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Abstract

We study a population dynamics model incorporating natural mor-
tality as well mortality due to human exploitation. The model is appli-
cable to Norwegian spring spawning herring. Our goal is to make in-
ference about annual variation in natural mortality. Using the Laplace
approximation of the marginal likelihood, we derive a likelihood func-
tion for the unknown parameters in the model. The statistical prop-
erties of the estimators are investigated using simulated data sets. We
do not find evidence for annual variation in mortality for Norwegian
spring spawning herring, but our simulation experiments indicate that
one would need much more data than currently available to be able
to detect such an effect.

Keywords: Laplace Approximation, Monte Carlo-Simulation, Au-
tomatic Differentiation, Pattern Search.

1 Introduction

The annual mortality rate M is an important demographic parameter
in wildlife populations. The probability that an individual survives
from one year to the next is e−M , and this serves to define M . In
a fish population there can be large annual variations in M , due to
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changes in environmental conditions and variation in predation pres-
sure. Denote by M + εt the mortality rate in year t, where εt is a
perturbation around the average mortality rate M . We assume that
there is no direct measurement of εt available, and hence we shall view
εt as a stochastic variable with expectation 0 and unknown variance τ 2.
We formulate a stochastic population dynamic model, and derive an
objective function that allows M and τ to be estimated from catch
data and data from scientific surveys. For most marine fish popula-
tions such data are scarce, and estimation of M is a difficult problem.
Needless to say, estimation of the level of annual variation (τ) is an
even harder problem. Hence, with the current level of information we
cannot hope to get reliable estimates of τ . In the present paper we use
simulations to investigate how much data would need to be available
in order for τ to be identifiable with a reasonable degree of precision.

The stochastic population dynamic model we use is an instance
of a state-space model. There are two types of unknown quantities
in such models: 1) the state variables, which here are the number of
individuals being alive each year, and 2) the (structural) parameters:
M , τ , along with some other parameters to be defined later. State-
space models are often fit to data using Kalman-filter techniques [10].
When the model is non-linear, the equations must be linearised before
one can apply the standard Kalman machinery. We use the Laplace
approximation [7] to integrate out the state variables from the likeli-
hood function. This leaves us with the marginal likelihood, which be-
comes our objective function for estimation of M and τ . The Laplace
approximation is itself phrased as an optimisation problem, so our ap-
proach involves nested optimisation. The inner optimisation problem
is solved using a quasi-Newton algorithm. We solve the outer problem
using two approaches, quasi-Newton and a pattern search algorithm,
the latter of which which allows for the inner problem to be solved
inexactly, hence more cheaply.

The rest of the paper is organised as follows. In section 2 we outline
the stochastic population dynamic model. In section 3 we outline the
computational methods, and in section 4 we apply the method to
data for Norwegian Spring Spawning Herring along with simulated
datasets, which we discuss in section 5.

2 Population Dynamics of Exploited

Fish Stocks

Most of our large fish populations are subject to human exploitation.
We assume that the number of individuals C removed from the popu-
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lation each year by fisheries is known. The mortality rate M referred
to above is the “natural” mortality, and does not include the mortality
caused by the fisheries.

We consider a period of n years, labeled t = 1, . . . , n for simplicity.
Our population consists of A independent cohorts. In real life a cohort
consists of all fish born in a particular year, but for simplicity we shall
here treat the “cohorts” as being coexisting, but otherwise unrelated,
developing populations. The basic equation governing the population
dynamics of the jth, j = 1, . . . , A cohort is

Nj,t = (Nj,t−1 − Cj,t−1) e−(M+εt−1), t = 1, . . . , n, (1)

where the quantities are:

Nj,t Number of individuals in cohort j in year t,
M + εt Mortality in year t (applies to all cohorts),

Cj,t Catches in numbers of individuals in cohort j in year t.

The model specification is completed with the requirement that εt

has a Gaussian distribution with mean 0 and variance τ 2. Note that
this assumption allows for e−(M+εt) > 1, which does not have an
interpretation in terms of survival.

2.1 Available Data

In addition to the catch numbers C, data from acoustic scientific sur-
veys are available. These surveys provide relative indices I of popula-
tion size, in the sense that I is an estimate of q ·N , where q is a number
satisfying 0 < q < 1. We refer to q as the “catchability” parameter,
and it may be given the interpretation that the survey covers only a
proportion of the total population. By reading the age of individual
fish in a random sample it is possible to calculate a survey index for
each cohort. In the Norwegian Spring Spawning Herring data, and
in our simulated datasets, there are four surveys each year, each with
their own catchability parameter. The key quantities involved are:

Ij,s,t Survey index for cohort j in survey s in year t,
qs “Catchability” in survey s.

The statistical assumption we make is that log(Ij,s,t) has a normal
distribution with expectation log(qs · Nj,t) and variance σ2.

2.2 Likelihood Function

In order to initialise the system (1) we need values for (N1,0, . . . , NA,0),
i.e. the state vector at time zero. These values will be estimated
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along with the other parameters of the model. Hence, the parameters
are: θ = (M, τ, σ, q1, . . . , qS , N1,0, . . . , NA,0). The other independent
variables in the model are the parameters dealing with variation in
mortality, (ε1, . . . , εn). Let ε (without subscript) denote the vector
(ε1, . . . , εn), and similarly for the other variables. The log-likelihood
function, from which we shall construct our objective function, has
two parts:

l(θ, ε) =

n∑

t=1

S∑

s=1

A∑

j=1

[
− log(σ) −

(log(Ij,s,t) − log(qsNj,t))
2

2σ2

]

+

n−1∑

t=0

[
− log(τ) −

ε2
t

2τ2

]
. (2)

The first part arises from the distributional assumptions made about
Ij,s,t, while the second part comes from the distributional assumptions
made about the εt. Note that the two parts are coupled through (1),
where M + εt occurs.

2.3 Laplace Approximation

Denote the function (2) by l(θ, ε) where θ denotes all other indepen-
dent variables than ε. It is well established in the statistical literature
(e.g. [6], p. 466) that joint maximisation of l with respect to θ and ε
does not give a good estimate of θ, and hence not of τ which is the
parameter of primary interest to us. Instead, one can use the Laplace
approximation [8]

l∗(θ) = −
1

2
log det(−H(θ)) + l(θ, ε̄(θ)), (3)

of the marginal log-likelihood

l(θ) = log

[∫
exp {l(θ, ε)} dε

]
. (4)

In (3), ε̄(θ) is the maximiser of l(θ, ε) with respect to ε for a fixed value
of θ, and the symmetric matrix function H is defined as

H(θ) =
∂2

∂ε2
l(θ, ε)|ε=ε̄(θ). (5)

Numerical evaluation of l∗(θ) may be done as follows:

- Maximise l(θ, ε) with respect to ε to obtain ε̄(θ). This optimisa-
tion step is referred to as the “inner optimisation”.
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- Evaluate H at ε̄.

- Compute the determinant of H by means of a Cholesky factori-
sation and compute the expression (3).

The inner optimisation can be performed efficiently with a quasi-
Newton method, with the gradient computed by Automatic Differ-
entiation (AD), and H can also be computed by AD. AD (see, e.g.
[3]) is a collection of techniques which can compute derivatives of a
function defined through computer code, to machine precision. These
techniques are attractive since they are usually transparent to the
user, and can compute the gradient of a function f : R

n 7→ R at be-
tween four and five times the cost of evaluating the function itself.
AD may however require a large amount of storage space.

When ε̄(θ) does not maximise l(θ, ε) exactly, in which case we write
ε̃, we must include a correction term in the Laplace approximation,

l∗(θ) = −
1

2
log det(−H(θ)) + l(θ, ε̃(θ)) −

1

2
∇lTH−1∇l, (6)

where ∇l is the gradient of l(θ, ε) with respect to ε evaluated at ε̃,
and H given by (5) now is evaluated at ε̃. A proof of the result goes
as follows. By a second order Taylor expansion, and skipping the
argument θ from our notation, we get

l(ε) ≈ l(ε̃) + ∇lT (ε − ε̃) +
1

2
(ε − ε̃)T H(ε − ε̃). (7)

By algebraic manipulation we find that

(ε − ε̃ + H−1∇l)T H(ε − ε̃ + H−1∇l)

= (ε − ε̃)T H(ε − ε̃) + 2∇lT (ε − ε̃) + ∇lTH−1∇l,

which can be used to rewrite the Taylor expansion (7) as

l(ε) = l(ε̃) −
1

2
∇lT H−1∇l +

1

2
(ε − ε̃ + H−1∇l)T H(ε − ε̃ + H−1∇l).

Further, we have the multivariate normal integral
∫

exp

[
1

2
(ε − v)T H(ε − v)

]
dε = c · det(−H)−1/2, (8)

where c = (2π)n/2 is a constant that can be ignored in the present
context. Since (8) holds for all values of v, and in particular

v = ε̃ − H−1∇l,

the approximation (6) of the marginal likelihood (4) follows (after a
few lines of thought).
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3 Optimising the Likelihood Function

We consider two different methods for optimising the objective func-
tion (3). The first approach is to solve the problem by using the
Quasi-Newton solver that is built into AD Model builder [1] (ADMB),
a commercially available package for nonlinear statistical models. The
second is to use a variant of the pattern search method of [2] for the
outer problem, and the BFGS method to solve the inner problem, with
gradients and H computed by the ADOL-C package [4].

A difference between the two approaches from a theoretical point of
view is that the former requires the gradient of l∗(θ), which involves
third order mixed derivatives of l(θ, ε) [8], whereas the latter only
requires the second derivative H(θ). When using AD, the computation
of the gradient of a functional (l∗(θ) in our case) can be done with less
than or equal to five times the amount of work required to compute
the function value itself, and thus our problem appears well suited for
a gradient-based method. The price to pay for the “cheap” gradient
is that one has to store a computational graph (or an execution trace,
sometimes called a tape) the size of which can be substantial in the
sense that it can be larger than the available disk space. The size of
the tape depends on the number and nature of the operations required
to compute the function value.

In our case, the length of the vector ε, n, is important. In order
to obtain the gradient of (3) we need to differentiate the Cholesky
factorisation of the Hessian H, whose dimension is n×n. The compu-
tational graph, and corresponding overhead, used in computing ∇l∗

will therefore grow as n grows, and make the computation of ∇l∗

more cumbersome. The principle that a gradient can be obtained at
five times the cost in operation count of the function still applies, but
the storage requirements may be substantial for large n, a problem
which is not encountered on the same scale when calculating function
values only.

In our context, however, since we only have one time step per
year (that is, the formula (1) is only applied one time for each year
considered) and fish have a limited life span, we do not expect ε to have
significantly more elements than 20. Consequently, the computational
graphs involved are of acceptable size on a personal computer, and
the gradient-based method performs well. In addition, the ADMB
package contains a differentiated version of the Cholesky algorithm
(see e.g. [9]), which reduces storage requirements.

As for pattern search, its ability to cope with non-smoothness
means that one may solve the inner optimisation problem inexactly
initially and solve it more and more accurately as one approaches the
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solution of the outer problem (6). This reduces the total time of the
optimisation, since inexact function evaluations can be performed at
a relatively low cost. The suggested pattern search method must be
either be modified slightly to handle constraints, or one can handle
the constraints by using Lagrange multipliers and returning infinity
(or negative infinity) for points outside the domain of the function.

Both methods seem to benefit from the two-phase strategy out-
lined in [7]. The two-phase strategy should not be confused with the
nested (inner-outer) optimisation scheme that is common to both the
methods we discuss. In phase I the objective function is taken to
be (2), but with ε = 0 and τ fixed at some initial value. In particular,
there is no Laplace approximation involved in the first phase. Note
that the second term in (2) now can be ignored. Phase I hence pro-
vides estimates for all components of θ except τ . These estimates are
used as initial values for phase II in which the objective function is
taken to be the Laplace approximation (3).

Summing up, both methods are applicable to the problem; in our
context the ADMB package is faster than our experimental codes, so
we use the former in the next section.

4 Simulation Experiments

The question we ask in this section is: what type of, and how much,
data do we need to be able to estimate τ? For this purpose we gen-
erate artificial data from the model (1) via Monte Carlo simulation.
Hence we know what the true parameter values θ are. Then, we fit
the model to the simulated data, as explained above and obtain an
estimate θ̂. This procedure is repeated many times, and we can mea-
sure the statistical properties (mean and standard deviation) of the
estimator θ̂. The variable of main interest to us is τ , so we created
1,000 data sets for each of the values

τreal = {0.05, 0.1, 0.2} ,

where in addition

N0 =
[

200 200 200 200
]T

,

(implying four cohorts)

q =
[

0.5 0.5 0.5 0.5
]T

,

implying four surveys, and finally

σ = 0.2, M = 0.15, n = 20.
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a: τtrue = 0.05

Data available Mean(τ̂ ) Std(τ̂ ) # τmin

50% 0.0181 (0.0559) 0.0274 (0.0183) 689
75% 0.0246 (0.0528) 0.0281 (0.0166) 544
100% 0.0297 (0.0488) 0.0265 (0.0160) 400

b: τtrue = 0.1

Data available Mean(τ̂ ) Std(τ̂ ) # τmin

50% 0.0782 (0.0899) 0.0398 (0.0280) 132
75% 0.0881 (0.0927) 0.0319 (0.0254) 50
100% 0.0890 (0.0912) 0.0280 (0.0245) 25

c: τtrue = 0.2

Data available Mean(τ̂ ) Std(τ̂ ) # τmin

50% 0.1870 (0.1908) 0.0424 (0.0373) 3
75% 0.1869 0.0386 0
100% 0.1905 0.0377 0

Table 1: Numerical results (1000 Monte Carlo replica) for different values of
τtrue The numbers in parentheses show the results when only the instances
where τ̂ 6= τmin are included.

4.1 Results

The results are given in Table 1 a)–c). The columns of the tables
signify, from left to right, the amount of survey data available, mean
and standard deviation of τ̂ and the number of times where τ̂ was
equal to the lower bound (τmin = 10−3) set by the optimisation algo-
rithm. The table also shows results when the cases where τ̂ is equal
to the lower bound are excluded. By available survey data, we mean
the percentage of the 4 · 4 · 20 = 320 acoustical observations available,
where which observations are available is randomly selected.

5 Discussion

From Table 1 we draw the following conclusions:

• The more available data, the closer the mean of τ̂ is to τtrue.
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• The more available data, the smaller the standard deviation of
τ̂ .

• Using only the cases where τ̂ 6= τmin reduces the bias in the
estimator.

• The larger the value of τtrue, the fewer cases of τ̂ = τmin.

• The larger the value of τtrue, the larger the standard deviation
of τ̂ .

We also applied the method to time series data from Norwegian spring
spawning herring [5], which resulted in an estimate of τ = 0. Ap-
parently, there is no year-to-year variation in mortality, but an im-
portant point is that the uncertainty associated with the estimate is
large. The objective function (3) is flat near its optimum, which is
actually located at the boundary of the parameter space (τ must be
non-negative). Hence, data provided little information about the true
value of τ , which is what we expected. The simulation results pre-
sented in Table 1 support this conclusion, in that the probability that
τ̂ ends up at zero is high, particularly when τ is small, like τ = 0.05.

References

[1] D. Fournier. An introduction to AD MODEL BUILDER Version
6.0.2 for use in nonlinear modeling and statistics. Available from
http://otter-rsch.com/admodel.htm, 2001.

[2] L. Frimannslund and T. Steihaug. A generating set search
method using curvature information. To appear in Computa-
tional Optimization and Applications, 2006.

[3] A. Griewank. Evaluating Derivatives: Principles and Techniques
of Algorithmic Differentiation. Number 19 in Frontiers in Appl.
Math. SIAM, Philadelphia, PA, 2000. ISBN 0–89871–451–6.

[4] A. Griewank, D. Juedes, and J. Utke. Algorithm 755: ADOL-C:
a package for the automatic differentiation of algorithms writ-
ten in C/C++. ACM Transactions on Mathematical Software,
22(2):131–167, June 1996.

[5] ICES. Report of the northern pelagic and blue whiting fisheries
working group. ICES CM 2002/ACFM19, 2002.

[6] Y. Pawitan. In All Likelihood: Statistical Modelling and Inference
Using Likelihood. Oxford University Press, 2001.

[7] H. Skaug and D. Fournier. Evaluating the Laplace approxima-
tion by automatic differentiation in nonlinear hierarchical models.

9



Technical report, Inst. of Marine Research, Box 1870 Nordnes,
5817 Bergen, Norway, 2005.

[8] H. Skaug and D. Fournier. Automatic approximation of the
marginal likelihood in non-gaussian hierarchical models. Tech-
nical report, 2006. To appear in Computational Statistics and
Data Analysis.

[9] S. P. Smith. Differentiation of the Cholesky algorithm. Journal
of Computational and Graphical Statistics, 4(2):134–147, 1995.

[10] M. West and P. Harrison. Bayesian Forecasting and Dynamic
Models. Springer-Verlag, New York, 1997.

10


