from well BH-9-2006 were brought to Statoil’s research Centre at Rotvoll, 

Trondheim in November and December 2015. The ambition was here to use a Computed Tomography 

(CT) – Scan to detect 3D internal architecture and shape of different trace fossils in the samples. 

Micro-CT is becoming a more frequently used non-destructive 3D imaging and analysis technique 

within geoscience, with the ability of studying internal structures of a large variety of objects with 

resolution down to a few hundred nanometers (Cnudde and Boone, 2013). In micro-CT systems, the 

object which is under investigation rotates (Figure 1.2), while X-ray source and detector remain 

stationary (Cnudde and Boone, 2013). The setup found in micro-CT systems causes a higher accuracy 

which is necessary at high resolutions (Cnudde and Boone, 2013).  
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Two different North Star Imaging Computed Tomographs were used to scan the 11 samples. They 

both create a 3D visualization of the sample which is made up of a stack of 2D imaging slices in X/Y, 

X/Z and Y/Z – orientation (Figure 1.3). The scanning process is highly operator dependent and 

requires knowledge of the limitations in order to create the best possible image of the object. 

Specialized 3D rendering software such as Avizo is crucial for visual inspection of the 3D volume of 

the object (Cnudde and Boone, 2013). Volume segmentation is the most critical and complex 

operation when analyzing the scanning results in the Avizo software. 3D rendering and segmentation 

of the datasets in Avizo is quite time consuming, and the software also needs a powerful computer 

with lots of CPU-force. Most of the work done in Avizo took place in January 2016 at Statoil, 

Stavanger. A total of 5 of the originally 11 samples were volume segmented in Avizo, based on the 

quality of the volume output and limitations to different lithological compositions. The micro-CT scan 

reveal far better results with silt/mud abundant samples than clean sandstone samples in terms of final 

volume segmentation.  

 

Figure 1.2: Typical lab-based micro-CT setup with a conical X-ray beam, object in red rotates during scanning, from 

Cnudde and Boone (2013). 

 

Figure 1.3: Final result of sample 5 with 2D imaging slices in X/Z and Y/Z-orientation, which have been volume 
segmented in order to display internal trace fossils in the sample. 
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2 Geological Framework 

2.1 Tectonic setting 
 

Opening of the Arctic Ocean and the North-Atlantic in late Cretaceous, led to uplift in north which 

maintained throughout the Cretaceous which was more extensive than the simultaneous sea level rise 

at the time. This resulted in the northern and western part of the continental shelf to be subaerial 

exposed and eroded, which created an unconformity in the lower part of the tertiary succession being 

developed in a southern direction (Dallmann, 1999). In central parts of Spitsbergen, the Cretaceous 

deposits are overlain by Palaeogene successions, with an angular unconformity separating them. In the 

Palaeogene a high-lateral transtension anlongside the De Geer-faultzone in Paleocene was followed by 

high-lateral transpression in Eocene, as a result of the movement of Greenland drifting by the western 

coast of Svalbard due to the opening of the North-Atlantic and Arctic Ocean (Talwani and Eldholm, 

1977; Johnsen et al., 2001). The tectonic activity led to volcanism in the south-west and the north-west 

and also creation of the western Spitsbergen fold and Thrust belt with a resulting central basin in 

Spitsbergen (Steel et al., 1985; Worsley, 2008). The sediment transport direction was changed from 

east north-east to west, and the De Geer Line, the plate boundary between Greenland and Svalbard 

became the main sediment source to the central basin (Steel et al., 1985). The central basin is 

interpreted to represent a regional foreland basin with cyclic subsidence and infill of both continental 

and marine clastic sediments (Figure 2.1), with the deepest area located to west of the basin (Steel et 

al., 1985; Helland-Hansen, 1990). The central basin covers an area of nearly 12 000 km
2
, and stretches 

from the Isfjorden in north to Sørkapp Land in the south (Schlegel et al., 2013).   

 

2.2 Van Miljenfjorden Group 
 

The Palaeogene deposits represented in the sedimentary succession of the central basin, Spitsbergen is 

known as the Van Miljenfjorden Group (Harland, 1969). The group consists of 7 formations and there 

is a general agreement that they represent deposits of Paleocene and Eocene age, although the 

lithological boundary between the Paleocene and Eocene strata remains unclear (Dallmann, 1999). 

The Van Miljenfjorden Group is made up of the following formations; Firkanten, Basilika, 

Grumantbyen, Frysjaodden, Hollenderdalen, Battfjellet and Aspelintoppen (Figure 2.2). The deposits 

in the Van Miljenfjorden Group represents three main depositional phases; a transgressive and two 

regressive phases (Steel et al., 1985).The two lowermost are intermediate scale transgressive-

regressive cycles. The first one represents the Firkanten-to lower Basilika-Formation, and the next one 

from the Basilika-to the Grumantbyen-Formation (Bruhn and Steel, 2003). The third main depositional 
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cycle was a regressive mega-sequence deposited during the main formation phase of the west 

Spitsbergen orogeny, and includes the Frysjodden, Battfjellet and Aspelintoppen-Formations. The 

sedimentary record of the Palaeogene Central Basin is nearly 1.5 km thick in the north of Van 

Miljenfjorden and increasing to almost 2.5 km towards the south of the basin. During the Cretaceous 

the Svalbard archipelago was dominated by a worm and humid climate, which also extended into the 

Palaeogene despite the fact that the archipelago was situated in the northern temperature zone at the 

time (Worsley, 2008). 

 

 

Figure 2.1: A Simplified geological map of the Svalbard Archipelago. The Central Basin is filled with Palaeogene strata 
(marked in yellow color). After Dallmann et al. (2002). 
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Early Paleocene 
 

The Firkanten Formation is the lowermost formation in the Van Miljenfjorden Group and has a 

thickness around 200 m (Figure 2.2). The Firkanten Formation is divided into four members; the 

proximal Grønnfjorden, Todalen, Endalen and a distal finer-grained member, called the 

Kalthoffberget. The Grønnfjorden member represents the first deposits in the Van Miljenfjorden 

Group, and lies directly on top of the marine shales from lower Cretaceous (Bruhn and Steel, 2003). 

The member consists of sandy conglomerates and is interpreted to represent braided river systems 

coming from the eastern parts of the basin (Bruhn and Steel, 2003). The Todalen member consists of 

shales, sand and coal, and has been interpreted to represent a deltaplain deposit in a fluvial dominated 

delta system (Steel et al., 1981). The overlying Endalen member is interpreted to represent the forsets 

of a delta front, primarily consisting of quartz arenite (Steel et al., 1981). In the southern parts of the 

Palaeogene Central Basin, the Endalen member becomes finer-grained; this unit is referred to as the 

Kalthoffberget member, and consists of lower delta front and prodelta-deposits (Steel et al., 1981). 

 

The Basilika Formation is superimposed the Firkanten Formation (Figure 2.2), and varies in thickness 

from 20 m in the north-eastern parts of the basin to more than 300 m in the south and south-western 

areas. The Basilika Formation is interpreted to represent a prodelta deposit, and consists primarily of 

dark offshore shales which appears slightly more silty and sandy towards the top of the succession in a 

north-eastern direction (Steel et al., 1981). Based on the general development upwards in the sequence 

from the Firkanten to Basilika-Formation, the complete succession is interpreted to represent a 

transgressive mega-sequence in the Van Miljenfjorden Group (Steel et al., 1981).   

 

Middle and late Paleocene 
 

The second depositional cycle of the Palaeogene Central Basin includes the uppermost part of the 

Basilika Formation, the overlying Grumantbyen Formation and the Hollenderdalen Formation (Figure 

2.2). The Grumantbyen Formation is a highly bioturbated sandstone sequence, with a characteristic 

green color due to the high content of glauconite. The formation is measured to be at its thickest in the 

north and north-eastern parts of the basin and thins towards the south and south-west. In the southern 

parts of the basin the Grumantbyen Formation interfingers with the Basilika Formation (Dallmann, 

1999). The formation is not well understood due to its homogeneous look, glauconitic content, intense 

bioturbation and lack of physical sedimentary structures. The high bioturbation intensity has indeed 

rearranged the sediments and as a result there are only a few physical sedimentary structures occurring 

throughout the entire succession. An overall coarsening upward trend, with several minor coarsening 

upwards successions, does however appear together with a noticeable increased appearance of 

physical sedimentary structures in the upper part of the formation (Bruhn and Steel, 2003). An 
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offshore origin has previously been suggested based on the glauconitic content and bioturbation 

intensity (Steel, 1977; Steel et al., 1981). Steel et al. (1981) interpreted the formation to be an offshore 

bar complex based on its characteristics. The age of the formation is suggested to be middle to upper 

Paleocene (Manum and Throndsen, 1986). Towards late Paleocene uplift in the fold and thrust belt in 

the west resulted in deposition of the Hollenderdalen Formation, which is thinning out in a easterly 

direction (Dalland, 1977; Steel et al., 1981). The formation is composed of shallow, tide-dominated, 

deltaic sandstone units with a gradual transition into shales (Dalland, 1977). The Hollenderdalen 

formation together with the upper part of the Basilika formation and the Grumantbyen Formation, is 

interpreted to represent the first of two regressive mega-sequences (Steel et al., 1981).  

 

 

Figure 2.2: A stratigraphic overview of the Palaeogene Central Basin (modified from Steel et al., 1985). 
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Late Paleocene and early Eocene 
 

The second and last regressive mega-sequence in the Palaeogene Central Basin started with the 

Frysjaodden Formation (Figure 2.2). The Frysjaodden Formation consists of thick deposits (200-400 

m) of shale which is interfingered by sandstone wedges of the Hollenderdalen Formation and the 

Bjørnsonfjellet member in the west of the basin (Steel et al., 1981; Dallmann, 1999). The 

Bjørnsonfjellet member is interpreted to be deposits of basin-floor fans (Johannessen and Steel, 2005). 

The Frysjaodden Formation can further be divided into two subgroups; the Mastranderbreen and 

Gilsonryggen-members, which is separated from each other by the intermediate Hollenderdalen 

Formation (Figure 2.2). The deposition of the Frysjaodden Formation took place in the late Paleocene 

to early Eocene, at the same time as the thrusting of the western Spitsbergen fold belt, which resulted 

in uplift and a change in sediment input from north-east to instead west (Helland-Hansen, 1990). The 

formation is interpreted to represent a pro deltaic deposit with a deltaic source west of the basin 

margin, which have been incorporated in the east prograding western Spitsbergen fold and thrust belt 

(Harland et al., 1997). 

 

The Battfjellet Formation is superimposed and interfingers the offshore shales of the Frysjaodden 

Formation (Figure 2.2) (Steel et al., 1981). The Battfjellet Formation is represented in nearly the 

whole Palaeogene Central Basin, and shows its greatest thickness south of the Van Miljenfjorden and 

pinches out towards the north-eastern parts of the basin. The formation is composed of planar-parallel-

laminated and cross-stratified white sandstone with minor inputs of silt and shale (Dallmann, 1999). 

The formation is a marine sandstone sequence interpreted to represent a coastline delta front deposit of 

Eocene age (Steel et al., 1981). The formation shows an easterly progradation with input from the west 

(Helland‐Hansen, 2010). Although the sedimentary facies shows a dominance of wave activity within 

the sediments, in the western parts of the basin evidence of fluvial processes and gravity flows exists 

which have had a significant impact on the distribution of the sand (Helland-Hansen, 1985). 

 

The Aspelintoppen Formation is the last formation in the Palaeogene succession in the Central Basin 

and is the final ending of the second regressive mega-sequence (Figure 2.2) (Helland-Hansen, 1990). 

The formation shows a great thickness of more than 1000 m south of the Van Miljenfjorden, while in 

the northern areas the formation is only preserved as thin remains on the peaks (Steel et al., 1981). The 

formation consists of poorly sorted sandstones and conglomerate, with thin coal seams and 

characteristic plant fragments such as leafs, in both coarsening and fining upward sequences 

(Dallmann, 1999). The formation is interpreted to represent a terrestrial deltaplain deposit dominated 

by floodplain and lacustrine sediments of Eocene, possibly Oligocene age (Steel et al., 1981). The 

shoreline at the time of deposition is suggested to have been oriented north-south, with the sediments 

coming from the west and prograding in an easterly direction (Helland-Hansen, 1990). 
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2.3 Study area 
 

The Palaeogene Central Basin is located in the southern parts of Spitsbergen, which is the largest 

island in the Svalbard Archipelago in the north-western Barents Sea (Figure 2.1). The study area is 

located on Nordenskiöld Land and Nathorst Land (Figure 2.3). Well BH-10-2008 (Sysselmannbreen 

core) is located 4.5 km to the southwest of Isnibba at Nathorst Land, and the well was studied in 

March 2015 and 2016 at Statoil’s research Centre at Sandsli, Bergen. Fieldwork and the study of well 

BH-9-2006 were done in August/September 2015. Well BH-9-2006 was studied at Store Norske 

Spitsbergen Kullkompani’s core view storage in Endalen, Spitsbergen. Two days of fieldwork was 

carried out in mid-August 2015 in Bolterdalen, Spitsbergen. In Bolterdalen the Grumantbyen 

Formation is well exposed and easy accessible. One location (Locality 1, Bolterdalen) was chosen and 

logged in assistance with my main supervisor Dr. William Helland-Hansen (University of Bergen), my 

co-supervisor Dr. Dirk Knaust (Statoil ASA, Stavanger) and Sten-Andreas Grundvåg (University of 

Tromsø). The logs from the two wells and the outcrop studied (Locality 1, Bolterdalen) are found in 

the appendix chapter.  

 

 

Figure 2.3: Map showing the study area at Nordenskiöld Land and Nathorst Land, with the different wells and the 
outcrop studied as described above. Map modified from the Norwegian Polar Institute.  

Nordenskiöld Land 

Nathorst Land 

BH-10-2008 

BH-9-2006 

Locality 1 (Bolterdalen) 
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3 Ichnology 
 

The Grumantbyen Formation is characterized as being intense bioturbated throughout the whole 

succession, with exception of a few intervals containing physical sedimentary structures. Because of 

intense weathering, the trace fossils were harder to identify in the field compared to the core-sections 

in the wells. Based on the great abundance of different trace fossils occurring in the formation, a 

detailed description and their sedimentological importance and influence are given in this chapter. A 

total of 7 different trace fossils have been identified and are described in terms of appearance, 

composition, shape, size, architecture and orientation. The abundance and reappearance of the same 

trace fossils have further been described by use of the ichnofabric concept by Taylor and Goldring 

(1993) later in the chapter.       

3.1 Trace fossils  
Cylindrichnus (Cyl) – Howard (1966) 

Description 

Cylindrichnus occurs in both wells and is well represented in the lower part of well BH-9-2006 in 

association with Teichichnus. In well BH-10-2008 the trace fossil appears scattered in the middle and 

upper part where it is relatively abundant, whereas it was not recognized in the outcrop section studied 

(Locality 1, Bolterdalen). In core view the trace fossil is observed as vertical and perpendicular to the 

bedding plane with an architecture being slightly curved U- or bow-shaped (Figure 3.1 & Figure 3.2). 

The burrow is composed of a central tunnel with a sand filled core surrounded by mud lining. These 

are the characteristics of the ichnospecie Cylindrichnus concentricus (Howard, 1966). The bow shaped 

burrows typically measures a diameter > 4.0 mm and a maximum length of approx. 30-50 mm.   

 

Figure 3.1: Reconstruction of the architecture of Cylindrichnus concentricus, illustrating a bow-shaped burrow (Drawing 
modified from Bromely, 1990).  
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Figure 3.2: Vertical-section with Cylindrichnus concentricus, in well BH-10-2008, depth 873.75 m. 

Interpretation 

The bow-shaped architecture of C. concentricus, with the characteristic two openings at the sediment 

surface that can be seen in cross – section, suggests that the dwelling structure was formed by either a 

filter-feeding animal or a surface deposit feeder (Frey and Howard, 1990; Ekdale and Harding, 2015). 

The characteristic thick and concentrically laminated lining of C. concentricus display remarkable 

similarities to the linings found today in modern burrows produced by Terebellid polychaetes 

(Belaústegui and de Gibert, 2013). The trace fossils appearance with high-diverse ichnoassemblages 

including Teichichnus and Palaeophycus is not uncommon (Frey and Howard, 1990).  

 

Ekdale and Harding (2015) discovered well developed C. concentricus in hummocky cross stratified 

beds produced above storm-wave base by oscillating currents associated with storms. The tracemaker 

is a suspension feeder and therefore it would rely on such currents in a high-energy hydrodynamic 

environment in order to feed. Today C. concentricus is known as a widespread trace fossil found in 

diverse shallow-marine to offshore transition zone sediments of Mesozoic and Cenozoic age around 

the world (Frey and Howard, 1985; Frey and Howard, 1990). 

 

 

2cm 
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Macaronichnus (Mac) – Clifton and Thompson (1978) 

Description 

Macaronichnus was observed in both wells and the outcrop section studied (Locality 1, Bolterdalen). 

At the outcrop the trace fossil shows a cylindrical tube with a meandering form that runs parallel to the 

bedding plane (Figure 3.3). The trace fossil typically occurs in dense concentrations. In core view the 

tubes appear as crowds of straight to curving-horizontal cylindrical burrows with an elongate to oval 

or circular shape (Figure 3.4). These are the characteristics of the ichnospecies Macaronichnus 

segregatis (Clifton and Thompson, 1978). Macaronichnus is easily identified by its light colored tube 

core being sand filled with a diagnostic dark colored mantle. The burrow occurs in very fine to 

medium-grained sand. The diameter of the tubes ranges between 2.0-5.0 mm and on bedding planes as 

seen in the outcrop the length of the burrows measures several centimeters. In both, wells and outcrop, 

Macaronichnus is especially abundant in the uppermost section, where it can occur with wave-ripple-

cross-lamination (WRCL). The burrows generally appear in less silty sandstone intervals, an exception 

is well BH-10-2008 where Macaronichnus also appears in the lower part of the well, which is 

dominated by a relatively high input of silt. 

      

 

Figure 3.3: Macaronichnus segregatis occurring with a near meandering form parallel to the bedding plane, Locality 1 
(Bolterdalen). Scale in cm.  
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Figure 3.4: Vertical-section with Macaronichnus segregatis occurring in a calcite cemented interval in well BH-9-2006, 
depth 195.00 m.  

Interpretation 

Modern studies of similar intrastratal trails reveal that M. segregatis is produced by marine opheliid 

polychaetes, such as Ophelia limacina (Clifton and Thompson, 1978), Euzonus mucronata (Seike, 

2007) and Travisia japonica (Seike et al., 2011). These polychaetes are deposit feeders that sustain 

themselves on microbes at the surface of the quartz grains (felsic) through selective ingestion where 

dark-colored grains (mafic) are sorted around their bodies (Clifton and Thompson, 1978). Orientation 

of the trace fossil can be used as an indicator of beach morphodynamics, palaeo-shoreline orientation, 

ancient sea-level and environmental conditions (Seike, 2007; Bromley et al., 2009; Seike et al., 2011; 

Uchman et al., 2016). The polychaete worms tend to move in various directions during fair-weather 

conditions (summer) and are forced in a more straight landward direction during storm conditions 

(winter).  

 

Macaronichnus is a characteristic shallow-marine trace fossil predominantly occurring in foreshore, 

shoreface, intertidal and shallow subtidal environments (Clifton and Thompson, 1978; Seike, 2007; 

Bromley et al., 2009). Pemberton et al. (2001, p. 128) indicated that Macaronichnus also occurs in 

tempestites created as a result of bigger storms. Longshore and upwelling currents could also provide 

suitable conditions for the trace maker to live in upper slope environments (Knaust, pers. comm. 

2015). M. segregatis has frequently been reported from Mesozoic and Cenozoic deposits and is a 

common constituent of the Skolithos Ichnofacies (Pemberton et al., 2012).    

2cm 
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Nereites (Ne) – Macleay (1839) 

Description 

In core view, Nereites appears as clusters of elongated horizontal to sub-horizontal-wavy dark ribbon 

structures bounded by lighter zones (Figure 3.5). Nereites is identified by its asymmetric shape mainly 

consisting of fine-grained material that is enveloped by a light “halo” of reworked slightly coarser 

grains. The ribbons width varies in size from 3.5-16 mm and 1.2-3.0 mm in height. The lighter halos 

measure a width of about 1.0-2.5 mm. The burrows have not been observed to cross-cut each other. 

Nereites is especially prominent in the lower section of well BH-10-2008 (Appendix 11) and in two 

separate intervals in the lower half of well BH-9-2006 (Appendix 13). In both wells, the trace fossil 

abundance gradually decreases upward in conjunction with a coarsening upward trend of the 

sediments. Nereites was not recognized in the outcrop section studied (Locality 1, Bolterdalen).  

 

Figure 3.5: Vertical-section with Nereites in well BH-9-2006, sample 2, depth 386.70 m.  

Interpretation  

The ribbons seen as dark spots in core view are fecal strings created by Nereites producers (Pervesler 

et al., 2008). The enveloped lighter halo represents a reworking zone around the fecal string, implying 

active grain sorting by the burrowing animal (Wetzel, 2002; Pervesler et al., 2008). The Nereites 

burrows are found in muddy to fine sandy sediments just above the redox boundary (Wetzel, 2002). 

Sediment grain-size acts as a significant control on the occurrence and distribution of Nereites 

producers. The redox boundary marks a transition from oxic to anoxic conditions, were microbes 

2cm 



Chapter 3 
Ichnology 

18 
 

thrive and provide food for the Nereites producers; the burrows are hence completely absent in anoxic 

sediments (Wetzel, 2002). Based on its occurrence, Seilacher (1967) introduced the Nereites 

Ichnofacies as a common type of trace fossil community in turbidite sequences typically found in 

deep-marine environments (basin-floor deposits). Frey and Pemberton (1984, p. 193) suggested that 

Nereites Ichnofacies were related to environments such as; ‘bathyal to abyssal, mostly quiet but 

oxygenated waters with very slow accreting substrates’. Nereites also occurs in slope and shelf 

deposits, where deposition of moderate energy dominates (e.g. Zoophycos and Cruziana Ichnofacies) 

(Knaust, pers. comm. 2016).  

 

Palaeophycus (Pal) – Hall (1847) 

Description 

Palaeophycus was only observed in well BH-9-2006 and in the outcrop section studied (Locality 1, 

Bolterdalen). In the field the burrow was especially abundant in the lower part of the studied section, 

while it appeared scattered in the lower section of well BH-9-2006. At the outcrop the trace fossil is 

especially well developed along the bedding plane (Figure 3.6). Here the burrow shows a straight to 

sinuous-cylindrical architecture with a thin light wall surrounding the tube. In the vertical section at 

the outcrop the burrow is seen in cross-section displaying a collapsed oval to circular shape of the 

tube, this is also how the burrow occurs in well BH-9-2006 (Figure 3.7). These are the characteristics 

of the ichnospecie Palaeophycus tubularis (Hall, 1847). The burrow is generally composed of the 

same lithology as the host stratum. The tubes measure a diameter between 5.0-15.0 mm and a length 

of several centimeters on the bedding plane seen at the outcrop.  

 

Figure 3.6: Palaeophycus tubularis seen on bedding plane, Locality 1 (Bolterdalen). Scale in cm. 
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Figure 3.7: Palaeophycus tubularis seen in vertical-section, Locality 1 (Bolterdalen). The observed collapsed oval to 
circular tubes shows signs of oxidation due to weathering. Scale-finger=8 cm. 

Interpretation 

Palaeophycus is interpreted as dwelling structures produced by predaceous worms that reflect a 

suspension and/or predatory feeding strategy (Pemberton and Frey, 1982; Frey and Howard, 1990; 

Pervesler et al., 2008). The burrow wall can be used to secure a dwelling/refuge structure or it might 

be the by-product of selective deposit-feeding. Collapsed burrow segments seen in core view are 

diagnostic features of P. tubularis (Frey and Howard, 1990). Palaeophycus has been recorded amongst 

Planolites, Cylindrichnus, Teichnichnus and other trace fossils in the lower shoreface to offshore 

transition zone sediments (Pemberton and MacEachern, 1992). Palaeophycus has also been recorded 

in thinly-bedded turbidite sandstones in mid to outer fan deposits and also in continental environments 

(Crimes et al., 1981).  
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Schaubcylindrichnus (Sch) – Frey and Howard (1981) 

Description 

Schaubcylindrichnus was observed in both wells and the outcrop section studied (Locality 1, 

Bolterdalen). Both in the field and in core view the trace fossil was mainly observed in a cross-section 

of the burrow (Figure 3.8). The trace fossil appear as a tube which is arranged either as totally isolated 

or in closely packed groupings, with a number of tubes ranging from 4-12. Scaubcylindrichnus has a 

characteristic white ring or wall lining around the tube. White minerals constitute the wall linings that 

surround the passive burrow fill (Frey and Howard, 1981; Kikuchi et al., 2016). The tubes observed 

have a diameter between 2.0 – and 3.0 mm, and the clear visible white wall is approx. 1.0 – to 2.0 mm 

thick. These are all characteristics of the ichnospecies Schaubcylindrichnus coronus (Frey and 

Howard, 1981), the only valid ichnospecies (Figure 3.9). The trace fossil appears in various grain-

sizes from clay to fine sand, and is therefore observed throughout the entire succession both in the 

field and in the wells. An exception might be in the upper part of well BH-9-2006 and the uppermost 

interval of the logged outcrop section (Locality 1, Bolterdalen), were the trace fossil is nearly absent.  

 

 

Figure 3.8: Vertical-section with Schaubcylindrichnus coronus, Locality 1 (Bolterdalen). Scale in cm. 

Interpretation 

Schaubcylindrichnus was early interpreted to be produced by either gregarious deposit feeders or filter 

feeders (Frey and Howard, 1981; Frey and Howard, 1990; Frey and Pemberton, 1991; Pemberton et 

al., 2001). These early interpretations, based on material from Upper Cretaceous Utah, were obtained 

from incomplete specimens, and an ongoing debate has risen on whether or not these interpretations 

should be reconsidered. Recent work done by Löwemark and Nara (2010) and Kikuchi et al. (2016) on 

Miocene and Pleistocene deposits of central Japan, suggest that these earlier interpretations should be 

ruled out in favor of a funnel-feeding behavior of a worm-like organism (e.g. a polychaete).  
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Schaubcylindrichnus is usually well preserved, it cross-cut other trace fossils which indicates that it 

was produced at a later stage in the burrow succession. According to Frey and Pemberton (1991) it is 

likely that bigger clusters of tubes may indicate a stable environment. Schaubcylindrichnus is known 

to be a good indicator of shoreface settings, especially under high-energy conditions, but a study done 

by Frey and Pemberton (1991) provide evidence that this trace fossil also occurs in proximal parts of 

the offshore zone. Studies done in central Japan reveal that Schaubcylindrichnus is found in totally 

bioturbated muddy sandstones and sandy mudstones on the continental slope in offshore-transition to 

offshore deposits (Nara, 2006; Löwemark and Nara, 2010).  

 

Figure 3.9: Illustrative drawing of Schaubcylindrichnus coronus, after Frey and Howard (1990). 
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Teichichnus (Tei) – Seilacher (1955) 

Description 

Teichichnus was observed in both wells and is especially abundant in the lower part of well BH-9-

2006. In well BH-10-2008 the trace fossil occurs in scattered intervals throughout the section, whereas 

it was not observed in the outcrop section studied (Locality 1, Bolterdalen). In core view Teichichnus 

shows a vertical slightly curved architecture composed of several closely stacked, partially 

overlapping tubes (Figure 3.10). In cross-section the burrow appear as straight to sinuous and is 

oriented at various angles with respect to bedding, showing a diagnostic zigzag pattern. The trace 

fossil occurs as isolated and is not observed in dense groupings. Teichichnus appears in core-section as 

sand- and mud-filled burrows with a cylindrical sand core at the top of the burrow. Teichichnus 

reaches a maximum length of approx. 40-60 mm and a width of about 5-20 mm.  

 

Interpretation 

Teichichnus is interpreted as a feeding-dwelling burrow, produced by deposit-feeding, wormlike 

organism, probably an annelid, crustacean or holothurian, that migrated upward from a horizontal to 

subhorizontal tunnel (Frey and Bromley, 1985; Frey and Howard, 1990; Pemberton et al., 2001). 

Teichichnus zigzag (Frey and Bromley, 1985) is the name of the ichnospecie that is most prominent in 

the Grumantbyen Formation, which is recognized by a characteristic zigzag pattern (Figure 3.10). 

According to Pemberton et al. (2001) Teichichnus is associated with lower shoreface to offshore 

environments in the Cruziana Ichnofacies, this is also supported by Frey and Howard (1990, p. 804) 

who observed Teichichnus; ‘primarly in the upper offshore deposits amongst Cylindrichnus 

concentricus, Palaeophycus tubularis and other trace fossils’. Teichichnus is also proven to be 

abundant in marginal-marine environments with brackish conditions (lagoons, estuaries, tidal flats, 

delta tops), where it is almost monoichnospecific (Wightman et al., 1987; Knaust, pers. comm. 2016). 

       

 

Figure 3.10: (A) Vertical-section with Teichichnus zigzag in well BH-10-2008, depth 853.30 m. (B) Illustrative drawing of 
Teichichnus zigzag, after Frey and Bromley (1985). 
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Virgaichnus (Vir) – Knaust (2009) 

Description 

Virgaichnus is well represented in both wells and in the outcrop section studied (Locality 1, 

Bolterdalen). The trace fossil is observed to occur in dense concentrations in a diverse community of 

trace fossils. The trace fossil is common in silty to sandy substrates, and is observed nearly throughout 

the whole succession both in the field and in the wells. The average burrow diameter is about 0.5 mm, 

whereas burrow length and penetration depth can differentiate between a few millimeters to several 

centimeters. Because of its size, Virgaichnus was first described as tiny mud-filled burrows. More 

detailed investigation did however reveal certain characteristics associated with the recently 

discovered ichnospecies Virgaichnus undulatus (Knaust, 2009). 

 

Virgaichnus is passively filled with mud and have a surrounding smooth wall (Knaust, pers. comm. 

2016).  The burrow has a complex three – dimensional architecture. Observations from the outcrop 

section, core view and Micro-CT show a burrow that is highly irregular with both horizontal and 

inclined elements (Figure 3.11). The sub-vertical elements show both Y-shaped and T-shaped 

branching. Outcrop sections show that Virgaichnus has a straight to meandering form and varying 

thickness in bedding-plane view (Figure 3.12). The Micro-CT results show inclined elements with 

pinch-and-swell features creating almost bulbous enlargements along the burrow (Knaust, pers. comm. 

2016) (Figure 3.13). The inclined burrows also seem to be slightly spiral between these bulbous 

enlargements. The horizontal elements have a distinctive alternating blade-like contraction feature. 

The burrows are observed to cross-cut each other as well as other trace fossils.   

 

 

Figure 3.11: Vertical-section with Virgaichnus undulatus in well BH-10-2008, depth 916.62 m. 
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Figure 3.12: Virgaichnus undulatus in bedding-plane view showing both straight and meandering form, Locality 1 
(Bolterdalen). Photo: Dr. Dirk Knaust (2015). Scale bar = 1 cm. 

 

 

Figure 3.13: Micro CT-scan of sample 2, well BH-9-2006, depth: 386.70 m. The CT-scan displays mud-filled 
Virgaichnus undulatus as an inclined element with pinch-and-swell features creating almost bulbous enlargements 
along the burrow. A horizontal burrow element displays alternating blade-like contractions (Knaust, pers. comm. 
2016). The average burrow diameter varies between 0.3 and 0.6 mm. 
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Interpretation 

Meiobenthic trace fossils studied in Late Permian carbonates in Oman are suggested to have been 

produced by a highly deformable vermiform body known as nemerteans which could have created the 

Virgaichnus burrow systems (Knaust, 2009). Virgaichnus undulatus reflects an undulating burrow 

pattern with bulbous enlargements and alternating blade-like contractions that can be explained by a 

certain behavior of extremely flexible nemerteans (Knaust, 2009). 

 

Meiobenthic trace fossils are highly important in the ichnological record, but their study is 

underrepresented and therefore still under debate (Knaust, 2007). Recent studies of modern 

environments reveal that meiobenthic trace fossils dominate in a number of ecosystems, and therefore 

they play an important role in the bioturbation of sediments of deposits ranging from continental to 

deep marine settings (Knaust, 2009). Virgaichnus occurs in environments with both low and high-

energy conditions in the Grumantbyen Formation, together with a diverse community of trace fossils. 

This also points to well preservation potential based on occurrence in the succession. The only study 

on Virgaichnus undulatus has documented its occurrence in shelf deposits dominated by quiet 

sedimentation conditions in shallow-marine environments, such as in Late Permian Saiq Formation in 

Oman (stable inner shelf), Upper Jurassic Heather Formation in the Norwegian North sea (shelf 

turbidites) and Lower Cretaceous Åsgård Formation in the Norwegian North sea (shelf) (Knaust, pers. 

comm. 2016). Based on the observations done on the Virgaichnus undulatus burrow it has been 

suggested that it stands as a component of the Cruziana Ichnofacies (Knaust, pers. comm. 2016).   
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3.2 Ichnofabrics 
 

In this chapter the abundance and reappearance of the same trace fossils occurring in the 

Grumantbyen Formation are being further described under the ichnofabric concept. An ichnofabric is 

described as the sediment’s texture and internal structure as a result of bioerosion and bioturbation at 

every scale (Taylor and Goldring, 1993). An ichnofabric analysis studies both the biogenic and 

physical effects within the sediment (Taylor and Goldring, 1993). A total of seven ichnofabrics have 

been identified, and will be described in this chapter. A gradual transition between these ichnofabrics 

is not uncommon, and some of the ichnofabrics are more frequently related to each other throughout 

the succession.   

 

Ichnofabric constituent diagrams have been used in this chapter in order to give a graphical 

representation of the different ichnofabrics present in terms of description and comparison, and also to 

understand the order in which they were emplaced (Figure 3.14). The bioturbation index and 

ichnofabric constituent diagram are complementary as each attempts to record a different aspect of 

bioturbation (Taylor and Goldring, 1993). In the intervals were the sediments are completely 

bioturbated (BI=6, 100 %), no sedimentary structures are present. The primary sedimentary fabric has 

gradually been destroyed by repeated reworking and multiple burrow overlaps. This repeated 

reworking could potentially create total “chaos” in the sediment’s texture, making it completely 

homogeneous and difficult to identify the associated traces. This is referred to as diffuse bioturbated 

texture, and it can be observed in intervals in between the other characteristic trace fossils identified.  

 

 

Figure 3.14: The ichnofabric constituent diagram records on the horizontal axis the percentage area occupied by the 

primary and secondary sedimentary structures, plotted to a log-scale (Taylor and Goldring, 1993). The vertical axis 

records the primary sedimentary structures, ichnotaxa present, ichnodiversity, size and order of emplacement (Taylor 

and Goldring, 1993).   
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Cylindrichnus – Ichnofabric 

Cylindrichnus – Ichnofabric (Figure 3.2) occurs in lithofacies F.2-F.4 (Chapther 4.1), and is well 

represented in Lithofacies F.3. It accounts for 26.7 % of the total amount of ichnofabrics present in 

Lithofacies F.3 (Figure 3.28). A detailed description of the ichnofabric is given in (Table 3.1), and 

based on this description an ichnofabric constituent diagram is illustrated in (Figure 3.15). 

 

Sample/Interval Well BH-10-2008. Depth: 873.70-873.92 (22 cm) 

Lithology Very fine-grained, well-sorted, medium gray-color, moderately silty sandstone with 

a few moderate number of wave-ripple-cross-laminations (WRCL) 

Bioturbation intensity Intensely bioturbated (BI=5 – 95 %) 

Ichnotaxa/Ichnodiversity Cylindrichnus concentricus = 80 %, 3.0 mm (diameter), 2.7 cm (length) 

Virgaichnus undulatus = 16 %, 0.5 mm (diameter), 1.0 cm (length) 

Macaronichnus segregatis = 4 %, 2.0 mm (diameter) 

First to last-event 

Percentage of area 

1. Wave-ripple-cross-laminations (WRCL) = 25 % 

2. Macaronichnus segregatis (Mac) = 3% 

3. Virgaichnus undulatus (Virga) = 12 % 

4. Cylindrichnus concentricus (Cyl) = 60 % 

Palaeoenvironment Lower shoreface 

Table 3.1: Ichnofabric analysis of a Cylindrichnus – Ichnofabric. 

   

 

Figure 3.15: An ichnofabric constituent diagram based on (Table 3.1). 
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Macaronichnus – Ichnofabric 

Macaronichnus – Ichnofabric (Figure 3.16) occurs in lithofacies F.3 & F.4 (Chapther 4.1), and is well 

represented in Lithofacies F.4. It accounts for 45.0 % of the total amount of ichnofabrics present in 

Lithofacies F.4 (Figure 3.28). A detailed description of the ichnofabric is given in (Table 3.2), and 

based on this description an ichnofabric constituent diagram is illustrated in (Figure 3.17). 

 

Figure 3.16: Vertical-section with Macaronichnus – Ichnofabric, well BH-10-2008, depth: 813.85 m. The right picture is a 
black&white filter applied to the original in order to better visualize the elongate to oval or circular shapes of the 
Macaronichnus burrow in the core. 

Sample/Interval Well BH-10-2008. Depth: 813.63-814.00 (37 cm) 

Lithology Very fine to fine-grained, very well sorted, pale green-color, light silty sandstone  

Bioturbation intensity Completely bioturbated (BI=6 – 100 %) 

Ichnotaxa/Ichnodiversity Macaronichnus segregatis = 75 %, 2.0 mm (diameter), 5.0 mm (length) 

Virgaichnus undulatus = 20 %, 0.5 mm (diameter), 1.0 cm (length) 

Schaubcylindrichnus coronus = 5 %, 3.0 mm (diameter) 

First to last-event 

Percentage of area 

1. Diffuse bioturbated texture (chaotic bioturbated-sand) = 40 % 

2. Macaronichnus segregatis (Mac) = 45 % 

3. Virgaichnus undulatus (Virga) = 12 % 

4. Schaubcylindrichnus coronus (Sch) = 3 % 

Palaeoenvironment Upper-shoreface 

Table 3.2: Ichnofabric analysis of a Macaronichnus – Ichnofabric. 
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Figure 3.17: An ichnofabric constituent diagram based on (Table 3.2). 

Nereites – Ichnofabric 

Nereites – Ichnofabric (Figure 3.18) is very well represented in Lithofacies F.1 (Chapter 4.1), were it 

is quite abundant and account for 65.0 % of the total amount of ichnofabrics present in Lithofacies F.1 

(Figure 3.28). A detailed description of the ichnofabric is given in (Table 3.3), and based on this 

description an ichnofabric constituent diagram is illustrated in (Figure 3.19). 

 

Sample/Interval Well BH-9-2006. Depth: 381.50-381.60 (10 cm) 

Lithology Clay to silt grain-size, very well-sorted, dark-color, sandy siltstone 

Bioturbation intensity Completely bioturbated (BI=6 – 100 %) 

Ichnotaxa/Ichnodiversity Nereites = 94.4 %, 0.2-0.5 mm (diameter), 1.0-2.0 mm (length) 

Schaubcylindrichnus coronus = 5.6 %, 1.5 mm (diameter) 

First to last-event 

Percentage of area 

1. Diffuse bioturbated texture (chaotic bioturbated-silty substrate) = 45 % 

2. Nereites (Ne) = 52 % 

3. Schaubcylindrichnus coronus (Sch)  = 3 % 

Palaeoenvironment Offshore 

Table 3.3: Ichnofabric analysis of a Nereites – Ichnofabric.  
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Figure 3.18: Vertical-section with Nereites – Ichnofabric, well BH-9-2006, depth: 381.55 m. The right picture is a 
black&white filter applied to the original in order to better visualize Nereites which appears as clusters of elongated 
horizontal to subhorizontal-wavy dark ribbon structures bounded by lighter zones in the core. 

 

Figure 3.19: An ichnofabric constituent diagram based on (Table 3.3). 
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Teichichnus – Ichnofabric 

Teichichnus – Ichnofabric (Figure 3.20) occurs in lithofacies F.2 & F.3 (Chapther 4.1), and is best 

represented in Lithofacies F.2. It accounts for 14.0 % of the total amount of ichnofabrics present in 

Lithofacies F.2 (Figure 3.28). A detailed description of the ichnofabric is given in (Table 3.4), and 

based on this description an ichnofabric constituent diagram is illustrated in (Figure 3.21). 

 

 

Figure 3.20: Vertical-section with Teichichnus – Ichnofabric in well BH-9-2006, sample 4, depth: 317.50 m. The right 
picture is a black&white filter applied to the original in order to better visualize Teichichnus which appear with vertical 
slightly curved architecture being closely stacked with a diagnostic zigzag pattern. 
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Sample/Interval Well BH-9-2006. Sample 4. Depth: 317.45-317.65 (20 cm) 

Lithology Very fine-grained, very well-sorted, dark gray-color, silty sandstone 

Bioturbation intensity Completely bioturbated (BI=6 – 100 %) 

Ichnotaxa/Ichnodiversity Teichichnus zigzag = 70 %, 0.5-2.0 cm (width), 4.0-6.0 cm (length) 

Schaubcylindrichnus coronus = 30 %, 1.0 mm (diameter) 

First to last-event 

Percentage of area 

1. Diffuse bioturbated texture (chaotic bioturbated-sand) = 50 % 

2. Teichichnus zigzag (Tei) = 35 % 

3. Schaubcylindrichnus coronus (Sch) = 15 % 

Palaeoenvironment Offshore transition 

Table 3.4: Ichnofabric analysis of a Teichichnus – Ichnofabric.  

 

 

Figure 3.21: An ichnofabric constituent diagram based on (Table 3.4). 
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Virgaichnus – Ichnofabric 

Virgaichnus – Ichnofabric (Figure 3.22) is well represented in all of the Lithofacies (Chapter 4.1), but 

clearly shows a great abundance in Lithofacies F.2. Here it accounts for 53.0 % of the total amount of 

ichnofabrics present (Figure 3.28). A detailed description of the ichnofabric is given in (Table 3.5), 

and based on this description an ichnofabric constituent diagram is illustrated in (Figure 3.23).  

 

 

Figure 3.22: (A) Vertical-section with Virgaichnus – Ichnofabric in well BH-9-2006, sample 2, depth: 386.62-386.82 m. 
(B) Black&white filter applied to the original in order to better visualize Virgaichnus as a burrow that is highly irregular 
with both horizontal and inclined elements. Nereites is also strongly represented in the sample, especialy in the 2D-view. 
(C) 3D-result of the sample from the micro-CT scan showing numerous Virgaichnus burrows branching in different 
directions. The average burrow diameter varies between 0.3 and 0.6 mm.  
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Sample/Interval Well BH-9-2006. Sample 2. Depth: 386.62-386.82 (20 cm) 

Lithology Very fine-grained, very well-sorted, dark-color, sandy siltstone 

Bioturbation intensity Completely bioturbated (BI=6 – 100 %) 

Ichnotaxa/Ichnodiversity Virgaichnus undulatus = 60 %, 0.5 mm (diameter), 1.0 cm (length) 

Nereites = 40 %, 0.2-1.0 mm (diameter), 1.0-5.0 mm (length) 

First to last-event 

Percentage of area 

1. Diffuse bioturbated texture (chaotic bioturbated-silty substrate) = 50 % 

2. Nereites (Ne) = 20 % 

3. Virgaichnus undulatus (Virga) = 30 % 

Palaeoenvironment Offshore 

Table 3.5: Ichnofabric analysis of a Virgaichnus – Ichnofabric. 

 

Figure 3.23: An ichnofabric constituent diagram based on (Table 3.5). 
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Palaeophycus – Ichnofabric 

Palaeophycus – Ichnofabric (Figure 3.24) occurs in lithofacies F.2-F.4 (Chapther 4.1), and is well 

represented in Lithofacies F.3. It accounts for 20.0 % of the total amount of ichnofabrics present in 

Lithofacies F.3 (Figure 3.28). A detailed description of the ichnofabric is given in (Table 3.6), and 

based on this description an ichnofabric constituent diagram is illustrated in (Figure 3.25). 

 

 

Figure 3.24: Palaeophycus – Ichnofabric seen on bedding plane at Locality 1, Bolterdalen. Palaeophycus shows a 
characteristic straight-cylindrical architecture. The right picture is a black&white filter applied to the original in order to 
better visualize the burrow architecture marked in yellow. Scale in cm.  

Sample/Interval Locality 1, Bolterdalen. 15.0 m-log.  

Lithology Very fine-grained, well-sorted, medium gray-color, moderately silty sandstone 

Bioturbation intensity Completely bioturbated (BI=6 – 100 %) 

Ichnotaxa/Ichnodiversity Palaeophycus tubularis =70 %, 1.0-1.5 cm (diameter), 6.0-8.0 cm (length) 

Schaubcylindrichnus coronus = 30 %, 3.0 mm (diameter) 

First to last-event 

Percentage of area 

1. Diffuse bioturbated texture (chaotic bioturbated-sand) = 70 % 

2. Palaeophycus tubularis (Pal) = 21% 

3. Schaubcylindrichnus coronus (Sch) = 9 %  

Palaeoenvironment Lower shoreface 

Table 3.6: Ichnofabric analysis of a Palaeophycus – Ichnofabric. 
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Figure 3.25: An ichnofabric constituent diagram based on (Table 3.6). 

 

Schaubcylindrichnus – Ichnofabric 

Schaubcylindrichnus – Ichnofabric (Figure 3.26) occurs in Lithofacies F.2-F.4 (Chapter 4.1), and is 

best represented in Lithofacies F.3. Here it accounts for 13.3 % of the total amount of ichnofabrics 

present (Figure 3.28). A detailed description of the ichnofabric is given in (Table 3.7), and based on 

this description an ichnofabric constituent diagram is illustrated in (Figure 3.27).  

Sample/Interval Well BH-9-2006. Sample 5. Depth: 314.89-315.00 (11 cm) 

Lithology Silt/very fine-grained, very well-sorted, dark-color, sandy siltstone 

Bioturbation intensity Completely bioturbated (BI=6 – 100 %) 

Ichnotaxa/Ichnodiversity Schaubcylindrichnus coronus = 45 %, 2.0-3.0 mm (diameter) 

Nereites = 35 %, 0.2-0.5 mm (diameter), 1.0-2.0 mm (length) 

Virgaichnus undulatus = 20 %, 0.5 mm (diameter), 1.0 cm (length) 

First to last-event 

Percentage of area 

1. Diffuse bioturbated texture (chaotic bioturbated-silty substrate) = 60 % 

2. Nereites (Ne) = 14 % 

3. Virgaichnus undulatus (Virga) = 8 % 

4. Schaubcylindrichnus coronus (Sch)  = 18 % 

Palaeoenvironment Offshore 

Table 3.7: Ichnofabric analysis of a Schaubcylindrichnus – Ichnofabric. 
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Figure 3.26: (A) Vertical-section with Schaubcylindrichnus – Ichnofabric in well BH-9-2006, sample 5, depth: 314.89-
315.00 m. (B) Black&white filter applied to the original in order to better visualize Schaubcylindrichnus as a tube with a 
characteristic white ring appearing isolated or in closely packed groupings. (C) 3D-result of the sample from the micro-
CT scan. Nereites and Virgaichnus are also well represented in the sample.   

 

Figure 3.27: An ichnofabric constituent diagram based on (Table 3.7).  
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3.2.1 Ichnofabric distribution within the Grumantbyen Formation 

 

In the three logs made from the study of both wells and the outcrop, a column describing the 

ichnofabric present is available, see Appendix 11, Appendix 12 and Appendix 13. Based on the 

ichnofabrics present in the different wells and the outcrop studied (Locality 1, Bolterdalen), a 

graphical visualization of their appearance is presented (Figure 3.28). The figure is based on a 

calculated mean percentage of the ichnofabrics present within the two wells and the outcrop studied 

(Locality 1, Bolterdalen) (Appendix 1).The chart illustrates the percentage of different ichnofabrics 

within four of the defined lithofacies in the Grumantbyen Formation, introduced in Chapter 4.1. The 

percentage is based on the number of appearances of the different ichnofabrics within each lithofacies. 

On the horizontal axis the lithofacies are arranged from distal to proximal affiliation.  

 

 

Figure 3.28: A graphical visualization of the different ichnofabrics present within four defined lithofacies (F1-F4) in the 
Grumantbyen Formation. On the horizontal axis the lithofacies are arranged from distal to proximal affiliation. OS= 
offshore, OT=Offshore transition, LS= Lower shoreface and US= Upper shoreface. The different ichnofabrics are arranged 
vertically in alphabetical order from bottom to top. 
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4 Lithology 
 

The sedimentary rocks within the Grumantbyen Formation have been organized into separate 

lithofacies. The descriptions of the different lithofacies are based on sedimentary textures and 

structures, trace fossil diversity and ichnofabrics, bioturbation intensity and color. A total of five 

lithofacies have been interpreted from the different wells and the outcrop studied. A summary of the 

different lithofacies are presented in Table 4.1, and they are each briefly described later in the chapter. 

The different lithofacies are arranged from distal to proximal affiliation. An interpretation of the 

associated palaeoenvironment of the different lithofacies is given, and a summary of these 

interpretations are listed in Table 4.1. Because the Grumantbyen Formation is characterized as being 

intensely bioturbated throughout the whole succession, a study of its ichnology (Chapter 3) has been 

most valuable in terms of defining a possible depositional environment for the different lithofacies, 

when physical sedimentary structures are nearly absent. 

4.1 Lithofacies 
Table 4.1: A quick summary of the description of the different lithofacies observed (F1-F4). The ichnofabric marked in bold is 
the most abundant one within the specific lithofacies (Figure 3.28). An interpretation of the palaeoenvironment of the 
individual lithofacies is presented.  
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Facies F.1 – Sandy Siltstone  

Description 

A dark sandy siltstone occurs at the bottom and top of the Grumantbyen Formation (Figure 4.1). The 

lithofacies is especially well developed and up to 15 m thick in the lower part of well BH-10-2008 

(Appendix 11), but it also occurs in thinner intervals in well BH-9-2006 (Appendix 13). The same 

lithofacies was not observed in the outcrop section studied (Locality 1, Bolterdalen). The thinnest 

intervals measured are around 25 cm in well BH-10-2008. In the upper part of both wells the 

lithofacies is also resting sharply on top of Lithofacies F.4, where it measures a thickness greater than 

2 meters in both wells studied (Figure 4.6-A). The grain-size is a mix between clay/silt and very fine 

sand, with a sand percentage up to 20% in an otherwise dark siltstone. A few planar-parallel-

laminations (PPL) are the only physical sedimentary structures seen in the lithofacies which is 

dominated by nearly complete bioturbation (90 – 100 %). Nereites, Schaubcylindrichnus and 

Virgaichnus are all very common trace fossils in the lithofacies. Other trace fossils such as 

Teichichnus occur in minor quantities in well BH-9-2006.  

 

Well rounded and coarse-grained pebbly rock fragments of chert and quartzite were observed in 

scattered intervals in the wells studied within Lithofacies F.1. These rock fragments are noted as intra 

clasts in the logs. Microfaults and mud clasts were also observed in minor proportions in the wells. An 

abundance of pyrite is also typical for this lithofacies and occurs frequently throughout the succession. 

Intervals with siderite – nodules are sporadically seen in both wells.  

 

Interpretation 

Lithofacies F.1 in the lower part of the wells are interpreted to be a transitional lithofacies from the 

underlying dark shale of the Basilika Formation., while the same lithofacies in the upper part of the 

wells are interpreted to mark the start of the superimposed Eocene Frysjaodden Formation (Figure 

2.2). The lithofacies is dominated by fine-grained material resulting from suspension of fines leid 

down from the water column under quiet conditions, with occasional input of sandy material. Nereites 

burrows have been proven to occur largely in highly soft muds just above the redox boundary (Wetzel, 

2002). According to Wetzel (2002, p. 513) ‘the depth of the redox boundary in sediment is influenced 

by many factors, including the sedimentation rate and accumulation rate of organic matter, the depth 

of the Nereites level potentially could provide a proxy for one or both of these factors’. Based on the 

abundance of Nereites burrows, the lithofacies seems to be associated with offshore settings. Slow, but 

still continuous sedimentation rates from suspension are commonly associated with Nereites 

Ichnofacies (Hubbard et al., 2012). Ichnofabric analysis of the lithofacies section reveals that it is 

dominated by Nereites and Virgaichnus-Ichnofabric (Figure 3.28). Recent studies indicate that 

Virgaichnus burrows appear in a wide range of deposits from continental to deep marine settings 
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(Knaust, 2009).  Schaubcylindrichnus is known to be a good indicator of shallow-marine 

environments (Frey and Pemberton, 1991), but modern studies also reveals a more offshore 

appearance (Nara, 2006). 

 

Figure 4.1: (A) Core photo of Lithofacies F.1 in well BH-10-2008, depth: 947.00-952.00. (B) Core sample of Lithofacies 
F.1, depth: 948.90-949.00. 

The chert clasts discovered in the wells originated from the Permian Kapp Starostin Formation, which 

is known to be highly dominated by biogenic silicate (Grundvåg, pers. comm. 2015). The rock 

fragments seen in the succession has most likely been transported from the beach zone by seasonal 

winter ice and transported across the shelf, were they have been dropped to the bottom as a result of 

the gradual melting of the ice (Dalland, 1977). The succession also has a high abundance of pyrite, 

which is formed in reduced conditions (Fisher and Hudson, 1987) under the redox boundary (Raiswell 
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and Berner, 1986). Marine environments with sulphate – rich waters are required, but not necessarily 

restricted to anoxic conditions (Curtis, 1980). These are also favorable conditions for high 

concentrations of microbial biomass which Nereites producers feed on (Wetzel, 2002). The high 

degree of bioturbation (90 – 100 %), might be an indication that lithofacies F.1 is deposited in quiet 

conditions under the storm-wave base. Also the grain-size of the lithofacies supports this, indicating 

short lived events of sandy input with the sand possibly being transported to the distal shelf as a result 

of major storm events. An offshore environment is suggested based on the fine-grained character of 

the lithofacies, trace fossils observed and sedimentary structures (Table 4.1). These are also 

environments were Nereites Ichnofacies are considered diagnostic (Seilacher, 1967).  

 

Facies F.2 – Silty Sandstone 

Description 

Lithofacies F.2 is a dark gray silty sandstone (Figure 4.2) seen in both wells and also in the outcrop 

section studied (Locality 1, Bolterdalen). The lithofacies is especially well developed in well BH-9-

2006 where it measures a total thickness of 38.25 meters in the thickest interval (Appendix 13). It is 

also prominent in well BH-10-2008 were it is measures 10 meters at its maximum and 1 meter at the 

thinnest interval (Appendix 11). The grain-size alternates between silt and very fine sand, with a silt 

percentage ranging from 50 % to less than 80 %. A few obscure appearances of wave-ripple-cross 

laminations (WRCL) are the only physical sedimentary structures seen in the lithofacies which is 

otherwise dominated by intense to complete bioturbation (80 – 100%).  

 

Virgaichnus, Teichichnus and Cylindrichnus are abundant in the lithofacies. Other trace fossils such as 

Schaubcylindrichnus, Palaeophycus, Macaronichnus and Nereites are also present in various intervals. 

Nereites is only observed in the deepest intervals in the two wells studied. Virgaichnus is particularly 

prominent in this lithofacies. There is also a clear variation in the trace fossils observed between wells 

and the outcrop sections studied. Palaeophycus is well developed in the outcrop section (Appendix 12) 

together with Virgaichnus, but almost absent in both wells albeit thick intervals of the same 

lithofacies.  

 

Two intervals composed of green very fine-grained clay sized sediments occur within the lithofacies in 

well BH-9-2006 (Appendix 13), the intervals measure 10 and 30 cm respectively. These intervals 

show no indication of bioturbation. Angular to well-rounded and coarse-grained pebbly rock 

fragments of quartzite were also observed at various intervals in well BH-9-2006 and also at the 

outcrop section in Locality 1 (Bolterdalen). A relative abundance of pyrite and siderite – nodules is 

also prominent throughout the lithofacies, especially in well BH-9-2006. Intervals with mud clasts and 

microfaults are also sporadically seen in both wells.   
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Figure 4.2: (A) Core photo of Lithofacies F.2 in well BH-9-2006, depth: 390.00-395.00. (B) Lithofacies F.2 in core sample 
1, depth: 394.00-394.14. 

Interpretation 

Lithofacies F.2 is interpreted to have a more proximal offshore depositional location than the 

underlying Lithofacies F.1. The input of silty material in otherwise very fine-grained sandstone is a 

result of suspension of fines from the water column during quiet conditions. Storms waves are able to 

create enough turbulence to bring silt and very fine-grained sand into suspension, which can further be 

transported by relatively weak currents across the shelf (Steel, 1977). The silt has most likely been 

mixed together with the sand as a consequence of bioturbation during colonization of the sediments. 

The different grain-sizes have been deposited in thin separate layers, and then later activity of different 

organisms has reorganized these sediments. This might be an indication of a slow sedimentation rate at 
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the time of deposition. The few wave-ripple-cross-laminations described might indicate that the 

environment of deposition was close to the storm-wave base. These sedimentary structures are made 

by storm waves creating oscillatory currents in shelf settings were the waves are big and convey lots 

of energy. The fact that only a few sets of wave-ripple-cross-laminations have been observed and with 

the sediments otherwise being almost completely bioturbated, still points to fairly quiet conditions.  

 

The differences in appearance of trace fossils in the two wells and in the outcrop sections studied is 

probably related to proximal and distal position in the basin. The occurrence of Nereites in well BH-

10-2008,  which is drilled on Nathorst Land (Figure 2.3), points to a more distal origin as this trace 

fossil is associated with offshore settings (Seilacher, 1967). Well BH-9-2006 is drilled close to 

Locality 1 (Bolterdalen) at Nordenskiöld Land (Figure 2.3) and both the well and outcrop section 

shows a domination of trace fossils associated with more proximal settings. The difference in 

appearance of trace fossils in outcrop and well is most likely due to intense weathering of the outcrop, 

making it harder to identify certain t 

race fossils compared to core-sections in the wells. Ichnofabric analysis of the lithofacies reveals that 

it is dominated by Virgaichnus, Teichichnus and Cylindrichnus – Ichnofabric (Figure 3.28). It is not 

uncommon to find Teichichnus occurring in high – diversity ichnoassemblages including 

Cylindrichnus concentricus and Palaeophycus tubularis. These burrows are all associated with diverse 

shallow-marine to offshore transition zone environments in the Cruziana Ichnofacies (Frey and 

Howard, 1990; Pemberton and MacEachern, 1992; Pemberton et al., 2001). Virgaichnus undulatus is 

known to appear in a number of different depositional environments ranging from shallow-marine to 

deep marine settings.  

 

The rock fragments observed has the same mineralogical composition as in Lithofacies F.1, and they 

are interpreted to be deposited as a result of transport by seasonal winter ice across the shelf (Dalland, 

1977). The green clay intervals are interpreted to be bentonite layers. The bentonite layers are 

composed of weathered and altered volcanic ash transported by the wind and deposited in the sea 

(Ramberg et al., 2008). A relative high abundance of pyrite points to reduced conditions in marine 

environments with sulphate – rich waters (Curtis, 1980; Fisher and Hudson, 1987). The very fine 

sandstones with considerable amount of in-mixed silt as a result of intense to complete bioturbation 

states that there have been good conditions for organisms to thrive. Obscure wave-ripple-cross-

laminations however points to energy levels typically occurring above or close to the storm-wave 

base. The appearance of Macaronichnus could also support this, as the trace fossil in some 

circumstances is associated with tempestites created by storm waves (Pemberton et al., 2001). The 

trace fossils observed relates the environment of deposition to the Cruziana Ichnofacies, and based on 

this observation an offshore transition environment has been proposed for this lithofacies (Table 4.1). 
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Facies F.3 – Moderately Silty Sandstone 

Description 

Lithofacies F.3 is a medium gray moderately silty sandstone (Figure 4.3) seen in both wells and at 

Locality 1 (Bolterdalen). The lithofacies measures a total thickness of 34.5 meters in the thickest 

interval at Locality 1 (Appendix 12), and it is generally well developed in the outcrop section studied 

(Bolterdalen). In well BH-10-2008 the lithofacies is also prominent were it measures 17 meters at its 

maximum and 0.25 meters at the thinnest interval (Appendix 11). Although having a 15 meter interval 

measured in the upper half of well BH-9-2006, the lithofacies overall is not particularly abundant in 

this well (Appendix 13). The grain-size of the lithofacies alternates between very fine and very 

fine/fine – sand, with a silt percentage from 30 % to less than 50 %. A moderate number of sets of 

wave-ripple-cross-laminations (WRCL) and a few hummocky-cross-stratifications (HCS) have been 

identified in the lithofacies which is otherwise dominated by intense to complete bioturbation (80 – 

100 %). 

 

In terms of ichnodiversity, there are some minor differences between the two wells and the outcrop 

section studied (Locality 1, Bolterdalen). Virgaichnus, Palaeophycus and Cylindrichnus are frequently 

observed in the lithofacies. The outcrop studied shows a great abundance of Palaeophycus and 

Schaubcylindrichnus, but fewer occurrences of Virgaichnus and Cylindrichnus in the lithofacies 

compared to the wells studied. Macaronichnus is also especially well developed in the two uppermost 

intervals of the lithofacies in the outcrop (Appendix 12), which differs from the wells studied. Well 

BH-9-2006 shows a great variety of trace fossils, with Teichichnus, Cylindrichnus and Palaeophycus 

in equal appearance, as opposed to Macaronichnus which is almost absent in this interval. Well BH-

10-2008 shows a great abundance of Cylindrichnus and Virgaichnus, but lacks almost any evidence of 

Teichichnus and even no evidence of Palaeophycus-burrows in the same lithofacies. 

 

Angular to well-rounded pebbly rock fragments of chert and quartzite were also sporadically observed 

in various intervals of the lithofacies. Siderite nodules are scattered in the interval seen in well BH-9-

2006. Pyrite does not appear as frequently in this lithofacies as compared to Lithofacies F.1 and F.2. 
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Figure 4.3: (A) Core photo of Lithofacies F.3 in well BH-9-2006, depth: 285.00-290.00. (B) Lithofacies F.3 in core sample 
6, depth: 288.74-288.94. 
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Interpretation 

Lithofacies F.3 is quite similar to Lithofacies F.2, but based on the grain-size, silt content, 

ichnodiversity and physical sedimentary structures the lithofacies seem to have a more proximal 

origin. The silt content is a result of suspension of fines from the water column which later have been 

mixed together with the sand as a result of intense to complete bioturbation. Turbulence created by 

storms waves has probably brought silt and very fined-grained sand in motion, which later have been 

deposited during quite conditions from suspension (Steel, 1977). A slow sedimentation rate is 

suggested based on the reorganization of the sediments by the activity of organisms. Beginning at the 

limit of the fair-weather (effective) wave base, the deposits of the lower shoreface is still dominated by 

offshore processes (Reinson, 1984). Fair weather generated wave ripples may be present in this 

environment, but is highly uncommon because of the intensity of bioturbation, and therefore the wave-

ripple-cross-laminations observed in this lithofacies most likely reflect a storm deposition (Pemberton 

et al., 2012). The presence of hummocky-cross-stratification in well BH-10-2008 which is associated 

with storm waves also supports this, even though it was only observed in two separate intervals and 

not frequently present (Appendix 11). The highly bioturbated and generally homogeneous sandstone 

indicates low intensity and infrequent storms, which would be a suitable environment for organisms to 

live in. The rock fragments observed has the same mineralogical composition as Lithofacies F.1 & 

F.2, and have been deposited as a result of transport by seasonal winter ice across the shelf (Dalland, 

1977). 

 

The difference in appearance of trace fossils in the two wells and in the outcrop sections studied shows 

a high diversity of deposit and suspension – feeding organisms. Regarding the differences seen 

between the two wells and in the field, this probably also relates to a proximal and distal position in 

the basin as seen in Lithofacies F.2. The intense weathering of the outcrop, made it more difficult to 

identify certain trace fossils compared to the core-sections in the wells, which would explain the 

difference in trace fossil observed. Ichnofabric analysis of the lithofacies points to a dominance of 

Virgaichnus, Cylindrichnus and Palaeophycus–Ichnofabric (Figure 3.28). Cylindrichnus concentricus 

is known to appear together with Teichichnus zigzag and Palaeophycus tubularis in a shoreface setting 

(Frey and Howard, 1990). These trace fossils represent a proximal expression of the Cruziana 

Ichnofacies (MacEachern and Bann, 2008). Considering the overlying Lithofacies F.4 which is 

dominated by the Skolithos Ichnofacies, the appearance of Macaronichnus segregatis in lithofacies F.3 

supports the effect of a fair-weather community dominated by suspension feeders. Based on the 

ichoassemblage being related to a proximal Cruziana to distal Skolithos-Ichnofacies, a lower shoreface 

environment has been proposed for this lithofacies (Table 4.1).  
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Facies F.4 – Light Silty Sandstone 

Description 

Lithofacies F.4 is a pale green to greenish gray light silty sandstone (Figure 4.4, A&B) seen in both 

wells and at Locality 1 (Bolterdalen), in the field the lithofacies occur as a yellowish gray unit in the 

succession as a result of weathering (Knaust, pers. comm. 2015). The lithofacies is especially well 

developed in well BH-9-2006 where it measures a total thickness of 77.6 meters in the thickest 

interval (Appendix 13). In well BH-10-2008 the lithofacies is also prominent where it measures 31 

meters at its maximum (Appendix 11). The grain-size of the lithofacies alternates between very fine, 

fine and medium-sand, with some minor differences between the two wells and the outcrop sections 

studied. In well BH-9-2006 some intervals of 1-10 meters show coarsening upward units with 

medium/coarse-sand at the top, while in well BH-10-2008 the overall grain-size is very fine and fine-

sand. An overall coarsening upward and thickening upward of the lithofacies is observed in well BH-

9-2006 and at the outcrop studied (Locality 1, Bolterdalen), measuring only a few meters to more than 

10 meters. The lithofacies has a higher sand percentage than the underlying lithofacies, resulting in a 

silt percentage ranging between 0 and 30 %. Abundant sets of wave-ripple-cross-laminations (WRCL) 

(Figure 4.4-C) and a few sets of trough-cross-stratification (TCS) have been identified in the 

lithofacies. Bioturabation intensity is alternating between moderate to complete (50 – 100 %) 

throughout the lithofacies, with some minor intervals showing no sign of bioturbation being related to 

more sedimentary structures present. Also the bioturbation intensity seems to decrease towards the top 

of the lithofacies, where wave-ripple-cross-laminations are more frequent.  

 

Macaronichnus is the most prominent and indicative trace fossil occurring in Lithofacies F.4 (Figure 

3.28). Other trace fossils such as Virgaichnus and Cylindrichnus are also abundant in the lithofacies, 

with their abundance being slightly different between the two wells and the outcrop section studied. In 

well BH-10-2008 there is a great abundance of Cylindrichnus and Virgaichnus present in the 

lithofacies, while Cylindrichnus is poorly represented in well BH-9-2006. In the outcrop sections 

studied, Cylindrichnus was however not observed, but Macaronichnus is very abundant in this section. 

 

A 50 cm interval composed of green very fine-grained clay sized sediments occurs within the 

lithofacies in well BH-9-2006 (Figure 4.5). Angular to well-rounded coarse-grained pebbly rock 

fragments of chert and quartzite were also observed sporadically within the lithofacies (Figure 4.4-C). 

Carbonate cemented intervals and siderite nodules are also more prominent in this lithofacies, 

especially in the lower part of the lithofacies in well BH-9-2006 (Figure 3.4). 
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Figure 4.4: (A) Core photo of Lithofacies F.4 in well BH-10-2008, depth: 812.00-814.00. (B) Core sample of Lithofacies 
F.4, depth: 813.85-814.00. (C) Wave-ripple-cross-lamination (WRCL) and a pebble size rock fragment (RF) in well BH-9-
2006, depth: 198.37-198.50. 

 

Figure 4.5: (A) a 50 cm bentonite layer occurs in Lithofacies F.4 in well BH-9-2006, depth: 272.50-273.00. (B) A close-up 
of the bentonite layer, depth: 272.56-272.68. 
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Interpretation 

Lithofacies F.4 is a sandstone unit that appears less silty than the underlying lithofacies and the 

occurrence of physical sedimentary structures is far more abundant in this interval. Since bioturbation 

intensity is more varying throughout the interval compared to the other lithofacies, high-energy 

conditions and a more proximal origin is expected. The silt content in the lithofacies is explained by 

the mixing between sand and silt as a consequence of bioturbation (reorganization) during 

colonization of the sediments, as seen in the underlying lithofacies. The silt content gradually 

decreases upward in the interval as a result of a general coarsening upward trend in the lithofacies. The 

characteristic green expression seen in the lithofacies is a result of a high glauconitic content (Steel et 

al., 1981). A slow sedimentation rate is suggested based on the abundant glauconite, relative 

homogeneous sandstone succession and the high bioturbation intensity (Odin and Matter, 1981). Slow 

sedimentation rates creates suitable conditions for organisms to live and thrive in, leading to high 

bioturbation intensity still being in a high-energy environment. The green clay interval in BH-9-2006 

is similar to the once seen in Lithofacies F.2, and is therefore interpreted to be a bentonite layer. The 

pebble size rock fragments are deposited by seasonal winter ice across the shelf (Dalland, 1977). They 

share the same mineralogical composition as the other lithofacies already described, and therefore they 

most likely originate from the Permian Kapp Starostin Formation.  

 

Sets of wave-ripple-cross-lamination and trough-cross-stratification indicate a shallow-marine 

environment dominated by wave processes. The middle shoreface is characterized as a zone of 

shoaling and breaking of waves being strongly influenced by storms, were wave energy is high enough 

to erode the sea bed and storm-induced scouring takes place (Pemberton et al., 2012). Well sorted, fine 

to medium-grained sandstones beds are typically found in the middle shoreface. The upper shoreface 

is characterized as the surf zone in front of the breaking zone, were wave-and storm-driven currents 

causes the sediment to be transported by multidirectional flow (Pemberton et al., 2012). Well sorted, 

medium to coarse-grained sandstone beds with multidirectional trough-cross-stratification are 

common in the upper shoreface. Lithofacies F.4 shows a general coarsening upward trend in the 

succession were silt content decreases and the number of physical sedimentary structures increases. 

This could possibly indicate a gradual vertical (lateral) shift from the middle to upper-shoreface. A 

high abundance of suspension-feeding organisms, especially Macaronichnus segregatis which is a 

characteristic shallow-marine trace fossil occurring in foreshore and upper/middle-shoreface 

environments, supports this interpretation (Clifton and Thompson, 1978; Seike, 2007; Bromley et al., 

2009; Pemberton et al., 2012). As seen in the other lithofacies, also in Lithofacies F.4 the intensity of 

bioturbation overtakes the number of physical sedimentary structures, making it difficult to accurately 

position the environment of deposition. The most accurate statement would however be to suggest an 

upper shoreface environment in the Skolithos Ichnofacies based on sedimentary texture, structures and 

the ichnodiversity present in Lithofacies F.4 (Table 4.1). 
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Facies F.5 – Gravel  

Description 

A gravel layer measuring a thickness from 15-25 cm occurs in the lower part of Lithofacies F.1 at the 

top of each well, marking a transition with an erosive boundary to the underlying Lithofacies F.4 

(Figure 4.6, B&C). Similar layers also occur in the very top of Lithofacies F.4 in well BH-9-2006 

(Appendix 13). A single layer also occurs at the bottom of an over-scattered section at Locality 1, 

Bolterdalen (Appendix 12). The gravel layers are dominated by very coarse sand and granules with 

some scattered pebbles. The gravel is poorly sorted without imbrication or grading. The grains 

constituting the gravel layer are angular to well-rounded, and measure a size from 2mm to 3-4 cm in 

diameter. The layer shows none to moderately degrees of bioturbation (0 – 50 %). 

  

Interpretation 

The gravel layers occurring in the wells and at the outcrop studied are interpreted to be a locally 

derived lag associated with marine erosion during transgression. This can also be referred to as a wave 

ravinement surface created by wave processes during marine flooding (Knaust, pers. comm. 2016). 

The transgressive lag marks the start of the major flooding on top of the shallow-marine environment 

of the Grumantbyen Formation and deposition of the superimposed Frysjaodden Formation. High-

energy conditions enable the movement of the grain-sizes found in the lag creating the erosive 

boundaries to the underlying Lithofacies F.4.   

 

Figure 4.6: (A) Core photo of Lithofacies F.1 in the upper part of well BH-10-2008, depth: 810.00-813.00. (B) Between 
812.20-812.25 a transgressive lag separates the underlying Lithofacies F.4 from the superimposed Frysjaodden 
Formation. (C) A similar transgressive lag can be seen in the top of well BH-9-2006, depth: 127.80-127.90. 
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5 Petrography 
 

Ten samples from outcrop Locality 1 (Bolterdalen) and 11 samples from well BH-9-2006 were 

selected for thin-section analysis. They were selected with the aim of displaying the different 

lithological and ichnological variations at pore scale. The samples are each briefly described and can 

be found in Appendix 3 and Appendix 4. In total, 21 samples were analyzed by the use of optical 

microscope, 5 which were also analyzed by scanning electron microscope (SEM) and X-ray 

diffraction (XRD). This was done in order to describe the composition of the samples. The 

composition of the samples is sub-divided into the following categories: texture, framework and 

authigenic-constituents, matrix, cement and porosity. A modal analysis was done in order to classify 

the samples and to get a more detailed description of the different constituents, matrix and pore-space 

distributions within 12 selected thin-sections from the well and outcrop. Chapter 5.3 presents a 

description of the relationship between authigenic minerals and diagenesis, and at the very end of 

Chapter 5 a description on how compaction and cementation has had an impact on the porosity 

distribution in the analyzed samples is presented. The result presented in this chapter is well related to 

and supportive to the result from Chapter 4; therefore multiple references to the defined lithofacies 

(Chapter 4.1) will be given throughout the petrography chapter. Since there were no samples taken 

from Lithofacies F.5 (Chapter 4.1), this lithofacies has been disregarded within this chapter.    

5.1 Composition 
 

5.1.1 Texture 

 

The resulting textures of the samples are presented in Appendix 5 and Appendix 6. The grain-size 

value is calculated based on counting points with a 10X10 magnification in the optical microscope, 

assisted by length measurement of grains through the NIS – Elements BR software (Chapter 1.2). The 

calculated grain-size value is a mean value based on all the grains measured in the sample, and the 

value given is defined by the Udden-Wentworth scale. Other properties determined, such as sorting, 

roundness, shape and fabric, are defined by Pettijohn et al. (1972).  

 

Referring to the lithofacies descriptions in Chapter 4.1, the analysis shows that samples taken from the 

same defined lithofacies display similar textural properties. Hence the textures described from the 

samples might indicate characteristics of certain depositional environments. The samples from the 

most distal interpreted lithofacies show a matrix-supported fabric, while the other lithofacies are 

dominated by grain-supported fabric. The analysis shows that the grain-size is ranging between coarse 
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silt to fine-grained sand, and that the majority of the samples are dominated by very fine grain-sizes. 

Figure 5.1 illustrates the grain-size distribution, indicating that the interpreted distal deeper-water 

deposits have a finer grain-size than the most proximal shallow-water deposits, which supports the 

visual grain-size determination in Chapter 4.1. The grain-sizes might also explain why the majority of 

the analyzed samples have an angular/sub-angular roundness (Figure 5.2), because larger grains are 

more easily rounded than smaller grains. The sorting of the samples is dominantly well and very well-

sorting, with a notably better sorting of the most proximal and most distal lithofacies (Figure 5.3). The 

shape of the grains in the samples displays a higher sphericity (Figure 5.4) towards the more proximal 

lithofacies (F3 and F4), in which the energy levels were presumably higher due to more storm and 

wave action.  

 

Figure 5.1: Grain-size distribution of the different analyzed samples, organized as lithofacies (F1-F4) (Chapter 4.1). 
OS=Offshore, OT=Offshore transition, LS=Lower shoreface and US=Upper shoreface. 

  

 

Figure 5.2: Degree of roundness of the different analyzed samples, organized as lithofacies (F1-F4) (Chapter 4.1). 
OS=Offshore, OT=Offshore transition, LS=Lower shoreface and US=Upper shoreface. 
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Figure 5.3: Degree of sorting of the different analyzed samples, organized as lithofacies (F1-F4) (Chapter 4.1). 
OS=Offshore, OT=Offshore transition, LS=Lower shoreface and US=Upper shoreface. 

 

  

Figure 5.4: Shape of the different analyzed samples, organized as lithofacies (F1-F4) (Chapter 4.1). OS=Offshore, 
OT=Offshore transition, LS=Lower shoreface and US=Upper shoreface. 
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5.1.2 Modal analysis 

The modal analysis is presented in Table 5.1 and shows the occurrence and distribution of framework 

and authigenic minerals, matrix and porosity, where the given values are based on the mean values of 

all the samples analyzed from well BH-9-2006 (7) and outcrop (5) within the same defined lithofacies 

described in Chapter 4.1. The values are presented as percentage of the total composition of the 

different lithofacies. The table shows that Lithofacies F.2 & F.3 have quite similar composition. From 

Lithofacies F.1 to F.4 there is a gradual increase in quartz content, while the matrix content is 

gradually decreasing. Also the amount of chlorite, which is a clay mineral under the definition of 

authigenic minerals (Chapter 5.1.4), is gradually increasing from Lithofacies F.1 to F.3 with an abrupt 

increase in Lithofacies F.4. Glauconite, which is described as a diagnostic clay mineral in the 

Grumantbyen Formation, is most abundant in Lithofacies F.2 & F.4. Calcite and siderite is more 

abundant in Lithofacies F.4 than in all the other defined lithofacies.  

 

The number of samples within each lithofacies is not equal, which gives some uncertainty to the 

values presented (Figure 5.5). The values originate from samples of both, well and outcrop data, 

which may have an impact on the results in terms of weathering and erosion of the exposed outcrop. 

Appendix 7 and Appendix 8, presents the modal analysis of the individual samples from Locality 1 

(Bolterdalen) and well BH-9-2006. 

 

 

Figure 5.5: Sample distribution within the different defined lithofacies (F.1-F.4) (Chapter 4.1), based on the 12 samples 
that were modally analyzed. OS= Offshore, OT=Offshore transition, LS= Lower shoreface and US= Upper shoreface.   
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Table 5.1: Modal composition of interpreted lithofacies (F1-F4) (Chapter 4.1). The values in the analysis are mean values from Appendix 7 and Appendix 8, presented as percentage of the 
total composition of the different lithofacies. The analysis is based on point-counting of 300 points within each thin-section through an optical microscope with a 20X10 magnification. X = 
not observed within sample.  

   

 Framework constituents 

Matrix 

Authigenic minerals Porosity 

Lithofacies 

(number of 

samples) 

 

Quartz 

Feldspar 

Mica 
Rock 

fragm 

Heavy 

minerals 
Organics Silica Calcite Siderite Glauconite Chlorite Pyrite Sericite Primary Secondary 

K-

feldspar 
Plagioclase 

F.1 (2) 34.0 1.0 8.2 0.3 2.2 0.1 x 42.1 1.5 0.3 1.2 0.5 0.5 0.2 2.0 5.6 0.3 

F.2 (2) 33.0 1.9 15.0 x 1.8 x x 31.0 0.9 x 0.2 2.8 0.6 x 5.1 6.3 1.4 

F.3 (4) 37.5 2.3 18.8 0.1 1.5 0.1 0.1 25.6 1.7 0.1 0.2 1.3 2.6 x 3.1 3.8 1.2 

F.4 (4) 49.6 1.5 12.9 0.3 1.1 0.3 x 6.0 0.8 6.3 3.0 2.1 9.7 x 1.3 2.4 2.7 
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5.1.3 Framework constituents 
 

Framework constituents that are dominating in the Grumantbyen Formation are quartz, feldspar (K-

feldspar and plagioclase), rock fragments (chert and quartzite), mica, whereas heavy minerals and 

organics are subordinate. 

 

Quartz is the most prominent framework mineral in the formation, and it appear both as individual 

grains and intergranular within other rock fragments. Minor alteration has been noticed, such as 

irregular grain boundaries and slight deformation. Some of the quartz grains show distinct to 

conchoidal fracture/cleavage in plane-polarized-light (PPL, from now on), although this feature is less 

common. No twinning and undulatory extinction angle was identified in cross-polarized-light (XPL, 

from now on). Most of the quartz grains are monocrystalline (Figure 5.6-A) with point contacts to the 

surrounding grains, although some also have sutured contacts. Some of the samples contain 

polycrystalline quartz (Figure 5.6-B), but in minor quantities compared to the monocrystalline 

counterpart. The quartz grains are angular and sub-angular and the majority of the grains have a 

moderate sphericity.  

 

Figure 5.6: (A) Monocrystalline quartz grains in sample 9, well BH-9-2006. (B) Polycrystalline quartz in sample 1.1, 
Locality 1 (Bolterdalen). Both pictures are in XPL with scale in microns, 100 microns = 0.1 mm, 50 microns = 0.05 mm.  

Feldspar is the second most abundant framework mineral in the formation, especially plagioclase 

which is well represented in all the lithofacies based on the modal analysis (Chapter 5.1.2). Feldspars 

are most abundant in Lithofacies F.3 (Chapter 4.1) based on the analyzed samples. Both K-feldspars 

and plagioclase appear colorless in PPL and with an inclined extinction angle in XPL, so they are best 

distinguished by studying their twinning in XPL. K-feldspars, both orthoclase and microcline, show 

tartan twinning in XPL (Figure 5.7-A), while plagioclase, both albite and anorthite, show 

polysynthetic twinning (Figure 5.7-B). Based on Bowen’s reaction series (Bowen, 1922), feldspars are 

A B 
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known to easier dissolve than quartz during diagenesis, especially plagioclase which often show signs 

of alteration. Sericitization is an alteration process of sodium-bearing plagioclase such as albite 

(NaAlSi3O8), which gets replaced by very fine-grained muscovite (sericite) appearing as lamellas in 

the plagioclase (Shelley, 1992). Saussuritization is also an alteration process attacking calcium-bearing 

plagioclase such as anorthite (CaAl2Si2O8), which gets replaced by saussurite (Shelley, 1992). These 

alteration processes are most likely a result of hydrothermal alteration (Shelley, 1992). If the feldspars 

have a very small grain-size or if the twinning is not well developed, it can be difficult to distinguish 

the feldspars from the quartz in the samples just by the use of an optical microscope. The Scanning 

Electron Microscope-analysis (SEM) therefore proved helpful in terms of identifying K-feldspars and 

plagioclase on a small scale (Figure 5.8).  

 

 

Figure 5.7: (A) K-feldspar showing tartan twinning in sample 9, well BH-9-2006. (B) Plagioclase showing polysynthetic 
twinning in sample 1.9, Locality 1 (Bolterdalen). Both pictures are in XPL with scale in microns, 100 microns = 0.1 mm. 

 

Figure 5.8: SEM-analysis of sample 2, well BH-9-2006. The minerals are identified based on their chemical composition. 
The K-feldspar shows signs of alteration with Na-bearing plagioclase as the dark phase horizontally distributed in the 
grain. Q=quartz, K=K-feldspar, Pl=plagioclase, P=Pyrite & S=Siderite. Scale in microns, 100 microns = 0.1 mm     
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Rock fragments in the samples primarily constitute chert and quartzite. They appear frequently in the 

logged sections described in the lithology chapter (Chapter 4), but not as frequent in the thin-section 

samples. The chert grains identified in the thin-sections originated from the Permian Kapp Starostin 

Formation, which is known to be highly dominated by biogenic silicate (Grundvåg, pers. comm. 

2015). The chert grains appear quite diagnostic in XPL, with clear and cloudy zones of radial-fibrous 

quartz (Figure 5.9). The black and white zones express a sort of “zebra” pattern, which makes it easy 

to identify. Quartzite is a metamorphic rock fragment, described as a recrystallized clean sandstone 

protolith implying a metamorphic origin. The rock fragments seen in the Grumantbyen Formation are 

suggested to be deposited as a result of a cross-shelf transport by seasonal winter ice (Dalland, 1977). 

 

 

Figure 5.9: A pebble sized (4.1 mm) chert fragment and a granule sized (2.4 mm) quartzite fragment in sample 1.4, 
Locality 1 (Bolterdalen). Picture is taken in XPL with scale in microns, 1000 microns = 1.0 mm.  

A few examples of muscovite (mica) are also present in the samples (Figure 5.10). The mineral tends 

to show evidence of alteration and foliation. It has a clear/colorless appearance in PPL and a parallel 

extinction angle with a “birds’ eye” appearance in XPL. Also very fine-grained muscovite appears as 

intergranular minerals in sodium-bearing plagioclase in the samples. These mica fractions are made as 

a result of alteration of plagioclase (called sericitization), creating an alteration product termed sericite 

(Shelley, 1992), which is here characterized as an authigenic mineral described in Chapter 5.1.4.  

Chert 

Quartzite 
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Figure 5.10: A foliated muscovite mineral due to compaction in sample 1.5, Locality 1 (Bolterdalen). The sample also 
shows a white ring of sorted quartz and feldspar grains which is characteristic of Schaubcylindrichnus coronus (Chapter 
3.1). The burrow has been partly flattened, which supports the proposed compaction. Picture is taken in XPL with scale in 
microns, 100 microns = 0.1 mm.  

Other framework minerals occurring in the samples are small detrial coal fragments and heavy 

minerals. The coal fragments are fairly small in size and are not particularly abundant throughout the 

formation, probably because most of the fragments have been altered into siderite which stands as an 

authigenic minerals described below (Chapter 5.1.4). The heavy minerals appear opaque (black) in 

PPL due to absorption of light (Figure 5.11), and they are very small in grain-size. This makes them 

hard to identify, still one can assume them to be iron oxides or sulfides.  

 

Figure 5.11: Opaque (black) minerals in PPL, sample 9, well BH-9-2006. Thin-section is colored blue in order to highlight 
available pore-space in the sample. Green phase surrounding the framework minerals is chlorite, which appear as both 
pore-filling and coating in the sample. Scale is in microns, 100 microns = 0.1 mm. 
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5.1.4 Authigenic minerals 
 

These are minerals that have been formed after deposition of the framework minerals, also sometimes 

referred to as diagenetic minerals. Authigenic minerals, which are dominating in the Grumantbyen 

Formation, include silica, calcite, siderite, glauconite, chlorite, pyrite and sericite.  

 

Silica occurs either as chalcedony or microcrystalline and in relative small quantities. It fills the pore-

space in between the framework minerals. Chert or chalcedony has typically clear and cloudy zones of 

radial-fibrous quartz in XPL. However, most of the chert and chalcedony in the formation does appear 

as individual rock fragments. Quartz cement is almost absent, which might be due to the matrix and 

clay coating of the feldspar and quartz grains, described further in Chapters 5.1.4 and 5.3. 

 

Calcite cement is quite abundant in samples from Lithofacies F.4 (Table 5.1). In PPL, calcite appears 

colorless, but in XPL, a high birefringence gives the mineral a characteristic rainbow color (Figure 

5.12). The mineral occurs as pore-filling and often in association with siderite cement. It is most 

abundant in sample 1.10 from Locality 1, Bolterdalen (Appendix 7), where the calcite cement accounts 

for 20 % of the total bulk volume. Calcite cement reduces the porosity significantly in the samples 

(further described in Chapter 5.3.1). The mineral is also observed to occur as prismatic sparry cement, 

which is an indication of low matrix content and deposition in agitated water (Bjørlykke et al., 1989), 

which fits well with the matrix content of Lithofacies F.4 (Figure 5.20). 

 

 

Figure 5.12: Calcite cement in sample 1.10, Locality 1 (Bolterdalen). The calcite cement (C) has a characteristic high 
birefringence between the framework minerals. Siderite cement (S) is also present as the brown phase, while glauconite 
(G) in the sample portrays a green-brownish color. Picture is taken in XPL with scale in microns, 100 microns = 0.1 mm.  
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Siderite appears in all samples, but is most apparent in the most distal and most proximal lithofacies 

(Table 5.1). In the most proximal Lithofacies F.4 (Chapter 4.1) its appearance with calcite cement is 

common. Siderite appears both as intergranular grains with a rhombic grain shape and as pore-filling 

cement. It is expected that the siderite occurrence is due to replacement of calcite, biotite or coal 

fragments. In PPL siderite emerges as a light brown mineral, while in XPL it changes into a darker 

brown colored mineral. In sample 1.10 it is possible to see the boundary between calcite and siderite-

cementation both in hand specimen and in optical microscope (Figure 5.13).  

 

 

Figure 5.13: (A) A boundary between calcite and siderite-cement in sample 1.10, Locality 1 (Bolterdalen) seen through 
optical microscope. Scale in microns, 100 microns = 0.1 mm. (B) Same boundary seen in hand specimen, scale in cm.  

 

The presence of glauconite and the accompanying green color is the reason why the formation was 

previously named “the green sandstone series” (Nathorst, 1910). The mineral appears in nearly all the 

samples, and is most abundant in Lithofacies F.2 & F.4 (Table 5.1). Glauconite is easily identified in 

PPL by its green or brownish-green color (Figure 5.14). The mineral has a moderate birefringence in 

cross-polarized-light, which make it appear in its natural colors. Glauconite is a hydrous potassium 

iron alumino-silicate mineral which exclusively forms in shallow-marine waters (Odin and Matter, 

1981). In the samples studied the mineral is observed to be both pore-filling and coating, implying 

precipitation after deposition of the framework minerals. The process behind its occurrence is further 

described in Chapter 5.3.  
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Figure 5.14: Brownish-green glauconite acting pore-filling amongst quartz and feldspar grains in sample 1.4, Locality 1 
(Bolterdalen). Picture is in PPL with scale in microns, 100 microns = 0.1mm.   

Chlorite is a clay mineral which gradually increases from the most distal Lithofacies F.1 towards the 

most proximal Lithofacies F.4 (Table 5.1), where the mineral has proven to be most abundant. It can 

sometimes be hard to distinguish chlorite from glauconite due to its green color in PPL, but the clay 

minerals are best differentiated based on the birefringence in XPL. In plane-polarized-light chlorite 

appears colorless to pale green, while in cross-polarized light the clay mineral appears with an inclined 

extinction angle and a weak birefringence. In the samples the clay mineral appears as both pore-filling 

and coating. Both in optical microscope and SEM analysis, sample 9 clearly displays how the clay 

mineral is coating quartz and feldspar grains, while also being pore-filling (Figure 5.11, Figure 5.15). 

The SEM-results display the fibrous characteristic of the clay mineral, being composed of small 

needles of chlorite (Figure 5.16). Chlorite coating of quartz grains is known to prevent quartz from 

overgrowth, which can lead to preservation of primary porosity in a state of deep burial and 

compaction (Ehrenberg, 1993), this is further described in Chapter 5.3.1.      

 

Figure 5.15: SEM-result of sample 9, well BH-9-2006. Fibrous chlorite is coating the framework grains and filling the 
pore-space. Scale in microns, 50 microns = 0.05 mm. 



Chapter 5 
Petrography 

64 
 

  

 

Figure 5.16: SEM-result of sample 9, well BH-9-2006. Fibrous chlorite composed of multiple small needles is coating a 
quartz grain. Scale in microns, 50 microns = 0.05 mm. 

Pyrite is an iron sulfide mineral (FeS2) that appears as opaque (black) in PPL due to absorption of 

light, and the mineral is small in grain-size, which makes them hard to identify in the optical 

microscope. Based on the modal analysis (Table 5.1), pyrite is only observed to occur in Lithofacies 

F.1. The SEM-analysis does however show minor quantities of the mineral in samples associated with 

other lithofacies in the formation as well. Associating pyrite with the most distal Lithofacies F.1 is not 

unexpected, as pyrite is common in an eogenetic marine environment in shales and silts, with sulphate 

(SO4
2-

) present (Raiswell and Berner, 1986). The SEM-analysis result of samples 2 and 5 shows pyrite 

as small white circular pellets (framboids), being either isolated or in close clusters (Figure 5.17). The 

pellets appear both randomly distributed in the samples matrix and also well aligned along the margins 

of the matrix in between the framework minerals (Figure 5.18). 

 

Figure 5.17: SEM-result of sample 2, well BH-9-2006. Small white circular pellets of pyrite are surrounding the margins 
of a foliated muscovite mineral. Scale in microns, 40 microns = 0.04 mm. 
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Figure 5.18: SEM-result of sample 2, well BH-9-2006. White pellets of pyrite are distributed within and along the 
margins of the matrix in between the framework minerals. Scale in microns, 300 microns = 0.3 mm.   

Sericite appears in all of the defined lithofacies, but is most abundant in Lithofacies F.2 & F.3 (Table 

5.1). Sericite is a product of an alteration process (sercitization) of sodium-bearing plagioclase such as 

albite (NaAlSi3O8), which gets replaced by this very fine-grained muscovite appearing as intergranular 

lamellas in the plagioclase (Figure 5.19) (Shelley, 1992). Though often small in size, the lamellas tend 

to build perpendicular to the twinning direction of the plagioclase. Illite, which is a clay mineral, may 

be a component of sericite (Warren and Curtis, 1989), which will be further described in Chapter 5.1.5 

and 5.3.     

 

Figure 5.19: Sample 1.5, Locality 1 (Bolterdalen) shows the alteration product of sodium-bearing plagioclase, namely 
sericite, which is fine-grained muscovite appearing as bright yellow spots in the altered plagioclase. Picture in XPL with 
scale in microns, 100 microns = 0.1 mm.    
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5.1.5 Matrix 

 

The amount of matrix in the samples was determined by the modal analysis (Table 5.1). The matrix 

content in the formation gradually decreases from the most distal Lithofacies F.1 towards the most 

proximal Lithofacies F.4 (Figure 5.20). In the modal analysis the matrix is characterized as being 

either depositional clay (pore-filling) or biogenic clay (burrow). Since the Grumantbyen Formation is 

highly bioturbated one would expect that the majority of matrix in the samples to be biogenically 

supplied. At pore scale through an optical microscope it can be difficult to determine if the matrix is 

biogenically supplied, because of the scale of investigation. Therefore the majority of the matrix 

observed in the samples has been categorized as depositional clay (pore-filling), except from clear 

biogenic supplements.  

 

Figure 5.20: Matrix distribution within the different defined lithofacies (Chapter 4.1), based on the modal analysis in 
(Table 5.1). Lithofacies (F1-F4) is organized from distal to proximal affiliation on the horizontal axis. OS=Offshore, 
OT=Offshore transition, LS=Lower shoreface and US=Upper shoreface. 

 

The clays and other constituents of the matrix are hard to identify through the optical microscope 

because of their very small grain-size, therefore an X – ray Diffraction-analysis (XRD) was done in 

order to get a better understanding of the chemical composition of the matrix. From the authigenic 

minerals in the samples it is shown that both glauconite and chlorite are clay minerals that act as pore-

filling and coating, whereas the XRD results reveal that illite appears frequent in the matrix 

composition (Figure 5.21). Illite is quite similar to muscovite in terms of chemical composition; 

KAl3Si3O10(OH)2, and is often an alteration product of muscovite and feldspar, through the process of 

sericitization due to weathering and hydrothermal alteration (Warren and Curtis, 1989; Shelley, 1992). 

The XRD-results reveal illite in a transition stage between illite and its iron-rich relative, glauconite; 

(K,Na)(Fe
3+

,Al,Mg)2(Si,Al)4O10(OH)2. Components such as chlorite, feldspar and quartz are also 
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present in the matrix. The components are most likely a result of diagenetic processes and alteration of 

framework constituents, illite has probably replaced unstable mica fragments. In terms of samples 

within the different defined lithofacies (Chapter 4.1), there is also a difference in the components of 

the matrix content. The matrix composition in sample 9 and 10 from Lithofacies F.4 (Table 5.1) 

shows less illite and more abundance of chlorite and siderite (Figure 5.22).  

 

Figure 5.21: XRD-result of sample 2, well BH-9-2006. Quartz, K-feldspar and plagioclase are the most abundant 
minerals, but illite also appears quite frequently. Results produced by: Ruth Elin Midtbø.  

 

Figure 5.22: XRD-result of sample 10, well BH-9-2006. Quartz is the most abundant mineral followed by chlorite, siderite, 
calcite, K-feldspar and plagioclase. Results produced by: Ruth Elin Midtbø. 
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5.2 Classification 
 

Based on the analysis of texture, modal analysis, framework and authigenic minerals and matrix in 

Chapter 5.1, a classification of the different lithofacies (Chapter 4.1) is presented in this chapter. Based 

on the results from the modal analysis, a classification is done in terms of quartz (Q), feldspars (F) and 

lithic fragments (L) (Dickinson, 1970). This classification displays the distribution of framework 

grains, and it has to be normalized from the results of the modal analysis in order to display them in 

the classification scheme (Q+F+L=100 %) (Dickinson, 1970). Table 5.2 displays the matrix, quartz, 

feldspar and lithic fragment distribution (%) within each defined lithofacies (Chapter 4.1), which is 

based entirely on the modal analysis results of each sample within the same defined lithofacies in both 

well BH-9-2006 and Locality 1, Bolterdalen (Appendix 7 and Appendix 8). Matrix content is 

important, more than 15 % matrix (<0.03 mm) and less than 75 % implies that the sandstone is 

classified as a wacke (Figure 5.23), if the matrix accounts for more than 75 % then it is classified as a 

mudstone (Figure 5.24) and if it is less than 15% it stands as an arenite (Figure 5.25) (Dott, 1964). 

The matrix content is gradually decreasing from Lithofacies F.1 towards Lithofacies F.4, the 

classification shows that the offshore (OS) deposited lithofacies is dominated by mudstone, the 

offshore transition (OT) and lower shoreface (LS) deposited lithofacies are dominated by arkosic 

wacke, and the most proximal upper shoreface (US) deposited lithofacies is classified as a subarkose 

(Table 5.2).  

   

 

 

 

Lithofacies Matrix (%) Quartz (Q) % Feldspar (F) % 
Lithic fragments (L) 

% 
Classification 

F.1 (OS) 93.6 74.5 20.7 4.8 Mudstone 

F.2 (OT) 62.3 63.8 32.7 3.5 Arkosic wacke 

F.3 (LS) 43.2 62.4 35.1 2.5 Arkosic wacke 

F.4 (US) 9.6 76.3 22.0 1.7 Subarkose 

 

Table 5.2: Matrix content and distribution of framework grains within the different lithofacies (F1-F4) (Chapter 4.1), and 
their resulting classification. The values are normalized from the results of the modal analysis of each sample within the 
same defined lithofacies (Appendix 7 and Appendix 8). Q+F+L=100 % (Dickinson, 1970).  
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Figure 5.23: Based on the given values in (Table 5.2) Lithofacies F.2 & F.3 plots as an Arkosic wacke due to over 15 % 
matrix and a high content of feldspars and quartz.   

 

Figure 5.24: Based on the given values in (Table 5.2) Lithofacies F.1 plots as a Mudstone due to over 75 % matrix. 

 

Figure 5.25: Based on the given values in (Table 5.2) Lithofacies F.4 plots as a Subarkose due to less than 15 % matrix 
and a high content of quartz.  
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5.3 Diagenesis 
 

Diagenetic development is presented in this chapter on the basis of the results of Chapter 5.1.2, 4 and 

5. Some of the most abundant authigenic minerals in the different lithofacies and their diagenetic 

evolution are presented in this chapter. From the lithological interpretations (Chapter 4) a general 

model can be used (Figure 5.26) to summarize the diagenetic reactions typical in a marine 

depositional environment, which is applicable to the Grumantbyen Formation. Catalyzing processes 

by bacteria are dominating in marine eogenesis, and the minerals found in this environment can form 

at varying temperatures depending on the setting (Worden and Burley, 2003). In Chapter 5.3.1 a 

description of the porosity and the influencing effect by compaction and cementation in the different 

lithofacies, based on the modal analysis (Chapter 5.1.2) is presented.         

 

When referencing diagenesis, three different regimes are commonly recognized: 

 Early diagenesis (eogenesis): includes all processes that occur at or near the surface of the 

sediments where the marine waters and its chemistry are highly controlled by the adjacent 

depositional environment (Berner, 1980).  

 Burial diagenesis (mesogenesis): includes all processes that occur once the sediment has 

moved from being influenced by the depositional environment to the very first stages of low-

grade metamorphism (Worden and Burley, 2003).   

 Uplift-related diagenesis (telogenesis): includes all processes occurring after the rocks have 

been uplifted and exhumed, where they are being exposed to the influx of surface (meteoric) 

water (Worden and Burley, 2003).    

 

 

Figure 5.26: Model summarizing the diagenetic reactions in the marine eogenetic regime after Worden and Burley 
(2003). The model can be used as an analog to the diagenetic reactions creating the authogenetic constituents seen in 
the Grumantbyen Formation.  
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Calcite 

Calcite (CaCO3) is observed as an authigenic mineral (Chapter 5.1.4) and appear as a pore-filling 

cement amongst the framework constituents, often in association with siderite cement. Calcite cement 

is most abundant in Lithofacies F.4 (Table 5.1). Generally, calcite cement tend to not be evenly 

distributed in sandstones, their concentration is normally restricted to pore systems which can be 

completely filled with calcite (Bjørkum and Walderhaug, 1990). Calcite cement tends to form in 

alkaline waters as a result of redistribution, dissolution and re-precipitation of calcium bearing fossil 

shell fragments or carbonate minerals (Bjørlykke et al., 1989; Hendry et al., 1996). Calcite forms both 

during eogenesis as well as mesogenesis (Figure 5.26), when formed during burial diagenesis the 

precipitated calcite is characterized by recrystallization of pre-existing carbonate minerals (Worden 

and Burley, 2003). The precipitated calcite cement has a negative impact on the flow properties 

(permeability) and available pore space (porosity) due to pore-filling and blockage of pore throats 

(Worden and Burley, 2003).    

 

Siderite 

Siderite (FeCO3) is an iron carbonate appearing in all the lithofacies, but is generally more apparent in 

Lithofacies F.1 & F.4 (Table 5.1). Siderite appears both as intergranular grains with a rhombic grain 

shape and also as pore-filling cement, often in association with calcite cement especially in the most 

proximal Lithofacies F.4 (Chapter 4.1). Siderite can develop both during eogenesis and mesogenesis 

(Worden and Burley, 2003). When in eogenesis, siderite is precipitated in partially reduced 

environments with high iron-content (Mozley, 1989). The influx of meteoric water causes Fe-ions to 

react with dissolved carbonate, which creates siderite. Marine conditions usually contain high amounts 

of sulphide (SO4
-
) due to the reduction of sulphate (SO4

2-
) and ferric iron, but if a meteoric influx 

occurs siderite might form prior to the reduction process of sulphate and iron (Love, 1967).  

 

Dissolution of Fe-rich glauconite, although the mineral is highly resistant and well preserved in the 

marine environment (Harding, 2014), might be a source of iron. Dissolved biotite can also be a source 

of iron to the system. Since biotite was only observed in minor quantities in the SEM-analysis, a 

suggestion is that released iron originated from dissolved biotite. Siderite does also form when 

decarboxylation reactions overtake methanogenesis with further burial (Worden and Burley, 2003) 

(Figure 5.26). Methanogenesis takes place in the deepest part of shallow burial in organic rich shales 

(Curtis, 1980). During decarboxylation increased temperatures as a result of deep burial leads to loss 

of CO2 from organic matter, which enables the formation of siderite (Worden and Burley, 2003).  
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The SEM-results show that the siderite has an impure chemical composition, with small amounts of 

magnesium present. This is due to the pore water chemistry in marine settings which have a higher 

magnesium/calcium ratio and less mangan and iron (Mozley, 1989). The observed appearance of 

siderite in the formation may indicate that it has been formed in a combination of different settings, 

including (1) influx of meteoric water to the system, (2) dissolution of biotite, (3) decarboxylation and 

(4) marine pore waters. 

 

Glauconite 

Glauconite ((K,Na)(Fe
3+

,Al,Mg)2(Si,Al)4O10(OH)2) is an iron clay that appears in nearly all the 

samples, but is most abundant in Lithofacies F.2 & F.4 (Table 5.1). The mineral is observed to be both 

pore-filling and pore-coating. Glauconite forms in Fe-rich, oxidized marine waters, with low sediment 

influx where the sediment accumulation is slow enough to allow diffusive interaction at the interface 

between sediment and water, such that the mineral has time to form (Odin and Matter, 1981). When 

formed, the mineral is highly resistant and quite well preserved in the marine environment (Harding, 

2014). Favorable conditions for glauconitization is at 50-300 m water depth with temperatures ranging 

between 7-15
0
C, typically in shelf-slope settings in open marine waters (Odin and Matter, 1981) 

(Figure 5.27). Sediment starvation typically provides suitable conditions for glauconite to precipitate. 

Previous work has stated a close relationship between glauconitic minerals and fecal pellets produced 

by burrowing organisms, where the organics associated with the feces provide a component for 

glauconite authigenesis (Pryor, 1975; Ekdale et al., 1984; Harding, 2014). Preservation of fecal pellets 

is typically found at 0-30 m depth at the seafloor, while the ideal conditions for glauconization is 

found at 50 m depth or more, which implies that there had to be a flooding of shallower deposits to 

greater depths in order to glauconitize the fecal pellets (Odin, 1988). Ideal conditions for 

glauconitization are 10
3
 to 10

6
 years with minimal sediment influx, meaning that the shallower water 

deposits must have been flooded for a longer period of time (Odin and Matter, 1981; Odin, 1988; 

Carozzi, 1993).  

 

Figure 5.27: Glauconite forms in Fe-rich oxidized marine waters, with low sediment influx, typically in shelf-slope 
settings in open marine waters. Model after Odin and Matter (1981).  
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Chlorite 

Chlorite ([Fe-Mg]5Al2Si3O10(OH)8) is a clay mineral that gradually increases in abundance from the 

most distal Lithofacies F.1 towards the most proximal Lithofacies F.4 (Table 5.1). Chlorite appears as 

both pore-filling cement and grain-coating in the samples. It is often observed together with siderite 

rather than calcite cement (Worden and Burley, 2003), as seen in the XRD-results of sample 10 from 

well BH-9-2006 (Figure 5.22). Chlorite can form in both the eogenetic and mesogenetic regime, often 

in reduced marine waters (Worden and Burley, 2003). The grain-coating prevents the framework 

grains from further diagenetic processes, such as quartz overgrowth and possible quartz cementation. 

Formation of grain-coating chlorite is due to recrystallization of Fe-rich clays (glauconite) at 

temperatures more than 90-100
0
C, which occurs at burial depths more than 3 km in the subsurface 

(Ehrenberg, 1993; Aagaard et al., 2000). Preventing quartz overgrowth at such depths could 

potentially lead to preservation of primary porosity in the sandstone (Ehrenberg, 1993), but the SEM-

results show that the chlorite is slightly “overdeveloped” leading to pore-filling in some of the pore-

space which actually has a negative impact on the porosity and permeability. This can be a result of 

deeper burial than ideal chlorite formation-depth, or the sandstone being buried over 3 km depth for a 

longer time.    

 

Pyrite 

Pyrite (FeS2) appears most abundant in Lithofacies F.1 (Table 5.1) according to the modal analysis, 

but the SEM-results also reveal its appearance in other lithofacies in the formation as well. Pyrite is 

observed as small white circular pellets (framboid) being either isolated or in close groupings. Pyrite is 

formed both during eogenetic and burial diagenetic processes in fully marine conditions (Figure 5.26) 

(Worden and Burley, 2003). The circular pellets seen in the SEM-analysis are a result of eogenesis, 

where microbial reduction of ferric iron takes place in sulphate rich seawater during the earliest stage 

of burial (Love, 1967). Bacterial degradation takes place in the sulphate reduction zone where sulphate 

is reduced so that sulfur can chemically react with iron to form pyrite (Curtis, 1980). When pyrite is 

formed at a later stage of burial diagenesis, the mineral tends to be coarser with a subhedral shape 

(Worden and Burley, 2003).   

 

Illite 

Illite (KAl3Si3O10(OH)2) was only observed trough the XRD-results as a constituent in the matrix 

content. Illite precipitates by mesogenetic processes, meaning burial diagenesis at 70
0
C with the 

presence of K-bearing pore water (Warren and Curtis, 1989). Dissolution of mica and K-feldspar is a 

source of potassium which can react with kaolinite. Illite then forms by replacement of kaolinite in 
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marine environments, when the burial temperature reaches 120-130
0
C (Hower et al., 1976; Hoffman 

and Hower, 1979). Since the XRD-results revealed that illite was in a transition state between illite and 

glauconite, the burial depth has most likely not been deep enough in order to reach high enough 

temperatures for precipitation of illite in its pure form. 

5.3.1 Compaction, Cementation & Porosity 

In this chapter a description of the porosity and the influencing effect by compaction and cementation 

in the different lithofacies, based on the modal analysis (Table 5.1) is presented. There are different 

ways of describing porosity. The most relevant descriptions based on the modal analysis are extracted 

from Worden and Burley (2003):  

 Primary porosity: porosity occurring between sand grains that is present at deposition 

 Secondary porosity: porosity being developed as a result of diagenetic processes (dissolution) 

 Micro-porosity: porosity that is only visible through an electron microscope 

 Macro-porosity: porosity that can be seen with the naked eye through an optical microscope 

 Inter-granular porosity: porosity developed between grains 

 Intra-granular porosity: porosity within grains (micropores as result of dissolution/alteration) 

 Grain-moldic: in-situ dissolution of minerals/grains, creating local pore-space (secondary)        

 

From the modal analysis, those pores which were visible with the naked eye through the optical 

microscope were either distinguished as inter-granular macro-porosity or grain-moldic (dissolved 

framework grains). Based on the modal analysis’ calculation of pore-space, the assumption that the 

matrix contains 10 % inter-granular micro-porosity is included. According to the modal analysis the 

primary porosity of the samples is dominated by micro porosity (Figure 5.28-A), while the secondary 

porosity is closer to a 50/50 approximation between micro and macro-porosity (Figure 5.28-B).  

 

 

Figure 5.28: (A) Primary porosity distributed as micro and macro-porosity. (B) Secondary porosity distributed as micro 
or macro-porosity. Micro and macro-porosity are presented in the figures as percentage, from the modal analysis (Table 
5.1). 
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From the results of the modal analysis of each sample both from well BH-9-2006 (Appendix 8) and 

Locality 1, Bolterdalen (Appendix 7), a mean value of the cement and porosity for all samples within 

the same defined lithofacies (Chapter 4.1) is presented (Figure 5.29) and (Figure 5.30). Lithofacies 

F.1 to F.3 have the highest measured primary porosity values, these are also the same lithofacies 

which have the highest matrix content (Figure 5.20) and lowest cement content. The cement content is 

described as all the authigenic minerals combined from the modal analysis (Table 5.1). With the 

assumption that the matrix contains 10 % inter-granular micro porosity, this together with the cement 

content could help to explain why the porosity trend shows a higher value towards the more distally 

deposited lithofacies. The upper shoreface deposited Lithofacies F.4 has the lowest calculated primary 

porosity values, while the cement content is abrubtly increasing in this lithofacies. The cement content 

in Lithofacies F.4 is dominated by calcite and chlorite (Table 5.1). As previously mentioned in both 

Chapter 5.1.4 and 5.3, calcite cement has a negative impact on the flow properties (permeability) and 

available pore space (porosity) due to pore-filling and blockage of pore throats (Worden and Burley, 

2003). Chlorite is observed to be grain-coating quartz, which prevents quartz overgrowth and quartz 

cementation. Chlorite coating is known to have a positive impact on the preservation of primary 

porosity in sandstone during burial and diagenesis. Although the results show only a primary porosity 

of 2.4 %, and the SEM-results revealing that the chlorite is “overdeveloped” and actually filling the 

available pore-space (Figure 5.15), this actually has a negative impact on the primary porosity.  

 

 

Figure 5.29: Cement distribution within the different defined lithofacies (Chapter 4.1), based on the modal analysis in 
(Table 5.1). Lithofacies (F1-F4) is organized from distal to proximal affiliation on the horizontal axis. OS=Offshore, 
OT=Offshore transition, LS=Lower shoreface and US=Upper shoreface. 

 

6,2 

9,6 9 

23,2 

0

5

10

15

20

25

F1 (OS) F2 (OT) F3 (LS) F4 (US)

% 

Cement 

Cement



Chapter 5 
Petrography 

76 
 

 

Figure 5.30: Porosity distribution within the different defined lithofacies (Chapter 4.1), based on the modal analysis in 
(Table 5.1). Lithofacies (F1-F4) is organized from distal to proximal affiliation on the horizontal axis. OS=Offshore, 
OT=Offshore transition, LS=Lower shoreface and US=Upper shoreface. 

 

Figure 5.30 shows that the secondary porosity is higher in Lithofacies F.4 compared to the other ones. 

This is probably due to dissolution of cement and other unstable grains during uplift-related diagenesis 

(telogenesis). The influx of acidic meteoric water could possibly have dissolved calcite cement, 

feldspars and other clay minerals, creating both micro and macro secondary porosity (Figure 5.28-B).  

Figure 5.30 also displays that the primary porosity in all of the lithofacies is quite low, and this is 

most likely due to the effects of compaction and cementation on the rocks causing porosity-loss. Most 

of the inter-granular macro-pores described in the samples were randomly distributed with few signs 

of communication. In order to find out if the porosity-loss is compaction or cementation-dominated a 

classification scheme by Houseknecht (1984) is presented (Figure 5.31). With an assumed initial 

(depositional) porosity of about 40 % (Worden and Burley, 2003), a calculation of the intergranular 

volume (IGV) and the volume of cement is presented in (Table 5.3), and used to determine the 

dominating process of porosity-loss presented in (Figure 5.31). IGV is described as the remaining 

amount of primary pore-space and volume of pore-filling cement, and measures the chemical and 

mechanical-compaction (Houseknecht, 1984; Paxton et al., 2002). IGV does not include secondary 

porosity, cements replacing dissolved framework grains etc. (Worden and Burley, 2003). Porosity will 

decrease with increasing burial depth, being a function of lithology and fluid pressure, relative to 

compaction.    
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Lithofacies Intergranular volume (IGV) (%) Cement (%) 

F.1 (OS) 5.6 6.2 

F.2 (OT) 6.3 9.6 

F.3 (LS) 3.8 9.0 

F.4 (US) 2.4 23.2 

 

Table 5.3: Table describing the main porosity-loss in the different defined lithofacies (F1-F4) (Chapter 4.1) based on the 
intergranular volume (IGV) and the volume of cement calculated from (Table 5.1). OS=Offshore, OT=Offshore transition, 
LS=Lower shoreface and US=Upper shoreface.  

 

Figure 5.31: The classification scheme describes the dominating processes of porosity-loss in the different lithofacies 
described within the Grumantbyen Formation. Lithofacies F.1-F.3 has all lost porosity from compaction, while Lithofacies 
F.4 is dominated by cementation as the main process behind the porosity-loss. Color coding of the individual lithofacies is 
marked in the box on the right hand side. After Houseknecht (1984). 

 

The classification scheme (Figure 5.31) shows that Lithofacies F.1 to F.3 are primarily dominated by 

compactional porosity-loss with a little less than 25 % of the porosity-loss being affected by 

cementation. Lithofacies F.4 is close to a 50/50 split between compaction and cementation-dominated 

porosity-loss, but still falls within cementation dominated. The differences between the lithofacies are 

most likely connected to matrix and cement content and also the amount of framework constituents, 

such as quartz, feldspars and rock fragments. Quartz is a more resistant mineral both mechanically and 

chemically than feldspar and rock fragments. Since Lithofacies F.4 has a higher abundance of quartz 

than the other lithofacies (Table 5.1), this will make the sandstone more resistant to porosity-loss by 

compaction. The cement content in Lithofacies F.4 is also much higher than the other lithofacies 

(Figure 5.29), implying a strong effect on porosity-loss by cementation. The matrix and cement 

content in Lithofacies F.1 to F.3 could be the reason why these lithofacies are primarily dominated by 

compactionalporosity-loss. 

F.1 (OS) 

F.2 (OT)  

F.3 (LS)  

F.4 (US)  



Chapter 6 
Discussion 

78 
 

6 Discussion 
 

The Grumantbyen Formation has remained poorly understood due to its high bioturbation intensity 

and lack of physical sedimentary structures throughout the whole succession. The discussion in this 

chapter is based on the ichnological, lithological and petrographical interpretations in the previous 

chapters with the aim of presenting a better understanding of the sedimentological development and 

depositional environment of the formation, relating this to a potential reservoir quality of the sandy 

formation.  

 

6.1 Depositional environment 
 

The ichnological study shows that there are a total of seven ichnofabrics identified from the wells and 

the outcrop studied, and that there is a gradual transition between these ichnofabrics. The abundance 

and appearance of the different ichnofabrics in well BH-10-2008, BH-9-2006 and the outcrop studied 

(Locality 1, Bolterdalen) is slightly different. Based on the description and interpretation of the 

different trace fossils appearing in the succession, the behavior of their producers is strongly connected 

to environmental conditions by energy levels related to current activity and oxygen distributed in the 

sediments. Well BH-10-2008 shows a more distal placement in the system based on the strong 

occurrence of Nereites and less abundance of Macaronichnus (Appendix 11), compared to well BH-9-

2006 showing a more proximal affiliation were Macaronichnus is more prominent than Nereites 

(Appendix 13). Reasons for comparing the appearance of these two trace fossils is that Nereites 

burrows are considered characteristic in offshore environments with oxygenated waters with low to 

moderate energy levels and slow/continuous sedimentation rates from suspension of fines (Frey and 

Pemberton, 1984; Hubbard et al., 2012). Macaronichnus is oppositely considered as being typical in 

more proximal shallow-marine deposits were energy levels are considerably higher and sandy 

substrate is more dominant, such as in an upper shoreface or foreshore environment (Clifton and 

Thompson, 1978; Seike, 2007; Bromley et al., 2009). Weathering of the outcrop section (Locality 1, 

Bolterdalen) made it harder to identify some of the trace fossils due to their size, but Macaronichnus 

did still show a great abundance in the outcrop studied (Appendix 12).  

 

Well BH-9-2006 was drilled on Nordenskiöld Land (Figure 2.3) and the interval containing the 

Grumantbyen Formation is approximately 268 meters thick, while BH-10-2008 is drilled 

approximately 50 km further to the south on Nathorst Land (Figure 2.3) and the same interval is only 

approximately 140 meters thick. Seeing a thickening from the most southern well towards the northern 
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well, together with the abundance of ichnofabrics also implying a change from a distal to a more 

proximal environment, might indicate that the whole system has prograded in a southern direction 

during deposition. This observation fits the earlier interpretations of the system as being provided with 

sediments from a source in north-east and prograding in a south-western direction (Kellogg, 1975; 

Steel et al., 1985; Bruhn and Steel, 2003; Simonstad, 2011).  

 

The connection between the ichnofabrics present and the different lithologies is important in terms of 

suggesting a potential depositional environment, since there are only a few physical sedimentary 

structures present in the formation. Observations of the different lithologies do however show that the 

appearances of sedimentary structures are increasing from Lithofacies F.1 towards F.4; despite the 

number of appearances are a few. A possible continuing vertical (lateral) facies shift shows that the silt 

content is gradually decreasing from Lithofacies F.1 towards the proximal interpreted Lithofacies F.4, 

most likely because the environment of deposition is moving from being under the storm-wave base to 

above the fair-weather wave base. This means that the energy level during deposition is getting 

stronger which implies better sorting of the deposits and washout of finer material. The specific 

appearance of different trace fossils also implies this, by having less mud-incorporating organisms and 

instead seeing more grain sorting behavior.  

 

These observations and interpretations become even more reliable when we take the analyzed samples 

from the petrography chapter into consideration. The texture of the analyzed samples shows that 

roundness, sorting and shape of the grains gets better from Lithofacies F.1 towards F.4, which implies 

higher energy conditions. From the modal analysis, the observed matrix content (Figure 5.20) is also 

gradually decreasing from Lithofacies F.1 towards F.4, which supports the interpretation of a possible 

lateral shift in facies and that the environment of deposition is becoming shallower upward in the 

succession of the Grumantbyen Formation. According to the classification of the samples analyzed, 

which is entirely based on the modal analysis (Table 5.1), the samples taken from the most distal 

Lithofacies F.1 are classified as mudstones (Figure 5.24), while the samples taken from the most 

proximal Lithofacies F.4 are classified as subarkose (Figure 5.25). These results are based on matrix 

content and the distribution of framework constituents, being directly related to energy levels in the 

environment of deposition. Lithofacies F.2 and F.3 are classified as arkosic wackes due to their matrix, 

quartz and feldspar content, which could imply periodic higher energy conditions and not a continuous 

degree of sorting as seen in Lithofacies F.4. This fits well with the offshore transition interpretation of 

Lithofacies F.2 and lower shorefaces interpretation of Lithofacies F.3, which would laterally be placed 

in between Lithofacies F.1 and F.4. 

 

Glauconite is one of the authigenic minerals seen in the formation, and the abundance of this clay 

mineral has given the formation a characteristic green color. The appearance of glauconite in 
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combination with the formation’s high bioturbation intensity and lack of physical sedimentary 

structures is most likely the reason why geologists have struggled to interpret the formation’s 

sedimentological development. Most of the previous work on the formation’s sedimentological 

development has led to an interpretation in terms of an offshore origin (Steel, 1977; Steel et al., 1981; 

Simonstad, 2011; Vilberg, 2011), but a possible inner shelf setting has also been proposed (Steel et al., 

1985). The observations and interpretations of this study points to a system being shoreline-attached 

and building out in a seaward direction. The appearance of glauconite in a highly bioturbated substrate 

indicates a system which has received relatively little sediment during the time of deposition. If we 

assume the sediment influx to be low, but still continuous, there must have been minor changes in 

terms of subsidence and/or relative sea level, in order to allow for glauconitization and progradation.  

 

The sea-level during deposition of the Grumantbyen Formation is suggested to have been relatively 

stable (Simonstad, 2011). Although the formation is described as having an overall homogenous look, 

a gradual coarsening upward trend from Lithofacies F.1 to F.4 exists, implying that the low sediment 

influx must have been slightly greater than the available accommodation space. A suggestion is that 

the stacking patter is aggradational and at the same time progradational. Ideal conditions for 

glauconitization are 10
3
 to 10

6
 years with minimal sediment influx at water depths greater than 50 m 

(Odin, 1988). Taking that into consideration, the buildup of the Grumantbyen Formation must have 

been a fairly slow process. Unpublished work by Gjelberg and Steel (1997) in a journal article by 

Bruhn and Steel (2003), states that the Grumantbyen Formation can be divided into six small-scale 

sequences illustrating coastal build-out events with each of them representing approximately 500 000 

years. An intermediate-scale transgressive-regressive cycle would then be the result of the stacking of 

these small-scale sequences (Bruhn and Steel, 2003). This interpretation would be in alignment with 

the conditions needed for glauconite to form, in terms of water depth (transgression) and time (low 

sediment-influx). 

 

The ichnological analysis also shows that the succession is shallowing upward, based on the different 

ichnofabrics dominating within the individual lithofacies (Figure 3.28). A transition from the most 

distal Nereites-Ichnofacies in Lithofacies F.1 to Cruziana-Ichnofacies in Lithfacies F.2 and F.3 and 

then to the most proximal Skolithos-Ichnofacies in Lithofacies F.4 have been demonstrated, based on 

the trace fossil assemblages. This observation is also supported by the unpublished work by Gjelberg 

and Steel (1997) in the journal article by Bruhn and Steel (2003). The same trend is also supported by 

the lithological study which shows that the succession is observed to be gradually coarsening upward 

from a marine sandy siltstone towards a shallow-marine very fine/fine to medium-grained light silty 

sandstone.  
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Lithofacies F.5, being described as a gravel layer at the top of the formation, has in this study been 

interpreted to be a transgressive lag marking the start of the major flooding on top of the shallow-

marine Grumantbyen Formation leading to the deposition of the superimposed Frysjaodden 

Formation. This gravel layer has previously caught the attention of several others who have worked 

with the formation. A gravel lag was first described by Kellogg (1975) as being at and near the top of 

the Sarkofagen Formation (=Grumantbyen Formation), as a result of regression towards west. Even 

more detailed work on the gravel layers were done by Steel (1977) who observed the layers to be 2-10 

cm thick and excellent marker beds which could be traced for long distances, possibly deposited by 

seasonal winter ice. Simonstad (2011) interpreted the gravel layer to have been deposited in a 

shoreface environment, were higher energy conditions made it possible to deposit the larger grain-

sizes as opposed to the rest of the succession which he stated had been deposited in offshore waters 

below storm-wave base. Simonstad (2011) concluded that the layer had been deposited as a result of a 

sudden drop in sea-level at the time of deposition, leading to a forced regression. Simonstad (2011) 

also explains the coastline-trajectory to be nearly flat, which in a case of forced regression possibly 

would lead to significant erosion and incision on the shelf. Such observations have not been identified 

in any of the wells or at the outrcrop studied in this thesis. The gravel layer is observed to be 

associated with only minor erosion at the top of the upper shoreface interpreted Lithofacies F.4. 

Lithofacies F.4 does however show intervals of coarsening upward, especially in the most proximal 

well BH-9-2006, and the same trend in the upper section of the formation has also been described in 

other previous work on the Grumantbyen Formation (Steel, 1977; Steel et al., 1981; Bruhn and Steel, 

2003). The observed drop in sea-level (Simonstad, 2011) could possibly explain why these coarsening 

upward units are so prominent in Lithofacies F.4. The gravel layer as observed in this thesis is strongly 

associated with the deposition of the superimposed Frysjaodden Formation, marking a major 

transgressive event above the Grumantbyen Formation. A suggested transgressive lag therefore still 

stands as the most reliable interpretation of the observed gravel layer.    

 

As already mentioned the abundance of glauconite, intense bioturbation, lack of physical sedimentary 

structures and yet high sand-content has led to a proposed offshore origin of the formation in previous 

works. Steel et al. (1981) first proposed the potential depositional environment to be a complex of 

offshore bars. According to an offshore bar model presented by Johnson and Baldwin (1996), the 

signatures of this type of system show striking similarities to the observations made on the 

Grumantbyen Formation. The issue however is related to the great extent and thickness of the 

Grumantbyen Formation in the Palaeogene Central Basin, where an offshore bar complex usually is 

recognized by thinner successions and a much smaller geographically extent. Sand bodies found in 

such systems are also usually enclosed by muds and silts, which results in isolated sand bodies 

(Johnson and Baldwin, 1996). This is however not the case in the Grumantbyen succession, since a 
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suggested shoreline-attachment is proposed and lateral shift between facies exists as a result of 

coarsening and shallowing upward based on its ichnology, lithology and petrography.  

 

Simonstad (2011) proposed a sandy outer shelf depositional model where a delta in the north-eastern 

part of the system provides sandy material to the system which is further transported to the distal parts 

of the shelf by strong longshore currents. The observations in this study points to a shallow-marine 

depositional environment dominated by wave action and little sediment input. A potential delta in the 

north-eastern parts has probably feed the system with sediments which was affected by wave activity, 

as proposed by Simonstad (2011). The observations do not show any sign of lobate architectures, 

distributary channels or any other sign of fluvial impact. Also the low sediment influx might indicate 

that the depositional environment is not directly connected to the source of sediment input. The 

petrographical study also supports this by not seeing prominent grain-size variations in the upper 

shoreface analyzed samples, which would have been an indication of a possible fluvial input nearby. 

These observations together reject an idea of a possible wave-dominated delta system. The 

observations in this study do however portray evidences of a system that is closely related to a wave-

dominated delta. A shoreline-attached system which broadly builds out into the basin with evidence of 

wave action suggests that the Grumantbyen Formation was a slightly prograding shoreface system, 

probably feed by one or several deltas in the north-eastern areas. A suggestion is that the shoreface 

slowly prograded into the system, where the conditions have been perfectly suitable for organisms to 

live and cause intense bioturbation. Based on the two wells studied and other previous work on the 

formation (Kellogg, 1975; Steel et al., 1985; Bruhn and Steel, 2003; Simonstad, 2011), there is an 

agreement that the formation is thinning in a south-western direction. Figure 6.1 represents a 

simplified model of the proposed depositional environment of the Grumantbyen Formation in this 

study, illustrating the different interpreted lithofacies’ placement in a possible shoreface system. In the 

most proximal parts of a shoreface system above the upper shoreface, one would expect to find beach 

deposits. A suggestion is that the major flooding of the shallow-marine Grumantbyen Formation and 

the resulting marine erosion could have washed away these beach deposits, since they have not been 

identified in this study. Remains of these beach deposits could potentially have been re-deposited as a 

part of the transgressive lag described earlier in the discussion.     



Chapter 6 
Discussion 

83 
 

 

 

Figure 6.1: (A) Simplified model of a slowly prograding shoreface system divided into the different defined lithofacies 
(F.1-F.4) in the Grumantbyen Formation. The beach facies is included in the model, but is not observed within the 
Grumantbyen Formation. The associated ichnofacies are noted on the side of the model, which is based on the observed 
trace fossil assemblages within the different lithofacies. The cross-line illustrates a transect from X to X’ which is 
presented in figure (B), where the different defined lithofacies (F.1-F.4) are noted (modified from Nemec).   
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6.2 Reservoir quality 
 

The porosity estimation of Lithofacies F.1 to F.4 in the Grumantbyen Formation is based on the modal 

analysis (Table 5.1). Matrix, cementation, compaction and uplift are the most important factors which 

have had a significant effect on the porosity distribution. The primary porosity within the lithofacies is 

overall fairly low, and there is an observed trend of gradual decreasing primary porosity from the 

offshore interpreted Litofacies F.1 towards the upper shoreface interpreted Lithofacies F.4 (Figure 

5.30). This is especially related to the matrix and cement content. Lithofacies F.1 to F.3 have the 

highest matrix content (Figure 5.20), where an assumed 10 % inter-granular micro-porosity is 

included in the primary porosity calculation. The most proximal Lithofacies F.4 has the lowest matrix 

values, but at the same time a higher cement content compared to the other (Figure 5.29). A further 

investigation on the possible porosity-loss was done by the calculation of the intergranular volume 

(IGV), in order to determine if the loss is dominated by either compaction or cementation. The results 

from the classification scheme (Figure 5.31) reveal that the primary porosity-loss within Lithofacies 

F.1 to F.3 were compaction-dominated, while Lithofacies F.4 was cementation-dominated. The 

difference between being either compaction- or cementation dominated is related to the lithofacies’ 

matrix and cement content and also the amount of framework constituents, where the upper shoreface 

interpreted Lithfacies F.4 has a higher abundance of quartz which makes the sandstone more resistant 

to porosity-loss due to compaction. The lack of matrix in Lithofacies F.4 makes the sandstone more 

exposed to diagenetic reactions during burial, and that would explain the high amount of cement 

content within that lithofacies. The cement content within lithofacies F.4 is primarily dominated by 

calcite and chlorite, which is proven to have a negative impact on the porosity possibly due to a deeper 

burial and a resulting stronger diagenetic reaction of especially the chlorite (Chapter 5.3 & 5.3.1).      

 

Secondary porosity also occurs within the different lithofacies, though with overall fairly low values. 

The secondary porosity is observed to gradually increase from Lithofacies F.1 towards F.4. The 

secondary porosity is most likely related to uplift-related diagenesis (telogenesis), where the exposed 

rocks have been influenced by meteoric water leading to dissolution of cement and other unstable 

grains. Dissolution of calcite cement and other authigenic clay minerals probably explains why 

Lithofacies F.4 has a higher calculated secondary porosity compared to its primary porosity (Figure 

5.30).   

 

An interesting question is whether or not the intense bioturbation throughout the entire succession had 

an impact on the porosity distribution, and how it possibly affected it in a positive or negative way. In 

the recent years a great focus has been turned towards biogenically enhanced reservoir quality, were 

discoveries actually have revealed that interconnected sand-filled burrow networks of organisms tend 



Chapter 6 
Discussion 

85 
 

to enhance the reservoir quality of the sandstones in terms of both permeability and porosity (Gordon 

et al., 2010; Baniak et al., 2013; La Croix et al., 2013; Knaust, 2014; Baniak et al., 2015). The Ula 

Formation serves as a good example of a reservoir where there is an increased recovery of fluids in the 

bioturbated zones (Baniak et al., 2015). Depending on the burrow character, certain burrows favoring 

grain sorting behavior would lead to an enhancement of the reservoir properties, while mud-filling 

behavior would have a negative impact (La Croix et al., 2013). In this study the ichnofabrics 

dominating within Lithofacies F.1 to F.4 show that due to the gradual shallowing upward and lateral 

shift in facies, there is also a gradual shift from distal mud-filled burrows (Virgaichnus undulatus) 

towards proximal grain-sorted burrows (Macaronichnus segregatis) (Figure 3.28). Macaronichnus 

segregatis appearing in the upper shoreface zone has in previous studies been proven to enhance the 

reservoir quality, due to grain segregation and passive sorting (Pemberton and Gingras, 2005; La 

Croix et al., 2013). Since the upper shoreface interpreted Lithofacies F.4 in this study is dominated by 

Macaronichnus-Ichnofabric, one could assume that the trace fossil has had a positive impact on the 

porosity distribution before significant burial and diagenesis took place. That being said, Virgaichnus 

undulatus is the most dominating ichnofabric throughout the entire succession and has proven to be a 

mud-filling burrow structure, which would oppositely have a negative impact on the reservoir quality 

of the sandstone. In order to get an idea of how the porosity distribution could have been before 

significant burial started a visualization of the primary porosity distribution, where the cement filling 

the pore-space has been excluded, is presented (Figure 6.2). The figure reveals a more expected 

realization of how the porosity was distributed within the four different lithofacies before burial and 

diagenetic cement affected it.  

 

 

Figure 6.2: The figure illustrates a realisation of the primary porosity distribution within Lithfacies F.1-F.4 before 
significant burial. The values are based on the calculated primary porosity values (Figure 5.30) and cement (Figure 5.29) 
within the four different lithofacies. Lithofacies (F.1-F.4) is organized from distal to proximal affiliation on the horizontal 
axis. OS=Offshore, OT=Offshore transition, LS=Lower shoreface and US=Upper shoreface. 
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The reservoir quality of the formation is a clear result of many different processes/agents. Before 

significant burial, bioturbation and matrix content possibly had the greatest impact, while during burial 

diagenetic processes created cement, and also compaction played a role based on the matrix and 

framework constituents of the lithology. Later uplift caused alteration and dissolution of the different 

constituent, leading to secondary porosity. In this study of the Grumantbyen Formation, the amount of 

matrix, cement and degree of compaction has clearly had a negative impact on the reservoir quality 

due to substantial porosity-loss. The fact that the primary porosity is dominated by inter-granular 

micro-porosity as a result of the high degree of matrix is a clear negative signal (Figure 5.28-A). The 

inter-granular macro-porosity which was observed in the optical microscope appeared randomly 

distributed and almost always isolated which is a sign of poor communication in the pore-network. 

This would have a negative effect on the flow properties (permeability) as well. Before significant 

burial Lithofacies F.4 could potentially have been a good reservoir sandstone with well 

communication in the pore-network as a result of the burrow-network by Macaronichnus segregatis, 

but diagenetic cement has unfortunately led to a relatively poor reservoir quality.  

6.3 Further research 
 

In order to get a complete understanding of the high bioturbation intensity within the Grumantbyen 

Formation, more wells and outcrops need to be studied closer. Also by collecting more samples from 

different wells and outcrops and studying them by their petrographical means would sufficiently 

contribute to a better understanding of the formation’s diagenetic history and depositional 

development. A better understanding of the biostratigraphy in the Palaeogene Central Basin would 

also be useful in terms of detailed correlation between the different wells and outcrops. A closer look 

into sea-level variations and possible source area signatures during time of deposition of the 

Grumantbyen Formation would contribute to a better understanding of its mineralogical constituents, 

sequence stratigraphic buildup and diagenetic reactions.  

 

As mentioned in Chapter 3.1 closer study of the orientation of Macaronichnus traces could be used as 

an indicator of beach morphodynamics, palaeo-shoreline orientation, ancient sea-level and 

environmental conditions (Seike, 2007; Bromley et al., 2009; Seike et al., 2011; Uchman et al., 2016). 

An interesting angle would therefore be to study the intervals of Macaronichnus-Ichnofabrics within 

the Grumantbyen Formation in further detail. The purpose would be to investigate the indications the 

burrow can reveal based on orientation, and also see how the trace fossil within the formation 

particularly affects the reservoir quality in these zones. Permeability measurements with both gas and 

fluid to understand how the burrows could possibly lead to a better pore-network system and increased 

recovery of hydrocarbons is particularly of interest for the petroleum industry.  
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6.4 Sources of error 
 

Trace fossil identification can of course be prone to a source of error since the ability to identify 

different trace fossils at different scales requires knowledge and experience within ichnology. Even 

experienced ichnologists encounter difficulties with distinguishing trace fossils which are quite similar 

in terms of ethology and architecture. Palaeophycus is in many cases often confused with Planolites, 

Ophiomorpha or Macaronichnus (Frey and Howard, 1985; Frey and Howard, 1990). Identifying trace 

fossils in core is different from outcrop, since the core section displays a 2D view while the outcrop 

portrays a 3D view, which can be prone to errors. During logging of the wells and at the outcrop the 

silt content and bioturbation intensity within the different defined lithofacies were totally based on 

observation, this could also be a source of error. The outcrop was also affected by intense weathering, 

which limited the ability to identify sedimentary structures and especially trace fossils compared to the 

core-sections in the wells. Since there were only two wells and one outcrop location studied, this may 

not be sufficient in terms of representing the sedimentological development of the whole succession. 

The sample collection is clearly prone to a source of error, since there is no guarantee that they will be 

representative for the whole succession. Appendix 2 also illustrates the distribution of the different 

samples within the defined lithofacies, and it shows that the distribution is uneven. The 3D scan done 

in the Micro-CT is usually not straight forward and requires proper knowledge of the workflow and 

the associated limitations. Such analysis can be prone to several sources of errors or artefacts; operator 

dependency, noise, imaging artefacts etc. (Cnudde and Boone, 2013). Thin-section analysis is very 

sensitive to heterogeneities, which would have a significant effect on the results from the modal, SEM 

and XRD-analysis. Point counting which is done in the modal analysis would also be prone to a source 

of error. The grain-sizes in the samples from this study are quite small, and with many of the samples 

also containing high amounts of either matrix or cement, there is of course a chance that some grains 

are counted wrong or even not taken into consideration. The thin-sections made from the samples 

taken within well BH-9-2006 were epoxy colored to highlight available pore-space. There is of course 

a chance that some of the pores were not filled with the contrasting blue color and was skipped during 

point counting. 
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7 Conclusion 
 

The Grumantbyen Formation has remained poorly understood due to its high bioturbation intensity 

and lack of physical sedimentary structures throughout the whole succession. The two wells and the 

outcrop studied in this thesis shows that the formation is thinning in a southern direction, with 

sediments being provided from a source in north-east and prograding in a south-western direction, 

which is consistent with earlier interpretations of the system (Kellogg, 1975; Steel et al., 1985; Bruhn 

and Steel, 2003; Simonstad, 2011). The ichnological study of the different wells and outcrop has led to 

an interpretation of seven different ichnofabrics occurring in the formation (Figure 3.28). The trace 

fossils are strongly connected to certain depositional environments characterized by certain 

environmental conditions and oxygen distributed in the sediments. There is a gradual transition 

between these ichnofabrics, and they are implying a change from a distal to a more proximal 

environment from the bottom to the top of the succession.  

 

The lithological study has led to an interpretation of five different lithofacies present (Table 4.1). With 

only few physical sedimentary structures present, the ichnological and lithological observations has 

had an important value in terms of suggesting a potential depositional environment. The observations 

of the different lithofacies has led to an interpretation that the succession is gradually coarsening and 

shallowing upward from an offshore deposited sandy siltstone towards an upper shoreface very 

fine/fine to medium-grained light silty sandstone. The environment of deposition is moving from 

being under the storm-wave base to above the fair-weather wave base, which is supported by a gradual 

increase in physical sedimentary structures present in the lithofacies as well as a decrease in silt 

content. Trace fossil appearance also supports a change in the environment of deposition connected to 

energy levels by seeing less mud-incorporating organisms and more grain sorting behavior. 

Lithofacies F.5 is a gravel layer appearing erosional on top of the upper shoreface interpreted 

Lithofacies F.4, and is strongly associated with the major flooding of the Grumantbyen Formation and 

deposition of the superimposed Frysjaodden Formation. The gravel layer has in this study been 

interpreted to be a transgressive lag. 

 

The textural and modal analysis from the petrography chapter supports the interpretations from the 

lithological study by presenting results illustrating a gradual increase in grain-size, better sorting, 

roundness, shape of the grains and a decrease in matrix content from Lithofacies F.1 towards F.4. The 

results imply that the energy conditions are getting higher as a result of a gradual shallowing upward 

trend in the succession. The appearance of authigenic glauconite in the formation in combination with 

high bioturbation intensity, lack of physical sedimentary structures and sandy input have troubled the 
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minds of those who have previously studied the formation. The combination of these different factors 

has in this study been interpreted to represent a shoreline-attached system building out in a seaward 

direction with very little sediment input. Low, but still continuous sediment input implies that there 

must have been changes in subsidence and/or relative sea level, in order to have glauconization and 

progradation. The noticed gradual coarsening upward trend from Lithofacies F.1 to F.4 probably 

suggests that the low sediment influx must have been slightly greater than the available 

accommodation space. Glauconization is dependent on time to form in condition with minimal 

sediment influx, referring this to the bioturbation intensity seen in the formation, this means that the 

buildup and progradation of the Grumantbyen Formation must have been a slow process based on the 

balance between available accommodation space and sediment influx.  

 

The observations in this study, points to a shoreline-attached shallow-marine depositional 

environment, possibly as a part of a slightly prograding shoreface system (Figure 6.1). The shoreface 

has probably been feed by one or several deltas, which brought low, but continuous sediments into the 

system from north-east. The shoreface possibly prograded in a south-western direction due to the 

thinning of the succession seen in this part of the basin. The low rates of sediment influx must have 

created unique conditions for organisms to thrive, causing the high degree of bioturbation seen 

throughout the Grumantbyen Formation.    

 

The reservoir quality of the formation is a clear result of many different processes/agents. Matrix, 

cementation, compaction and uplift are the most important factors which have had a significant effect 

on the porosity distribution. Both primary and secondary porosity is observed in the formation. Before 

burial, bioturbation and matrix content probably had the greatest impact, while during burial 

diagenetic processes created cement, and also compaction played a role based on the matrix and 

framework constituents of the lithology. Later uplift caused alteration and dissolution of the different 

constituent leading to possible secondary porosity. The amount of matrix, cement and degree of 

compaction has had a negative impact on the reservoir quality leading to substantial loss of pore-

space. Figure 6.2 illustrates that the reservoir quality potentially was good before significant burial, 

with well communication in the pore-network as a result of the grain-sorting behavior of organisms 

bioturbating the substrate. Unfortunately as a result of significant burial, diagenetic cementation and 

compaction has led to a relatively poor reservoir quality of the Grumantbyen Formation. 
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Appendix 1: A graphical visualization of the different ichnofabrics present within four defined lithofacies (F.1-F.4) in the 
outcrop (Bolterdalen) and the two wells studied. The different ichnofabrics are arranged vertically in alphabetical order 
from bottom to top. 
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Appendix 2: A calculated mean percentage of the 21 samples studied and their arrangement between the different 
associated lithofacies (F.1-F.4).  

 

Appendix 3: Samples from Locality 1, Bolterdalen. Samples are arranged in order from bottom to top of the logged 
section at the outcrop, and are based on core observations and lithofacies descriptions.  

Sample/Interval Lithofacies Ichnofabric Description from log Palaeoenvironment 

1.1 (3.0 m-log) F.3 

Palaeophycus-

Schaubcylindrich

nus 

Very fine-grained, medium gray-

color, moderately silty sandstone. 

Completely bioturbated (BI=6 – 100 

%). 

Lower shoreface 

1.2 (12.0 m-log) F.3 

Palaeophycus-

Schaubcylindrich

nus 

Silt/very fine-grained, medium 

gray-color, moderately silty 

sandstone. Completely bioturbated 

(BI=6 – 100 %). 

Lower shoreface 

1.3 (19.0 m-log) F.3 

Palaeophycus-

Schaubcylindrich

nus 

Very fine-grained, medium gray-

color, moderately silty sandstone. 

Completely bioturbated (BI=6 – 100 

%). 

Lower shoreface 

1.4 (34.0 m-log) F.3 

Palaeophycus-

Schaubcylindrich

nus 

Very fine-grained, medium gray-

color, moderately silty sandstone. 

Pebbly rock fragments of chert and 

quartzite are abundant in the 

sample. Completely bioturbated 

(BI=6 – 100 %). 

Lower shoreface 

1.5 (54.0 m-log) F.2 Virgaichnus 

Very fine-grained, dark gray-color, 

silty sandstone. Completely 

bioturbated (BI=6 – 100 %). 

Offshore transition 

1.6 (60.0 m-log) F.3 

Palaeophycus-

Schaubcylindrich

nus 

Very fine-grained, medium gray-

color, moderately silty sandstone. 

Completely bioturbated (BI=6 – 100 

%). 

Lower shoreface 

1.7 (65.0 m-log) F.3 Macaronichnus- Very fine-grained, medium gray- Lower shoreface 

9,5 

24 

38 

28,5 

Sample distribution within 
Lithofacies (percentage) 

F1 (OS)

F2 (OT)

F3 (LS)

F4 (US)
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Schaubcylindrich

nus 

color, moderately silty sandstone. 

Completely bioturbated (BI=6 – 100 

%). 

1.8 (72.0 m-log) F.2 Palaeophycus 

Silt/very fine-grained, dark gray-

color, silty sandstone. Completely 

bioturbated (BI=6 – 100 %). 

Offshore transition 

1.9 (86.0 m-log) F.3 Macaronichnus 

Very fine-grained, medium gray-

color, moderately silty sandstone. 

Completely bioturbated (BI=6 – 100 

%) 

Lower shoreface 

1.10 (95.0 m-log) F.4 
Virgaichnus- 

Macaronichnus 

Very fine-grained, yellowish gray-

color, light silty sandstone. The 

sample is split in two types of 

cement in between the framework, 

calcite and siderite – dissolution 

process. Completely bioturbated 

(BI=6 – 100 %). 

Upper shoreface 

 

Appendix 4: Samples from well BH-9-2006. Samples are arranged in order from bottom to top depth of the core-section, 
and are based on core observations and lithofacies descriptions.  

Sample/Interval Lithofacies Ichnofabric Description from log Palaeoenvironment 

1 - Depth 394.00-

394.15 m 
F.2 Virgaichnus 

Very fine-grained, dark gray-color, 

silty sandstone. Pebbly rock 

fragments of chert and quartzite are 

abundant in the sample. Completely 

bioturbated (BI=6 – 100 %). 

Offshore transition 

2 – Depth 386.62-

386.82 m 
F.1 

Nereites- 

Virgaichnus 

Very fine-grained, dark-color, sandy 

siltstone. Pyrite and siderite is 

abundant in the sample. Completely 

bioturbated (BI=6 – 100 %). 

Offshore 

3 – Depth 374.80-

375.00 m 
F.2 

Palaeophycus- 

Virgaichnus 

Very fine-grained, dark gray-color, 

silty sandstone. Completely 

bioturbated (BI=6 – 100 %). 

Offshore transition 

4 – Depth 317.45-

317.65 m 
F.2 Teichichnus 

Very fine-grained, dark gray-color, 

silty sandstone. Glauconite and 

Pebbly rock fragments of chert and 

quartzite are abundant in the 

sample. Completely bioturbated 

(BI=6 – 100 %). 

Offshore transition 

5 – Depth 314.89-

315.00 
F.1 

Nereites- 

Virgaichnus 

Silt/very fine-grained, dark-color, 

sandy siltstone. Pyrite and siderite is 

abundant in the sample. Completely 

bioturbated (BI=6 – 100 %). 

Offshore 

6 – Depth 288.74- F.3 Virgaichnus- Very fine-grained, medium gray- Lower shoreface 
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288.94 Cylindrichnus color, moderately silty sandstone. 

Completely bioturbated (BI=6 – 100 

%) 

7 – Depth 273.85-

274.00 
F.4 Virgaichnus 

Very fine-grained, greenish gray-

color, light silty sandstone. Siderite 

nodules and glauconite is abundant 

in the sample. Intensely bioturbated 

(BI=5 – 95 %). 

Upper shoreface 

8 – Depth  260.70-

260.85 
F.4 

Macaronichnus-

Virgaichnus 

Very fine-grained, greenish gray-

color, light silty sandstone. 

Glauconite is abundant in the 

sample. Completely bioturbated 

(BI=6 – 100 %). 

Upper shoreface 

9 – Depth 227.10-

227.25 
F.4 Macaronichnus 

Fine-grained, greenish gray-color, 

light silty sandstone. Glauconite is 

abundant. The sample is calcite 

cemented. Highly bioturbated (BI=4 

– 80 %). 

Upper shoreface 

10 – Depth 176.00-

176.20 
F.4 

Macaronichnus- 

Virgaichnus 

Very fine-grained, greenish gray-

color, light silty sandstone. 

Glauconite is abundant in the 

sample. Completely bioturbated 

(BI=6 – 100 %). 

Upper shoreface 

11 – Depth 163.60-

163.75 
F.4 

Virgaichnus- 

Macaronichnus 

Very fine-grained, greenish gray-

color, light silty sandstone. 

Glauconite is abundant in the 

sample. Completely bioturbated 

(BI=6 – 100 %). 

Upper shoreface 
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Appendix 5: Textural properties pf samples from Locality 1, Bolterdalen. Samples are arranged in order from bottom to top of the logged section at the outcrop. 

Sample/Interval Lithofacies Grain size (mm) Sorting Roundness Shape Fabric Palaeoenvironment 

1.1 (3.0 m-log) F.3 0.075 mm – Very fine Well Angular Moderate Sphericity Grain-supported Lower shoreface 

1.2 (12.0 m-log) F.3 0.059 mm – Coarse Silt Well Angular Low-Moderate Sphericity Grain-supported Lower shoreface 

1.3 (19.0 m-log) F.3 0.078 mm – Very fine Well Angular Moderate Sphericity Grain-supported Lower shoreface 

1.4 (34.0 m-log) F.3 0.091 mm – Very fine Moderately Sub-angular Low Sphericity Grain-supported Lower shoreface 

1.5 (54.0 m-log) F.2 0.067 mm – Very fine Well Angular Low-Moderate Sphericity Grain-supported Offshore transition 

1.6 (60.0 m-log) F.3 0.065 mm – Very fine Well Angular Moderate Sphericity Grain-supported Lower shoreface 

1.7 (65.0 m-log) F.3 0.074 mm – Very fine Moderately Sub-angular Low-Moderate Sphericity Grain-supported Lower shoreface 

1.8 (72.0 m-log) F.2 0.062 mm – Coarse silt Well Sub-angular Low-Moderate Sphericity Grain-supported Offsore transition 

1.9 (86.0 m-log) F.3 0.083 mm – Very fine Well Angular Moderate Sphericity Grain-supported Lower shoreface 

1.10 (95.0 m-log) F.4 0.095 mm – Very fine Very well Sub-angular Moderate Sphericity Grain-supported Upper shoreface 
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Appendix 6: Textural properties of samples from well BH-9-2006. Samples are arranged in order from bottom to top of the logged section of the core. 

Sample/Interval Lithofacies Grain size (mm) Sorting Roundness Shape Fabric Palaeoenvironment 

1 - Depth 394.00-

394.15 m 
F.2 0.110 mm – Very fine Well Angular Low-Moderate Sphericity Grain-supported Offshore transition 

2 – Depth 386.62-

386.82 m 
F.1 0.078 mm – Very fine Very well Angular Low-Moderate Sphericity Matrix-supported Offshore 

3 – Depth 374.80-

375.00 m 
F.2 0.075 mm – Very fine Well Sub-angular Low-Moderate Sphericity Matrix-supported Offshore transition 

4 – Depth 317.45-

317.65 m 
F.2 0.096 mm – Very fine Very well Sub-angular Moderate Sperhicity Grain-supported Offshore transition 

5 – Depth 314.89-

315.00 
F.1 0.061 mm – Coarse silt Very well Angular Low-Moderate Sphericity Matrix-supported Offshore 

6 – Depth 288.74-

288.94 
F.3 0.066 mm – Very fine Well Angular Moderate Sphericity Grain-supported Lower shoreface 

7 – Depth 273.85-

274.00 
F.4 0.068 mm – Very fine Very well Sub-angular Moderate Sphericity Grain-supported Upper shoreface 

8 – Depth  

260.70-260.85 
F.4 0.077 mm – Very fine Very well Sub-angular Moderate Sphericity Grain-supported Upper shoreface 

9 – Depth 227.10-

227.25 
F.4 0.169 mm - Fine Very well Sub-rounded Moderate Sphericity Grain-supported Upper shoreface 

10 – Depth 

176.00-176.20 
F.4 0.102 mm – Very fine Very well Sub-angular Moderate Sphericity Grain-supported Upper shoreface 

11 – Depth 

163.60-163.75 
F.4 0.109 mm – Very fine Very well Sub-angular Moderate Sphericity Grain-supported Upper shoreface 
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Appendix 7: Modal analysis of samples from Locality 1, Bolterdalen. The analysis is based on point-counting of 300 points within each thin-section through an optical microscope with a 
20X10 magnification. X = not observed within sample.  

 Framework constituents 

Matrix 

Authigenic minerals Porosity 

Sample Quartz 

Feldspar 

Mica 
Rock 

fragm 

Heavy 

minerals 
Organics Silica Calcite Siderite Glauconite Chlorite Pyrite Sericite Primary Secondary 

K-

feldspar 
Plagioclase 

1.1 39.3 2.0 18.3 x x x 0.3 28.5 x x 0.7 2.2 x x 3.3 4.3 1.1 

1.4 37.0 1.7 15.0 0.3 1.7 0.3 x 25.5 1.3 x x 2.8 0.7 x 5.0 5.3 3.4 

1.5 25.0 2.4 19.3 x 1.7 x x 34.5 1.0 x 0.3 1.0 1.3 x 6.7 6.3 0.5 

1.9 41.7 2.7 20.0 x 2.3 x x 22.5 3.3 x x 0.2 3.0 x 1.7 2.6 0.1 

1.10 43.0 1.4 10.3 x 1.3 0.3 x 4.5 0.3 20.0 5.0 6.3 x x 0.7 3.7 3.2 
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Appendix 8: Modal analysis of samples from well BH-9-2006. The analysis is based on point-counting of 300 points within each thin-section through an optical microscope with a 20X10 
magnification. X = not observed within sample. 

 Framework constituents 

Matrix 

Authigenic minerals Porosity 

Sample Quartz 

Feldspar 

Mica 
Rock 

fragm 

Heavy 

minerals 
Organics Silica Calcite Siderite Glauconite Chlorite Pyrite Sericite Primary Secondary 

K-

feldspar 
Plagioclase 

2 39.3 1.0 6.0 0.3 2.3 0.3 x 40.2 1.3 0.7 0.7 

 

0.2 

 

1.0 0.3 1.4 4.9 0.1 

4 41.7 1.3 10.0 x 2.0 x x 27.6 0.7 x x 

 

4.5 

 

x x 3.6 6.3 2.3 

5 28.7 1.0 10.3 0.3 2.0 x x 44.1 1.7 x 1.7 

 

0.8 

 

x x 2.7 6.3 0.4 

6 32.0 2.7 22.0 x 2.0 x x 26.4 2.0 0.3 x 

 

0.2 

 

6.7 x 2.6 3.0 0.1 

8 52.7 1.7 15.0 0.7 1.0 x x 2.7 1.0 2.7 2.3 0.5 14.3 x 2.9 1.5 1.0 
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9 51.0 1.3 12.0 x x x x 7.2 1.7 x 4.0 

 

1.7 

 

15.0 x 0.7 2.3 3.1 

10 51.7 1.7 14.3 0.3 2.0 1.0 x 9.6 0.3 2.3 0.7 x 9.7 x 1.0 2.1 3.3 

 

Appendix 9: Matrix content and distribution of framework grains within the samples from Locality 1 (Bolterdalen), and their resulting classification. The values are normalized from the 
results of the modal analysis.  

Sample Matrix Q F L SUM Classification 

1.1 47,5 65,92178771 34,07821229 0 100 Arkosic wacke 

1.4 46,42857143 66,86746988 30,12048193 3,012048193 100 Arkosic wacke 

1.5 73,44827586 51,72413793 44,82758621 3,448275862 100 Arkosic wacke 

1.9 33,75 62,5 34 3,5 100 Arkosic wacke 

1.10 7,98816568 76,78571429 20,83333333 2,380952381 100 Subarkose 

 

Q 

F L 

Quartz Arenite 

Sublitharenite 

Arkosic 
Arenite 

Lithic 
Arenite 

Subarkose 

Arenites 

Q 

F L 

Quartzwacke 

Wackes 

Feldspathic 
Graywacke 

Lithic 
Graywacke 
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Appendix 10: Matrix content and distribution of framework grains within the samples from well BH-9-2006, and their resulting classification. The values are normalized from the results 
of the modal analysis. 

Sample Matrix Q F L SUM Classification 

2 81,8243243 80,8219178 14,3835616 4,79452055 100 mudstone 

4 51,0909091 75,7575758 20,6060606 3,63636364 100 Arkosic wacke 

5 105,354331 68,2539683 26,984127 4,76190476 100 mudstone 

6 45 54,5454545 42,0454545 3,40909091 100 Arkosic wacke 

8 4,50704225 74,8815166 23,6966825 1,42180095 100 Subarkose 

9 11,7098446 79,2746114 20,7253886 0 100 Subarkose 

10 14,2253521 74,1626794 22,9665072 2,8708134 100 Subarkose 

 

 

Q 

F L 

Quartz Arenite 

Sublitharenite 

Arkosic 
Arenite 

Lithic 
Arenite 

Subarkose 

Arenites 

Q 

F L 

Quartzwacke 

Wackes 

Feldspathic 
Graywacke 

Lithic 
Graywacke 

Sand 

Silt Clay 

Mudstones 
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Appendix 11: Presenting log of well BH-10-2008. The length of the core is measured in depth (meters) from the 
topographical point where the well has been drilled. Bottom depth of the logged interval is 952 m and top depth is 812 m. 
Scale 1:50.  
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Appendix 12: Presenting log of Locality 1, Bolterdalen. The length of the log is measured in meters from the starting 
point at the locality. Total length is 104 m. Scale 1:50. 
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Appendix 13: Presenting log of well BH-9-2006. The length of the core is measured in depth (meters) from the 
topographical point where the well has been drilled. The log has been divided into two parts at the depth of 293 m. 
Bottom depth of the logged interval is 397 m and top depth is 125 m. Scale 1:50. 

 


