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ANALYSIS OF CONTROL VOLUME HETEROGENEOUS
MULTISCALE METHODS FOR SINGLE PHASE FLOW IN POROUS

MEDIA∗
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Abstract. The standard approximation for the flow-pressure relationship in porous media is
Darcy’s law that was originally derived for infiltration of water in fine homogeneous sands. Ever
since there have been numerous attempts to generalize it for handling more complex flows. Those
include upscaling of standard continuum mechanics flow equations from the fine scale. In this work
we present a heterogeneous multiscale method that utilizes fine scale information directly to solve
problems for general single phase flow on the Darcy scale. On the coarse scale it only assumes
mathematically justified conservation of mass on control volumes, that is, no phenomenological
Darcy-type relationship for velocity is presumed. The fluid fluxes are instead provided by a fine scale
Navier–Stokes mixed finite element solver. This work also considers several choices of quadrature
for data estimation in the multiscale method and compares them. We prove that for an essentially
linear regime, when the fine scale is governed by Stokes flow, our method converges to a rigorously
derived homogenization solution—Darcy’s law. Moreover the method gives the flexibility to solve
problems with faster nonlinear flow regimes that is important in a number of applications, such as
flows that may occur near wells and in fractured regions in subsurface. Those flows are also common
for industrial and near surface porous media. The numerical examples presented in the paper verify
the estimate and emphasize the importance of good data estimation.
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1. Introduction. Flow in porous media models several physical phenomena of
great practical importance, spanning flow in natural geological systems to anthro-
pogenic materials such as fuel cells or human tissue. At the same time, the rigorous
description of the continuum scale equations, here referring to the scale where the
porous structure is not resolved, has remained elusive for all but the simplest sys-
tems. Spanning research from the engineering to applied sciences, it remains one of
the fundamentally unresolved cross-disciplinary challenges.

At the porous scale, the governing equations are well understood as those of fluids
and solids with appropriate interface conditions. In this setting, one may allow for
multiple fluid phases, as well as deformation of the porous material. However, the
challenging geometry of the pore space coupled with the large length scales required
by applications prohibits the use of direct numerical simulation on this scale.

The first continuum scale description was brought by the experimental result
known as Darcy’s law valid for slow single phase flows in homogeneous media. In
the theoretical setting, a long history of works have set out to establish continuum
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336 S. ALYAEV, E. KEILEGAVLEN, AND J. M. NORDBOTTEN

relationships based on derivations from the pore scale which validated and extended
Darcy’s law (see, e.g., [27, 11, 36, 25, 26, 14]). While in all these works the derivation
of the continuum conservation principles is relatively straightforward, the closure re-
lationships almost uniformly lack analytical treatment. Furthermore, as one considers
more complex flows, the derivations become largely untenable and for some cases it
is not possible to achieve full decoupling [26].

This has led to a situation where two scale models have gained increased attention
as a way to handle potentially complex porous media systems. To some extent, this
can be seen in the development of general frameworks for two-level couplings (see,
e.g., [10, 20, 29, 13, 18]), but also particular implementations tailored to porous media
(see, e.g., [37, 22, 32, 28, 16, 8, 15]). Of particular interest to us is the work related
to implementation of the heterogeneous multiscale method (HMM) framework (such
as [5, 16, 8, 15]).

In this communication, we give a more thorough description of a new way to
implement the HMM framework in the setting of control volume discretizations for
the continuum conservation equation that was introduced in [8], that we refer to
as control volume heterogeneous multiscale method (CVHMM). Our approach takes
advantage of the mathematically justified continuity equation on the coarse scale and
uses the full solution of the Navier–Stokes equations on perforated domains at the
pore scale to recover constitutive relations. Such design makes the method capable
of handling single-phase flow in porous media for arbitrary flow rates, thus extending
beyond the validity of Darcy’s law. Of importance, in the limit of low flow rates, the
classical results are recovered.

An alternative approach is discussed in the work of Chu et al. [16] (and [15] that
extends it) where for local computation, pore network modeling is performed. In-
stead of having an extra procedure of deriving a pore network possessing the same
properties as the actual pore structure we do simulations directly on the porous ge-
ometry, hence, avoiding errors caused by network reconstruction but paying the price
of more expensive fine scale computations. For problems where the details of the
pore geometry become important, e.g., for nonlinear flows or more general problems
involving deformation of the porous geometry, the direct treatment of the pore space
as presented herein will be more accurate than the idealized network approaches.

In this work we propose two choices of the quadrature points. The first one fol-
lows [6, 16] and mimics control volume finite element methods. The second novel
choice is more in the spirit of classical flux approximation schemes, wherein it pre-
serves harmonic averages at the coarse scale, and thus is more robust to material
discontinuities.

We complement the new method with a priori convergence analysis for the essen-
tially linear flows. Our analysis follows the layout suggested by E, Ming, and Zhang in
[21] and later developed for a fully discrete finite element framework by Abdulle [4, 5].
Here it is specifically adapted to the particular setting of finite volume discretization,
such as presented in [12]. Furthermore, our analysis departs from Abdulle in the par-
ticular grouping of error terms. The analysis also differs from most of the previous
work since in our case we have different problem formulations on different scales.

The remainder of the paper is structured as follows: In the next section, the
model problem is established. In section 3, we define the method. After putting
some additional assumptions on the method in section 4, the proof of an a priori
estimate for the linear regime is presented in section 5, followed by section 6 containing
observations regarding extensions of the analysis to nonlinear cases. After numerical
examples in section 7 the paper is concluded by section 8.
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a. b. c.

Fig. 1. A simple periodic structure forming a coarse scale domain (a) and triangulation of a
simple (b) and a more complex (c) cell problem.

2. Model problem. The focus of this paper is the interplay between pore scale
and Darcy scale. In this section we introduce model equations and briefly review a
relation between the scales that can be derived by homogenization.

2.1. Model equations. On the pore scale the motion of fluids is governed by
Navier–Stokes equations which for the incompressible case look as follows:

∇ · �vε = 0,(2.1a)

ρ

(
∂�vε

∂t
+ �vε · ∇�vε

)
= −∇pε + μ∇2�vε + �f.(2.1b)

Here �vε is fluid velocity, pε is the pressure associated with the fine scale (ε indicates
the exact solution of the full fine scale problem), ρ is the constant fluid density, μ

is viscosity, t is time and �f is volumetric forces. These equations are valid in the
pore volume inside the pore geometry the example of which is shown on Figure 1 and
marked by β. Darker areas on Figure 1, marked by σ, represent the solid impermeable
grains; in those areas and on their boundary there is no flow or

(2.2) �vε = �0.

It is convenient to picture porous media as being combined of the “cells” of size ε as
on Figure 1.

The coarse scale flux density �v (defined as integrated velocity) is assumed to fulfill
the continuity equation

(2.3) ∇ · �v = f,

where f is a source/sink term. Furthermore, we assume a relationship between the
coarse pressure and flux density of the form

(2.4) �v(�x) = �F (∇p(�x), �x).
We note that this formulation includes the well-known linear relation between the
flux and the pressure gradient referred to as Darcy’s law,

(2.5) �v = −K
μ
∇p,

where the resistivity coefficient K is called the permeability. However the expression
for �F is more general as it also includes the cases of nonlinear relationships such as
the Dupuit–Forchheimer–Ergun law.
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2.2. Homogenization solution of the fine scale problem. Using homoge-
nization theory, the Darcy relationship (2.5) can be rigorously derived from the fine
scale equations (2.1) under the assumptions of scale separation and essential linearity.
Consider a Navier–Stokes problem with scaling of the terms suitable for homogeniza-
tion and numerical upscaling in porous media:

(2.6)

⎧⎨
⎩

εγ�vε · ∇�vε +∇pε − ε2μΔ�vε = �f in Ωε,
∇ · �vε = 0 in Ωε,
�vε = 0 on ∂Ωε,

where Ωε is the coarse domain Ω without the solid part. The parameter γ determines
the strength of nonlinearity, smaller γ corresponds to larger nonlinearity. So, for
γ = ∞ the equation is reduced to Stokes equation.

In [7, Thm. 1.1, p. 46; Thm. 2.4, p. 59; Thm. 2.5, p. 60] the following theorems
are proved.

Theorem 2.1. For γ > 1 and ε → 0 there exists a homogenized solution for
(2.6) ⎧⎪⎨

⎪⎩
�v =

1

μ
K
(
�f −∇p

)
in Ω,

∇ · �v = 0 in Ω,
�v · �n = 0 on ∂Ω,

(2.7a)

Kij =

∫
β

∇�ui · ∇�ujdy,(2.7b) ⎧⎪⎪⎨
⎪⎪⎩

∇πi −Δ�ui = �ei in β,
∇ · �ui = 0 in β,

�ui = 0 in σ̄,
πi, �ui, y-periodic,

(2.7c)

where β is the porous part of the unit square domain where the fluid can flow, and σ is
solid. β ∪ σ̄ forms the periodic unit cell scaled to a unit square; see Figure 1. Scaling
introduced in (2.6) results in K in (2.7) being the nondimentional permeability (see,
e.g., [34]).

Theorem 2.2. For γ = 1 and ε → 0 there exists a homogenized solution for
(2.6):

∇yp1 + �v0 · ∇yv0 − μ∇2
y�v0 = �f(�x)−∇p(�x) in β × Ω,(2.8a)

∇y · �v0 = 0 in β × Ω,(2.8b)

∇x · �v = 0 in Ω,(2.8c)

�v · �n = 0 on ∂Ω,(2.8d)

�v0, p1, y-periodic,(2.8e)

�v =

∫
β

�v0dy,(2.8f)

where notation from Theorem 2.1 is used; in addition, y represents the fast periodic
variable and �v0 and p1 are auxiliary variables that for this truly nonlinear case cannot
be decoupled.

In the next section we will introduce a numerical method that can handle cases
without separation of scales and nonperiodic media. The above theorems will serve
as a useful benchmark for this numerical scheme when the corresponding assumptions
are satisfied.
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3. Method description. In this section we describe a method to compute the
flux expression (2.4) by using multiscale techniques. The method is formulated in the
framework of the HMM [19] to which we first give a brief introduction.

3.1. The HMM. An HMM for a two scale problem considers two sets of equa-
tions:

• coarse scale: F (U ,D) = 0;
• fine scale: f(u, b) = 0.

Here U and u are the functions that we are seeking the solution for, while D and b are
data. Unknown quantities are marked as bold and, crucially, the coarse scale equation
contains unknown data D. In the HMM framework the aim is to solve the coarse
equation, and to obtain necessary information on D by solving localized fine scale
problems. Thus together with the equations one should specify operators to transfer
information between the two scales. This involves both constraints to formulate local
fine scale problems based on the coarse state and data estimation to recover coarse
scale data from the solution of the fine scale problem.

3.2. The HMM for flow in porous media. To apply HMM to the problem
outlined in section 2, discretization must be specified on both the coarse and the fine
scale, as well as transfer operators between the scales.

3.2.1. Coarse scale discretization. To preserve conservation of mass the coarse
continuity equation is discretized by a control volume method. For convenience of
proofs in this paper we choose a control volume finite element formulation, although
the methodology can be applied to more general control volume methods. Thus the
coarse problem can be formulated as the following.

Problem 3.1. Consider a problem on a coarse domain Ω. Find p, such that for
all Lipschitz subdomains τ ⊂ Ω

(3.1)

∫
∂τ

�F (∇p, �x) · �nds =
∫
τ

fdx,

where �n is the outward pointing normal and f is the function that represents the
volumetric source density inside τ .

The operator �F in terms of HMM is the data estimation operator.
To proceed to a numerical method we introduce a triangulation (with no loss

of generality we describe the two-dimensional (2D) version of the algorithm); see
Figure 2. The pressure is represented by a linear function on each triangle, and it
can thus be represented by its value in the vertexes. The control volume grid is
the Voronoi diagram that is dual to the triangulation (marked by red on Figure 2).
We require that (3.1) is satisfied for all triangles in the grid (replacing τ). However

instead of computing �F (∇p, �x) purely on the coarse scale by introducing, e.g., a
Darcy relationship between the flux and the pressure gradient, the flux is estimated
by solving a fine scale problem around a quadrature point on an edge of the triangle.
To define this fine scale problem, we must first define a projection of the coarse
pressure onto the fine scale.

3.2.2. Transfer from coarse to fine scale problem. Since the coarse scale
flux is driven by pressure differences, as indicated by the functional form �F (∇p, �x),
the fine scale problem should be formulated to account for this pressure difference. A
natural way of projecting the coarse pressure difference onto the fine scale is to adjust
the fine scale boundary conditions. Consider a local crop of the coarse scale grid as
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Fig. 2. The structure of finite element grid (dashed lines) and the Voronoi finite volume grid
dual to it (solid lines).

Fig. 3. Building blocks of the multiscale method from the coarse grid perspective, zoom in to
fine scale grid, and an example of flow solution on the fine grid.

shown on Figure 2. We will describe how to set up the fine scale problem to estimate
the flux between �xl and �xn. By assumption 2 in section 4.1, as our grid is aligned
with the axes, flow over a coarse edge will only be driven by the pressure difference
between the two adjacent cells. Therefore the fine scale boundary conditions can be
defined based on only pl and pn. To form boundary conditions for a local problem of
the type (2.1) we project pressure to the fine scale problem defined on β(�xln) as it is
shown on Figure 3:

p(�x) = p̃l, �x ∈ ∂βl,(3.2)

p(�x) = p̃n, �x ∈ ∂βn,(3.3)
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where p̃l and p̃n are linear projections of pl and pn on the domain boundary as
shown on Figure 3; β is the fine cell (see Definition 4.2); ∂βξ (ξ ∈ l, n, t, b) are the
corresponding parts of the external boundary of a fine cell; see Figure 1(c).

3.2.3. Fine scale discretization. The pressure projection described above de-
fines some of the boundary conditions needed to solve the fine scale Stokes problem.
For desirable cases where we can identify a periodic cell, for the top and bottom
boundary the pressure is set to be periodic.1 Moreover, the velocity is set as periodic
on both the top-bottom and the left-right boundaries. On the internal boundaries,
no-flow conditions are assigned. As it is shown later those boundary conditions are
consistent with homogenization results.

Since the typical time scale of a fine scale cell problem is much smaller than one
of the coarse scale it is fair to assume that in (2.1b) ∂�vε

∂t = �0. Taking into account
this assumption the fine scale problem can be summarized as follows.

Problem 3.2. The fine scale cell problem takes the following form:

[�v · ∇�v] +∇p− μΔ�v = 0,(3.4a)

∇ · �v = 0,(3.4b)

with the boundary conditions

p(�x) = p̃l, �x ∈ ∂βl,(3.4c)

p(�x) = p̃n, �x ∈ ∂βn,(3.4d)

�v(�x) = �0, �x ∈ σ̄,(3.4e)

p,�v—periodic on the square elsewhere,(3.4f)

following the notation from Figure 1(c). Neglecting the term in the brackets in (3.4a)
results in a linear problem that is analyzed in most of the paper.

In our HMM we will solve Problem 3.2 numerically. To this end we introduce a
triangulation as illustrated on Figure 1(c) and discretize the problem by Taylor–Hood
elements using FEniCs [31]. The possibility of having different solvers on different
scales is one of the key features of the HMM framework that is also utilized in the
method described in our paper where mixed finite elements are used on the fine scale
and control volumes are used for the coarse scale. For convenience the fine local
problem is rescaled to a unit square domain β. This results in the full fine scale
problem being scaled as (2.6).

Remark 3.3. The methodology described in this paper is not limited by the peri-
odicity assumptions and can be applied on general representative elementary volumes
with different boundary conditions, such as zero Dirichlet on top-bottom and Neu-
mann on left-right. For the latter case on general geometries the proofs cannot be
conducted and hence it is not described in more detail. The interested reader may
find a discussion about effects of boundary conditions for similar upscaling problems
in, e.g., [17].

3.2.4. Computation of coarse scale flux. The coarse flux density is computed
by integrating the horizontal component of the velocity in the fine scale problem from
top to bottom and dividing it by the cell size ε. Incompressibility of the fine scale

1For general geometry different possible boundary conditions are described in Remark 3.3.
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problem allows us to perform this procedure in any cross section of the fine scale cell
problem.

Remark 3.4. It is important to note that in practice, to save computational
effort, one can perform computations in the call-by-need manner, meaning that for a
given geometry we store previous computations and reuse these result in future. For
the linear problem with periodic media this means that the total computational effort
on the fine scale would be solving only one local problem, which is equivalent to the
effort spent in traditional upscaling methods.

3.2.5. Summary of the algorithm. The algorithm to solve for the coarse scale
pressure and fluxes can be summarized as follows.

1. Start with a guess of the coarse pressure in all cells.
2. Estimate the flux over the coarse edges from the pressure drop over the edge.

If a flux for a similar pressure drop and grain structure is available from a
previous calculation, use this. If not, invoke the fine scale solver.

3. Compute the residual from the new fluxes equal to the difference between
sources and total outflow in each coarse cell. If this is sufficiently small, the
solution is found. If not, update the coarse pressure by an iterative method
based on the residual and go to point 1 (in our implementation for simplicity
we use a Newton-type method that converges in a few iterations for flow
regimes we have tested the method on).

3.3. Location of quadrature points. The method described in section 3.2 is a
straightforward generalization of the control volume finite element method (CVFEM)
to the HMM framework. The straightforward quadrature approximation introduced
in the description of the method in section 3.2.2 can be formally expressed as

(3.5) �FFE
q (�xln, pl, pn) = �F

(
pl − pn
|Zln| , �xln

)
= �F (∇pH(�xln), �xln) ,

where index q stands for quadrature approximation and FE indicates it mimics
CVFEM behavior; pn−pl

|Zln| is a finite element (FE) approximation to the gradient par-

allel component and pH is a notation for the finite element approximation of the
pressure.

However, for media with high permeability contrasts that are roughly resolved by
the control volumes (see Figure 4), CVFEM gives a poor approximation of the pressure
drop, and thus the flux. The reason is that a linear pressure interpolation between
cell centers cannot capture the discontinuity in the pressure gradient associated with
the jump in the permeability. Therefore, the flux computed by the CVFEM-based
HMM method will be highly dependent on the location of the quadrature point; see
Figure 4(a).

A control volume method commonly used to simulate porous media flow is the
so-called two point flux approximation (TPFA) that is derived as a mass conservative
finite difference method. In TPFA an auxiliary pressure is introduced at the interface
between the control volumes, and using this TPFA will correctly compute an interface
transmissivity equal to the harmonic mean. Thus for heterogeneous media, it is of
interest to consider control volume HMM based on TPFA. To do so an auxiliary
pressure variable is introduced at a point �xln on the interface between two control
volumes; see Figure 4(b). This splits the local problem between point �xl and �xn into
two. We again assume pressure varies linearly between each two neighboring points
and hence perform the same interpolation as in section 3.2 on both sides from �xln; see
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a.

b.

Fig. 4. Handling of discontinuity roughly resolved by coarse grid by methods utilizing two types
of quadrature approximation: CVFEM style (a) and TPFA style (b).

Figure 3. After integrating the results from the auxiliary problems, pln is eliminated.
As the problem is local the continuity equation implies that the flux between the two
cells will be the same in all cross sections along Zln. This means that for the linear
problem the permeability computed in such a way will be equal to the harmonic mean
and hence this choice of quadrature will mimic the TPFA. This can be more formally
written in a way similar to (3.5),
(3.6)

FTPFA
q‖ (�xln, pl, pn) =

(
|�xln − �xl|
|Zln|

[
F‖

(
∇pH(�xln),

�xln + �xl
2

)]−1

+
|�xln − �xn|

|Zln|
[
F‖

(
∇pH(�xln),

�xln + �xn
2

)]−1
)−1

,

where ‖ indicates that this is a component parallel to the flow and the right-hand side
is the harmonic mean.

The TPFA-based approximation also introduced earlier in [8] differs significantly
from older publications that consider control volume multiscale methods and only
use a one point approximation, such as [6]. The error introduced by using different
quadrature approximations is estimated in Remark 5.12. The practical applicability of
choices of quadrature points is considered in the numerical experiments in section 7.2.

4. Assumptions. In this paper we will limit ourselves to 2D problems. More-
over, in order to carry out proofs in this paper some assumptions to both the coarse
and the fine problem should be introduced.

4.1. Fine scale assumptions.
1. On the fine scale it is assumed that porous geometry is known and periodic

with period ε within large subdomains.
2. The pore structure is assumed to be aligned with the coarse grid, in the sense

that flow normal to the coarse edges is only driven by the corresponding
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344 S. ALYAEV, E. KEILEGAVLEN, AND J. M. NORDBOTTEN

normal component of the coarse pressure gradient. For Darcy’s law this
means that the permeability tensor K in (2.5) is diagonal in the coordinate
system of the grid (for Cartesian grids).

3. Furthermore we introduce some simplifications to (2.1b):

• There are no volumetric forces; �f = �0.
• The velocities are small so that the nonlinear term �vε ·∇�vε is negligible.
In most of the paper we assume it is exactly zero.

Remark 4.1. The simplifications concerning (2.1b) introduced in assumption 3
will be used in proofs in section 5. Section 6, however will weaken them and present the
sketches of the proofs for weakly nonlinear fine scale problem and discuss applicability
of the framework to fully nonlinear flow.

4.2. Coarse scale assumptions. The convergence proof for the coarse pressure
assumes that the solution p lies in the space

(4.1) p ∈ H(2)
0 (Ω) ≡ H1

0(Ω) ∩H2(Ω),

where Ω is the coarse domain of the problem. According to Cai, Mandel, and Mc-
Cormick [12] sufficient requirements on the problem to possess property (4.1) are

1. the components of permeability tensor Kii are continuous;
2. the source term f ∈ L2(Ω);
3. the domain Ω is convex.

Requirement 1 relies on the fine scale. In order to fulfill it we define the the flux
function F (∇p, �x) described in (2.4) to be a solution to the fine scale problem on a
square domain βε around �x defined as

(4.2) βε =
[
�x1 − ε

2
, �x1 +

ε

2

]
×
[
�x2 − ε

2
, �x2 +

ε

2

]
.

Perturbations in �x on a scale much smaller than ε will result in small perturbations
of the local fine scale domain configuration and hence the solution, that for the linear
case means continuous permeability.

Further on in the paper we will need a slightly different definition of local fine
scale domain.

Definition 4.2. The fine cell domain β is the fluid part of βε defined by (4.2)
scaled to the unit square.

5. An a priori error estimate. In this subsection we will estimate the H1

norm of the difference in pressure between the HMM solution and the real solution.
We start by explaining the error contributors and later prove the estimate for each of
them separately.

By repeated application of the triangle inequality, the difference between the true
averaged solution p and the fully discrete coarse solution obtained from HMM, pH,h

MS ,
can be expressed as in [5],∥∥∥p0 − pH,h

MS

∥∥∥
H1

≤
∥∥∥p0 − p0,0MS

∥∥∥
H1

(5.1)

+
∥∥∥p0,0MS − p0,hMS

∥∥∥
H1

(5.2)

+
∥∥∥p0,hMS − pH,h

MS

∥∥∥
H1

(5.3)

≤ C

(
η +

(
h

ε

)α

+H

)
.(5.4)
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The auxiliary terms in (5.1)–(5.3) have the following meaning:
• p0: The exact solution of the homogenized problem when ε→ 0;
• p0,0MS : The solution by the multiscale method when both scales are solved
exactly;

• p0,hMS : The solution by the multiscale method when the coarse scale is solved
exactly, but the fine scale is solved on the h-size grid;

• pH,h
MS : The solution by the fully discrete multiscale method (with H and h

grids).
With this in mind we identify the terms in (5.1)–(5.3) in the following way.

(5.1) Modeling error. The error from substituting the correct cell problem with an
approximate one.

(5.2) Propagation of fine scale error. The error due to solving cell problem numer-
ically on a grid with cell sizes h/ε.

(5.3) Coarse scale error. The error due to solving the coarse problem numerically
on a grid with cell size H and using quadrature approximation for the flux
term.

Remark 5.1 (nonlinear modeling error Cη). In (5.4) the modeling error (5.1) is
estimated to be proportional to η which is a measure of nonlinearity, that is a more
general statement than is proven in this section. In this section the fine scale problem
is assumed to be linear and hence η = 0. This is proven in Theorem 5.6.

For a weakly nonlinear flow, η describes the deviation of the flux from linear (6.1).
More general estimates, for the case when η > 0, are discussed in section 6.1.

Remark 5.2 (different ways of treating the propagation of fine scale error). In
most previous works, in which analysis of HMMs is carried out (e.g., [4, 5]), the split-
ting into error terms was done differently. Namely, in the chain of triangle inequalities
the fine scale discretization error was introduced after the coarse scale error. In the
analysis phase this leads to analyzing ‖pH,0

MS − pH,h
MS‖H1 rather than ‖p0,0MS − p0,hMS‖H1

in our case. While both approaches are valid the one used in this paper allows proofs
to be carried out in a continuous setting that can be more convenient, for example,
for nonlinearly driven problems.

Equation (5.4) is the summary of the error terms following the estimates formu-
lated in the rest of the section as theorems.

5.1. Modeling error. In this subsection we prove that for linear problem on
the fine scale, our HMM represents a method of numerical upscaling consistent with
homogenization solutions. The proof is split into several lemmas and it is summarized
in Theorem 5.6.

5.1.1. Equivalence on the fine scale. We start by proving the equivalence of
cell problem formulations in our multiscale method and in homogenization

Lemma 5.3. The velocity solution �u of the homogenization cell problem given by
(2.7c) is equivalent to the solution of the fine scale problem in the HMM (3.4) with
the following scaling

(5.5) �ui =
μ

δp1
�vi,

where δp1 is defined as pressure drop between the boundary conditions (3.4c), (3.4d)
δp1 = p̃n − p̃l.

Proof. The weak formulation of (2.7c) can be written in a weak form [33, Chap-
ter 9].
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Problem 5.4. Find �u ∈ H1
per,div0 such that for all �w ∈ H1

per,div0

(5.6)

∫
β

∇�ui : ∇�w =

∫
β

�f · �w,

where for the considered case the force �f = �ei. Index div0 means that it is a subspace
of divergence free functions.

The formulation (5.6) gives the unique solution for velocity �ui for (2.7c). The
absence of pressure in (5.6) implies that the pressure is an auxiliary variable in the
Stokes equations and does not influence �ui.

If �f = ∇ψ is a potential vector field then (5.6) can be further rewritten, using
the properties of �w,

(5.7)

∫
β

∇�ui : ∇�w =

∫
β

∇ψ · �w =

∫
∂β

ψ�n · �w −
∫
β

ψ∇ · �w =

∫
∂β

ψ�n · �w,

that also implies that ψ can be replaced by any other function that has the same
values on the boundary.

A potential corresponding to the force in our case is ψ = xi + c, where xi is the
ith coordinate and c is an arbitrary constant. To achieve our goal we choose c such
that ψ = p̃l/δp1 on ∂βl implying the right boundary condition ψ = p̃l/δp1 + 1 on
∂Dl. The boundary conditions on the remaining sides of the domain can be set to
ψ = xi + c or even simply forced to be periodic since it will not change the behavior
of the right-hand side integral in (5.7).

After those modifications the differences between HMM fine scale problem and
homogenization cell problem are the viscosity factor μ in front of �vε and the factor in
the boundary conditions δp1. Due to linearity the two solutions are equivalent with
the scaling given by (5.5).

5.1.2. Equivalence in data estimation. Second, we should prove that for
the linear case the data estimation operator �F (�x,∇p) is equivalent to the averaging
done in homogenization to compute the flux density in (2.7a) and (2.7b). By the
assumptions in section 4.1 the flow is driven only by a difference in the pressure and
hence in (2.7a) �f = 0.

We start by proving an auxiliary lemma interpreting equation (2.7b).
Lemma 5.5. The integration in (2.7b) to compute Kii is equivalent to integration

of the ith velocity component across the cell perpendicular to �ei,

(5.8) Kii =

∫
β

∇�ui : ∇�uidx =

∫
βi(xi)

�ui · �nids,

where βi(xi) is a plane perpendicular to �ei at point with coordinate xi.
Proof. Choosing the test function in Problem (5.4) as �ui gives a simplified ex-

pression for Kii,

Kii =

∫
β

∇�ui : ∇�uidx =

∫
β

�ei · �uidx.(5.9)

Periodic boundary conditions provide mass conservation along ei meaning that the
integral flux in the direction of ei over each perpendicular cross section is constant
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with respect to the normal spatial direction. Thus∫
β

�ei · �uidx =

∫ 1

0

∫
βi(x0

i )

�ui(xi) · �nidsdxi

=

∫ 1

0

1dxi

∫
βi(xi)

�ui(xi) · �nids =

∫
βi(xi)

�ui(xi) · �nids

that is by (5.9) the coefficient Kii, concluding the lemma.
The equivalence in data estimation is summarized in the following theorem.
Theorem 5.6. The homogenized solution is equivalent to the HMM problem when

both the fine scale problem and the coarse scale problem are solved exactly and hence

(5.10)
∥∥∥p0 − p0,0MS

∥∥∥
H1

= 0.

Proof. To show the equivalence let us compare the data estimation expressions
obtained by the HMM and homogenization.

The expression for the parallel component of the flux density �v in the HMM as it
is described in section 3.2.4 takes the form

�vHMM
i =

1

ε

∫
βi

�vεi · �ni =
δp1
με

∫
βi

�ui · �ni = − ε

με

∂p

∂xi

∫
βi

�ui · �ni

= −Kii

μ

∂p

∂xi
− Kij

μ

∂p

∂xj
= �vHom

i .(5.11)

To carry out the chain of inequalities to achieve (5.11) we have used (5.5) from Lemma
5.3, the definition from (3.4d), the assumption that permeability is aligned with the
grid, and the homogenized equation (2.7a).

The equality in (5.11) implies that for the linear case the HMM solved exactly
coincides with the homogenization solution, meaning that the solutions are also the
same and hence proving (5.10).

5.2. Propagation of the fine scale error. The fine scale error (5.2) in our
approximation is the combination of two multiplicative parts:

• the actual error induced by the approximate solution of the fine scale equa-
tions by a numerical method;

• the propagation of this error to the coarse solution.
We will consider here these two building blocks.

5.2.1. Fine scale error from finite element solution of the Stokes prob-
lem. The analysis of Taylor–Hood elements (see [24, Chapter II, 4.2] or [35]) gives
the following estimate of the fine scale error,

(5.12) ‖�vεi0 − �vεih‖L2(β) ≤ Ci

(
h

ε

)α

,

where �vεi0 is exact solution to the Stokes problem and �vεih is a numerical solution with
Taylor–Hood elements on a grid with size h/ε. We note that the size h/ε is relative to
the coarse grid, in the actual simulation the cell problem is scaled to the unit square
and, hence, the estimate is of order h instead.

In (5.12) α depends on the fine cell geometry, i.e., the largest internal angles
1 ≤ α ≤ 2, where α = 2 on convex domains and decreases with increase of internal
angles over π [35]. For the cases of interest in this paper, where the grains are assumed
to be polygons which are close to discs and hence have angles ϕ � π, the parameter
α is close to 2.
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5.2.2. Propagation of the fine scale error. The approximation of the fine
scale velocity from (5.12) is integrated as it is described in section 5.1 to form the
parameter field of the coarse scale problem. From (5.12) together with (5.9) and the
Sobolev embedding theorem it follows that at each point in space

|Kii −Kh
ii| ≤

∣∣∣∣�ei ·
∫
β

(�vεi0 − �vεih) dx

∣∣∣∣ ≤ ‖�vεi0 − �vεih‖L1(β)
≤ Ci

(
h

ε

)α

.

Taking the 2-norm of the matrix K we end up with

(5.13) max
Ω

‖K −Kh‖2 ≤ C

(
h

ε

)α

.

Prior to proving the theorem providing the estimate let us introduce an important
lemma that shows how the perturbation in data influences the error in the solution
to an elliptic PDE in the weak form. Up till now we have been using a formulation
of the PDE in the integral conservation form (Problem 3.1). However, for simplicity
of proofs, it is more convenient to use the weak formulation of our problem, since the
two formulations are equivalent when f ∈ L2.

Lemma 5.7. Consider a PDE in the weak form

(5.14) aκ(p, v) ≡
∫
Ω

κ∇p · ∇vdx =

∫
Ω

fvdx.

Given two continuous parameter sets for the problem κ = A and κ = Ã, such that
both lead to an elliptic problem with the ellipticity constant γ,

(5.15) aκ(v, v) ≥ γ ‖v‖2H1(Ω) .

If these parameter sets further satisfy

(5.16) max
Ω

‖A− Ã‖2 ≤ λ

then the corresponding solutions p and p̃ can be bounded in the sense

(5.17) ‖p− p̃‖H1 ≤ Cλ ‖∇p̃‖L2
,

where C is independent of A and Ã.
The proof of the lemma follows from [21, Lemma 1.8] The result of the lemma

can be interpreted as the following.
Corollary 5.8. If two problems of the form (5.14) with the restrictions (5.15)

have solutions bounded in H1 norm

(5.18) p, p̃ ∈ H1

and the parameter fields are lying close in the sense of (5.16), then the solutions of
those problems are close in the H1 norm

(5.19) ‖p− p̃‖H1 ≤ Cλ.

Proof. The result follows from Lemma 5.7 by using the boundedness assumption
(5.17).
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The following theorem gives the error estimate due to propagation of the fine
scale error to the coarse scale.

Theorem 5.9. The propagation of the fine scale error onto the coarse scale is
bounded as

(5.20)
∥∥∥p0,0MS − p0,hMS

∥∥∥
H1

≤ C

(
h

ε

)α

.

Proof. Since both p0,0MS and p0,0MS are solutions to continuous problems the proof
can be carried out in the set up of the weak formulation. Moreover the solutions are
in H1 by assumptions of the paper (see section 4.2). Applying Corollary 5.8 with
λ = C(hε )

α gives the result of the theorem.

5.3. Coarse scale error from finite volume approximation. In order to
prove the estimate on the coarse scale we will follow the proof in [12], and introduce
the quadrature approximation whenever needed. For convenience of notation let us
omit unused indexes

(5.21) pξ,hMS ≡ pξ;

let us also introduce the notation for the equation coefficient to replace the fraction

(5.22) Aξ =
Kξ

μ
.

Since the flow is assumed to be linear, the flux achieved from the fine scale com-
putation will correspond to the Darcy relation (2.5) with an appropriate permeability
field as is shown in section 5.1, and the solution approaches of the method on the two
scales decouples. Moreover, this permeability and hence the parameter field A are
essentially smooth.

The CVFEM is defined as follows [12].
Problem 5.10. Find p̃H ∈ SH

0 (the space of piecewise-linear finite elements),
such that for all grid cells τH the equality below is satisfied:

(5.23) −
∫
∂τH

(A∇p̃H) · �nds =
∫
τH

fdx,

where A is a continuous parameter field on the coarse scale. In other words, p̃H is a
finite element solution to the problem where no quadrature is introduced.

Let us also define a linear operator B : SH
0 + H(2)

0 → Rn associated with the
left-hand side of the equation above:

bln(v) = −
∫
γln

(A∇v) · �nlnds,(5.24)

Bv =

(∑
n∈ωl

blnv

)
l∈I

=

(
−
∫
∂τl

(A∇v) · �nds
)

l∈I

,(5.25)

where γln is the boundary between control volumes around l and n (see Figure 2),
ωl is the set of vertices adjacent to l, and I is the index set for all vertices in the
finite element space. We will also consider the continuous problem analogous to
Problem 3.1,

(5.26) −
∫
∂V

(A∇p0) · �nds =
∫
V

fdx,

where V is any Lipshitz subdomain of Ω.
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Finally, we will consider the discrete problem

(5.27) −
∫
∂τH

(AH∇pH) · �nds =
∫
τH

fdx,

where AH is chosen, such that the quadrature rule is satisfied,

(5.28) Fq‖(∇qH)
∣∣
ln

=

∫
γln

(AH∇qH) · �nds,

where Fq‖(∇qH) is the discrete approximation to the flux function made by our mul-
tiscale method and qH ∈ SH

0 . We choose AH to be a sufficiently smooth function that
satisfies (5.28). If we want it to be continuous it can be chosen from the second order
polynomials on the edges and interpolated appropriately inside the domain.

Lemma 5.11. There exists an AH sufficiently smooth and strictly positive definite
such that (5.28) is satisfied, which is sufficiently close to the given A

(5.29) max
x∈Ω

∥∥AH −A
∥∥
2
≤ CH.

Proof. We give an algorithm to construct such an AH . First let us define a
quadrature value of A on every edge that we denote by Aq,

(5.30) |γln|�nln ·Aln
q �ek = �Fq‖(�ek)

∣∣∣
ln
,

where unit vector �ek replaces the pressure gradient and superscript ln indicates the
edge between control volume l and n in the grid. From here we follow three steps to
construct AH on entities of the grid.

1. On the vertices of the control volume grid we set

AH(x) = min
∀i1i2,x∈γi1i2

(
Ai1i2

q

)
.

2. On the edges of the control volume grid AH is approximated by a polynomial
that satisfies step 1 and respects the quadrature rule (5.28) in terms of (5.30),

(5.31)

∫
γln

�n ·AH�ekds = |γln|�nln · Aq�ek = �Fq‖(�ek)
∣∣∣
ln
.

3. Elsewhere AH is interpolated smoothly, e.g., by a harmonic function respect-
ing steps 1 and 2.

The minima of AH defined by the steps above are guaranteed to be located in the
vertices of the control volume grid and the positive definiteness of KH is guaranteed
by positive definiteness of Aq that follows from properties of fine scale.

Due to continuity, the derivative is bounded and hence AH approximates Aq that
is extended to a piecewise constant around quadrature points as

(5.32) max
∥∥Aq −AH

∥∥
2
≤ CH

by construction. For the quadrature choices of this paper, a piecewise constant ap-
proximation of Aq also gives max ‖A−Aq‖2 ≤ CH (see Remark 5.12 below), hence
proving the lemma.

Remark 5.12 (specific choices of quadrature rules). If the permeability function
A is in W 1∞ or, in other words, has its derivative’s variation limited in the weak sense
then for a finite volume approximation given by (3.5) we have

(5.33)
∥∥A−AFE

q

∥∥
2
≤ CH,

since Aq along the edge is equal to its value in the midpoint.
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For the case of TPFA for which it is expressed in terms of the harmonic mean
(3.6) the result is obtained by use of the triangle inequality once more. In the worst
scenario

∥∥A−ATPFA
q

∥∥
2
≤ CH +max(‖A(�xln)−A(�xl)‖2 , ‖A(�xln)−A(�xn)‖2) ≤ 2CH.

(5.34)

The latter result (5.34) gives the same asymptotic rate as (5.33), but has a worse
constant. It should be noted that in applications, the assumption on continuity of the
permeability is too strong; in practice material discontinuities that are approximately
resolved by the coarse grid are as common. In such cases the TPFA quadrature
produces more accurate results as illustrated by a numerical example in section 7.2.

With results for the quadrature approximation at hand we can proceed to es-
timating the norm of the coarse scale error. We construct finite elements for our
CVFEM as triangles with degrees of freedom corresponding to potential lying on the
mesh corners as was discussed in section 3.2.1. For the case when the control volumes
are rectangles the triangles would be right angled and there will be no flow along the
hypotenuse due to orthogonality (the length of the dual grid’s side is equal to 0; see
Figure 2).

We want to estimate the error in the discrete seminorm

(5.35) |p|1,Ω̄H =

√√√√∑
l,n

(p(xl)− p(xn))2
|γln|
|Zln| ,

where γln and Zln are illustrated on Figure 2.
The goal is to achieve a bound for the error between the correct solution of the

problem p0 and the CVFE solution on the H-sized grid using quadrature integration
pH . Using the triangle inequality a norm of the error can be split,

(5.36)
∥∥p0 − pH

∥∥
H1 ≤ ∥∥p0 − p̃H

∥∥
H1 +

∥∥p̃H − pH
∥∥
H1 ,

where
∥∥p0 − p̃H

∥∥
H1 is the error due to the finite element approximation and∥∥p̃H − pH

∥∥
H1 is the error due to the quadrature approximation of A by AH . In

the paper by Cai, Mandel, and McCormick [12] the estimate for the first term is given
in the sense of the seminorm from (5.35) in Theorem 1 from [12]:

(5.37)
∣∣p0 − p̃H

∣∣
1,Ω̄H ≤ CH.

We need to estimate the second term |p̃H − pH |1,Ω̄H . The estimate is proved in the
following lemma.

Lemma 5.13. The seminorm due to quadrature approximation on the coarse scale
is limited by the coarse grid resolution H,

(5.38) |eq|1,Ω̄H ≡ ∣∣p̃H − pH
∣∣
1,Ω̄H ≤ CH.

Proof. In [12] it is proved that under our assumptions on the permeability tensor
(orientation along the grid and continuity/smoothness) the operator B is uniformly
elliptic on our finite element function space SH

0 ; see Lemma 2 in [12], or formally

(5.39)
∑
l∈I

v(xl)(Bv)l ≥ γ |v|21,Ω̃H
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for all v in SH
0 . Let us use this inequality to do the following estimate,

γ
∣∣p̃H − pH

∣∣2
1,Ω̄H ≤

∑
l∈I

eq(xl)(Be
q)l(5.40)

= −
∑
l∈I

eq(xl)

∫
∂τl

(A∇p̃H −A∇pH) · �nlds

= −
∑
l∈I

eq(xl)

(∫
∂τl

((AH −A)∇pH) · �nlds

)
,(5.41)

where we have combined (5.23) and (5.27) for all control volumes in the grid. By
the properties of quadrature derived in Lemma 5.11 we have a bound of the form
(5.29) for the difference between the correct and approximate permeability. Using the
inequality (5.29) and the Cauchy–Schwarz inequality leads to

−
∑
l∈I

eq(xl)

(∫
∂τl

((AH −A)∇pH) · �nlds

)

≤ −CH
∑
l∈I

eq(xl)

∫
∂τl

(∇pH) · �nlds

= CH
∑
l∈I

eq(xl)
∑
n∈ωl

∫
γln

(∇pH) · �nlds

= CH
∑

{l,n}∈ω

(eq(xn)− eq(xl))

∫
γln

(∇pH) · �nlds

≤ CH |eq|1,Ω̄H

⎛
⎝ ∑

{l,n}∈ω

(∫
γln

(∇pH) · �nlds

)2 |Zln|
|γln|

⎞
⎠

1
2

.

Division by |eq| results in the inequality

(5.42) |eq|1,Ω̄H ≤ CH

⎡
⎣ ∑
{l,n}∈ω

(∫
γln

(∇pH) · �nlds

)2 |Zln|
|γln|

⎤
⎦

1
2

.

We need to ensure that the expression in the brackets in (5.42) is bounded. Since the
properties of AH from Lemma 5.11 are no worse than the properties of the original
A we can formulate a continuous problem similar to (3.1) replacing A by AH in the
data estimation function

(5.43) −
∫
∂τ

(AH∇σH) · �nds =
∫
τ

fdx,

and σH will be the unique solution to the problem. Moreover functions pHδx (for which
data estimation is fixed to H but the grid is further refined to δx and pHH ≡ pH by
our definition) will converge to this solution σH with refinement of δx,

(5.44) pHδx → σH as δx→ 0

as proven in [12, Theorem 1].
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The exact solution to the approximate problem, σH , lies in the same space as pH

as its parameter field is no worse, meaning that it converges to p with refinements as
AH goes to A by Lemma 5.7:

(5.45) σH → p.

From (5.44) and (5.45) we conclude that pH converges to p which means that it
is also bounded in H1 norm; and hence the right-hand side in (5.42) is bounded by
CH , proving (5.38).

Corollary 5.14. The full coarse error is limited in the seminorm,

(5.46) |ec|1,Ω̄H ≡ ∣∣p0 − pH
∣∣
1,Ω̄H ≤ CH.

Proof. The result follows directly from the theorem above and Theorem 1 from
[12].

To bring the results back to the norms we started out with, i.e., H1, we first use
interpolation from finite element space of piecewise constants for fluxes. Applying our
assumption that there is no flow in the direction tangent to control volume boundaries
for piecewise linear pressures we get

‖∇v‖2L2
=

∫
Ω

(∇v)2dx

=
∑
l,n∈ω

∫
γln

(∇v)2dx

=
∑
l,n∈ω

1

2
|γln||Zln|

[(
v(xn)− v(xl)

|Zln|
)2

+

(
v(xγln1)− v(xγln2)

|γln|
)2
]

=
∑
l,n∈ω

1

2

|γln|
|Zln| (v(xn)− v(xl))

2
;

the sizes |Zln| and |γln| and points xl and xn are depicted on Figure 2, xγln1 and
xγln2 are the endpoints of γln, ω is the set of FE edges defining neighboring degrees of
freedom. This expression is half of the square of our discrete norm introduced in (5.35).
Since the solution to the continuous problem has continuous flux the integration in
the derivation above is not exact and by the mean value theorem gives a value in some
point in-between xl and xn so finally we have

‖∇v‖L2
≤
√√√√∑

l,n∈ω

1

2
|γln||Zln|

(
[v(xn)− v(xl)] + CH |Zln|

|Zln|
)2

≤
√√√√∑

l,n∈ω

1

2
|γln||Zln|

(
[v(xn)− v(xl)] + CH2

|Zln|
)2

≤
√√√√∑

l,n∈ω

1

2

|γln|
|Zln|

[
(v(xn)− v(xl))

2
+ CH4

]

≤ C|v|1,Ω̄H + CH.

The second part is to go the H1 norm from the seminorm which can be accom-
plished whenever we have a finite domain with zero Dirichlet boundary condition on
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a part of the boundary using Friedrich’s inequality (see, e.g., [9, page 30])

(5.47)
∥∥p0 − pH

∥∥
H1 ≤ C

∣∣p0 − pH
∣∣
L2

≤ C|p0 − pH |1,Ω̄H + CH ≤ CH

by corollary 5.14 and the derivation above. This fact can be written as a theorem.
Theorem 5.15. The coarse scale error is limited

(5.48)
∥∥∥p0,hMS − pH,h

MS

∥∥∥
H1

≤ CH.

6. Remarks on estimates for nonlinear flows. Due to the overall ellipticity
of the problem, the results obtained in section 5 can be extended to weakly nonlinear
flow in the sense where nonlinear terms are sufficiently small compared to the linear
terms. In this regime, the resulting analysis retains the same structure, but becomes
more involved as the propagation of fine-scale nonlinearities to the coarse scale needs
careful attention. Since no new mathematical ideas are required, we choose to not
present the rigorous proof, but only comment on the main aspects in section 6.1.

For nonlinear Navier–Stokes flow on the fine scale it is possible to show consis-
tency of our method with the rigorously derived Dupuit–Forchheimer–Ergun law (see,
e.g., [26, section 3.2.2]) which we show in section 6.2. However the error analysis for
the multiscale discretization in the case of fully nonlinear flow is out of the scope of
this paper, as it requires analysis for nonlinear control volume methods on the coarse
scale.

6.1. Remark on an estimate for weakly nonlinear flows. We refer to
weakly nonlinear problems in the sense that

• the solution on the fine scale is bounded by

(6.1)

∣∣∣∣ μδp1�vεi − �ui

∣∣∣∣ ≤ η

replacing (5.5) in the context of Lemma 5.3;
• the resulting problem maintains ellipticity properties as given in (5.39) and
(5.15):

B̃v =

(
−
∫
∂τl

�F (∇v) · �nlds

)
i∈I

,(6.2)

∑
l∈I

v(xl)(B̃v)l ≥ γ |v|21,Ω̃H .(6.3)

The nonlinearity constant η will influence the constant C in (5.4) and make the
modeling error term in it (5.1) nonzero.

6.1.1. Changes in the proofs from section 5. Because of the ellipticity as-
sumption (5.39) the structure used for estimates (5.2), (5.3) (Lemmas 5.13 and 5.7)
will still be applicable. However, the proofs for several lemmas will be more technical,
as linearizations must be introduced in several places.

As a representative example, in Lemma 5.13 in (5.40) before doing a linear split-
ting, the expression must be linearized to account for (6.1). This results in an addi-
tional factor of (1 + η) in the right-hand side of (5.46). However, as we assume η to
be small, the factor can be treated as part of the constant C.
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6.1.2. The modeling error for the case of weak nonlinearity. The devia-
tion η due to nonlinearity introduced in (6.1) results in the following nonzero estimate
for the modeling error,

(6.4)
∥∥∥p0 − p0,0MS

∥∥∥
H1

≤ Cη.

Here we summarize how it is derived.
The changes in the modeling error are caused by replacing Lemma 5.3 by assump-

tion (6.1). The consequence is that in Theorem 5.6 using the nonlinearity bound in
(5.11) will result in

(6.5) max|�vHom
i − �vHMM

i | ≤ Cη

replacing (6.1). This implies that in the worst case, if we linearize the problem in the
HMM, the difference in data will be of order η and hence by the lemma analogous to
5.7 from the appendix the estimate for the modeling error takes the form of (6.4).

Remark 6.1. Even though for the nonlinear problem the estimate (6.4) becomes
weaker than (5.1), it is important to remember that our benchmark solution obtained
by homogenization is an approximation when ε → 0. For problems with finite ε,
the nonlinear behavior may be better captured by the HMM approach than by the
homogenized solution.

6.2. Consistency with Dupuit–Forchheimer–Ergun law of fully non-
linear flow. In this section we highlight an additional result of our analysis with
respect to fully nonlinear flow. In particular, the consistency of the method in terms
of the homogenization result stated in Theorem 2.1 carries over to the homogenization
result stated in Theorem 2.2. We directly infer that the method presented herein is
consistent with the Dupuit–Forchheimer–Ergun law.

Here, refer back to the key components of the method and the homogenization
result, recalling that the consistency of the method is preserved.

1. The only coarse scale equation in the system (2.8) (where fine scale is not
present) is (2.8c). Coarse scale conservation for control volumes (3.1) is ba-

sically its conservative form with �F = �v.
2. As is shown in section 5.1.1 the pressure boundary conditions for our fine scale

local problem are equivalent to imposing a pressure gradient as in (2.8a).
3. The fine scale part of DFE law ((2.8a) and (2.8b)) coincides with our fine

scale cell problem (3.4).

4. Our data estimation operator �F coincides with integration of flow over the
fine scale domain given by (2.8f) as is shown in section 5.1.2.

The verification steps provided above are not sufficient to prove convergence for
fully nonlinear case. While the full analysis of convergence for the fully nonlinear case
is out of scope of this paper, we provide a numerical verification of convergence in
section 7.3.

7. Numerical examples. In this section we present numerical examples that
validate the properties of the CVHMMs discussed in this paper. In sections 7.1 and
7.2 we first emphasize the novelties presented in the paper, namely, the error estimate
and different quadrature approximations. Thereafter we provide examples that illus-
trate capabilities of the method for cases where the theory was not fully developed.
We extend theoretical results further in section 7.3 by an example illustrating con-
vergence of the nonlinear solution to itself, supporting the consistency of the method
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for nonlinear flows as discussed in section 6.2. After that, in section 7.4 we present
a typical configuration of a heterogeneous domain for which nonlinear flows arise in
applications. In the final example given in section 7.5, we explore how the presented
method could be applied to nonsymmetric porous structures that lead to an effec-
tive anisotropic permeability field with nonzero off-diagonal components. In this last
example the consistency of the coarse discretization is broken.

7.1. Comparison of error contributions. This numerical example verifies
the rates of convergence proven in the error estimate (5.4). As this paper focuses
mainly on the linear regime the results presented in this example only consider Stokes
flow. For this case the theory in section 5 indicates the dependency of the error on
the coarse and the fine scale grid resolutions (H and h) resulting from Theorems 5.15
and 5.9.

For our test we choose a simple problem on the unit square domain with zero
Dirichlet boundary conditions and a forcing function with discontinuity, namely,

(7.1) f =

⎧⎪⎨
⎪⎩

π2 sin(πx) sin(πy), 0 ≤ x ≤ 1

2
, 0 ≤ y ≤ 1,

4 sin(πy) +
1

2
(−4x2 + 4x) sin(πy)π2,

1

2
≤ x ≤ 1, 0 ≤ y ≤ 1.

The pore structure is chosen to be homogeneous and isotropic; it is formed by circular
grains with relative radius 0.4 forming a square arrangement. In the multiscale method
the grains are approximated by polygons as on Figures 1(a)–(b).

We aim to compare our method to an analytical solution for the problem. As
we are not aware of analytical solutions to the Stokes problem on this pore geome-
try, we use data estimation aap = −F‖(1) produced by our method on a very fine
grid as a reference. With this approximation the problem will have a semianalytical
homogenization solution of the form

(7.2)

⎧⎪⎨
⎪⎩

1

2aap
sin(πx) sin(πy), 0 ≤ x ≤ 1

2
, 0 ≤ y ≤ 1,

1

2aap
(−4x2 + 4x) sin(πy),

1

2
≤ x ≤ 1, 0 ≤ y ≤ 1.

The discrete L2 norms and H1 seminorms of error between the solution provided
by the method and semianalytical solution (7.2) are plotted on Figure 5. The coarse
unit square domain is initially a discretized regular grid with H = 0.25 and the fine
scale cell problem has an unstructured triangulation as shown on Figure 1(b); h and
H refinements are then performed uniformly on both scales. We first take a look at
convergence rates. The rates of convergence proven in section 5 all concern the H1

norm.
Figure 5(c) indicate that the numerical solution converges in the H1 norm with

rate H2. This rate is higher than the predicted linear convergence in the estimate
(5.4). The observed convergence rate in L2 is also H2 with respect to the coarse
scale refinement. The fact that the convergence rates in both H1 and L2 exceed the
theoretical bound is typical for control volume methods on smooth problems (see,
e.g., [23]).

The error due to propagation of the fine scale error can be studied from Fig-
ures 5(b) and 5(d). The cutoff on the rightmost point of the plots is a result of
approximation of refinements reaching the resolution on which aap is approximated.
The figures indicate that for considered porous media the rate of convergence is ap-
proximately h2. This means that, as was noted in section 5.2.1 for our domain, α ≈ 2.

D
ow

nl
oa

de
d 

02
/2

4/
17

 to
 1

29
.1

77
.1

69
.2

28
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ANALYSIS OF CVHMM FOR FLOW IN POROUS MEDIA 357

a. b.

c. d.

Fig. 5. Discrete error norms for solutions with different levels of refinements plotted against
coarse (a), (c) and fine (b), (d) grid sizes. All refinements are uniform and split the edges in half.

0=p1=p

TPFA 
quadrature 

CVFEM
quadrature

Fig. 6. The structure of the domain with discontinuity with locations of quadrature points.

The rate due to propagation of the fine scale error influences the errors in the H1 and
L2 norms equivalently.

We conclude this example with emphasizing that no matter how fine either of the
resolutions h or H is, the error may be governed by the other scale. The plateau on
the upper plots on Figures 5 gives a good illustration. This fact is also important
for single scale methods for which an effective parameter field is given: no matter
how fine the resolution of the grid is, the real error may likely be dominated by the
determination of the effective parameter.

7.2. Domain with a jump. In this example we address the issue discussed
at the end of Remark 5.12. The industry standard for reservoir simulation is finite
volume methods and the data that are provided by geologists contain grids for which
the material discontinuities are resolved as closely as possible by the finite volume
grid.

In this example we want to compare the two quadrature approximations intro-
duced in section 3.3. As was mentioned in Remark 5.12, although TPFA style quadra-
ture has a worse constant in the proof, it provides qualitative advantages when the
discontinuity is resolved by the grid. To compare the two approaches we introduce
an illustrative example that implements the situation depicted on Figure 4. As it is
shown on Figure 6, the domain is chosen to be a stripe 1×2ε with Dirichlet boundary
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Fig. 7. Relative error in flux compared to a problem with resolved discontinuity.

conditions on left-right and periodic on top-bottom. Exactly in the middle of the
domain a zigzag-shaped discontinuity is located; see Figure 6. The structure to the
left of the discontinuity has a sparser pattern of the grains and hence higher perme-
ability (around a factor of 20 contrast). Although our example is artificial, porous
media with a contact zone between high- and low-permeable regions are common both
in geological settings and in artificial porous media such as fuel cells and sanitation
tissues.

Figure 7 presents the comparison of relative error in flux between the two strate-
gies to choose quadrature on a relatively sparse grid compared to a solution that
resolves the configuration of the quadrature. The domain initially has four degrees
of freedom distributed evenly along the 1× 2ε strip that is doubled with each refine-
ment. The figure illustrates that although CVFEM-style approximation converges
to the solution with the expected rate before having stagnation near the asymptote,
TPFA-type quadrature achieves that asymptotic accuracy already for the coarsest
grid and maintains it. The errors for both methods will fall below the asymptotic
accuracy when the structure of the discontinuity is resolved.

The reason for the poor approximation properties of CVFEM for coarse grids is
that it uses a flux approximation that is close to an arithmetic mean around the dis-
continuity for the given setup and is not stable with respect to perturbations in general
(see Figure 4(a)). This leads to overestimation of the flux for low grid resolutions,
as opposed to TPFA that provides a harmonic mean, hence underestimating slightly
the true behavior. The kink towards zero in the error for CVFEM-type method is
due to change of sign in the approximation. Overestimation for the arithmetic means
changes to underestimation because the cell problem located in the discontinuity re-
gion returns an underestimated value of permeability of about 21% emphasizing again
the sensitivity to the small perturbation of the quadrature point location even for ide-
alized cases as on Figure 6. For flows across discontinuities, the correct effective
property in the limit is the harmonic mean (see, e.g., [2]) that is one of the reasons
for TPFA-type methods becoming standard in reservoir simulation.

This example emphasizes that while the error of CVFEM-style method for a
grid with a resolved discontinuity converges with a theoretically expected rate of H ,
the TPFA-style quadrature resolves the macroscopic discontinuity, and its error is
proportional to “thickness” of discontinuity 2ε.

7.3. Convergence of nonlinear flow to itself. In section 6.2 the consistency
between the proposed CVHMM and nonlinear homogenization was shown. In this
example we provide numerical indication that verifies convergence of the method for
the nonlinear case.

In absence of analytical solutions for Dupuit–Forchheimer–Ergun flows, in this
example we test all solutions against a numerical solution computed on very fine grids
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a. b.

c. d.

Fig. 8. Discrete error norms for nonlinear solutions with different levels of refinements plotted
against coarse (a), (c) and fine (b), (d) grid sizes.

on both scales. The problem setup is analogous to section 7.1. The difference is that
on the fine scale a fully nonlinear cell problem is used with μ = 0.004 (Problem 3.2)
and the starting grid is one level coarser than the grid used for the linear case (see
Figure 1(b)). With these parameters the discrepancy between the solution to the full
nonlinearity coarse scale flux as compared to the linearized flow is up to 20%.

The discrete error norms of solutions to the nonlinear problem compared to a
reference solution on detailed coarse and fine grids is presented on Figure 8. Compar-
ing convergence plots the for nonlinear problem (Figure 8) to those verifying linear
convergence (Figure 5) illustrates that the nonlinear problem converges with the same
rates with respect to both fine and coarse scale refinements. As it was observed in
section 7.1 for the linear case, the errors are of order (hε )

2 and H2, respectively, for
both norms. This gives a good indication of the robustness of the method in the
nonlinear regime for which analytical results are not obtained.

7.4. Features of nonlinear flow in heterogeneous medium. One of the
strong points of our method remains its flexibility with respect to the choice of the
fine scale problem. While the focus of this paper is analysis of convergence of the
CVHMM for the linear case, it is important to point out its applicability outside
convergence theory.

This numerical example shows all the potential of our method and indicates prob-
lems for which nonlinearities play a crucial role. We consider a nonlinear flow problem
(induced by full Problem 3.2 with μ = 0.04) on a heterogeneous domain composed
of regions made out of cells illustrated on Figures 1(b) and 1(c) combined in an al-
tering frame manner as shown on the bottom of Figure 9(a). The part composed
of grid cells of Figure 1(b)-type gives an anisotropic region which is approximately
4 times less permeable than the isotropic region composed of the Figure 1(c)-type
cells. The boundary conditions are no-flow for all outer boundaries of the domain
except for one sink that is represented by the zero Dirichlet boundary condition lo-
cated in the left middle on the side of the low-permeable region. The flow is driven by
the load function that is nonzero in one grid point on the opposing boundary in the
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Fig. 9. Pressure solution to nonlinear problem plotted over the domain schematics (light indi-
cate heterogeneous low-permeable areas) (a), corresponding flow solution (b), and special distribution
of nonlinear effects (c).

high-permeable region, simulating a source well. To handle discontinuities correctly
TPFA-type quadrature is used for sampling.

The pressure and the flow solutions to the described nonlinear problem are de-
picted on Figures 9(a) and 9(b), respectively. As expected most of the flow is driven
along the high-permeable frame part and there are pressure buildups near the source
and the sink. The latter one is larger due to lower permeability.

Another purpose of this example is to identify regions where nonlinearity is most
crucial for a heterogeneous domain. Figure 9 shows the the modulus of difference
between linear and nonlinear solutions in different parts of the domain. It is no
surprise that the nonlinearity is biggest for parts with highest flow velocity; that is,
first of all, point sources and sinks. In the rest of the domain nonlinear effects are
generally larger in high-permeable areas. Moreover there is noticeable focusing effects
on the outer corners of the low-permeable region in the center.

7.5. Application to nonsymmetric porous structures. It is well known
that for general porous structures and, as a result, for general permeability fields two
point methods including the methodology described in the current paper, are not
consistent and therefore converge to the wrong solution (see, e.g., [3]). However, for
the majority of geological applications the anisotropy is aligned with the grid to the
extent that the consistency error is acceptable. Therefore TPFA remains standard in
industrial reservoir simulation (such as the Eclipse software by Schlumberger). TPFA
leads to linear systems that are M-matrices, which in turn guarantees monotonicity
of the fluid potential and a physically reasonable solution. For the cases when the
structure is not aligned with the grid there exist several methods to overcome those
constraints including perturbing the grid so it is K-orthogonal and a TPVA is valid
(see, e.g., [1]), modifying positions of collocation points in two-point flux scheme
forming a nonlinear problem (see, e.g., [30]) or using a multipoint flux approximation
(see, e.g., [2]). While the methods described above are out of the scope of this paper,
here we present an example indicating that for randomly generated grain structure
(as on Figure 10(a)) the errors decrease to a certain point before being limited by the
consistency error of the coarse grid.

For this example we consider a coarse linear problem of the type

(7.3) −∇ · A∇p = f

solved on the unit square, for which A is computed from solving homogenization cell
problems numerically for the cell from Figure 10(a) on a refined grid. The f is than
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a. b. c.

Fig. 10. An example of randomly generated anisotropic porous structure (a) and discrete error
norms for solutions for domain composed of those for different levels of refinements plotted against
coarse (b) and fine (c) grid sizes.

computed from (7.3) by substituting

(7.4) p = (0.5− |x− 0.5|) (0.5− |y − 0.5|) .
The comparison of the numerical results for different grid resolutions to the solution
(7.4) in discrete norms is presented on Figure 10. Here, as earlier, we start out with
H = 0.25 on the coarse scale and grid depicted on Figure 10(a) and then perform
uniform refinements.

Figure 10(b) shows expected rate of convergence for the first refinements of the
coarse grid, after which the error due to lack of consistency dominates. In this example
fine scale grid refinement does not provide any improvement as the error due to off-
diagonal components, that is not accounted for, dominates over the propagation of
fine scale error (see Figure 10(c)).

This last example provides an alternative view of our method. The TPFA dis-
cretization chosen for the coarse grid is considered sufficiently accurate for a broad
range of industrial applications. We may thus choose to consider the consistency error
as a sufficient tolerance for the multiscale algorithm from a practical viewpoint. This
view allows us to interpret that for the current example, even the coarsest fine scale
solver is sufficient to obtain the accuracy needed in practical applications.

8. Conclusions. In this paper we have presented a heterogeneous multiscale
method for modeling flow in porous media taking explicitly into account pore scale
equations. The method presumes only the continuity equation on the coarse scale
and the pressure-flow relationship is numerically derived by solving problems on fine
scale geometry locally. The presented implementation of the method permits both
Stokes and steady state Navier–Stokes equations on the fine scale. Thus both linear
and non-linear coarse scale pressure-flow relations can be modeled by this approach.
Two possible choices of quadrature points for the reconstruction of the coarse scale
flux were presented. Those choices result in HMMs that generalize the CVFEM and
finite difference method with TPVA. HMMs with the latter choice of quadrature had
not been analyzed in previous works.

The particular focus of this paper has been the convergence analysis of the pre-
sented HMM. For methods in which scales differ significantly, a reconstruction of the
full fine scale solution is not important. By a comparison with the homogenization
solution of the Stokes problem, we proved an a priori error estimate for the coarse
scale pressure in the case of linear flow. The estimate is done in the H1 norm that also
implies the estimate on the coarse flux. It is shown that the error can be split into
three parts: a modeling error which is zero when the flow is linear, a term proportional
to the size of the coarse grid, and a term that is dependent on the fine scale geometry,
grid size, and the size of the fine scale problems. We also discussed the extension of
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the proof to the weakly nonlinear case, for which the modeling error is no longer zero
as well as consistent with a more complicated Dupuit–Forchheimer–Ergun law for the
fully nonlinear case.

Numerical results provided in the paper verify the estimate and emphasize the
importance of appropriate accuracy on both the coarse and fine scales. They also
indicate similar convergence behavior for nonlinear problem. We also provide an
example comparing different choices of quadrature on domains with coarse disconti-
nuity. Moreover for heterogeneous domain with discontinuity we identify some typical
regions for which nonlinearities have marked influence.
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